From 18dc6fc6ca62b1d2803339c8428d97a7f94f4f32 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Mon, 17 Aug 2020 23:19:44 +0200 Subject: [PATCH] Update Content - 2020-08-17 --- content/zettels/norms.md | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/content/zettels/norms.md b/content/zettels/norms.md index 2555de7..a3f3765 100644 --- a/content/zettels/norms.md +++ b/content/zettels/norms.md @@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"] draft = false +++ -### Backlinks {#backlinks} +Backlinks: - [Multivariable Control]({{< relref "multivariable_control" >}}) @@ -13,9 +13,9 @@ Tags Resources: -- ([Skogestad and Postlethwaite 2007](#org533c8de)) -- ([Toivonen 2002](#orgb393f10)) -- ([Zhang 2011](#org1ea8e81)) +- ([Skogestad and Postlethwaite 2007](#org140f9cc)) +- ([Toivonen 2002](#orgc1385a9)) +- ([Zhang 2011](#org8471dd8)) ## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm} @@ -27,24 +27,24 @@ Signal ## \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm} -RMS value - The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}). -As explained in ([Monkhorst 2004](#org5e40c21)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation: +As explained in ([Monkhorst 2004](#orgafef987)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation: > The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input. +Minimizing the \\(\mathcal{H}\_2\\) norm can be equivalent as minimizing the RMS value of some signals in the system. + ## Link between signal and system norms {#link-between-signal-and-system-norms} ## Bibliography {#bibliography} -Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University. +Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University. -Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley. +Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley. -Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University. +Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University. -Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press. +Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.