From 46b451ba2a14ebf9b8b0a5283d815a3148708d32 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Tue, 17 Dec 2024 11:10:45 +0100 Subject: [PATCH] Update Content - 2024-12-17 --- content/zettels/feedforward_control.md | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/content/zettels/feedforward_control.md b/content/zettels/feedforward_control.md index 36f69cf..f057c4d 100644 --- a/content/zettels/feedforward_control.md +++ b/content/zettels/feedforward_control.md @@ -14,7 +14,7 @@ Depending on the physical system to be controlled, several feedforward controlle - - -<&boerlage03_model> +(Boerlage et al. 2003) ## Rigid Body Feedforward {#sec:rigid-body-feedforward} @@ -108,14 +108,14 @@ and \\(s\\) the snap, \\(j\\) the jerk, \\(a\\) the acceleration and \\(v\\) the The same architecture shown in Figure can be used. -In order to implement a fourth order trajectory, look at [this](https://www.mathworks.com/matlabcentral/fileexchange/16352-advanced-setpoints-for-motion-systems) nice implementation in Simulink of fourth-order trajectory planning (see also <&lambrechts04_trajec>). +In order to implement a fourth order trajectory, look at [this](https://www.mathworks.com/matlabcentral/fileexchange/16352-advanced-setpoints-for-motion-systems) nice implementation in Simulink of fourth-order trajectory planning (see also (Lambrechts, Boerlage, and Steinbuch 2004)). ## Model Based Feedforward Control for Second Order resonance plant {#model-based-feedforward-control-for-second-order-resonance-plant} -See <&schmidt20_desig_high_perfor_mechat_third_revis_edition> (Section 4.2.1). +See (Schmidt, Schitter, and Rankers 2020) (Section 4.2.1). Suppose we have a second order plant (could typically be a piezoelectric stage): \\[ G(s) = \frac{C\_f \omega\_0^2}{s^2 + 2\xi \omega\_0 s + \omega\_0^2} \\] @@ -225,4 +225,8 @@ This can be solved by using **snap feedforward** {{< figure src="/ox-hugo/feedforward_schematic_snap.png" >}} -<./biblio/references.bib> +
+
Boerlage, M., M. Steinbuch, P. Lambrechts, and M. van de Wal. 2003. “Model-Based Feedforward for Motion Systems.” In Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003. doi:10.1109/cca.2003.1223174.
+
Lambrechts, P., M. Boerlage, and M. Steinbuch. 2004. “Trajectory Planning and Feedforward Design for High Performance Motion Systems.” In Proceedings of the 2004 American Control Conference. doi:10.23919/acc.2004.1384042.
+
Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. The Design of High Performance Mechatronics - Third Revised Edition. Ios Press.
+