Mechatronics Approach for the Development of a Nano-Active-Stabilization-System MEDSI2020, July 26-29, 2021

Dehaeze Thomas, Bonnefoy Julien and Collette Christophe

¹European Synchrotron Radiation Facility, Grenoble, France

²Precision Mechatronics Laboratory, University of Liege, Belgium

³BEAMS Department, Free University of Brussels, Belgium

Precision Mechatronics Laboratory

The ID31 Micro Station

Introduction - The Nano Active Stabilization System

Objective: Improve the position accuracy from $\approx 10\,\mu m$ down to $\approx 10\,nm$ **Design approach**: "Model based design" / "Predictive Design"

Overview of the Mechatronic Approach - Model Based Design

Outline - Conceptual Phase

Feedback Control - The Control Loop

Why Feedback?

- Model uncertainties
- Unknown disturbances

Every elements can limit the performances

- Drivers, Actuators, Sensors
- Mechanical System
- Controller

Noise Budgeting and Required Control Bandwidth

Limitation of the Controller Bandwidth?

Limitation of the Controller Bandwidth?

Limitation of the Controller Bandwidth?

Soft or Stiff ν -hexapod ? Interaction with the μ -station

Soft or Stiff ν -hexapod ? Interaction with the μ -station

Complexity of the Micro-Station Dynamics (Model Analysis)

Control Strategy: HAC-LAC

Low Authority Control

- Collocated sensors/actuators
- Guaranteed Stability
- Adds damping
- \searrow vibration near resonances

High Authority Control

- Position sensors
- Complex dynamics
- \searrow vibration in the bandwidth
- Use transformation matrices

Multi-Body Models - Simulations

Outline - Detail Design Phase

Nano-Hexapod Overview - Key elements

General Specifications

- Flexible modes as high as possible
- Only flexible elements (no backlash, play, etc.)
- Integrated Force Sensor and Displacement Sensor
- Predictable dynamics

Choice of Actuator and Flexible Joint Design

Characteristic	Specs	Doc.
Axial Stiff.	$\approx 2 N/\mu m$	1.8 N/µm
Sufficient Stroke	>100 µm	368 µm
Height	<50 mm	30 mm
High Resolution	<5 nm	3 nm

Fig.: Picture of the APA300ML

Characteristic	Specs	FEM	
Axial Stiff.	$>100 \text{ N}/\mu m$	94	
Bending Stiff.	$<\!100Nm/rad$	5	
Torsion Stiff.	<500 Nm/rad	260	
Bending Stroke	>1 mrad	20	

Fig.: Picture of the joint

Instrumentation

Characteristics	Manual
Gain	20
Noise	0.7 mV rms
Small Signal BW	7.4 kHz
Large Signal BW	300 Hz

Fig.: Renishaw - Vionic Encoder

Characteristics	Manual
Range Resolution Sub-Divisional Error Bandwidth	Ruler length 2.5 nm $<\pm15$ nm >5 kHz

Fig.: Speedgoat - Target Machine

Characteristics	Manual
ADC (×16) DAC (×8) Digital I/O (×30) Sampling Freq.	$egin{array}{llllllllllllllllllllllllllllllllllll$

All elements could be chosen/design based on the models

Outline - Experimental Phase

Flexible Joints - Measurements

Amplified Piezoelectric Actuator - Test Bench

Amplified Piezoelectric Actuator - Extracted Model

Amplified Piezoelectric Actuator - Integral Force Feedback

21/30

Strut - Mounting Tool

Strut - Dynamical Measurements

Goals

- Identify Dynamics
- Tune Model
- Flexible joints effects
- Encoder effect

Strut - Encoders Output and Spurious Modes

Nano-Hexapod Mounting Tool

Mounted Nano-Hexapod

Nano-Hexapod - Identified Dynamics

Nano-Hexapod - Damped Dynamics

The Nano-Hexapod on top of the Micro-Station

The Nano-Hexapod on top of the Micro-Station

Conclusion

Mechatronics Approach:

- Use of several models
- Predictive design
- Beneficial in terms of: cost, delays, performances

Future Work:

- Optimal/Robust control
- Control Test Bench
- Implementation on ID31

Many thanks to

Philipp Brumund, Ludovic Ducotte Jose-Maria Clement, Marc Lesourd

Youness Benyakhlef, Pierrick Got Damien Coulon and the whole team