From b542b0b0a8038882041c97b91840d9a4b5c1b8af Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Fri, 4 Sep 2020 15:44:12 +0200 Subject: [PATCH] Update Content - 2020-09-04 --- content/zettels/analog_to_digital_converters.md | 6 +++--- .../ox-hugo/probability_density_function_adc.png | Bin 0 -> 2415 bytes 2 files changed, 3 insertions(+), 3 deletions(-) create mode 100644 static/ox-hugo/probability_density_function_adc.png diff --git a/content/zettels/analog_to_digital_converters.md b/content/zettels/analog_to_digital_converters.md index 2da2cc5..d13bba3 100644 --- a/content/zettels/analog_to_digital_converters.md +++ b/content/zettels/analog_to_digital_converters.md @@ -14,7 +14,7 @@ This analysis is taken from [here](https://www.allaboutcircuits.com/technical-ar Let's note: -- \\(q = \frac{\Delta V}{2^n}\\) the quantization in [V] (the corresponding value in [V] of the least significant bit) +- \\(q = \frac{\Delta V}{2^n}\\) the quantization in [V], which is the corresponding value in [V] of the least significant bit - \\(\Delta V\\) is the full range of the ADC in [V] - \\(n\\) is the number of ADC's bits - \\(f\_s\\) is the sample frequency in [Hz] @@ -23,9 +23,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati Interestingly, the noise amplitude is uniformly distributed. The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution). -Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org5158d30)). +Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgf06d261)). - + {{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}} diff --git a/static/ox-hugo/probability_density_function_adc.png b/static/ox-hugo/probability_density_function_adc.png new file mode 100644 index 0000000000000000000000000000000000000000..0b732af2a28a88c6023d466775665350abd59308 GIT binary patch literal 2415 zcmZuzdpHyN8{f=jt{XZo$!abmZH|&l$L*BF43*1VQjM5mm`gSh({INmy(9-}8Lm@B6%;=Xu}v`FuYAyagxxJT=vJ zssR81O|;ihe|cV#M-5n6{#)9)naUF|#ozM?aC`unEiY7wUZE)ffWG$E06s^oxXG~{ z=%a@N$rB%i**}(E1ag<8Q|Y_9w+i&h2kwCnM)ZNHy?ZPl{@DBMrI(L)<;@+`3-+OS zKFy=F->2Ai*v1NP%d;sfGn|R?Ku24;W33dU-lP}h6)S_P$t_z;TL}vvKkATJT$iCg zH|^+j){yL%%TJ}_iz{18&JeE~W(|o470Q3vS+^RdNFdsIy>ADuLx>%XN4#t36u&*{ zg4y{WhvzyBM99a+&pN&9R-XYTmyc8{)w9CtRx8dxL78lrcF*L7fW{33hAF&A}lKjPcYM8I|tqh?S&8KdMnXC~@X`?4oo z^$}yNt~M<41PM5!I@249LrA{w+VWPaJXuKLT1ljMit&^40hpk@y1gvJ^H*Oa!+FKp z*>L{v`sEv;MildJKC>1Id7sV%)(G2t5g&M9&FZY3FR2~9kyVY+R>0oX>e>|@e3-X@FCqBLA=CP7J3 z*fne?ffSIJqg;4mz9}$YU1-$owi{#zUu;QQa;fjz z4CbT}_L@?#q7GM|ZiP_`gi5*|!gVuJX`LS1Mm0es_Tfz0?x?jdNC3m&~&Zrqy*?{G^hyLFKha zFRA<+wr(47f8e@F^ZTOq>?a-(`9XIJ*zei>SKiVieVKMsZbx79=$X1=zEGNTk-NbJ zf%CK{;Q1iL^0>RzX zEp+bwXt229A$rxd`LCSgK!$&2$UH)1p?51jGN|6=%RO?2b%fwkt4{nVS9NB%d*AYy zm8h4h3Tx&@9|y27nV(Wco_aZfXM8iy5msP{kR=sL_emLV%ar1>D*RQApxanK(Oac9 z(aT-75T)b%Zr5ahB=I7O$DXw&1PmHCx25w{(M!<8Y?2AB%p zHQyfVtC$SQguO^hboWf=p8yey&CMYpl^ed;Cmq5A=GG*3whaR9V`lD1hX>|{k?7oz z1DqQgE%JH*ipdSR0WXWnm*eu{Z#)Q9lGYGb2Cu#}8{6~BwL2=GmKy5g2VCL~xvr#Hi=xaC467h0i*EtUwgY=sXB^P09fN%s%XnH2;G|iKe=*ya@*r+I;0L zQ8>59ritU`N%RRQX75X_g?(U&rAT^V(Yeb0nc22jVHFil8^1t+7)7e`fLPt!vRQ2&czU+2)FfLa!EZ(XF`~?$_mA#>nednH zf0-aRN3P}H=KLe<|1mAldZ^EAt@%1N<#0Rb0Wc9n0*1y#?%i-z_@YNPSl1#tO&@Gb zc~n4qQ>Eyvh*XeOGPC)@Vh7$c?&-0o{~m$?42Zz&5Dq41l9pt?g)s`Z+CR#JWJ zNb_`vJAr9_J6>F?r*QnOu;!Sf&bD80@mqZUNQ9Xrd1?!zYKxCz8j4HT4Q;Hao*INC zzr>tuDgNgUz+HMljgzhLXpX3Cc zvm~0@XgC(ye3&!Z7gPDCK3kmiKl5Hip}G~4#J{!JV}3(Cv8X=|;F%Y}Cc2)Y)3 zI8kle+{zh9QrkrcB$m0Ch6QE&Y(P$1`Q5iuI0P?oE`+$12AH@Z57og)kB@JNJicB5ZQK$VFaVYLcDdUN7jJxT67k) zQ&aW}6}rBv6UzrX`$*;I8}! DoU?c~ literal 0 HcmV?d00001