From 1dbfc6c6436a5bb0ac34e5ba3e8347e0b09f0f7e Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Sun, 2 May 2021 16:32:19 +0200 Subject: [PATCH] Update Content - 2021-05-02 --- content/zettels/analog_to_digital_converters.md | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/content/zettels/analog_to_digital_converters.md b/content/zettels/analog_to_digital_converters.md index 36c203c..8c54b6c 100644 --- a/content/zettels/analog_to_digital_converters.md +++ b/content/zettels/analog_to_digital_converters.md @@ -10,7 +10,10 @@ Tags ## Types of Analog to Digital Converters {#types-of-analog-to-digital-converters} -- Delta Sigma ([Baker 2011](#org1a9e622)) + + +- Delta Sigma ([Baker 2011](#org9db2758)) +- Successive Approximation ## Power Spectral Density of the Quantization Noise {#power-spectral-density-of-the-quantization-noise} @@ -28,9 +31,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati Interestingly, the noise amplitude is uniformly distributed. The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution). -Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orga9627b6)). +Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org79dc805)). - + {{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}} @@ -84,4 +87,4 @@ The quantization is: ## Bibliography {#bibliography} -Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7. +Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.