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The ID31 Micro Station
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Introduction - The Nano Active Stabilization System
Objective: Improve the position accuracy from ≈ 10µm down to ≈ 10nm
Design approach: “Model based design” / “Predictive Design”
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Overview of the Mechatronic Approach - Model Based Design
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Extensive use of models for:
• Extraction of transfer functions
• Choice of appropriate control architecture
• Tuning of control laws
• Closed loop simulations
• Noise budgets / Evaluation of performances
• Sensibility to parameters / disturbances

Models are at the core the mecatronic approach!
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Outline - Conceptual Phase
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Feedback Control - The Control Loop

Plant

Controller Driver Actuator Mechanical
System Sensor
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Why Feedback?

• Model uncertainties
• Unknown disturbances

Every elements can limit the performances

• Drivers, Actuators, Sensors
• Mechanical System
• Controller
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Noise Budgeting and Required Control Bandwidth

Dynamical Identification 

Disturbance Measurements
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Limitation of the Controller Bandwidth?
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Limitation of the Controller Bandwidth?
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Limitation of the Controller Bandwidth?
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Soft or Stiff ν-hexapod ? Interaction with the µ-station
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Soft or Stiff ν-hexapod ? Interaction with the µ-station
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Complexity of the Micro-Station Dynamics (Model Analysis)
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Control Strategy: HAC-LAC
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• Collocated sensors/actuators
• Guaranteed Stability
• Adds damping
• ↘ vibration near resonances

High Authority Control

• Position sensors
• Complex dynamics
• ↘ vibration in the bandwidth
• Use transformation matrices
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Multi-Body Models - Simulations

Validation of the concept
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Outline - Detail Design Phase
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Nano-Hexapod Overview - Key elements
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Include Flexible Elements in a Multi-Body model
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Choice of Actuator - Amplifier Piezoelectric Actuator
Characteristic Specs Doc.

Axial Stiff. ≈1 N/µm 1.8 N/µm
Sufficient Stroke >100 µm 368 µm

Height <50 mm 30 mm
High Resolution <5 nm 3 nm

Fig.: Picture of the APA300ML

Fig.: 2-DoF Model

Actuator Stacks

Sensor Stack

Fig.: APA Finite Element Model

Fig.: Flexible Modes due to limited APA stiffness
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Flexible Joints - Specifications and Optimization (link)
Goal Stiffness Specs FEM Measured

High DVF Damping Axial >100 N/µm 94
Low Coupling Bending <100 Nm/rad 5 3.8
Low Coupling Torsion <500 Nm/rad 260

Sufficient Stroke Bending Stroke >1 mrad 20 18

Fig.: Dimensions after
optimization

Re
fer
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ce

Fixed Orientation

Mechanical Stop

Precise Positioning

Fig.: Positioning of the top joint

Axial
Stiffness

X Bending
& Torsional

Stiffness
Y Bending
Stiffness

Fig.: Simscape Model

https://research.tdehaeze.xyz/test-bench-nass-flexible-joints/
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Instrumentation
• PD200 amplifier
• Encoders
• Speedgoat, DAC, ADC
• PEPU
• Attocube
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Outline - Experimental Phase
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Flexible Joints - Measurements

Linear Stage

Clamps

Force Sensor

Flexible Joint

Displacement Sensor

Fig.: Measurement bench

Fig.: Measured displacement and force
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Amplified Piezoelectric Actuator - Test Bench
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• Identify Dynamics
• Tune APA Model
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Amplified Piezoelectric Actuator - Extracted Model
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Amplified Piezoelectric Actuator - Integral Force Feedback
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Strut - Mounting Tool
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Strut - Dynamical Measurements
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Strut - Encoders Output and Spurious Modes
Strut 1

Strut 2

200Hz

290Hz

380Hz



27/34

Strut - Extracted Model
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Nano-Hexapod Mounting Tool
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Mounted Nano-Hexapod
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Nano-Hexapod - Identified Dynamics
Diagonal + off-diagonal transfer function from Va to De (comp with model)
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Nano-Hexapod - Force Sensors
Diagonal + off-diagonal transfer function from Va to Vs
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Nano-Hexapod - Damped Dynamics
Damped and Undamped, Diagonal + off-diagonal transfer function from Va to De
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The Nano-Hexapod on top of the Micro-Station
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The Nano-Hexapod on top of the Micro-Station
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Conclusion
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