+++ title = "Mass Spring Damper Systems" author = ["Dehaeze Thomas"] draft = false +++ Tags : [Tuned Mass Damper]({{< relref "tuned_mass_damper.md" >}}) ## One Degree of Freedom {#one-degree-of-freedom} ### Model and equation of motion {#model-and-equation-of-motion} Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where: - \\(m\\) is the mass in [kg] - \\(k\\) is the spring stiffness in [N/m] - \\(c\\) is the damping coefficient in [N/(m/s)] - \\(F\\) is the actuator force in [N] - \\(F\_d\\) is external force applied to the mass in [N] - \\(w\\) is ground motion - \\(x\\) is the absolute mass motion {{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}} Transmissibility: \begin{equation} \frac{x}{w}(s) = \frac{c s + k}{m s^2 + c s + k} = \frac{2 \xi \frac{s}{\omega\_0} + 1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} Compliance: \begin{equation} \frac{x}{F}(s) = \frac{x}{F\_d}(s) = \frac{1}{m s^2 + c s + k} = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} with: - \\(\omega\_0 = \sqrt{k/m}\\) the natural frequency in [rad/s] - \\(\xi = \frac{1}{2} \frac{c}{\sqrt{km}}\\) the damping ratio [unit-less] A quality factor \\(Q\\) can also be defined: \begin{equation} Q = \frac{1}{2\xi} \end{equation} This corresponds to the amplification at the natural frequency \\(\omega\_0\\). ### Matlab model {#matlab-model} ```matlab %% Mechanical properties m = 1; % Mobile mass [kg] k = 1e6; % stiffness [N/m] xi = 0.1; % Modal Damping c = 2*xi*sqrt(k*m); ``` ```matlab %% Compliance: Transfer function from F [N] to x [m] Gf = 1/(m*s^2 + c*s + k); %% Transmissibility: Transfer function from w [m] to x [m] Gw = (c*s + k)/(m*s^2 + c*s + k); ``` {{< figure src="/ox-hugo/mass_spring_damper_1dof_compliance.png" caption="Figure 2: 1dof Mass spring damper system - Compliance" >}} {{< figure src="/ox-hugo/mass_spring_damper_1dof_transmissibility.png" caption="Figure 3: 1dof Mass spring damper system - Transmissibility" >}} ## Two Degrees of Freedom {#two-degrees-of-freedom} ### Model and equation of motion {#model-and-equation-of-motion} Consider the two degrees of freedom mass spring damper system of Figure [4](#figure--fig:mass-spring-damper-2dof). {{< figure src="/ox-hugo/mass_spring_damper_2dof.png" caption="Figure 4: 2 DoF Mass Spring Damper system" >}} We can write the Newton's second law of motion to the two masses: \begin{align} m\_2 s^2 x\_2 &= F\_2 + (k\_2 + c\_2 s) (x\_1 - x\_2) \\\\ m\_1 s^2 x\_1 &= F\_1 + (k\_1 + c\_1 s) (x\_0 - x\_1) + (k\_2 + c\_2 s) (x\_2 - x\_1) \end{align} The goal is to have \\(x\_1\\) and \\(x\_2\\) as a function of \\(F\_1\\), \\(F\_2\\) and \\(x\_0\\). When, we have: \begin{equation} \boxed{x\_1 = \frac{(m\_2 s^2 + c\_2 s + k\_2) F\_1 + (k\_1 + c\_1 s) (m\_2 s^2 + c\_2 s + k\_2) x\_0 + (k\_2 + c\_2 s) F\_2}{(m\_1 s^2 + c\_1 s + k\_1)(m\_2 s^2 + c\_2 s + k\_2) + m\_2 s^2 (c\_2 s + k\_2)}} \end{equation} \begin{equation} \boxed{x\_2 = \frac{(c\_2s + k\_2)F\_1 + (c\_2s + k\_2)(k\_1 + c\_1 s) x\_0 + (m\_1 s^2 + c\_1 s + k\_1 + c\_2 s + k\_2) F\_2}{(m\_1 s^2 + c\_1 s + k\_1)(m\_2 s^2 + c\_2 s + k\_2) + m\_2 s^2 (c\_2 s + k\_2)}} \end{equation} We can see that the effects of \\(x\_0\\) and \\(F\_1\\) are related with a factor \\((c\_1 s + k\_1)\\). If we are interested by \\(x\_2-x\_1\\): \begin{equation} (x\_2 - x1) = \frac{- m\_2 s^2 F\_1 - (m\_2 s^2)(k\_1 + c\_1 s) x\_0 + (m\_1 s^2 + c\_1 s + k\_1) F\_2}{(m\_1 s^2 + c\_1 s + k\_1)(m\_2 s^2 + c\_2 s + k\_2) + m\_2 s^2 (c\_2 s + k\_2)} \end{equation} | | x1 | x2 | x2-x1 | |----|-----------------------------|----------------------------|--------------------| | x0 | (c1s + k1)(m2s2 + c2s + k2) | (c1s + k1)(c2s + k2) | - m2s2\*(k1 + c1s) | | F1 | m2s2 + c2s + k2 | c2s + k2 | - m2s2 | | F2 | c2s + k2 | m1s2 + c1s + k1 + c2s + k2 | m1s2 + c1s + k1 | ### Matlab model {#matlab-model} ```matlab %% Values for the 2dof Mass-Spring-Damper system m1 = 5e2; % [kg] k1 = 2e6; % [N/m] c1 = 2*0.01*sqrt(m1*k1); % [N/(m/s)] m2 = 10; % [kg] k2 = 1e6; % [N/m] c2 = 2*0.01*sqrt(m2*k2); % [N/(m/s)] ``` ```matlab %% Transfer functions G_x0_to_x1 = (c1*s + k1)*(m2*s^2 + c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_F1_to_x1 = (m2*s^2 + c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_F2_to_x1 = (c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_x0_to_x2 = (c1*s + k1)*(c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_F1_to_x2 = (c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_F2_to_x2 = (m1*s^2 + c1*s + k1 + c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_x0_to_d2 = -m2*s^2*(c1*s + k1)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_F1_to_d2 = -m2*s^2/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); G_F2_to_d2 = (m1*s^2 + c1*s + k1)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2)); ``` From Figure [5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots), we can see that: - the low frequency transmissibility is equal to one - the high frequency transmissibility to the second mass is smaller than to the first mass {{< figure src="/ox-hugo/mass_spring_damper_2dof_x0_bode_plots.png" caption="Figure 5: Transfer functions from x0 to x1 and x2 (Transmissibility)" >}} The transfer function from \\(F\_1\\) to the mass displacements (Figure [6](#figure--fig:mass-spring-damper-2dof-F1-bode-plots)) has the same shape than the transmissibility (Figure [5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots)). However, the low frequency gain is now equal to \\(1/k\_1\\). {{< figure src="/ox-hugo/mass_spring_damper_2dof_F1_bode_plots.png" caption="Figure 6: Transfer functions from F1 to x1 and x2" >}} The transfer functions from \\(F\_2\\) to the mass displacements are shown in Figure [7](#figure--fig:mass-spring-damper-2dof-F2-bode-plots): - the motion \\(x\_1\\) is smaller than \\(x\_2\\) {{< figure src="/ox-hugo/mass_spring_damper_2dof_F2_bode_plots.png" caption="Figure 7: Transfer functions from F2 to x1 and x2" >}} ## Bibliography {#bibliography}