
Multivariable Feedback Control
Skogestad, S., & Postlethwaite, I.

ωl

ωh log(ω)

log(magnitude)

σ(GK)

σ(GK)

Performance
boundary

Robust stability
Noise attenuation

i



Table of Contents

1 Introduction 1
1.1 The Process of Control System Design . 1
1.2 The Control Problem . . . . . . . . . . . 1
1.3 Transfer Functions . . . . . . . . . . . . 1
1.4 Scaling . . . . . . . . . . . . . . . . . . . 1
1.5 Deriving Linear Models . . . . . . . . . 2
1.6 Notation . . . . . . . . . . . . . . . . . . 2

2 Classical Feedback Control 3
2.1 Frequency Response . . . . . . . . . . . 3
2.2 Feedback Control . . . . . . . . . . . . . 3
2.3 Closed Loop Stability . . . . . . . . . . 3
2.4 Evaluating Closed-Loop Performance . . 4
2.5 Controller Design . . . . . . . . . . . . . 5
2.6 Loop Shaping . . . . . . . . . . . . . . . 5
2.7 Shaping Closed-Loop Transfer Functions 7

3 Introduction to Multivariable Control 9
3.1 Introduction . . . . . . . . . . . . . . . . 9
3.2 Transfer Functions . . . . . . . . . . . . 9
3.3 Multivariable Frequency Response Analysis 9
3.4 Control of Multivariable Plants . . . . . 10
3.5 Introduction to MIMO RHP-Zeros . . . 11
3.6 Condition Number and RGA . . . . . . 12
3.7 Introduction to Robustness for MIMO

Plants . . . . . . . . . . . . . . . . . . . 12
3.8 General Control Problem Formulation . 12
3.9 Conclusion . . . . . . . . . . . . . . . . 14

4 Elements of Linear System Theory 15
4.1 System Descriptions . . . . . . . . . . . 15
4.2 State Controllability and State Observ-

ability . . . . . . . . . . . . . . . . . . . 16
4.3 Stability . . . . . . . . . . . . . . . . . . 16
4.4 Poles . . . . . . . . . . . . . . . . . . . . 16
4.5 Zeros . . . . . . . . . . . . . . . . . . . . 17
4.6 Some Remarks on Poles and Zeros . . . 17
4.7 Internal Stability of Feedback Systems . 18
4.8 Stabilizing Controllers . . . . . . . . . . 18
4.9 Stability Analysis in the Frequency Domain 18
4.10 System Norms . . . . . . . . . . . . . . 19

5 Limitations on Performance in SISO Sys-
tems 20
5.1 Input-Output Controllability . . . . . . 20
5.2 Perfect Control and Plant Inversion . . 20
5.3 Constrain of S and T . . . . . . . . . . 20
5.4 Limitation Imposed by Time Delays . . 21
5.5 Limitation Imposed by RHP-Zeros . . . 21
5.6 Limitation Imposed by RHP-Poles . . . 22
5.7 Combined Unstable (RHP) Poles and Zeros 22
5.8 Performance Requirements Imposed by

Disturbances and Commands . . . . . . 22
5.9 Limitation Imposed by Input Constraints 23
5.10 Limitation Imposed by Phase Lag . . . 23

5.11 Limitation Imposed by Uncertainty . . . 23
5.12 Summary: Controllability Analysis with

Feedback Control . . . . . . . . . . . . . 24
5.13 Conclusion . . . . . . . . . . . . . . . . 24

6 Limitations on Performance in MIMO
Systems 25
6.1 Introduction . . . . . . . . . . . . . . . . 25
6.2 Constraints on S and T . . . . . . . . . 25
6.3 Functional Controllability . . . . . . . . 26
6.4 Limitation Imposed by Time Delays . . 26
6.5 Limitations Imposed by RHP-Zeros . . . 26
6.6 Limitation Imposed by Unstable (RHP)

Poles . . . . . . . . . . . . . . . . . . . . 26
6.7 RHP-poles Combined with RHP-Zeros . 27
6.8 Limitations Imposed by Disturbances . . 27
6.9 Limitations Imposed by Input Constraints 27
6.10 Limitation Imposed by Uncertainty . . . 28
6.11 MIMO Input-Output Controllability . . 29
6.12 Conclusion . . . . . . . . . . . . . . . . 30

7 Uncertainty and Robustness for SISO
Systems 32
7.1 Introduction to Robustness . . . . . . . 32
7.2 Representing Uncertainty . . . . . . . . 32
7.3 Parametric Uncertainty . . . . . . . . . 33
7.4 Representing Uncertainty in the Fre-

quency Domain . . . . . . . . . . . . . . 33
7.5 SISO Robust Stability . . . . . . . . . . 36
7.6 SISO Robust Performance . . . . . . . . 37
7.7 Examples of Parametric Uncertainty . . 38
7.8 Conclusion . . . . . . . . . . . . . . . . 39

8 Robust Stability and Performance Analy-
sis 40
8.1 General Control Configuration with Un-

certainty . . . . . . . . . . . . . . . . . . 40
8.2 Representing Uncertainty . . . . . . . . 40
8.3 Obtaining P , N and M . . . . . . . . . 42
8.4 Definitions of Robust Stability and Ro-

bust Performance . . . . . . . . . . . . . 42
8.5 Robust Stability for the M∆-structure . 43
8.6 RS for Complex Unstructured Uncertainty 43
8.7 RS with Structured Uncertainty: Moti-

vation . . . . . . . . . . . . . . . . . . . 44
8.8 The Structured Singular Value . . . . . 45
8.9 Robust Stability with Structured Uncer-

tainty . . . . . . . . . . . . . . . . . . . 46
8.10 Robust Performance . . . . . . . . . . . 46
8.11 Application: RP with Input Uncertainty 47
8.12 µ-synthesis and DK-iteration . . . . . . 49
8.13 Further Remarks on µ . . . . . . . . . . 51
8.14 Conclusion . . . . . . . . . . . . . . . . 51

ii



9 Controller Design 53
9.1 Trade-offs in MIMO Feedback Design . 53
9.2 LQG Control . . . . . . . . . . . . . . . 54
9.3 H2 and H∞ Control . . . . . . . . . . . 55
9.4 H∞ Loop-Shaping Design . . . . . . . . 60
9.5 Conclusion . . . . . . . . . . . . . . . . 64

10 Controller Structure Design 65
10.1 Introduction . . . . . . . . . . . . . . . . 65
10.2 Optimization and Control . . . . . . . . 65
10.3 Selection of Controlled Outputs . . . . . 66
10.4 Selection of Manipulations and Measure-

ments . . . . . . . . . . . . . . . . . . . 67
10.5 RGA for Non-Square Plant . . . . . . . 68
10.6 Control Configuration Elements . . . . . 68
10.7 Hierarchical and Partial Control . . . . 70
10.8 Decentralized Feedback Control . . . . . 72

11 Model Reduction 77
11.1 Introduction . . . . . . . . . . . . . . . . 77
11.2 Truncation and Residualization . . . . . 77
11.3 Balanced Realization . . . . . . . . . . . 78
11.4 Balanced Truncation and Balanced

Residualization . . . . . . . . . . . . . . 78
11.5 Optimal Hankel Norm Approximation . 79
11.6 Model Reduction - Practical Summary . 79
11.7 Reduction of Unstable Models . . . . . . 80
11.8 Conclusion . . . . . . . . . . . . . . . . 80

iii



1 Introduction

1.1 The Process of Control System De-
sign

The process of designing a control system is a step by
step design procedure as follows:

1. Study the system (plant) to be controlled and ob-
tain initial information about the control objec-
tives

2. model the system and simplify the model, if
necessary

3. scale the variables and analyze the resulting
model; determine its properties

4. Decide which variables are to be controlled (con-
trolled outputs)

5. Decide on the measurements and manipulated vari-
ables: what sensors and actuators will be used and
where will they be placed?

6. Select the control configuration
7. Decide on the type of controller to be used
8. Decide on performance specifications, based on the

overall control objectives
9. Design a controller
10. Analyze the resulting controlled system to see if

the specifications are satisfied; and if they are not
satisfied modify the specifications or the type of
controller

11. Simulate the resulting controlled system
12. Repeat from step 2 if necessary
13. Choose hardware and software and implement the

controller
14. Test and validate the control system, and tune the

controller on-line, if necessary

Input-output controllability analysis is studied in sec-
tion 5 for SISO systems and in section 6 for MIMO
systems. The steps 4, 5, 6 and 7 are corresponding
to the control structure design. This is treated in
section 10. The design of the controller is described in
section 9. The analysis of performance and robustness
of a controlled system is studied in sections 7 and 8.

1.2 The Control Problem
The objective of a control system is to make the output
y behave in a desired way by manipulating the plant
input u. The regulator problem is to manipulate u
to counteract the effect of a disturbance d. The servo
problem is to manipulate u to keep the output close
to a given reference input r.

In both cases, we want the control error e = y− r to be
small. The algorithm for adjusting u based on y is the
controller K. To arrive at a good design for K we
need information about the expected disturbances, the
reference inputs, the plant model G and disturbance

model Gd.

A major source of difficulty is that models may be
inaccurate or may change with time. The inaccuracy
in G may cause instability problems as it is part of
the feedback loop. To deal with such a problem, the
concept of model uncertainty will be used.

Definitions

Nominal Stability (NS) The system is sta-
ble with no model uncertainty

Nominal Performance (NP) The system
satisfies the performance specifications
with no model uncertainty

Robust Stability (RS) The system is stable
for all perturbed plants about the nominal
model up to the worst case uncertainty

Robust Performance (RP) The system sat-
isfies the performance specifications for all
perturbed plants about the nominal model
up to the worst-case model uncertainty

1.3 Transfer Functions
Properties of transfer functions:

• A system G(s) is strictly proper if G(s)→ 0 as
ω →∞

• A system G(s) is semi-proper if G(s) → D 6= 0
as ω →∞

• A system G(s) is proper if G(s) is strictly proper
or semi-proper

• The order of the system noted n and is the order of
the denominator (or pole polynomial) of its matrix
transfer function

1.4 Scaling
Scaling is very important in applications, both for
model analysis (input-output controllability) and for
controller design.

The scaling is done by dividing each variable by its
maximum expected or allowed change. That way,
the scaled variable should be less than one in magnitude.

We denote variables in their unscaled units by a hat.

• d = d̂/Dd with Dd = d̂max is the largest expected
change in disturbance

• u = û/Du with Du = ûmax is the largest allowed
input change

1



The variables ŷ, r̂ and ê are in the same unit, so we
choose to scale them with respect to the maximum
allowed control error:

• e = ê/De with De = êmax is the largest allowed
control error

• r = r̂/De

• y = ŷ/De

For MIMO systems, each variables in the vectors d̂,
r̂, û and ê may have a different maximum value, in
which case De, Du, Ds and Dr, become diagonal scaling
matrices.

Scaled transfer functions

G = D−1
e ĜDu

Gd = D−1
e ĜdDd

We then obtain the following model in terms of scaled
variables:

y = Gu+Gdd

where u and d should be less than 1 in magnitude.

It is sometimes useful to introduce a scaled reference
r̃ which is less than 1 in magnitude: r̃ = r̂/r̂max = D−1

r r̂
Then we have r = Rr̃ with R , D−1

e Dr = r̂max/êmax
is the largest expected change in reference relative to
the allowed control error.

With scaling you make initial decision regarding perfor-
mance. This makes weight selection simple later
(may often select identity weights if initial scaling is
reasonable!).

1.5 Deriving Linear Models
Linear models may be obtained from physical “first-
principle” models or from analyzing input-output data
(identification).

In order to obtain a linear model from the “first-
principle”, the following approach is used:

1. Formulate a nonlinear state-space model based on
physical knowledge

2. Determine the steady-state operating point about
which to linearize

3. Introduce deviation variables and linearize the
model

1.6 Notation
Notations used throughout this note are summarized
in tables 1, 2 and 3.

Table 1 – Notations for the conventional control
configuration

Notation Meaning
G Plant model
K Controller
Gd Disturbance model
r Reference inputs
n Measurement noise
y Plant outputs
ym Measurements
u Control signals

Table 2 – Notations for the general configuration

Notation Meaning
P Generalized plant model
w Exogenous inputs: commands, distur-

bances, noise
z Exogenous outputs: signals to be mini-

mized
v Controller inputs: measurements
u Control signals

Table 3 – Notations for transfer functions

Notation Meaning
L Loop gain: L = GK
S Sensitivity function: S = (I + L)−1

T Complementary sensitivity function:
T = (I + L) ∗ (I + L)−1

2



2 Classical Feedback Control

2.1 Frequency Response
By replacing s by jω in a transfer function G(s), we get
the frequency response description. It can be used
to describe:

• A system’s response to sinusoids of varying fre-
quency

• The frequency content of a deterministic signal
via the Fourier transform

• The frequency distribution of a stochastic signal
via the power spectral density

After sending a sinusoidal signal through a system
G(s), the signal’s magnitude is amplified by a factor
|G(jω)| and its phase is shifted by ∠G(jω).

Minimum Phase Systems - Definition

minimum phase systems are systems with
no time delays or RHP-zeros.
The name minimum phase refers to the fact that
such a system has the minimum possible phase
lag for the given magnitude response |G(jω)|.
RHP-zeros and time delays contribute addi-
tional phase lag to a system when compare to
that of a minimum phase system with the same
gain (hence the term non-minimum phase
system).

For minimum phase systems, there is a unique rela-
tionship between the gain and phase of the frequency
response: the Bode gain-phase relationship:

∠G(jω0) = 1
π

∫ ∞

−∞

d ln |G(jω)|
d lnω ln

∣∣∣∣
ω + ω0
ω − ω0

∣∣∣∣
dω

ω
(1)

We note N(ω0) =
(
d ln |G(jω)|
d lnω

)
ω=ω0

that corresponds to
the slope of the magnitude of G(s) in log-variables.
We then have the following approximation of the Bode
gain-phase relationship:

∠G(jω0) ≈ π

2N(ω0) (2)

2.2 Feedback Control
a One Degree-of-Freedom Controller

The simple one degree-of-freedom controller negative
feedback structure is represented in Fig. 1.
The input to the controller K(s) is r − ym where ym =
y+n is the measured output and n is the measurement
noise. Thus, the input to the plant is u = K(s)(r−y−n).
The objective of control is to manipulate u (design K)
such that the control error e remains small in spite of
disturbances d. The control error is defined as e = y−r.

+
−

K G +

Gd

+

r u

n

y

ym

d

Figure 1 – Configuration for one degree-of-freedom control

b Closed-loop Transfer Functions

Closed-Loop Transfer Functions

y = Tr + SGdd+ Tn (3a)
e = −Sr + SGdd− Tn (3b)
y = KSr −KSGdd−KSn (3c)

c Why Feedback?

We could think that we can use a “perfect” feedforward
controllerKr(s) = G−1(s) with r−Gdd as the controller
input:

y = Gu+Gdd = GKr(r −Gdd) +Gdd = r

Unfortunately, G is never an exact model and the dis-
turbances are never known exactly.

Reasons for Feedback Control

• Signal uncertainty
• Unknown disturbance
• Model uncertainty
• An unstable plant

2.3 Closed Loop Stability
Two methods are commonly used to determine
closed-loop stability:

1. The system is stable if and only if all the closed-
loop poles (roots of 1 + L(s) = 0) are in the
open LHP. The poles are also equal to the eigen-
values of the state-space A matrix (this is how
the poles are computed).

2. The frequency response of L(jω) is plotted in the
complex plane and the number of encirclement it
makes around the critical point −1 is counted.

• Nyquist’s stability criterion: Closed-loop
stability is inferred by equating the number
of encirclement to the number of open-loop
RHP-poles

3



• Bode’s stability condition: The closed
loop system is stable if and only if
|L(jω180)| < 1 where ω180 is the phase
crossover frequency defined by ∠L(jω180) =
−180°. This is only valid for open-loop stable
systems where ∠L(jω) falls with frequency
and such that ∠L(jω) crosses −180° only
once.

Method 1 is best suited for numerical calculation while
method 2 has a nice graphical interpretation and may
also be used for systems with time delays. Moreover,
method 2 provides useful measure of relative stability
and will be used for robustness test.

2.4 Evaluating Closed-Loop Perfor-
mance

a Gain Margin

The Gain Margin is defined as:

GM = 1
|L(jω180)| (4)

with ω180 is the phase crossover frequency defined
by ∠L(jω180) = −180°. If there is more than one
crossing (∠L(jω180) = −180°), the largest value of
|L(jω180)| is taken.
The GM is the factor by which the loop gain |L(s)| may
be increased before the closed-loop system becomes
unstable.

b Phase Margin

The Phase Margin is defined as:

PM = ∠L(jωc) + 180° (5)

with ωc the gain crossover frequency defined by
|L(jωc)| = 1.
The PM tells how much negative phase (phase lag)
we can add to L(s) at frequency ωc before closed-loop
instability appears.
Typically, we required the PM to be larger than 30°.
This is a safeguard against time delay uncer-
tainty, the system becomes unstable is we add a delay
of θmax = PM/ωc.
Note that by decreasing the value of ωc (lowering the
closed-loop bandwidth) the system can tolerate larger
time delays.

c Maximum Peak Criteria

Maximum peak criteria for S and T

MS = max
ω
|S(jω)| = ‖S‖∞ (6a)

MT = max
ω
|T (jω)| = ‖T‖∞ (6b)

Typically, we require MS < 2 (6dB) and
MT < 1.25 (2dB).

Why do we want MS small?

• Without feedback, with have e = r − Gdd but
with feedback e = S(r −Gdd). Thus feedback im-
proves performance in terms of reducing |e| where
|S| < 1. However, we cannot avoid having |S| > 1
at some intermediate frequency where feedback
control degrades performance. The value of MS

is then a measure of the worst-case perfor-
mance degradation

• MS is also ameasure of the robustness because
the smallest distance between L(ω) and the critical
point −1 is MS

−1

There is a close relationship between these maxi-
mum peaks and the gain and phase margins. For
a given value of MS , we have:

GM ≥ MS

MS − 1 ; PM ≥ 1
MS

(7)

Example of guaranteed stability margins:

• MS < 2⇒ GM > 2 and PM > 29°
• MT < 2⇒ GM > 1.5 and PM > 29°

d Bandwidth and Crossover Frequency

In general, a large bandwidth corresponds to a faster rise
time, however, this also indicates an higher sensitivity
to noise and to parameter variations.

Definition of bandwidth

The bandwidth, is the frequency range [ω1, ω2]
over which control is effective. In most case we
simple call ω2 = ωB the bandwidth.

As the word “effective” may be interpreted in different
ways, there are multiple definitions of bandwidth:

• The closed-loop bandwidth ωB is the frequency
where |S(jω)| first crosses 1/

√
2 ≈ −3dB from

below.
• The gain crossover frequency ωc is defined as

the frequency where |L(jωc)| first crosses 1 from
above

• The bandwidth in terms of T , ωBT , is the highest
frequency at which |T (jωc)| crosses 1/

√
2 ≈ −3dB

from above.
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For systems with PM < 90°, we have: ωB < ωc < ωBT
Then we have the following regions:

• ω < ωB : |S| < 0.7 and control is effective
• ωB < ω < ωBT : we may have |S| > 1 and control

degrades performance
• ωBT < ω: |S| ≈ 1 and control has no significant

effect on the response

The closed-loop time constant τcl can be related to the
bandwidth:

τcl ≈
1
ωb

(8)

2.5 Controller Design
There is 3 mains approaches to controller design:

1. Shaping of transfer functions. The designer
specifies the magnitude of some transfer functions
as a function of frequency and then finds a con-
troller which gives the desired shape(s)
(a) Loop shaping of the open-loop transfer func-

tion L(jω)
(b) Shaping of closed-loop transfer functions such

as S, T and KS
2. The signal based approach. This involves time

domain problem formulations resulting in the min-
imization of a norm of a transfer function. Linear
Quadratic Gaussian (LQG) is an example of a sig-
nal based approach. A signal based H∞ optimal
control methodology can be derived.

3. Numerical optimization. This often involves
multi-objective optimization where one attempts
to optimize directly the true objectives such as
rise times, stability margins, . . . This problems
may be difficult to solve, especially if one does not
have convexity in the control parameters. This
optimization may also be performed online.

2.6 Loop Shaping
a Trade-offs in Terms of L

Let’s consider a feedback control system with error
e = −Sr + SGdd− Tn. If we want perfect control:

• For disturbance rejection and command
tracking, we obtain S ≈ 0, this implies that the
loop transfer function L must be large in magni-
tude

• For zero noise transmission, we want T ≈ 0 or
equivalently S ≈ I which is obtained with L ≈ 0.

This illustrate the fundamental nature of feedback
design which always involves a trade-off between con-
flicting objectives.
The most important design objectives are:

Performance L large

Good dist. rejection L large
Limitation of meas. noise on plant output L

small
Small magnitude of input signal K and L small
Strictly proper controller K → 0 at high frequen-

cies
Nominal stability L small (RHP zeros and time de-

lays)
Robust stability L small (neglected dynamics)

Fortunately, the conflicting design objectives are gen-
erally in different frequency ranges, and we can meet
most of the objectives by using large loop gain at low
frequencies and a small gain at high frequencies above
crossover.

b Fundamentals of Loop-Shaping Design

Definition - Loop Shaping

Design procedure that involves explicitly shap-
ing the magnitude of the loop transfer function
|L(jω)|.

To get the benefits of feedback control, we want the loop
gain |L(jω)| to be as large as possible within the band-
width region. However, due to time delays, RHP-zeros,
unmodelled high-frequency dynamics and limitations
on the allowed manipulated inputs, the loop gain has
to drop below one at and above the crossover frequency
ωc.

Logarithmic slope

To measure how |L(jω)| falls with frequency, we
consider the logarithmic slope:

N = d ln |L|
d lnω (9)

The value of −N at high frequencies is called
the roll-off rate.

To get a high bandwidth (fast response) we want ωc
large (thus ω180 large), that is we want the phase lag
in L to be small. Unfortunately, that is not consistent
with the desire that |L(jω)| should fall sharply (because
of the approximation ∠L ≈ −N ∗ 90°).
The situation becomes even worse for cases with delays
or RHP-zeros in L(s) which add undesirable phase lag
without contributing to a desirable negative slope.

We can define the desired loop transfer function
in terms of the following specifications:

1. The gain crossover frequency ωc, where |L(jωc)| =
1

2. The shape of |L(jω)|:
• Slope of N = −1 around crossover
• Large roll-off at higher frequencies (N > 2)

5



• Slope at low frequencies depending on the
nature of the disturbance or reference signal.
We required a slope of −1 for step changes
and −2 for ramp changes

3. The system type, defined as the number of pure
integrators in L(s)

c Limitations Imposed by RHP-zeros and
Time Delays

We usually want the loop shape to have a slope of −1
around crossover ωc, then the phase lag of L at ωc will
be at least −90°. If we require a phase margin of −35°,
then the additional phase contribution from delays and
RHP zeros at ωc cannot exceed −55°.
First consider a time delay θ which adds a phase of
−θω. Thus, we want θωc < 55° ≈ 1 rad. The attainable
bandwidth is limited by the time delay:

ωc < 1/θ (10)

Next consider a RHP-zero at s = z. To avoid an
increase in slope cause by the zero, we add a pole at
s = −z, then L contains −s+zs+z which corresponds to
an all-pass filter. The phase contribution is ≈ −55° at
ω = z/2. Thus, this limits the attainable bandwidth:

ωc < z/2 (11)

d Inverse-Based Controller Design

The idea is to have L(s) = ωc

s with ωc the desired
gain crossover frequency. The controller associated is
then K(s) = ωc

s G
−1(s) {the plant is inverted and an

integrator is added}. This idea is the essential part of
the internal model control (IMC). This loop shape
yields a phase margin of 90° and an infinite gain margin.

They are many reasons why the inverse-based controller
may not be a good choice:

• The controller will not be realizable if G(s) has a
pole excess of two or larger

• The loop shape is not generally desirable, unless
the references and disturbances are steps

e Loop Shaping for Disturbance Rejection

We have e = SGdd with |d(jω)| < 1 at each
frequency (thanks to scaling). The main control
objective is to achieve |e(jω)| < 1. Then, we
require: |S(jω)Gd(jω)| < 1,∀ω or equivalently
|1 + L(jω)| > |Gd| ,∀ω.

Note that we don’t want to have larger loop gain than
necessary to not increase input signals and sensitivity
to noise. A reasonable loop shape is then |L| = |Gd|.

The corresponding controller satisfies

|K| =
∣∣G−1Gd

∣∣ (12)

This means that:

• For disturbances entering at the plant output
(Gd = 1), we get |K| =

∣∣G−1∣∣
• For disturbances entering at the plant input (Gd =
G), we get |K| = 1

• Note that reference change may be viewed as a
disturbance directly affecting the output

The loop-shape L(s) may be modify as follows:

• Around crossover, make the slope of |L| to be about
-1. This is to achieve good transient behavior with
acceptable gain and phase margins

• Improve the low frequency performance by adding
integral action |K| =

∣∣ s+ωI

s

∣∣ ∣∣G−1Gd
∣∣

• Let L(s) roll of faster at high frequencies in order to
reduce the effect of noise and the input magnitude

f Two Degrees-of-freedom Design

For reference tracking, we typically want the controller
to look like 1

sG
−1, whereas for disturbance rejection we

want the controller to look like 1
sG
−1Gd.

We cannot achieve both of these simultaneously with a
single feedback controller.
The solution is to use a two degrees of freedom
controller where the reference signal r and output
measurement ym are independently treated by the con-
troller (Fig. 2), rather than operating on their difference
r − ym.

K G +

Gd

+

r
u

ym
y

d

n

Figure 2 – 2 degrees-of-freedom control architecture

The controller can be slit into two separate blocks
(Fig. 3):

• the feedback controller Ky that is used to re-
duce the effect of uncertainty (disturbances
and model errors)

• the prefilter Kr that shapes the commands r
to improve tracking performance

It is optimal to design the combined two degrees of
freedom controller K in one step, however, in practice
Ky is often designed first for disturbance rejection, and
then Kr is designed to improve reference tracking.

6



Kr +
−

Ky G +

Gd

+

r u

n

y

ym

dy

Figure 3 – 2 degrees-of-freedom control architecture with
two separate blocs

2.7 Shaping Closed-Loop Transfer
Functions

Specifications on the open-loop transfer function L =
GK does not consider directly the closed-loop trans-
fer functions, such as S and T which determine the
final response. An alternative design strategy is to di-
rectly shape the magnitude of the closed loop transfer
functions. This strategy can be formulated as an H∞
optimal control problem.

a The Terms H∞ and H2

The H∞ norm of a stable scalar transfer function f(s)
is simply the peak value of |f(jω)| as a function of
frequency:

‖f(s)‖∞ , max
ω
|f(jω)| (13)

Similarly, the symbol H2 stands for the Hardy space of
transfer function with bounded 2-norm:

‖f(s)‖2 ,

(
1

2π

∫ ∞

−∞
|f(jω)|2 dω

)1/2
(14)

b Weighted Sensitivity

The sensitivity function S is a very good indicator of
closed-loop performance. The main advantage of con-
sidering S is that we want S small and it is sufficient
to consider just its magnitude |S|.

Typical specifications in terms of S

• Minimum bandwidth frequency ω∗B
• Maximum tracking error at selected freq.
• The maximum steady state tracking error A
• Shape of S over selected frequency ranges
• Maximum magnitude of S: ‖S(jω)‖∞ ≤M

The maximum peak specification prevents amplification
of noise at high frequencies, and also introduces a
margin of robustness. Typically, we select M = 2.

Mathematically, these specifications may be captured
by an upper bound 1/ |WP (s)| on the magnitude of
S where WP (s) is a weight selected by the designer.
The subscript P stands for performance since S is
mainly used as a performance indicator.
The performance requirement becomes

S(jω) < 1/ |WP (jω)| ,∀ω

Which can be expressed as an H∞:

‖WPS‖∞ < 1 (15)

Typical performance weight

WP (s) = s/M + ω∗B
s+ ω∗BA

With (see Fig. 4):

• M : maximum magnitude of |S|
• ωB : crossover frequency
• A: steady-state offset

10−2 10−1 100 101 102
10−2

10−1

100

101

A

M

ω∗
b

Frequency [Hz]

A
m

pl
itu

de

Figure 4 – Inverse of performance weight

If we want a steeper slope for L below the bandwidth,
an higher order weight may be selected. A weight which
ask for a slope of −2 for L below crossover is:

WP (s) = (s/M1/2 + ω∗B)2

(s+ ω∗BA
1/2)2

c Stacked Requirements: Mixed Sensitivity

The specification ‖WPS‖∞ < 1 puts a lower bound
on the bandwidth, but not an upper one and nor does
it allow us to specify the roll-off of L(s) above the
bandwidth.
To do this, we can make demands on another closed-
loop transfer function T by specifying an upper bound
1/ |WT | on the magnitude |T | to make sure that L
rolls off sufficiently fast at high frequencies.
Also, to achieve robustness or to restrict the magnitude
of the input signal u, one may place an upper bound
1/ |WU | on the magnitude KS.

7



To combined these mixed sensitivity specifications,
a stacking approach is usually used, resulting in the
following overall specification:

maxωσ(N(jω)) < 1; N =



WPS
WTT
WUKS




After selecting the form of N and the weights, the H∞
optimal controller is obtained by solving the problem
minK ‖N(K)‖∞.
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3 Introduction to Multivariable Control

3.1 Introduction
The main difference between a SISO system and a
MIMO system is the presence of directions in the
latter.
However, most of the ideas and techniques used for SISO
systems may be extended to MIMO systems. This is
done by considering the maximum singular value
instead of the absolute value.
The singular value decomposition (SVD) provides
a useful way of quantifying multivariable directionality.
For MIMO systems the gain |Gd|

|d| (where |·| is some
norm) is independent of the magnitude |d| (like for
SISO systems), but it does depend on its direction.
A plant is said to be ill-conditioned if the gain de-
pends strongly on the input direction. It is quantified
by the condition number Γ (which is much larger
than 1 for an ill-conditioned plant).
For MIMO systems the order of the transfer functions
matter, so in general:

GK 6= KG (16)

even when G and K are square matrices.

3.2 Transfer Functions

MIMO Rule

The main rule for evaluating transfer functions
is the MIMO Rule: Start from the output and
write down the transfer functions as you meet
them going to the input. If you exit a feedback
loop then we get a term (I−L)−1 where L = GK
is the transfer function around the loop (gain
going backwards).

a Negative Feedback Control Systems

For negative feedback system (Fig. 5), we define L to
be the loop transfer function as seen when breaking the
loop at the output of the plant:

• L = GK
• S , (I +L)−1 is the transfer function from d1 to y
• T , L(I + L)−1 is the transfer function from r to
y

We define L1 to be the loop transfer function as seen
when breaking the loop at the input to the plant:

• L1 = KG
• S1 , (I + L1)−1

• T1 , L1(I +L1)−1 is the transfer function from d2
to −u

+
−

K + G +εm u yr
d1 d2

Figure 5 – Conventional negative feedback control system

3.3 Multivariable Frequency Response
Analysis

a Obtaining the Frequency Response from
G(s)

Consider the system G(s) with input d(s) and output
y(s). The element gij(jω) of the matrix G represents
the sinusoidal response from the input j to output i.

b Directions in Multivariable Systems

For a SISO system, the gain at ω is simply:

|y(ω)|
|d(ω)| = |G(jω)d(ω)|

|d(ω)| = |G(jω)| (17)

The gain depends on the frequency ω but it is indepen-
dent of the input magnitude |d(ω)|.
For MIMO systems, we have to use norms to measure
the amplitude of the inputs/outputs. If we select vector
2-norm, the magnitude of the vector input signal is:

‖d(ω)‖2 =
√∑

j

|dj(ω)|2

The gain of the system is then:

‖y(ω)‖2
‖d(ω)‖2

= ‖G(jω)d(ω)‖2
‖d(ω)‖2

=

√∑
j |yj(ω)|2

√∑
j |dj(ω)|2

(18)

Again the gain depends on the frequency ω and again it
is independent of the input magnitude ‖d(ω)‖2. How-
ever, the gain depends also on the direction of the
input d.

c Eigenvalues as a Poor Measure of Gain

The magnitudes of the eigenvalues of a transfer function
matrix |λi(G(jω))| do not provide a useful means of
generalizing the SISO gain. The main problem is that
the eigenvalues measure the gain for the special case
when the inputs and the outputs are in the same
direction, namely in the direction of the eigenvectors.

d Singular Value Decomposition

We are interested by the physical interpretation of the
SVD when applied to the frequency response of a MIMO
system G(s) with m inputs and l outputs.

9



Singular Value Decomposition

G = UΣV H (19)

Σ is an l ×m matrix with k = min{l,m} non-
negative singular values σi, arranged in
descending order along its main diagonal,
the other entries are zero.

U is an l × l unitary matrix. The columns of
U , denoted ui, represent the output direc-
tions of the plant. They are orthonormal.

V is an m×m unitary matrix. The columns of
V , denoted vi, represent the input direc-
tions of the plant. They are orthonormal.

The input and output directions are related through
the singular values:

Gvi = σiui (20)

So, if we consider an input in the direction vi, then
the output is in the direction ui. Furthermore, since
‖vi‖2 = 1 and ‖ui‖2 = 1, we see that the singular
value σi directly gives the gain of the matrix G
in this direction.

The largest gain for any input is equal to the maxi-
mum singular value:

σ(G) ≡ σ1(G) = max
d 6=0

‖Gd‖2
‖d‖2

= ‖Gv1‖2
‖v1‖2

The smallest gain for any input direction is equal to
the minimum singular value:

σ(G) ≡ σk(G) = min
d6=0

‖Gd‖2
‖d‖2

= ‖Gvk‖2‖vk‖2
We define u1 = ū, v1 = v̄, uk = u

¯
and vk = v

¯
. Then is

follows that:

Gv̄ = σū; Gv
¯

= σu
¯

e Non Square Plants

If the plant has more output than inputs, the outputs
singular vectors ui with i > k correspond to the outputs
directions that cannot be controlled.
Similarly, for a plant with more inputs and outputs,
the additional input singular vectors tells us in which
directions the input will have no effect.

f Singular Values for Performance

The gain of the MIMO system from the vector of refer-
ence inputs r and the vector of control error e is bounded
by the minimum and maximum singular values of S:

σ(S(jω)) < ‖e(ω)‖2
‖r(ω)‖2

< σ(S(jω))

In terms of performance, we require that the gain
remains small for any direction of r(ω) including
the “worst-case” direction corresponding to the gain
σ(S(jω)). Let 1/ |WP (jω)| represent the maximum
allowed magnitude of ‖e(ω)‖2

‖r(ω)‖2
at each frequency:

σ(S(jω)) < 1
|WP |

,∀ω ⇔ ‖WPS‖∞ < 1

H∞ norm - MIMO Case - Definiton

The H∞ norm is defined as the peak of the max-
imum singular value of the frequency response:

‖M(s)‖∞ , max
ω

σ(M(jω)) (21)

For MIMO systems the bandwidth depends on di-
rection. If we want to associate a single bandwidth
frequency for a multivariable system, then we consider
the worst-case direction, and define the bandwidth ωB
as the frequency where σ(S) crosses 1√

2 = 0.7 from
below.

3.4 Control of Multivariable Plants
A conceptually simple approach to multivariable control
is given by a two-step procedure:

1. Design a pre-compensator W1, which counter-
acts the interactions in the plant and results in a
new shaped plant GS(s) = G(s)W1(s) which is
more diagonal and easier to control than the
original plant G(s).

2. Design a diagonal controller KS(s) for the
shaped plant using methods similar to those for
SISO systems.

The overall controller is then:

K(s) = W1(s)Ks(s)

a Decoupling

There are mainly three different cases:

1. Dynamic decoupling: GS(s) is diagonal at all
frequencies. For that we can choose W1(s) =
G−1(s) and this is an inverse-based controller.

2. Steady-state decoupling: GS(0) is diagonal.
This can be obtained by selecting W1(s) = G−1(0).

3. Approximate decoupling at frequency ω0:
GS(jω0) is as diagonal as possible. Decoupling
the system at ω0 is a good choice because the
effect on performance of reducing interaction is
normally greatest at this frequency.

The idea of decoupling control is appealing, but there
are several difficulties:

1. It is very sensitive to modelling errors

10



2. It may not be required for disturbance rejection
3. If the plant has RHP-zero, the decoupling gener-

ally introduces extra RHP-zero in the closed-loop
system

b SVD-Controller

We can also introduce a post compensator W2(s).
The shaped plant is then:

GS(s) = W2(s)G(s)W1(s)
A diagonal controller KS can then be designed for the
shaped plant. The overall controller is then:

K(s) = W1(s)KS(s)W2(s)
The SVD-controller is a special case of a pre and post
compensator design: W1 = V0 and W2 = UT0 . V0 and
U0 are obtained from a SVD of G0 = U0Σ0V

T
0 where

G0 is a real approximation of G(jω0).

c Decentralized Control

Another approach is to use a diagonal or block-diagonal
controller K(s). This works well if G(s) is close to
diagonal, because then the plant to be controlled is
essentially a collection of independent sub-plants, and
each element in K(s) may be designed independently.
However, if off-diagonal elements in G(s) are large, the
performance with decentralized diagonal control may
be poor because no attempt is made to counteract the
interactions.

d What is the Shape of the “best” Feedback
Controller?

Consider the problem of disturbance rejection: y =
SGdd where ‖d‖2 < 1 and our performance require-
ment is that ‖y‖2 < 1 which is equivalent to requiring
σ(SGd) < 1.
However there is generally a trade-off between input
usage and performance. The controller that minimize
the input magnitude while meeting the performance
requirement is the one that yields all singular values of
SGd equal to 1, i.e. σi(SGd) = 1,∀ω. This corresponds
to:

SminGd = U1

Where U1 is some all-pass transfer function (which at
each frequency has all its singular values equal to 1).
At frequencies where feedback is effective, we have S ≈
L−1 and then Lmin = GKmin ≈ GdU−1

1 . In conclusion,
the controller and loop shape with the minimum gain
will often look like:

Kmin ≈ G−1GdU2

where U2 = U−1
1 is some all-pass transfer function

matrix.
We see that for disturbances entering at the plant inputs,
Gd = G, we get Gmin = U2, so a simple constant unit
gain controller yields a good trade-off between output
performance and input usage.

e Summary of Mixed-Sensitivity H∞ Synthe-
sis

In the mixed-sensitivity S/KS problem, the objective
is to minimize the H∞ norm of:

N =
[
WPS
WUKS

]
(22)

Here are some guidelines for the choice of the weights
WP and WU :

• KS is the transfer function from r to u, so for a
system which has been scaled, a reasonable initial
choice for the input weight is WU = I

• S is the transfer function from r to −e = r − y.
A common choice for the performance weight is
WP = diag{wpi

} with:

wpi
=
s/Mi + ω∗Bi

s+ ω∗Bi
Ai

, Ai � 1

Selecting Ai � 1 ensures approximate integral
action. Often we select Mi about 2 for all outputs,
whereas ω∗Bi

may be different for each output.

For disturbance rejection, we may in some cases want
a steeper slope for wPi(s) at low frequencies. How-
ever it may be better to consider the disturbances
explicitly by considering the H∞ norm of:

N =
[
WPS WPSGd
WUKS WUKSGd

]
(23)

We can also considerate T which is the transfer function
from −n to y. To reduce the sensitivity to noise and
uncertainty, we want T small at high frequencies, and
so we may want additional roll-off in L. This can be
achieved in several ways:

• One approach is to add WTT to the stack for N
where WT = diag{wTi

} and |wTi
| is smaller than

1 at low frequencies and large at high frequencies
• A more direct approach is to add high-frequency

dynamics W1(s) to the plant model to ensure
that the resulting shaped plant, GS = GW1 rolls
off with the desired slope. We then obtain an H∞
optimal controller KS for this shaped plant, and
finally include W1(s) in the controller K = W1KS

3.5 Introduction to MIMO RHP-Zeros
Whereas the poles p of MIMO system G are essentially
poles of elements of G, the zeros are generally not the
zeros of elements of G. However, for square MIMO
plants, the poles and zeros are in most cases the poles
and zeros of detG(s).

Definition of zeros for MIMO sytems

The zeros z of a MIMO system G are defined as
the values s = z where G(s) loses rank.
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As for SISO systems, we find thatRHP-zeros impose
fundamental limitations on control. Poles and
zeros of MIMO systems have directions:

• We can find the direction of a zero by looking
at the direction in which the matrix G(z) has zero
gain

• Pole direction is direction where G(p) is infinite

It is generally possible to move the effect of RHP-zero
to particular outputs. If it is not, the zero is called a
“pinned zero”.

3.6 Condition Number and RGA
a Condition Number

Condition Number - Definition

We define the condition number of a matrix as
the ratio between its maximum and minimum
singular values:

γ(G) , σ(G)/σ(G) (24)

A matrix with large condition number is said to be
ill-conditioned.
For a non-singular square matrix σ(G) = 1/σ(G−1), so
γ(G) = σ(G)σ(G−1). It then follows that the condition
number is large if the product of the largest element in
G and G−1 is large.
Note that the condition number depends strongly on
scaling. One might consider minimizing the condition
number over all possible scalings. This results in the
minimized or optimal condition number which is
defined by:

γ∗(G) = min
D1,D2

γ(D1GD2) (25)

If the condition number is small, then the multivariable
effects of uncertainty are not likely to be serious. How-
ever if the condition number is large (say, larger than
10), then this may indicate control problems.

b Relative Gain Array (RGA)

Relative Gain Array - Definition

The relative gain array (RGA) for a non-singular
square matrix G is a square matrix defined as:

RGA(G) = Λ(G) , G×G−T (26)

where × is element-by-element multiplication

In most case, it is the value of the RGA at frequencies
close to crossover which is most important.
The RGA has interesting algebraic properties:

• It is independent of input and output scaling

• Its rows and columns sum to one
• The sum-norm of the RGA ‖Λ‖sum is close to the

minimized condition number γ∗. Plants with large
RGA-elements are thus always ill-conditioned

• The RGA is the identity matrix if G is upper of
lower triangular. This follows that Γ− I provides
a measure of two-way interactions

It has also a number of useful control properties:

• Plants with large RGA-elements around the
crossover frequency are fundamentally difficult to
control because of sensitivity to input uncertainty

• If the sign of a RGA-element changes from s = 0
to s =∞, then there is a RHP-zero in G

• The definition of the RGA may be generalized to
non-square matrices by using the pseudo inverse

• The RGA-number can be used as a measure of
diagonal dominance: ‖Λ(G)− I‖sum

• For decentralized control, we prefer pairing in-
put and outputs for which the RGA-number at
crossover frequencies is close to 0

3.7 Introduction to Robustness for
MIMO Plants

Multivariable plants can show a sensitivity to uncer-
tainty which is fundamentally different from what is
possible in SISO systems. It is possible to have excellent
stability margins (GM and PM) when considering one
loop at a time, but small simultaneous input gain errors
can give instability.
For SISO systems, we generally have that nominal per-
formance and robust stability imply robust performance,
but this is not the case for MIMO systems.
Although we have useful indicators of robustness
problems (RGA-number, Sensitivity Peaks, etc), they
provide no exact answer to whether a given source of un-
certainty will yield instability or poor performance. The
structured singular value µ is a tool for analyzing
the effects of model uncertainty.

3.8 General Control Problem Formula-
tion

The general control problem formulation is represented
in Fig. 6.

Control Design Problem

Find a controller K which based on the infor-
mation in v, generates a control signal u which
counteracts the influence of w on z, thereby
minimizing the closed-loop norm from w to z.

a Obtaining the Generalized Plant P

We must first find a block diagram representation of
the system and identify the signals w, z, u and v. Then
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P

K

(weighted)
exogenous

inputs
w

control
signals

u

(weighted)
exogenous
outputs
z

sensed
output
v

Figure 6 – General control configuration

we have to break all the “loops” entering and exiting
the controller K to obtain P such that:

[
z
v

]
= P

[
w
u

]
(27)

b Controller Design: Including Weights in P

In order to get a meaningful controller synthesis prob-
lem, for example in terms of the H∞ norms, we gen-
erally have to include the weights Wz and Ww in the
generalized plant P (Fig. 7). We consider:

• The weighted or normalized exogenous inputs w
(where w̃ = Www consists of the “physical” signals
entering the system)

• The weighted or normalized controlled outputs
z = Wz z̃ (where z̃ often consists of the control
error y − r and the manipulated input u)

Generalized Weighted Plant P

P̃

K

WzWw
w w̃

u

z̃ z

v

Figure 7 – General Weighted Plant

The weighted matrices are usually frequency dependent
and typically selected such that weighted signals w and
z are of magnitude 1.

c Partitioning the Generalized Plant P

We often partition P as:
[
z
v

]
=
[
P11 P12
P21 P22

] [
w
u

]
(28)

P22 has dimensions compatible with the controller.

d Analysis: Closing the Loop the get N

In the previous representations, the controller K has
a separate block. This is useful when synthesizing
the controller. However, for analysis of closed-loop
performance the controller is given, and we may absorb
K into the interconnection structure and obtain the
system N .

Closed-loop transfer function N

z = Nw (29)

N is given by:

N = P11 + P12K(I − P22K)−1P12 , Fl(P,K)

where Fl(P,K) denotes a lower linear frac-
tional transformation (LFT).

e A General Control Configuration Including
Model Uncertainty

The general control configuration may be extended to
include model uncertainty as shown in Fig. 8.

M

∆

u∆ y∆

Figure 8 – General control configuration for the case with
model uncertainty

The matrix ∆ is a block-diagonal matrix that includes
all possible perturbations (representing uncertainty). It
is usually normalized in such a way that ‖∆‖∞ ≤ 1.
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3.9 Conclusion

Conclusion on MIMO Control

The Singular Value Decomposition (SVD)
of the plant transfer function matrix provides
insight into multivariable directionality.

Other useful tools for analyzing directionality
and interactions are the condition number
and the Relative Gain Array (RGA).

Closed loop performance may be analyzed
in the frequency domain by evaluating the
maximum singular value of the sensitiv-
ity function as the function of frequency.

Multivariable RHP-zeros impose fundamen-
tal limitations on performance, but for MIMO
systems we can often direct the undesired effect
of a RHP-zero to a subset of the outputs.

MIMO systems are often more sensitive to
uncertainty than SISO systems.
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4 Elements of Linear System Theory

4.1 System Descriptions
For linear systems there are several alternative system
representations:

• state-space representation often follows di-
rectly from a physical model, and is used in most
numerical calculations.

• transfer function representation is a nice com-
pact representation which yields invaluable insights;
it allows for series connections to be represented
by multiplication of transfer functions. It also
leads directly to the frequency response by setting
s = jω.

• coprime factorization is a factorization into two
stable systems, and that it is useful for representing
the class of all stabilizing controllers. It forms
the basis for the very useful coprime uncertainty
description.

a State-Space Representation

A natural way to represent many physical systems is
by nonlinear state-space models of the form

ẋ ,
dx

dt
= f(x, u); y = g(x, u)

Linear state-space models may then be derived from
the linearization of such models.

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

where A, B, C and D are real matrices.
These equations may be rewritten as

[
ẋ
y

]
=
[
A B
C D

] [
x
u

]

which gives rise to the short-hand notation

G =
[
A B
C D

]

The state-space representation of a system is not unique,
there exist realizations with the same input-output be-
havior, but with additional unobservable and/or uncon-
trollable state.

Minimum Realization

A minimal realization is a realization with the
fewest number of states and consequently no
unobservable or uncontrollable modes.

The state-space representation yields an internal de-
scription of the system which may be useful if the
model is derived from physical principles. It is also
more suitable for numerical calculations.

b Impulse Response Representation

The impulse response matrix is

g(t) =
{

0 t < 0
CeAtB +Dδ(t) t ≥ 0

The ij’th element of the impulse response matrix, gij(t),
represents the response yi(t) to an impulse uj(t) = δ(t)
for a systems with a zero initial state.
With initial state x(0) = 0, the dynamic response to an
arbitrary input u(t) is

y(t) = g(t) ∗ u(t) =
∫ t

0
g(t− τ)u(τ)dτ

c Transfer Function Representation - Laplace
Transforms

The transfer function representation is unique and is de-
fined as the Laplace transform of the impulse response.

Laplace transform

G(s) =
∫ ∞

0
g(t)e−stdt

We can also obtain the transfer function representa-
tion from the state-space representation by taking the
Laplace transform of the state-space equations

sx(s) = Ax(s) +Bu(s) ⇒ x(s) = (sI −A)−1Bu(s)

y(s) = Cx(s)+Du(s) ⇒ y(s) =
(
C(sI −A)−1B +D

)
︸ ︷︷ ︸

G(s)

u(s)

Time delays and improper systems can be represented
by Laplace transforms, but do not have a state-space
representation.

d Coprime Factorization

Right coprime factorization of G

G(s) = Nr(s)M−1
r (s)

where Nr(s) andMr(s) are stable coprime trans-
fer functions.

The stability implies that Nr(s) should contains all
the RHP-zeros of G(s), and Mr(s) should contain as
RHP-zeros all the RHP-poles of G(s). Mathematically,
coprimeness means that there exist stable Ur(s) and
Vr(s) such that the Bezout identity is satisfied: UrNr +
VrMr = I
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4.2 State Controllability and State Ob-
servability

There are many ways to check for state control-
lability and observability, e.g. with Gramians, in-
put/output pole vectors, controllability/observability
matrix, etc.

Input and output pole vectors The method which
yields the most insight is probably to compute the input
and output directions associated with each pole (mode).
For the case when A has distinct eigenvalues, we have
the following dyadic expansion of the transfer function
matrix from inputs to outputs

G(s) =
n∑

i=1

Ctiq
H
i B

s− λi
+D =

n∑

i=1

ypi
upi

s− λi
+D

• The i’th input pole vector upi
, qHi B is an

indication of how much the i’th mode is excited
(and thus may be “controlled”) by the inputs.

• The i’th output pole vector ypi
, Cti indicates

how much the i’th mode is observed in the outputs.

State Controllability Let λi be the ith eigenvalue of
A, qi the corresponding left eigenvector (qHi A = λiq

H
i ),

and upi
= BHqi the ith input pole vector. Then the

system (A,B) is state controllable if and only if

upi 6= 0,∀i

That is if and only if all its input pole vectors are
nonzero.

State Observability Let λi be the ith eigenvalue of
A, ti the corresponding right eigenvector (Ati = λiti),
and ypi = Cti the ith output pole vector. Then the
system (A,C) is state observable if and only if

ypi
6= 0,∀i

That is if and only if all its output pole vectors are
nonzero.

Minimal realization A state space realization
(A,B,C,D) of G(s) is said to be a minimal realiza-
tion of G(s) if A has the smallest possible dimension.
The smallest dimension is called theMcMillan degree
of G(s). A mode is hidden if it is not state controllable
or observable and thus does not appear in the minimal
realization. It follows that a state-space realization is
minimal if and only if (A,B) is state controllable and
(A,C) is state observable.

4.3 Stability

Internal Stability

A system is (internally) stable is none of its
components contain hidden unstable modes and
the injection of bounded external signals at any
place in the system result in bounded output
signals measured anywhere in the system.

Stability - Detectability

A system is (state) stabilizable if all unstable
modes are state controllable. A system is (state)
detectable if all unstable modes are state ob-
servable.
A system with unstabilizable or undetectable
modes is said to contain hidden unstable modes.

4.4 Poles

Definition: Multivariable Pole

The poles pi of a system with state-space descrip-
tion are the eigenvalues λi(A), i = 1, . . . , n
of the matrix A. The pole or character-
istic polynomial φ(s) is defined as φ(s) ,
det(sI − A) = Πn

i=1(s − pi). Thus the poles
are the roots or the characteristic equation

φ(s) , det(sI −A) = 0

a Poles and Stability

A linear dynamic system is stable if and only if all
the poles are in the LHP, that is, Re{λi(A)} < 0,∀i

b Poles from Transfer Functions

The pole polynomial φ(s) corresponding to a minimal
realization of a system with transfer function G(s) is the
least common denominator of all non-identically-
zero minors of all orders of G(s).
The poles are essentially the sum of the poles in the
elements of the transfer function, but to get the correct
multiplicity a more careful analysis is needed.

c Pole Vectors and Directions

In multivariable system poles have directions associ-
ated with them. To quantify this, we use the input
and output pole vectors.
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Input pole vector

upi
= BHqi

With qi the left eigenvector of A (qiTA = λiqi
T ).

The input pole direction is 1
‖upi‖2

upi

Output pole vector

ypi = Cti

With ti the right eigenvector of A (Ati = λiti).
The output pole direction is 1

‖ypi‖2
ypi

The pole directions may be defined in terms of the trans-
fer function matrix by evaluating G(s) at the pole pi
and considering the directions of the resulting complex
matrix G(pi). The matrix is infinite in the direction of
the pole, and we may write

G(pi)upi =∞ · ypi

where upi is the input pole direction and ypi is the
output pole direction.
The pole directions may in principle be obtained from
an SVD of G(pi) = UΣV H . Then upi

is the first column
in V (corresponding to the maximum singular value)
and ypi the first column in U .
The pole direction is usually very interesting because it
gives information about which output (or combination
of outputs) may be difficult to control.

4.5 Zeros
Zeros of a system arise when competing effects, internal
to the system, are such that the output is zero even
when the inputs (and the states) are not themselves
identically zero.

Definition: Multivariable Zero

zi is a zero ofG(s) if the rank ofG(zi) is less than
the normal rank of G(s). The zero polynomial
is defined as z(s) = Πnz

i=1(s− zi) where nz is the
number of finite zeros of G(s)

a Zeros from State-Space Realizations

The state-space equations of a system may be written
as

P (s)
[
x
u

]
=
[
0
y

]
, P (s) =

[
sI −A −B
C D

]

The zeros are then the values s = z for which the
polynomial system matrix, P (s), loses rank, resulting
in zero output for some non-zero input.

b Zeros from Transfer Functions

The zero polynomial z(s), corresponding to a minimal
realization of the system, is the greatest divisor of all
the numerator of all order-r minors of G(s), where r is
the normal rank of G(s), provided that these minors
have been adjusted in such a way as to have the pole
polynomial φ(s) as their denominator.
The zeros are values of s for which G(s) looses rank. In
general, there is no relationship between the elements
of the transfer function and its (multivariable) zeros.

c Zero Directions

Let G(s) have a zero at s = z. Then G(s) loses rank at
s = z, and there will exist non-zero vectors uz and yz
such that

G(z)uz = 0 · yz
Here uz is defined as the input zero direction and
yz is defined as the output zero direction.
From a practical point of view, yz is usually of more in-
terest than uz because it give information about which
combination of outputs may be difficult to con-
trol.
Again, we may obtain input and output zero directions
from an SVD of G(s): uz is the last column of U and
yz is the last column of V (corresponding to the zero
singular value of G(z)).

4.6 Some Remarks on Poles and Zeros
• We should always find a minimal realization of

the system before computing the zeros.
• For a square system G(s), the poles and zeros are

essentially the poles and zeros of detG(s).
• Poles and zeros can occurs at the same location,

but their directions may be different so they do
not cancel or otherwise interact with each other.

• IfG−1(s) exists, then the poles ofG(s) are the zeros
of G−1(s) and vice versa (as for SISO systems).

• Zeros usually appear when there are fewer inputs
or outputs than states or when D 6= 0

• Moving poles and zeros:
– Feedback: G(I + GK)−1. Poles (of G) are

moved and zeros (of G) are unchanged (in
addition we get as zeros the poles of K)

– Series: GK. Poles and zeros are unchanged
(with the exception of possible cancellations
between poles and zeros in G and K)

– Parallel: G+K. Poles are unchanged, zeros
are moved (but note that physically a par-
allel interconnection requires an additional
manipulated input)

• Pinned zeros. A zero is pinned to a subset of the
outputs if yz has one or more elements equal to
zero. Their effect cannot be moved freely to any
output. Similarly, a zero is pinned to certain input
if uz has one or more elements equal to zero.
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Effect of feedback on poles and zeros

Consider a SISO negative feedback system with
plant G(s) = z(s)

φ(s) and a constant gain controller,
K(s) = k. The closed-loop response from refer-
ence r to output y is

T (s) = kG(s)
1 + kG(s) = kz(s)

φ(s) + kz(s) = k
zcl(s)
φcl(s)

We note that:

• The zero locations are unchanged by feed-
back

• The pole locations are changed by feedback

φcl(s) −→
k→0

φ(s)

φcl(s) −→
k→∞

kz(s)

That is, as we increase the feedback gain, the
closed loop poles moves from open-loop
poles to the open-loop zeros. RHP-zeros
therefore imply high gain instability.

4.7 Internal Stability of Feedback Sys-
tems

−K +

G+

u

y du

dy

Figure 9 – Block diagram used to check internal stability

Assume that the components G andK contain no unsta-
ble hidden modes. Then the feedback system in Fig. 9
is internally stable if and only if all four closed-loop
transfer matrices are stable.

(I +KG)−1 −K(I +GK)−1

G(I +KG)−1 (I +GK)−1

Assume there are no RHP pole-zero cancellations be-
tween G(s) and K(s), the feedback system in Fig. 9 is
internally stable if and only if one of the four closed-
loop transfer function matrices is stable.

4.8 Stabilizing Controllers
The Q-parameterization is a parameterization that
generates all controllers that yield internal stability of
the closed loop transfer function.

Q-parameterization for stable plant

For stable plants, a parameterization of all stabi-
lizing negative feedback controllers for the stable
plant G(s) is given by

K = (I −QG)−1Q = Q(I −GQ)−1

where the parameter Q is any stable transfer
function matrix.

This may have significant advantages in controller syn-
thesis where the objective is to a find a K which mini-
mizes some norm of N(K). The search over stabilizing
K (which involves checking the stability of closed-loop
transfer functions) is replaced by a search over stable
Q. The closed-loop transfer functions turn out to be
affine in Q, e.g. S or T can be written H1 +H2QH3,
which may significantly simplify the optimization (e.g.
compared to GK(I +GK)−1 which is fractional in K).

4.9 Stability Analysis in the Frequency
Domain

Generalized (MIMO) Nyquist theorem

Let Pol denote the number of unstable poles
in L(s) = G(s)K(s). The closed-loop system
with loop transfer L(s) and negative feedback is
stable if and only if the Nyquist plot of det(I +
L(s)):

1. makes Pol anti-clockwise encirclements of the
origin

2. does not pass through the origin

Spectral radius

The spectral radius ρ(L(jω)) is defined as the
maximum eigenvalue magnitude:

ρ(L(jω)) , max
i
|λi(L(jω))|

Spectral radius stability condition

Consider a system with a stable loop transfer
function L(s). Then the closed-loop system is
stable if

ρ(L(jω)) < 1 ∀ω
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Small Gain Theorem

Consider a system with a stable loop transfer
function L(s). Then the closed-loop system is
stable if

‖L(jω)‖ < 1 ∀ω
Where ‖L‖ denotes any matrix norm that sat-
isfies the multiplicative property ‖AB‖ ≤ ‖A‖ ·
‖B‖

The Small gain theorem for SISO system says that the
system is stable if |L(jω)| < 1 at all frequencies ω. This
is clearly a very conservative condition as no phase
information is taken into account.
This may be understood as follows: the signals which
“return” in the same direction after “one turn around
the loop” are magnified by the eigenvalues λi (and the
directions are the eigenvectors xi):

Lxi = λixi

So if all the eigenvalues λi are less than 1 in magnitude,
all signals become smaller after each round, and the
closed-loop system is stable.

4.10 System Norms
a H2 norm

H2 norm

Consider a strictly proper system G(s). The H2
norm is:

‖G(s)‖2 ,

√
1

2π

∫ ∞

−∞
tr (G(jω)HG(jω)) dω

=
√

1
2π

∫ ∞

−∞

∑

i

σi2(G(jω))dω

TheH2 norm can have a stochastic interpretation where
we measure the expected root mean square value
of the output in response to white noise excita-
tion.

b H∞ norm

H∞ norm

Consider a proper linear stable system G(s).
The H∞ norm is the peak value of its maximum
singular value:

‖G(s)‖∞ , max
ω

σ(G(jω))

The H∞ norm has several interpretations in the time
and frequency domains:

• it is the peak of the transfer function magnitude

• by introducing weights, it can be interpreted as the
magnitude of the some closed-loop transfer
function relative to an upper bound

• it is the worst case steady-state gain for sinusoidal
inputs at any frequency

• it is equal to the 2-norm in the time domain:

‖G(s)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

= max
‖w(t)‖2=1

‖z(t)‖2

• is has an interpretation as an induced norm in
terms of the expected values of stochastic signals

c Difference Between the H2 and H∞ norms

Minimizing theH∞ norm corresponds to minimizing the
peak of the largest singular value, whereas minimizing
the H2 norm corresponds to minimizing the sum of the
square of all the singular values over all frequencies.

Why is the H∞ norm is so popular?

The H∞ norm is convenient for represent-
ing unstructured model uncertainty and
because if satisfies the multiplicative property
‖A(s)B(s)‖∞ ≤ ‖A(s)‖∞ · ‖B(s)‖∞ It follows
that the H∞ norm is an induced norm.

The H2 norm on the other hand is not and induced
norm and does not satisfies the multiplicative property.
This implies that we cannot, by evaluating the H2 norm
of the individual components say anything about how
their series interconnection will behave.

d Hankel norm

The Hankel norm of a stable system G(s) is obtained
when one applies an input w(t) up to t = 0 and measures
the output z(t) for t > 0, and selects w(t) to maximize
the ratio of the 2-norms:

‖G(s)‖H , max
w(t)

√∫∞
0 ‖z(τ)‖22 dτ√∫ 0
−∞ ‖w(τ)‖22 dτ

The Hankel norm is a kind of induced norm from past
inputs to future outputs.
It may be shown that the Hankel norm is equal to
‖G(s)‖H =

√
ρ(PQ) where ρ is the spectral radius, P

is the controllability Gramian and Q the observability
Gramian.
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5 Limitations on Performance in SISO Systems

5.1 Input-Output Controllability

Input-output controllability

The input-output controllability is the abil-
ity to achieve acceptable control perfor-
mance; that is, to keep the outputs (y) within
specified bounds from their references (r), in
spite of unknown but bounded variations, such
as disturbances (d) and plant changes, using
available inputs (u) and available measurements
(ym).

A plant is controllable if there exists a controller that
yields acceptable performance for all expected plant vari-
ation. Thus, controllability is independent of the
controller and is a property of the plant alone.
It may be affected by changing the plant itself:

• changing the mechanical design
• relocating sensors and actuators
• adding new equipment to dampen disturbances
• adding extra sensor or actuators
• changing the configuration of the lower layers of

control already in place

Input-output controllability analysis

Input-output controllability analysis is applied
to a plant to find out what control perfor-
mance can be expected.
It is also called performance targeting.

If the system has been scaled, the requirement for ac-
ceptable performance is: For any disturbance |d| ≤ 1
and any reference |r| ≤ R, the performance require-
ment is to keep the control error |e| ≤ 1 using an input
|u| ≤ 1.

5.2 Perfect Control and Plant Inver-
sion

To obtain insight into the inherent limitations on
performance, let’s consider the input needed to
achieve perfect control. Let the plant model be:
y = Gu+Gdd Since we want perfect control, y = r and
we have u = G−1r −G−1Gdd that represents a perfect
feedforward controller.
For a feedback control, u = K(r − y), and we have
u = KSr −KSGdd that we can rewrite u = G−1Tr −
G−1TGdd.
We see that at frequency where feedback is effective
(T ≈ I), the input generated by feedback is the same as
the perfect control input. That is, high gain feedback
generates an inverse of G.

Perfect control requires the controller to somehow gener-
ate an inverse of G. Perfect control cannot be achieved
if:

• G contains RHP-zeros (since then G−1 is unstable)
• G contains time delay (since then G−1 contains

non-causal prediction)
• G has more pole than zero (since then G−1 is

unrealizable)

The required input must not exceed maximum physi-
cally allowed value (|u| ≤ 1), therefore perfect control
cannot be achieve if:

•
∣∣G−1Gd

∣∣ is large (≥ 1)
•
∣∣G−1R

∣∣ is large (≥ 1)

5.3 Constrain of S and T

a S Plus T is One

S plus T is one

From the definitions S = (I + L)−1 and T =
L(I + L)−1 we derive

S + T = I (30)

Ideally, we want S small to obtain small control er-
ror for commands and disturbances, and T small to
avoid sensitivity to noise. There requirements are not
simultaneously possible at any frequency.

b The Waterbed Effects

In general, a trade-off between sensitivity reduction and
sensitivity increase must be performed whenever:

1. L(s) has at least two more poles than zeros (first
waterbed formula)

2. L(s) has a RHP-zero (second waterbed formula)

First Waterbed Formula

Suppose that the open-loop transfer function
L(s) is rational and has at least two more poles
than zeros. Suppose also that L(s) has Np RHP-
poles at locations pi. Then for closed-loop sta-
bility, the sensitivity function must satisfy the
following Bode Sensitivity Integral:

∫ ∞

0
ln |S(jω)| dω = π

Np∑

i=1
Re(pi) (31)

For a stable plant, we must have:
∫ ∞

0
ln |S(jω)| dω = 0 (32)
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The area of sensitivity reduction (ln |S| negative) must
equal the area of sensitivity increase (ln |S| positive):
the benefits and costs of feedback are balanced.
For unstable plant, the presence of unstable poles
usually increase the peak of |S| as seen from the con-
tribution π

∑Np

i=1 Re(pi). This is the price to pay for
stabilizing the system.
From the first waterbed formula, we expect that an
increase in the bandwidth must come at the expense
of a large peak in |S|. Although this is true in most
practical cases, however this is not strictly implied by
the formula. This is because the increase in area may
happen over an infinite frequency range.

Second Waterbed Formula

Suppose that L(s) has a single real RHP-zero
z or a complex conjugate pair of zero z = x±
jy, and has Np RHP-poles pi. For closed-loop
stability, the sensitivity function must satisfy

∫ ∞

0
ln |S(jω)|w(z, ω)dω = π ln

Np∑

i=1

∣∣∣∣
pi + z

p̄i − z

∣∣∣∣

where if the zero is real

w(z, ω) = 2z
z2 + ω2

and if the zero pair is complex

w(z, ω) = x

x2 + (y − ω)2 + x

x2 + (y + ω)2

The second waterbed formula implies that the peak of
|S| is even higher for plants with RHP-zeros.
The weight w(z, ω) effectively “cuts off” the contribu-
tion from ln |S| to the integral at frequencies ω > z. So
we have approximately:

∫ z

0
ln |S(jω)| dω ≈ 0

This is similar to the Bode sensitivity integral, except
that the trade-off is done over a limited frequency range.
Thus, a large peak for |S| is unavoidable if we try to
push down |S| at low frequencies.

c Interpolation Constraints

Interpolation contraints

If p is a RHP-pole of the loop transfer function
L(s) then

T (p) = 1, S(p) = 0 (33)

If z is a RHP-zero of the loop transfer function
L(s) then

T (z) = 0, S(z) = 1 (34)

d Sensitivity Peaks

Maximum modulus principle

Suppose f(s) is stable, then the maximum value
of |f(s)| for s in the RHP is attained on the re-
gion’s boundary (somewhere along the jω-axis):

‖f(jω)‖∞ = max
ω
|f(jω)| ≥ |f(s0)| ∀s0 ∈ RHP

We can derive the following bounds on the peaks of S
and T from the maximum modulus principle:

‖S‖∞ ≥ max
j

Np∏

i=1

|zj + p̄i|
|zj − pi|

‖T‖∞ ≥ max
i

Nz∏

j=1

|z̄j + pi|
|zj − pi|

This shows that large peaks for |S| and |T | are un-
avoidable if we have a RHP-zero and RHP-pole
located close to each other.

5.4 Limitation Imposed by Time De-
lays

Consider a plant G(s) that contains a time delay e−θs.
Even the “ideal” controller cannot remove this delay and
the “ideal” sensitivity function is S = 1− T = 1− e−θs.

Upper bound on ωc for a time delay θ

S crosses 1 at a frequency of about 1/θ, so we
expect to have an upper bound on ωc:

ωc < 1/θ

5.5 Limitation Imposed by RHP-Zeros
RHP-zeros typically appear when we have competing
effects of slow and fast dynamics. Their presence
induces many limitations.

a Inverse Response

We can show that the output of a step change in the
input of a stable plant with nz real RHP-zeros will cross
zero nz times, that is, we have inverse response.

b High Gain Instability

It is well known that the closed-loop poles migrate
from the open-loop poles to the open-loop zeros as
the feedback gain increases. Thus the presence of
RHP-zeros implies high-gain instability.

c Bandwidth Limitation

To derive bounds for the bandwidth, we select perfor-
mance weight wP (s) and we then use the interpolation
constraint S(z) = 1.
We require |S(jω)| < 1/ |wP (jω)| ∀ω, so we must at
least require that the weight satisfies |wP (z)| < 1.
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Performance at low frequencies If we specify per-
formance at low frequencies, we may use the following
weight:

wP = s/M + ω∗B
s+ ω∗BA

Where ω∗B is the minimum wanted bandwidth, M the
maximum peak of |S| and A the steady-state offset.
If we consider a real RHP-zero:

ω∗B < z
1− 1/M

1−A

For example, with A = 0 and M = 2, we must at least
require ω∗B < 0.5z.
If we consider an imaginary RHP-zero:

ω∗B < |z|
√

1− 1
M2

For example, with M = 2, we must at least require
ω∗B < 0.86 |z|.

Performance limitation at low frequency

The presence of RHP-zero imposes an upper
bound on the achievable bandwidth when
we want tight control at low frequencies

Performance at high frequencies We consider the
case where we want tight control at high frequen-
cies, by use of the performance weight:

wP = 1
M

+ s

ω∗B

If we consider a real RHP-zero:

ω∗B > z
1

1− 1/M

For example, with M = 2 the requirement is ω∗B > 2z,
so we can only achieve tight control at frequencies
beyond the frequency of the RHP-zero.

Performance limitation at high frequen-
cies

The presence of RHP-zero imposes and lower
bound on the achievable bandwidth when
we want tight control at high frequencies

5.6 Limitation Imposed by RHP-Poles

For unstable plants with a RHP-pole at s = p, we need
feedback for stabilization.

RHP-pole Limitation - Input Usage

In presence of a RHP-pole at s = p:

‖KS‖∞ ≥
∣∣Gs(p)−1∣∣

where Gs is the “stable version” of G with its
RHP-poles mirrored into the LHP.
Since u = −KS(Gdd + n) and because of the
previous inequality, the presence of disturbances
d and measurement noise n may require the in-
put u to saturate. When the inputs saturate,
the system is practically open-loop and the sta-
bilization is not possible.

RHP-pole Limitation - Bandwidth

We need to react sufficiently fast. For a real
RHP-pole p we must require that the closed-
loop bandwidth is larger than 2p. The presence
of RHP-poles generally imposes a lower
bound on the bandwidth.

5.7 Combined Unstable (RHP) Poles
and Zeros

A strictly proper plant with a single real RHP-zero z
and a single real RHP-pole p can be stabilized by a
stable proper controller if and only if z > p. In words
“the system may go unstable before we have time to
react”.
In order to achieve acceptable performance and robust-
ness, we must approximately require z > 4p. That
is, we want to RHP-pole to be much lower than the
RHP-zero.
The presence of RHP-zeros (or time delays) make sta-
bilization more difficult.

5.8 Performance Requirements Im-
posed by Disturbances and Com-
mands

Disturbance rejection Consider a single distur-
bance d and a constant reference r = 0. Without
control, we have e = Gdd. We conclude that no control
is needed if |Gd(jω)| < 1 at all frequencies. In that
case, the plant is said to be “self-regulated”.
If |Gd(jω)| > 1 at some frequency, then we need con-
trol. In case of feedback control, we have

e(s) = S(s)Gd(s)d(s)

The performance requirement |e(ω)| < 1 for any |d(ω)|
at any frequency is satisfied if and only if

|SGd(jω)| < 1 ∀ω ⇔ |S(jω)| < 1/ |Gd(jω)| ∀ω
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RHP-zero requirement

If the plant has a RHP-zero at s = z, then
S(z) = 1 and we have the following condition:

|Gd(z)| < 1

Bandwidth requirement

We also have that

ωB > ωd

where ωd is defined by |Gd(jωd)| = 1.

The actual bandwidth requirement imposed by distur-
bances may be higher than ωd if |Gd(jω)| drops with a
slope steeper than −1 just before the frequency ωd. This
is because we cannot let the slope of |L(jω)| around
the crossover be much larger than −1 due to stability
margins. It is however possible to overcome this issue
using local feedback loops in series.

Command tracking Assume than d = 0 and r(t) =
R sin(ωt). For acceptable control (|e| < 1) we must
have

|S(jω)R| < 1 ∀ω ≤ ωr
where ωr is the frequency up to which performance
tracking is required.

5.9 Limitation Imposed by Input Con-
straints

Inputs for acceptable control

To achieve acceptable control (|e| < 1) and avoid
input saturation (|u| < 1), we must require:
For disturbance rejection:

|G| > |Gd| − 1 at frequencies where |Gd| > 1

For command tracking:

|G| > |R| − 1 ∀ω ≤ ωr

5.10 Limitation Imposed by Phase Lag
Phase lag in the plant present no fundamental limita-
tions, however is usually does on practical designs.

Definition - ωu

Let define ωu as the frequency where the phase
lag of the plant G is −180°

∠G(jωu) , −180° (35)

With simple controllers such as a proportional controller
or a PI-controller, the phase lag does pose a fundamen-
tal limitation on the achievable bandwidth because of
stability bounds:

ωc < ωu

However, if the model is exactly known and there are
no RHP-zeros or time delays, one may extend ωc to
infinite frequency by placing zeros in the controller at
the plant poles.

5.11 Limitation Imposed by Uncer-
tainty

Uncertainty with feedforward control Perfect
control is obtained using a controller which generates
the control input

u = G−1r −G−1Gdd

When we apply this perfect controller to the actual
plant y′ = G′u+G′dd, we find

e′ = y′ − r =
(
G′

G
− 1
)

︸ ︷︷ ︸
rel. error in G

r −
(
G′/G′d
G/Gd

− 1
)

︸ ︷︷ ︸
rel. error in G/Gd

G′dd

For feedforward control, the model error propa-
gates directly to the control error.
If we want acceptable control (|e′| < 1), we must require
that the model error in G/Gd is less than 1/ |G′d|. This
is very difficult to satisfy at frequencies where |G′d| is
much larger than 1.
The presence of uncertainty then requires us to use
feedback control rather than just feedforward control.

Uncertainty with feedback control With feed-
back control, the closed-loop response is e = y − r =
SGdd − Sr. With model error, we get y′ − r =
S′(G′dd− r) where S′ = (I +G′K)−1. S′ can be rewrit-
ten as S′ = S 1

1+ET with E = G′−G
G the relative error

for G.
We see that the control error in only weakly af-
fected by model error at frequencies where feed-
back is effective (T ≈ 1).

Uncertainty in the crossover region

Uncertainty in the crossover frequency region
can result in poor performance and even insta-
bility:

• Uncertainty which keeps |G(jωu)| approx-
imately constant will not change the gain
margin.

• Uncertainty which increases |G(jωu)| may
yield instability.

23



+
−

K G +

Gd

+Gm

r u

n

y

d

Figure 10 – Feedback control system

5.12 Summary: Controllability Analy-
sis with Feedback Control

Consider the control system in Fig. 10. Here Gm(s) de-
notes the measurement transfer function and we assume
Gm(0) = 1 (perfect steady-state measurement).

Controllability analysis rules

1. Speed of response to reject distur-
bances. We approximately require ωc > ωd.
With feedback control we require |S(jω)| ≤
|1/Gd(jω)| ∀ω.

2. Speed of response to track reference
changes. We require |S(jω)| ≤ 1/R up to
the frequency ωr where tracking is required.

3. Input constraints arising from distur-
bances. For acceptable control we require
|G(jω)| > |Gd(jω)| − 1 at frequencies where
|Gd(jω)| > 1.

4. Input constraints arising from set-
points. We require |G(jω)| > R − 1 up to
the frequency ωr where tracking is required.

5. Time delay θ in G(s)Gm(s). We approxi-
mately require ωc < 1/θ.

6. Tight control at low frequencies with
a RHP-zero z in G(s)Gm(s). For a real
RHP-zero we require ωc < z/2 and for an
imaginary RHP-zero we approximately re-
quire ωc < |z|.

7. Phase lag constraint. We require in most
practical cases ωc < ωu. Here the ultimate
frequency ωu is where ∠GGm(jωu) = −180°.
Since time delays and RHP-zeros also con-
tribute to the phase lag, it is possible to
combine the corresponding rules in the single
rule ωc < ωu.

8. Real open-loop unstable pole in G(s)
at s = p. We need high feedback gains to
stabilize the system and we approximately
require ωc > 2p.

In summary:

• rules 1, 2 and 8 tell us that we need high feed-
back gain in order to reject disturbances, to track
setpoints and to stabilize the plant.

• rules 5, 6 and 7 tell us we must use low feedback
gains in the frequency range where there are RHP-
zeros or delays or where the plant has a lot of phase
lag.

Sometimes, the disturbances are so large that we hit
input saturation or the required bandwidth is not achiev-
able. To avoid the latter problem, we must at least
require that the effect of the disturbance is less than 1
at frequencies beyond the bandwidth:

|Gd(jω)| < 1 ∀ω ≥ ωc

Figure 11 – Illustration of controllability requirements

Controllability analysis with feedforward con-
trol We find that essentially the same conclusions
apply to feedforward control when relevant.
A major difference is that a delay in Gd(s) is an advan-
tage for feedforward control (“it gives the feedforward
controller more time to make the right action”).

5.13 Conclusion
The controllability analysis is summarized in terms
of eight controllability rules. These rules are nec-
essary conditions to achieve acceptable control
performance. They are not sufficient since among
other things they only consider one effect at a time.
The rules may be used to determine whether or
not a given plant is controllable.
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6 Limitations on Performance in MIMO Systems

6.1 Introduction
In a MIMO system, disturbances, the plant, RHP zeros,
RHP poles, delays and disturbances have each direc-
tions associated with them.
We quantify the directionality of the various effects in
G and Gd by their output directions:

• yz: output dir. of RHP-zero, G(z)uz = 0 · yz
• yp: output dir. of RHP-pole, G(pi)up =∞ · yp
• yd: output dir. of disturbance, yd(s) =

1
‖gd(s)‖2

gd(s)
• ui: i’th output dir. (singular vector) of the plant,
G(s)vi(s) = σi(s)ui(s)

We may also consider input directions, however we are
primarily concerned with the performance at the output
of the plant.
The angle between various output directions is
quantified using their inner products.
For example, the output angle between a pole and a
zero is φ = cos−1 ∣∣yHz yp

∣∣, and:

• if φ = 90°, then the pole and zero are in completely
different directions and there is no interaction (they
may be considered separately)

• if φ = 0°, then they interact as in a SISO system

6.2 Constraints on S and T

a S plus T is the Identity Matrix

From the identity S + T = I, we get:

|1− σ(S)| ≤ σ(T ) ≤ 1 + σ(S) (36a)
|1− σ(T )| ≤ σ(S) ≤ 1 + σ(T ) (36b)

This shows that we cannot have S and T small simul-
taneously and that σ(S) is large if and only if σ(T ) is
large.

b Sensitivity Intregrals

The waterbed effect can be generalized for MIMO sys-
tems:
∫ ∞

0
ln |detS(jω)|dω =

∑

j

∫ ∞

0
ln σj(S(jω))dω

= π ·
Np∑

i=1
Re(pi)

c Interpolation Constraints

The basis of many of the results in this chapter are the
“interpolation constraints”.

Interpolation Constraints - RHP-zero z

If G(s) has a RHP-zero at z with output direc-
tion yz, T (s) must have a RHP-zero at z, i.e.,
T (z) has a zero gain in the direction of output
direction yz of the zero, and we get

yHz T (z) = 0; yHz S(z) = yHz

Interpolation Constraints - RHP-pole p

If G(s) has a RHP-pole at p with output direc-
tion yp, S(s) must have a RHP-zero at p, i.e.
S(p) has a zero gain in the input direction of
the output direction yp of the RHP-pole, and
we get

S(p)yp = 0; T (p)yp = yp

d Sensitivity Peaks

Consider a plant G(s) with RHP-poles pi and RHP-
zeros zj . The factorization of G(s) in terms of
Blaschke products is:

G(s) = B−1
p Gs(s), G(s) = Bz(s)Gm(s)

where Gs is the stable and Gm the minimum-phase
version of G. Bp and Bz are stable all-pass transfer
matrices (all singular values are 1 for s = jω) contain-
ing the RHP-poles and RHP-zeros respectively.

MIMO sensitivity peaks Suppose that G(s) has
Nz RHP-zeros zj with output directions yzj , and Np
RHP-poles pi with output direction ypi. We define the
all-pass transfer matrices from the Blaschke factoriza-
tion and compute the real constants:

c1j =
∥∥yHzjBp(zj)

∥∥
2 ≥ 1; c2i =

∥∥B−1
z (pi)ypi

∥∥
2 ≥ 1

Let wP (s) be a stable weight. Then, for closed-loop
stability the weighted sensitivity function must satisfy
for each RPH-zero zj

‖wpS‖∞ ≥ c1j |wp(zj)|

Let wT (s) be a stable weight. Then, for closed-loop sta-
bility the weighted complementary sensitivity function
must satisfy for each RPH-pole pi

‖wTT‖∞ ≥ c2j |wT (pi)|
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Lower bound on ‖S‖∞ and ‖T‖∞

By selecting wP (s) = 1 and wT (s) = 1, we get

‖S‖∞ ≥ max
zeros zj

c1j ; ‖T‖∞ ≥ max
poles pi

c2j

6.3 Functional Controllability

Functional controllability

An m-input l-output system G(s) is function-
ally controllable is the normal rank of G(s),
denoted r, is equal to the number of outputs
(r = l), that is, if G(s) has full row rank. A
system is functionally uncontrollable if r < l.

A square MIMO system is uncontrollable if and only if
detG(s) = 0, ∀s.
A plant is functionally uncontrollable if and only if
σl(G(jω)) = 0, ∀ω. σl(G(jω)) is then a measure of
how close a plant is to being functionally uncon-
trollable.

Uncontrollable output direction

If the plant is not functionally controllable (r <
l), then there are l−r output directions, denoted
y0 which cannot be affected. These directions
will vary with frequency, and we have

yH0 (jω)G(jω) = 0

From an SVD of G(jω) = UΣV H , the uncon-
trollable output directions y0(jω) are the last
l − r columns of U(jω).

By analyzing the uncontrollable output directions, an
engineer can decide on whether it is acceptable to keep
certain output combinations uncontrolled, or if addi-
tional actuators are needed.

6.4 Limitation Imposed by Time De-
lays

Time delays pose limitation also in MIMO systems. Let
θij denote the time delay in the ij’th element of G(s).
Then a lower bound on the time delay for output
i is given by the smallest delay in row i of G(s), that is

θmin
i = min

j
θij

For MIMO systems, we have the surprising result that
an increase time delay may sometimes improve the
achievable performance. The time delay may indeed
increase the decoupling between the outputs.

6.5 Limitations Imposed by RHP-
Zeros

The limitations imposed by RHP-zeros on MIMO sys-
tems are similar to those for SISO system, although
they only apply in particular directions.
The limitations of a RHP-zero located at z may be
derived from the bound:

‖wPS(s)‖∞ = max
ω
|wP (jω)|σ(S(jω)) ≥ |wP (z)|

All the results derived for SISO systems generalize if
we consider the “worst” direction corresponding to
the maximum singular value σ(S). For instance, if we
choose wP (s) to require tight control at low frequencies,
the bandwidth must satisfy w∗B < z/2.

In MIMO systems, one can often move the de-
teriorating effect of a RHP-zero to a given
output which may be less important to control well.
This is possible because, although the interpolation
constraint yHz T (z) = 0 imposes a certain relationship
between the elements within each column of T (s),
the columns of T (s) may still be selected independently.

Requiring a decoupled response from r to y generally
leads to the introduction of additional RHP-zero in T (s)
which are not present in G(s). Moving the effect of the
RHP-zero to a particular output generally add some
interaction. Also, moving to RHP-zero in a direction
where yz is small usually introduces more interaction
than in a direction where yz is large.
For example, if we have a RHP-zero with yz =
[0.03, −0.04, 0.9, 0.43]T , then one may in theory move
the bad effect of the RHP-zero to any of the outputs.
However, in practice, it will be difficult to avoid the
effect of the RHP-zero on output 3, because the zero
direction is mainly in that output. Trying to move it
somewhere else will give large interactions and poor
performance.

6.6 Limitation Imposed by Unstable
(RHP) Poles

For unstable plants, feedback is needed for stabiliza-
tion. More precisely, the presence of an unstable pole p
requires for internal stability T (p)yp = yp where yp is
the output pole direction.

Input Usage Limitation

The transfer function KS from plant output to
plant inputs must satisfy for any RHP-pole p

‖KS‖∞ ≥
∥∥uHp Gs(p)−1∥∥

2

where up is the input pole direction, and Gs is
the “stable version” of G with its RHP-poles
mirrored in the LHP.
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Bandwidth Limitation

From the bound ‖wT (s)T (s)‖∞ ≥ |wT (p)|, we
find that a RHP-pole p imposes restrictions on
σ(T ) which are identical to those derived on |T |
for SISO systems. Thus, we need to react suffi-
ciently fast and we must require that σ(T (jω))
is about 1 or larger up to the frequency 2 |p|.

6.7 RHP-poles Combined with RHP-
Zeros

For a MIMO plant with single RHP-zero z and single
RHP-pole p, we derive

‖S‖∞ ≥ c ‖T‖∞ ≥ c

with c =

√
sin2 φ+ |z + p|2

|z − p|2
cos2 φ

where φ = cos−1 ∣∣yHz yp
∣∣ is the angle between the RHP-

zero and the RHP-pole.
Thus the angle between the RHP-zero and the RHP-pole
is of great importance, we usually want

∣∣yHz yp
∣∣ close to

zero so that they don’t interact with each other.

6.8 Limitations Imposed by Distur-
bances

For SISO systems, we found that large and “fast” dis-
turbances require tight control and a large bandwidth.
The same results apply for MIMO systems, but again
the issue of directions is important.

Definition - Disturbance Direction

Consider a scalar disturbance d and let the
vector gd represents its effect on the outputs
(y = gdd). The disturbance direction is defined
as

yd = 1
‖gd‖2

gd (37)

For a plant with multiple disturbances, gd is a
column of the matrix Gd.

Disturbance Condition Number

γd(G) = σ(G)σ(G†yd) (38)

where G† is the pseudo inverse of G

The disturbance condition number provides a measure
of how a disturbance is aligned with the plant.
It may vary between 1 (for yd = ū) if the disturbance
is in the “good” direction, and the condition number
γ(G) = σ(G)σ(G†) (for yd = u

¯
) if it is in the “bad”

direction.

Let assume r = 0 and that the system has been scaled.
With feedback control e = Sgdd and the performance
objective is

‖Sgd‖2 = σ(Sgd) < 1 ∀ω ⇔ ‖Sgd‖∞ < 1

We derive bounds in terms of the singular values of S:

σ(S) ‖gd‖2 ≤ ‖Sgd‖2 ≤ σ(S) ‖gd‖2

For acceptable performance we must at least
require that

σ(I + L) > ‖gd‖2
And we may require that

σ(I + L) > ‖gd‖2

If G(s) has a RHP-zero at s = z, then the perfor-
mance may be poor if the disturbance is aligned
with the output direction of this zero. To satisfy
‖Sgd‖∞ < 1, we must require

∣∣yHz gd(z)
∣∣ < 1

where yz is the direction of the RHP-zero.

6.9 Limitations Imposed by Input Con-
straints

a Inputs for Perfect Control

We here consider the question: can the disturbances be
rejected perfectly while maintaining ‖u‖ < 1?

For a square plant, the input needed for perfect distur-
bance rejection is u = −G−1Gdd.
For a single disturbance, as the worst-cast disturbance
is |d(ω)| = 1, we get that input saturation is avoided
(‖u‖max ≤ 1) if all elements in the vector G−1gd are
less than 1 in magnitude:

‖G−1gd‖max < 1, ∀ω

It is first recommended to consider one disturbance
at a time by plotting as a function of frequency the
individual elements of G−1Gd. This will yields more in-
formation about which particular input is most likely to
saturate and which disturbance is the most problematic.

b Inputs for Acceptable Control

We here consider the question: is it possible to achieve
‖e‖ < 1 while using inputs with ‖u‖ ≤ 1?
For SISO systems, we have to required |G| > |gd| − 1 at
frequencies where |gd| > 1. We would like to generalize
this result to MIMO systems.
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Approximate conditions - SVD

Each singular value σi of G must approximately
satisfy:

σi(G) ≥
∣∣uHi gd

∣∣− 1 where
∣∣uHi gd

∣∣ > 1 (39)

with ui the i’th output singular vector of G.
uHi gd may be interpreted as the projection of gd
onto the i’th output singular vector of the plant.

Using the previous approximation, we can find out:

• For which disturbances and at which frequencies
input constraints may cause problems. This may
give ideas on which disturbances should be
reduced.

• In which direction i the plant gain is too small. By
looking at the corresponding input singular vector
vi, one can determine which actuators should
be redesigned. By looking at the corresponding
output singular vector ui, one can determine on
which outputs we may have to reduce our perfor-
mance requirements.

For combined disturbances, one requires the i’th row
sum of UHGd to be less than σi(G). However, we usu-
ally derive more insight by considering one disturbance
at a time.

c Unstable Plant and Input Constraints

Active use of inputs are needed to stabilize an unstable
plant. We must require ‖KS‖∞ ≥

∥∥uHp Gs(p)−1∥∥
2. If

the required inputs exceed the constraints, then stabi-
lization is most likely not possible.

6.10 Limitation Imposed by Uncer-
tainty

The presence of uncertainty requires the use of
feedback rather than simply feedforward control to
get acceptable performance. Sensitivity reduction with
respect to uncertainty is achieved with high-gain feed-
back, but for any real system, we have a crossover
frequency range where the loop gain has to drop below
1. The presence of uncertainty in this frequency range
may result in poor performance or even instability.
The issues are the same for SISO and MIMO systems,
however, with MIMO systems there is an additional
problem in that there is also uncertainty associated
with the plant directionality.

a Input and Output Uncertainty

In practice, the difference between the true perturbed
plant G′ and the plant model G is caused by a number
of different sources. We here focus on input and out-
put uncertainty. In multiplicative form, the input and

output uncertainties are given by (see Fig. 12):

G′ = (I + EO)G(I + EI)

G′

G

EO

++

EI

Figure 12 – Plant with multiplicative input and output
uncertainty

Input and output uncertainty may seem similar,
but their implications for control may be very
different.

If all the elements of EO and EI are non-zero, then we
have full block (unstructured) uncertainty.
In many cases, the source of uncertainty is in the indi-
vidual input or output channels, and we have that
EI and EO are diagonal matrices. For example
EI = diag{ε1, ε2, . . . } where εi is the relative uncer-
tainty in input channel i.
Diagonal input uncertainty is always present in real
systems and the magnitude of εi is typically 0.1 or
larger.

b Effect of Uncertainty on Feedforward Con-
trol

Consider a feedforward controller u = Krr for the case
with no disturbance (d = 0). We assume that G is
inversible and we select Kr = G−1 to achieve perfect
control (e = 0). However, for the actual plant G′ (with
uncertainty), the actual control error e′ = y′ − r =
G′G−1r − r is not null and we get:

• For output uncertainty: e′ = EOr
• For input uncertainty: e′ = GEIG

−1r

For output uncertainty, we have an identical result as
for SISO systems: the worst case relative control error
‖e′‖2 / ‖r‖2 is equal to the magnitude of the relative
output uncertainty σ(EO). However, for input uncer-
tainty, the sensitivity may be much larger because the
elements in the matrix GEIG

−1 can be much larger
than the elements in EI .

Diagonal Input Uncertainty

For diagonal input uncertainty, the elements of
GEIG

−1 are directly related to the RGA:

[
GEIG

−1]
ii

=
n∑

j=1
λij(G)εj
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Since diagonal input uncertainty is always present, we
can conclude that if the plant has large RGA el-
ements within in the frequency range where ef-
fect control is desired, then it is not possible
to achieve good reference tracking with feedfor-
ward control because of strong sensitivity to diagonal
input uncertainty. The reverse statement is not true.

c Uncertainty and the Benefits of Feedback

To illustrate the benefits of feedback control in reducing
the sensitivity to uncertainty, we consider the effect
of output uncertainty on reference tracking both for
feedforward and feedback.

Feedforward Let the nominal transfer function
with feedforward control be y = Trr where
Tr = GKr and Kr = G−1. With model er-
ror T ′r = G′Kr and the change in response is
y′−y = (T ′r−Tr)r = (G′−G)G−1Trr = EOTrr. Thus,
the control error caused by the uncertainty is equal to
the relative output uncertainty.

Feedback control The output is y = Tr. The change
in response is y′ − y = (T ′ − T )r = S′EOTr = S′EOy.
With feedback control, the effect of the uncertainty
is reduced by a factor S′ compared to that with feed-
forward control.

d Uncertainty and the Sensitivity Peak

Consider a controller K(s) = l(s)G−1(s) which results
in a nominally decoupled response with sensitivity S =
s · I and complementary sensitivity T = t · I where
t(s) = 1− s(s). Suppose the plant has diagonal input
uncertainty of relative magnitude |wI(jω)| in each input
channel. Then there exists a combination of input
uncertainties such that at each frequency:

σ(S′) ≥ σ(S)
(

1 + |wIt|
1 + |wIt|

‖Λ(G)‖i∞
)

where ‖Λ(G)‖i∞ is the maximum row sum of the RGA
and σ(S) = |s|.
We can see that with an inverse based controller, the
worst case sensitivity will be much larger than the
nominal sensitivity at frequencies where the plant has
large RGA elements.

Input uncertainty and feedback control

These statements apply to the frequency range
around crossover. By “small”, we mean smaller
than 2 and by “large” we mean larger than 10.

• Condition number γ(G) or γ(K) small: ro-
bust performance to both diagonal and full-
block input uncertainty

• Minimized condition number γ∗I (G) or γ∗O(K)
small: robust performance to diagonal input
uncertainty

• RGA(G) has large elements: inverse based
controller is not robust to diagonal input un-
certainty. Since diagonal input uncertainty
is unavoidable in practice, the rule is never
to use a decoupling controller for a plant
with large RGA-elements. Plant with large
RGA elements are fundamentally diffi-
cult to control.

e Element-by-element Uncertainty

Consider any complex matrix G and let λij denote the
ij’th element in the RGA-matrix of G.

The matrix G becomes singular if we make a
relative change −1/λij in its ij’th elements, that
is, if a single element in G is perturbed from gij
to gpij = gij(1− 1

λij
)

Thus, the RGA-matrix is a direct measure of sen-
sitivity to element-by-element uncertainty and
matrices with large RGA-values become singular for
small relative errors in the elements.
The above result has important implications:

• Identification. Models of multivariable plants
G(s) are often obtained by identifying one element
at a time, for example using step responses. This
simple analysis will most likely give meaningless
results if there are large RGA-elements within the
bandwidth where the model is intended to be used.

• RHP-zeros. Consider a plant with transfer func-
tion matrix G(s). If the relative uncertainty in
an element at a given frequency is larger than
|1/λij(jω)| then the plant may be singular at this
frequency, implying that the uncertainty allows for
a RHP-zero on the jω-axis.

6.11 MIMO Input-Output Controlla-
bility

The following procedure assumes that we have made a
decision on the plant inputs and plant outputs, and we
want to analyze the model G to find out what control
performance can be expected. It can also be used
to assist in control structure design.
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A typical MIMO controllability analysis may pro-
ceed as follows:

1. Scale all variables (inputs u, outputs y, distur-
bances d, references r) to obtain a scaled model
y = G(s)u+Gd(s)d, r = Rr̃

2. Obtain a minimal realization
3. Check functional controllability. To be able

to control the outputs independently, we first need
at least as many inputs u as outputs y. Second, we
need the rank of G(s) to be equal to the number of
outputs l, i.e. the minimum singular value G(jω),
σ(G) = σl(G), should be non-zero (except at possi-
ble jω-axis zeros). If the plant is not functionally
controllable, then compute the output direction
where the plant has no gain to have insight into
the source of the problem

4. Compute the poles. For RHP poles, obtain
their locations and associated directions. “Fast”
RHP-poles far from the origin are bad

5. Compute the zeros. For RHP zeros, obtain their
locations and associated directions. Look for zeros
pinned into certain outputs. “Small” RHP-zeros
(close to the origin) are bad if tight performance is
needed at low frequencies

6. Obtain the frequency response G(jω) and
compute the RGA matrix Γ = G × (G†)−1.
Plants with large RGA-elements at crossover fre-
quencies are difficult to control and should be
avoided

7. Compute the singular values of G(jω) and
plot them as a function of frequency. Also
consider the associated input and output singular
vectors

8. The minimum singular value σ(G(jω)) is a
particularly useful controllability measure. It
should generally be as large as possible at frequen-
cies where control is needed. If σ(G(jω)) < 1 then
we cannot at frequency ω make independent output
changes of unit magnitude by using inputs of unit
magnitude

9. For disturbances, consider the elements of the
matrix Gd. At frequencies where one or more
elements is larger than 1, we need control. We get
more information by considering one disturbance at
a time (the columns gd of Gd). We must require for
each disturbance that S is less than 1/ ‖gd‖2 in the
disturbance direction yd, i.e. ‖Syd‖2 ≤ 1/ ‖gd‖2.
Thus, we must at least require σ(S) ≤ 1/ ‖gd‖2
and we may have to require σ(S) ≤ 1/ ‖gd‖2

10. Disturbances and input saturation:
• First step. Consider the input magnitudes

needed for perfect control by computing the
elements in the matrix G†Gd. If all elements
are less than 1 at all frequencies, then input
saturation is not expected to be a problem.
If some elements of G†Gd are larger than 1,
then perfect control cannot be achieve at this
frequency, but “acceptable” control may be

possible
• Second step. Consider the elements of
UHGd and make sure that the elements in
the i’th row are smaller than σi(G) + 1 at all
frequencies

11. Are the requirements compatible? Look at
disturbances, RHP-poles, RHP-zeros and their as-
sociated locations and directions. For example,
we must required for each disturbance and each
RHP-zero that

∣∣yHz gd(z)
∣∣ ≤ 1. Similar relations

exist for combined RHP-zero and RHP-pole.
12. Uncertainty. If the condition number γ(G) is

small then we expect no particular problems with
uncertainty. If the RGA-elements are large, we
expect strong sensitivity to uncertainty.

Plant design changes If the plant is not input-
output controllable, then it must be modified. Some
possible modifications are:

• Controlled outputs. Identify the outputs which
cannot be controlled satisfactory. Can the specifi-
cations for these be relaxed?

• Manipulated inputs. If input constraints are
encountered, then consider replacing or moving
actuators. If there are RHP-zeros which cause
control problems, then the zeros may often be
eliminated by adding another input. This may not
be possible if the zero is pinned to a particular
output

• Extra measurements. If the effect of distur-
bances or uncertainty is large, and the dynamics of
the plant are such that acceptable control cannot
be achieved, then consider adding “fast local loops”
based on extra measurements which are located
close to the inputs and disturbances

• Disturbances. If the effect of disturbances is
too large, then see whether the disturbance itself
may be reduced. This may involve adding extra
equipment to dampen the disturbances. In other
cases, this may involve improving or changing the
control of another part of the system: we may have
a disturbance which is actually the manipulated
input for another part of the system

• Plant dynamics and time delays. In most
cases, controllability is improved by making the
plant dynamics faster and by reducing time delays.
An exception to this is a strongly interactive plant,
where an increased dynamic lag or time delay may
be helpful if it somehow “delays” the effect of the
interactions

6.12 Conclusion
We have found that most of the insights into the perfor-
mance limitation of SISO systems carry over to MIMO
systems. For RHP-zeros, RHP-poles and disturbances,
the issue of directions usually makes the limitation less
severe for MIMO than for SISO systems. However, the
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situation is usually the opposite with model uncertainty
because for MIMO systems, there is also uncertainty
associated with plant directionality.
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7 Uncertainty and Robustness for SISO Systems

7.1 Introduction to Robustness
A control system is robust if it is insensitive to differ-
ences between the actual system and the model of the
system which was used to design the controller. The
key idea in the H∞ robust control paradigm is to check
whether the design specifications are satisfied even for
the “worst-case” uncertainty.
Our approach is then as follows:

1. Determine the uncertainty set. Find a math-
ematical representation of the model uncertainty

2. Check Robust Stability (RS). Determine
whether the system remains stable for all plants in
the uncertainty set

3. Check Robust Performance (RP). If RS is
satisfied, determine whether the performance spec-
ifications are met for all plants in the uncertainty
set

This approach may not always achieve optimal
performance. In particular, if the worst case plant
rarely occurs, other approaches, such as optimizing
some average performance or using adaptive control
may yield better performance.

To account for model uncertainty, we will assume that
the dynamic behavior of a plant is described not by a
single linear time invariant model but by a set Π of
possible linear time invariant models, sometimes
denoted the “uncertainty set”.

We adopt the following notation:

• Π - a set of possible perturbed plant models
• G(s) ∈ Π - nominal plant model
• Gp(s) ∈ Π - particular perturbed plant models

We will use a “norm-bounded uncertainty descrip-
tion” where the set Π is generated by allowing H∞
norm-bounded stable perturbations to the nominal
plant G(s). We let E denote a perturbation which
is not normalized, and let ∆ denote a normalized per-
turbation with its H∞ norm less than 1.

7.2 Representing Uncertainty
Uncertainty in the plant model may have several ori-
gins:

1. There are always parameters in the linear model
which are only known approximatively

2. Parameters in the model may vary due to non-
linearities or changes in the operating conditions

3. Measurement devices have imperfections
4. At high frequencies, even the structure and the

model order is unknown, and the uncertainty will
always exceed 100 % at some frequency

5. Even when a very detailed model is available,
we may choose to work with a simpler nominal
model and represent the neglected dynamics
as “uncertainty”

6. The controller implemented may differ from the one
obtained by solving the synthesis problem. One
may include uncertainty to allow for controller
order reduction and implementation inaccuracies

The various sources of model uncertainty may be
grouped into two main classes:

1. Parametric uncertainty. The structure of the
model is known, but some parameters are uncertain

2. Neglected and unmodelled dynamics uncer-
tainty. The model is in error because of missing
dynamics, usually at high frequencies

Parametric uncertainty set

Parametric uncertainty will be quantified by
assuming that each uncertain parameters
is bounded within some region [αmin, αmax].
That is, we have parameter sets of the form

αp = ᾱ(1 + rα∆); rα = αmax − αmin
αmax + αmin

(40)

where ᾱ is the mean parameter value, rα is the
relative uncertainty in the parameter, and ∆ is
any real scalar satisfying |∆| ≤ 1.

Neglected and unmodelled dynamics uncertainty is
somewhat less precise and thus more difficult to
quantify, but it appears that frequency domain is
particularly well suited for this class. This leads to
complex perturbations which we normalize such
that ‖∆‖∞ ≤ 1.

There is also a third class of uncertainty (which is a
combination of the other two) called Lumped uncer-
tainty. Here the uncertainty description represents one
or several sources of parametric and/or unmodelled dy-
namics uncertainty combined into a single lumped per-
turbation of a chosen structure. The frequency domain
is also well suited for describing lumped uncertainty.

Multiplicative uncertainty

In most cases, we prefer to lump the uncertainty
into a multiplicative uncertainty of the form

Gp(s) = G(s)(1+wI(s)∆I(s)); |∆I(jω)| ≤ 1 ∀ω

which may be represented by the diagram in
Fig. 13.
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Gp

G+

∆IwI

Figure 13 – Plant with multiplicative uncertainty

7.3 Parametric Uncertainty
Parametric uncertainty may also be represented in the
H∞ framework if we restrict ∆ to be real.

Example - Gain uncertainty

Gp(s) = kpG0(s); kmin ≤ kp ≤ kmax

where kp is an uncertain gain and G0(s) is a
transfer function with no uncertainty. By writ-
ing kp = k̄(1 + rk∆) where rk is the relative
magnitude of the gain uncertainty and k̄ is the
average gain, be may write

Gp = k̄G0(s)︸ ︷︷ ︸
G(s)

(1 + rk∆), |∆| ≤ 1

where ∆ is a real scalar and G(s) is the nominal
plant.

Example - Time constant uncertainty

Gp(s) = 1
τps+ 1G0(s); τmin ≤ τp ≤ τmax

By writing τp = τ̄(1 + rτ∆), with |∆| ≤ 1, the
model set can be rewritten as

Gp(s) = G0
1 + τ̄ s+ rτ τ̄ s∆

= G0
1 + τ̄ s︸ ︷︷ ︸
G(s)

1
1 + wiI(s)∆

with wiI(s) = rτ τ̄ s

1 + τ̄ s
.

As shown in the two examples, one can represent para-
metric uncertainty in the H∞ framework. However,
parametric uncertainty is often avoided for the
following reasons:

1. It usually requires a large effort to model para-
metric uncertainty

2. A parametric uncertainty model is somewhat de-
ceiving in the sense that it provides a very de-
tailed and accurate description, even though the
underlying assumptions about the model and the
parameters may be much less exact

3. The exact model structure is required and so
unmodelled dynamics cannot be dealt with

4. Real perturbations are required, which are more dif-
ficult to deal with mathematically and numerically,
especially when it comes to controller synthesis

Therefore, parametric uncertainty is often represented
by complex perturbations. For example, we may
simply replace the real perturbation, −1 ≤ ∆ ≤ 1 by
a complex perturbation with |∆(jω)| ≤ 1. This is of
course conservative as it introduces possible plants that
are not present in the original set. However, if there
are several real perturbations, then the conservatism
if often reduced by lumping these perturbations into a
single complex perturbation.

7.4 Representing Uncertainty in the
Frequency Domain

a Uncertain Regions

To illustrate how parametric uncertainty translate into
frequency domain uncertainty, consider in Fig. 14 the
Nyquist plots generated by the following set of plants

Gp(s) = k

τs+ 1e
−θs, 2 ≤ k, θ, τ ≤ 3

• Step 1. At each frequency, a region of complex
numbers Gp(jω) is generated by varying the pa-
rameters. In general, these uncertain regions have
complicated shapes and complex mathematical de-
scriptions

• Step 2. We therefore approximate such complex
regions as discs, resulting in a complex additive
uncertainty description

Figure 14 – Uncertainty regions of the Nyquist plot at
given frequencies
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b Representing Uncertainty Regions by Com-
plex Perturbations

Additive uncertainty

The disc-shaped regions may be generated by
additive complex norm-bounded perturbations
around a nominal plant G

ΠA : Gp(s) = G(s) + wA(s)∆A(s)
with |∆A(jω)| ≤ 1 ∀ω (41)

At each frequency, all possible ∆(jω) “generates”
a disc-shaped region with radius 1 centered at 0,
so G(jω)+wA(jω)∆A(jω) generates at each fre-
quency a disc-shapes region of radius |wA(jω)|
centered at G(jω) as shown in Fig. 15.

Figure 15 – Disc-shaped uncertainty regions generated by
complex additive uncertainty

Multiplicative uncertainty

The disc-shaped region may alternatively be
represented by a multiplicative uncertainty

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s));
with |∆I(jω)| ≤ 1 ∀ω (42)

And we see that for SISO systems, additive and multi-
plicative uncertainty are equivalent if at each frequency:

|wI(jω)| = |wA(jω)| / |G(jω)|

However, multiplicative weights are often pre-
ferred because their numerical value is more in-
formative. At frequencies where |wI(jω)| > 1 the
uncertainty exceeds 100 % and the Nyquist curve may
pass through the origin. Then, at these frequencies,
we do not know the phase of the plant, and we allow
for zeros crossing from the left to the right-half plane.
Tight control is then not possible at frequencies
where |wI(jω)| ≥ 1.

c Obtaining the Weight for Complex Uncer-
tainty

Consider a set Π of possible plants resulting, for ex-
ample, from parametric uncertainty. We now want to
describe this set of plants by a single complex pertur-
bation ∆A or ∆I .
This complex disc-shaped uncertainty description may
be generated as follows:

1. Select a nominal G(s)
2. Additive uncertainty. At each frequency, find

the smallest radius lA(ω) which includes all the
possible plants Π

lA(ω) = max
Gp∈Π

|Gp(jω)−G(jω)|

If we want a rational transfer function weight,
wA(s), then it must be chosen to cover the set,
so

|wA(jω)| ≥ lA(ω) ∀ω
Usually wA(s) is of low order to simplify the con-
troller design.

3. Multiplicative uncertainty. This is often the
preferred uncertainty form, and we have

lI(ω) = max
Gp∈Π

∣∣∣∣
Gp(jω)−G(jω)

G(jω)

∣∣∣∣

and with a rational weight |wI(jω)| ≥ lI(ω), ∀ω

Example - Parametric uncertainty

We want to represent the following set using
multiplicative uncertainty with a rational weight
wI(s)

Π : Gp(s) = k

τs+ 1e
−θs, 2 ≤ k, θ, τ ≤ 3

To simplify subsequent controller design, we se-
lect a delay-free nominal model

G(s) = k̄

τ̄ s+ 1 = 2.5
2.5s+ 1

To obtain lI(ω), we consider three values (2, 2.5
and 3) for each of the three parameters (k, θ, τ).
The corresponding relative errors

∣∣∣Gp−G
G

∣∣∣ are
shown as functions of frequency for the 33 = 27
resulting Gp (Fig. 16). To derive wI(s), we then
try to find a simple weight so that |wI(jω)| lies
above all the dotted lines.

d Choice of Nominal Model

With parametric uncertainty represented as complex
perturbations, there are three main options for the
choice of nominal model:
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Figure 16 – Relative error for 27 combinations of k, τ and
θ. Solid and dashed lines: two weights |wI |

1. A simplified model, for instance a low order,
delay free model. It usually yields the largest un-
certainty region, but the model is simple and this
facilitates controller design in later stages.

2. A model of mean parameter values, G(s) =
Ḡ(s). It is probably the most straightforward
choice.

3. The central plant obtained from a Nyquist
plot. It yields the smallest region, but in this
case a significant effort may be required to obtain
the nominal model which is usually not a rational
transfer function.

For SISO systems, we find that for plants with an
uncertain time delay, it is simplest and sometimes best
to use a delay-free nominal model, and to represent the
nominal delay as additional uncertainty.
If we use a parametric uncertainty description, based
on multiple real perturbations, then we should always
use the mean parameter values in the nominal model.

e Neglected Dynamics Represented as Uncer-
tainty

We saw that one advantage of frequency domain uncer-
tainty description is that one can choose to work with
a simple nominal model, and represent neglected
dynamics as uncertainty.
Consider a set of plants

Gp(s) = G0(s)f(s)

where G0(s) is fixed. We want to neglect the term
f(s) ∈ Πf , and represent Gp by multiplicative uncer-
tainty with a nominal model G = G0.
The magnitude of the relative uncertainty caused by
neglecting the dynamics in f(s) is

lI(ω) = max
Gp

∣∣∣∣
Gp −G
G

∣∣∣∣ = max
f(s)∈Πf

|f(jω)− 1|

Neglected delay Let f(s) = e−θps, where 0 ≤ θp ≤
θmax. We want to represent Gp(s) = G0(s)e−θps by a
delay-free plant G0(s) and multiplicative uncertainty.
Let first consider the maximum delay, for which the

relative error
∣∣1− e−jωθmax

∣∣ is shown as a function of
frequency (Fig. 17). If we consider all θ ∈ [0, θmax]
then:

lI(ω) =
{∣∣1− e−jωθmax

∣∣ ω < π/θmax

2 ω ≥ π/θmax
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Figure 17 – Neglected time delay

Neglected lag Let f(s) = 1/(τps + 1), where 0 ≤
τp ≤ τmax. In this case the resulting lI(ω) (Fig. 18)
can be represented by a rational transfer function with
|wI(jω)| = lI(ω) where

wI(s) = τmaxs

τmaxs+ 1
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Figure 18 – Neglected first-order lag uncertainty

Multiplicative weight for gain and delay uncer-
tainty Consider the following set of plants

Gp = kpe
−θpsG0(s); kp ∈ [kmin, kmax], θp ∈ [θmin, θmax]

which we want to represent by multiplicative uncertainty
and a delay-free nominal model G(s) = k̄G0(s). There
is an exact expression, its first order approximation is

wI(s) =
(1 + rk

2 )θmaxs+ rk
θmax

2 s+ 1

However, as shown in Fig. 19, the weight wI is opti-
mistic, especially around frequencies 1/θmax. To make
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sure that |wI(jω)| ≤ lI(ω), we can apply a correction
factor:

w′I(s) = wI ·
( θmax

2.363 )2s2 + 2 · 0.838 · θmax
2.363s+ 1

( θmax
2.363 )2s2 + 2 · 0.685 · θmax

2.363s+ 1

It is suggested to start with the simple weight and then
if needed, to try the higher order weight.
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Figure 19 – Multiplicative weight for gain and delay
uncertainty

f Unmodelled Dynamics Uncertainty

The most important reason for using frequency domain
(H∞) uncertainty description and complex perturba-
tions, is the incorporation of unmodelled dynam-
ics. Unmodelled dynamics, while being close to ne-
glected dynamics, also include unknown dynamics of
unknown or even infinite order.

Unmodelled dynamics - Weight

To represent unmodelled dynamics, we usually
use a simplemultiplicative weight of the form

wI(s) = τs+ r0
(τ/r∞)s+ 1 (43)

where r0 is the relative uncertainty at steady-
state, 1/τ is the frequency at which the relative
uncertainty reaches 100 %, and r∞ is the mag-
nitude of the weight at high frequency.

7.5 SISO Robust Stability

a RS with Multiplicative Uncertainty

We want to determine the stability of the uncertain
feedback system in Fig. 20 where there is multiplicative
uncertainty of magnitude |wI(jω)|. The loop transfer
function becomes

LP = GpK = GK(1 + wI∆I) = L+ wIL∆I

We assume (by design) the stability of the nominal
closed-loop system (with ∆I = 0). We use the Nyquist

stability condition to test for robust stability of the
closed loop system:

RS def⇐⇒ System stable ∀Lp
⇐⇒ Lp should not encircle -1, ∀Lp

Gp

G+

∆IwI

K+
−

Figure 20 – Feedback system with multiplicative uncertainty

Graphical derivation of RS-condition Consider
the Nyquist plot of Lp as shown in Fig. 21. |1 + L|
is the distance from the point −1 to the center of the
disc representing Lp and |wIL| is the radius of the disc.
Encirclements are avoided if none of the discs cover −1,
and we get:

RS ⇔ |wIL| < |1 + L| , ∀ω

⇔
∣∣∣∣
wIL

1 + L

∣∣∣∣ < 1, ∀ω

⇔ |wIT | < 1, ∀ω

Im

Re

−1

|1 + L(jω)|

|wIL|
|L(jω)|

Figure 21 – Nyquist plot of Lp for robust stability

Requirement for Robust Stability

The requirement of robust stability for the case
with multiplicative uncertainty gives an upper
bound on the complementary sensitivity

RS ⇔ |T | < 1/ |wI | , ∀ω (44)

We see that we have to make T small at frequencies
where the relative uncertainty |wI | exceeds 1 in magni-
tude.

Algebraic derivation of RS-condition Since Lp
is assumed stable, and the nominal closed-loop is sta-
ble, the nominal loop transfer function L(jω) does not
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encircle -1. Therefore, since the set of plants is norm-
bounded, it then follows that if some Lp1 in the uncer-
tainty set encircles -1, then there must be another Lp2
in the uncertainty set which goes exactly through -1 at
some frequency. Thus

RS ⇔ |1 + Lp| 6= 0, ∀Lp, ∀ω
⇔ |1 + Lp| > 0, ∀Lp, ∀ω
⇔ |1 + L+ wIL∆I | > 0, ∀ |∆I | ≤ 1, ∀ω

At each frequency, the last condition is most easily
violated when the complex number ∆I(jω) is selected
with |∆(jω)| = 1 and with phase such that 1 + L and
wIL∆I point in the opposite direction. Thus
RS ⇔ |1 + L| − |wIL| > 0, ∀ω ⇔ |wIT | < 1, ∀ω

And we obtain the same condition as before.

b RS with Inverse Multiplicative Uncertainty

We will derive a corresponding RS-condition for feed-
back system with inverse multiplicative uncertainty
(Fig. 22) in which

Gp = G(1 + wiI(s)∆iI)−1

Gp

G

∆iIwiI

+K+
−

u∆ y∆

Figure 22 – Feedback system with inverse multiplicative
uncertainty

We assume that Lp and the nominal closed-loop systems
are stable. Robust stability is guaranteed if Lp(jω) does
not encircles the point -1:
RS ⇔ |1 + Lp| > 0, ∀Lp, ∀ω

⇔
∣∣1 + L(1 + wiI∆iI)−1∣∣ > 0, ∀ |∆iI | < 1, ∀ω

⇔ |1 + wiI∆iI + L| > 0, ∀ |∆iI | < 1, ∀ω
⇔ |1 + L| − |wiI∆iI | > 0, ∀ω
⇔ |wiIS| < 1, ∀ω

RS - inverse multiplicative uncertainty

The requirement for robust stability for the case
with inverse multiplicative uncertainty gives an
upper bound on the sensitivity

RS ⇔ |S| < 1/ |wiI | , ∀ω (45)

We see that we need tight control and have to
make S small at frequencies where the uncer-
tainty is large and wiI exceeds 1 in magnitude.

The reason is that the uncertainty represents pole un-
certainty, and at frequencies where |wiI | exceeds 1, we
allow for poles crossing from the left to the right-half
plant, and we then need feedback (|S| < 1) in order to
stabilize the system.

7.6 SISO Robust Performance

a SISO Nominal Performance

Nominal performance

The condition for nominal performance when
considering performance in terms of the
weighted sensitivity function is

NP⇔ |wPS| < 1 ∀ω
⇔ |wP | < |1 + L| ∀ω (46)

Now |1 + L| represents at each frequency the distance
of L(jω) from the point −1 in the Nyquist plot, so
L(jω) must be at least a distance of |wP (jω)| from −1.
This is illustrated graphically in Fig. 23.

Im

Re

−1

|1 + L(jω)|

|wP |

|L(jω)|

Figure 23 – Nyquist plot illustration of the nominal
performance condition |wP | < |1 + L|

b Robust Performance

For robust performance, we require the perfor-
mance condition to be satisfied for all possible
plants:

RP def⇔ |wPS| < 1 ∀Sp,∀ω
⇔ |wP | < |1 + Lp| ∀Lp,∀ω

(47)

Let’s consider the case of multiplicative uncertainty as
shown on Fig. 24. The robust performance corresponds
to requiring |ŷ/d| < 1 ∀∆I and the set of possible loop
transfer functions is

Lp = GpK = L(1 + wI∆I) = L+ wIL∆I

37



Gp

G+

∆IWI

K + Wp

d
ŷ−

Figure 24 – Diagram for robust performance with
multiplicative uncertainty

Graphical derivation of RP-condition As illus-
trated on Fig. 23, we must required that all possible
Lp(jω) stay outside a disk of radius |wP (jω)| centered
on −1. Since Lp at each frequency stays within a disk of
radius |wI(jω)L(jω)| centered on L(jω), the condition
for RP becomes:

RP ⇔ |wP |+ |wIL| < |1 + L| ∀ω
⇔

∣∣wP (1 + L)−1∣∣+
∣∣wIL(1 + L)−1∣∣ < 1 ∀ω

Robust Performance Condition

Finally, we obtain the following condition for
Robust Performance:

RP ⇔ max
ω

(|wPS|+ |wIT |) < 1 (48)

Algebraic derivation of RP-condition RP is sat-
isfied if the worst-case weighted sensitivity at each fre-
quency is less than 1:

RP ⇔ max
Sp

|wPSp| < 1, ∀ω

The perturbed sensitivity Sp is

Sp = 1
1 + Lp

= 1
1 + L+ wIL∆I

Thus:

max
Sp

|wPSp| =
|wP |

|1 + L| − |wIL|
= |wPS|

1− |wIT |
And we obtain the same RP-condition as the graphically
derived one.

Remarks on RP-condition

1. The RP-condition for this problem is closely ap-
proximated by the mixed sensitivity H∞ condition:

∥∥∥∥
wPS
wIT

∥∥∥∥
∞

= max
ω

√
|wPS|2 + |wIT |2 < 1

This condition is within a factor at most
√

2 of the
true RP-condition. This means that for SISO sys-
tems, we can closely approximate the RP-
condition in terms of an H∞ problem, so

there is no need to make use of the structured
singular value. However, we will see that the situ-
ation can be very different for MIMO systems.

2. The RP-condition can be used to derive bounds
on the loop shape |L|:

|L| > 1 + |wP |
1− |wI |

, at frequencies where |wI | < 1

|L| < 1− |wP |
1 + |wI |

, at frequencies where |wP | < 1

c The Relationship Between NP, RS and RP

Consider a SISO system with multiplicative input un-
certainty, and assume that the closed-loop is nominally
stable (NS). The conditions for nominal performance
(NP), robust stability (RS) and robust performance
(RP) as summarized as follows:

NP⇔ |wPS| < 1, ∀ω (49a)
RS⇔ |wIT | < 1, ∀ω (49b)
RP⇔ |wPS|+ |wIT | < 1, ∀ω (49c)

From this we see that a prerequisite for RP is
that we satisfy both NP and RS. This applies in
general, both for SISO and MIMO systems and for any
uncertainty.

In addition, for SISO systems, if we satisfy both RS
and NP, then we have at each frequency:

|wPS|+ |wIT | < 2 ·max{|wPS|, |wIT |} < 2
It then follows that, within a factor at most 2,
we will automatically get RP when NP and RS are
satisfied. This, RP is not a “big issue” for SISO systems.

To satisfy RS we generally want T small, whereas to
satisfy NP we generally want S small. However, we
cannot make both S and T small at the same frequency
because of the identity S+T = 1. This has implications
for RP:

|wPS|+ |wIT | ≥ min{|wP |, |wI |}(|S|+ |T |)
≥ min{|wP |, |wI |}(|S + T |)
≥ min{|wP |, |wI |}

This means that we cannot have both |wP | > 1 (i.e.
good performance) and |wI | > 1 (i.e. more than 100%
uncertainty) at the same frequency.

7.7 Examples of Parametric Uncer-
tainty

a Parametric Pole Uncertainty

Consider the following set of plants:

Gp(s) = 1
s− ap

G0(s); amin ≤ ap ≤ amax

38



If amin and amax have different signs, then this means
that the plant can change from stable to unstable with
the pole crossing through the origin.
This set of plants can be written as

Gp(s) = G0(s)
s− ā(1 + ra∆); −1 ≤ ∆ ≤ 1

which can be exactly described by inverse multiplicative
uncertainty:

G(s) = G0(s)
(s− ā) ; wiI(s) = raā

s− ā

The magnitude of wiI(s) is equal to ra at low frequency
and goes to 0 at high frequencies.

Time constant form It is also interesting to con-
sider another form of pole uncertainty, namely that
associated with the time constant:

Gp(s) = 1
τps+ 1G0(s); τmin ≤ τp ≤ τmax

The corresponding uncertainty weight is

wiI(s) = rτ τ̄ s

1 + τ̄ s

This results in uncertainty in the pole location, but here
the uncertainty affects the model at high frequency.

b Parametric Zero Uncertainty

Consider zero uncertainty in the “time constant” form
as in:

Gp(s) = (1 + τps)G0(s); τmin ≤ τp ≤ τmax

This set of plants may be written as multiplicative
uncertainty with:

wI(s) = rτ τ̄ s

1 + τ̄ s

The magnitude |wI(jω)| is small at low frequencies and
approaches rτ at high frequencies. For cases with rτ > 1
we allow the zero to cross from the LHP to the RHP.

c Parametric State-Space Uncertainty

A general procedure for handling parametric uncertainty
which is more suited for numerical calculations, is para-
metric state-space uncertainty. Consider an uncertain
state-space model:

ẋ = Apx+Bpu

y = Cpx+Dpu

Assume that the underlying cause for the uncertainty
is uncertainty in some real parameters δ1, δ2, . . . and

assume that the state space matrices depends linearly
on these parameters:

Ap = A+
∑

δiAi; Bp = B +
∑

δiBi

Cp = C +
∑

δiCi; Dp = D +
∑

δiDi

where A, B, C and D model the nominal system.
We can collect the perturbations δi in a large diagonal
matrix ∆ with the real δi’s along its diagonal:

Ap = A+
∑

δiAi = A+W2∆W1

In the transfer function form:

(sI −Ap)−1 = (sI −A−W2∆W1)−1

= (I − Φ(s)W2∆W1)−1Φ(s)

with Φ(s) , (sI −A)−1.
This is illustrated in the block diagram of Fig. 25, which
is in the form of an inverse additive perturbation.

(sI − Ap)−1

(sI − A)−1

∆ W1W2

+

Figure 25 – Uncertainty in state space A-matrix

7.8 Conclusion
Model uncertainty for SISO systems can be represented
in the frequency domain using complex norm-bounded
perturbations ‖∆‖∞ ≤ 1.

Requirements of robust stability for the case of
multiplicative complex uncertainty imposes an upper
bound on the allowed complementary sensitivity,
|wIT | < 1, ∀ω.

Similarly, the inverse multiplicative uncertainty im-
poses an upper bound on the sensitivity, |wiIS| < 1, ∀ω.

We also derived a condition for robust performance with
multiplicative uncertainty, |wPS|+ |wIT | < 1, ∀ω.
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8 Robust Stability and Performance Analysis

8.1 General Control Configuration
with Uncertainty

The starting point for our robustness analysis is a sys-
tem representation in which the uncertain perturbations
are “pulled out” into a block diagonal matrix

∆ = diag{∆i} =




∆1
. . .

∆i

. . .




where each ∆i represents a specific source of un-
certainty, e.g. input uncertainty ∆I or parametric
uncertainty δi.
If we also pull out the controller K, we get the general-
ized plant P as shown in Fig. 26. This form is useful
for controller synthesis.

P

K

∆

w

u

u∆

z

v

y∆

Figure 26 – General control configuration used for
controller synthesis

If the controller is given and we want to analyze the
uncertain system, we use the N∆-structure in Fig. 27.

N

∆

w

u∆

z

y∆

Figure 27 – N∆-structure for robust performance analysis

N is related to P and K by a lower LFT

N = Fl(P,K)
, P11 + P12K(I − P22K)−1P21

Similarly, the uncertain closed-loop transfer function
from w to z, is related to N and ∆ by an upper LFT

F = Fu(N,∆)
, N22 +N21∆(I −N11∆)−1N12

To analyze robust stability of F , we can rearrange the
system into the M∆-structure shown in Fig. 28 where
M = N11 is the transfer function from the output to
the input of the perturbations.

M

∆

u∆ y∆

Figure 28 – M∆-structure for robust stability analysis

8.2 Representing Uncertainty
Each individual perturbation is assumed to be stable
and normalized:

σ(∆i(jω)) ≤ 1 ∀ω

As the maximum singular value of a block diagonal
matrix is equal to the largest of the maximum singular
values of the individual blocks, it then follows for ∆ =
diag{∆i} that

σ(∆i(jω)) ≤ 1 ∀ω,∀i ⇔ ‖∆‖∞ ≤ 1

a Differences Between SISO and MIMO Sys-
tems

The main difference between SISO and MIMO systems
is the concept of directions which is only relevant in
the latter. As a consequence, MIMO systems may
experience much larger sensitivity to uncertainty
than SISO systems.

b Parametric Uncertainty

The representation of parametric uncertainty for MIMO
systems is the same as for SISO systems. However, the
inclusion of parametric uncertainty may be more signifi-
cant for MIMO plants because it offers a simple method
of representing uncertain transfer function elements.

c Unstructured Uncertainty

Unstructured perturbations are often used to get a
simple uncertainty model. We here define unstructured
uncertainty as the use of a “full” complex perturbation
matrix ∆, usually with dimensions compatible with
those of the plant, where at each frequency any ∆(jω)
satisfying σ(∆(jω)) < 1 is allowed.
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Three common forms of feedforward unstructured
uncertainty are shown Fig. 29: additive uncertainty,
multiplicative input uncertainty and multiplicative out-
put uncertainty.

Feedforward unstructured uncertainty

ΠA : Gp = G+ EA; Ea = wA∆a

ΠI : Gp = G(I + EI); EI = wI∆I

ΠO : Gp = (I + EO)G; EO = wO∆O

Gp

G

wA ∆A

+

(a) – Additive uncertainty

Gp

G+

∆IwI

(b) – Multiplicative input uncertainty

Gp

G

wO ∆O

+

(c) – Multiplicative output uncertainty

Figure 29 – Common feedforward unstructured uncertainty

In Fig. 30, three feedback or inverse unstructured
uncertainty forms are shown: inverse additive un-
certainty, inverse multiplicative input uncertainty and
inverse multiplicative output uncertainty.

Feedback unstructured uncertainty

ΠiA : Gp = G(I − EiAG)−1; Eia = wiA∆ia

ΠiI : Gp = G(I − EiI)−1; EiI = wiI∆iI

ΠiO : Gp = (I − EiO)−1G; EiO = wiO∆iO

Lumping uncertainty into a single perturbation
For SISO systems, we usually lump multiple sources of
uncertainty into a single complex perturbation; often
in the multiplicative form. This may be also done for
MIMO systems, but then it makes a difference whether
the perturbation is at the input or the output.

Since output uncertainty is frequently less re-
strictive than input uncertainty in terms of con-
trol performance, we first attempt to lump the uncer-
tainty at the output. For example, a set of plant Π may

Gp

G

WiA∆iA

+

(a) – Inverse additive uncertainty

Gp

G

∆iIwiI

+

(b) – Inverse multiplicative input uncertainty

Gp

G +

wiO ∆iO

(c) – Inverse multiplicative output uncertainty

Figure 30 – Common feedback unstructured uncertainty

be represented by multiplicative output uncertainty
with a scalar weight wO(s) using

Gp = (I + wO∆O)G, ‖∆O‖∞ ≤ 1

where

lO(ω) = max
Gp∈Π

σ
(
(Gp −G)G−1) ; |wO(jω)| ≥ lO(ω), ∀ω

If the resulting uncertainty weight is reasonable and the
analysis shows that robust stability and performance
may be achieve, then this lumping of uncertainty at
the output is fine. If this is not the case, then one may
try to lump the uncertainty at the input instead, using
multiplicative input uncertainty with a scalar weight,

Gp = G(I + wI∆I), ‖∆I‖∞ ≤ 1

where

lI(ω) = max
Gp∈Π

σ
(
G−1(Gp −G)

)
; |wI(jω)| ≥ lI(ω), ∀ω

However, in many cases, this approach of lumping un-
certainty either at the output or the input does not
work well because it usually introduces additional
plants that were not present in the original set.

Conclusion Ideally, we would like to lump several
sources of uncertainty into a single perturbation to get a
simple uncertainty description. Often an unstructured
multiplicative output perturbation is used. However,
we should be careful about doing this, at least for plants
with a large condition number. In such cases we may
have to represent the uncertainty as it occurs physically
(at the input, in the elements, etc.) thereby generating
several perturbations.
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d Diagonal Uncertainty

By “diagonal uncertainty” we mean that the perturba-
tion is a complex diagonal matrix

∆(s) = diag{δi(s)}; |δi(jω)| ≤ 1, ∀ω, ∀i

Diagonal uncertainty usually arises from a consideration
of uncertainty or neglected dynamics in the individual
input or output channels. This type of diagonal
uncertainty is always present.

Example - Input channel uncertainty

Let us consider uncertainty in the input channels.
With each input ui, there is a physical system
(amplifier, actuator, etc.) which based on the
controller output signal ui, generates a physical
plant input mi

mi = hi(s)ui

The scalar transfer function hi(s) is often ab-
sorbed into the plant model G(s). We can repre-
sent its uncertainty as multiplicative uncertainty

hpi(s) = hi(s)(1+wIi(s)δi(s)); |δi(jω)| ≤ 1, ∀ω

which after combining all input channels results
in diagonal input uncertainty for the plant

Gp(s) = G(I +WI∆I) with ∆I = diag{δi}
WI = diag{wIi}

Normally, we would represent the uncertainty in each
input or output channel using a simple weight in the
form

w(s) = τs+ r0
(τ/r∞)s+ 1

where r0 is the relative uncertainty at steady-state, 1/τ
is the frequency where the relative uncertainty reaches
100 %, and r∞ is the magnitude of the weight at high
frequencies.

Diagonal input uncertainty should always be
considered because:

• it is always present and a system which is sensitive
to this uncertainty will not work in practice

• it often restrict achievable performance with
multivariable control

8.3 Obtaining P , N and M

Let’s consider the feedback system with multiplicative
input uncertainty ∆I shown Fig. 31. WI is a normaliza-
tion weight for the uncertainty andWP is a performance
weight.
We want to derive the generalized plant P which has
inputs [u∆, w, u]T and outputs [y∆, z, v]T .

Gp

G+

∆IWI

K + Wp
u

y∆ u∆

w
z−

v

Figure 31 – System with multiplicative input uncertainty
and performance measured at the output

By breaking the loop before and after K and ∆I , we
get

P =




0 0 WI

WPG WP WPG
−G −I −G




Next, we want to derive the matrix N . We fist partition
P to be compatible with K:

P11 =
[

0 0
GWP WP

]
, P12 =

[
WI

GWP

]

P21 =
[
G −1

]
, P22 = −G

and then we find N using N = Fl(P,K).

8.4 Definitions of Robust Stability and
Robust Performance

The next step is to check whether we have stability and
acceptable performance for all plant in the set:

1. Robust stability analysis: with a given con-
trollerK we determine whether the system remains
stable for all plants in the uncertainty set

2. Robust performance analysis: is RS is satis-
fied, we determine how “large” the transfer function
from exogenous inputs w to outputs z may be for
all plants in the uncertainty set

We have z = F (∆) · w with

F = Fu(N,∆)
, N22 +N21∆(I −N11∆)−1N12

We here useH∞ norm to define performance and require
for RP that ‖F (∆)‖∞ ≤ 1 for all allowed ∆. A typical
choice is F = wPSP where wP is the performance
weight and SP represents the set of perturbed sensitivity
functions.
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Stability and Performance Requirements

In terms of the N∆-structure, our requirements
for stability and performance can be summarized
as follows:

NS def⇐⇒ N is internally stable

NP def⇐⇒ NS and ‖N22‖∞ < 1

RS def⇐⇒ NS and F = Fu(N,∆) is stable ∀∆
RP def⇐⇒ NS and ‖F‖∞ < 1, ∀∆, ‖∆‖∞ ≤ 1

8.5 Robust Stability for the
M∆-structure

Consider the uncertain N∆-system for which the trans-
fer function from w to z is

Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12

Suppose that the system is nominally stable (with ∆ =
0) that is N is stable. We also assume that ∆ is stable.
We then see from the above equation that the only
possible source of instability is the feedback term
(I −N11∆)−1. Thus, when we have nominal stability,
the stability of the N∆-structure is equivalent to the
stability of the M∆-structure where M = N11.
We thus need to derive conditions for checking the
stability of the M∆-structure.

Determinant Stability Condition

Assume that the nominal system M(s) and the
perturbations ∆(s) are stable. Consider the con-
vex set of perturbations ∆, such that if ∆′ is
an allowed perturbation then so is c∆′ where
c is any real scalar such that |c| ≤ 1. Then
the M∆-structure is stable for all allowed per-
turbations if and only if the Nyquist plot of
det (I −M∆(s)) does not encircle the origin,
∀∆:

det(I −M∆(jω)) 6= 0, ∀ω, ∀∆ (50)

Spectral Radius Condition

Assume that the nominal system M(s) and the
perturbations ∆(s) are stable. Consider the
class of perturbations, ∆, such that if ∆′ is an
allowed perturbation, then so is c∆′ where c is
any complex scalar such that |c| ≤ 1. Then
the M∆-structure is stable for all allowed per-
turbations if and only if :

ρ(M∆(jω)) < 1, ∀ω, ∀∆
⇔ max

∆
ρ(M∆(jω)) < 1, ∀ω (51)

8.6 RS for Complex Unstructured Un-
certainty

Let ∆ be the set of all complex matrices such that
σ(∆) ≤ 1 (‖∆‖∞ ≤ 1). This is often referred to as
unstructured uncertainty or as full-block complex
perturbation uncertainty. Then we have

max
∆

ρ(M∆) = max
∆

σ(M∆)

= max
∆

σ(∆)σ(M)

= σ(M)

RS for unstructured perturbations

Assume that the nominal system M(s) is sta-
ble and that the perturbations ∆(s) are stable.
Then the M∆-system is stable for all perturba-
tions ∆ satisfying ‖∆‖∞ ≤ 1 if and only if

σ(M(jω)) < 1 ∀ω ⇔ ‖M‖∞ < 1 (52)

a Application of the Unstructured RS-
condition

We will now present necessary and sufficient conditions
for robust stability for each of the six single unstructured
perturbations in Figs 29 and 30 with

E = W2∆W1, ‖∆‖∞ ≤ 1

To derive the matrix M we simply “isolate” the pertur-
bation, and determine the transfer function matrix

M = W1M0W2

from the output to the input of the perturbation, where
M0 for each of the six cases is given by

Gp = G+ EA : M0 = K(I +GK)−1 = KS

Gp = G(I + EI) : M0 = K(I +GK)−1G = TI

Gp = (I + EO)G : M0 = GK(I +GK)−1 = T

Gp = G(I − EiAG)−1 : M0 = (I +GK)−1G = SG

Gp = G(I − EiI)−1 : M0 = (I +KG)−1 = SI

Gp = (I − EiO)−1G : M0 = (I +GK)−1 = S

Using the theorem to check RS for unstructured per-
turbations

RS ⇔ ‖W1M0W2(jω)‖∞ < 1, ∀ω

For instance, for feedforward input uncertainty, we get

RS ∀Gp = G(I + wI∆I), ‖∆I‖∞ ≤ 1⇔ ‖wITI‖∞ < 1

In general, the unstructured uncertainty descrip-
tions in terms of a single perturbation are not
“tight” (in the sense that at each frequency all complex

43



perturbations satisfying σ(∆(jω)) ≤ 1 may not be pos-
sible in practice). Thus, the above RS-conditions are
often conservative. In order to get tighter condition
we must use a tighter uncertainty description in terms
of a block-diagonal ∆.

b RS for Coprime Factor Uncertainty

Robust stability bound in terms of theH∞ norm (RS⇔
‖M‖∞ < 1) are in general only tight when there is a
single full perturbation block. An “exception” to this
is when the uncertainty blocks enter or exit from the
same location in the block diagram, because they can
then be stacked on top of each other or side-by-side, in
an overall ∆ which is then full matrix.
One important uncertainty description that falls into
this category is the coprime uncertainty descrip-
tion shown in Fig. 32, for which the set of plants is

Gp = (Ml + ∆M )−1(Nl + ∆N ), ‖[∆N , ∆N ]‖∞ ≤ ε

Where G = M−1
l Nl is a left coprime factorization of

the nominal plant.
This uncertainty description is surprisingly general, it
allows both zeros and poles to cross into the right-half
plane, and has proven to be very useful in applications.

Gp

−K

+

+ −

M−1
lNl

∆M∆N

Figure 32 – Coprime Uncertainty

Since we have no weights on the perturbations, it is
reasonable to use a normalized coprime factorization of
the nominal plant. In any case, to test for RS we can re-
arrange the block diagram to match the M∆-structure
with

∆ = [∆N , ∆M ]; M = −
[
K
I

]
(I +GK)−1M−1

l

And we get

RS ∀ ‖∆N , ∆M‖∞ ≤ ε ⇔ ‖M‖∞ < 1/ε

The coprime uncertainty description provides a good
generic uncertainty description for cases where we
do not use any specific a priori uncertainty information.
Note that the uncertainty magnitude is ε, so it is not
normalized to be less than 1 in this case. This is because
this uncertainty description is most often used in a
controller design procedure where the objective is to
maximize the magnitude of the uncertainty ε such that
RS is maintained.

8.7 RS with Structured Uncertainty:
Motivation

Consider now the presence of structured uncertainty,
where ∆ = diag{∆i} is block-diagonal. To test for
robust stability, we rearrange the system into the
M∆-structure and we have

RS if σ(M(jω)) < 1, ∀ω

We have here written “if” rather than “if and only if”
since this condition is only sufficient for RS when ∆ has
“no structure”. The question is whether we can take
advantage of the fact that ∆ = diag{∆i} is structured
to obtain an RS-condition which is tighter. On idea is to
make use of the fact that stability must be independent
of scaling.
To this effect, introduce the block-diagonal scaling ma-
trix

D = diag{diIi}
where di is a scalar and Ii is an identity matrix of the
same dimension as the i’th perturbation block ∆i.
Now rescale the inputs and outputs of M and ∆ by
inserting the matrices D and D−1 on both sides as
shown in Fig. 33. This clearly has no effect on stability.

Same Uncertainty

New M DMD−1

∆1
∆2

. . .
D−1D

MD−1 D

Figure 33 – Use of block-diagonal scalings, ∆D = D∆

Note that with the chosen form for the scalings we have
for each perturbation block ∆i = di∆id

−1
i , that is we

have ∆ = D∆D−1.
This means that we have

RS if σ(DM(jω)D−1) < 1, ∀ω

Improved RS-condition

This applies for any D, and therefore the “most
improved” (least conservative) RS-condition is
obtained by minimizing at each frequency the
scaled singular value and we have

RS if min
D(ω)∈D

σ(D(ω)M(jω)D(ω)−1) < 1, ∀ω

where D is the set of block-diagonal matrices
whose structure is compatible to that of ∆, i.e,
∆D = D∆.
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When ∆ is a full matrix, we must select D = dI and
we have σ(DMD−1) = σ(M), and we cannot improve
the RS-condition. However, when ∆ has structure, we
get more degrees of freedom in D and σ(DMD−1) may
be significantly smaller than σ(M).

8.8 The Structured Singular Value

a Definition

The structured singular value µ is a function which
provides a generalization of the singular value σ
and the spectral radius ρ. We will use µ to get
necessary and sufficient conditions for robust stability
and also for robust performance.
µ can be explained as follow:

Find the smallest structured ∆ (measured
in terms of σ(∆)) which makes the matrix
I −M∆ singular; then µ(M) = 1/σ(∆).

Mathematically

µ(M)−1 , min
∆
{σ(∆)|det(I−M∆) = 0 for struct. ∆}

Clearly, µ(M) depends not only on M but also on the
allowed structure for ∆. This is sometimes shown
explicitly by using the notation µ∆(M).

The above definition of µ involves varying σ(∆). How-
ever, we prefer to normalize ∆ such that σ(∆) ≤ 1. We
can do that by scaling ∆ by a factor km, and looking
for the smallest km which makes the matrix I − kmM∆
singular. µ is then the reciprocal of this small km:
µ = 1/km. This results in the following alternative
definition of µ.

Definition - Structured Singular Value

Let M be a given complex matrix and let
∆ = diag{∆i} denote a set of complex matrices
with σ(∆) ≤ 1 and with a given block-diagonal
structure. The real non-negative function µ(M),
called the structured singular value, is defined
by

µ(M) ,(min{km|det(I − kmM∆) = 0
for structured ∆, σ(∆) ≤ 1})−1

If no such structured ∆ exists then µ(M) = 0

A value of µ = 1 means that there exists a perturbation
with σ(∆) = 1 which is just large enough to make
I −M∆ singular.
A larger value of µ is “bad” as it means that a smaller
perturbation makes I−M∆ singular, whereas a smaller
value of µ is “good”.

b Remarks on the Definition of µ

1. The structured singular value was introduced by
Doyle while at the same time, Safonov introduced
the Multivariable Stability Margin km for a
diagonally perturbed system as the inverse of µ,
that is km(M) = µ(M)−1.

2. Note that with km = 0 we obtain I − kmM∆ = I
which is clearly non-singular. Thus, one possible
way to obtain µ numerically, is to start with km = 0,
and gradually increase km until we first find an
allowed ∆ with σ(∆) = 1 such that I − kmM∆ is
singular.

c Properties of µ for Real and Complex ∆

1. µ(αM) = |α|µ(M) for any real scalar α
2. Let ∆ = diag{∆1,∆2} be a block-diagonal per-

turbation and let M be partitioned accordingly.
Then

µ∆ ≥ max{µ∆1(M11), µ∆2(M22)}

d Properties of µ for Complex Perturbations
∆

1. For complex perturbations ∆ with σ(∆) ≤ 1

µ(M) = max
∆,σ(∆)≤1

ρ(M∆) (53)

2. µ(αM) = |α|µ(M) for any (complex) scalar α
3. For a full block complex perturbation ∆

µ(M) = σ(M)

4. µ for complex perturbations is bounded by the
spectral radius and the singular value

ρ(M) ≤ µ(M) ≤ σ(M) (54)

5. Improved lower bound. Defined U as the set of
all unitary matrices U with the same block diagonal
structure as ∆. Then for complex ∆

µ(M) = max
U∈U

ρ(MU) (55)

6. Improved upper bound. Defined D as the set
of all unitary matrices D that commute with ∆.
Then

µ(M) = min
D∈D

σ(DMD−1) (56)
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8.9 Robust Stability with Structured
Uncertainty

Consider stability of the M∆-structure for the case
where ∆ is a set of norm-bounded block-diagonal per-
turbations. From the determinant stability condition
which applies to both complex and real perturbations,
we get

RS ⇔ det(I −M∆(jω)) 6= 0, ∀ω, ∀∆, ‖∆‖∞ ≤ 1

The problem is that this is only a “yes/no” condition.
To find the factor km by which the system is robustly
stable, we scale the uncertainty ∆ by km, and look for
the smallest km which yields “borderline instability”,
namely

det(I − kmM∆) = 0

From the definition of µ, this value is km = 1/µ(M),
and we obtain the following necessary and sufficient
condition for robust stability.

RS for block-diagonal perturbations

Assume that the nominal systemM and the per-
turbations ∆ are stable. Then the M∆-system
is stable for all allowed perturbations with
σ(∆) ≤ 1, ∀ω if on only if

µ(M(jω)) < 1, ∀ω (57)

What do µ 6= 1 and skewed-µ mean? A value of
µ = 1.1 for robust stability means that all the uncer-
tainty blocks must be decreased in magnitude by a
factor 1.1 in order to guarantee stability.
But if we want to keep some of the uncertainty blocks
fixed, how large can one particular source of uncertainty
be before we get instability? We define this value as
1/µs, where µs is called skewed-µ. We may view µs(M)
as a generalization of µ(M).

Example

Let ∆ = diag{∆1,∆2} and assume we have fixed
‖∆1‖ ≤ 1 and we want to find how large ∆2 can
be before we get instability. The solution is to
select

Km =
[
I 0
0 kmI

]

and look at each frequency for the smallest value
of km which makes det(I − KmM∆) = 0 and
we have that skewed-µ is

µs(M) , 1/km

Note that to compute skewed-µ we must first define
which part of the perturbations is to be constant.

8.10 Robust Performance

a Testing RP using µ

To test for RP, we first “pull out” the uncertain per-
turbations and rearrange the uncertain system into
the N∆-form. Our RP-requirement, is that the H∞
norm of the transfer function F = Fu(N,∆) remains
less than 1 for all allowed perturbations. This may be
tested exactly by computing µ(N).

Theorem - Robust performance

Rearrange the uncertain system into the
N∆-structure. Assume nominal stability such
that N is stable. Then

RP def⇐⇒ ‖F‖∞ = ‖Fu(N,∆)‖∞ < 1, ∀ ‖∆‖∞ < 1
⇐⇒ µ∆̂(N(jω)) < 1, ∀ω

where µ is computed with respect to the struc-
ture

∆̂ =
[
∆ 0
0 ∆P

]

and ∆P is a full complex perturbation with the
same dimensions as FT .

Some remarks on the theorem:

1. Condition µ∆̂(N(jω)) < 1, ∀ω allows us to test if
‖F‖∞ < 1 for all possible ∆ without having to test
each ∆ individually. Essential, µ is defined such
that it directly addresses the worst case

2. The µ-condition for RP involves the enlarged per-
turbation ∆̂ = diag{∆,∆P }. Here ∆, which itself
may be a block diagonal matrix, represents the
true uncertainty, whereas ∆P is a full complex
matrix stemming from the H∞ norm performance
specification

3. Since ∆̂ always has structure, the use of H∞ norm,
‖N‖∞ < 1, is generally conservative for robust
performance
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b Summary of µ-conditions for NP, RS and
RP

Conditions for NS NP RS and RP

Rearrange the uncertain system into the
N∆-structure where the block-diagonal pertur-
bation satisfy ‖∆‖∞ ≤ 1. Introduce

F = Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12

Let the performance requirement be ‖F‖∞ ≤ 1.

NS ⇔ N (internally) stable
NP ⇔ NS and σ(N22) = µ∆P

< 1, ∀ω
RS ⇔ NS and µ∆(N11) < 1, ∀ω

RP ⇔ NS and µ∆̃(N) < 1, ∀ω, ∆̃ =
[
∆ 0
0 ∆P

]

Here ∆ is a block-diagonal matrix, whereas ∆P is always
a full complex matrix.
Although the structured singular value is not a norm,
it is sometimes convenient to refer to the peak µ-value
as the “∆-norm”. For a stable rational transfer matrix
H(s), with an associated block structure ∆, we therefore
define

‖H(s)‖∆ , max
ω

µ∆(H(jω)) (58)

For a nominal stable system, we then have

NP ⇔ ‖N22‖∞ < 1
RS ⇔ ‖N11‖∆ < 1
RP ⇔ ‖N‖∆̃ < 1

c Worst-case Performance and Skewed-µ

Assume we have a system for which the peak µ-value
for RP is 1.1. What does this mean? The definition of
µ tells us that our RP-requirement would be satisfied
exactly if we reduced both the performance require-
ment and the uncertainty by a factor of 1.1. So µ
does not directly give us the worst-case performance
max∆ σ(F (∆)).
To find the worst-case weighted performance for a given
uncertainty, one needs to keep the magnitude of the
perturbation fixed (σ(∆) ≤ 1), that is, we must com-
pute the skewed-µ of N . We have, in this case

max
σ(∆)≤1

σ(Fl(N,∆)(jω)) = µs(N(jω))

To find µs numerically, we scale the performance part
of N by a factor km = 1/µs and iterate on km until
µ = 1. That is, at each frequency skewed-µ is the value
µs(N) which solves

µ(KmN) = 1, Km =
[
I 0
0 1/µs

]

Note that µ underestimate how bad or good the actual
worst case performance is. This follows because µs(N)
is always further from 1 than µ(N).

8.11 Application: RP with Input Un-
certainty

We will now consider in some detail the case of multi-
plicative input uncertainty with performance defined in
terms of weighted sensitivity (Fig. 31).
The performance requirement is then

RP def⇐⇒
∥∥wP (I +GpK)−1∥∥

∞ < 1, ∀Gp

where the set of plant is given by

Gp = G(I + wI∆I), ‖∆I‖∞ ≤ 1

Here wp(s) and wI(s) are scalar weights, so the perfor-
mance objective is the same for all the outputs, and the
uncertainty is the same for all the inputs.
In this section, we will:

1. Find the interconnection matrix N for this problem
2. Consider the SISO case, so that useful connections

can be made with results for SISO systems
3. Consider a multivariable distillation process
4. Find some simple bounds on µ and discuss the role

of the condition number
5. Make comparisons with the case where the uncer-

tainty is located at the output

a Interconnection Matrix

On rearranging the system into the N∆-structure, we
get

N =
[
−wITI −wIKS
wpSG wpS

]
(59)

where TI = KG(I + KG)−1, S = (I + GK)−1. For
simplicity, we can omit the negative signs.
For a given controller K we can now test for NS, NP,
RS and RP.

b RP with Input Uncertainty for SISO System

For a SISO system with N as described above:

NS⇔ S, SG, KS, and TI are stable
NP⇔ |wPS| < 1, ∀ω
RS⇔ |wITI | < 1, ∀ω
RP⇔ |wPS|+ |wITI | < 1, ∀ω

Robust performance optimization, in terms of weighted
sensitivity with multiplicative uncertainty for a SISO
system, thus involves minimizing the peak value of
µ(N) = |wIT |+ |wPS|. This may be solved using DK-
iteration. A closely related problem, which is easier to
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solve is to minimize the peak value (H∞ norm) of the
mixed sensitivity matrix:

Nmix =
[
wPS
wIT

]

At each frequency, µ(N) differs from and σ̄(Nmix) by at
most a factor

√
2. Thus, minimizing ‖Nmix‖∞ is close

to optimizing robust performance in terms of µ(N).

c Robust Performance for 2 × 2 Distillation
Process

Consider a distillation process and a corresponding
inverse-based controller:

G(s) = 1
75s+ 1

[
87.8 −86.4
108.2 −109.6

]
; K(s) = 0.7

s
G(s)−1

The controller provides a nominally decoupled system:

L = lI, S = εI and T = tI

where
l = 0.7

s
, ε = s

s+ 0.7 , t = 0.7
s+ 0.7

The following weights for uncertainty and performance
are used:

wI(s) = s+ 0.2
0.5s+ 1; wP (s) = s/2 + 0.05

s

We now test for NS, NP, RS and RP.

NS with G and K as defined, we find that S, SG, KS
and TI are stable, so the system is nominally stable.

NP with the decoupling controller we have:

σ̄(N22) = σ̄(wPS) =
∣∣∣∣
s/2 + 0.05
s+ 0.7

∣∣∣∣

and we see from Fig. 34 that the NP-condition is satis-
fied.

Figure 34 – µ-plots for distillation process with decoupling
controller

RS In this case wITI = wIT is a scalar times the
identity matrix:

µ∆I
(wITI) = |wIt| =

∣∣∣∣0.2
5s+ 1

(0.5s+ 1)(1.43s+ 1)

∣∣∣∣

and we see from Fig. 34 that RS is satisfied.
The peak value of µ∆I

(M) is 0.53 meaning that we may
increase the uncertainty by a factor of 1/0.53 = 1.89
before the worst case uncertainty yields instability.

RP Although the system has good robustness mar-
gins and excellent nominal performance, the robust
performance is poor. This is shown in Fig. 34 where the
µ-curve for RP was computed numerically using µ∆̂(N),
with ∆̂ = diag{∆I ,∆P } and ∆I = diag{δ1, δ2}. The
peak value is close to 6, meaning that even with 6 times
less uncertainty, the weighted sensitivity will be about
6 times larger than what we require.

d Robust Performance and the Condition
Number

We here consider the relationship between µ for RP and
the condition number of the plant or of the controller.
We consider unstructured multiplicative uncertainty
(i.e. ∆I is a full matrix) and performance is measured
in terms of the weighted sensitivity. With N given by
(59), we have:

RP︷ ︸︸ ︷
µ∆̃(N) ≤ [

RS︷ ︸︸ ︷
σ̄(wITI) +

NP︷ ︸︸ ︷
σ̄(wPS)](1 +

√
k)

where k is taken as the smallest value between the
condition number of the plant and of the controller:

k = min(γ(G), γ(K))

We see that with a “round” controller (i.e. one with
γ(K) = 1), there is less sensitivity to uncertainty. On
the other hand, we would expect µ for RP to be large
if we used an inverse-based controller for a plant with
large condition number, since then γ(K) = γ(G) is
large.

e Comparison with Output Uncertainty

Consider output multiplicative uncertainty of magni-
tude wO(jω). In this case, we get the interconnection
matrix

N =
[
wOT wOT
wPS wPS

]

and for any structure of the uncertainty, µ(N) is
bounded as follows:

σ̄

[
wOT
wPS

]
≤

RP︷ ︸︸ ︷
µ(N) ≤

√
2 σ̄

RS︷ ︸︸ ︷[
wOT
wPS

]

︸ ︷︷ ︸
NP
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This follows since the uncertainty and performance
blocks both enter at the output and that the differ-
ence between bounding the combined perturbations
σ̄[∆O ∆P ] and the individual perturbations σ̄(∆O) and
σ̄(∆P ) is at most a factor

√
2. Thus, we “automatically”

achieve RP if we satisfy separately NP and RS. Multi-
plicative output uncertainty then poses no particular
problem for performance.

8.12 µ-synthesis and DK-iteration
The structured singular value µ is a very powerful tool
for the analysis of robust performance with a given
controller. However, one may also seek to find the
controller that minimizes a given µ-condition: this
is the µ-synthesis problem.

a DK-iteration

At present, there is no direct method to synthesize a
µ-optimal controller. However, for complex perturba-
tions, a method known as DK-iteration is available.
It combines H∞ synthesis and µ-analysis and often
yields good results.

The starting point is the upper bound on µ in terms of
the scaled singular value

µ(N) ≤ min
D∈D

σ(DND−1) (60)

The idea is to find the controller that minimizes the
peak value over frequency of this upper bound, namely

min
K

(
min
D∈D

∥∥DN(K)D−1∥∥
∞

)
(61)

by alternating between minimizing
∥∥DN(K)D−1∥∥

∞
with respect to either K or D (while holding the other
fixed).

To start the iterations, one selects an initial stable ra-
tional transfer matrix D(s) with appropriate structure.
The identity matrix is often a good initial choice for
D provided the system has been reasonably scaled for
performance.

DK-Procedure

1. K-step. Synthesize an H∞ controller for the
scaled problem, minK

∥∥DN(K)D−1∥∥
∞ with

fixed D(s)
2. D-step. Find D(jω) to minimize at each

frequency σ(DND−1(jω)) with fixed N
3. Fit the magnitude of each element of D(jω)

to a stable and minimum phase transfer func-
tion D(s) and go to step 1

The iteration may continue until satisfactory per-
formance is achieve,

∥∥DND−1∥∥
∞ < 1 or until the

H∞ norm no longer decreases. One fundamental
problem with this approach is that although each of
the minimization steps are convex, joint convexity
is not guaranteed. Therefore, the iterations may
converge to a local minimum.

The order of the controller resulting from each iteration
is equal to the number of the states in the plant G(s)
plus the number of states in the weights plus twice
the number of state in D(s). The obtain µ-optimal
controller will usually be of high order and will have
a flat µ-curve until some high frequency.

The DK-iteration depends heavily on optimal solutions
for steps 1 and 2, and also on good fits in step 3. We
usually prefers to have a low-order fit in step 3
as it will reduces the order of the H∞ problem which
usually improves the numerical properties of the opti-
mization. In some cases, the iterations converge slowly,
the µ-value can even increase. This may be caused by
numerical problems and one may consider going back
to the initial problem and rescaling the inputs and
outputs.

b Adjusting the Performance Weight

If µ at a given frequency is different from 1, then
the interpretation is that at this frequency we
can tolerate 1/µ times more uncertainty and still
satisfy our performance objective with a margin of
1/µ. In µ-synthesis, the designer will usually adjust
some parameter in the performance or uncertainty
weights until the weight of the peak µ-value is close to 1.

Sometimes, uncertainty is fixed and we effectively opti-
mize worst-cast performance by adjusting a parameter
in the performance weight. Consider the performance
weight

wp(s) = s/M + ω∗B
s+ ω∗BA

where we want to keep M constant and find the high
achievable bandwidth frequency ω∗B . The optimization
problem becomes

max |ω∗B | such that µ(N) < 1, ∀ω

where N , the interconnection matrix for the RP-
problem, depends on ω∗B . This may be implemented as
an outer loop around the DK-iteration.

c Fixed Structure Controller

Sometimes it is desirable to find a low-order controller
with a given structure. This may be achievable by
numerical optimization where µ is minimized with re-
spect to the controller parameters. This problem here
is that the optimization is not generally convex in the
parameters. Sometimes it helps to switch the optimiza-
tion between minimizing the peak of µ and minimizing
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the integral square deviation of µ away from k (i.e.
‖µ(jω)− k‖2) where k is usually close to 1. The latter
is an attempt to “flatten out” µ.

d Example: µ-synthesis with DK-iteration

For simplicity, we will consider again the case of multi-
plicative uncertainty and performance defined in terms
of weighted sensitivity. The uncertainty weight wII
and performance weight wP I are shown graphically in
Fig. 35.

Figure 35 – Uncertainty and performance weights

The objective is to minimize the peak value of µ∆̃(N),
∆̃ = diag{∆I ,∆P }. ∆I is a diagonal 2 × 2 matrix
representing the diagonal input uncertainty and ∆P

is a full 2 × 2 matrix representing the performance
specifications.
First, the generalized plant P is constructed which
includes the plant model, the uncertainty weight and the
performance weight. Then the block structure is defined,
it consists of two 1 × 1 blocks to represent ∆I and a
2× 2 block to represent ∆P . The scaling matrix D for
DND−1 then has the structure D = diag{d1, d2, d3I2}.
We select d3 = 1 and as initial scalings we select d0

1 =
d0

2 = 1. P is then scaled with the matrix diag{D, I2}
where I2 is associated with the inputs and outputs from
the controller (we do not want to scale the controller).

• Iteration No. 1. Step 1: with the initial scalings,
the H∞ synthesis produced a 6 state controller (2
states from the plant model and 2 from each of
the weights). Step 2: the upper µ-bound is shown
in Fig. 36. Step 3: the frequency dependent d1(ω)
and d2(ω) from step 2 are fitted using a 4th order
transfer function shown in Fig. 37

• Iteration No. 2. Step 1: with the 8 state scalings
D1(s), the H∞ synthesis gives a 22 state controller.
Step 2: This controller gives a peak value of µ of
1.02. Step 3: the scalings are only slightly changed

• Iteration No. 3. Step 1: The H∞ norm is only
slightly reduced. We thus decide the stop the
iterations.

The final µ-curves for NP, RS and RP with the con-
troller K3 are shown in Fig. 38. The objectives of RS
and NP are easily satisfied. The peak value of µ is

Figure 36 – Change in µ during DK-iteration

Figure 37 – Change in D-scale d1 during DK-iteration

Figure 38 – mu-plots with µ “optimal” controller K3
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just slightly over 1, so the performance specification
σ̄(wPSp) < 1 is almost satisfied for all possible plants.
To confirm that, 6 perturbed plants are used to compute
the perturbed sensitivity functions shown in Fig. 39.

Figure 39 – Perturbed sensitivity functions σ̄(S′) using µ
“optimal” controller K3. Lower solid line:
nominal plant. Upper solid line: worst-case
plant

8.13 Further Remarks on µ

For complex perturbations, the scaled singular value
σ(DND−1) is a tight upper bound on µ(N) in most
cases, and minimizing the upper bound

∥∥DND−1∥∥
∞

form the basis for the DK-iteration.
The use of constant D-scales (D is not allowed to vary
with frequency), provides a necessary and sufficient
condition for robustness to arbitrary fast time vary-
ing linear uncertainty. While such perturbations are
unlikely in a practical situation, we know that this con-
troller will work very well even for rapid changes in the
plant. Moreover, the use of constant D-scales make the
computation of µ straightforward and solvable using
LMIs.

8.14 Conclusion
We have discussed how to represent uncertainty
and how to analyze its effect on stability (RS) and
performance (RP) using the structured singular
value µ.

To analyze robust stability of an uncertain system, we
make use of the M∆-structure where M represents the
transfer function for the “new” feedback part generated
by the uncertainty. From the small gain theorem

RS ⇐ σ(M) < 1, ∀ω

which is tight (necessary and sufficient) for the special
case where at each frequency any complex ∆ satisfy-
ing σ(∆) ≤ 1 is allowed. More generally, the tight
condition is

RP ⇔ µ(M) < 1, ∀ω

where µ(M) is the structured singular value. The
calculation of µ makes use of the fact that ∆ has a given
block-diagonal structure, where certain blocks may also
be real (e.g. to handle parametric uncertainty).

We defined robust performance as ‖Fl(N,∆)‖∞ < 1 for
all allowed ∆. Since we used the H∞ norm in both
the representation of uncertainty and the definition of
performance, we found that RP could be viewed as a
special case of RS, and we derived

RS ⇔ µ(N) < 1, ∀ω

where µ is computed with respect to the block-
diagonal structure diag{∆,∆P }. Here ∆ represents
the uncertainty and ∆P is a fictitious full uncertainty
block representing the H∞ performance bound.

There are two main approaches to getting a ro-
bust design:

1. We aim to make the system robust to some “gen-
eral” class of uncertainty which we do not ex-
plicitly model. For SISO systems, the classical
gain and phase margins and the peaks of S and T
provide useful robustness measures. For MIMO sys-
tems, normalized coprime factor uncertainty pro-
vides a good general class of uncertainty, and the
associated Glover-McFlarlane H∞ loop-shaping de-
sign procedure has proved itself very useful in ap-
plications

2. We explicitly model and quantify the uncer-
tainty in the plant and aim to make the system
robust to this specific uncertainty. Potentially, it
yields better designs, but it may require a much
larger effort in terms of uncertainty modelling, es-
pecially if parametric uncertainty is consider. Anal-
ysis and in particular, synthesis using µ can be very
involved

In applications, it is therefore recommended to start
with the first approach, at least for design. The
robust stability and performance is then analyzed in
simulations and using the structured singular value, for
example, by considering first simple sources of uncer-
tainty such as multiplicative input uncertainty. One
then iterates between design and analysis until a satis-
factory solution is obtained. If resulting control perfor-
mance is not satisfactory, one may switch to the second
approach.

Practical µ-synthesis in practice:

1. Because of the effort involved in deriving detailed
uncertainty descriptions, and the subsequent com-
plexity in synthesizing controllers, the rule is to
start simple with a crude uncertainty description,
and then to see whether the performance specifica-
tions can be met. Only if they can’t, one should
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consider more detailed uncertainty descriptions
such as parametric uncertainty

2. The use of µ implies a worst-case analysis, so one
should be careful about including too many
sources of uncertainty, noise and disturbances
- otherwise it becomes very unlikely for the worst
case to occur, and the resulting analysis and design
may be unnecessarily conservative

3. There is always uncertainty with respect to the
inputs and outputs, so it is generally sage to
include diagonal input and output uncer-
tainty. The relative multiplicative form is very
convenient in this case

4. µ is most commonly used for analysis. If µ is used
for synthesis, then we recommend that you keep
the uncertainty fixed and adjust the parameters in
the performance weight until µ is close to 1
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9 Controller Design

9.1 Trade-offs in MIMO Feedback De-
sign

The shaping of multivariable transfer functions is based
on the idea that a satisfactory definition of gain for
a matrix transfer function is given by the singular
values. By multivariable transfer function shaping,
therefore, we mean the shaping of the singular values
of appropriate specified transfer functions such as
the loop transfer function of one or more closed-loop
transfer functions.

The classical loop-shaping ideas can be further gener-
alized to MIMO systems by considering the singular
values.
Consider the one degree-of-freedom system as shown in
Fig. 40. We have the following important relationships:

y(s) = T (s)r(s) + S(s)d(s)− T (s)n(s) (62a)
u(s) = K(s)S(s)

(
r(s)− n(s)− d(s)

)
(62b)

+
−

K G +

+

r u

n

y

ym

d

Figure 40 – One degree-of-freedom feedback configuration

Typical Closed-Loop Objectives

1. For disturbance rejection make σ(S) small
2. For noise attenuation make σ(T ) small
3. For reference tracking make σ(T ) ≈ σ(T ) ≈ 1
4. For control energy reduction make σ(KS)

small
5. For robust stability in presence of an additive

perturbation (Gp = G + ∆) make σ(KS)
small

6. For robust stability in presence of a multi-
plicative output perturbation (Gp = (I +
∆)G) make σ(T ) small

The closed-loop requirements cannot all be satisfied
simultaneously. Feedback design is therefore a trade-
off over frequency of conflicting objectives.
This is not always as difficult as it sounds because
the frequency range over which the objectives are
important can be quite different.

In classical loop shaping, it is the magnitude of the
open-loop transfer function L = GK which is shaped,
whereas the above requirements are all in terms of

closed-loop transfer functions. However, we have that

σ(L)− 1 ≤ 1
σ(S) ≤ σ(L) + 1

from which we see that σ(S) ≈ 1/σ(L) at frequencies
where σ(L) is much larger than 1. Furthermore, from
T = L(I +L)−1 it follows that σ(T ) ≈ σ(L) at frequen-
cies where σ(L) is much smaller than 1.
Thus, over specified frequency ranges, it is relatively
easy to approximate the closed-loop requirements by
open-loop objectives.

Typical Open-Loop Objectives

1. For disturbance rejection make σ(GK) large
2. For noise attenuation make σ(GK) small
3. For reference tracking make σ(GK) large
4. For control energy reduction make σ(K)

small
5. For robust stability in presence of an additive

perturbation make σ(K) small
6. For robust stability in presence of an multi-

plicative output perturbation make σ(GK)
small

Typically, the open-loop requirements 1 and 3 are valid
and important at low frequencies 0 ≤ ω ≤ ωl ≤ ωB,
while conditions 2, 4, 5 and 6 are conditions which are
valid and important at high frequencies ωB ≤ ωh ≤
ω ≤ ∞, as illustrated in Fig. 41.

ωl

ωh log(ω)

log(magnitude)

σ(GK)

σ(GK)

Performance
boundary

Robust stability
Noise attenuation

Figure 41 – Design trade-offs for the multivariable loop
transfer function GK

The control engineer must design K such that σ(GK)
lies above a performance boundary for all ω up to ωl,
and such that σ(GK) lies below a robustness boundary
for all ω above ωh.

Shaping the singular values of GK by selecting K is
relatively easy task, but to do this in a way which also
guarantees closed-loop stability is in general difficult
as closed-loop stability cannot be determined
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from open-loop singular values.

For SISO systems, closed-loop stability is closely related
to the open-loop roll-off rate from high to low gain at
the crossover (which is in practice less than 40 dB/dec).
An immediate consequence of this is that there is a
lower limit to the difference between ωh and ωl.
For MIMO systems, a similar gain/phase relationship
holds in the crossover frequency region, but this is in
terms of roll-off rate of the magnitude of the eigenval-
ues of GK and not the singular values. The stability
constraint is therefore more difficult to handle.

9.2 LQG Control
LQG control was developed and successfully applied
for aerospace problems where accurate plants are
available. For other control problems, it was not easy,
and the assumption of white noise disturbance
is not always relevant. As a result, LQG designs were
sometimes not robust enough to be used in practice.

It is assumed that the plant dynamics are linear and
known, and that the measurement noise and disturbance
signals are stochastic with known statistical properties:

ẋ = Ax+Bu+ wd

y = Cx+Du+ wn

with wd and wn are the disturbance and measurement
noise which are assumed to be uncorrelated zero-mean
Gaussian stochastic processes with constant power spec-
tral density matrices W and V respectively.

LQG control problem

The LQG control problem is to find the optimal
control u(t) that minimize:

J = E

{
lim
T→∞

1
T

∫ T

0

[
xTQx+ uTRu

]
dt

}

Where Q and R are appropriately chosen con-
stant weighting matrices (design parameters)
such that Q = QT ≥ 0 and R = RT > 0.

The solution to the LQG problem, known as the Sepa-
ration Theorem, is separated into two problems.
It consists of first determining the optimal control to
a deterministic LQR problem (LQG without wd and
wn). The solution to this problem is a state feedback
law

u(t) = −Krx(t) (63)

where Kr is a constant matrix that can be easily
computed.

The next step is to find an optimal estimate x̂ of the
state x so that E

{
[x− x̂]T [x− x̂]

}
is minimized. The

optimal state estimate is given by a Kalman filter.

The solution to the LQG problem is then found by
replacing x by x̂ to give u(t) = −Krx̂.
We therefore see that the LQG problem and its solution
can be separated into two distinct parts as illustrated
in Fig. 42: the optimal state feedback and the optimal
state estimator (the Kalman filter).

Plant

LQR Kalman
Filter

wd wn

y

x̂

u

Figure 42 – The separation theorem

Optimal State Feedback

The LQR problem, where all the states are
known is to find the input signal u(t) that takes
the system ẋ = Ax+Bu to the zero state (x = 0)
by minimizing the deterministic cost

Jr =
∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (64)

The optimal solution is u = −Krx(t) with

Kr = R−1BTX (65)

and X is the unique positive-semi definite solu-
tion of the algebraic Riccati equation:

ATX +XA−XBR−1BTX +Q = 0 (66)

Kalman Filter

The Kalman filter has the structure of an ordi-
nary state-estimator, as shown on Fig. 43, with:

˙̂x = Ax̂+Bu+Kf (y − Cx̂) (67)

The optimal choice of Kf , which minimize
E
{

[x− x̂]T [x− x̂]
}
is given by

Kf = Y CTV −1 (68)

Where Y is the unique positive-semi definite
solution of the algebraic Riccati equation

Y AT +AY − Y CTV −1CY +W = 0 (69)

The structure of the LQG controller is illustrated in
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Kalman Filter

Plant

Kf

C +−∫+

A

B

−Kr

wd wn

y

˙̂x
ŷ

x̂

u

Figure 43 – The LQG controller and noisy plant

Fig. 43, its transfer function from y to u is given by

LLQG(s) =
[
A−BKr −KfC Kf

−Kr 0

]

=
[
A−BR−1BTX − Y CTV −1C Y CTV −1

−R−1BTX 0

]

It has the same degree (number of poles) as the plant.

For the LQG-controller, as shown on Fig. 43, it is not
easy to see where to position the reference input r
and how integral action may be included, if desired.
Indeed, the standard LQG design procedure does not
give a controller with integral action. One strategy is
illustrated in Fig. 44. Here, the control error r − y
is integrated and the regulator Kr is designed for the
plant augmented with these integral states.

PlantLQR
∫+

−

Kalman
Filter

r
u

wd wn

y

Figure 44 – LQG controller with integral action and
reference input

For an LQG-controller system with a combined Kalman
filter and LQR control law, there are no guaranteed
stability margins, and there exist LQG combinations
with arbitrary small gain margins. However, there are
procedures for improving robustness properties of LQG
control such as Loop Transfer Recovery (LTR).

These procedure are somehow difficult to use in practice.
Their main limitation is that they can only be applied
to minimum phase plants.

9.3 H2 and H∞ Control
a General Control Problem Formulation

There are many ways in which feedback design problems
can be cast as H2 and H∞ optimization problems. It
is very useful therefore to have a standard problem
formulation into which any particular problem may
be manipulated.
Such a general formulation is afforded by the general
configuration shown in Fig. 45.

P

Generalized Plant

K

w

u

z

v

Figure 45 – General control configuration

The system is described by
[
z
v

]
= P (s)

[
w
u

]
=
[
P11(s) P12(s)
P21(s) P22(s)

] [
w
u

]
(70a)

u = K(s)v (70b)

With a state space realization of the generalized plant
P given by

P =




A B1 B2
C1 D11 D12
C2 D21 D22


 (71)

The closed loop transfer function from w to z is given
by the linear fractional transformation:

z = Fl(P,K)w
= [P11 + P12K(I − P22K)−1P21]w

H2 and H∞ control involve the minimization of the
H2 and H∞ norms of Fl(P,K).

The most general and widely used algorithms for H2
and H∞ control problems are based on the state space
formulation and requires the solution of two Riccati
equations.
The following assumptions are typically made in H2
and H∞ problems:

1. (A,B2, C2) is stabilizable and detectable. This is
required for the existence of stabilizing controllers
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2. D12 and D21 have full rank. This is sufficient to
ensure that the controllers are proper

3.
[
A− jωI B2
C1 D12

]
and

[
A− jωI B1
C2 D21

]
have re-

spectively full column and full row rank for all
ω. This ensures that the controller does not cancel
poles or zeros in the imaginary axis which would
result in closed-loop instability

4. D11 = 0 and D22 = 0 is a conventional requirement
for H2 control. This is not required for H∞ control
but this significantly simplify algorithm formulas

5. DT
12C1 = 0 and B1D

T
12 = 0 is common in H2 con-

trol. DT
12C1 = 0 means that there is no cross terms

in the cost function and B1D
T
12 = 0 that the pro-

cess noise and measurement noise are uncorrelated
6. (A,B1) is stabilizable and (A,C1) is detectable

If the Matlab Robust Control Toolbox complains, then
it probably means that the control problem is not
well formulated and that some assumptions are not met.

H∞ algorithms, in general, find a sub-optimal con-
troller. That is, for a specified γ a stabilizing con-
troller is found for which ‖Fl(P,K)‖∞ < γ. This con-
trasts with H2 theory, in which the optimal controller
is unique and can be found from the solution of two
Riccati equations.

b H2 Optimal Control

H2 Optimal Control Problem

The standard H2 optimal control problem is to
find a stabilizing controller K which minimizes

‖F (s)‖2 =
√

1
2π

∫ ∞

−∞
tr[F (jω)F (jω)H ]dω

With F = Fl(P,K).

For a particular problem, the generalized plant P will
include the plant model, the interconnection structure,
and the designer specified weighting functions.

The H2 norm can be given different deterministic
interpretations. It also has the following stochastic
interpretation.
Suppose in the general control configuration that the
exogenous input w is white noise of unit density. That
is

E{w(t)w(τ)T } = Iδ(t− τ)

Expected power in the error signal z is then given by

Pz = E

{
lim
T→∞

1
2T

∫ T

−T
z(t)T z(t)dt

}

= tr E{z(t)z(t)H}

= 1
2π

∫ ∞

−∞
tr
[
F (jω)F (jω)H

]
dω

= ‖F‖22 = ‖Fl(P,K)‖22

Thus, by minimizing the H2 norm, the error
power of the generalized system, due to a unit
intensity white noise input, is minimized. We are
minimizing the Root Mean Square value
of z.

c LQG: a Special H2 Optimal Controller

An important special case of H2 optimal control is the
LQG problem. For the stochastic system

ẋ = Ax+Bu+ wd

y = Cx+ wn

where

E

{[
wd(t)
wn(t)

] [
wd(τ)T wn(τ)T

]}
=
[
W 0
0 V

]
δ(t− τ)

The LQG problem is to find u = K(s)y such that

J = E

{
lim
T→∞

1
T

∫ T

0
[xTQx+ uTRu]dt

}

is minimized with Q = QT ≥ 0 and R = RT > 0.
This problem can be cast as an H2 optimization in the
general framework in the following manner.
Define the error signal z as

z =
[
Q

1
2 0

0 R
1
2

] [
x
u

]

Represent the stochastic inputs as
[
wd
wn

]
=
[
W

1
2 0

0 V
1
2

]
w

where w is a white noise process of unit density.
Then the LQG cost function is

K = E

{
lim
T→∞

1
T

∫ T

0
z(t)T z(t)dt

}
= ‖Fl(P,K)‖22

d H∞ Optimal Control

With reference to the general control configuration on
Fig. 45, the standard H∞ optimal control problem is
to find all stabilizing controllers K which minimize

‖Fl(P,K)‖∞ = max
ω

σ
(
Fl(P,K)(jω)

)
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The H∞ norm has several interpretations in terms
of performance. One is that it minimizes the peak of
the maximum singular value of Fl(P (jω),K(jω)).
It also has a time domain interpretation as the worst-
cast 2-norm:

‖Fl(P,K)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

(72)

where ‖z(t)‖2 =
√∫∞

0
∑
i |zi|

2
dt is the 2-norm of the

vector signal.

In practice, it is usually not necessary to obtain an
optimal controller for the H∞ problem, and it is simpler
to design a sub-optimal one.
Let γmin be the minimum value of ‖Fl(P,K)‖∞ over all
stabilizing controllers K. Then the H∞ sub-optimal
control problem is: given a γ > γmin, find all stabi-
lizing controllers K such that

‖Fl(P,K)‖∞ < γ (73)

By reducing γ in an iterative way, an optimal solution
is approached.

General H∞ algorithm. For the general control
configuration and with assumptions described above,
there exists a stabilizing controller K(s) such that
‖Fl(P,K)‖∞ < γ if and only if

1. X∞ ≥ 0 is a solution to the algebraic
Riccati equation ATX∞ + X∞A + CT1 C1 +
X∞(γ−2B1B

T
1 − B2B

T
2 )X∞ = 0 such that

Re λi
[
A+ (γ−2B1B

T
1 −B2B

T
2 )X∞

]
< 0, ∀i

2. Y∞ ≥ 0 is a solution to the algebraic
Riccati equation AY∞ + Y∞AT + B1B

T
1 +

Y∞(γ−2CT1 C1 − CT2 C2)Y∞ = 0 such that
Re λi

[
A+ Y∞(γ−2CT1 C1 − CT2 C2)Y∞

]
< 0, ∀i

3. ρ(X∞Y∞) < γ2

All such controllers are then given by K = Fl(Kc, Q)
where

Kc(s) =




A∞ −Z∞L∞ Z∞B2
F∞ 0 I
−C2 I 0


 , L∞ = −Y∞CT2

F∞ = −BT2 X∞, Z∞ = (I − γ2Y∞X∞)−1

A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2

and Q(s) is any stable proper transfer function such
that ‖Q‖∞ < γ.

For Q(s) = 0, we get

K(s) = Kc11(s) = −Z∞L∞(sI −A∞)−1F∞ (74)

This is called the central controller and has the same
number of states as the generalized plant P (s).
The central controller can be separated into a state
estimator (observer) of the form

˙̂x = Ax̂+B1γ
−2BT1 X∞x̂+B2u+ Z∞L∞(C2x̂− y)

and a state feedback u = F∞x̂.

γ-iteration

If we desire a controller that achieves γmin, to
within specified tolerance, then we can perform
a bisection on γ until its value is sufficiently
accurate. The above conditions provide a test
for each value of γ to determine if γ < γmin or
γ > γmin.

There are mainly two methodologies for H∞ controller
design: the transfer function shaping approach
and the signal-based approach.

In the shaping approach, H∞ optimization is used
to shape the singular values of specified transfer
functions over frequency. The maximum singular
values are relatively easy to shape by forcing them
to lie below user defined bounds, thereby ensuring
desirable bandwidth and roll-off rates.

In the signal-based approach, we seek to minimize
the energy in certain error signal given a set of
exogenous input signals.

A difficulty that sometimes arises with H∞ control is
the selection of weights such that the H∞ optimal
controller provides a good trade-off between conflict-
ing objectives in various frequency ranges. Thus, for
practical designs it is sometimes recommended to per-
form only a few iterations of the H∞ algorithm. The
justification for this is that the initial design, after one
iteration, is similar to an H2 design which does trade-off
over various frequency ranges. Therefore stopping the
iterations before the optimal value is achieved gives the
design an H2 flavor which may be desirable.

e Mixed-Sensitivity H∞ Control

Mixed-sensitivity is the name given to transfer function
shaping problems in which the sensitivity function
S = (I + GK)−1 is shaped along with one or more
other closed-loop transfer functions such as KS or
T = I − S.

Suppose that we have a regulation problem in which
we want to reject a disturbance d entering at the plant
output and it is assumed that the measurement noise
is relatively insignificant. It makes sense to shape
the closed-loop transfer functions S and KS. Recall
that S is the transfer function between d and the
output, and KS the transfer function from d and the
control signal. It is important to include KS as a
mechanism for limiting the size and bandwidth
of the controller, and hence the energy used. The
size of KS is also important for robust stability with
respect to uncertainty modeled as additive plant
perturbations.
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The disturbance d is typically a low frequency signal,
and therefore it will be successfully rejected if the max-
imum singular value of S is made small over the same
low frequency range. To do this, we could select a scalar
low pass filter w1(s) with a bandwidth equal to that of
the disturbance, and then find a stabilizing controller
that minimizes ‖w1S‖∞. This cost function alone is
not very practical, it focuses on just one closed-loop
transfer function and the controller may have infinite
gain. It is far more useful in practice to minimize

∥∥∥∥
w1S
w2KS

∥∥∥∥
∞

(75)

where w2(s) is a scalar high pass filter with a crossover
frequency approximately equal to that of the desired
closed-loop bandwidth.

In general, the scalar weighting functions w1(s) and
w2(s) can be replaced by matrices W1(s) and W2(s).
This can be useful for systems with channels of
quite different bandwidths. In that case, diagonal
weights are recommended as anything more
complicated is usually not worth the effort.

To see how this mixed sensitivity problem can be for-
mulated in the general setting, we can imagine the
disturbance d as a single exogenous input and define
and error signal z = [zT1 zT2 ]T , where z1 = W1y and
z2 = −W2u as illustrated in Fig. 46. We can then see
that z1 = W1Sw and z2 = W2KSw as required. The
elements of the generalized plant are

P11 =
[
W1
0

]
P12 =

[
W1G
−W2

]

P21 = −I P22 = −G

Generalized Plant

G + +−

−W2

W1

K

z1

z2

r = 0
vu

w = d

z

Figure 46 – S/KS mixed-sensitivity optimization in
standard form (regulation)

Another interpretation can be put on the S/KS mixed-
sensitivity optimization as shown in the standard con-
trol configuration of Fig. 47. Here we consider a tracking
problem. The exogenous input is a reference command
r, and the error signals are z1 = −W1e = W1(r − y)

and z2 = W2u. As the regulation problem of Fig. 46,
we have that z1 = W1Sw and z2 = W2KSw.

Generalized Plant

G +−

W2

W1

K

z1

z2

vu

w = r

z

Figure 47 – S/KS mixed-sensitivity optimization in
standard form (tracking)

Another useful mixed sensitivity optimization problem,
is to find a stabilizing controller which minimizes

∥∥∥∥
W1S
W2T

∥∥∥∥
∞

(76)

The ability to shape T is desirable for tracking problems
and noise attenuation. It is also important for robust
stability with respect to multiplicative perturbations at
the plant output.
The S/T mixed-sensitivity minimization problem can
be put into the standard control configuration as shown
in Fig. 48.
The elements of the generalized plant are

P11 =
[
W1
0

]
P12 =

[
−W1G
W2G

]

P21 = −I P22 = −G

Generalized Plant

G +−

W2

W1

K

z1

z2

vu

w = r

z

Figure 48 – S/T mixed-sensitivity optimization in standard
form

The shaping of closed-loop transfer functions as
described above with the stacked cost functions
becomes difficult with more than two functions whereas
with two, the process is relatively easy. The bandwidth
requirements on each are usually complementary
and simple, stable low-pass and high-pass filters
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are sufficient to carry out the required shaping and
trade-offs.

The weightsWi in mixed-sensitivityH∞ optimal control
must all be stable. Therefore, if we wish, for example,
to emphasize the minimization of S at low frequency
by weighting with a term including integral action,
we would have to approximate 1

s by 1
s+ε where ε� 1.

Similarly, one might be interested in weighting KS with
a non-proper weight to ensure that K is small outside
of the system bandwidth. The trick is to replace a non
proper term such as (1 + τ1s) by 1+τ1s

1+τ2s
where τ2 � τ1.

f Signal-Based H∞ Control

The signal-based approach to controller design is very
general and is appropriate for multivariable problems
in which several objectives must be taken into account
simultaneously. In this approach, we define the plant,
possibly the model uncertainty, the class of external
signals affecting the system and the norm of the
error signals we want to keep small.

The focus of attention has moved to the size of
signals and away from the size and bandwidth
of selected closed-loop transfer functions.

Weights are used to describe the expected or known
frequency content of exogenous signals and the desired
frequency content of error signals. Weights are also
used if a perturbation is used to model uncertainty, as
in Fig. 49, where G represents the nominal model, W
is a weighting function that captures the relative model
fidelity over frequency, and ∆ represents unmodelled
dynamics usually normalized such that ‖∆‖∞ < 1.

Gp

G+

∆W

Figure 49 – Multiplicative dynamic uncertainty model

LQG control is a simple example of the signal based
approach, in which the exogenous signals are assumed
to be stochastic and the error signals are measured in
terms of the 2-norm. As we have seen, the weights Q
and R are constant, but LQG can be generalized to
include frequency dependent weights on the signals
leading to what is called Wiener-Hopf design or H2
control.

When we consider a system’s response to persistent
sinusoidal signals of varying frequency, or when we
consider the induced 2-norm between the exogenous
input signals and the error signals, we are required
to minimize the H∞ norm. In the absence of model

uncertainty, there does not appear to be an overwhelm-
ing case for using the H∞ norm rather than the more
traditional H2 norm. However, when uncertainty is
addressed, as it always should be, H∞ is clearly the
more natural approach using component uncertainty
models as in Fig. 49.

A typical problem using the signal-based approach to
H∞ control is illustrated in the interconnection diagram
of Fig. 50. G and Gd are nominal models of the plant
and disturbance dynamics, and K is the controller to
be designed. The weights Wd, Wr, and Wn may be con-
stant or dynamic and describe the relative importance
and/or the frequency content of the disturbance, set
points and noise signals. The weight Wref is a desired
closed-loop transfer function between the weighted set
point rs and the actual output y. The weights We and
Wu reflect the desired frequency content of the error
(y − yref) and the control signals u, respectively. The
problem can be cast as a standard H∞ optimization in
the general control configuration by defining

w =



d
r
n


 , z =

[
z1
z2

]
, v =

[
rs
ym

]
, u = u

G

Gd

Wref

K +

+−
We

Wu

Wr

Wd

+Wn

ym y

d

r

n

z1

z2

u
rs

Figure 50 – A signal-based H∞ control problem

Suppose we now introduce a multiplicative dynamic
uncertainty model at the input to the plant as shown
in Fig. 51. The problem we now want to solve is: find
a stabilizing controller K such that the H∞ norm of
the transfer function between w and z is less that 1
for all ∆ where ‖∆‖∞ < 1. We have assumed in this
statement that the signal weights have normalized
the 2-norm of the exogenous input signals to
unity. This problem is a non-standard H∞ optimiza-
tion. It is a robust performance problem for which the
µ-synthesis procedure can be applied where we require
the structured singular value:

µ(M(jω)) < 1, ∀ω

However, whilst the structured singular value is a useful
analysis tool for assessing designs, µ-synthesis is some-
times difficult to use and often too complex for the
practical problems.
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Figure 51 – A signal-based H∞ control problem with input
multiplicative uncertainty

9.4 H∞ Loop-Shaping Design
The loop-shaping design procedure described in this
section is based on H∞ robust stabilization combined
with classical loop shaping. It is essentially a two stage
design process:

• First the open-loop plant is augmented by pre and
post compensators to give a desired shape to the
singular values of the open-loop frequency response

• Then the resulting shaped plant is robustly sta-
bilized with respect to coprime factor uncertainty
using H∞ optimization

An important advantage is that no problem-dependent
uncertainty modelling, or weight selection, is required
in this second step.

a Robust Stabilization

For multivariable systems, classical gain and phase
margins are unreliable indicators of robust sta-
bility when defined for each channel (or loop), taken
one at a time, because simultaneous perturbations in
more than one loop are not then catered for.

It is now common practice to model uncertainty by
stable norm-bounded dynamic (complex) matrix
perturbations. With a single perturbation, the
associated robustness tests is in terms of the maximum
singular values of various closed-loop transfer functions.
Use of a single stable perturbation restricts the plant
and perturbed plant models to either have the same
number of unstable poles or the same number of RHP
zeros.

To overcome this, two stable perturbations can
be used, one on each of the factors in a coprime
factorization of the plant. Although this uncertainty
description seems unrealistic and less intuitive than the
others, it is in fact quite general, and for our purposes it
leads to a very useful H∞ robust stabilization problem.

Let’s consider the stabilization of a plant G which has
a normalized left coprime factorization

G = M−1N (77)

where we have dropped the subscripts from M and N
for simplicity.
A perturbed plant model Gp can then we written has

Gp = (M + ∆M )−1(N + ∆N ) (78)

where ∆M , ∆N are stable unknown transfer functions
which represent the uncertainty in the nominal plant
G.

The objective of robust stabilization is to stabilize not
only the nominal model G, but a family of perturbed
plants defined by

Gp = {(M + ∆M )−1(N + ∆N ) : ‖∆N ∆M‖∞ < ε}
(79)

where ε > 0 is then the stability margin.

For the perturbed feedback system of Fig. 52, the stabil-
ity property is robust if and only if the nominal feedback
system is stable and

γ ,

∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ 1
ε

Notice that γ is the H∞ norm from φ to
[
u
y

]
and

(I −GK)−1 is the sensitivity function for this positive
feedback arrangement.

Gp

−K

+

+ −

M−1N

∆M∆N

u

φ

y

Figure 52 – H∞ robust stabilization problem

The lowest achievable value of γ and the corresponding
maximum stability margin ε are given as

γmin = ε−1
max =

{
1− ‖N M‖2H

}− 1
2 = (1 + ρ(XZ)) 1

2

(80)
where ‖ · ‖H denotes Hankel norm, ρ denotes the spec-
tral radius (maximum eigenvalue), and for a minimal
state space realization of G, Z is the unique positive
definite solution of the algebraic Riccati equation

(A−BS−1DTC)Z + Z(A−BS−1DTC)T

− ZCTR−1CZ +BS−1BT = 0

where
R = I +DDT , S = I +DTD

X is the unique positive definite solution of the following
algebraic Riccati equation

(A−BS−1DTC)X +X(A−BS−1DTC)T

−XBS−1BTX + CTR−1C = 0

60



A controller which guarantees that
∥∥∥∥
[
K
I

]
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ

for a specified γ > γmin, is given by

K ,

[
A+BF+γ2L−TZCT (C+DF ) γ2L−TZCT

BTX −DT

]
(81a)

F = −S−1(DTC +BTX) (81b)
L = (1− γ2)I +XZ (81c)

The Matlab function coprimeunc can be used to gener-
ate the controller in (81a). It is important to emphasize
that since we can compute γmin from (80) we get an
explicit solution by solving just two Riccati equations
and avoid the γ-iteration needed to solve the general
H∞ problem.

b A Systematic H∞ Loop-Shaping Design Pro-
cedure

Robust stabilization alone is not much used in prac-
tice because the designer is not able to specify any
performance requirements.
To do so, pre and post compensators are used to
shape the open-loop singular values prior to ro-
bust stabilization of the “shaped” plant.
If W1 and W2 are the pre and post compensators re-
spectively, then the shaped plant Gs is given by

Gs = W2GW1 (82)

as shown in Fig. 53.

Gs

GW1 W2

Ks

Figure 53 – The shaped plant and controller

The controller Ks is synthesized by solving the robust
stabilization problem for the shaped plant Gs with a
normalized left coprime factorization Gs = M−1

s Ns.
The feedback controller for the plant G is then
K = W1KsW2.

Systematic procedure for H∞ loop-shaping design:

1. Scale the plant outputs and inputs. This is
very important for most design procedures. In
general, scaling improves the conditioning of the
design problem, it enables meaningful analysis to
be made of the robustness properties of the feed-
back system in the frequency domain, and for loop
shaping it can simplify the selection of weights:

• The outputs are scaled such that equal mag-
nitudes of cross-coupling into each of the out-
puts is equally undesirable

• Each input is scaled by a given percentage
(say 10 %) of its expected range of operation.
That is, the inputs are scaled to reflect the
relative actuator capabilities.

2. Order the inputs and outputs so that the plant
is as diagonal as possible. The relative gain array
can be useful here. The purpose of this pseudo-
diagonalization is to ease the design of the pre
and post compensators which, for simplicity, will
be chosen to be diagonal. Next, we discuss the
selection of weights to obtain the shaped plant
Gs = W2GW1 where W1 = WpWaWg

3. Select the elements of diagonal pre and post
compensators Wp and W2 so that the singular
values of W2GWp are desirable. This would nor-
mally mean high gain at low frequencies, a slope of
about −1 at the desired bandwidth(s), with higher
rates at high frequencies. The weights should be
chosen so that no unstable hidden modes are cre-
ated in Gs

• W2 is usually chosen as a constant, reflecting
the relative importance of the outputs to be
controlled and the other measurements being
fed back to the controller

• Wp contains the dynamic shaping. Inte-
gral action, for low frequency performance;
phase-advance for reducing the roll-off rates
at crossover; and phase-lag to increase the
roll-off rates at high frequencies should all be
places in Wp is desired

4. Optional: Align the singular values at a desired
bandwidth using a further constant weight Wa

cascaded with Wp

5. Optional: Introduce an additional gain matrix Wg

cascaded with Wa to provide control over actuator
range. Wg is diagonal and is adjusted so that
actuator rate limits are not exceeded for reference
demands and typical disturbances on the scaled
plant outputs

6. Robustly stabilize the shaped plant Gs =
W2GW1 where W1 = WpWaWg

• First, calculate the maximum stability margin
εmax = 1/γmin

• If the margin is too small, εmax < 0.25, then
go back to step 4 and modify the weights. Oth-
erwise, select γ > γmin, by about 10 %, and
synthesize a sub-optimal controller. There is
usually no advantage to be gained by using
the optimal controller

• When εmax > 0.25 (respectively γmin < 4)
the design is usually successful. In this case,
at least 25 % coprime factor uncertainty is
allowed, and we also find that the shape of
the open-loop singular values will not have
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changed much after robust stabilization
• A small value of εmax indicates that the chosen

singular value loop-shapes are incompatible
with robust stability requirements

7. Analyze the design and if not all the specifica-
tion are met, make further modifications to the
weights

8. Implement the controller. The configuration
shown in Fig. 54 has been found useful when com-
pared with the conventional setup in Fig. 40. This
is because the references do not directly excite
the dynamics of Ks, which can result in large
amounts of overshoot. The constant prefilter en-
sure a steady-state gain of 1 between r and y,
assuming integral action in W1 or G

Ks(0)W2(0) +−
W1 G

W2Ks

r us u y

ys

Figure 54 – A practical implementation of the loop-shaping
controller

We will conclude this section with a summary of the
advantages offered by the above H∞ loop-shaping
design procedure:

• It is relatively easy to use, being based on classical
loop-shaping ideas

• There exists a closed formula for the H∞ optimal
cost γmin, which in turn corresponds to a maximum
stability margin εmax = 1/γmin

• No γ-iteration is required in the solution
• Except for special systems, ones with all-pass fac-

tors, there are no pole-zero cancellations between
the plant and controller. Pole-zeros cancellations
are common in many H∞ control problems and
are a problem when the plant has lightly damped
modes

c Two Degrees-of-freedom Controllers

Many control design problems possess two degrees-of-
freedom:

• on one hand,measurement of feedback signals
• and on the other hand, commands and refer-

ence

Sometimes, one degree-of-freedom is left out of the
design, and the controller is driven by an error signal
i.e. the difference between a command and the output.
But in cases where stringent time-domain specifications
are set on the output response, a one degree-of-freedom
structure may not be sufficient.

A general two degrees-of-freedom feedback control
scheme is depicted in Fig. 55. The commands and
feedbacks enter the controller separately and are inde-
pendently processed.

K G

r
u

y

Figure 55 – General two degrees-of-freedom feedback control
scheme

The presented H∞ loop-shaping design procedure
in section 9.4.b is a one-degree-of-freedom design,
although a constant pre-filter can be easily imple-
mented for steady-state accuracy. However, this may
not be sufficient and a dynamic two degrees-of-freedom
design is required.

The design problem is illustrated in Fig. 56. The feed-
back part of the controller K2 is designed to meet
robust stability and disturbance rejection requirements.
A prefilter is introduced to force the response of the
closed-loop system to follow that of a specified model
Tref, often called the reference model.

K2

+

+ −

M−1N

∆M∆N

+
−

+ ρIK1ρI

Tref

u

φ
y

e
βr

Figure 56 – Two degrees-of-freedom H∞ loop-shaping
design problem

The design problem is to find the stabilizing controller
K = [K1, K2] for the shaped plant Gs = GW1, with a
normalized coprime factorization Gs = M−1

s Ns, which
minimizes the H∞ norm of the transfer function be-
tween the signals [rT φT ]T and [uTs yT eT ]T as defined
in Fig. 56. This problem is easily cast into the general
configuration.
The control signal to the shaped plant us is given by:

us =
[
K1 K2

] [β
y

]

where K1 is the prefilter, K2 is the feedback controller,
β is the scaled reference and y is the measured output.
The purpose of the prefilter is to ensure that:

∥∥(I −GsK2)−1GsK1 − Tref
∥∥
∞ < γρ2

Tref is the desired closed-loop transfer function and ρ
is a scalar parameter that the designer can increase
to place more emphasis on model matching in the
optimization at the expense of robustness.
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The main steps required to synthesize a two degrees-of-
freedom H∞ loop-shaping controller are:

1. Design a one degree-of-freedom H∞ loop-shaping
controller (section 9.4.b) but without a post-
compensator W2

2. Select a desired closed-loop transfer function Tref
between the commands and controller outputs

3. Set the scalar parameter ρ to a small value greater
than 1; something in the range 1 to 3 will usually
suffice

4. For the shaped Gs = GW1, the desired response
Tref, and the scalar parameter ρ, solve the standard
H∞ optimization problem to a specified tolerance
to get K = [K1, K2]

5. Replace the prefilter K1 by K1Wi to give exact
model-matching at steady-state.

6. Analyze and, if required, redesign making adjust-
ments to ρ and possibly W1 and Tref

The final two degrees-of-freedom H∞ loop-shaping con-
troller is illustrated in Fig. 57.

Controller

Wi K1 + W1 G

K2

r y

Figure 57 – Two degrees-of-freedom H∞ loop-shaping
controller

d Observer-Based Structure for H∞ Loop-
Shaping Controllers

H∞ designs exhibit an observer/state feedback struc-
ture in the controller. The clear structure of the H∞
loop-shaping controllers has several advantages:

• It is helpful in describing a controller’s function
• It lends itself to implementation in a gain-schedule

scheme
• If offers computational savings in digital implemen-

tations

Let’s assume that the shaped plant is strictly proper,
with a stabilizable and detectable state space realization

Gs ,

[
As Bs
Cs 0

]

The single degree-of-freedom H∞ loop-shaping con-
troller can be realized as an observer for the shaped
plant plus a state feedback control law:

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsus

us = Ksx̂s

where x̂s is the observer state, us and ys are respectively
the input and output of the shaped plant, and

Hs = −ZsCTs
Ks = −BTs [I − γ−2I − γ−2XsZs]−1Xs

where Zs and Xs are the appropriate solutions to the
generalized algebraic Riccati equations for Gs.
The same can be done for two degrees-of-freedom con-
trollers.

e Implementation Issues

Discrete-time controllers For implementation pur-
poses, discrete-time controllers are usually required.
These can be obtained from a continuous-time design
using a bilinear transformation from the s-domain
to the z-domain, but there can be advantages in being
able to design directly in discrete time.

Anti-windup In H∞ loop-shaping the pre compen-
sator weight W1 would normally include integral action
in order to reject low frequency disturbances acting on
the system. However, in the case of actuator satura-
tion, the integrators continue to integrate their input
and hence cause windup problems. An anti-windup
scheme is therefore required on the weighting function
W1. The approach we recommend is to implement the
weight W1 in its self-conditioned or Hanus form. Let
the weight W1 have a realization

W1 ,

[
Aw Bw
Cw Dw

]

and let u be the input to the plant actuators and us
the input to the shaped plant. Then u = W1us. When
implemented in Hanus form, the expression for u be-
comes

u =
[
Aw −BwD−1

w Cw 0 BwD
−1
w

Cw Dw 0

] [
us
ua

]

where ua is the actual plant input, that is the mea-
surement at the output of the actuators which there-
fore contains information about possible actuator satu-
ration.
The situation is illustrated in Fig. 58, where the actua-
tors are each modeled by a unit gain and a saturation.

W1

Actuator
Saturation

G

us

u ua

Figure 58 – Self-conditioned weight W1

The Hanus form prevents windup by keeping the states
ofW1 consistent with the actual plant input at all times.
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When there is no saturation, ua = u, the dynamics of
W1 remains unaffected. But when ua 6= u, the dynamics
are inverted and driven by ua so that the states remain
consistent with the actual plant input ua. Notice that
such an implementation requires W1 to be invertible
and minimum phase.

Bumpless transfer When multi-mode switched con-
troller is designed, one should ensure smooth transi-
tion from one controller to the other (bumpless
transfer). It was found useful to condition the reference
models and the observers in each of the controllers.
When on-line, the observer state evolves according to

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsus

but when off-line, the state equation becomes

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsuas

where uas is the actual input to the shaped plant gov-
erned by the on-line controller.
Doing so ensure that the inputs to the shaped plant for
the off-line controller follows the actual shaped plant
input uas given by the on-line controller. The observer
based structure of the H∞ loop-shaping controller is
then helpful for such technique.

9.5 Conclusion
Several methods and techniques for controller design
have been described. The emphasis has been on H∞
loop shaping which is easy to apply and works well
in practice. It combines classical loop-shaping ideas
with an effective method for robustly stabilizing the
feedback loop.

For complex problems, such as unstable plants with
multiple gain crossover frequencies, it may not be
easy to decide on a desired loop shape. In which case,
we would suggest doing an initial LQG design (with
simple weights) and using the resulting loop shape as
the desired one for the H∞ loop shaping.

And alternative to H∞ loop shaping is a standard H∞
design with a stacked cost function such as in S/KS
mixed-sensitivity optimization. In this approach, H∞
optimization is used to shape two or sometimes three
closed-loop transfer functions. However, with more
functions, the shaping becomes increasingly difficult
for the designer.

In other design situations where there are several
performance objectives, it may be more appropriate
to follow a signal-based H2 or H∞ approach. But
again, the problem formulations become so complex
that the designer has little direct influence on the design.

After a design, the resulting controller should be ana-
lyzed with respect to robustness and tested using non-
linear simulations. For the study of robustness, we
recommend µ-analysis. If the design is not robust, then
the weights should be modified. Sometimes, one might
consider synthesizing a µ-optimal controller, but this
complexity is rarely necessary in practice. Moreover,
one should be careful about combining controller syn-
thesis and analysis into a single step.
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10 Controller Structure Design

10.1 Introduction
In previous sections, we considered the general problem
formulation in Fig. 59 and stated that the controller
design problem is to find a controller K which based on
the information in v, generates a control signal u which
counteracts the influence of w on z, thereby minimizing
the closed loop norm from w to z.

P

K

(weighted)
exogenous

inputs
w

control
signals

u

(weighted)
exogenous
outputs
z

sensed
output
v

Figure 59 – General Control Configuration

In this chapter we are concerned with the structural
decisions associated with the following selection tasks
of control structure design:

• Controlled outputs: What are the variables z?
• Manipulations and measurements: What are

the variable set u and v?
• Control configuration: What is the structure of
K?

• Controller type: What algorithm is used for K?

The distinction between the words under control
structure and control configuration are significant.
The control structure refers to all structural decisions
included in the design of a control system. On the
other hand, the control configuration refers only to the
structuring of the controller K itself.

Ideally, the tasks involved in designing a complete
control system are performed sequentially; first a “top
down” selection of controller outputs, measurements
and inputs, and then a “bottom up” design of the
control system in which the selection of the control
configuration is the most important decision. However,
in practice the tasks are closely related so the procedure
may involve iteration.

One important reason for decomposing the control
system into a specific control configuration is that it
may allow for simple tuning of the sub-controllers
without the need for a detailed plant model

describing the dynamics and interactions in the process.
Multivariable centralized controllers may always
outperform decomposed (decentralized) controllers,
bus this performance gain must be traded off against
the cost of obtaining and maintaining a sufficiently
detailed plant model.

The number of possible control structure is usually
very large. Fortunately, we can often from physical
insight obtain a reasonable choice of controlled outputs,
measurements and manipulated inputs.

10.2 Optimization and Control
The selection of controlled outputs involves selecting the
variables y to be controlled at given reference values
y ≈ r. The reference value r is usually set at some
higher layer in the control hierarchy which is often
divided into two layers:

• Optimization layer: computes the desired refer-
ence commands r

• Control layer: implements these commands to
achieve y ≈ r

Additional layers are possible, as is illustrated in Fig. 60
which shows a typical control hierarchy for a chemical
plant.

C
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Scheduling
(weeks)

Optimization
(day)

Local Optimization
(hour)

Supervisory Control
(minutes)

Regulatory Control
(seconds)

Figure 60 – Typical control system hierarchy in a chemical
plant
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In general, the information flow in such a control
hierarchy is based on the higher layer sending reference
values (setpoints) to the layer below reporting back any
problems achieving this (see Fig. 61b). There is usually
a time scale separation between the layers which means
that the setpoints, as viewed from a given layer, are
updated only periodically.

The optimization tends to be performed open-loop
with limited use of feedback. On the other hand, the
control layer is mainly based on feedback information.
The optimization is often based on nonlinear
steady-state models, whereas we often use linear
dynamic models in the control layer.

From a theoretical point of view, the optimal perfor-
mance is obtained with a centralized optimizing
controller, which combines the two layers of optimiz-
ing and control (see Fig. 61c). All control actions in
such an ideal control system would be perfectly coordi-
nated and the control system would use on-line dynamic
optimization based on nonlinear dynamic model of the
complete plant. However, this solution is normally not
used for a number a reasons, included the cost of mod-
eling, the difficulty of controller design, maintenance,
robustness problems and the lack of computing power.

Optim.

G

Objective

u

y

(a) – Open loop
optimization

Optim.

+ −

Contr.

G

Objective

r

u

y

(b) – Closed-loop
implementa-
tion with
separate
control layer

Optim.
Contr.

G

Objective

u

y

(c) – Integrated
optimization
and control

Figure 61 – Alternative structures for optimization and
control

10.3 Selection of Controlled Outputs
A controlled output is an output variable (usually
measured) with an associated control objective
(usually a reference value). In many cases, it is
clear from a physical understanding of the process
what the controlled outputs should be. In other

cases, it is less obvious because each control objective
may not be associated with a measured output variable.

In the following, we let y denote the selected controller
outputs in the control layer. Two distinct questions
arise:

1. What variables y should be selected?
2. What is the optimal reference value yopt?

For the first problem, we make the following assump-
tions:

1. The overall goal can be quantified in terms of a
scalar cost function J which we want to mini-
mize

2. For a given disturbance d, there exists an opti-
mal value uopt(d) and corresponding value yopt(d)
which minimizes the cost function J

3. The reference values r for the controlled outputs y
should be constant, i.e. r should be independent
of the disturbances d

The system behavior is a function of the independent
variables u and d: J = J(u, d). For a given disturbance
d the optimal value of the cost function is

Jopt(d) , J(uopt, d) = min
u
J(u, d) (83)

In practice u 6= uopt, and we have a loss which can be
quantified by L = J − Jopt. A reasonable objective for
selecting controlled outputs y is to minimize some norm
of the loss, for instance the worst-case loss:

Φ , max
d∈D
| J(u, d)− J(uopt, d)︸ ︷︷ ︸

L

| (84)

where D is the set of possible disturbances.

a Direct Evaluation of Cost

The “brute force” approach for selecting controlled vari-
ables is to evaluate the loss for alternative sets of con-
trolled variable. By solving the non linear equations, we
evaluate directly the cost function J for various distur-
bances d. The set of controlled outputs with smallest
worst case or average value of J is then preferred. This
approach may be time consuming because the solution
of the nonlinear equations must be repeated for each
candidate set of controlled outputs.

b Linear Analysis

Consider the loss L = J(u, d) − Jopt(d) where d is a
fixed disturbance. We make the following additional
assumptions:

4. The cost function J is smooth (twice differentiable)
5. The optimization problem is unconstrained. If it is

optimal to keep some variable at a constant, then
we assume that this is implemented and consider
the remaining unconstrained problem
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6. The dynamics of the problem can be neglected,
that is, we consider the steady-state control
and optimization

For a fixed d we may express J(u, d) in terms of a Taylor
series expansion in u around the optimal point. By
neglecting terms of third order and higher, we obtain:

J(u, d) = Jopt(d)+1
2(u−uopt(d))T

(
∂2J

∂u2

)

opt
(u−uopt(d))

This quantifies how u− uopt affects the cost function.
For a fixed d, we have: y − yopt = G(u − uopt) where
G is the steady state gain matrix. Thus, we get:

J−Jopt ≈
1
2
(
G−1(y−yopt)

)T
(
∂2J

∂u2

)

opt
G−1(y−yopt)

We conclude that we should select y such that:

1. G−1 is small: the inputs have a large effect on y
2. eopt = r−yopt(d) is small: its optimal value yopt(d)

depends only weakly on the disturbances and other
changes

3. e = y − r is small: it is easy to keep the control
error e small

Note that σ̄(G−1) = 1/σ(G) and so we want the
smallest singular value of the steady state gain
matrix to be large.

As this depends of scaling, we should first scale the
outputs such that the expected magnitude of yi−yiopt

is similar in magnitude for each output, and scale
the inputs such that the effect of a given deviation
uj−ujopt on the cost function J is similar for each input.

Controlled Outputs Selection - Procedure

The use of the minimum singular value to select
controlled outputs may be summarized in the
following procedure:

1. From a (nonlinear) model compute the op-
timal parameters (inputs and outputs) for
various conditions (disturbances, operating
points). This yields a “look-up” table for op-
timal parameter values as a function of the
operating conditions

2. From this data, obtain for each candidate
output the variation in its optimal value

vi =
(yiopt,max − yiopt,min)

2

3. Scale the candidate outputs such that for each
output the sum of the magnitudes of vi and
the control error (ei, including measurement
noise ni) is similar (e.g. |vi|+ |ei| = 1)

4. Scale the inputs such that a unit deviation
in each input from its optimal value has the
same effect on the cost function J

5. Select as candidates those sets of controlled
outputs which corresponds to a large value of
σ(G). G is the transfer function for the effect
of the scaled inputs on the scaled outputs

c Summary

Generally, the optimal values of all variables will
change with time during operation. If the loss imposed
by keeping constant setpoints is acceptable, then we
have self-optimizing control. The objective of the
control layer is then to keep the controlled outputs
at their reference values (which are computed by the
optimization layer).

The controlled outputs are often measured, but we may
also estimated their values based on other measured
variables. We may also use other measurements to
improve the control of the controlled outputs, for ex-
ample, by use of cascade control. Thus, the selection
of controlled and measured outputs are two separate
issues.

10.4 Selection of Manipulations and
Measurements

We are here concerned with the variable sets u and
v in Fig. 59. Note that the measurements v used
by the controller are in general different from the
controlled variables z because we may not be able to
measure all the controlled variables and we may want
to measure and control additional variables in order to:
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• Stabilize the plant, or more generally change its
dynamics

• Improve local disturbance rejection

Stabilization We usually start of controller design
by designing a lower-layer controller to stabilize the
plant. The issue is then: which outputs and inputs
should be used for stabilization? A reasonable objective
is to minimize the required input usage of the stabilizing
control system.

Local disturbance rejection For measurements,
the rule is generally to select those which have a
strong relationship with the controlled outputs,
or which may quickly detect a major disturbance.
The selected manipulations should have a large effect
on the controlled outputs and should be located
“close” (in terms of dynamic response) to the outputs
and measurements.

To evaluate the combinations of manipulations and
measurements, one may perform an input-output
controllability analysis for each combination (e.g.
consider the minimum singular values, RHP-zeros, in-
teractions, etc). A more involved approach would be to
perform a achievable robust performance analysis. An
even more involved (and exact) approach would be to
synthesize controllers for optimal robust performance
for each candidate combination. However, the number
of combination has a combinatorial growth and the
analysis may become very time-consuming.

10.5 RGA for Non-Square Plant
A simple but effective tool for selecting inputs and
outputs, which avoids to combinatorial problem is the
Relative Gain Array (RGA) of the “big” transfer
matrix Gall with all candidates inputs and outputs
included:

Λ = Gall ×G†
T

all (85)

Essentially, one may consider not using those manipu-
lations u corresponding to columns in the RGA where
the sum of the elements is much smaller than 1.
Similarly, one may consider not using those outputs v
corresponding to rows in the RGA where the sum of
the elements is much small than 1.

10.6 Control Configuration Elements
We now assume that the measurements, manipulations
and controlled outputs are fixed. The available synthesis
theories presented in this book result in a multivariable
controller K which connects all available measurements
v with all available manipulations u:

u = Kv

However, such a “big” controller may not be desirable.

We define the control configuration to be the
restrictions imposed on the overall controller
K by decomposing it into a set of local con-
trollers with predetermined links and with a
possibly predetermined design sequence where
subcontrollers are designed locally.

Some elements used to build up a specific control con-
figuration are:

• Cascade controllers. The output from one con-
troller is the input to another

• Decentralized controllers. The control system
consists of independent feedback controllers which
interconnect a subset of the output measurements
with a subset of the manipulated inputs. These
subsets should not be used by any other controller

• Feedforward elements. Link measured distur-
bances and manipulated inputs

• Decoupling elements. Link one set of manipu-
lated inputs with another set of manipulated in-
puts. They are used to improve the performance
of decentralized control systems.

• Selectors: used to select for control, depending
on the conditions of the system, a subset of the
manipulated inputs or a subset of the outputs

In addition to restrictions on the structure of K, we
may impose restrictions on in which sequence the
subcontrollers are designed. For most decomposed
control systems, we design the controllers sequentially,
starting with the “fast” or “inner” or “lower-layer”
control loops.

The choice of control configuration leads to two different
ways of partitioning the control system:

• Vertical decomposition. This usually results
from a sequential design of the control system

• Horizontal decomposition. This usually in-
volves a set of independent decentralized controllers

Of course, a performance loss is inevitable if we de-
compose the control system. For example, if we select a
poor configuration at the lower control layer, then this
may pose fundamental limitations on the achievable
performance (RHP zeros, strong interactions, etc).

a Cascade Control Systems

We here use SISO controllers of the form

ui = Ki(s)(ri − yi) (86)

where Ki(s) is a scalar. Then when a SISO control loop
is closed, we lose the input ui as a degree-of-freedom
but the reference ri becomes a new degree-of-freedom.

A cascade control structure results when either of the
following two situations arise:
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• The reference ri is an output from another con-
troller. This is the conventional cascade con-
trol (Fig. 62a)

• The “measurement” yi is an output from another
controller. This is referred to as input resetting
(Fig. 62b)

PlantK2+
−

K1+
−

r1 r2
y2

y1

(a) – Extra measurements y2

Plant
K1+

−

K2+
−

ru2

r

u1

u2

y1

(b) – Extra inputs u2

Figure 62 – Cascade Implementations

b Cascade Control: Extra Measurements

Let u be the manipulated input, y1 the controlled out-
puts and y2 the extra measurement. In many cases,
we may use y2 to provide local disturbance rejec-
tion, linearization, or to reduce the effect of mea-
surement noise. For example, velocity feedback is
frequently used in mechanical systems.

Centralized (parallel) implementation A cen-
tralized implementation where K is a 2-inputs-1-output
controller may be written

u = K(s)(r − y)
u = K11(s)(r1 − y1) +K12(s)(r2 − y2)

where in most cases r2 = 0 since we do not have a
degree-of-freedom to control y2.

Cascade implementation To obtain an implemen-
tation with two SISO controllers, we may cascade the
controllers as illustrated in Fig. 62a:

r2 = K1(s)(r1 − y1)
u2 = K2(s)(r2 − y2), r2 = û1

Note that the output r2 from the slower primary con-
troller K1 is not a manipulated plant input, but rather
the reference input to the faster secondary controllerK2.
Cascades based on measuring the actual manipulated
variable (y2 = um) are commonly used to reduce un-
certainty and non-linearity at the plant input.
In the general case (Fig. 62a) y1 and y2 are not directly
related to each other, and this is sometimes referred to
as parallel cascade control. However, it is common to

encounter the situation in Fig. 63 where the primary
output y1 depends directly on y2 which is a special case
of Fig. 62a.

Use of Extra Measurements

With reference to the special (but common) case
of cascade control shown in Fig. 63, the use of
extra measurements is useful under the following
circumstances:

• The disturbance d2 is significant and G1
is non-minimum phase. If G1 is minimum
phase, the input-output controllability of G2
and G1G2 are the same and there is no fun-
damental advantage in measuring y2

• The plant G2 has considerable uncertainty
associated with it and the inner loop serves
to remove the uncertainty. The inner loop
L2 = G2K2 removes the uncertainty if it is
sufficiently fast and yields a transfer function
(I + L2)−1L2 close to I at frequencies where
K1 is active.

K1+
−

+
−

K2 G2 + G1 +r1 y1y2

d2 d1

Figure 63 – Common case of cascade control where the
primary output y1 depends directly on the extra
measurement y2

In terms of design, it is recommended to first design K2
to minimize the effect of d2 on y1 and then to design
K1 to minimize the effect of d1 on y1.

c Cascade Control: Extra Inputs

In some cases we have more manipulated inputs than
controlled outputs. These may be used to improve
control performance.

Centralized implementation A centralized imple-
mentation where K is a 1-input-2-outputs controller
may be written

u1 = K11(s)(r − y); u2 = K21(s)(r − y)

Here two inputs are used to control one output. We usu-
ally let K11 have integral control whereas K21 does not.
Then u2(t) will only be used for transient control
and will return to 0 as t→∞.

Cascade implementation To obtain an implemen-
tation with two SISO controllers we may cascade the
controllers as shown in Fig. 62b. We again let input u2
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take care of the fast control and u1 of the long-term
control. The fast control loop is then

u2 = K2(s)(r − y)
The objective of the other slower controller is then to
use input u1 to reset input u2 to its desired value ru2 :

u1 = K1(s)(ru2 − y1), y1 = u2

and we see that the output from the fast controller K2
is the “measurement” for the slow controller K1.
The cascade implementation again has the advantage
of decoupling the design of the two controllers.
It also shows more clearly that ru2 , the reference for
u2, may be used as a degree-of-freedom at higher layers
in the control system.

Example: Two layers of cascade control

Consider the system in Fig. 64 with two manip-
ulated inputs (u2 and u3), one controlled output
(y1 which should be close to r1) and two mea-
sured variables (y1 and y2). Input u2 has a more
direct effect on y1 than does input u3 (there is
a large delay in G3(s)). Input u2 should only
be used for transient control as it is desirable
that it remains close to r3 = ru2 . The extra
measurement y2 is closer than y1 to the input
u2 and may be useful for detecting disturbances
affecting G1.
Controller K1 controls the primary output y1
at its reference r1 by adjusting the “input” û1,
which is the reference value for y2. Controller
K2 controls the secondary output y2 using input
u2. Finally, controller K3 manipulates u3 slowly
in order to reset input u2 to its desired value r3.
We would probably tune the three controllers in
the order K2, K3, and K1.

G

K1+
−

K2+
−

G1 + G2

K3+
−

G3

r1

r3

u2

u3

y2

r2 y1

Figure 64 – Control configuration with two layers of
cascade control

d Selectors

Slip-range control for extra input Sometimes the
input constraints make it necessary to add a manip-
ulated input. In this case the control range is often
split such that, for example, u1 is used for control when
y ∈ [ymin, y1] and u2 is used when y ∈ [y1, ymax].

Selector for too few inputs A completely different
situation occurs if there are fewer inputs than outputs.
In such case, we cannot control all the outputs inde-
pendently, so we either need to control all the outputs
in some average manner, or we need to make a choice
about which outputs are the most important to control.
Selectors are often used for the latter option.

e Why use Cascade and Decentralized Con-
trol?

Decomposed control configuration can easily become
quite complex and difficult to maintain and understand.
It may therefore be both simpler and better in terms
of control performance to set up the controller design
problem as an optimization problem and let the
computer do the job, resulting in a centralized
multivariable controller.

However, there are a number of reason why cas-
cade and decentralized control are used in prac-
tice. The most important one is the cost associated
with obtaining good plant models, which are a
prerequisite for applying multivariable control. Since
cascade and decentralized control systems depend more
strongly on feedback rather than models as their source
of information, it is usually more important (relative to
centralized multivariable control) that the fast control
loops be tuned to respond quickly.
The cascade and decentralized control are often easier
to understand, their tuning parameters have a direct
and “localized” effect, and they tend to be less
sensitive to uncertainty.

The main challenge is then to find a control config-
uration which allows the controllers to be tuned inde-
pendently based on a minimum of model information.
To be able to tune the controllers independently, we
must require that the loops interact only to a limited
extent. For example, one desirable property is that the
steady-state gain from ui to yi in an “inner” loop does
not change too much as outer loops are closed.

10.7 Hierarchical and Partial Control
a Partial Control

Partial control involves controlling only a sub-
set of the outputs for which there is a control
objective.

We divide the outputs y into two classes:

• y1 - (temporarily) uncontrolled output
• y2 - (locally) measured and controlled output

We also subdivide the available manipulated inputs u:

• u2 - inputs used for controlling y2
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• u1 - remaining inputs

Four applications of partial control are:

1. Sequential design on decentralized con-
trollers. Both y1 and y2 have an associated con-
trol objective. First, a controller K2 is designed to
control y2. Then, a controlled K1 may be designed
for the remaining outputs.

2. Sequential design of conventional cascade
control. The outputs y2 are additional measured
variables which are not important variables in them-
selves. The reason for controlling y2 is to improve
the control of y1. The references r2 are used as
degrees-of-freedom for controlling y1.

3. “true” partial control. Both y1 and y2 have an
associated control objective. We consider whether
by controlling only the subset y2 we can indirectly
achieve acceptable control of y1.

4. Indirect control. The outputs y1 have an as-
sociated control objective but are not measured.
Instead, we aim at indirectly controlling y1 by con-
trolling the secondary measured variables y2.

The table 4 shows clearly the differences between the
four applications of partial control. In all cases, there
is a control objective associated with y1 and a feedback
involving measurement and control of y2 and we want:

• The effect of disturbances on y1 to be small (when
y2 is controlled)

• The control of y2 using u2 to be (dynamically) easy

Table 4 – Applications of partial control

Control Meas. and
control of y1?

Control ob-
jective for
y2?

Sequ. decentralized Yes Yes
Sequ. cascade Yes No
“True” partial No Yes
Indirect No No

By partitioning the inputs and outputs, the overall
model y = Gu can be written

y1 = G11u1 +G12u2 +Gd1d

y2 = G21u1 +G22u2 +Gd2d
(87)

Assume now that feedback control u2 = K2(r2−y2−n2)
is used for the “secondary” subsystem involving u2 and
y2 (Fig. 65). We get:

y1 =(G11 −G12K2(I +G22K2)−1G21)u1

+ (Gd1 −G12K2(I +G22K2)−1Gd2)d
+G12K2(I +G22K2)−1(r2 − n2)

(88)

G11 G12
G21 G22

Gd1 Gd2

+
+

+

+
−

K2

n2

r2

y1

d

u1

u2

Figure 65 – Partial Control

Tight control of y2 In some cases, we can assume
that the control of y2 is fast compared to the control of
y1 so we may let K2 →∞ to get:

u2 = −G−1
22 Gd2d−G−1

22 G21u1 +G−1
22 y2

The dynamics of the system becomes:

y1 = (G11 −G12G
−1
22 G21)︸ ︷︷ ︸

,Pu

u1

+ (Gd1 −G12G
−1
22 Gd2)︸ ︷︷ ︸

,Pd

d+G12G
−1
22︸ ︷︷ ︸

,Pr

(r2 − e2)︸ ︷︷ ︸
y2

(89)
where

• Pd is called the partial disturbance gain, which
is the disturbance gain for a system under perfect
partial control

• Pu is the effect of u1 on y1 with y2 perfectly con-
trolled

The obtained dynamics is independent of K2, but this
only applies at frequencies where y2 is tightly controlled.

b Hierarchical Control and Sequential Design

A hierarchical control system results when we de-
sign the subcontrollers in a sequential manner, usu-
ally starting with the fast loops. This means that
the controller at some higher layer in the hierarchy is
designed based on a partially controlled plant.
The idea is to first implement a local lower-layer
control system for controlling the outputs y2. Next,
with this lower-layer in place, we design a controller
K1 to control y1.

The objectives for this hierarchical decomposition are:

• to allow for simple or even on-line tuning of K2
• to allow the use of longer sampling intervals for K1
• to allow simple models when designing K1
• to “stabilize” the plant using K2 such that it is

amenable to manual control
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Selection of u2 and y2 - Critera

The selection of u2 and y2 for use in the lower-
layer control system can be done with the fol-
lowing criteria:

• The lower-layer must quickly implement the
setpoints computed by the higher layers, that
is, the input-output controllability of the sub-
system involving the use of u2 to control y2
should be good (consider G22 and Gd2)

• The control of y2 using u2 should provide
local disturbance rejection, that is, it should
minimize the effect of disturbances on y1

• The control of y2 using u2 should not im-
pose unnecessary control limitations (RHP-
zero, ill-conditioning, etc.) on the remaining
control problem which involves using u1 to
control y1

Sequential design of cascade control systems
Consider the conventional cascade control system in
Fig. 62a where we have additional “secondary” mea-
surements y2 with no associated control objective, and
the objective is to improve the control of y1 by locally
controlling y2. The idea is that this should reduce the
effect of disturbances and uncertainty on y1.
From (88), it follows that we should select y2 and u2
such that ‖Pd‖ is small and at least smaller than ‖Gd1‖.
These arguments particularly apply at high frequencies.
More precisely, we want the input-output controllability
of [Pu Pr] with disturbance model Pd to be better that
of the plant [G11 G12] with disturbance model Gd1.

c “True” Partial Control

We here consider the case where we attempt to leave
a set of primary outputs y1 uncontrolled. This may
be possible in cases where the outputs are correlated
such that controlling the outputs y2 indirectly gives
acceptable control of y1.

A set of outputs y1 may be left uncontrolled
only if the effects of all disturbances (including
r2) on y1, as expressed by the elements in the
corresponding partial disturbance gain matrix
Pd are less than 1 in magnitude at all frequencies.

To evaluate the feasibility of partial control, one must
for each choice of y2 and u2, rearrange the system as
in (87) and (88), and compute Pd using (89).

d Measurement Selection for Indirect Control

Assume the overall goal is to keep some variable y1
at a given value r1, e.g. our objective is to minimize
J = ‖y1 − r1‖. We assume that we cannot measure
y1, and instead we attempt to achieve our goal by

controlling y2 at a constant value r2. For small changes,
we may assume linearity and write:

y1 = G1u+Gd1d

y2 = G2u+Gd2d

With feedback control of y2 we get y2 = r2 + e2 where
e2 is the control error. From the above two equations,
we obtain

y1 = (Gd1 −G1G
−1
2 Gd2)d+G1G

−1
2 (r2 + e2)

With e2 = 0 and d = 0 this gives y1 = G1G
−1
2 r2, so r2

must be chosen such that

r1 = G1G
−1
2 r2

The control error in the primary output is then

y1 − r1 = (Gd1 −G1G
−1
2 Gd2)︸ ︷︷ ︸

Pd

d+G1G
−1
2︸ ︷︷ ︸

Pr

e2 (90)

To minimize J , we should therefore select controlled
outputs such that ‖Pdd‖ and ‖Pre2‖ are small. Note
that Pd depends on the scaling of d and y1. Also the
magnitude of e2 depends on the choice of outputs y2.

Selecting Controlled Outputs y2

Scale the disturbances d to be of magnitude
1, and scale the outputs y2 so that the ex-
pected control error e2 (measurement noise) is
of magnitude 1 for each outputs. Then to mini-
mize the control error for the primary output,
J = ‖y1−r1‖, we should select sets of controlled
outputs which minimizes ‖[Pd Pr]‖.

10.8 Decentralized Feedback Control
In this section, G(s) is a square plant which is to be
controlled using a diagonal controller (Fig. 66).

K(s)

G(s)
K1+

−

K2+
−

r1

r2

u1

u2

y1

y2

Figure 66 – Decentralized diagonal control of a 2× 2 plant

The design of decentralized diagonal control sys-
tems involves two steps:

1. The choice of pairing (control configuration selec-
tion)

2. The design of each controller ki(s)
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K(s) = diag{ki(s)} =




k1(s)
k2(s)

. . .
km(s)




a Notations for decentralized diagonal control

G(s) denotes a square m×m plant with elements gij .
Gij(s) denotes the remaining (m− 1)× (m− 1) plant
obtained by removing row i and column j in G(s). We
introduce:

G̃ , diag{gii} =




g11
g22

. . .
gmm




The loop transfer function in loop i is denoted Li =
giiki.

b RGA as a Measure of the Interaction for
Decentralized Control

Let uj and yi denote a particular input and output for
the multivariable plant G(s) and assume that our task
is to use uj to control yi. There are two extreme cases:

• Other loops open: uk = 0,∀k 6= j
• Other loops closed: yk = 0,∀k 6= i. It is as-

sumed that the other loop are closed with perfect
control which is a good approximation at frequen-
cies within the bandwidth of each loop

We now evaluate the effect ∂yi/∂uj for the two cases:
(
∂yi
∂uj

)

uk=0,k 6=j
= gij = [G]ij (91a)

(
∂yi
∂uj

)

yk=0,k 6=i
, ĝij = 1/[G−1]ji (91b)

The ratio between the gains corresponding the two
extreme cases is a useful measure of interactions
and is defined as the ij’th relative gain:

λij ,
gij
ĝij

= [G]ij [G−1]ji (92)

The Relative Gain Array (RGA) is the correspond-
ing matrix of relative gains:

Λ(G) = G× (G−1)T (93)

where × denotes element-by-element multiplication.

Intuitively, we would like to pair variables uj and
yi so that λij is close to 1, because this means
that the gain from uj to yi is unaffected by
closing the other loops. More precisely, we would
like to pair such that the rearranged system,
with the pairings along the diagonal, has a RGA
matrix close to identity.

c Factorization of Sensitivity Function

The magnitude of the off-diagonal elements in G (the
interactions) relative to its diagonal elements are given
by the matrix

E , (G− G̃)G̃−1 (94)
An important relationship for decentralized control is:

(I +GK)︸ ︷︷ ︸
overall

= (I + ET̃ )︸ ︷︷ ︸
interactions

(I + G̃K)︸ ︷︷ ︸
individual loops

(95)

or equivalently in terms of the sensitivity function:

S = S̃(I + ET̃ )−1 (96)

with

S̃ , (I + G̃K)−1 = diag
{

1
1 + giiki

}

T̃ = I − S̃

which contain the sensitivity and complementary sensi-
tivity functions for the individual loops. Note that S̃ is
not equal to the matrix of diagonal elements of S.

d Stability of Decentralized Control Systems

Consider a m × m plant with single-loop controllers.
There are m! alternative pairings possible. Thus tools
are needed for quickly evaluating alternative pairings.
In this section, we first derive sufficient conditions
for stability which may be used to select promising
pairings. We then derive necessary conditions for
stability which may be used to eliminate undesirable
pairings.

Sufficient conditions for stability For decentral-
ized diagonal control, it is desirable that the system
can be tuned and operated one loop at a time. Assume
therefore that G is stable and each individual loop is
stable by itself (S̃ and T̃ are stable). Using the spec-
tral radius condition on the factorized S in (96), we
have that the overall system is stable (S is stable) if

ρ(ET̃ (jω)) < 1,∀ω (97)

Sufficient conditions in terms of E. Assume G
is stable and that the individual loops are stable (T̃
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is stable). The least conservative approach is to use
ρ(ET̃ ) ≤ µ(E)σ(T̃ ). Then the entire system is closed-
loop stable (T is stable) if

σ(T̃ ) = max
i
|t̃i| < 1/µ(E) ∀ω (98)

µ(E) is called the structured singular value inter-
action measure, and is computed with respect to the
diagonal structure of T̃ where we may view T̃ as the
“design uncertainty”.

We usually would like to use integral action in the loops,
that is we want T̃ ≈ I at low frequencies, i.e. σ(T̃ ) ≈ 1.
Thus, we prefer pairings for which we have µ(E) < 1
at low frequencies where we have tight control. This
ensures a “generalized diagonal dominance”.

Sufficient conditions in terms of RGA. Suppose
the plant G(s) is stable. If the RGA-matrix Λ(G) =
I ∀ω (which can only arise for a triangular plant G(s)),
then stability of each of the individual loops implies
stability of the entire system.

In most cases, it is sufficient for overall stability to
require that G(jω) is close to triangular (or Λ(G) ≈ I)
at crossover frequencies. This gives the “first pairing
rule”.

Pairing Rule 1

To achieve stability with decentralized con-
trol, prefer pairings such that at frequencies ω
around crossover, the rearranged matrix G(jω)
(with the paired elements along the diagonal)
is close to triangular. This is equivalent to re-
quiring Λ(G(jω)) ≈ I, i.e. the RGA-number
‖Λ(G(jω))− I‖sum should be small.

Necessary steady-state conditions for stability
A desirable property of a decentralized control system
is that it has integrity, i.e. the closed loop system
should remain stable as subsystem controllers are
brought in and out of service. Mathematically,
the system possesses integrity if it remains stable
when the controller K is replace by EK where
E = diag{εi}, εi = 0, 1.

An even stronger requirement is that the system remains
stable as the gain in various loops are reduced: 0 ≤
εi ≤ 1.

Decentralized Integral Controllability

The plant G(s) (corresponding to a given pair-
ing with the paired elements along its diago-
nal) is Decentralized Integral Controllabil-
ity (DIC) if there exists a stabilizing decentral-
ized controller with integral action in each
loop such that each individual loop may be de-
tuned independently by a factor ε1 (0 ≤ εi ≤ 1)
without introducing instability.

Steady-State RGA and DIC. Consider a stable
square plant G and a diagonal controller K with inte-
gral action in all elements, and assume that the loop
transfer function GK is strictly proper. If a pairing of
outputs and manipulated inputs corresponds to a nega-
tive steady-state relative gain, then the closed-loop
system has at least one of the following properties:

• The overall closed-loop system is unstable
• The loop with the negative relative gain is unstable

by itself
• The closed-loop system is unstable if the loop with

the negative relative gain is opened

This can be summarized as follows:

A stable (reordered) plant G(s)
is DIC only if λii(0) ≥ 0 for all i

(99)

e The RGA and RHP-zeros: Further reasons
for not pairing on negative RGA elements

With decentralized control, we usually design and im-
plement the controller by tuning and closing one loop
at a time in a sequential manner. Assume that we pair
on a negative steady-state RGA-element, λij(0) < 0,
assume that λij(∞) is positive, and assume that the
element gij has no RHP-zero. We have the following
implications:

• If we start by closing the loop involving input ui
and yj , then we will get a RHP-zero inGij(s) which
will limit the performance in the other outputs

• If we end by closing this loop, then we will get a
RHP-zero in ĝij(s) which will limit the performance
in output yi

Pairing Rule 2

For a stable plant, avoid pairings that corre-
sponds to negative steady-state RGA-elements
λij(0) < 0
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Example - 3× 3 plant

G(0) =




10.2 5.6 1.4
15.5 −8.4 −0.7
18.1 0.4 1.8




Λ(0) =




0.96 1.45 −1.41
0.94 −0.37 0.43
−0.90 −0.07 1.98




For a 3×3 plant there are 6 alternative pairings.
From the steady state RGA, we see that there is
only one positive element in columns 2, and only
positive element in row 3, and therefore there is
only on possible pairing if we require DIC:

u1 ↔ y2, u2 ↔ y1, u3 ↔ y3

Example

G(s) = −s+ 1
(5s+ 1)2




1 4 −26
6.2 1 −26
1 1 1




Λ(G) =




1 5 −5
−5 1 5
5 −5 1




Only two of the six possible pairings gives pos-
itive steady-state RGA-elements: the diagonal
pairing on all λii = 1 or the pairing on all λii = 5.
Intuitively, one may expect pairing with λii = 1
since it corresponds to pairing on RGA-elements
equal to 1. However, the RGA matrix is far from
identify, and the RGA-number ‖Λ− I‖sum = 30
for both alternative. Thus none of the two alter-
natives satisfy Pairing Rule 1, and decentralized
control should not be used for this plant.

f Performance of Decentralized Control Sys-
tems

To study performance, we use the following factorization

S = (I + S̃(Γ− I)−1)S̃Γ (100)

where Γ is the Performance Relative Gain Array
(PRGA)

Γ(s) , G̃(s)G−1(s) (101)

which is a scaled inverse of the plant.

At frequencies where feedback is effective (S̃ ≈ 0),
S ≈ S̃Γ which shows that Γ is important when
evaluating performance with decentralized control.

Note that the diagonal elements of the PRGA-matrix
are equal to the diagonal elements of the RGA and
that the off-diagonal elements of the PRGA depend
on the relative scaling on the outputs which is not the
case for the RGA.

We will also use the related Closed-Loop Distur-
bance Gain (CLDG) matrix:

G̃d(s) , Γ(s)Gd(s) = G̃(s)G−1(s)Gd(s) (102)

which depends on both output and disturbance scaling.

Suppose the system has been scaled such that:
• Each disturbance magnitude is less than 1, |dk| < 1
• Each reference change is less than the correspond-

ing diagonal element in R, |rj | < Rj
• For each output the acceptable control error is less

than 1, |ei| < 1

Single disturbance Consider a single disturbance,
in which case Gd is a vector, and let gdi denote the
i’th element of Gd. Let Li = giiki denote the loop
transfer function in loop i. Consider frequencies where
feedback is effective so S̃Γ is small. Then for accept-
able disturbance rejection (|ei| < 1) we must with
decentralized control required for each loop i

|1 + Li| > |g̃di| ∀i (103)

which is the same as the SISO-condition except that
Gd is replaced by the CLDG. In words, g̃di gives the
“apparent” disturbance gain as seen from the loop i when
the system is controlled using decentralized control.

Single reference change Consider a change in refer-
ence for output j of magnitude Rj . Consider frequencies
where feedback is effective. Then for acceptable ref-
erence tracking (|ei| < 1) we must require for each
loop i

|1 + Li| > |γij | · |Rj | ∀i (104)

which is the same as the SISO-condition except for the
PRGA-factor |γij |.
Consequently, for performance it is desirable to have
small elements in Γ, at least at frequencies where feed-
back is effective. However, at frequencies close to
crossover, stability is the main issue and since the di-
agonal elements of the PRGA and RGA are equal, we
usually prefer to have γii close to 1.

g Summary: Controllability Analysis for De-
centralized Control

When considering decentralized diagonal control of a
plant, one should first check that the plant is control-
lable with any controller. The next step is to compute
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the RGA matrix as a function of frequency, and to
determine if one can find a good set of input-output
pairs bearing in mind the following:

1. Prefer pairings which have the RGA-matrix
close to identity at frequencies around
crossover, i.e. the RGA-number ‖Λ(jω) − I‖
should be small

2. Avoid a pairing ij with negative steady-state RGA
elements λij(G(0)

3. Prefer a pairing ij where gij(s) puts minimal re-
strictions on the achievable bandwidth. Specifically,
the frequency ωuij where ∠gij(jωuij) = −180°
should be as large as possible This rule favors
parings on variables “close to each other”

When a reasonable choice of pairings have been made,
one should rearrange G to have the paired elements
along the diagonal and perform a controllability
analysis:

4. Compute the CLDG and PRGA, and plot these as
a function of frequency

5. For systems with many loops, it is best to perform
the analysis one loop at the time, that is, for each
loop i, plot |g̃dik| for each disturbance k and plot
|γij | for each reference j. For performance, we need
|1 + Li| to be larger than each of these:

|1 + Li| > max
k,j
{|g̃dik|, |γij |} (105)

To achieve stability of the individual loops, one
must analyze gii(s) to ensure that the bandwidth
required by (105) is achievable. Note that RHP-
zeros in the diagonal elements may limit achievable
decentralized control, whereas they may not pose
any problems for a multivariable controller. Since
with decentralized control, we usually want to use
simple controllers, the achievable bandwidth in
each loop will be limited by the frequency where
∠gii is −180°

6. Check for constraints by considering the elements
of G−1Gd and make sure that they do not exceed
one in magnitude within the frequency range where
control is needed. Equivalently, one may for each
loop i, plot |gii| and the requirement is then that

|gii| > |g̃dik| ∀k (106)

at frequencies where |g̃dik| is larger than 1. This
provides a direct generalization of the requirement
|G| > |Gd| for SISO systems.

If the plant is not controllable, then one may consider
another choice of pairing and go back to Step 4. If
one still cannot find any pairing which are controllable,
then one should consider multivariable control.

7. If the chosen pairing is controllable, then (105)
tells us how large |Li| = |giiki| must be. This can
be used as a basis for designing the controller ki(s)
for loop i

h Sequential Design of Decentralized Con-
trollers

Usually the local controllers ki(s) are designed locally
and then all the loops are closed. One problem with
this is that the interactions may cause the overall
system T so be unstable, even though the local loops
T̃ are stable. This will not happen if the plant is
diagonally dominant, such that we satisfy, for
example σ(T̃ ) < 1/µ(E).

The stability problem is avoided if the controllers are
designed sequentially when, for example, the band-
widths of the loops are quite different. In this case, the
outer loops are tuned with the inner loops in place, and
each step may be considered as a SISO control problem.
In particular, overall stability is determined by m SISO
stability conditions. However, the issue of performance
is more complicated because the closing of a loop may
cause “disturbances” (interactions) into a previously
designed loop. The engineer must then go back and
redesign a loop that has been designed earlier. Thus
sequential design may involve many iterations.

i Conclusion on Decentralized Control

A number of conditions for the stability, e.g. (98)
and (99), and performance, e.g. (103) and (104), of
decentralized control systems have been derived.
The conditions may be useful in determining appro-
priate pairings of inputs and outputs and the se-
quence in which the decentralized controllers
should be designed.
The conditions are also useful in an input-output
controllability analysis for determining the viability
of decentralized control.
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11 Model Reduction

11.1 Introduction

Modern controller design methods such as H∞ and
LQG, produce controllers of order at least equal to
that of the plant, and usually higher because of the
inclusion of weights. These control laws may be too
complex with regards to practical implementation
and simpler designs are then sought. For this purpose,
one can either reduce the order of the plant
model prior to controller design, or reduce the
controller in the final stage.

Model Reduction Problem

Given a high-order linear time-invariant stable
model G, find a low-order approximation Ga
such that the infinity (H∞ or L∞) norm of the
difference ‖G−Ga‖∞ is small.

By model order, we mean the dimension of the state
vector in a minimal realization. This is sometimes
called the McMillan degree.

So far we have only been interested in the infinity (H∞)
norm of stable systems. But the error G−Ga may be
unstable and the definition of the infinity norm
needs to be extended to unstable systems.

L∞ - Definition

L∞ defines the set of rational functions which
have no poles on the imaginary axis, it includes
H∞, and its norm (like H∞) is given by

‖G‖∞ = sup
ω
σ(G(jω)) (107)

We will describe three main methods for this problem:

• Balanced truncation
• Balanced residualization
• Optimal Hankel norm approximation

Each method gives a stable approximation and a
guaranteed bound on the error in the approxi-
mation. We will further show how the methods can
be employed to reduce the order of an unstable model
G.
All these methods start from a special state-space real-
ization of G referred to as balanced. We will describe
this realization, but first we will show how the tech-
niques of truncation and residualization can be used to
remove the high frequency or fast modes of a state-space
realization.

11.2 Truncation and Residualization
Let (A,B,C,D) be a minimal realization of a stable
system G(s), and partition the state vector x, of dimen-

sion n, into
[
x1
x2

]
where x2 is the vector of n− k states

we wish to remove. With approximate partitioning of
A, B and C, the state space equations become

ẋ1 = A11x1 +A12x2 +B1u

ẋ2 = A21x1 +A22x2 +B2u

y = C1x1 + C2x2 +Du

(108)

a Truncation

A k-th order truncation of the realization
G , (A,B,C,D) is given by Ga , (A11, B1, C1, D).
The truncated model Ga is equal to G at infinite
frequency G(∞) = Ga(∞) = D, but apart from this,
we cannot say anything for the general case about the
relationship between G and Ga.

If however, A is in Jordan form, then it is easy to
order the states so that x2 corresponds to high fre-
quency or fast modes.

Modal Truncation For simplicity, assume that A
has been diagonalized so that

A =




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


 , B =




bT1
bT2
...
bTn




C =
[
c1, c2, . . . , cn

]

Then, if the λi are ordered so that |λ1| < |λ2| < . . .,
the fastest modes are removed from the model after
truncation. The difference between G and Ga following
a k-th order model truncation is given by

G−Ga =
n∑

i=k+1

cib
T
i

s− λi
and therefore

‖G−Ga‖∞ ≤
n∑

i=k+1

σ(cibti)
|Re(λi)|

(109)

It is interesting to note that the error depends on the
residues cibTi as well as the λi. The distance of λi from
the imaginary axis is therefore not a reliable indicator
of whether the associated mode should be included in
the reduced order model or not.

An advantage of modal truncation is that the poles
of the truncated model are a subset of the poles of
the original model and therefore retain any physical
interpretation they might have.
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b Residualization

In truncation, we discard all the states and dynamics
associated with x2. Suppose that instead of this, we
simply set ẋ2 = 0, i.e. we residualize x2, in the state-
space equations. One can then solve for x2 in terms of
x1 and u, and back substitution of x2, then gives

ẋ1 = (A11 −A12A
−1
22 A21)x1 + (B1 −A12A

−1
22 B2)u

y = (C1 − C2A
−1
22 A21)x1 + (D − C2A

−1
22 B2)u

And let assume A22 is invertible and define

Ar , A11 −A12A
−1
22 A21 Br , B1 −A12A

−1
22 B2

Cr , C1 − C2A
−1
22 A21 Dr , D − C2A

−1
22 B2

The reduced order model Ga(s) = (Ar, Br, Cr, Dr)
is called a residualization of G(s) = (A,B,C,D).
Usually (A,B,C,D) will have been put into Jordan
form, with the eigenvalues ordered so that x2 contains
the fast modes.

Model reduction by residualization is then equivalent
to singular perturbation approximation, where the
derivatives of the fastest states are allowed to
approach zero with some parameter ε.

An important property of residualization is that it
preserves the steady-state gain of the system:

Ga(0) = G(0) (110)

This should be no surprise since the residualization
process sets derivatives to zero, which are zero anyway
at steady-state. But it is in stark contrast to truncation
which retains the system behavior at infinite frequency.
This contrast between truncation and residualization
follows from the simple bilinear relationship s → 1

s
which relates the two.

It is clear that truncation is to be preferred when
accuracy is required at high frequencies, whereas
residualization is better for low frequency
modelling.

Both methods depend to a large extent on the original
realization and we have suggested to use of the Jordan
form. A better realization, with many useful properties,
is the balanced realization.

11.3 Balanced Realization
A balanced realization is an asymptotically stable
minimal realization in which the controllability and
observability Gramiams are equal and diagonal.

Let (A,B,C,D) be a minimal realization of a stable,
rational transfer function G(s), then (A,B,C,D) is

called balanced if the solutions to be following Lya-
punov equations

AP + PAT +BBT = 0 (111a)
ATQ+QA+ CTC = 0 (111b)

are P = Q = diag(σ1, σ2, . . . , σn) , Σ, where σ1 ≥
σ2 ≥ · · · ≥ σn > 0. P and Q are the controllability
and observability Gramiams, also defined by

P ,
∫ ∞

0
eAtBBT eA

T tdt (112a)

Q ,
∫ ∞

0
eA

T tCTCeAtdt (112b)

Σ is therefore simply referred to as the Gramiam
of G(s). The σi are the ordered Hankel singular
values of G(s), more generally defined as σi , λ

1
2
i (PQ),

i = 1, . . . , n. Notice that σ1 = ‖G‖H is the Hankel
norm of G(s).

In balanced realization the value of each σi is associated
with a state xi of the balanced system.

The size of σi is a relative measure of the con-
tribution that xi makes to the input-output be-
havior of the system.

Therefore if σ1 � σ2, then the state x1 affects
the input-output behavior much more than x2, or
indeed any other state because of the ordering of the σi.

After balancing a system, each state is just as control-
lable as it is observable, and a measure of a state’s joint
observability and controllability is given by its associ-
ated Hankel singular value. This property is fundamen-
tal to the model reduction methods in the remainder
of this chapter which work by removing states having
little effect on the system’s input-output behavior.

11.4 Balanced Truncation and Bal-
anced Residualization

Let the balanced realization (A,B,C,D) of G(s) and
the corresponding Σ be partitioned compatibly as

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]

C =
[
C1 C2

]
, Σ =

[
Σ1 0
0 Σ2

] (113)

where

Σ1 = diag(σ1, σ2, . . . , σk)
Σ2 = diag(σk+1, σk+2, . . . , σn), σk > σk+1

Balanced Truncation The reduced order model
given by (A11, B1, C1, D) is called a balanced trun-
cation of the full order system G(s). The idea of
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balancing truncation is thus to first make a balanced
realization of the system and then to discard the states
corresponding to small Hankel singular values.
A balanced truncation is also a balanced realization,
and the infinity norm of the error between G(s) and
the reduced order system Ga(s) is bounded by twice
the sum of the last n − k Hankel singular values, i.e.
twice the trace of Σ2:

‖G(s)−Ga(s)‖∞ ≤ 2 · Tr
(
Σ2
)

(114)

For the case of repeated Hankel singular values, each
repeated Hankel singular value is to be counted only
once in calculating the sum.
Useful algorithms that compute balanced truncations
without first computing a balanced realization still re-
quire the computation of the observability and control-
lability Gramiam, which can be a problem if the system
to be reduced is of very high order.

Balanced Residualization In balanced truncation
above, we discarded the least controllable and observ-
able states corresponding to Σ2. In balanced residual-
ization, we simply set to zero the derivatives of all these
states.

Theorem Let G(s) be a stable rational transfer func-
tion with Hankel singular values σ1 > σ2 > · · · > σN
where each σi has multiplicity ri and let Gka(s) be
obtained by truncating or residualizing the balanced
realization of G(s) to the first (r1 + r2 + · · ·+ rk) states.
Then

‖G(s)−Gka(s)‖∞ ≤ 2(σk+1 + σk+2 + · · ·+ σN ) (115)

11.5 Optimal Hankel Norm Approxi-
mation

In this approach to model reduction, the problem that
is directly addressed is the following: given a stable
model G(s) of order n, find a reduced order model
Gkh(s) of degree k such that the Hankel norm of the
approximation error, ‖G(s)−Gkh(s)‖H , is minimized.

Hankel Norm - Definition

The Hankel norm of any stable transfer function
E(s) is defined as

‖E(s)‖H , ρ
1
2 (PQ) (116)

where P and Q are the controllability and ob-
servability Gramiams of E(s).

So in the optimization we seek an error which is in
some sense closest to being completely unobservable
and completely uncontrollable.
The infinity norm bound on the approximate error for
the optimal Hankel norm approximation is better than
for balanced truncation and residualization. This is
shown with the following theorem.

Theorem Let G(s) be a stable, square, transfer func-
tion G(s) with Hankel singular values σ1 ≥ σ2 ≥ · · · ≥
σk ≥ σk+1 = σk+2 = · · · = σk+l > σk+l+1 ≥ · · · ≥
σn > 0. An optimal Hankel norm approximation of
order k, Gkh(s), can be constructed as follows.
Let (A,B,C,D) be a balanced realization of G(s)
with the Hankel singular values reordered so that the
Gramiam matrix is

Σ = diag(σ1, . . . , σk, σk+l+1, . . . , σn, σk+1, . . . , σk+l)
, diag(Σl, σk+1I)

Partition (A,B,C,D) to conform with Σ

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C =

[
C1 C2

]

Define (Â, B̂, Ĉ, D̂) by

Â , Γ−1 (σ2
k+1A

T
11 + σ1A11Σ1 − σk+1C

T
1 UB

T
1
)

(117a)
B̂ , Γ−1 (σ1B1 + σk+1C

T
1 U
)

(117b)
Ĉ , C1Σ1 + σk+1UB

T
1 (117c)

D̂ , D − σk+1U (117d)

where U is a unitary matrix satisfying

B2 = −CT2 U and Γ , Σ2
1 − σ2

k+1I

The matrix Â has k “stable” eigenvalues; the remaining
ones are in the open right-half plane. Then

Gkh(s) + F (s) =
[
Â B̂

Ĉ D̂

]

where Gkh(s) is a stable optimal Hankel norm approxi-
mation of order k, and F (s) is an anti-stable (all poles
in the open right-half plane) transfer function of order
n−k− l. The Hankel norm of the error between G and
the optimal approximation Gkh is equal to the (k+ 1)’th
Hankel singular value of G:

‖G−Gkh‖H = σk+1(G) (118)

11.6 Model Reduction - Practical Sum-
mary

a Reduction of model

Three reduction techniques have been discussed here:
balanced residualization, balance truncation and opti-
mal Hankel norm approximation.
It is sometimes desirable to have the steady-state gain
of the reduced plant model the same as the full order
model. For instance, this is the case if we want to
use feedforward control. The truncated and optimal
Hankel norm approximated systems do not preserve the
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steady-state gain and they have to be scaled, i.e. the
model approximation Ga is replaced by GaWs where
Wa = Ga(0)−1G(0), G(s) being the full order model.
However, this scaling generally introduced large model
errors at other frequencies.

Hence residualization is to be preferred when-
ever low frequency matching is desired.

b Reduction of a 2 degrees-of-freedom con-
troller

Let’s consider a 2 degrees-of-freedom controller K =
[K1 K2]. In order ensure perfect steady-state tracking,
i.e. to match Tref at steady-state, a prefilterWi is added
to scale the controller: K = [K1Wi K2].
There are two approaches for order reduction:

1. the scaled controller [K1Wi K2] is reduced. A bal-
anced residualization of the controller preserves the
controller’s steady state gain and would not need
to be scaled again. Reductions via truncation and
optimal Hankel norm approximation techniques,
however, lose the steady-state gain and reduced
controllers would need to be re-scaled to match
Tref(0)

2. the full order controller [K1 K2] is reduced without
first scaling the prefilter. In which case, scaling
is done after reduction. A larger scaling is gener-
ally required for the truncated and optimal Han-
kel norm approximated controllers and this gives
poorer model matching at other frequencies.

In both cases, the balanced residualization is preferred.

11.7 Reduction of Unstable Models
Balanced truncation, balanced residualization and op-
timal Hankel norm approximation only apply to sta-
ble models. In this section we briefly present two ap-
proaches for reducing the order of an unstable model.

a Stable Part Model Reduction

The unstable model can be first decomposed into its
stable and anti-stable parts:

G(s) = Gu(s) +Gs(s) (119)

where Gu(s) has all its poles in the closed right-half
plane and Gs(s) has all its poles in the open left-half
plane. Balanced truncation, balanced residualization
or optimal Hankel norm approximation can then be
applied to the stable part Gs(s) to find a reduced order
approximation Gsa(s). This is then added to the anti-
stable part to give

Ga(s) = Gu(s) +Gsa(s) (120)

as an approximation to the full order model G(s).

b Coprime Factor Model Reduction

The coprime factors of a transfer function G(s) are
stable, and therefore we could reduce the order of these
factors using balanced truncation, balanced residualiza-
tion or optimal Hankel norm approximation:

• Let G(s) = M−1(s)N(s), where M(s) and N(s)
are stable left-coprime factors of G(s)

• Approximate [N M ] of degree n by [Na Ma] of
degree k < n, using balanced truncation, balanced
residualization or optimal Hankel norm approxi-
mation

• Realize the reduced order transfer function Ga(s),
or degree k, by Ga(s) = M−1

a (s)Na(s)

Theorem Let (N,M) be a normalized left-coprime
factorization of G(s) of degree n. Let [Na, Ma] be a
degree k balanced truncation of [N M ] which has
Hankel singular values σ1 ≥ σ2 ≥ · · · ≥ σk ≥ σk+1 ≥
· · · ≥ σn > 0. Then (Na,Ma) is a normalized left-
coprime factorization of Ga = M−1

a Na, and [Na, Ma]
has Hankel singular values σ1, σ2, . . . , σk.

11.8 Conclusion
We have presented and compared three main methods
for model reduction based on balanced realizations:
balanced truncation, balanced residualization
and optimal Hankel norm approximation.

Residualization, unlike truncation and optimal Hankel
norm approximation, preserves the steady-state gain
of the system, and like truncation, it is simple and
computationally inexpensive. It is observed that
truncation and optimal Hankel norm approximation
perform better at high frequencies, where residualiza-
tion performs better at low and medium frequencies,
i.e. up to the critical frequencies.

Thus for plant model reduction, where models
are not accurate at high frequencies to start with,
residualization would seem to be a better
option. Further, if the steady state gains are to be
kept unchanged, truncated and optimal Hankel norm
approximated systems require scaling, which may result
in large errors. In such a case, too, residualization
would be preferred choice.

For controller reduction, we have shown in a two
degrees-of-freedom example, the importance of scaling
and steady-state gain matching.
In general, steady-state gain matching may not be cru-
cial, but the matching should usually be good near the
desired closed-loop bandwidth. Balanced residualiza-
tion has been seen to perform close to the full order
system in this frequency range. Good approximation
at high frequencies may also sometimes be desired. In
such a case, using truncation or optimal Hankel norm
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approximation with appropriate frequency weightings
may yield better results.
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