Sensor fusion for active vibration isolation in precision equipment
Contents
- Tags
- Sensor Fusion, Vibration Isolation
- Reference
- (Tjepkema {\it et al.}, 2012)
- Author(s)
- Tjepkema, D., Dijk, J. v., & Soemers, H.
- Year
- 2012
Relative motion Control
Control law: \(f = -G(x-w)\)
\[ \frac{x}{w} = \frac{k+G}{ms^2 + k+G} \] \[ \frac{x}{F} = \frac{1}{ms^2 + k+G} \]
Force Control
Control law: \(f = -G F_a = -G \left(f-k(x-w)\right)\)
\[ \frac{x}{w} = \frac{k}{(1+G)ms^2 + k} \] \[ \frac{x}{F} = \frac{1+G}{(1+G)ms^2 + k} \]
Inertial Control
Control law: \(f = -Gx\)
\[ \frac{x}{w} = \frac{k}{ms^2 + k+G} \] \[ \frac{x}{F} = \frac{1}{ms^2 + k+G} \]
Design constraints and control bandwidth
Heavier sensor => lower noise but it is harder to maintain collocation with the actuator => that limits the bandwidth. There is a compromise between sensor noise and the influence of the sensor size on the system’s design and on the control bandwidth.
Bibliography
Tjepkema, D., Dijk, J. v., & Soemers, H., Sensor fusion for active vibration isolation in precision equipment, Journal of Sound and Vibration, 331(4), 735–749 (2012). http://dx.doi.org/10.1016/j.jsv.2011.09.022 ↩