From 2376d7255d9391e26abf30550a81f9e8ed6189a5 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Fri, 9 Oct 2020 16:00:04 +0200 Subject: [PATCH] Update Content - 2020-10-09 --- content/zettels/force_sensors.md | 7 ++-- content/zettels/inertial_sensors.md | 15 ++++---- content/zettels/piezoelectric_actuators.md | 31 ++++++++-------- content/zettels/signal_conditioner.md | 43 ++++++++++++++-------- 4 files changed, 56 insertions(+), 40 deletions(-) diff --git a/content/zettels/force_sensors.md b/content/zettels/force_sensors.md index 532408d..86f3e8d 100644 --- a/content/zettels/force_sensors.md +++ b/content/zettels/force_sensors.md @@ -7,9 +7,9 @@ draft = false Backlinks: - [Sensors]({{< relref "sensors" >}}) -- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}}) - [Collocated Control]({{< relref "collocated_control" >}}) - [Position Sensors]({{< relref "position_sensors" >}}) +- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}}) - [Signal Conditioner]({{< relref "signal_conditioner" >}}) Tags @@ -21,7 +21,7 @@ Tags ### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor} -An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org25f6243)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org69854d3)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). ### Manufacturers {#manufacturers} @@ -32,6 +32,7 @@ An analysis the dynamics and noise of a piezoelectric force sensor is done in ([ | HBM | [link](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany | | Kistler | [link](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss | | MMF | [link](https://www.mmf.de/force%5Ftransducers.htm) | Germany | +| Sinocera | [link](http://www.china-yec.net/sensors/) | China | ### Signal Conditioner {#signal-conditioner} @@ -53,4 +54,4 @@ However, if a charge conditioner is used, the signal will be doubled. ## Bibliography {#bibliography} -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . diff --git a/content/zettels/inertial_sensors.md b/content/zettels/inertial_sensors.md index fc1e277..f395b0e 100644 --- a/content/zettels/inertial_sensors.md +++ b/content/zettels/inertial_sensors.md @@ -17,10 +17,10 @@ Tags ## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors} -- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgd9207bb)) -- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org08a3c9d)) +- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgc31d4ec)) +- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org79555eb)) - + {{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}} @@ -35,12 +35,13 @@ Tags | Guralp | [link](https://www.guralp.com/products/surface) | UK | | Nanometric | [link](https://www.nanometrics.ca/products/accelerometers) | Canada | | Kistler | [link](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss | +| Beran | [link](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK | Wireless Accelerometers - - + {{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers collette11_review" >}} @@ -57,13 +58,13 @@ Wireless Accelerometers | Guralp | [link](https://www.guralp.com/products/surface) | UK | | Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada | - + {{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones collette11_review" >}} ## Bibliography {#bibliography} -Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. . +Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. . -Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_. +Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_. diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md index 616dff4..dd0de00 100644 --- a/content/zettels/piezoelectric_actuators.md +++ b/content/zettels/piezoelectric_actuators.md @@ -31,11 +31,12 @@ Tags | PiezoData | [link](https://www.piezodata.com/piezo-stack-actuator-2/) | China | | Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK | | Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan | +| Sinocera | [link](http://www.china-yec.net/piezoelectric-ceramics/) | China | ### Model {#model} -A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org2c80449)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgb44e3bc)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel. @@ -59,14 +60,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator / ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} -The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org95701f0)): +The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orgf81e0e2)): > The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height. > The flatter is the actuator, the higher is the amplification. -A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#orgb10ad87)). +A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#orgda19a07)). - + {{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms ling16_enhan_mathem_model_displ_amplif" >}} @@ -158,51 +159,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut ### Electrical Capacitance {#electrical-capacitance} -The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org6712594)). +The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgda04c00)). This is due to the fact that voltage amplifier has a limitation on the deliverable current. [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used. - + {{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} ## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} -When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgaf653d1)). +When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6b0f065)). - + {{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} ## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} -Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org796d9a3)): +Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org440990f)): \begin{equation} \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} \end{equation} - + {{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} -For piezo actuators, force and displacement are inversely related (Figure [5](#org05901df)). +For piezo actuators, force and displacement are inversely related (Figure [5](#orgf610cbd)). Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. - + {{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} ## Bibliography {#bibliography} -Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . +Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . -Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” +Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” diff --git a/content/zettels/signal_conditioner.md b/content/zettels/signal_conditioner.md index 11b1931..5c5cf1f 100644 --- a/content/zettels/signal_conditioner.md +++ b/content/zettels/signal_conditioner.md @@ -7,6 +7,7 @@ draft = false Backlinks: - [Position Sensors]({{< relref "position_sensors" >}}) +- [Force Sensors]({{< relref "force_sensors" >}}) Tags : [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}}) @@ -29,28 +30,40 @@ The signal conditioning electronics can have different functions: ## Charge Amplifier {#charge-amplifier} -| Manufacturers | Links | Country | -|---------------|---------------------------------------------------------------------------------------------------------------------|---------| -| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | -| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +This can be used to interface with: + +- piezoelectric sensors + +| Manufacturers | Links | Country | +|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------| +| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | +| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | +| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK | +| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA | +| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | +| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia | ## Voltage Amplifier {#voltage-amplifier} -| Manufacturers | Links | Country | -|---------------|------------------------------------------------------------------------------------|---------| -| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany | -| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +| Manufacturers | Links | Country | +|---------------|-----------------------------------------------------------------------------------|---------| +| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany | +| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | ## Current Amplifier {#current-amplifier} -| Manufacturers | Links | Country | -|---------------|------------------------------------------------------------------|---------| -| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | +This can be used to interface with: + +- photodiodes + +| Manufacturers | Links | Country | +|---------------|------------------------------------------------------------------------------------------------------|---------| +| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | +| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK | <./biblio/references.bib>