From 4719b4191d00b70faa54278af1d8fe78934a4cbb Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Mon, 25 Aug 2025 10:34:49 +0200 Subject: [PATCH] Update Content - 2025-08-25 --- content/zettels/two_stage_actuator.md | 55 ++++++++++++++++++--------- 1 file changed, 37 insertions(+), 18 deletions(-) diff --git a/content/zettels/two_stage_actuator.md b/content/zettels/two_stage_actuator.md index 95d1064..6ee96a7 100644 --- a/content/zettels/two_stage_actuator.md +++ b/content/zettels/two_stage_actuator.md @@ -17,28 +17,30 @@ The goal is therefore to obtain a long stroke high precision stage. ## Review {#review} +(Pahk, Lee, and Park 2001) +
Table 1: List of dual stage systems
-| **DoF** | **Long Stroke** | **Short Stroke** | **Bandwidth** | **Metrology** | **References** | Fig | -|---------|-----------------------------------------------------|----------------------------|-----------------------------|-----------------------|----------------------------------------------------------------------------|---------------------------------------| -| X | Servo motor, leadscrew, rotary encoder | PZT, flexure (10um) | n/a | Interferometer, X | <&pahk01_ultra_precis_posit_system_servo_motor> | | -| X,Y | 2 axis, linear motor | 2 PZT, flexures | n/a | Interferometers, XY | <&chassagne07_nano_posit_system_with_sub> | | -| X,Y,Rz | X, linear motor, linear guides | 4 VCM (1mm), air bearing | 85Hz | Interferometers, XYRz | <&choi08_desig_contr_nanop_xy_theta_scann> | [2](#figure--fig:two-stage-choi08) | -| X | 1 axis, DC motor, feedscrew, rotary encoder (25mm) | 1 PZT (17um), flexures | 2000Hz | Interferometer, X | <&buice09_desig_evaluat_singl_axis_precis> | [1](#figure--fig:two-stage-buice09) | -| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo, flexure | 3 PID, \\(\approx 1\\,Hz\\) | Interferometers, XYRz | <&liu10_desig_contr_long_travel_nano_posit_stage> | | -| X | 1 axis, Servo motor, ball screw (300mm) | 1 VCM, air bearing (5mm) | n/a | Interferometer, X | <&shinno11_newly_devel_long_range_posit> | [4](#figure--fig:two-stage-shinno11) | -| X | 1 axis, VCM, flexure (10mm) | APA, flexure (15um) | PID, \\(\approx 1\\,Hz\\) | Interferometer, X | <&xu12_desig_devel_flexur_based_dual> | [7](#figure--fig:two-stage-xu12) | -| X | 1 axis X, ballscrew, stepper | 1 piezo stack Y | n/a | Capacitive, Y | <&ting11_contr_desig_high_frequen_cuttin> | [5](#figure--fig:two-stage-ting11) | -| X,Y | 2 axis, air bearing, linear motors (500mm), encoder | 4 VCM XYRz (3mm) | n/a | Interferometer, XYRz | <&okazaki12_dual_servo_mechan_stage_contin_posit> | [3](#figure--fig:two-stage-okazaki12) | -| X | 1 axis, linear motor | 1 VCM | 800Hz | Interferometer, X | <&ito13_high_precis_posit_system_using;&ito15_low_stiff_dual_stage_actuat> | | -| X | stepper motor, ballscrew (300mm) | PZT (16um) | 70Hz | Linear Encoder, X | <&kim13_desig_contr_singl_stage_dual> | | -| X,Y | 2 axis stepper (100mm), encoder | 4 PZT (130um) | \\(\approx 10\\,Hz\\) | Interferometers, XY | <&wu13_desig> | | -| X | 1 axis, linear motor (10mm), encoder | 1 VCM | 130 Hz | Interferometer, X | <&zhu17_flexur_based_paral_actuat_dual> | | -| X,Y | XY stepper motor (100mm), ballscrew, encoder | 2 PZT (100um) + capacitive | \\(\approx 10\\,Hz\\) | Combine both | <&wang17_devel_contr_long_strok_precis_stage> | [6](#figure--fig:two-stage-wang17) | +| **DoF** | **Long Stroke** | **Short Stroke** | **Bandwidth** | **Metrology** | **References** | Fig | +|---------|-----------------------------------------------------|----------------------------|-----------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------| +| X | Servo motor, leadscrew, rotary encoder | PZT, flexure (10um) | n/a | Interferometer, X | (Pahk, Lee, and Park 2001) | | +| X,Y | 2 axis, linear motor | 2 PZT, flexures | n/a | Interferometers, XY | (Chassagne et al. 2007) | | +| X,Y,Rz | X, linear motor, linear guides | 4 VCM (1mm), air bearing | 85Hz | Interferometers, XYRz | (Choi et al. 2008) | [Figure 2](#figure--fig:two-stage-choi08) | +| X | 1 axis, DC motor, feedscrew, rotary encoder (25mm) | 1 PZT (17um), flexures | 2000Hz | Interferometer, X | (Buice et al. 2009) | [Figure 1](#figure--fig:two-stage-buice09) | +| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo, flexure | 3 PID, \\(\approx 1\\,Hz\\) | Interferometers, XYRz | (Liu et al. 2010) | | +| X | 1 axis, Servo motor, ball screw (300mm) | 1 VCM, air bearing (5mm) | n/a | Interferometer, X | (Shinno, Yoshioka, and Sawano 2011) | [Figure 4](#figure--fig:two-stage-shinno11) | +| X | 1 axis, VCM, flexure (10mm) | APA, flexure (15um) | PID, \\(\approx 1\\,Hz\\) | Interferometer, X | (Xu 2012) | [Figure 7](#figure--fig:two-stage-xu12) | +| X | 1 axis X, ballscrew, stepper | 1 piezo stack Y | n/a | Capacitive, Y | (Ting, Li, and Lin 2011) | [Figure 5](#figure--fig:two-stage-ting11) | +| X,Y | 2 axis, air bearing, linear motors (500mm), encoder | 4 VCM XYRz (3mm) | n/a | Interferometer, XYRz | (Okazaki, Asano, and Goto 2012) | [Figure 3](#figure--fig:two-stage-okazaki12) | +| X | 1 axis, linear motor | 1 VCM | 800Hz | Interferometer, X | (Ito et al. 2013; Ito, Steininger, and Schitter 2015) | | +| X | stepper motor, ballscrew (300mm) | PZT (16um) | 70Hz | Linear Encoder, X | (Kim et al. 2013) | | +| X,Y | 2 axis stepper (100mm), encoder | 4 PZT (130um) | \\(\approx 10\\,Hz\\) | Interferometers, XY | (Wu et al. 2013) | | +| X | 1 axis, linear motor (10mm), encoder | 1 VCM | 130 Hz | Interferometer, X | (Zhu, Pang, and Teo 2017) | | +| X,Y | XY stepper motor (100mm), ballscrew, encoder | 2 PZT (100um) + capacitive | \\(\approx 10\\,Hz\\) | Combine both | (Wang, Peng, and Wang 2017) | [Figure 6](#figure--fig:two-stage-wang17) | @@ -73,9 +75,26 @@ The goal is therefore to obtain a long stroke high precision stage. Books and PhD: -- +- (Qingsong 2016) ## Bibliography {#bibliography} -<./biblio/references.bib> +
+
Buice, Eric S., David Otten, Raymond H. Yang, Stuart T. Smith, Robert J. Hocken, and David L. Trumper. 2009. “Design Evaluation of a Single-Axis Precision Controlled Positioning Stage.” Precision Engineering 33 (4): 418–24. doi:10.1016/j.precisioneng.2008.11.001.
+
Chassagne, L, M Wakim, S Xu, S Topçu, P Ruaux, P Juncar, and Y Alayli. 2007. “A 2d Nano-Positioning System with Sub-Nanometric Repeatability over the Millimetre Displacement Range.” Measurement Science and Technology 18 (11). IOP Publishing: 3267–72. doi:10.1088/0957-0233/18/11/001.
+
Choi, Young-Man, Jung Jae Kim, Jinwoo Kim, and Dae-Gab Gweon. 2008. “Design and Control of a Nanoprecision XY$\THETA$ Scanner.” Review of Scientific Instruments 79 (4): 045109. doi:10.1063/1.2902276.
+
Ito, Shingo, Juergen Steininger, and Georg Schitter. 2015. “Low-Stiffness Dual Stage Actuator for Long Rage Positioning with Nanometer Resolution.” Mechatronics 29: 46–56. doi:10.1016/j.mechatronics.2015.05.007.
+
Ito, Shingo, Juergen Steininger, Peter I. Chang, and Georg Schitter. 2013. “High-Precision Positioning System Using a Low-Stiffness Dual Stage Actuator.” IFAC Proceedings Volumes 46 (5): 20–27. doi:10.3182/20130410-3-cn-2034.00025.
+
Kim, Michael D., Kwang-Hee Lee, Kyung-Tae Nam, and Sang-Moo Lee. 2013. “Design and Control of a Single-Stage Dual-Actuator System for High-Precision Manufacturing.” Microsystem Technologies 20 (2). Springer Science and Business Media LLC: 175–83. doi:10.1007/s00542-013-1979-5.
+
Liu, Chien-Hung, Wen-Yuh Jywe, Yeau-Ren Jeng, Tung-Hui Hsu, and Yi-tsung Li. 2010. “Design and Control of a Long-Traveling Nano-Positioning Stage.” Precision Engineering 34 (3): 497–506. doi:10.1016/j.precisioneng.2010.01.003.
+
Okazaki, Yuichi, Shin Asano, and Takayuki Goto. 2012. “Dual-Servo Mechanical Stage for Continuous Positioning.” International Journal of the Japan Society for Precision Engineering 27 (2): 172–73.
+
Pahk, Heui Jae, Dong Sung Lee, and Jong Ho Park. 2001. “Ultra Precision Positioning System for Servo Motor–Piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation.” International Journal of Machine Tools and Manufacture 41 (1). Elsevier: 51–63.
+
Qingsong. 2016. Design and Implementation of Large-Range Compliant Micropositioning Systems. Singapore: Wiley.
+
Shinno, H., H. Yoshioka, and H. Sawano. 2011. “A Newly Developed Long Range Positioning Table System with a Sub-Nanometer Resolution.” CIRP Annals 60 (1): 403–6. doi:10.1016/j.cirp.2011.03.027.
+
Ting, Y., C.C. Li, and C.M. Lin. 2011. “Controller Design for High-Frequency Cutting Using a Piezo-Driven Microstage.” Precision Engineering 35 (3). Elsevier BV: 455–63. doi:10.1016/j.precisioneng.2011.02.004.
+
Wang, Kou-An, Yi-Kai Peng, and Fu-Cheng Wang. 2017. “The Development and Control of a Long-Stroke Precision Stage.” Smart Science 5 (2). Informa UK Limited: 85–93. doi:10.1080/23080477.2017.1313693.
+
Wu, R.C., I.H. Tsai, F.C. Wang, and J.Y. Yen. 2013. “Design and Control of a Long-Stroke Nano-Positioning Stage.” In Proceedings of the 2013 IEEE/SICE International Symposium on System Integration. doi:10.1109/sii.2013.6776643.
+
Xu, Qingsong. 2012. “Design and Development of a Flexure-Based Dual-Stage Nanopositioning System with Minimum Interference Behavior.” IEEE Transactions on Automation Science and Engineering 9 (3). IEEE: 554–63.
+
Zhu, Haiyue, Chee Khiang Pang, and Tat Joo Teo. 2017. “A Flexure-Based Parallel Actuation Dual-Stage System for Large-Stroke Nanopositioning.” IEEE Transactions on Industrial Electronics 64 (7): 5553–63. doi:10.1109/tie.2017.2677306.
+