% Created 2021-07-27 mar. 08:42 % Intended LaTeX compiler: pdflatex \documentclass[aspectratio=169, t]{clean-beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{grffile} \usepackage{longtable} \usepackage{wrapfig} \usepackage{rotating} \usepackage[normalem]{ulem} \usepackage{amsmath} \usepackage{textcomp} \usepackage{amssymb} \usepackage{capt-of} \usepackage{hyperref} \usepackage[most]{tcolorbox} \usepackage{bm} \usepackage{booktabs} \usepackage{tabularx} \usepackage{array} \usepackage{siunitx} \usepackage{mathtools} \author[shortname]{Thomas Dehaeze \inst{1,2}, Julien Bonnefoy \inst{1} and Christophe Collette \inst{2,3}} \institute[shortinst]{\inst{1} European Synchrotron Radiation Facility, Grenoble, France \and % \inst{2} Precision Mechatronics Laboratory, University of Liege, Belgium \and % \inst{3} BEAMS Department, Free University of Brussels, Belgium} \titlegraphic{\includegraphics[height=1.5cm]{figs/logo_pml_full.pdf} \hspace{5em} % \includegraphics[height=1.5cm]{figs/logo_esrf.pdf} \hspace{5em} % \includegraphics[height=1.5cm]{figs/logo_medsi.jpg}} \beamertemplatenavigationsymbolsempty \addtobeamertemplate{navigation symbols}{}{% \usebeamerfont{footline}% \usebeamercolor[fg]{footline}% \hspace{1em}% \insertframenumber/\inserttotalframenumber } \setlength{\leftmargini}{5pt} \setbeamertemplate{itemize items}[circle] \usefonttheme[onlymath]{serif} \makeatletter \preto\Gin@extensions{png,} \DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf} \makeatother \setbeamertemplate{bibliography item}[text] \DeclareSIUnit\rms{rms} \usetheme{default} \date{} \title{Mechatronics Approach for the Development of a Nano-Active-Stabilization-System} \subtitle{MEDSI2020, July 26-29, 2021} \hypersetup{ pdfauthor={}, pdftitle={Mechatronics Approach for the Development of a Nano-Active-Stabilization-System}, pdfkeywords={}, pdfsubject={}, pdfcreator={Emacs 27.2 (Org mode 9.5)}, pdflang={English}} \begin{document} \maketitle \section*{Introduction} \label{sec:orgdabb222} \begin{frame}[label={sec:org75433ab}]{The ID31 Micro Station} \begin{center} \includegraphics[scale=1,width=0.95\linewidth]{figs/micro_hexapod_render.pdf} \end{center} \begin{tikzpicture}[remember picture,overlay] \node[anchor=north east] at (current page.north east){% \includegraphics[width=2em]{figs/icon_animation.pdf}}; \end{tikzpicture} \end{frame} \begin{frame}[label={sec:orga898a71}]{Introduction - The Nano Active Stabilization System (NASS)} \textbf{Objective}: Improve the position accuracy from \(\approx 10\,\mu m\) down to \(\approx 10\,nm\) \newline \textbf{Design approach}: ``Model based design'' / ``Predictive Design'' \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass-concept.red.pdf} \end{center} \end{frame} \begin{frame}[label={sec:org9574917}]{Overview of the Mechatronic Approach - Model Based Design} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png} \end{center} \end{frame} \section{Conceptual Phase} \label{sec:org62eb09b} \begin{frame}[label={sec:orgd53fdb4}]{Outline - Conceptual Phase} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_conceptual_phase.pdf} \end{center} \end{frame} \begin{frame}[label={sec:orgf99643e}]{Feedback Control - The Control Loop} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/classical_feedback_schematic.png} \end{center} \vspace{-1em} \begin{columns} \begin{column}{0.4\columnwidth} \begin{tcolorbox}[title=Why Feedback?] \begin{itemize} \item Model uncertainties \item Unknown disturbances \end{itemize} \end{tcolorbox} \end{column} \begin{column}{0.6\columnwidth} \begin{tcolorbox}[title=Every elements can limit the performances] \begin{itemize} \item Drivers, Actuators, Sensors \item Mechanical System \item Controller \end{itemize} \end{tcolorbox} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:orge603014}]{Noise Budgeting and Required Control Bandwidth} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/identification_control_noise_budget.red.pdf} \end{center} \end{frame} \begin{frame}[label={sec:org1a8d575}]{Limitation of the Controller Bandwidth?} \begin{columns} \begin{column}{0.6\columnwidth} \vspace{-2em} \only<1>{ \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_1_classical.pdf} \end{center} }\only<2>{ \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/control_bandwidth_2_above_res.pdf} \end{center} } \end{column} \begin{column}{0.4\columnwidth} \vspace{-2em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa_simple.pdf} \end{center} \only<1>{ \begin{tcolorbox}[title=Typical Approach, fontupper=\small] ``As stiff as possible'' \newline Simple controller (e.g. PID) \end{tcolorbox} }\only<2>{ \begin{tcolorbox}[title=Alternative Approach, fontupper=\small] Limited by complex dynamics\newline Model based controller \end{tcolorbox} } \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:org239155a}]{Soft or Stiff \(\nu\text{-hexapod}\) ? Interaction with the \(\mu\text{-station}\)} \vspace{-3em} \begin{columns} \begin{column}{0.3\columnwidth} \onslide<1->{ \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_example_uncertainty_support_only_hexapod.pdf} \end{center} }\onslide<2->{ \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_example_uncertainty_support.pdf} \end{center} } \end{column} \begin{column}{0.7\columnwidth} \onslide<1->{ \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_example_alone_b.pdf} \end{center} \vspace{-2em} }\onslide<2->{ \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_example_support_uncertainty_d_L_b.pdf} \end{center} } \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:orgeb9ee99}]{Complexity of the Micro-Station Dynamics (Model Analysis)} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=0.95\linewidth]{figs/modes_annotated.png} \end{center} \begin{tikzpicture}[remember picture,overlay] \node[anchor=north east] at (current page.north east){% \includegraphics[width=2em]{figs/icon_animation.pdf}}; \end{tikzpicture} \end{frame} \begin{frame}[label={sec:orgb8ddd28}]{Control Strategy: HAC-LAC} \vspace{-0.5em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_schematic_test.pdf} \end{center} \vspace{-2.0em} \begin{columns} \begin{column}{0.5\columnwidth} \begin{tcolorbox}[title=Low Authority Control] \begin{itemize} \item Collocated sensors/actuators \item Guaranteed Stability, simple \(K\) \item Adds damping \item \(\searrow\) vibration near resonances \end{itemize} \end{tcolorbox} \end{column} \begin{column}{0.5\columnwidth} \begin{tcolorbox}[title=High Authority Control] \begin{itemize} \item Position sensors \item Complex dynamics \item Use transformation matrices \item \(\searrow\) vibration in the bandwidth \end{itemize} \end{tcolorbox} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:org0579a05}]{Multi-Body Models - Simulations} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/simscape_simulation.jpg} \end{center} \begin{tikzpicture}[remember picture, overlay] \node[align=left, anchor=south east, text width=5.5cm,shift={(-1em, 1em)}] at (current page.south east){% \begin{tcolorbox} \begin{center} Validation of the concept \end{center} \end{tcolorbox}}; \end{tikzpicture} \begin{tikzpicture}[remember picture,overlay] \node[anchor=north east] at (current page.north east){% \includegraphics[width=2em]{figs/icon_animation.pdf}}; \end{tikzpicture} \end{frame} \section{Detail Design Phase} \label{sec:orga9ae877} \begin{frame}[label={sec:org1b0984d}]{Outline - Detail Design Phase} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_detailed_phase.pdf} \end{center} \end{frame} \begin{frame}[label={sec:org1f20e49}]{Nano-Hexapod Overview - Key elements} \vspace{-1.5em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_elements.red.pdf} \end{center} \begin{tcolorbox}[title=General Specifications, sidebyside] \begin{itemize} \item Flexible modes as high as possible \item Only flexible elements (no backlash, play, etc.) \end{itemize} \tcblower \begin{itemize} \item Integrated Force Sensor and Displacement Sensor \item Predictable dynamics \end{itemize} \end{tcolorbox} \end{frame} \begin{frame}[label={sec:orge2a3011}]{Choice of Actuator and Flexible Joint Design} \vspace{-2em} \begin{columns} \begin{column}{0.5\columnwidth} \scriptsize \begin{center} \begin{tabularx}{0.8\linewidth}{ccc} \toprule \textbf{Characteristic} & \textbf{Specs} & \textbf{Doc.}\\ \midrule Axial Stiff. & \SI{\approx 2}{\newton/\micro\meter} & \SI{1.8}{\newton/\micro\meter}\\ Sufficient Stroke & \SI{> 100}{\micro\meter} & \SI{368}{\micro\meter}\\ Height & \SI{< 50}{\milli\meter} & \SI{30}{\milli\meter}\\ High Resolution & \SI{< 5}{\nano\meter} & \SI{3}{\nano\meter}\\ \bottomrule \end{tabularx} \end{center} \normalsize \vspace{-1em} \begin{figure}[htbp] \centering \includegraphics[scale=1,width=0.9\linewidth]{figs/apa300ml_picture.jpg} \caption{Picture of the APA300ML} \end{figure} \end{column} \begin{column}{0.5\columnwidth} \scriptsize \begin{center} \begin{tabularx}{0.9\linewidth}{cccc} \toprule \textbf{Characteristic} & \textbf{Specs} & \textbf{FEM}\\ \midrule Axial Stiff. & \SI{> 100}{\newton/\micro\meter} & 94\\ Bending Stiff. & \SI{< 100}{\newton\meter/\radian} & 5\\ Torsion Stiff. & \SI{< 500}{\newton\meter/\radian} & 260\\ Bending Stroke & \SI{> 1}{\milli\radian} & 20\\ \bottomrule \end{tabularx} \end{center} \normalsize \vspace{-1em} \begin{figure}[htbp] \centering \includegraphics[scale=1,width=0.9\linewidth]{figs/flexible_joint_picture.jpg} \caption{Picture of the joint} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:orgc5a1632}]{Instrumentation} \vspace{-1em} \begin{columns} \begin{column}{0.33\columnwidth} \begin{figure}[htbp] \centering \includegraphics[scale=1,height=2.2cm]{figs/amplifier_PD200.jpg} \caption{PiezoDrive - PD200 Amplifier} \end{figure} \vspace{-1em} \tiny \begin{center} \begin{tabularx}{0.75\linewidth}{lc} \toprule \textbf{Characteristics} & \textbf{Manual}\\ \midrule Gain & \num{20}\\ Noise & \SI{0.7}{\milli\volt\rms}\\ Small Signal BW & \SI{7.4}{\kilo\hertz}\\ Large Signal BW & \SI{300}{\hertz}\\ \bottomrule \end{tabularx} \end{center} \normalsize \end{column} \begin{column}{0.33\columnwidth} \begin{figure}[htbp] \centering \includegraphics[scale=1,height=2.2cm]{figs/encoder_vionic.jpg} \caption{Renishaw - Vionic Encoder} \end{figure} \vspace{-1em} \tiny \begin{center} \begin{tabularx}{0.85\linewidth}{lc} \toprule \textbf{Characteristics} & \textbf{Manual}\\ \midrule Range & Ruler length\\ Resolution & \SI{2.5}{\nano\meter}\\ Sub-Divisional Error & \SI{<\pm 15}{\nano\meter}\\ Bandwidth & \SI{>5}{kHz}\\ \bottomrule \end{tabularx} \end{center} \normalsize \end{column} \begin{column}{0.33\columnwidth} \begin{figure}[htbp] \centering \includegraphics[scale=1,height=2.2cm]{figs/Speedgoat-Performance-Real-Time-Target-Machine.jpg} \caption{Speedgoat - Target Machine} \end{figure} \vspace{-1em} \tiny \begin{center} \begin{tabularx}{0.8\linewidth}{lc} \toprule \textbf{Characteristics} & \textbf{Manual}\\ \midrule ADC (x16) & 16bit, \SI{\pm 10}{V}\\ DAC (x8) & 16bit, \SI{\pm 10}{V}\\ Digital I/O (x30) & \SI{<\pm 15}{\nano\meter}\\ Sampling Freq. & \SI{>10}{kHz}\\ \bottomrule \end{tabularx} \end{center} \normalsize \end{column} \end{columns} \vspace{1em} \begin{tcolorbox} \begin{center} All elements could be chosen/design based on the models \end{center} \end{tcolorbox} \end{frame} \section{Experimental Phase} \label{sec:org000fc13} \begin{frame}[label={sec:org5a3d17b}]{Outline - Experimental Phase} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach_experimental_phase.red.pdf} \end{center} \end{frame} \begin{frame}[label={sec:orge94eaf3}]{Flexible Joints - Measurements} \vspace{-2em} \begin{columns} \begin{column}{0.45\columnwidth} \begin{center} \includegraphics[scale=1,width=0.95\linewidth]{figs/received_flexible_joints.jpg} \end{center} \begin{center} \includegraphics[scale=1,width=0.95\linewidth]{figs/flexible_joint_bench.pdf} \end{center} \end{column} \begin{column}{0.55\columnwidth} \begin{center} \includegraphics[scale=1,width=0.9\linewidth]{figs/flex_joint_meas_example_F_d_lin_fit.pdf} \end{center} \begin{tcolorbox}[title=Other Measurement Benches] \begin{itemize} \item Amplifier Output Noise and Bandwidth \item Encoder Measurement Noise \item DAC Output Noise \end{itemize} \end{tcolorbox} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:org518f2db}]{Amplified Piezoelectric Actuator - Test Bench} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa300ml.red.pdf} \end{center} \begin{tikzpicture}[remember picture, overlay] \node[align=left, anchor=north east, text width=4.5cm] at (current page.north east){% \begin{tcolorbox}[title=Goals] \begin{itemize} \item Identify Dynamics \item Tune APA Model \item Test IFF \end{itemize} \end{tcolorbox}}; \end{tikzpicture} \end{frame} \begin{frame}[label={sec:org749c413}]{Amplified Piezoelectric Actuator - Measured FRF and Extracted Model} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/apa_comp_model_frf.pdf} \end{center} \end{frame} \begin{frame}[label={sec:org1d672c7}]{Amplified Piezoelectric Actuator - Integral Force Feedback} \vspace{-3em} \begin{columns} \begin{column}{0.62\columnwidth} \vspace{1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/test_bench_apa300ml_iff.pdf} \end{center} \[ K_{\text{IFF}}(s) = \frac{g}{s} \] \end{column} \begin{column}{0.38\columnwidth} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/iff_results_apa95ml.pdf} \end{center} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:org7b5008c}]{Strut - Mounting Tool} \vspace{-2.5em} \begin{columns} \begin{column}{0.63\columnwidth} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/image_mounting_strut_bench.JPG} \end{center} \end{column} \begin{column}{0.37\columnwidth} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/mounted_strut_picture.jpg} \end{center} \begin{tikzpicture}[remember picture,overlay] \node[anchor=north east] at (current page.north east){% \includegraphics[width=2em]{figs/icon_animation.pdf}}; \end{tikzpicture} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:orgc1ecd2e}]{Strut - Dynamical Measurements} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/test_bench_strut.red.pdf} \end{center} \begin{tikzpicture}[remember picture, overlay] \node[align=left, anchor=north east, text width=5cm] at (current page.north east){% \begin{tcolorbox}[title=Goals] \begin{itemize} \item Identify Dynamics \item Tune Model \item Flexible joints effects \item Encoder effect \end{itemize} \end{tcolorbox}}; \end{tikzpicture} \end{frame} \begin{frame}[label={sec:org8ce2d42}]{Strut - Encoders Output and Spurious Modes} \vspace{-3em} \begin{columns} \begin{column}{0.43\columnwidth} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/frf_struts_enc_int.pdf} \end{center} \end{column} \begin{column}{0.57\columnwidth} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/meas_spur_res_struts_2_encoder.jpg} \end{center} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/mode_shapes_annotated.pdf} \end{center} \begin{tikzpicture}[remember picture,overlay] \node[anchor=north east] at (current page.north east){% \includegraphics[width=2em]{figs/icon_animation.pdf}}; \end{tikzpicture} \end{column} \end{columns} \end{frame} \begin{frame}[label={sec:orgb6be716}]{Nano-Hexapod Mounting Tool} \begin{center} \includegraphics[scale=1,width=0.9\linewidth]{figs/nano_hexapod_mounting.JPG} \end{center} \begin{tikzpicture}[remember picture,overlay] \node[anchor=north east] at (current page.north east){% \includegraphics[width=2em]{figs/icon_animation.pdf}}; \end{tikzpicture} \end{frame} \begin{frame}[label={sec:org281520e}]{Mounted Nano-Hexapod} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/mounted_nano_hexapod_picture.jpg} \end{center} \end{frame} \begin{frame}[label={sec:org351990a}]{Nano-Hexapod - Identified Dynamics (Diagonal elements)} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_enc_iff_bode_plot.pdf} \end{center} \end{frame} \begin{frame}[label={sec:org18b6334}]{Nano-Hexapod - Damped Dynamics} \vspace{-1em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nano_hexapod_damped_bode_plot.pdf} \end{center} \end{frame} \begin{frame}[label={sec:org79d4d53}]{The Nano-Hexapod on top of the Micro-Station} \vspace{-0.5em} \only<1>{ \begin{center} \includegraphics[scale=1,width=0.85\linewidth]{figs/nano_hexapod_id31.jpg} \end{center} }\only<2>{ \begin{center} \includegraphics[scale=1,width=0.85\linewidth]{figs/nano_hexapod_id31_zoom.jpg} \end{center} } \end{frame} \section{Conclusion} \label{sec:org5c1e008} \begin{frame}[label={sec:orgd50b8eb}]{Conclusion} \begin{columns} \begin{column}{0.4\columnwidth} \textbf{Mechatronics Approach}: \begin{itemize} \item Use of several models \item Predictive design \item Beneficial in terms of: cost, delays, performances \end{itemize} \vspace{0.5em} \textbf{Future Work}: \begin{itemize} \item Optimal/Robust control \item Control Test Bench \item Implementation on ID31 \end{itemize} \end{column} \begin{column}{0.6\columnwidth} \vspace{-3em} \begin{center} \includegraphics[scale=1,width=\linewidth]{figs/nass_ref_tracking_results.pdf} \end{center} \end{column} \end{columns} \begin{tcolorbox}[title=Many thanks to, sidebyside] Philipp Brumund, Ludovic Ducotte\newline Jose-Maria Clement, Marc Lesourd \tcblower Youness Benyakhlef, Pierrick Got\newline Damien Coulon and the whole team \end{tcolorbox} \end{frame} \end{document}