+++ title = "Multivariable Control" author = ["Dehaeze Thomas"] draft = false +++ Tags : [Norms]({{< relref "norms.md" >}}) A very nice book about Multivariable Control is (Skogestad and Postlethwaite 2007) ## Transfer functions for Multi-Input Multi-Output systems {#transfer-functions-for-multi-input-multi-output-systems} {{< figure src="/ox-hugo/mimo_tf.png" >}} \\[ T\_i = -\frac{u}{d\_i} = (I + KG)^{-1} KG \\] \\[ T\_o = -\frac{p\_o}{d\_o} = (I + GK)^{-1} GK \\] \\[ S\_i = \frac{p\_i}{d\_i} = (I + KG)^{-1} \\] \\[ S\_o = \frac{y}{d\_o} = (I + GK)^{-1} \\] ## Measures of interaction {#measures-of-interaction} - Interaction index (for \\(2 \times 2\\) plant): \\[ \phi = \frac{g\_{12}g\_{21}}{g\_{11}g\_{22}} \\] When \\(\phi\\) is close to zero, this means there is no interaction. - The **relative gain array** of a square matrix: \\[ \text{RGA}(G) \triangleq G \times ( G^{-1})^T \\] ## Stability {#stability} - **Characteristic Loci**: Eigenvalues of \\(G(j\omega)\\) plotted in the complex plane - **Generalized Nyquist Criterion**: If \\(G(s)\\) has \\(p\_0\\) unstable poles, then the closed-loop system with return ratio \\(kG(s)\\) is stable if and only if the characteristic loci of \\(kG(s)\\), taken together, encircle the point \\(-1\\), \\(p\_0\\) times anti-clockwise, assuming there are no hidden modes ## Bibliography {#bibliography}