diff --git a/content/zettels/norms.md b/content/zettels/norms.md
index 2555de7..a3f3765 100644
--- a/content/zettels/norms.md
+++ b/content/zettels/norms.md
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-### Backlinks {#backlinks}
+Backlinks:
- [Multivariable Control]({{< relref "multivariable_control" >}})
@@ -13,9 +13,9 @@ Tags
Resources:
-- ([Skogestad and Postlethwaite 2007](#org533c8de))
-- ([Toivonen 2002](#orgb393f10))
-- ([Zhang 2011](#org1ea8e81))
+- ([Skogestad and Postlethwaite 2007](#org140f9cc))
+- ([Toivonen 2002](#orgc1385a9))
+- ([Zhang 2011](#org8471dd8))
## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
@@ -27,24 +27,24 @@ Signal
## \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm}
-RMS value
-
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
-As explained in ([Monkhorst 2004](#org5e40c21)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
+As explained in ([Monkhorst 2004](#orgafef987)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
+Minimizing the \\(\mathcal{H}\_2\\) norm can be equivalent as minimizing the RMS value of some signals in the system.
+
## Link between signal and system norms {#link-between-signal-and-system-norms}
## Bibliography {#bibliography}
-Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
+Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
-Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
+Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
-Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
+Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
-Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
+Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.