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Abstract
With the growing number of fourth generation light

sources, there is an increased need of fast positioning end-
stations with nanometric precision. Such systems are usually
including dedicated control strategies, and many factors may
limit their performances. In order to design such complex
systems in a predictive way, a mechatronic design approach
also known as “model based design”, may be utilized. In
this paper, we present how this mechatronic design approach
was used for the development of a nano-hexapod for the
ESRF ID31 beamline. The chosen design approach consists
of using models of the mechatronic system (including sen-
sors, actuators and control strategies) to predict its behavior.
Based on this behavior and closed-loop simulations, the ele-
ments that are limiting the performances can be identified
and re-designed accordingly. This allows to make adequate
choices concerning the design of the nano-hexapod and the
overall mechatronic architecture early in the project and save
precious time and resources. Several test benches were used
to validate the models and to gain confidence on the pre-
dictability of the final system’s performances. Measured
nano-hexapod’s dynamics was shown to be in very good
agreement with the models. Further tests should be done in
order to confirm that the performances of the system match
the predicted one. The presented development approach is
foreseen to be applied more frequently to future mechatronic
system design at the ESRF.
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Figure 1: Nano Active Stabilization System - Schematic rep-
resentation. 1) micro-station, 2) nano-hexapod, 3) sample,
4) metrology system
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Figure 2: Overview of the mechatronic approach
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(a) Mass Spring Damper model (b) Multi Body model
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(c) Finite Element Model

Figure 3: Models used during all the design process. From (a), (b), (c)
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Figure 4: CAD view of the nano-hexapod with key elements
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Figure 5: Picture of a nano-hexapod’s strut

Figure 6: Picture of the Nano-Hexapod on top of the ID31
micro-station

Air Bearing

APA300ML
Actuator

Sensor

Encoder

Figure 7: Schematic of the bench used to identify the APA
dynamics

(a) Encoder (b) Force Sensor

Figure 8: Measured Frequency Response functions com-
pared with the Simscape model. From the actuator stacks
voltage to the encoder (a) and to the force sensor stack (b).
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Figure 9: HAC-LAC Strategy - Block Diagram. The signals
are: 𝒓 the wanted sample’s position, 𝑿 the measured sam-
ple’s position, 𝝐X the sample’s position error, 𝝐L the sample
position error expressed in the “frame” of the nano-hexapod
struts, 𝒖 the generated DAC voltages applied to the voltage
amplifiers and then to the piezoelectric actuator stacks, 𝒖′

the new inputs corresponding to the damped plant, 𝝉 the
measured sensor stack voltages. 𝑻 is . 𝑲𝐼 𝐹𝐹 is the Low
Authority Controller used for active damping. 𝑲L is the
High Authority Controller.
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Figure 10: Measured FRF and Simscape identified dynam-
ics.



Figure 11: Undamped and Damped plant using IFF (mea-
sured FRF and Simscape model).
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