+++ title = "Positioning Stations" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++ Tags : ## Review {#review} ### Sensors {#sensors} - Capacitive: (Schroer et al. 2017; Villar et al. 2018; Schropp et al. 2020) - Fiber Interferometers Interferometers: - Attocube FPS3010 Fabry-Pérot interferometers: (Nazaretski et al. 2015, 2022; Stankevic et al. 2017; Engblom and others 2018) - Attocube IDS3010 Fabry-Pérot interferometers: (Holler et al. 2017, 2018; Kelly et al. 2022) - PicoScale SmarAct Michelson interferometers: (Schroer et al. 2017; Schropp et al. 2020; Xu et al. 2023; Geraldes et al. 2023) ### Actuators {#actuators} - Piezoelectric: (Nazaretski et al. 2015, 2022; Holler et al. 2017, 2018; Villar et al. 2018) - 3-phase linear motor: (Stankevic et al. 2017; Engblom and others 2018) - Voice Coil: (Kelly et al. 2022; Geraldes et al. 2023) ### Bandwidth {#bandwidth} Rarely specificity. Usually slow, so that only drifts are compensated. Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators (Kelly et al. 2022; Geraldes et al. 2023). ### Degrees of Freedom {#degrees-of-freedom} - Full rotation for tomography: - Spindle bellow YZ stage: (Wang et al. 2012; Schroer et al. 2017; Schropp et al. 2020; Geraldes et al. 2023) - Spindle above YZ stage: (Stankevic et al. 2017; Holler et al. 2017, 2018; Villar et al. 2018; Engblom and others 2018; Nazaretski et al. 2022; Xu et al. 2023) - Only for mapping: (Nazaretski et al. 2015; Kelly et al. 2022) **Stroke**: - > 1mm: (Nazaretski et al. 2015; Kelly et al. 2022; Geraldes et al. 2023) ### Payload capabilities {#payload-capabilities} - Micron scale samples - Samples up to 500g (Nazaretski et al. 2022; Kelly et al. 2022) ### Nano Positioning End-Station without online metrology {#nano-positioning-end-station-without-online-metrology} {{< figure src="/ox-hugo/endstation_id11.png" >}} ### End-Station with integrated online metrology {#end-station-with-integrated-online-metrology}
Table 1: End-Station with integrated online metrology
| Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref | |-------------------------------------------------------------------|------------------------------|---------------------|-------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------| | Spindle / **XYZ piezo stage** / Spherical retroreflector / Sample | 3 interferometers: \\(YZ\\) | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | (Schroer et al. 2017; Schropp et al. 2020) | | Spindle / Metrology Ring / **XYZ** Stage / Sample | 3 Capacitive: \\(YZR\_x\\) | Post processing | | micron scale | NSLS, X8C | (Wang et al. 2012) | | **XYZ piezo stage** / Spindle / Metrology Ring / Sample | 2 interferometers : \\(YZ\\) | Detector triggering | | micron scale | NSLS, HRX | (Xu et al. 2023) | {{< figure src="/ox-hugo/endstation_schroer.png" caption="Figure 1: Figure caption" >}} {{< figure src="/ox-hugo/endstation_wang.png" caption="Figure 2: Figure caption" >}} {{< figure src="/ox-hugo/endstation_xu24.png" caption="Figure 3: Figure caption" >}} ### End-Station with integrated feedback loops based on online metrology {#end-station-with-integrated-feedback-loops-based-on-online-metrology}
Table 2: End-Station with integrated feedback loops based on online metrology. Stages used for feedback are indicated in bold font.
| Architecture | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref | |----------------------------------------------------------------------|----------------------------------------|-----------|--------------------------------------|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------| | **XYZ piezo motors** / Mirrors / Sample | 3 interferometers: \\(XYZ\\) | 3 PID | XYZ: 3mm | light | APS | (Nazaretski et al. 2015) | | **Piezo Hexapod** / Spindle / Metrology Ring / Sample | 12 Capacitive: \\(XYZR\_xR\_y\\) | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | (Villar et al. 2018) | | **Piezo Tripod** / Spindle / Spherical Reference / Sample | 5 Custom interferometers: \\(YZR\_x\\) | PID | XYZ: 400um, Rz: 365 deg | light | PSI, OMNY | (Holler et al. 2017, 2018) | | **Stacked XYZ linear motors** / Spindle / XY / Cylindrical Reference | 5 interferometers: \\(XYZR\_xR\_y\\) | | XYZ: 400um, Rz: 360 deg | light | Soleil, Nanoprobe | (Stankevic et al. 2017; Engblom and others 2018) | | **XYZ piezo** / Spindle / Metrology Ring / Sample | 3 interferometers : \\(XYZ\\) | | XYZ: 100um, Rz: 360 deg | up to 500g | NSLS, SRX | (Nazaretski et al. 2022) | | **Parallel XYZ voice coil stage** / Sample | 3 interferometers: \\(XYZ\\) | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | (Kelly et al. 2022) | | Rz / **Parallel XYZ voice coil stage** / Sample | 3 interferometers: \\(XYZ\\) | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | (Geraldes et al. 2023) | {{< figure src="/ox-hugo/endstation_nazaretski.png" caption="Figure 4: Figure caption" >}} {{< figure src="/ox-hugo/endstation_villar.png" caption="Figure 5: Figure caption" >}} {{< figure src="/ox-hugo/endstation_holler.png" caption="Figure 6: Figure caption" >}} {{< figure src="/ox-hugo/endstation_engblom.png" caption="Figure 7: Figure caption" >}} {{< figure src="/ox-hugo/endstation_kelly.png" caption="Figure 8: Figure caption" >}} {{< figure src="/ox-hugo/endstation_geraldes.png" caption="Figure 9: Figure caption" >}} ## Manufacturers {#manufacturers} | Manufacturers | Country | |------------------------------------------------------------------|---------| | [Kohzu](https://www.kohzuprecision.com/i/) | Japan | | [PI](https://www.physikinstrumente.com/en/) | USA | | [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany | | [Newport](https://www.newport.com/c/manual-positioning) | | | [LAB](https://www.labmotionsystems.com/products/z-stages/) | Belgium | ## Bibliography {#bibliography}
Engblom, C., and others. 2018. “Nanoprobe Results: Metrology & Control in Stacked Closed-Loop Systems.” In Proc. Of International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS’17). JACoW. doi:10.18429/JACoW-ICALEPCS2017-WEAPL04.
Geraldes, Renan R., Gabriel B. Z. L. Moreno, Francesco R. Lena, Erik O. Pereira, Matheus H. S. da Silva, Gabriel G. Basílio, Pedro P. R. Proença, et al. 2023. “The High-Dynamic Cryogenic Sample Stage for SAPOTI/CARNAÚBA at Sirius/LNLS.” In PROCEEDINGS of the 15TH INTERNATIONAL CONFERENCE on X-RAY MICROSCOPY - XRM2022, nil. doi:10.1063/5.0168438.
Holler, M., J. Raabe, A. Diaz, M. Guizar-Sicairos, R. Wepf, M. Odstrcil, F. R. Shaik, et al. 2018. “Omny-a Tomography Nano Cryo Stage.” Review of Scientific Instruments 89 (4): 043706. doi:10.1063/1.5020247.
Holler, M., J. Raabe, R. Wepf, S. H. Shahmoradian, A. Diaz, B. Sarafimov, T. Lachat, H. Walther, and M. Vitins. 2017. “Omny Pin-a Versatile Sample Holder for Tomographic Measurements at Room and Cryogenic Temperatures.” Review of Scientific Instruments 88 (11): 113701. doi:10.1063/1.4996092.
Kelly, Jon, Andrew Male, Nicholas Rubies, David Mahoney, Jessica M. Walker, Miguel A. Gomez-Gonzalez, Guy Wilkin, Julia E. Parker, and Paul D. Quinn. 2022. “The Delta Robot-a Long Travel Nano-Positioning Stage for Scanning X-Ray Microscopy.” Review of Scientific Instruments 93 (4): nil. doi:10.1063/5.0084806.
Nazaretski, E., D. S. Coburn, W. Xu, J. Ma, H. Xu, R. Smith, X. Huang, et al. 2022. “A New Kirkpatrick-Baez-Based Scanning Microscope for the Submicron Resolution X-Ray Spectroscopy (SRX) Beamline at Nsls-Ii.” Journal of Synchrotron Radiation 29 (5): 1284–91. doi:10.1107/s1600577522007056.
Nazaretski, E., K. Lauer, H. Yan, N. Bouet, J. Zhou, R. Conley, X. Huang, et al. 2015. “Pushing the Limits: An Instrument for Hard X-Ray Imaging below 20 Nm.” Journal of Synchrotron Radiation 22 (2): 336–41. doi:10.1107/s1600577514025715.
Schroer, Christian G., Martin Seyrich, Maik Kahnt, Stephan Botta, Ralph Döhrmann, Gerald Falkenberg, Jan Garrevoet, et al. 2017. “PtyNAMi: Ptychographic Nano-Analytical Microscope at PETRA III: Interferometrically Tracking Positions for 3D X-Ray Scanning Microscopy Using a Ball-Lens Retroreflector.” In X-Ray Nanoimaging: Instruments and Methods III. doi:10.1117/12.2273710.
Schropp, Andreas, Ralph Döhrmann, Stephan Botta, Dennis Brückner, Maik Kahnt, Mikhail Lyubomirskiy, Christina Ossig, et al. 2020. “Ptynami: Ptychographic Nano-Analytical Microscope.” Journal of Applied Crystallography 53 (4): 957–71. doi:10.1107/s1600576720008420.
Stankevic, Tomas, Christer Engblom, Florent Langlois, Filipe Alves, Alain Lestrade, Nicolas Jobert, Gilles Cauchon, Ulrich Vogt, and Stefan Kubsky. 2017. “Interferometric Characterization of Rotation Stages for X-Ray Nanotomography.” Review of Scientific Instruments 88 (5): 053703. doi:10.1063/1.4983405.
Villar, F., L. Andre, R. Baker, S. Bohic, J. C. da Silva, C. Guilloud, O. Hignette, et al. 2018. “Nanopositioning for the Esrf Id16a Nano-Imaging Beamline.” Synchrotron Radiation News 31 (5): 9–14. doi:10.1080/08940886.2018.1506234.
Wang, Jun, Yu-chen Karen Chen, Qingxi Yuan, Andrei Tkachuk, Can Erdonmez, Benjamin Hornberger, and Michael Feser. 2012. “Automated Markerless Full Field Hard X-Ray Microscopic Tomography at Sub-50 Nm 3-Dimension Spatial Resolution.” Applied Physics Letters 100 (14): 143107. doi:10.1063/1.3701579.
Xu, Weihe, Huijuan Xu, Dmitri Gavrilov, Xiaojing Huang, Hanfei Yan, Yong S. Chu, and Evgeny Nazaretski. 2023. “High-Speed Fly-Scan Capabilities for X-Ray Microscopy Systems at NSLS-II.” In X-Ray Nanoimaging: Instruments and Methods VI, nil. doi:10.1117/12.2675940.