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Abstract
With the growing number of fourth generation light

sources, there is an increased need of fast positioning end-
stations with nanometric precision. Such systems are usually
including dedicated control strategies, and many factors may
limit their performances. In order to design such complex
systems in a predictive way, a mechatronics design approach
also known as “model based design”, may be utilized. In this
paper, we present how this mechatronics design approach
was used for the development of a nano-hexapod for the
ESRF ID31 beamline. The chosen design approach con-
sists of using models of the mechatronics system (including
sensors, actuators and control strategies) to predict its be-
havior. Based on this behavior and closed-loop simulations,
the elements that are limiting the performances can be iden-
tified and re-designed accordingly. This allows to make
adequate choices regarding the design of the nano-hexapod
and the overall mechatronics architecture early in the project
and therefore save precious time and resources. Several
test benches were used to validate the models and to gain
confidence on the predictability of the final system’s perfor-
mances. Measured nano-hexapod’s dynamics was shown to
be in very good agreement with the models. Further tests
should be done in order to confirm that the performances of
the system match the predicted one. The presented develop-
ment approach is foreseen to be applied more frequently to
future mechatronics system design at the ESRF.

INTRODUCTION
With the new 4th generation machines, there is an increas-

ing need of fast and accurate positioning systems [1].
These systems are usually including feedback control

loops and therefore their performances are not depending
on the mechanical system alone, but also on its interaction
with the actuators, sensors and control electronics.

In order to optimize the performances of such system,
it is essential to consider a design approach in which the
structural design and the control design are integrated. This
approach is called the “mechatronics approach” and was
shown to be very effective for the design many complex sys-
tems [2, 3]. Such design methodology was recently used for
the development of several systems used by the synchrotron
community [4–6].

In this paper, such approach is described for the design of
a Nano Active Stabilization System (NASS).
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NASS - MECHATRONICS APPROACH
The ID31 Micro-Station

The ID31 micro-station is used to position samples along
complex trajectories [7]. It is composed of several stacked
stages (represented in yellow in Fig. 1) which allows an high
mobility. This however limits the position accuracy to tens
of micrometers.

The Nano Active Stabilization System
The NASS is a system whose goal is to improve the po-

sitioning accuracy of the micro-station. It is represented in
Fig. 1 and consists of three main elements:

• A nano-hexapod located between the sample to be po-
sitioned and the micro-station

• An interferometric metrology system measuring the
sample’s position with respect to the focusing optics

• A control system (not represented), which based on the
measured position, properly actuates the nano-hexapod
in order to stabilize the sample’s position.

This system should be able to actively stabilize the sample
position down to tens of nanometers while the micro-station
is performing complex trajectories.
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Figure 1: NASS - Schematic representation. 1) Micro-
station, 2) Nano-hexapod, 3) Sample, 4) Metrology system

Mechatronics Approach - Overview
In order to design the NASS in a predictive way, a mecha-

tronics approach, schematically represented in Fig. 2, was
used.

It consists of three main phases:

1. Conceptual phase: Simple models of both the micro-
station and the nano-hexapod are used to first evalu-
ate the performances of several concepts. During this
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Figure 2: Overview of the mechatronics approach used for the design of the NASS.

phase, the type of sensors to use and the approximate
required dynamical characteristics of the nano-hexapod
are determined.

2. Detail design phase: Once the concept is validated, the
models are used to list specifications both for the me-
chanics and the instrumentation. Each critical elements
can then be properly designed. The models are updated
as the design progresses.

3. Experimental phase: Once the design is completed
and the parts received, several test benches are used
to verify the properties of the key elements. Then the
hexapod can be mounted and fully tested with the in-
strumentation and the control system.

Models
As shown in Fig. 2, the models are at the core of the

mechatronics approach. Indeed, several models are used
throughout the design with increasing level of complexity
(Fig. 3).

At the beginning of the conceptual phase, simple “mass-
spring-dampers” models (Fig. 3a) were used in order to
easily study multiple concepts. Noise budgeting and closed-
loop simulations were performed, and it was concluded that
a nano-hexapod with low frequency “suspension” modes
would help both for the reduction of the effects of distur-
bances and for the decoupling between the nano-hexapod
dynamics and the complex micro-station dynamics. I was
found that by including a force sensor in series with the
nano-hexapod’s actuators, “Integral Force Feedback” (IFF)
strategy could be used to actively damp the nano hexapod’s
resonances without impacting the high frequency distur-
bance rejection. The overall goal was to obtain a “plant”
dynamics which is easy to control in a robust way.

Rapidly, a more sophisticated and more realistic multi-
body model (Fig. 3b) using Simscape [8] was used. This
model was based on the 3D representation of the micro-
station as well as on extensive dynamical measurements.
Time domain simulations were performed with every stage
of the micro-station moving and the nano hexapod actively
stabilizing the sample against the many disturbances. The

multi-body model permitted to study effects such as the
coupling between the actuators and the sensors as well as the
effect of the spindle’s rotational speed on the nano-hexapod’s
dynamics [9]. The multi-input multi-output control strategy
could be developed and tested.

During the detail design phase, the nano-hexapod model
was updated using 3D parts exported from the CAD software
as the mechanical design progressed. The key elements of
the nano-hexapod such as the flexible joints and the APA
were optimized using a Finite Element Analysis (FEA) Soft-
ware. As the flexible modes of the mechanics are what
generally limit the controller bandwidth, they are important
to model in order to understand which modes are problem-
atic and should be addressed. To do so, a “super-element”
can be exported using a FEA software and imported into the
multi-body model (Fig. 3c). Such process is described in
[10]. The multi-body model with included flexible elements
can be used to very accurately estimate the dynamics of the
system. However due to the large number of states included,
it becomes unpractical to perform time domain simulations.

Finally, during the experimental phase, the models were
refined using experimental system identification data. At
this phase of the development, models are still useful. They
can help with the controller optimization, to understand the
measurements, the associated performance limitations and to
gain insight on which measures to take in order to overcome
these limitations.

For instance, it has been found that when fixing the en-
coders to the struts, as in Fig. 4a, several flexible modes of
the APA were appearing in the dynamics which would ren-
der the control using the encoders very complex. Therefore,
an alternative configuration with the encoders fixed to the
plates was used instead.

NANO-HEXAPOD DESIGN

Nano-Hexapod Specifications
The nano-hexapod is a fully parallel manipulator also

called “Gough-Stewart platform”. It is composed of few
parts as shown in Fig. 4a: only two plates linked by 6 active
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Figure 3: Schematic of several models used during all the mechatronics design process.

struts. Each strut has one rotational joint at each end, and
one actuator in between (Fig. 4b).

The main benefits of this architecture are its compact de-
sign, good dynamical properties, high load capability over
weight ratio, and to possibility to control the motion in 6
degrees of freedom. The nano-hexapod should have a maxi-
mum height of 95𝑚𝑚, support samples up to 50 𝑘𝑔, have
a stroke of ≈ 100 𝜇𝑚 and be fully compliant to avoid any
wear, backlash, play and to have predictable dynamics.

Based on the models used throughout the mechatronics
approach, several specifications were added in order to max-
imize the performances of the system:

• Actuator axial stiffness ≈ 2 N/µm as it is a good trade-
off between disturbance filtering and dynamic decou-
pling from the micro-station.

• Flexible joint bending stiffness < 100 Nm/rad as high
bending stiffness can limit IFF performances [11].

• Flexible joint axial stiffness > 100 N/µm to maximum
the frequency of spurious resonances.

• Precise positioning of the 𝑏𝑖 and 𝑠𝑖 to accurately deter-
mine the hexapod’s kinematics.

• Flexible modes of the top-plate as high as possible as
it can limit the controller bandwidth.

• Integration of a force sensor in series with each actuator
for active damping purposes.

Parts Optimization
During the detail design phase, several parts were opti-

mized to fit the above specifications.
The flexible joint geometry was optimized using a finite

element software while the top plate geometry was manually
optimized to maximize its flexible modes.

Amplified Piezoelectric Actuators (APA) were found to
be the most suitable actuator for the nano-hexapod due to
its compact size, large stroke and adequate stiffness. The
chosen model was the APA300ML from Cedrat Technolo-
gies (shown in Fig. 4b). It is composed of three piezo-
electric stacks, a lever mechanism increasing the stroke
up to ≈ 300 µm and decreasing the axial stiffness down
to ≈ 1.8 µm. One of the three stacks can be used as a force
sensor, at the price of loosing 1/3 of the stroke. This has

the benefits of providing good “collocation” between the
sensor stack and the actuator stacks, meaning that the active
damping controller will easily be made robust [12].

Nano-Hexapod Mounting
Using the multi-body model of the nano-hexapod with

the APA modeled as a flexible element, it was found that a
misalignment between the APA and the two flexible joints
was adding several resonances to the plant that were diffi-
cult to control. Therefore, a bench was developed to help
the alignment the flexible joints and the APA during the
mounting of the struts.

A second mounting tool was used to fix the six struts to the
two plates without inducing too much strain in the flexible
joints. The mounted nano-hexapod is shown in Fig. 5.

TEST-BENCHES
Flexible Joints and Instrumentation

Before mounting the nano-hexapod and going control
tests, several test benches were used to characterize the indi-
vidual elements of the system.

The bending stiffness of the flexible joints was measured
by applying a controlled force to one end of the joint while
measuring its deflection at the same time. This helped ex-
clude few of them that were not compliant with the require-
ment and pair the remaining ones.

The transfer function from the input to the output voltage
of the voltage amplifier1 as well as its output noise were mea-
sured. Similarly, the measurement noise of the encoders2

was also measured.
These simple measurements on individual elements were

useful to refine their models, to found any problem as early as
possible, and to help analyzing the results obtained when the
the nano-hexapod is mounted and all the elements combined.

APA and Struts Dynamics
An other test bench schematically shown in Fig. 6 was

used to identify the dynamics of the APA. It consist of a 5 kg
1 PD200 from PiezoDrive
2 Vionic from Renishaw
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granite fixed on top of the APA and vertical guided with an
air bearing. An excitation signal (low pass filtered white
noise) was generated and applied to two of the piezoelectric
stacks. Both the voltage generated by the third piezoelectric
stack and the displacement measured by the encoder were
recorded. The two obtained frequency response functions
(FRF) are compared with the model in Fig. 7.

The piezoelectric constants describing the conversion
from the mechanical domain (force, strain), easily accessible
on the model, to the electrical domain (voltages, charges)
easily measured can be estimated. With these constants, the
match between the measured FRF and the model dynamics
is very good (Fig. 7).

The same bench was also used with the struts in order to
study the added effects of the flexible joints.

Nano-Hexapod
After the nano-hexapod was mounted, its dynamics was

identified by individually exciting each of the actuators and
simultaneously recording the six force sensors and six en-
coders signals. Two 6 by 6 FRF matrices were computed.
Their diagonal elements are shown in Fig. 8 and compared
with the model.

In Fig. 8a one can observe the following modes:

• From 100 Hz to 200 Hz: six suspension modes.
• At 230 Hz and 340 Hz: flexible modes of the APA, also

modeled thanks to the flexible model of the APA.
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Figure 6: Schematic of the bench used to identify the APA
dynamics
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(a) Encoder 𝑑𝑒/𝑉𝑎 (b) Force sensor 𝑉𝑠/𝑉𝑎
Figure 7: Measured Frequency Response functions com-
pared with the Simscape model. From the actuator stacks
voltage to the encoder (a) and to the force sensor stack (b).

• At 700 Hz: flexible modes of the top plate. The model
is not matching the FRF because a rigid body was used.

The transfer functions from the actuators to their “col-
located” force sensors have alternating poles and zeros
(Fig. 8b) as expected. IFF was then applied individually
on each pair of actuator/force sensor in order to actively



damp the suspension modes. The optimal gain of the IFF
controller was determined using the model. After applying
the active damping technique, the 6 by 6 FRF matrix from
the actuator to the encoders was identified again and shown
in Fig. 9. It is shown that all the suspension modes are
critically damped, and that the model is able to predict the
closed-loop behavior of the system. Even the off-diagonal el-
ements (effect of one actuator on the encoder fixed to another
strut) is very well modeled (Fig. 9b).

(a) Encoder 𝑑L𝑖/𝑢𝑖
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(b) Force sensor 𝑉𝑠𝑖/𝑢𝑖
Figure 8: Comparison of the measured Frequency Response
functions (FRF) with the Simscape model. From the ex-
citation voltage to the associated encoder (a) and to the
associated force sensor stack (b).

(a) Diagonal term (b) Off-Diagonal term

Figure 9: Transfer functions from actuator to encoder with
and without the active damping technique applied.

CONCLUSION
The mechatronics approach used for the development of

a nano active stabilization system was presented. Such ap-
proach allowed to design the system in a predictive and
optimal way.

Measurements made on the nano-hexapod were found to
match very well with the models indicating that the final
performances should match the predicted one. The current
performance limitation is coming from the flexible modes
of the top platform, so future work will focus on overcoming
this limitation.

This design methodology can be easily transposed to other
complex mechatronics systems and are foreseen to be applied
for future mechatronics systems at the ESRF.
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