Mechatronics Approach for the Development of a Nano-Active-Stabilization-System MEDSI2020, July 26-29, 2021

Dehaeze Thomas, Bonnefoy Julien and Collette Christophe

¹European Synchrotron Radiation Facility, Grenoble, France

²Precision Mechatronics Laboratory, University of Liege, Belgium

³BEAMS Department, Free University of Brussels, Belgium

ESRF The European Sunchrotore

The ID31 Micro Station

Objective: Position samples along complex trajectories with high precision **Stacked Positioning Stages**: $\approx 10\,\mu m$ precision limited by stages vibrations, thermal effects, ground motion, ...

Introduction - The Nano Active Stabilization System

Objective: Improve the position accuracy from $\approx 10 \,\mu m$ down to $\approx 10 \,nm$ **Design approach**: "Model based design" (extensive use of models and test benches)

The Nano-Hexapod - Why such mechanical architecture?

- Why stewart architecture
 - 6 DoF to control / 6 actuators
- Only flexible elements
 - no backlash
 - no play
- How it is working
 - Jacobian matrix both for actuation and sensing
- Forward / Inverse kinematics : meaning. Easy to compute for small displacements
- □ Schematic of Stewart platform

Stewart Platforms Architecture

figs/stewart

Definition of the Geomtry

- a_i : position of the attachment points on the fixed base
- *b_i*: position of moving attachment points
- l_i : length of each limb
- \$\hat{s}_i\$: unit vector representing the direction of each limb

Stewart Platform Architecture - Kinematics

\$\mathcal{L} = [l_1, l_2, \ldots, l_6]^T\$: vector of actuated joint coordinates
\$\mathcal{X} = [A \mathcal{P}, A \hat{\mathcal{s}}]^T\$: vector of platform motion variables

$$\begin{array}{c} \mathcal{X} \xrightarrow[]{\text{Inverse Kinematics}} \mathcal{L} \\ \mathcal{L} \xrightarrow[]{\text{Forward Kinematics}} \mathcal{X} \\ \hline \end{array}$$

For small displacements: Jacobian matrix

$$m{J} = egin{bmatrix} \hat{m{s}}_1^T & (m{b}_1 imes \hat{m{s}}_1)^T \ \hat{m{s}}_2^T & (m{b}_2 imes \hat{m{s}}_2)^T \ \hat{m{s}}_3^T & (m{b}_3 imes \hat{m{s}}_3)^T \ \hat{m{s}}_4^T & (m{b}_4 imes \hat{m{s}}_4)^T \ \hat{m{s}}_5^T & (m{b}_5 imes \hat{m{s}}_5)^T \ \hat{m{s}}_6^T & (m{b}_6 imes \hat{m{s}}_6)^T \end{bmatrix}$$

$$\delta \mathcal{L} = I \delta \mathcal{X}$$
⁶

1000

Analogies

Granite

Analogies			
Room		Granite	
Laser		X-ray	
3 peoples		Nano-Hexapod	
Candle		Sample	

Analogies		
Room	Granite	
Laser	X-ray	
3 peoples	Nano-Hexapod	
Candle	Sample	

Overview of the Mechatronic Approach - Model Based Design

Outline