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1 Introduction

This book is intended to give some analysis and
design tools for the increase number of engineers
and researchers who are interested in the design
and implementation of parallel robots. A systematic
approach is presented to analyze the kinematics,
dynamics and control of parallel robots. To define the
motion characteristics of such robots, it is necessary
to represent 3D motion of the robot moving platform
with respect to a fixed coordinate. This issue leads
to the requirements for 3D representation of position,
orientation and motion of bodies in space. In chapter
2, such representation are introduced with emphasis
on screw coordinates, which makes the representation
of the general motion of the robot much easier to follow.

Kinematic analysis refers to the study of robot motion
geometry without considering the forces and torques
that cause the motion. In this analysis (chapter 3),
the relation between the geometrical parameters of
the manipulator and the final motion of the moving
platform is derived and analyzed.

In Chapter 4, the kinematics analysis of robot
manipulators is further examined beyond static
positioning.  Jacobian analysis not only reveals
the relation between the joint variable velocities
of a parallel manipulator and the moving platform
linear and angular velocities, but also constructs the
transformation needed to find the actuator forces
from the forces and moments acting on the moving
platform. A systematic means to perform Jacobian
analysis of parallel manipulators is given in this chapter.

Dynamic analysis of parallel manipulators presents
an inherent complexity due to their closed-loop
structure and kinematic constraints. Nevertheless,
dynamic modeling is quite important for the control, in
particular because parallel manipulators are preferred
in applications where precise positioning and suitable
dynamic performance under high loads are the prime
requirements. In Chapter 5, the dynamic analysis
of such robots is examined through three methods,
namely the Newton-Euler principle of virtual work
and Lagrange formations. Furthermore, a method is
presented in this chapter to formulate the dynamic
equation of parallel robots into closed form, by which
the dynamic matrices are more tractable, and dynamics
verification becomes feasible.

The control of parallel robots is elaborated in the last
two chapters, in which both the motion and force control
are covered.



2 Motion Representation

2.1 Spatial Motion Representation

Six independent parameters are sufficient to fully de-
scribe the spatial location of a rigid body.

Consider a rigid body in a spatial motion as represented
in Figure 1. Let us define:

« A fixed reference coordinate system (z,y, z)
denoted by frame {A} whose origin is located at
point O 4

¢ A moving coordinate system (u, v, z) denoted
by frame {B} attached to the rigid body at point
OB

The absolute position of point P of the rigid body
can be constructed from the relative position of that
point with respect to the moving frame {B}, and the
position and orientation of the moving frame {B}
with respect to the fixed frame {A}.

Body frame: {B}
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Figure 1 — Representation of a rigid body spatial motion

a Position of a point

The position of a point P with respect to a frame {A}
can be described by a 3 x 1 position vector. The name
of the frame is usually added as a leading superscript:
AP which reads as vector P in frame {A}.

b Orientation of a Rigid Body

The orientation of the whole rigid body is the same for
all its points (by definition). Hence, representation of
the orientation of a rigid body can be viewed as that for
the orientation of a moving frame attached to the rigid
body. It can be represented in several different
ways: the rotation matrix, the screw axis representa-
tion and Euler angles are common descriptions.

Rotation Matrix We consider a rigid body that has
been exposed to a pure rotation. Its orientation has
changed from a state represented by frame {A} to its
current orientation represented by frame {B} (Figure
2).

A 3 x 3 rotation matrix 4 Rp is defined by

ARB:[A:fJB|AgB|AﬁB]: uy ’Uy Zy

(2)
in which A:&B,A'QB and 42p are the Cartesian unit
vectors of frame {B} represented in frame {A}.

Agp =40 = Upt + Uy] + Uk
AQB =45 = Vgl + vyd + vk
Aﬁg =49 = Wat + wyJ +w,k

The nine elements of the rotation matrix can be simply
represented as the projections of the Cartesian unit
vectors of frame {B} on the unit vectors of frame {A}.

4}
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Figure 2 — Pure rotation of a rigid body

The rotation matrix has a number of properties linking
each of its nine elements:



e Orthonormality: the rotation matrix is an or-
thonormal matrix

« Transposition: PR, = AR}

o Inverse: PRy =4R;' = “RL

e Pure Rotation Mapping: Suppose that the
point of a rigid body with respect to the mov-
ing frame {B} is given and denoted by ZP and
we wish to express the position of this point with
respect to the fixed frame {A}. Consider that
the rigid body has been exposed to a pure rota-
tion ({A} and {B} are coincident at their origins).
Then

¢ Determinant: det(ARB) =1
¢ Eigenvalues: The eigenvalues of a rotation ma-
trix ARp are equal to 1, € and e~*? where 6 is

A
calculated from 6 = cos™! %.

Screw Axis Representation As seen previously,
there exist an invariant angle 6 corresponding to the
rotation matrix. This angle is an equivalent angle of
rotation. The rotation is a spatial change of orientation
about an axis which is called the screw axis. It can
be shown that this screw axis is also an invariant of the
rotation matrix, it is the eigenvector corresponding to
the eigenvalue A = 1.

The term screw axis for this axis of rotation has the
benefit that a general motion of a rigid body, which
is composed as a pure translation and a pure rotation,
can be further represented by the same axis of rotation.
The screw axis representation has the benefit of using
only four parameters to describe a pure rotation.
These parameters are the angle of rotation 6 and the
axis of rotation which is a unit vector 4§ = [s,, s/, 5.]7

Figure 3 — Pure rotation about a screw axis

The Rodrigue’s rotation formula for spatial rotation of
a rigid body gives us the new position P, of point Py
after a rotation represented by the screw axis § and the

angle 6:

P, =Picosf+ (8§ x P)sinf+ (P, - 8)8 (3)

Euler Angles Since rotation in space is a motion
with three-degrees-of-freedom, a set of three indepen-
dent parameters is sufficient to represent the orienta-
tion.

In an Euler angle representation, three successive ro-
tations about the coordinate system of either fixed or
moving frame are used to describe the orientation of
the rigid body.

One type of Euler angle corresponds to rotations consid-
ered with respect to the fixed frame. The representation
is called pitch-roll-yaw, or fixed X-Y-Z Euler angles.
Three other types of Euler angles are consider with
respect to a moving frame: they are denoted w — v — u,
w—v—w and w — u — w Euler angles.

c Pitch-Roll-Yaw Euler Angles

The pitch, roll and yaw angles are defined for a mov-
ing object in space as the rotations along the lateral,
longitudinal and vertical axes attached to the moving
object.

Figure 4 — Definition of pitch, roll and yaw angles on an
air plain

Since all three rotations take place about the axes of a
fixed coordinate frame, the resulting rotation matrix
is obtained by multiplying the three basic rotation
matrices as follows:

Rpry (o, 8,7) = R.(7)Ry(B) R () ]

To go from rotation matrix to Pitch-Roll-Yaw angles,
the following set of equations can be used:

732 733
a = atan 2 ,
cos 3 cos B

B = atan 2 (—7‘31, /1 + 7"%1)

= atan 2 21
i cos 3’ cos B




d u-v-w Euler Angles

Another way to describe the orientation of a mov-
ing object is to consider three successive rotations
about the coordinate axes of the moving frame.
Since the rotations do not occur about fixed axes, pre-
multiplications of the individual rotation matrices fails
to give the correct solution. It can be shown that the
resulting matrix can be derived by post-multiplication
of the individual rotation matrices as follows:

ARB(a7 B, 7) = Ru(a)Rv(ﬁ)Rw(V)

The inverse solution for the u-v-w Euler angles is the
following (for cos 8 # 0):

T23  T33
a=atan?2 | — ,
cos 3 cos B

B = atan?2 <T13,:|:\/’I“%1 + 7‘%2>

v=atan2 | — nz_
cos 3’ cos 3

e w-v-w Euler Angles

Similarly:
vaw (OZ, Bv ’Y) = Rw (Oé)Rv (B)Rw (’7)

And for sin 5 # 0:
723 13
= atan 2
@ = atan (sinﬁ’sinﬂ)
[ = atan 2 (iq/rgl + r§2,r33)

= atan 2 's2 T3
i sinf3’ sinf

f w-u-w Euler Angles

Here, the second rotation is about the u axis:

Rwuw (a, Bv 7) = Rw (a)Ru(ﬂ)Rw (’Y)

And for sin 5 # 0:

a = atan 2 ns T
sin 3’ sinf
B = atan?2 (j:\/rgl + r§27r33>

v = atan 2 s T2
sin B’ sin B

g Notes about Euler Angles

If the Euler angle is given, a unique rotation matrix

is determined for the orientation of the rigid body.

However, the inverse map is not one-to-one, and at least

two Euler angle sets can be found for each orientation.

If the Euler angle is chosen for the representation of
the orientation, extra care should be taken. From the
continuity of the motion, a suitable solution may be
chosen, such that no abrupt changes are seen in the
variation of the Euler angles in a typical maneuver.
The use of rotation matrix to represent the orientation
of a rigid body is then generally preferred although
there are nine parameters for that description.

2.2 Motion of a Rigid Body

Since the relative positions of a rigid body with respect
to a moving frame {B} attached to it is fixed for all
time, it is sufficient to know the position of the
origin of the frame Op and the orientation of the
frame {B} with respect to the fixed frame {A}, to
represent the position of any point P in the space.

Representation of the position of Op is uniquely given
by the position vector, while orientation of the rigid
body is represented in different forms. However, for all
possible orientation representation, a rotation matrix
ARp can be derived.

Pose of a rigid body

Therefore, the location or pose of a rigid body,
can be fully determined by:

1. The position vector of point Op with re-
spect to frame { A} which is denoted 4 Pp,,

2. The orientation of the rigid body, or
the moving frame {B} attached to it with
respect to the fixed frame { A}, that is rep-
resented by A B

The position of any point P of the rigid body with
respect to the fixed frame {A}, which is denoted 4 P
may be determined thanks to the Chasles’ theorem.

Chasles’ theorem

If the pose of a rigid body {*Rp,*Po,} is
given, then the position of any point P of this
rigid body with respect to {A} is given by:

AP=4RpPP + 4Py, (4)

2.3 Homogeneous Transformations

To describe general transformations, we introduce the
4 x 1 homogeneous coordinates, and Eq. (4) is
generalized to

[ Ap=ATzBP ] (5)

in which 4T is a 4 x 4 homogeneous transforma-
tion matrix.



a Homogeneous Coordinates

There are two basic classes of vector quantities, the
generalization to homogeneous coordinates of which
are different.

The first type is called line vector. Line vectors refer
to a vector of which its value depends on the line of
action, or the position of where it is applied. Examples
are the position vector, linear velocity, force vector.

On the contrary, there exist quantities likes orientation
that hold for the whole rigid body and do not
correspond to a point. They can be positioned freely
throughout the whole rigid body, without any change
in their quantity. These types of vectors are called free
vectors.

For line vectors, both orientation and translation of the
moving frame contribute to their value. Homogeneous
coordinate of such vectors is generated by appending 1
to the three components of that vector:

V=% (6)

For free vectors, only the orientation of the moving
frame contributes to their value. The homogeneous
coordinate is then

Wy

b Homogeneous Transformation Matrix

Homogeneous Transformation Matrix

The homogeneous transformation matrix
is a 4 x 4 matrix, defined for the purpose of
transformation mapping of a vector in a homo-
geneous coordinate from one frame to another in
a compact form. The matrix is composed of the
rotation matrix A Rp representing the orienta-
tion and the position vector 4 Py, representing
the translation. It is partitioned as follows:

A A
A, Rp Po,

(®)

0 0 0 1

The homogeneous transformation matrix 4T is a 4 x 4
matrix operator mapping vector valued quantities

represented by 4 x 1 homogeneous coordinates.:

Ap ARp APy, Bp

1 0 0 0] 1 1
AP="RpPP+ Py,

Using homogeneous coordinate for a free vector like
angular velocity of a rigid body:

Aw o ARB APOB Bw
0 0 0 0 1 0
AP — ARBBP

¢ Screw Displacement

The most general rigid body displacement can be pro-
duced by a translation along a line followed by a
rotation about the same line. The line is called the
screw axis.

There exist transformations to from screw displacement
notation to the transformation matrix.

d Transformation Arithmetics

Consecutive transformations Let us consider the
motion of a rigid body described at three locations
(Figure 5). Frame { A} represents the initial location,
frame {B} is an intermediate location, and frame {C'}
represents the rigid body at its final location.

Figure 5 — Motion of a rigid body represented at three
locations by frame {A}, {B} and {C}

Furthermore, suppose the position vector of a point
P of the rigid body is given in the final location, that
is P is given, and the position of this point is to be
found in the fixed frame {A}, that is 4 P. Since the
locations of the rigid body is known relative to each
other, “P can be transformed to ZP using T

Bp _BT,.Cp
Now, B P can be transformed into 4 P:

Ap=AT,Bp
And we have:

AP _ ATBBTCCP



From which, the consecutive transformation can be
defined as follows:

ATo = TP To ] (9)

Inverse transformation Direct inversion of the 4 x4
homogeneous transfer matrix 4Tz to obtain 2T might
be computationally intensive. It is much easier to use
the specific structure of the transfer matrix for inversion.
To obtain BTy, it is necessary to compute R4 and
B Py, from the known ARp and 4 Pp,,, then

Bp, _ PRy PPo,

0 0 0 \ 1
Moreover
BR, = ARE
Bpy, =PRs*Py, = PR, Py,
= —"R5"Po,

Hence, the inverse of the transformation matrix
can be obtain by

bp,_api_ | RS | EyE,

0 0 0 1
(10)



3 Kinematics

3.1 Introduction

Kinematic Analysis - Definition

Kinematic analysis refers to the study of the
geometry of motion of a robot, without consider-
ing the forces an torques that cause the motion.
In this analysis, the relation between the geo-
metrical parameters of the manipulator with the
final motion of the moving platform is derived
and analyzed.

A parallel robot is a mechanism with a number of
closed kinematic chains, and its moving platform is
linked to the base by several independent kinematic
chains.  Parallel robots for which the number of
kinematic chains is equal to the number of degrees-
of-freedom of the moving platform are called fully
parallel robots.

If in addition to this condition, if the type and
number of joints at each limb, and the number
and location of the actuated joints are identical in
all the limbs, such a parallel robot is called symmetric.

There are three main cases for fully parallel ma-
nipulators. Planar robots with two translation
and one rotational degree-of-freedom in the plane.
Spatial orientation manipulators with three rotational
degrees-of-freedom in space. And a general spatial
robot with three translational and three rotational
degrees-of-freedom in space.

It is known that unlike serial manipulators, inverse
kinematic analysis of parallel robots is usually
simple and straightforward. In most cases, limb
variable may be computed independently using the
given pose of the moving platform, and the solution in
most cases even for redundant manipulators is uniquely
determined. However, forward kinematics of paral-
lel manipulators is generally very complicated,
and its solution usually involves systems of nonlinear
equations, which are highly coupled and in general have
no closed form and unique solution.

3.2 Loop Closure Method

A typical parallel manipulator consists of two main
bodies. Body A is arbitrary designated as fixed and
is called the base, while body B is designated to be
movable and is called the moving platform.

These two bodies are coupled via n limbs, each
attached to points A; and B; and called fixed and
moving attachment points of the limb .

At the displacement level, the forward kinematic
problem permits the determination of the actual loca-
tion or pose of the moving platform relative to the base
from a set of joint-position readouts.

At the velocity level, the forward kinematic
problem refers to the determination of the translational
and angular velocities of the moving platform relative
to the base, from a set of joint-velocity readouts and
for a known configuration.

To describe the motion of the moving platform relative
to the base, frame {A} is attached to body A and frame
{B} to body B. The pose of the moving platform
relative to the base is thus defined by:

e A position vector p which denotes the position
vector of the origin of { B} with respect to frame
{4)

e A 3 x 3 rotation matrix R which denotes the rota-
tion of { B} with respect to {A}

Each limb of a parallel manipulator defines a kinematic
loop passing through the origins of frames {A} and
{B}, and through the two limb attachment points A;
and B;.

At the displacement level, the closure of each kine-
matic loop can be express in the vector form as

A_B:A_AZ+AZ_B1—B_BZ fori:1,2,...,n

in which A_Ai and Bﬁi can be easily obtained from the
geometry of the attachment points in the base and in
the moving platform.

Let us defined a; = A4; in the fixed frame {A}, and
b, = B_Bi in the moving frame {B}. Furthermore,
q;, = A[Bi is defined as the limb variable, which
indicated the geometry of the limb.

Loop Clusure

The loop closure can be written as the un-
known pose variables p and R, the position
vectors describing the known geometry of the
base and of the moving platform, a; and b;, and
the limb vector g;

p=a;+q,—Rb, fori=12...,n (11)

For an inverse kinematic problem, it is assumed
that the moving platform position p and orientation R
are given and the problem is to solve the active limb
variables. This analysis is usually straightforward and
results in unique solution for the limb variables.
However, the inverse solution is not straightforward,
and usually numerical methods are used for forward
kinematic solution.



3.3 Kinematic Analysis of a Stewart-
Gough Platform

a Mechanism Description

One frame {A} is attached to the fixed base and frame
{B} is attached to the moving platform at points O 4
and Op respectively.

The number of actuators is equal to the degrees-of-
freedom of the manipulator and hence the manipulator
is fully parallel.

Force Orientation

Since all the limbs are connected to the moving
platform and to the base by spherical joints, no
twisting torque can be transmitted and the
force acting on each limb is directed along the
longitudinal axis of the limb.

b Geometry of the Manipulator

Geometry of the Manipilator

The position of the attachment points on the
fixed base are denoted by the vectors a; and
the position of moving attachment points are
denoted by the vectors b;. The geometry of each
limb is described by its length /; and its direction
is denoted by a unit vector §;.

The position of the point Op of the moving platform
is described by the position vector 4P = [p, p, p.|”
and orientation of the moving platform is described by
the rotation matrix 4 Rp which can by represented
by the components of the unit vectors @, v, 2 as follows:

Uy Uy Wy
ARp = |u, v, w, (12)

Uy Uy Wy

The geometry of the manipulator is shown Figure 6.

¢ Inverse Kinematics

Inverse Kinematic Analysis

For inverse kinematic analysis, it is as-
sumed that the position AP and orientation
of the moving platform ARp are given and
the problem is to obtain the joint variables
L=[h,lz151s15 0"

From the geometry of the manipulator, one can write:

Aai + liAgi = AP + Abi (13)

Moving
platform

Figure 6 — Geometry of a Stewart-Gough platform

Then, we can find /; given 4P and 4 Rp:

I = [APTAP +BpTBp, + 4aT4q; — 24P 4q; + ...
ApT [Ap B Ap Bp1Ta_ 142
2'PT ["Rp"b] -2 ["Rp"b;]" “ai]
(14)
If the position and orientation of the platform lie in the
feasible workspace, the solution is unique. Otherwise,
the solution gives complex numbers.

d Forward Kinematics

Forward Kinematic Analysis

In forward kinematic analysis, it is assumed
that the vector of limb lengths L is given and
the problem is to find the position 4P and the
orientation 4 Rp.

The size of the problem depends of the representation
used for orientation (rotation matrix, Euler angles, ...).
The forward kinematic problem is then to solve many
highly nonlinear equations that are extremely diffi-
cult to solve.

The complexity of the problem depends widely on the
manipulator architecture and geometry.



4 Jacobian: Velocities and Static Forces

4.1 Introduction

Usefullness of Jacobian matrix

The Jacobian matrix not only reveals the rela-
tion between the joint variable velocities
of a parallel manipulator to the moving
platform linear and angular velocities, it
also constructs the transformation needed to
find the actuator forces from the forces and
moments acting on the moving platform.

.

For specific configurations, local degeneracy can oc-
cur and leads to:

1. An instantaneous change in the degrees-of-freedom
of the system and hence a loss of controllability

2. An important degradation of the natural stiff-
ness that may lead to very high joint forces or
torques

Therefore, it is very important to identify singular
configurations at the design stage to improve the
performance.

4.2 Angular and Linear Velocities

To determine the absolute linear velocity of a point, the
derivative must be calculated relative to a fixed frame.
Differentiation of a position vector with respect to a
moving frame results in a relative velocity. Therefore,
it is necessary to define the arithmetics to transform
the relative velocities to the absolute ones.

a Angular Velocity of a Rigid Body

Angular velocity is an attribute of a rigid body that
describes the rotational motion of the frame {B} that
is attached to the rigid body.

Angular Velocity Vector

The angular velocity vector 2 describes the
instantaneous rotation of frame {B} with re-
spect to the fixed frame {A}. The direction
of © indicates the instantaneous axis of rota-
tion and its magnitude indicates the speed of
rotation.

The angular velocity vector is related to the screw
formalism by equation (15).

Q205 (15)

The angular velocity can be expressed in any frame.
For example 4Q denotes the angular velocity of the

10

rigid body expressed in the frame {A} and we have:

A0 = Q8 + Qi + Q.2 (16)
=0 (5,2 + 5,0 + 5.2)

in which Q,, ©, and (2, are the three components of
angular velocity of a rigid body expressed in frame {A}.

b Linear Velocity of a Point

Linear velocity of a point P can be easily determined
by the time derivative of the position vector p of that
point with respect to a fixed frame:

. dp
Up =P = a .

If the variation of the position vector is determined
with respect to a moving frame, we obtain the relative

velocity:
0
Urel = (8?)
mov

In classical mechanics, it is shown that the relation
between absolute derivative of any vector to its relative
derivative is given by:

in which € denotes the angular velocity of the moving
frame with respect to the fixed frame.
The term €2 x (-) can be written in matrix form:

The matrix 2% denotes a skew-symmetric matrix
defined by:

(17)

(18)

(19)

(20)

0o -0 Q
Q= 0 -Q (21)
—Q, 9, 0

Now consider the general motion of a rigid body shown
in Figure 7, in which a moving frame {B} is attached
to the rigid body and the problem is to find the
absolute velocity of point P with respect to a fixed
frame {A}.

The rigid body perform a general motion which is a
combination of a translation, denoted by the vector
4 Pp,,, and an instantaneous rotation. To determine the
velocity of point P, we start with the relation between
absolute and relative position vectors:

Ap = APOB + ARBBP
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Figure 7 — Instantaneous velocity of a point P with respect
to a moving frame {B}

To derive the velocity of point P, we differentiate with
respect to time:

A A

vp = TVoz + ARBBP + ARB B'UP
~—~—

=0

The time derivative of the rotation matrix ARB is:

ARp = 10" “Rp (22)

And we finally obtain equation (23).

Absolute Linear Velocity

¢ Screw Coordinates

Finite rotation of a rigid body can be expressed as a
rotation 6 about a screw axis §. Furthermore, it is
shown that the angular velocity of a rigid body is also
defined as the rate of instantaneous rotation angle 6
about the same screw axis §.

Chasles’ theorem

The most general rigid-body displacement can
be produced by a translation along a line fol-
lowed by a rotation about the same line. Since
this displacement is reminiscent of the displace-
ment of a screw, it is called a screw displace-
ment, and the line of axis is called the screw
axis.

4.3 Jacobian Matrices of a Parallel Ma-
nipulator

Let g = [q1,92,-- -, qm]T denote the vector of actuated
joint coordinates (linear displacement of an actuator

11

prismatic joint or angular rotation of an actuated revo-

lute joint) and X = [z, 2, . .. ,xn]T denote the vector
of moving platform motion variables (position or orien-
tation).

m denotes the number of actuated joints in the manip-
ulator, n denotes the number of degrees-of-freedom of
the manipulator.

Generally m > n, in which for a fully parallel ma-
nipulator m = n and for redundant manipulator m > n.

q and X are related through a system of nonlinear al-
gebraic equations representing the kinematic con-
straints imposed by the limbs, which can be gen-
erally written as

flg,X)=0 (24)
We can differentiate this equation with respect to time
and obtain:

[ J.X = J,q4 (25)
where of of
Jx = 87 and Jq = _87(1 (26)

General Jacobian matrix J

The general Jacobian matrix is defined as:

g=JX (27)
From equation (26), we have:
J=J,'J, (28)

4.4 Velocity Loop Closure

The velocity loop closures are used for obtaining
the Jacobian matrices in a straightforward manner.
Velocity loop closures are derived by direct differentia-
tion of kinematic loop closures.

Kinematic loop closures are:

p=a;+d;—Rb, fori=1,...,m

with

e p the position vector of the moving platform w.r.t.
frame {A}

¢ R the rotation matrix of the moving platform

e a; the position vector of the i’th limb of the fixed
platform w.r.t. frame {A}

e b; the position vector of the 7’th limb of the moving
platform w.r.t. frame {B}

e d; the limb vector

By taking the time derivative, we obtain the following
Velocity Loop Closure:

p=d;—wxRb;, fori=1,...,m (29)




4.5 Singularity Analysis of Parallel Ma-
nipulators

The singularities occur when:

o J, is rank deficient (Inverse kinematic singularity)
o J, is rank deficient (Forward kinematic singularity)

a Inverse Kinematic Singularity

Inverse kinematic singularity happens when J,; (m x m
matrix) is rank deficient (det J, = 0).

The corresponding configurations are located at the
boundary of the manipulator workspace or on the inter-
nal boundaries between sub-regions of the workspace.

In such cases, there exist nonzero vectors ¢ which
correspond to a null Cartesian twist vector X. In
other words, infinitesimal motion of the moving plat-
form along certain directions cannot be accomplished.
The manipulator looses one or more degrees-of-
freedom.

b Forward Kinematic Singularity

Forward kinematic singularity happens when J,
(m x n matrix) is rank deficient (det (JITJJC) = 0).
If the manipulator is not redundantly actuated

(m = n), then the Jacobian matrix J, is square and the
forward kinematic singularity happens when det J,, = 0.

The degeneracy occur inside the manipulator’s
Cartesian workspace and corresponds to the set of
configurations for which two different branches of
forward kinematic problem meet.

There exist nonzero cartesian twist vectors X that are
mapped into a vanishing actuator velocity vector II.
The corresponding configuration will be one in which an
infinitesimal motion of the platform is possible even if
the actuator are locked. The manipulator gains one
or several degrees-of-freedom and its stiffness
vanishes in the corresponding direction(s).

4.6 Jacobian Analysis of the Stewart-
Gough Platform

a Velocity Loop Closure

The input joint rate is denoted by L
[l1,12,13,14, 15, lg]T, and the output twist vector
is denoted by X = [4v,, 4w]T.

The jacobian matrix can be derived by formulating a
velocity loop closure equation of each limb. The loop
closure equations for each limb are:

AP +4Rp%b; = 1,45, + “a; (30)
By differentiate this with respect to time:
A'Up + ARBBbqj = llA§z + liAéi (31)
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Moreover, we have:

e ARp5b;, = 4w x ARpBb;, = “w x Ab; in which
Aw denotes the angular velocity of the moving
platform expressed in the fixed frame {A}.

o liAéi =1 (Awi X §z) in which 4w, is the angular
velocity of limb ¢ express in fixed frame {A}.

Then, the velocity loop closure (31) simplifies to

A’Up + Aw x Abi = l.iAgi + li(AUJi X '§z)
By dot multiply both side of the equation by §;:

8w, + (Ab; x §;)w =1;

We then omit the superscript A and we can rearrange
the 6 equations into a matrix form

L=JX (32)

Jacobian Matrix of a Stewart Platform

.§{ (bl X .§1)T
§g (bg X §2)T
aT a \T
|83 (bg X 83)
T=16T (bax )T (8
§g (b5 X §5)T
§g (b@ X §6)T

J then depends only on:

e §; the orientation of the limbs
e b; the position of the joints with respect to
Op and express in {A}.

b Singularity Analysis

It is of primary importance to avoid singularities in
a given workspace. To study the singularity configu-
rations of the Stewart-Gough platform, we consider
the Jacobian matrix determined with the equation (33).

From equation (26), it is clear that for the Stewart-
Gough platform, J, = I and J, = J. Hence the ma-
nipulator has no inverse kinematic singularities
within the manipulator workspace, but may possess
forward kinematic singularity when J becomes
rank deficient. This may occur when

detJ =0

4.7 Static Forces in Parallel Manipula-
tors

The relation between the forces/moments applied
to the environment at the point of contact and the
actuator forces/torques is determined and analyzed in



the study of static force analysis.

It is assumed that the manipulator is at a static
equilibrium, and that the actuator forces required to
produce the desired contact forces are determined.

Two methods are usually applied: the free-body
diagram and the principle of virtual work.

In the free-body diagram approach, the actuator
forces are determined to produce desired contact
forces/moments as well as the internal and interacting
forces/torques applied at the limbs. The analysis of
such forces is essential in the design of a manipulator
to determine the stresses and deflection of each link
and joint.

However, if only the actuator forces are desired to be
determined, the principle of virtual work is more
efficient and computationally less expensive.

a Virtual Work Approach

A virtual displacement for a parallel manipulator refers
to an infinitesimal change in the general displacement
of the moving platform as a result of any arbitrary
infinitesimal changes in the joint variables at a given
instant of time.

The virtual displacement of the joints can
be written as dq = [6q1,0q2, - ,0qm])T and
§X = |[x,0y,62,60,,80,,50,]7 denotes the vir-

tual displacement of a contacting point of the moving
platform. [66,,80,,80.]7 = 503 are the orientation
variables represented by screw coordinates.

Let the vector of actuator forces be denoted by
T = [r1,72,  ,7m]T, and the external forces/torque
acting on the contact point of the moving platform de-
noted by a wrench in a screw coordinate as F = [f, n|T
in which f = [f., fy, f-]T denotes the external forces,
and m = [ng,n,,n.]7 denotes the external torque
action on the moving platform at the point of contact
to the environment.

We assume that the frictional forces acting on the joints
are negligible, and also that the gravitational forces of
the limb links are much smaller than the interacting
force of the moving platform to the environment. The
principle of virtual work states that the total virtual
work, W, done by all actuators and external forces is
equal to zero:

[ oW =7T6q — FT6x =0 (34)

Furthermore, from the definition of the Jacobian, the
virtual displacements §q and §X are related by the
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Jacobian:
6gq=J-0X

We then have (TTJ — ]-'T) 0X = 0 that holds for any
arbitrary virtual displacement X', hence

TI-F"=0

We obtain that the Jacobian matrix con-
structs the transformation needed to find
the actuator forces T from the wrench act-
ing on the moving platform F:

F=J"r (35)

b Static Forces of the Stewart-Gough Plat-
form

As shown in Figure 8, the twist of moving platform is
described by a 6D vector X = [Avp Aw]T, in which
Avp is the velocity of point Op, and 4w is the angular
velocity of moving platform.

Figure 8 — Free-body diagram of forces and moments action
on the moving platform and each limb of the
Stewart-Gough platform

Consider an external wrench generated by the manipu-
lator and applied to the environment at the point Op
denoted by F = [f n]T.

It is assumed that no external forces are applied to the
limbs except the actuator forces. Therefore, the static
force can be assumed to be along the limb axis §;,
and the limb is subject to a tension/compression force
fi-

At static equilibrium, the summation of all acting forces
on the moving platform shall be zero, therefore

6
_f+Zfi~§i:0

i=1

(36)



in which —f if the external force applied to the
moving platform from the environment.

The summation of moments contributed by all forces
acting on the moving platform about Op is as follows:

6
—n+ > bix fis; =0

=1

(37)

in which —n is the external moment applied to the
moving platform by the environment, and b; is the
position vector from the point Op to the attached
point B; on the moving platform.

Writing the two equations together in a matrix form
results in

f1
‘§1 §2 §6 . f2 _ f (38)
b1><§1 b2X§2 b6x'§6 T n
Jo

There we can recognize the transpose of the Jacobian
matrix:

F=J"r

(39)

in which 7 = [f1, f2, -+ , fe] is the vector of actuator
forces, and F = [f,n]T is the 6D wrench applied by
the manipulator to the environment.

4.8 Stiffness Analysis of Parallel Ma-
nipulators

Here, we focus on the deflections of the manipulator
moving platform that are the result of the applied
wrench to the environment. The amount of these de-
flections are a function of the applied wrench as well
as the manipulator structural stiffness. Thus, the
stiffness of a manipulator has a direct impact on its
overall positioning accuracy if the manipulator is in
contact with a stiff environment.

a Stiffness and Compliance Matrices

The relation between the applied actuator force 7; and
the corresponding small deflection Ag; along the applied
force axis can be approximated as a linear function:

in which k; denotes the stiffness constant of the
actuator.

Re-writing the equation (40) for all limbs in a matrix
form result in

(41)

T=K- -Aq ]
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in which 7 1is the wvector of actuator forces,
and Agq corresponds to the actuator deflections.
K = diag[ky ko ...k,] is an m x m diagonal matrix
composed of the actuator stiffness constants.

Writing the Jacobian relation given in equation (27) for
infinitesimal deflection read
Ag=J -AX (42)
in which AX = [Az Ay Az Afx Aby Afz] is the
infinitesimal linear and angular deflection of the moving
platform.
Furthermore, rewriting the Jacobian as the projection
of actuator forces to the moving platform (35) gives

F=J"r (43)

Hence, by substituting (41) and (42) in (43), we obtain:

F=JKJ-AX (44)
N——

K

Equation (44) implies that the moving platform out-
put wrench is related to its deflection by the stiffness
matrix K.

Stiffness Matrix

K=J'KJ (45)

The stiffness matrix has desirable characteristics for
analysis:

e It is a symmetric positive definite matrix,
however, it is configuration dependent

e If the manipulator actuators have all the same
stiffness constants k, the stiffness matrix is reduced
to the form K = kJTJ

If the stiffness matrix is inversible (det(J7J) # 0), the
compliance matrix of the manipulator is defined as

C=K'=J'cg)™! (46)

The compliance matrix of a manipulator shows the
mapping of the moving platform wrench to its deflection
by

AX =C-F (47)

b Transformation Ellipsoid

As seen previously, the Jacobian matrix J transforms
n-dimensional moving platform velocity vector X into
m-dimensional actuated joint velocity q. Also, the
Jacobian transpose JT maps m-dimensional actu-
ated joint forces T into n-dimensional applied wrench F.



One way to characterize these transformation is
to compare the amplitude and direction of the moving
platform velocity generated by a unit actuator joint
velocity. To achieve this goal, we confine the actuator
joint velocity vector on a m-dimensional unit sphere
q"¢=1

and compare the resulting moving platform velocity in
n-dimensional space:

xXTJTrx =1

Similarly, we can confine the exerted moving platform
wrench F©F =1 and compare the required actuator
forces: 7T JJ T = 1.

Consider the case of fully parallel manipulators. Then
JJT and JTJ transformations are represented by
n X n matrices. Geometrically, these transformations
represent a hyper-ellipsoid in n-dimensional space,
whose principal axes are the eigenvectors of J7J
and JJT respectively. Furthermore, the lengths of the
principal axes are equal to the reciprocals of the square
roots of the eigenvalues of JJT and JTJ, which are
also equal to the reciprocals of the singular values of
J.

The shape of this hyper-ellipsoid in space indicates
the characteristics of the transformation. As this
hyper-ellipsoid is closer to a hyper-sphere, the transfor-
mation becomes more uniform in different directions.
Since Jacobian matrix is configuration dependent,
the shape of the hyper-ellipsoid is also configuration
dependent, and as the moving platform moves from
one pose to the other, the shape of the hyper-ellipsoid
changes accordingly.

A measure of the dexterity of the manipulator is the
reciprocal of the Jacobian matrix condition number
defined as:

1 min
R (48)

R Umax

in which opin and omax are the smallest and the largest
singular values of the Jacobian matrix.

c Stiffness Analysis of the Stewart-Gough
Platform

In this section, we restrict our analysis to a 3-6 structure
(Figure 9) in which there exist six distinct attachment
points A; on the fixed base and three moving attachment
point B;.

Denote the vector of actuated joint forces by 7 =
[f1 f2 f3 f1 f5 fe], and the corresponding vector of
infinitesimal displacements of actuated limbs denoted
by AL = [Al; Aly Aly Aly Als Alg]. The relation
between AL and 7 is described by a diagonal 6 x 6
matrix K:

=K -AL
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Moving
platform

Figure 9 — Schematic of a 3-6 Stewart-Gough platform

Also, from the definition of the Jacobian, we have:
AL =J -AX

in which AX = [A, Ay A, Af, Ab, AB,] is the vector
of infinitesimal linear and angular motions of the moving
platform.

Also, the vector of the moving platform output wrench
denoted by F = [f, f, f. ng ny n.] is related to the
vector of actuated joint forces T by:

F=J" 1
By substitution, we obtain:
F=K AX

in which
K=J"KJ

where K is called the stiffness matrix of the Stewart-
Gough manipulator.

For a given configuration of the moving platform, the
eigenvalue of the stiffness matrix represents the stiffness
of the manipulator in the corresponding eigenvector
direction. Furthermore, the reciprocal of the stiffness
matrix condition number may be used to represent the
dexterity of the manipulator.

The maximum stiffness of the manipulator can be ana-
lyzed by the maximum singular value of the Jacobian
matrix. The largest axis of the stiffness transformation
hyper-ellipsoid is given by this value at each configura-
tion.



5 Dynamics

5.1 Introduction

The dynamic analysis of parallel manipulators presents
an inherent complexity due to their closed-loop
structure. Several approaches have been proposed.

Traditional Newton-Euler formulation is used for
dynamic analysis of general parallel manipulators.
In this formulation, the equation of motion of each
limb and the moving platform must be derived, which
inevitably leads to a large number of equations and less
computational efficiency. On the other hand, all the
reaction forces can be computed, which is very useful
in the design of a parallel manipulator.

The Lagrangian formulation eliminates all the
unwanted reaction forces at the outset, and therefore,
is quite efficient. However, because of the constraints
imposed by the closed-loop structure, deriving explicit
equations of motions in terms of a set of generalized
coordinates becomes a prohibitive task.

A third approach is to use the principle of virtual
work, in which the computation of the constraint
forces are bypassed. In this method, inertial forces and
moments are computed using linear and angular accel-
erations of the bodies. Then, the whole manipulator
is considered to be in static equilibrium by using the
d’Alembert’s principle, and the principle of virtual
work is applied to derive the input forces and torques.

Different objectives require different forms of formu-
lations, there are three key issues pursued to derive
dynamic formulation of parallel manipulators:

1. Calculation of internal forces either active or
passive for the design process of the manipulator

2. Study on dynamical properties of the manip-
ulator for controller design

3. Utilization of dynamic specifications in an inverse
dynamics controller or any model-based control
topology

The first item is the main advantage of the Newton-
Euler formulation, the second and third items are
the benefits of using the Lagrange or virtual work
approaches.

The dynamic equations in an explicit form can be
written as:

MX)X +C(X, X)X +GX)=F (49)

in which:

o X is a vector of the generalized coordinates
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e M(X) denotes the system mass matrix

« C(X,X) denotes the Coriolis and centrifugal
matrix

e G(X) denotes the gravity vector

e F denotes the generalized force

Deriving explicit dynamic equations for parallel ma-

nipulators is a very prohibitive task because of the
closed-loop nature of the manipulator.

5.2 Dynamics of the Rigid Bodies

a Acceleration of Rigid Bodies

Acceleration Analysis - Definition

The acceleration analysis consists of studying
the variations of linear velocity of a point and
angular velocity of a rigid body with respect to
time.

Direct differentiation of these vectors with respect to
time in a fixed frame leads to linear velocity of a point
and angular velocity of a rigid body, respectively. Note
that, to determine the absolute linear velocity of a
point, the derivative must be calculated relative to a
fixed frame. In the study of robotic manipulators, usu-
ally multiple moving frames are defined to carefully
determine the motion of the moving platform. There-
fore, it is necessary to define the required arithmetics to
transform the relative accelerations into absolute ones.

Angular Acceleration of a Rigid Body To define
angular acceleration of a rigid body, consider a moving
frame { B} attached to the rigid body, and the motion
analyzed with respect to a fixed frame. Angular accel-
eration is an attribute of a rigid body and describes the
variation of angular velocity of frame { B} with respect
to time.

Angular Acceleration Vector

Angular acceleration vector, denoted by the
symbol €, describes the instantaneous change
of the angular velocity of frame {B}, denoted
by €, with respect to the fixed frame {A}:

e
a=="
dt

where {0, 8§} are the screw parameters represent-
ing the rotation of the rigid body.




As shown by (50), the angular acceleration of the rigid
body is also along the screw axis 8§ with a magnitude
equal to 6.

Linear Acceleration of a Point Linear accelera-
tion of a point P can be easily determined by time
derivative of the velocity vector vp of that point with
respect to a fixed frame:

) dv
== (),

Note that this is correct only if the derivative is taken
with respect to a fixed frame.

(51)

Now consider the general motion of a rigid body, in
which a moving frame {B} is attached to the rigid body
and the problem is to find the absolute acceleration of
point P with respect to the fixed frame {A}. The rigid
body performs a general motion, which is a combination
of a translation, denoted by the velocity vector 4vo,,,
and an instantaneous angular rotation denoted by €
(see Figure 7). To determine acceleration of point P,
we start with the relation between absolute and relative
velocities of point P:

A A

vp = Vo, t+ ARBB’UP + AQXARBBP (52)

In order to derive acceleration of point P, we differenti-
ate both sides with respect to time and we obtain

4a, ="ap, (linear acc. of {B})

+4RpPa, (relative acc. of P w.r.t. {B})

+ A" RpPP (angular acceleration of {B})
L AQX(AQXARLE P)
+ 244 RpPvp  (Coriolis)

(centrifugal)

(53)

For the case where P is a point embedded in the rigid
body, Byp =0 and Pap = 0 and we obtain:

A A

ap = CLOB+AQXARBBP
A A A B (54)
+ 4 (" R P)

b Mass Properties

In this section, the properties of mass, namely center
of mass, moments of inertia and its characteristics
and the required transformations are described.

Center of Mass Consider a reference frame {A}
in which the mass distribution of a material body is
measured, and let p denote the position vector of a
differential mass pdV with respect to a reference frame.
The center of mass of a rigid body is defined as the
point C which satisfied the following condition

1
pPe = f/ ppdV (55)
m Jy
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Figure 10 — Mass properties of a rigid body

in which the mass of the material body { B} with density
p and volume V is defined as

mz/pdV
1%

Moments of Inertia As opposed to the mass, which
introduces inertia to linear accelerations, moment of
inertia is the property of mass which introduces inertia
to angular accelerations. Basically, for rotational
motion, the distribution of mass with respect to
the axis of rotation introduces resistance to the
angular acceleration.

(56)

Moments of inertia I about A is defined by the second
moment of the mass with respect to a reference frame
of rotation as:

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy 1Izz

Ar = (57)

in which

Ixx = / (y? 4+ 22)pdV, Ixy =Iyx = — / xypdV
1% 1%

Iyy = / (2% + 22)pdV, Iyz =Izy = — / yzpdV
14 14

Izz = / (2% +yH)pdV, Ixz=Izx = — / xzpdV
14 \4

Principal Axes As seen in equation (57), the inertia
matrix elements are a function of mass distribution of
the rigid body with respect to the frame {A}. Hence,
it is possible to find orientations of frame {A} in
which the product of inertia terms vanish and inertia
matrix becomes diagonal:

Ixx 0 0
AI=1 0 ILyy O (58)
0 0 Izgz



Such axes are called the principal axes of inertia,
and diagonal terms are called the principal moments
of inertia, which represent the maximum, minimum
and intermediate values of the moments of inertia for a
particular chosen origin {A}.

It can be shown that the principal moments of inertial
and principal axes are invariant parameters and can
be determined from an eigen value decomposition of
the inertia matrix in any configuration of the reference
frame {A}.

Inertia Matrix Transformations The moment of
inertia is usually given for frames passing through
the center of mass of the rigid body. The
inertia matrix changes under change of the
reference frame.

Consider frame {C} parallel to {A} and attached
to the center of mass of a rigid body and let p. =
[T¢, Ye, 2¢]T denote the vector of the position of the
center of mass with respect to frame {A}. The relation
between the inertia matrix about A and that about C
is given by the following relation:

AI = CI <F m(pzpcISXS - pcch) ] (59)

in which m denotes the mass of the rigid body and
I3y 3 denotes the identity matrix.

On the other hand, if the reference frame {B} has
pure rotation with respect to the frame attached to
the center of mass {A}:

ATl =2R:“T*RE (60)

¢ Momentum and Kinetic Energy

Linear Momentum Linear momentum of a material
body, shown in Figure 11, with respect to a reference
frame {A} is defined as

AG:/
14

For any mass element pdV, the position vector p can
be written as

d
ap pdV

7 (61)

p=petr
And because fv rpdV = 0, we have by substitution

/ pdV
1%

4G =m - Yo

dp
A c
G =

dt

and thus

(62)

in which 4v¢ denotes the velocity of the center of mass
with respect to the frame {A}.
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This result implies that the total linear momentum
of differential masses is equal to the linear momentum
of a point mass m located at the center of mass.
This highlights the important of the center of mass in
dynamic formulation of rigid bodies.

X

Figure 11 — The components of the angular momentum of
a rigid body about A

Angular Momentum Consider the solid body rep-
resented in Figure 11. Angular momentum of the differ-
ential masses pdV about a reference point A, expressed
in the reference frame {A} is defined as

dp
AH:/ — ) pd
y pxdt pdV

in which dp/dt denotes the velocity of differential mass
with respect to the reference frame {A}.

By substituting p = p. + r in the previous equations,
be obtain:

AH:prmvc+/r><(Q><r)pdV

v

Therefore, angular momentum of the rigid body about
point A is reduced to

AH=p.xG.+°H (63)

in which
CH:/ rx (Qx7r)pdV =C°1-Q
\%

Equation (63) reveals that angular momentum of a
rigid body about a point A can be written as p. x G,
which is the contribution of linear momentum of the
rigid body about point A, and © H which is the angular
momentum of the rigid body about the center of mass.
This also highlights the important of the center of mass
in the dynamic analysis of rigid bodies. If the center



of mass is taken as the reference point, the relation
describing angular momentum (63) is very analogous
to that of linear momentum (62).

Kinetic Energy The Kinetic energy of a rigid body
is defined as

1
K:f/ v - vpdV (64)
2Jv

The velocity of a differential mass pdV can be rep-
resented by linear velocity of the center of mass and
angular velocity of the rigid body as

v=v,+ QX7

By substitution, the kinetic energy of the rigid body
may be obtained by:

1 1
KZ*UCXGC‘FiQ'CH

; (65)

in which G¢ is the linear momentum of the rigid body
and “ H is the angular momentum of the rigid body
about the center of mass.

This equation reveals that kinetic energy of a moving
body can be represented as the kinetic energy of
a point mass located as the center of mass, in
addition to the kinetic energy of a body rotating
about the center of mass.

d Newton-Euler Laws

The Newton and Euler laws can be written for three
different cases where the angular motion:

1. is about a fixed point in space

2. is represented about the center of mass

3. is represented about an arbitrary moving point in
space

We only examine the case in which all rotations are
represented about the center of mass.

Consider a rigid body under general motion, that is, a
combination of translation and rotation.

Newtown’s law

The Newton’s law relates the change of linear
momentum of the rigid body to the resulting
external forces applied to it

dG.
Z fcxt = W

For the case of a constant mass rigid body, this law is
reduced to

.

Z.fext = mdvc

= ma
dt €
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in which a. is the linear acceleration of the center of
mass.

The Euler’s law relates the change of angular
momentum of a rigid body about the center of
mass, to the summation of all external moments
applied to the rigid body about center of mass

Z cnext - %(CH)

For the case of a constant mass rigid body, this law is
reduced to

D M = %(cm) =IQ+Q x (°IN)

in which Y ey is the summation of all external mo-
ments applied to the rigid body about the center of
mass, °I is the moment of inertia about the center of
mass, and 2 is the angular velocity of the rigid body.

5.3 Newton-Euler Formulation

The most popular approach used in robotics to derive
the dynamic equation of motion of a parallel manipula-
tor is the Newton-Euler formulation.

In the Newton-Euler formulation, the free-body
diagrams of all the limbs and moving platform are
considered and the Newton Euler laws are applied
to each isolated body. To apply the laws to each
body, it is necessary to derive linear acceleration of
links, center of mass, as well as angular acceleration
of the links. Hence, acceleration analysis would be
performed on all the links of the manipulator and the
moving platform.

Furthermore, all the external forces and moments
applied to the links and to the moving platform must
be carefully determined. Gravitational forces acting
on the center of masses, frictional forces and moments
acting on the joints, and any possible disturbance force
or moment applied to the links and to the moving
platform would be identified. The most important
external forces or moments applied on the manipulator
are the one applied by the actuators, denoted by
T = [11,72,...,7m]T. The forces and moments shall
be derived from the set of Newton-Euler laws, which
are written separately for each link and the moving
platform.

Finally, by elimination of these constraints forces and
moments on the Newton-Euler equations written for
the moving platform, the dynamic equations relating
the actuator forces and moments 7 to the motion
variables of the moving platform X, X and X are
derived.



a Dynamic Formulation of the Stewart-Gough
Platform

Acceleration Analysis In acceleration analysis, it
is intended to derive expressions for linear and
angular acceleration of the limbs, namely [; and
w; as a function of the moving platform acceleration
X = [9,,w]". To obtain such a relation, let us rewrite
the velocity loop closure:

Vp + w X b, = lz§z + lz(wz X §z) (66)
Since there is no actuation torque about §;, the limb
angular velocity and acceleration vectors (w; and w;)
are normal to §; provided that the following assumption
are considered for the platform:

¢ both end joints of the limb are spherical

o the limbs are symmetric with respect to their axes

o the effects of friction in spherical joints are ne-
glected

Considering these assumptions, it can be concluded
that the limbs cannot spin about their axes: w;-8; =0
and (.§1 X (w1 X '§z)) = W;.

To obtain the angular velocity of the limbs w;, we cross
multiply §; to both sides of the previous equation:

1

3
With v, an intermediate variable corresponding to
the velocity of point b;:

vy, =Vp +w X b (68)

As illustrated in Figure 12, the piston-cylinder structure
of the limbs is decomposed into two separate parts, the
masses of which are denoted by m;, and m;,. The
position vector of these two center of masses can be
determined by the following equations:

Piy, = Qi + ¢, 8
Pi, = a; + (i — ¢3,)8i

By differentiating the previous equations and doing
some manipulations, we obtain:

lz =ap, X 8 + li(Wi : wi) (71>
1 .
@i = (8 x ap, — 2ywi) (72)
a;, = c;, (W; X 8; +w; X (w; x §;)) (73)
(74)
with
ap, =a, +w x b +wx (wxb) (75)

20

Moving X Ha
platform
P

L,ER A
T,
)

A

Piston

Fixed Oyl —— i
base {4}

Cylinder

Figure 12 — Free-body diagram of the limbs and the moving
platform of a general Stewart-Gough
manipulator

Dynamic Formulation of the Limbs To derive the
dynamic formulation of the Stewart-Gough platform,
the manipulator is decomposed into a moving platform
and six identical limbs. We assume that each limb
consists of two parts, the cylinder and the piston, where
the velocities and the accelerations of their centers of
masses are determined. We also assume that the centers
of masses of the cylinder and the piston are located at a
distance of ¢;, and ¢;, above their foot points, and their
masses are denoted by m;, and m;,. Moreover, consider
that the pistons are symmetric about their axes, and
their centers of masses lie at their midlengths.

The free-body diagrams of the limbs and the moving
platforms is given in Figure 12. The reaction forces at
fixed points A; are denoted by f,,, the internal force at
moving points B; are dentoed by f3,, and the internal
forces and moments between cylinders and pistons are
denoted by f., and M., respectively.

Assume that the only existing external disturbance
wrench is applied on the moving platform and is denoted
by Fq = [Fg,nq]".

1
Jo. = 7(1117 + l?mce)gi X w
2 .
+ fmizcizllﬁi X W (76)
= mgc§7; X (§,L X g)
in which m,, is defined as
Me, = 73 (milc?1 + michz) (77)

Dynamic Formulation of the Moving Platform
Assume that the moving platform center of mass
is located at the center point P and it has a mass m
and moment of inertia A Ip. Furthermore, consider that
gravitational force and external disturbance wrench are
applied on the moving platform, Fy = [Fy,ng|? as
depicted in Figure 12.

The Newton-Euler formulation of the moving platform



is as follows:

6
ZFext:Zfbi+mg+Fd:map (78)
=1

6
anoxt =MNng+ sz X .qu‘,
1=1
=AIpw +w x Tpw (79)

in which 4 Ip is considered in the fixed frame {A} and
can be calculated by:
Alp = RpPIp*RE (80)

These equations can be rewritten in an implicit form as

Dynamic Formulation - Stewart Platform

6
m(%*g)*Fd*Zfbi =0 (81)
=1l
6
Alpar + w x Tpw —ng— Y b x fi, =0
=1
(82)

These two equations are the governing dynamic for-
mulation of the Stewart-Gough platform, in which
Fa = [Fy,mq)7 denotes the disturbance wrench ex-
erted on the moving plateform.
They can be viewed in an implicit vector form of
FX, X, X, Fy1)=0 (83)
in which X = [zp, 0]7 is the motion variable of the mov-
ing platform consisting of the linear position of point
P and the moving platform orientation represented by
screw coordinates.

b Closed-Form Dynamics

While dynamic formulation in the form of Equation
(83) can be used to simulate inverse dynamics of the
Stewart-Gough platform, its implicit nature makes it
unpleasant for the dynamic analysis and control.

Closed-Form Dynamics of the Limbs To derive a
closed-form dynamic formulation for the Stewart-Gough
platform as

M(X)X +C(X, X)X +GX)=F (84)
first consider an intermediate generalized coordinate x;,
which is in fact the position of point b;. This general-
ized coordinate is used to harmonize the limb and the
moving platform dynamic formulation and to derive
an closed-form structure for the whole manipu-
lator.
Now, manipulate each limb dynamic equations to con-
vert them into the closed form. Let us first introduce
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some relations to substitute kinematic parameters like
w;, Wy, l; with the intermediate generalized coordinate
x; and its time derivatives.

After some manipulations, we obtain the following
closed form equation:

the corresponding mass matrix M;, the Coriolis matrix
C;, and the gravity vector G; can be simplified into
the following form:

AA 1 a
Mi = mizsiSzT — ijmlsfx (86)
2 PO 1 a LT 52
C; = _fmcolisix - ﬁmi2ci25iwi Six (87)
G = (mgy. 87 —mi8:5] )g (88)
Fi = —fb,i + Tiéi (89)
in which
1 2 2
W%e::i§0”ncn‘+7”wcw) (90)
1 1 2
Mey = - MizCiz — ﬁ(lmxi + lime, ) (1)
1
mg, = +(m4, ciy +mi, (li — i) (92)

K2

o~

Closed-Form Dynamics of the Moving Platform
In this section, the dynamic equations of the moving
platform are transformed in the following closed-form
formulation

M,X +C,X +G,=F, (93)
in which X consists of six coordinates: the first three
x,, represent linear motion of the moving platform, and
the last three 6 its angular motion. It is preferable
to use the screw coordinates for representing the
angular motion as its derivative is also a vector
representing angular velocity:

(94)

Equations (81) and (82) can be simply converted into a
closed form of Equation (93) with the following terms:

O3x3] C. — [03><3
AL ox6  [Osxs

O3y

mlI3y3
N 6%6

M, = [ Osx3

G. — | M9 x| FatX S
P Osxt]gyy ™ 7 mat+ 2 bixfo |6,
(95)

Closed-Form Dynamics of the Stewart-Gough
Manipulator To derive the closed-form dynamic for-
mulation for the whole manipulator, a transformation



is required to map the intermediate generalized coor-
dinates x; into the principal generalized coordinates
X.

Using such a transformation, and by adding the result-
ing equations of the limbs and the moving platform, the
internal forces f;, can be eliminated, and closed-form
dynamic formulation for the whole manipulator can be
derived.

To generate such a transformation define a Jacobian
matrix J; relating the intermediate coordinates to that
of the principal generalized coordinate:

& = J; X (96)
in which
J; = I3 —bix] (97)
My@; + Cp +x; + Gy = Fy (98)
in which
M;; = J'M;J;; Cy=J M;J; + JFC,J;
- . (99)
G,=J;Gy; Fuy=J;F
6
M(X) =M, +> M,
=1
) 6
C(X,X)=C,+)> Cy
=t (100)

6
G(X) =Gy + ZGli
i=1

6
F(X)=Fa+> F,

i=1

Forward Dynamics Simulations As shown in Fig-
ure 13, it is assumed that actuator forces and
external disturbance wrench applied to the ma-
nipulator are given and the resulting trajectory
of the moving platform is to be determined.

Vd

Forward dynamics

Disturbance
wrench

X(t)

Output

T
Actuator
trajectory

forces

Figure 13 — Flowchart of forward dynamics implementation
sequence

The closed-form dynamic formulation of the Stewart-
Gough platform corresponds to the set of equations
given in (84), whose terms are given in (95).
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Inverse Dynamics Simulation In inverse dynam-
ics simulations, it is assumed that the trajectory of
the manipulator is given, and the actuator forces
required to generate such trajectories are to be
determined.

As illustrated in Figure 14, inverse dynamic formulation
is implemented in the following sequence. The first step
is trajectory generation for the manipulator moving
platform. Many different algorithms are developed for
a smooth trajectory generation. For such a trajectory,
X 4(t) and the time derivatives X 4(t), X 4(t) are known.
The next step is to solve the inverse kinematics of the
manipulator and to find the limbs’ linear and angular
positions, velocity and acceleration as a function of
the manipulator trajectory. The manipulator Jacobian
matrix J is also calculated in this step.

Next, the dynamic matrices given in the closed-form
formulations of the limbs and the moving platform are
calculated using equations (86) and (95), respectively.

To combine the corresponding matrices, an to generate
the whole manipulator dynamics, it is necessary to find
intermediate Jacobian matrices J;, given in (97), and
then compute compatible matrices for the limbs given
in (99). Now that all the terms required to computed
to actuator forces required to generate such a
trajectory is computed, let us define F as the resulting
Cartesian wrench applied to the moving platform. This
wrench can be calculated from the summation of all
inertial and external forces excluding the actuator
torques 7 in the closed-form dynamic formulation (84).
By this definition, F can be viewed as the projector of
the actuator forces acting on the manipulator, mapped
to the Cartesian space. Since there is no redundancy
in actuation in the Stewart-Gough manipulator, the
Jacobian matrix J, squared and actuator forces can be
uniquely determined from this wrench, by 7 = J =T F,
provided J is non-singular. Therefore, actuator forces
T are computed in the simulation from

r=J T (MX)X +C(X, X)X + G(X) - F.)
(101)

[ 3
Trajectory generator

Inverse Limb Moving platform
kinematics dynamic matrices dynamic matrices

Intermediate Compatible Explicit dynamics
Jacobians dynamic matrices formulations
Cartesian F
wrench
ST

Actuator
forces

Figure 14 — Flowchart of inverse dynamics implementation
sequence



5.4 TODO Virtual Work Formulation
5.5 TODO Lagrange Formulation

K(X,X) = %XTM(X)X (102)
G(X) = ag(;) (103)
C(X,X)= %(M +UT - U) (104)
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6 Motion Control

6.1 Introduction

Parallel robots are designed for two different types of
applications.

In the first type, the moving platform of the robot ac-
curately follows a desired position and orientation
path in a specific time frame, while no interacting
forces need to be applied to the environment.

The second type of application include situations
where the robot moving platform is in contact with
a stiff environment (e.g. precision machining). In
such application, the contact force describe the state
of interaction more effectively than the position and
orientation of the moving platform. The problem
of force control can be described as to derive the
actuator forces for such a manipulator required to
generate a prescribed desired wrench (force and
torque) at the manipulator moving platform, while the
manipulator is performing its motion.

Although a multiple degrees-of-freedom robotic
manipulator can usually be represented by a MIMO
and nonlinear model, many industrial controllers for
such robots consist of a number of linear controller
designed to control individual joint motions.
One of the reasons why such decentralization can
perform well in practice is the use of large gear reduc-
tions in robot actuators, which significantly reduces
the coupling and non linear behavior of robot dynamics.

However, using advanced techniques in nonlinear and
MIMO control permits to overcome limitations of the
SISO approach.

6.2 Controller Topology

Motion Control

In motion control of parallel manipulator, it
is assumed that the controller computes the
required actuator forces or torques to cause
the robot motion to follow a desired position
and orientation trajectory.

Let us use the motion variables as the general-
ized coordinate of the moving platform defined by
X = [xp, 0]7, in which the linear motion is represented
by ®, = [Tp,Yp,2p)T, while the moving platform
orientation is represented by screw coordinates
0 =0[sy, sy,5:]" = [0,0,,0.]7.

Consider the general closed-form dynamics formulation
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of a parallel robot

[ MX)X +C(X, X)X +G(X)=F (105)

where

o M(X) denotes the mass matrix

e C(X,X) denotes the Coriolis and centrifugal ma-
trix

e G(X) denotes the gravity vector

e F denotes the generalized forces applied to the
moving platform center of mass

The generalized forces can be decomposed as follow
F=J'r + Fq
with

o J is the Jacobian
e T are the actuator forces
o JF, are any external wrenches

Control Topology - Definition

Control topology is referred to the structure
of the control system used to compute the
actuator forces/torques from the measurements,
and the required pre and post processing.

For motion control of a manipulator, the controller
has to compute the actuator force/torques required to
cause the motion of the moving platform according to
the desired trajectory. In general, the desired motion of
the moving platform may be represented by the desired
generalized coordinate of the manipulator, denoted by
X,

To perform such motion in closed loop, it is necessary to
measure the output motion X of the manipulator
by an instrumentation system. Such instrumentation
usually consists of two subsystems: the first subsystem
may use accurate accelerometers, or global positioning
systems to calculate the position of a point on the
moving platform; and a second subsystem may use
inertial or laser gyros to determine orientation of the
moving platform.

Figure 15 shows the general topology of a motion
controller using direct measurement of the motion
variable X, as feedback in the closed-loop system. In
such a structure, the measured position and orientation
of the manipulator is compared to its desired value
to generate the motion error vector ey. The
controller uses this error information to generate



Disturbance | F,
wrench

X
Parallel robot —>
Actuator Output

forces trajectory

Desired |
trajectory

Figure 15 — The general topology of motion feedback
control: motion variable X is measured

suitable commands for the actuators to minimize the
tracking error.

However, it is usually much easier to measure the
active joint variable rather than measuring the final
position and orientation of the moving platform. The
relation between the joint variable g and motion
variable of the moving platform X is dealt with the
forward and inverse kinematics. The relation
between the differential motion variables ¢ and X
is studied through the Jacobian analysis.

It is then possible to use the forward kinematic analysis
to calculate X from the measured joint variables q, and
one may use the control topology depicted in Figure 16
to implement such a controller.

Disturbance

wrench
Actuator

fumiclrobot
forces
X(t) q(t)
Forward kinematics

Figure 16 — The general topology of motion feedback
control: the active joint variable q is measured

q(t)

—

x,(0)

t
Desired -
trajectory

Active joint
measurement

In this topology, the forward kinematic analysis of the
manipulator has to be performed to implement the
feedback loop. As described earlier, this is a complex
task for parallel manipulators. It is even more complex
when a solution has to be found in real time.

However, as shown herein before, the inverse kinematic
analysis of parallel manipulators is much easier to carry
out. To overcome the implementation problem of the
control topology in Figure 16, another control topology
is usually implemented for parallel manipulators.

In this topology, depicted in Figure 17, the desired
motion trajectory of the robot X4 is used in an inverse
kinematic analysis to find the corresponding desired
values for joint variable q4. Hence, the controller is
designed based on the joint space error e,.
Therefore, the structure and characteristics of the
controller in this topology is totally different from that
given in the first two topologies.

The input and output of the controller depicted in
Figure 17 are both in the joint space. However, this
is not the case in the previous topologies where the
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Disturbance
F4
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Controller H Parallel robot ]‘

(1) q(t)

Active joint
measurement

e
kinematics
Desired *
trajectory

Figure 17 — The general topology of motion feedback
control: the active joint variable q is measured,
and the inverse kinematic analysis is used

input to the controller is the motion error in task space,
while its output is in the joint space.

For the topology in Figure 17, independent con-
trollers for each joint may be suitable.

To generate a direct input to output relation in
the task space, consider the topology depicted in
Figure 18. A force distribution block is added which
maps the generated wrench in the task space F, to its
corresponding actuator forces/torque 7.

Jz,

Parallel robot

Disturbance
wrench

@il Gl Eer T
distebution
Task

Actuator

Output
trajectory

"
Desired
trajectory space

forces
wrench

Figure 18 — The general topology of motion feedback control
in task space: the motion variable X is
measured, and the controller output generates
wrench in task space

For a fully parallel manipulator such as the Stewart-
Gough platform, this mapping can be constructed from
the Jacobian transpose of the manipulator:

F=J"r; v=J"F

6.3 Motion Control in Task Space
a Decentralized PD Control

In the control structure in Figure 19, a number of linear
PD controllers are used in a feedback structure on each
error component. The decentralized controller consists
of six disjoint linear controllers acting on each error
component e, = [e,, €y, €., €g,, €g,, €o.]. The PD
controller is denoted by K45+ K, in which K; and K,
are 6 x 6 diagonal matrices denoting the derivative
and proportional controller gains for each error term.

Fu

X,
“ b K;s+ K,

1 F [ Foree | T
J

¢
'ldislribution J L Parallel robot

Figure 19 — Decentralized PD controller implemented in
task space

Hence, by this structure, each tracking error component
is treated separately. The output of the controller



is denoted by F = [F,, Fy F, 7, Ty T2].

In practice, the calculated output wrench is transformed
into actuator forces through the force distribution
block. This mapping is implemented through inverse
of the manipulator Jacobian transpose by 7 = J T F.

Different alternatives of linear controllers can be used
instead of the PD controller used in this structure,
however PD controller is the simplest form which can
preserve the manipulator stability while providing
suitable tracking performance.

The proposed decentralized PD controller is very simple
in structure and therefore easily implementable. The
design of such a controller needs no detailed information
on the manipulator dynamics. The controller gains
are generally tuned experimentally based on physical
realization of the controller by trial and error.

b Feed Forward Control

A feedforward wrench denoted by F ¢ may be added
to the decentralized PD controller structure as depicted
in Figure 20. This term is generated from the dynamic
model of the manipulator in the task space, represented
in a closed form by the following equation:

Fpp=MX)X 1+ C( X4, X)X 4+ G(X4)

l =
X
d Fc_lrce_ T Parallel robot
F istribution

Figure 20 — Feed forward wrench added to the decentralized
PD controller in task space

The desired trajectory in task space X4, and its
derivatives X4, X4 are the required inputs for the
feedforward block. This term is called feedforward
since no online information of the output motion
trajectory X is needed for its computation.

In order to generate this term, dynamic formulation of
the robots and its kinematic and dynamic parameters
are needed. In practice, exact knowledge of dynamic
matrices are not available, and therefore, estimate of
these matrices are used in practice, denoted by M, C
and G.

The information required to generate the feedforward
wrench F ¢ is usually available beforehand and can be
derived offline. The closed-loop dynamic formulation
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for the manipulator becomes:

M(X)X +C(X, X)X + G(X)
=F+Fq
=Fpa+Frs+Fq

= Kge, + erw —l—f‘ff + MXd + C'Xd + é
(106)
If the knowledge of the dynamic matrices is complete,
we may assume that M=M,C=Cand G =G.
Furthermore, if we consider that the controller performs
well such that X (t) ~ X4(t) and X (t) ~ X4(t), the
simplified closed-loop dynamics become:

M(X,—X)+ Kqé, + Kye, + Fy=0

j . (107)
Mé, + Kqé, + Kpe, +F;=0

This equation implies that, if the mentioned assump-
tions hold, the error dynamics satisfies a set of
second-order system in the presence of disturbance.
By choosing appropriate gains for PD controller, the
transient and steady-state performance of tracking
error can be designed so as to satisfy the application
requirements.

Note that except the mass matrix, the error dynamic
terms are all configuration independent, and there-
fore, it is much easier to tune the PD controller
gains to work well within the whole workspace of the
robot.

However, this method faces a number of limitations
in practice. The most important limitation of this
control technique is the stringent assumption
of a complete knowledge requirement of the
dynamic matrices. In practice, derivation of these
matrices is a prohibitive task.

Finally, because of the dependency of the mass matrix
to the configuration of the robot, the error dynamics are
not completely decoupled. This means that correction
in one error component may be considered as a dis-
turbance effect to the other components. To overcome
these limitations, inverse dynamic approach is given in
the following section.

¢ Inverse Dynamics Control

Inverse Dynamics Control

In inverse dynamics control (IDC), nonlinear
dynamics of the model is used to add a correc-
tive term to the decentralized PD controller.
By this means, nonlinear and coupling be-
havior of the robotic manipulator is sig-
nificantly attenuated, and therefore, the per-
formance of linear controller is greatly improved.

General structure of IDC applied to a parallel manipu-
lator is depicted in Figure 21. A corrective wrench F



is added in a feedback structure to the closed-loop
system, which is calculated from the Coriolis and cen-
trifugal matrix and gravity vector of the manipulator
dynamic formulation.

Furthermore, mass matrix is added in the forward path
in addition to the desired trajectory acceleration X .
As for the feedforward control, the dynamics and
kinematic parameters of the robot are needed,
and in practice estimates of these matrices are used.

Figure 21 — General configuration of inverse dynamics
control implemented in task space

The controller output wrench applied to the manipula-
tor may be derived as follows:

F=M(X)a+ Fy (108a)
=M(X)a+C(X, X)X + G(X) (108b)
a=2X,+ K, + Kye, (108c)

The closed-loop dynamic formulation for the manipula-
tor becomes:

M(X)X +C(X, X)X + G(X)
=F+F,
=M(X) (Xy+ Kqé, + Kpe,)
+C(X, X)X +G(X) + Fa

(109)

If the knowledge of the dynamic matrices is complete,
the closed-loop dynamic formulation simplifies to:

M(X) (é4+ Kaéy, + Kpe,) + Fg=0 (110)

This control technique is very popular in practice
because of the fact that this technique can significantly
linearize and decouple dynamic formulation of
the closed-loop error dynamics. Furthermore,
the error dynamic terms are all configuration
independent, and therefore, it is much easier to tune
the PD controller gains for suitable performance in the
whole workspace of the robot.

However, note that for a good performance, and ac-
curate model of the system is required, and the
overall procedure is not robust to modeling uncer-
tainty. Furthermore, this technique is computationally
intensive in terms of the online computations needed
to carry out the closed-loop control structure.

d Partial Linearization IDC

Inverse dynamics control has several features making
it very attractive in practice. However, to apply
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this method, complete knowledge of the dynamic
formulation matrices is required. This requirement has
the main drawbacks that the dynamic formulation of
the parallel manipulator is a complicated step to be
carried out.

To implement all the terms in IDC structure, not only
the structure and components of such matrices must
be carefully determined, but also the kinematics and
inertial parameters of the robot are needed to be iden-
tified and calibrated. This step requires the use of
high-precision calibration equipment which are not usu-
ally accessible. Finally, if all the terms and parameters
are well known, implementation of full inverse dynamic
linearization is computationally intensive.

These are the reasons why, in practice, IDC control is
extended to different forms where the above-mentioned
stringent requirements are reduced.

To develop the simplest possible implementable IDC,
let us recall dynamic formulation complexities:

o the manipulator mass matrix M (X) is derived
from kinetic energy of the manipulator (Eq. (102))

o the gravity vector G(X) is derived from potential
energy (Eq. (103))

+ the Coriolis and centrifugal matrix C(X,X) is
derived from Eq. (103)

The computation of the Coriolis and centrifugal matrix
is more intensive than that of the mass matrix. Gravity
vector is more easily computable.

However, it is shown that certain properties hold for
mass matrix, gravity vector and Coriolis and centrifugal
matrix, which might be directly used in the control
techniques developed for parallel manipulators. One of
the most important properties of dynamic matrices is
the skew-symmetric property of the matrix M -2C .

Consider dynamic formulation of parallel robot given
in Eq. (105), in which the skew-symmetric property
of dynamic matrices is satisfied. The simplest form of
IDC control effort F consists of:

F =Fpi+Fp

in which the first term J,4 is generated by the simplified
PD form on the motion error:

Fpa=Kqé, + K, +e,

The second term JF ¢, is considered to be only the gravity
vector of the manipulator G(X), at any configuration,
and the computationally intensive Coriolis and centrifu-
gal term is not used:

Fu=GX)

Note that for an appreciable tracking performance
with no static error at steady state, it is required to
have complete knowledge of only the gravity term. By



this means, computations required in this control tech-
nique are significantly less than that of the general IDC.

Despite the simple structure of such a controller, the
resulting control technique is very well performed,
especially at steady state. We can show that this
control topology achieves asymptotic tracking for a
constant desired trajectory motion, that is, X4 = 0.

This reveals the fact that even if the mass matrix and
Coriolis and centrifugal matrix are not used in the
feedback, and the closed-loop dynamics is not com-
pletely linearized, the PD control structure with grav-
ity compensation can still lead to asymptotic tracking.
However, to suitable transient performance, more in-
formation of the system dynamics must be used in the
linearization technique given in IDC.

6.4 TODO Robust and Adaptative Con-
trol

Inverse dynamics control faces the stringent require-
ment that for a good performance, an accurate
model of the system is required, and the overall
procedure is not robust to modeling uncertainty.
Furthermore, this technique is computationally
intensive in terms of online computation needed to
carry out the closed-loop control structure. The
proposed modified inverse dynamics control, while
being beneficial in terms of computational cost, is not
suitable in terms of a closed-loop transient performance.

Another approach to modify IDC is to consider a
complete linearization, but assume that complete
knowledge of dynamic formulation matrices is
not available. To compensate for the lack of
knowledge, two advanced control methods, namely
robust and adaptive control are proposed:

e In the robust approach, a fixed controller is
designed to satisfy the control objectives for the
worst possible case of modeling uncertainty
and disturbance wrenches.

e In the adaptive approach, the estimates of dy-
namic formulation matrices are updated such that
the difference between the true values of these ma-
trices to their estimates converges to zero.

A global understanding of the trade-offs involved in
each method is needed to employ either of them in
practice.

a Robust Inverse Dynamics Control

Various sources of uncertainties such as unmodelled
dynamics, unknown parameters, calibration error, un-
known disturbance wrenches, and varying payloads may
exist, and are not seen in dynamic model of the manip-
ulator.
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To consider these modeling uncertainty in the closed-
loop performance of the manipulator, recall the general
closed-form dynamic formulation of the manipulator
given in Eq. (105), and modify the inverse dynamics
control input F as

F=M(X)a, +C(X, X)X + G(X)
a, = X’d—i—Kdéx—kaem—kéa

in which a, is the robustified control input.
Comparing this equation to the usual IDC, a robus-
tifying term 4§, is added to compensate for modeling
uncertainties.

Note that, as defined earlier, the notation (A) represents
the estimated value of (.) and (.) is defined as the error
mismatch between the estimated value and the true
value as (.) = (1) — (.).

In a similar manner (~) notation may be applied to the
motion variables as

X=X-X,=—e,

The closed-loop dynamic formulation of the manipulator
can be written as:

X:ar+n(‘x7xaar)

in which

n=M"'(Ma, +CX + Q)

is a measure of modeling uncertainty.

Figure 22 — General configuration of robust inverse
dynamics control implemented in the task space

b Adaptive Inverse Dynamics Control

Figure 23 — General configuration of adaptative inverse
dynamics control implemented in task space



6.5 Motion Control in Joint Space

Although the motion control schemes developed in
section 6.3 are very effective for tracking performance,
they suffer from an implementation constraint that the
motion variable X must be measured in practice.

If this measurement is available without any doubt,
such topologies are among the best routines to be
implemented in practice. However, as explained in
Section 6.2, in many practical situations measurement
of the motion variable X is difficult or expensive,
and usually just the active joint variables q are
measured. In such cases, the controllers developed
in the joint space may be recommended for practical
implementation.

To generate a direct input to output relation in the
joint space, consider the topology depicted in Figure
16. In this topology, the controller input is the joint
variable error vector e; = q4 — q, and the controller
output is directly the actuator force vector 7, and
hence there exists a one-to-one correspondence
between the controller input to its output.

The general form of dynamic formulation of parallel
robot is usually given in the task space. For motion
control in joint space, we need to transform the dynamic
formulation in the joint space, by which the actuator
forces T are directly related to the active joint variables

q.

a Dynamic Formation in the Joint Space

The relation between the task space variables to their
counterparts in the joint space can be derived by
forward and inverse kinematics relations. Although
both analyses involve solution to a set of non-linear
equations, for parallel manipulators, inverse kinematic
solution proves to be much easier to obtain than that
of forward kinematic solution.

This relation in differential kinematics is much sim-
pler and can be completely determined by the Jacobian
matrix:

Gg=JX —=X=J4 ]

The acceleration variables are then:
G=JX+IJX = X=J'g-J'Jx
Furthermore, the relation between the actuator force

vector T to the corresponding task space wrench is given
by:

F=Jlr=71=J"F
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Substituting X and X from the above equations into
the dynamic formulation of the parallel robot gives:

(JTMJI 1Y) g
+JT(C-MIT)T g
+J TG+ I TF =71

Dynamic Formulation in the Joint Space

MG+Cyg+Gy+T19=T (111)

with:
M,=J""MJ! (112a)
D,=J T (C-MJ'J)J'  (112b)
G,=J'G (112¢)
T, = T F, (112d)

Equation 111 represents the closed form dynamic
formulation of a general parallel robot in the joint space.

Note that the dynamic matrices are not explicitly
represented in terms of the joint variable vector q.
In fact, to fully derive these matrices, the Jacobian
matrices must be computed and are generally derived
as a function of the motion variables X. Furthermore,
the main dynamic matrices are all functions of the
motion variable X. Hence, in practice, to find the
dynamic matrices represented in the joint space,
forward kinematics should be solved to find the
motion variable X for any given joint motion vector q.

Since in parallel robots the forward kinematic analysis
is computationally intensive, there exist inherent
difficulties in finding the dynamic matrices in the
joint space as an explicit function of g. In this case
it is possible to solve forward kinematics in an online
manner, it is recommended to use the control topology
depicted in 16, and implement control law design in
the task space.

However, one implementable alternative to calculate the
dynamic matrices represented in the joint space is to
use the desired motion trajectory X ; instead of the
true value of motion vector X in the calculations. This
approximation significantly reduces the computational
cost, with the penalty of having mismatch between the
estimated values of these matrices to their true values.

b Decentralized PD Control

The first control strategy introduced in the joint space
consists of the simplest form of feedback control in such
manipulators. In this control structure, depicted in
Figure 24, a number of PD controllers are used in a
feedback structure on each error component.



The PD controller is denoted by Kys + K,,, where
Ky and K, are n x n diagonal matrices denoting
the derivative and proportional controller gains,
respectively.

wrench

Kis+ K, ]—T{ Parallel robot }

Disturbance l F

qlt)

Active joint
measurement

Xt Inverse 94lt)
Desired kinematics f

trajectory

Figure 24 — Decentralized PD controller implemented in
joint space

By this structure, each tracking error component is
treated separately by its disjoint PD controller.
The proposed decentralized PD controller is very
simple in structure, and therefore very easy to be
implemented on the manipulator. The design of
such a controller needs no detailed information
on the manipulator dynamic formulation and
parameters. However, the tracking performance
of such a controller is relatively poor, and static
tracking errors might be unavoidable. Also, the
performance of the closed-loop system is configuration
dependent.

In practice, the gains are tuned experimentally and
obtained as a trade-off between transient behavior and
steady-state errors at different configurations. As the
dynamics of the system in the joint space is configu-
ration dependent, finding suitable controller gains to
result in required performance in all configurations is a

difficult task.

The performance of the controller to attenuate measure-
ment noise and external disturbance wrenches are also
poor in practice. To remedy these shortcomings, some
modifications have been proposed to this structure and
further described.

¢ Feedforward Control

The tracking performance of the simple PD controller
implemented in the joint space is usually not sufficient
at different configurations. To improve the tracking
performance, a feedforward actuator force denoted by
Trr may be added to the structure of the controller as
depicted in Figure 25.

Figure 25 — Feed forward actuator force added to the
decentralized PD controller in joint space
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The feedforward term is generated from the dynamic
formulation of the manipulator. The desired trajectory
in the task space X4 and its derivatives .jc'd, .5((1 are
thus required.

In practice, exact knowledge of dynamic matrices are
not available, and therefore, estimates of these matri-
ces are used in this derivation denoted by M, C and G.

The information required to generate the feedforward
actuator force 77 is usually available beforehand, and
in such a case, the feedforward term corresponding to
a given trajectory can be determined off-line, while
the computation of the decentralized feedback term
would be executed online.

If complete information of the dynamic matrices is avail-
able, and if we assume that the system is performing
well, meaning that X (t) ~ X4(t) and X (t) ~ X4(t),
we can write the closed loop dynamics as follow:

Mqéq + Kdéq + erq = T4

The error dynamics satisfy a set of second-order differen-
tial equations in the presence of disturbance. Therefore,
by choosing appropriate gains of the PD controller, the
transient and steady-state performance of the tracking
error can be suitably designed.

Note that except for the mass matrix, the error
dynamics terms are all configuration independent,
and therefore, it is much easier to tune the PD
controller gains to work well in the whole workspace of
the robot in such a structure.

However, this method suffers from a number of limita-
tions in practice. The most important limitation is the
stringent assumption of the complete informa-
tion requirement of dynamics matrices. Further-
more, even is all the assumption hold, because of the
configuration dependence of the mass matrix, the error
dynamics is still not completely decoupled. This means
that correction in one component may be considered as
a disturbance effect to the other components. To over-
come these limitations, the inverse dynamic approach
has been developed and is given in the following section.

d Inverse Dynamics Control

As seen in the previous section, the tracking perfor-
mance of a decentralized PD controller implemented in
the joint space is not uniform at different configurations.
To compensate for such effects, a feedforward torque is
added to the structure of the controller, by which the
shortcomings of the decentralized controller is partially
remedied. However, the closed-loop performance
still faces a number of limitations, which cannot be
completely remedied because of the inherent conditions
on feedforward structure of that proposed controller.
To overcome these limitations, in this section, a control



technique based on inverse dynamic feedback of
the manipulator in the joint space is presented.

Inverse Dynamics Control

In the inverse dynamics control (IDC) strat-
egy, the nonlinear dynamics of the model
is used to add a corrective term to the
decentralized PD controller. By this means,
the nonlinear and coupling characteristics
of robotic manipulator is significantly attenu-
ated, and therefore, the performance of linear
controller is significantly improved.

The general structure of inverse dynamics control ap-
plied to a parallel manipulator in the joint space is
depicted in Figure 26.

A corrective torque Ty is added in a feedback
structure to the closed-loop system, which is calculated
from the Coriolis and Centrifugal matrix, and the
gravity vector of the manipulator dynamic formulation
in the joint space. Furthermore, the mass matrix is
acting in the forward path, in addition to the desired
trajectory acceleration ¢,. Note that to generate
this term, the dynamic formulation of the robot,
and its kinematic and dynamic parameters are
needed. In practice, exact knowledge of dynamic
matrices are not available, and there estimates are used.

Figure 26 — General configuration of inverse dynamics
control implemented in joint space

The controller output torque applied to the manipulator
may be calculated by:

T = M,a, + 7y (113a)
T =Cui+ G, (113b)
aq =qq+ Kqé,+ Kpeq (113c)

If the knowledge of dynamic matrices is complete, the
closed-loop dynamic formulation is simplified to:

~

M, (€, + Kqéq + Kpeq) + 14 =0

This equation implies that if there exist complete knowl-
edge of the dynamic matrices, the tracking error dy-
namic equation satisfies a set of second-order systems
in the presence of disturbance. Consider the case where
no disturbance wrench is applied to the manipulator,
as the mass matrix M, is positive definite at all non-
singular configurations, it can be inverted, and the error
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dynamics simplifies to:
€4+ Kdéq + erq =0

This control technique is very popular in practice be-
cause of the fact that it can significantly linearize and
decouple the dynamic formulation of the closed-loop
system for error dynamics components. Furthermore,
the error dynamic terms are all configuration
independent, and therefore, it is much easier to
tune the PD controller gains to perform well in
the whole workspace of the robot.

However, note that for a good performance, an ac-
curate model of the system is required, and the
overall procedure is not robust to model uncertainties.

6.6 Summary of Motion Control Tech-
niques

In this section, a number of control techniques have been
developed for parallel robots. Based on the dynamic
formulation given in Section 5, many model-based
control techniques have been developed for implementa-
tion in the task space as well as in the joint space. These
control techniques are presented from the simplest form
of decentralized PD control to more advanced robust
and adaptive inverse dynamics control.

A summary of these techniques is given below.

Dynamic Formulations The dynamic formulation
of a parallel robot may be directly represented as a
function of motion variable X in the task space as
follows:

M(X)X +C(X, X)X + G(X)=F + Fa

The dynamic formulation may be represented as a func-
tion of actuator motion variable q as

MG+Cyg+Gy=1T+T14

in which these two formulations are closely related to
each other by the following relations:

M,=J"TMJ™!
C,=J " (C-MJ'J)J*
D,=J"Gg
T,=JTF
Decentralized PD Control The simplest controller
for a parallel robot can be considered as a decentralized
PD controller being implemented individually on each

error component. If such a structure is implemented in
the task space, the control effort is calculated by

F=Kgé, + erz

and the actuator effort can be generally determined
through a force distribution scheme.



For a completely parallel manipulator, the actuator
forces can be generated by 7 = J~7F at non-singular
configurations.

Decentralized PD control can be directly implemented
in the joint space by the following equation:

T=Kqé,+ Kpe,

Feed Forward Control The reduce the performance
limitations of simple PD control, the control effort may
be enforced with a feed forward wrench given by

F=Fpat+Fyy
in which

fff = Kgé, —|—er;¢
+M(X)X g+ C( X4, Xa) X4+ G(Xy)

where M , C and G are estimation of the dynamic
matrices.
This controller can be implemented in joint space as
follows

T =Tpd + Tff

= Kqé,+ Kpe, + J T Fyy

Inverse Dynamics Control In the inverse dynam-
ics control, the nonlinear dynamics of the model is used
to add a corrective term to the decentralized PD con-
troller. If such a structure is implemented in the task
space, the control effort is calculated by

F=MX)a+CX, X)X + G(X)
a = Xd+Kdéx —|—er$

In general, the tracking error dynamics can be repre-
sented by

This controller can be implemented in the joint space
as follows: . . .
T=Mya,+Cyq+ G,
ag = da + Kdéq + erq

by which the tracking error dynamics is summarized as

e+ Kaég+Kpeq+ M [MyG+ Cog+ Gy + 74 =0

Partial Linearization IDC To reduce the computa-
tional cost of the inverse dynamic control, it is possible
to use partial linearization of dynamic formulation, just
by gravity compensation, while keeping asymptotic
tracking stability of the closed-loop system. In which
a case, the control input wrench in the task space is
simplified to

F=Kjé, + Kpe, + G(X)
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The following Lyapunov function may be used to ana-
lyze the stability of tracking dynamics of the closed-loop
system:

V=x"Mx+ 5AfTM;\f + el K e,

Stability analysis of the closed-loop system in this case
reveals the fact that this simplified version of inverse
dynamics control can lead to asymptotic tracking for
constant desired trajectories.

Robust Inverse Dynamics Control To accommo-
date modeling uncertainties in inverse dynamic control,
the following robust control scheme in the task space is
developed:

F=MX)a, +C(X. X)X +G(X)

a, =X, + Kyé, + Kye, + 3,
in which the robustifying corrective term ¢, is found
through a Lyapunov stability analysis of tracking er-
ror dynamics. The tracking error dynamics can be

represented by the following linear and nonlinear com-
ponents:

4=k ) 2l

The corrective term d, can be found as

5 {—plgl iffo] > ¢
—p?ifflo] < e
in which v is defined by v = BT Pe, where P is the
solution to the matrix Lyapunov equation and € is a
smoothing threshold. It is shown that by adding this
corrective term to the regular inverse dynamics con-
trol, the closed-loop system achieves uniform ultimate
bounded tracking errors.

Adaptive Inverse Dynamics Control In the adap-
tive version of the inverse dynamics control, full feed-
back linearization is considered through adaptive up-
date of dynamic formulation matrices. The error dy-
namics in this case is

é = Ae + B®O

in which

A= Lom, ke 2]
=M 'YX X X)
Based on the Lyapunov stability analysis, by using the
following Lyapunov function
V =¢"Pe+0"T0
the following parameter adaptation law is derived for
updates )
6=-1"'8"B"Pe
By this means, the closed-loop system achieves asymp-

totic tracking performance, while the parameter esti-
mation errors remain bounded.



6.7 Motion Control of the Stewart-

Gough Platform

a Control in the Task space

For the Stewart-Gough platform, the motion variable
in the task space is a six-dimensional vector

_ |Tp
with:

e x, = [z, yp 2p)7 is the position vector of the
motion platform center of mass

o 0=0[s; sy s:|T =0, 0, 0,]7 is the moving plat-
form orientation expressed by screw coordinates

Therefore, the tracking error is defined as e
lex ey e ea, €p, eo.]T.

The decentralized controller consists of six disjoint
proportional derivative controllers acting on each error
component and is denoted by Kgs + K.

The output of the controller is denoted by
F = [F, F, F. 7, 7, .]T. Note that since the
output of the controller is defined in the task space,
each wrench component directly manipulates the
corresponding tracking error component, and therefore,
the overall tracking performance of the manipulator is
suitable is high controller gains are used.

In practice, the calculated output wrench is transformed
into actuator forces through the force distribution block
corresponding to the inverse of Jacobian transpose.

b Control in the Joint space

The joint variable g(t) is a six-dimensional vec-
tor consisting of the limb lengths denoted by
q =[l1 l5 I3 14 I5 lg]". Therefore, the tracking error is
defined as e, = qq — g, in which is the desired motion
variable in the joint space qg is determined by the
solution of inverse kinematics, and q is given by direct
measurement of the limb lengths.

The decentralized controller, therefore, consists of six
disjoint PD controllers acting on each error component.
The output of the controller directly generates the
actuator torques denoted by 7.

In simulation, it is observe that the orientation error
significantly increase in the joint space control scheme.
The main reason is that the controller gains directly
penalize the position error of the limb lengths, and not
the orientation errors, and therefore, there is no direct
controller action to be suitably tuned to reduce the
orientation error.
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Comparing the closed-loop performance of the PD con-
trollers designed in the joint space to those designed
in the task space, it can be concluded that tuning
of the PD gains for a suitable performance is
much easier in task space designs. Furthermore,
a very small error signature in the joint space may be
accumulated to produce relatively larger tracking er-
rors in the task space. Hence, it is recommended to
design and implement controllers in the task space, if
the required motion variables can be directly measured
or the forward kinematic solution can be calculated in
an online routine.



7 Force Control

7.1 Introduction

In many applications, it may occur that the robot mov-
ing platform is in contact with a stiff environment and
specific interacting wrench is required. In such
applications, the contact wrench describes the state
of interaction more effectively than the position and
orientation of the moving platform.

Force Control

The problem of force control can be described as
to derive the actuator forces required to generate
a prescribed desired wrench at the manipulator
moving platform, when the manipulator is car-
rying out its desired motion.

This problem and its extents are treated in the force
control algorithms described in this chapter. A
force control strategy is one that modifies position
trajectories based on the sensed wrench, or force-motion
relations.

If a pure motion control scheme is used for ma-
nipulator, in case it contacts an environment, the
robot does not sense the presence of the environment,
and its driving forces become harshly high to reduce
the tracking errors. In such a case, the robot may
break the object it is in contact or will break its
internal structure.  Additional sensors should be
included in the manipulator in order for it to be able
to feel the interaction and to control the interacting
forces. Different wrench sensors are developed for
such applications, and it is possible to use joint
torque or link force measurement units to determine
the projection of the interacting forces in the joint space.

The use of wrench sensors either in the task space or
in the joint space open horizons to use different force
control topologies for the manipulators. Using such
sensors does not imply that regular motion sensors
used in motion control schemes are not necessary. The
use of motion sensors and the usual corresponding
control topologies are usually necessary, since the
motion of the manipulator is one of the outputs to be
controlled. Depending on the type and configuration of
the wrench sensors, different force control topologies
are developed.

7.2 Controller Topology

For a force control scheme, the desired interacting
wrench of the moving platform and the environment
may be of interest. This quantity may be denoted
by F 4, which has the same dimension and structure
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of the manipulator wrench F. To carry out such a
control task in a closed-loop structure, it is necessary
to measure the output wrench of the manipulator
through an instrumentation system.

Although there are many commercial six-degrees-of-
freedom wrench sensors available in the market, they
are usually more expensive than single joint force mea-
surement units. Another alternative for force mea-
surement is direct measurement of the actuator
forces. Many commercial linear actuators are available
in the market in which embedded force measure-
ment is considered in their design. Therefore, it might
be preferable in some applications to use direct actuator
force measurements to carry out the feedback control.

a Cascade Control

In a general force control scheme, the prime objec-
tive is tracking of the interacting wrench between the
moving platform and the environment. However, note
that the motion control of the robot when the robot
is in interaction with the environment is also another
less-important objective and when the contact of
the robot moving platform is released, motion control
becomes the prime objective.

Cascade Control

To follow two objectives with different proper-
ties in one control system, usually a hierarchy
of two feedback loops is used in practice. This
kind of control topology is called cascade con-
trol, which is used when there are several mea-
surements and one prime control variable.
Cascade control is implemented by nesting the
control loops, as shown in Figure 27. The out-
put control loop is called the primary loop,
while the inner loop is called the secondary loop
and is used to fulfill a secondary objective in the
closed-loop system.

N 4 Primary

controller

Secondary
controller

n,
]—-{ System ¥a

Oulet Ioop

Figure 27 — Block diagram of a closed-loop system with
cascade control

The measured variables are here the motion and
interacting wrench that may be measured in the task
space or in the joint space, and therefore, different
control topologies may be advised for each set of



measurement variables.

To improve the performance of the control system for
a particular objective, it is important to choose the
right variables for internal and external feed-
back loops, and to design suitable controllers for
each feedback system. Although these differ in differ-
ent topologies described in the following sections, some
general rules are applied to design a well performing
cascade control system.

A general idea in cascade control design is the ideal
case, in which the inner loop is designed so tight that
the secondary (inner) loop behaves as a perfect servo,
and responds very quickly to the internal control com-
mand. This idea is effectively used in many applications,
wherein a nearly-perfect actuator to respond to the re-
quested commands is designed by using an inner control
feedback.

Design criteria - Inner loop

The design criteria for the inner loop is to have a
high control gain such that the time response of
the secondary variable is at least 5 times more
than that of the primary variable, and such
that it can overcome the effect of disturbances
and unmodelled dynamics in the internal
feedback structure.

It is also necessary to have a well-defined relation be-
tween the primary and secondary variables, to have
harmony in the objectives followed in the primary and
secondary loops.

b Force Feedback in Outer Loop

Consider the force control schemes, in which force
tracking is the prime objective. In such a case,
it is advised that the outer loop of cascade control
structure is constructed by wrench feedback, while
the inner loop is based on position feedback. Since
different types of measurement units may be used in
parallel robots, different control topologies may be
constructed to implement such a cascade structure.

Consider first the cascade control topology shown in
Figure 28 in which the measured variables are both
in the task space. The inner loop is constructed by
position feedback while the outer loop is based on force
feedback. As seen in Figure 28, the force controller
block is fed to the motion controller, and this might be
seen as the generated desired motion trajectory
for the inner loop.

The output of motion controller is also designed in the
task space, and to convert it to implementable actuator
force T, the force distribution block is considered in
this topology.

Other alternatives for force control topology may be
suggested based on the variations of position and force
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Figure 28 — Cascade topology of force feedback control:
position in inner loop and force in outer loop.
Mowing platform wrench F and motion
variable X are measured in the task space

measurements. If the force is measured in the joint
space, the topology suggested in Figure 29 can be used.
In this topology, the measured actuator force vector 7
is mapped into its corresponding wrench in the task
space by the Jacobian transpose mapping F = JT 7

L
f&l F.
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controller controller distribution Arafiel robo
Figure 29 — Cascade topology of force feedback control:
position in inner loop and force in outer loop.

Actuator forces T and motion variable X are
measured

T

A

Consider the case where the force and motion variables
are both measured in the joint space. Figure 30 sug-
gests the force control topology in the joint space, in
which the inner loop is based on measured motion vari-
able in the joint space, and the outer loop uses the
measured actuator force vector. In this topology, it
is advised that the force controller is designed in the
task space, and the Jacobian transpose mapping is
used to project the measured actuator force vector into
its corresponding wrench in the task space. However,
as the inner loop is constructed in the joint space, the
desired motion variable X ; is mapped into joint space
using inverse kinematic solution.

Therefore, the structure and characteristics of the
position controller in this topology is totally different
from that given in the first two topologies.

L
l;
Force Inverse Position

x, y
controller kinematics controller rreral ) it

&

J"‘

Figure 30 — Cascade topology of force feedback control:
position in inner loop and force in outer loop.
Actuator forces T and joint motion variable q
are measured in the joint space



¢ Force Feedback in Inner Loop

Consider the force control scheme in which the motion-
force relation is the prime objective. In such a
case, force tracking is not the primary objective, and
it is advised that the outer loop of cascade control
structure consists of a motion control feedback.

Since different type of measurement units may be used
in parallel robots, different control topologies may be
constructed to implement such cascade controllers.

Figure 31 illustrates the cascade control topology for
the system in which the measured variables are both in
the task space (F and X’). The inner loop is loop is
constructed by force feedback while the outer loop is
based on position feedback. By this means, when the
manipulator is not in contact with a stiff environment,
position tracking is guaranteed through the primary
controller. However, when there is interacting wrench
F. applied to the moving platform, this structure
controls the force-motion relation. This configuration
may be seen as if the outer loop generates a
desired force trajectory for the inner loop.

-‘FaJ ch
X

Position Force ‘ Enree - X
controller T Gl dlsuibu tion Parallel robot | F

Figure 31 — Cascade topology of force feedback control:
force in inner loop and position in outer loop.
Mowving platform wrench F and motion
variable X are measured in the task space

Other alternatives for control topology may be
suggested based on the variations of position and force
measurements. If the force is measured in the joint
space, control topology shown in Figure 32 can be used.
In such case, the Jacobian transpose is used to map
the actuator force to its corresponding wrench in the
task space.
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Figure 32 — Cascade topology of force feedback control:
force in inner loop and position in outer loop.
Actuator forces T and motion variable X are
measured

If the force and motion variables are both measured in
the joint space, the control topology shown in Figure 33
is suggested. The inner loop is based on the measured

actuator force vector in the joint space 7, and the
outer loop is based on the measured actuated joint
position vector q. In this topology, the desired motion
in the task space is mapped into the joint space using
inverse kinematic solution, and both the position
and force feedback controllers are designed in
the joint space. Thus, independent controllers for
each joint may be suitable for this topology.

.
q
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Figure 33 — Cascade topology of force feedback control:
force in inner loop and position in outer loop.
Actuator forces T and joint motion variable q
are measured in the joint space

7.3 Stiffness Control
a Single-Degree-of-Freedom Stiffness Control
b General Stiffness Control

c Stiffness Contorl of the Stewart-Gough Plat-
form

7.4 Direct Force Control

Figure 34 — Direct force control scheme, force feedback in
the outer loop and motion feedback in the inner
loop

7.5 Impedance Control

For the stiffness control and direct force control schemes,
it is observed that when the manipulator-moving
platform is in contact with a stiff environment, the
motion variable X and the interacting force variable F
are two dynamically dependent quantities.

In stiffness control, it is aimed to adjust the static
relation between these two quantities. In this scheme,
no force measurement is required, however, careful
design on the desired motion trajectory and PD
controller gains is needed to tune the stiffness property
of the interaction at steady stage.



In force control schemes, on the other hand, the force
tracking is the prime objective, and force measurement
is a stringent requirement to implement such schemes.

The main reason that the motion and force variables
are not being gable to be controlled independently
is that for an n-degrees-of-freedom manipulator,
only n-independent control inputs are available,
and therefore, only n-independent variables can be
controlled, while the force and motion quantities count
to 2n independent variables.

Impedance Control

The key idea behind impedance control
schemes, is to tune the dynamic relation be-
tween the force and the motion variables,
and not a hierarchy of tracking objectives in force
and in position variables. In this scheme, con-
trary to stiffness control schemes, both force
and position variables are measured and
used in the control structure.

The definition of mechanical impedance is given in
an analogy of the well-known electrical impedance defi-
nition as the relationship between the effort and
flow variables. Since this relation can be well deter-
mined in the frequency domain, the dynamical relation
of force and motion variable may be represented by
mechanical impedance. Impedance control schemes pro-
vide control topology to tune the mechanical impedance
of a system to a desired value. By this means, the force
and the motion variables are not controlled indepen-
dently, or in a hierarchy, but their dynamic relation
represented by mechanical impedance is suitably con-
trolled.

a Impedance

Impedance was first defined in electrical networks as
the measure of the opposition that an electrical circuit
presents to the passage of a current when a voltage is
applied. To generalize the impedance definition to
other disciplines, voltage is generalized to the effort
and current is generalized to the flow.

Impedance is a complex function defined as the ratio
of the Laplace transform of the effort to the Laplace
transform of the flow.

Impedance is usually denoted by Z(s) and it may be
represented by writing its magnitude and phase in the
form of |Z(s)| and £Z(s). The magnitude of the com-
plex impedance |Z| is the ratio of the effort amplitude
to that of the flow, while the phase /Z is the phase
shift by which the flow is ahead of the effort.

Mechanical Impedance - Definition

Mechanical Impedance is defined as the ratio of
the Laplace transform of the mechanical effort
to the Laplace transform of the mechanical flow:

F(s)
Z(s) = 114
5= (114)
in which effort in mechanical systems is repre-
sented by force F' and flow is represented by
velocity v.

Note that this definition is given for a single-degree-of-
freedom motion system. The motion can be generalized
to angular motion, in which the effort is represented by
torque, while the flow is represented by angular velocity.
Furthermore, the impedance may be generalized to
multiple-degrees-of-freedom system, in which for a
general spatial motion effort is represented by a wrench
F, while flow is represented by motion twist X.

Nevertheless, note that Laplace transform is only ap-
plicable for linear time invariant systems, and for a
parallel manipulator the dynamic formulation of which
is nonlinear, the concept of mechanical impedance may
be extended to the differential equation relating the
mechanical wrench F to motion twist A’

Example - RLC circuit

Consider an RLC circuit depicted in Figure 35.
The differential equation relating voltage v to
the current ¢ is given by

di b1
v=L—+ Ri —i(1)d
I + Ri + /0 - (r)dr
in which L denote the inductance, R the resis-
tance and C the capacitance.

The impedance of the system may be found from
the Laplace transform of the above equation:

Z(s):?(—s):[/s—i—R—i—é (115)

i(s)




Example - Mass-Spring-Damper

Consider the mass-spring-damper system de-
picted in Figure 35. The governing dynamic
formulation for this system is given by

mi+ct + kx = f

in which m denote the body mass, ¢ the damper
viscous coeflicient and k the spring stiffness.
The impedance of the system may be found from
the Laplace transform of the above equation:

f(s)

v(s)

(a) (b)
R C
W
v L

Z(s) = :m5+c+; (116)

Figure 35 — Analogy of electrical impedance in (a) an
electrical RLC circuit to (b) a mechanical
mass-spring-damper system

As inferred from the above two examples, although the
physical nature of the system may differ from each other,
they may be represented by similar impedances. From
this analogy, a terminology for impedance is introduced.

Impedance - Terminology

An impedance Z(s) is called

o Inductive if |[Z(0)| =0
o Resistive if |Z(0)| =R
o Capacitive if lims_, |K(s)| = oo

Hence, for the mechanical system represented in Figure
35:

e mass represents inductive impedance
e viscous friction represents resistive impedance
o spring stiffness represents capacitive impedance

The environments that a robot interacts with may be
represented by these classified impedance components.
A very stiff environment may be represented by high-
capacitive impedance models, whereas an environment
with high structural damping may be represented by
high-resitive impedance.

b Impedance Control Concept

The key idea behind impedance control schemes is to
tune the dynamic relation between force and motion
variables. Impedance control schemes provide control
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topology to tune the mechanical impedance of a system
toward a desired impedance.

A desired impedance could be adjusted by desired induc-
tive, resistive and capacitive impedances, which forms
a desired linear impedance for the closed-loop system
as follows:

1
Zd(s) = MdS + Cd + ;Kd

where Z; denotes the desired impedance of the closed-
loop system, which is composed of the desired induc-
tive impedance My, desired resistive impedance Cjy
and desired capacitive impedance K4. Impedance con-
trol structures may be used to tune the closed-loop
impedance of the system suitably to follow such a de-
sired impedance.

¢ Impedance Control Structure

Consider a parallel robot with multiple-degrees-of-
freedom interacting with a stiff environment. In such a
case, the motion of the robot end effector is represented
by the motion vector X, and the interacting wrench
applied to the robot end effector is denoted by F.. It
is considered that the interacting wrench is measured
in the task space and is used in the inner force feedback
loop. Furthermore, it is considered that the motion
variable X is measured and is used in the outer
feedback loop.

In the impedance control scheme, regulation of the
motion-force dynamic relation is the prime ob-
jective, and since force tracking is not the primary
objective, it is advised to used a cascade control struc-
ture with motion control feedback in the outer loop and
force feedback in the inner loop.

Therefore, when the manipulator is not in contact with
a stiff environment, position tracking is guaranteed
by a primary controller. However, when there is
an interacting wrench F. applied to the moving
platform, this structure may be designed to control the
force-motion dynamic relation.

As a possible impedance control scheme, consider the
closed-loop system depicted in Figure 36, in which the
position feedback is considered in the outer loop, while
force feedback is used in the inner loop. This structure is
advised when a desired impedance relation between the
force and motion variables is required that consists of
desired inductive, resistive, and capacitive impedances.
As shown in Figure 36, the motion-tracking error is
directly determined from motion measurement by e, =
X4 — X in the outer loop and the motion controller is
designed to satisfy the required impedance.

Moreover, direct force-tracking objective is not assigned
in this control scheme, and therefore the desired force
trajectory JF4 is absent in this scheme. However,
an auxiliary force trajectory F, is generated from
the motion control law and is used as the reference



for the force tracking. By this means, no prescribed
force trajectory is tracked, while the motion control
scheme would advise a force trajectory for
the robot to ensure the desired impedance
regulation.

JFI‘
Foree LT} b rallel robot
distribution

Figure 36 — Impedance control scheme; motion feedback in
the outer loop and force feedback in the inner
loop

The required wrench F in the impedance control
scheme, is based on inverse dynamics control and con-
sists of three main parts. In the inner loop, the force
control scheme is based on a feedback linearization part
in addition to a mass matrix adjustment, while in the
outer loop usually a linear motion controller is consid-
ered based on the desired impedance requirements.
Although many different impedance structures may be
considered as the basis of the control law, in Figure
36, a linear impedance relation between the force and
motion variables is generated that consists of desired
inductive My, resistive Cy and capacitive impedances
K,.

According to Figure 36, the controller output wrench
JF, applied to the manipulator may be formulated as

F = MMd_lep Jr]:fl
with:

er :fa —.Fm
Fo=MiX;+Cué, + Kge,

M, denotes the desired inductive impedance, Cy the
desired resistive impedance and K is desired capacitive
impedance matrices.

The feedback linearizing term is given by:

Fu=CX X)X +GX)+Fn

If the information on the dynamic matrices is complete,
and if the force measurements are noise free (F,, = F),
the closed-loop dynamic formulation simplifies to:

Mgé, + Cyé, + Kge, = F.

And thus the closed-loop error dynamic equation
satisfies a set of second-order systems with the
desired impedance coefficients in relation to the
interacting force. In other words, the control
structure guarantees that the force and motion
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relation follows a desired impedance. Therefore,
by choosing appropriate impedance matrices, the
transient performance of the force-motion relation can
be shaped so as to have a fast but stable interaction.
By this means, what is controlled is the dynamic
relation between the force and motion variables, and
not directly the position. However, if the robot is
moving freely in space and has no interaction with
the environment, F. = 0, the closed-loop system
will provide a suitable motion tracking thanks to the
motion controller in the outer loop.

The impedance control scheme is very popular in prac-
tice, wherein tuning the force and motion relation in
a robot manipulator interacting with a stiff environ-
ment is the prime objective. However, note that for a
good performance, an accurate model of the system is
required, and the obtained force and motion dynamics
are not robust to modeling uncertainty.
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