diff --git a/content/zettels/singular_value_decomposition.md b/content/zettels/singular_value_decomposition.md
index a05bb9b..4e44a9d 100644
--- a/content/zettels/singular_value_decomposition.md
+++ b/content/zettels/singular_value_decomposition.md
@@ -10,7 +10,7 @@ Tags
## SVD of a MIMO system {#svd-of-a-mimo-system}
-This is taken from ([Skogestad and Postlethwaite 2007](#org323f388)).
+This is taken from ([Skogestad and Postlethwaite 2007](#org0179442)).
We are interested by the physical interpretation of the SVD when applied to the frequency response of a MIMO system \\(G(s)\\) with \\(m\\) inputs and \\(l\\) outputs.
@@ -34,20 +34,21 @@ The input and output directions are related through the singular values:
\end{equation}
So, if we consider an input in the direction \\(v\_i\\), then the output is in the direction \\(u\_i\\).
-Furthermore, since \\(\normtwo{v\_i}=1\\) and \\(\normtwo{u\_i}=1\\), we see that **the singular value \\(\sigma\_i\\) directly gives the gain of the matrix \\(G\\) in this direction**.
+Furthermore, since \\(\\|v\_i\\|\_2=1\\) and \\(\\|u\_i\\|\_2=1\\), we see that **the singular value \\(\sigma\_i\\) directly gives the gain of the matrix \\(G\\) in this direction**.
The **largest gain** for any input is equal to the **maximum singular value**:
-\\[\maxsv(G) \equiv \sigma\_1(G) = \max\_{d\neq 0}\frac{\normtwo{Gd}}{\normtwo{d}} = \frac{\normtwo{Gv\_1}}{\normtwo{v\_1}} \\]
+\\[\overline{\sigma}(G) \equiv \sigma\_1(G) = \max\_{d\neq 0}\frac{\\|Gd\\|\_2}{\\|d\\|\_2} = \frac{\\|Gv\_1\\|\_2}{\\|v\_1\\|\_2} \\]
The **smallest gain** for any input direction is equal to the **minimum singular value**:
-\\[\minsv(G) \equiv \sigma\_k(G) = \min\_{d\neq 0}\frac{\normtwo{Gd}}{\normtwo{d}} = \frac{\normtwo{Gv\_k}}{\normtwo{v\_k}} \\]
+\\[ \underline{\sigma}(G) \equiv \sigma\_k(G) = \min\_{d\neq 0}\frac{\\|Gd\\|\_2}{\\|d\\|\_2} = \frac{\\|Gv\_k\\|\_2}{\\|v\_k\\|\_2} \\]
-We define \\(u\_1 = \bar{u}\\), \\(v\_1 = \bar{v}\\), \\(u\_k=\ubar{u}\\) and \\(v\_k = \ubar{v}\\). Then is follows that:
-\\[ G\bar{v} = \maxsv \bar{u} ; \quad G\ubar{v} = \minsv \ubar{u} \\]
+We define \\(u\_1 = \overline{u}\\), \\(v\_1 = \overline{v}\\), \\(u\_k=\underline{u}\\) and \\(v\_k = \underline{v}\\).
+Then is follows that:
+\\[ G\overline{v} = \overline{\sigma} \cdot \overline{u} ; \quad G\underline{v} = \underline{\sigma} \cdot \underline{u} \\]
## SVD to pseudo inverse rectangular matrices {#svd-to-pseudo-inverse-rectangular-matrices}
-This is taken from ([Preumont 2018](#org713967a)).
+This is taken from ([Preumont 2018](#org37ddb8b)).
The **Singular Value Decomposition** (SVD) is a generalization of the eigenvalue decomposition of a rectangular matrix:
\\[ J = U \Sigma V^T = \sum\_{i=1}^r \sigma\_i u\_i v\_i^T \\]
@@ -69,6 +70,6 @@ This will have usually little impact of the fitting error while reducing conside
## Bibliography {#bibliography}
-Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. .
+Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. .
-Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
+Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.