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The ID31 Micro Station

X-ray
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Introduction - The Nano Active Stabilization System (NASS)
Objective: Improve the position accuracy from ≈ 10µm down to ≈ 10nm
Design approach: “Model based design” / “Predictive Design”
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Overview of the Mechatronic Approach - Model Based Design
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Outline - Conceptual Phase

Help choosing the right concept
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Feedback Control - The Control Loop
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Why Feedback?

• Model uncertainties
• Unknown disturbances

Every elements can limit the performances

• Drivers, Actuators, Sensors
• Mechanical System
• Controller
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Noise Budgeting and Required Control Bandwidth

Dynamical Identification 

Disturbance Measurements

Mass-Spring-Damper Model Noise Budgeting
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Limitation of the Controller Bandwidth?
Interferometer

Air Bearing

APA300ML
Actuator

Typical Approach

“As stiff as possible”
Simple controller (e.g. PID)
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Limitation of the Controller Bandwidth?
Interferometer

Air Bearing

APA300ML
Actuator

Alternative Approach

Limited by complex dynamics
Model based controller
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Soft or Stiff ν-hexapod ? Interaction with the µ-station
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Soft or Stiff ν-hexapod ? Interaction with the µ-station
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Complexity of the Micro-Station Dynamics (Model Analysis)
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Control Strategy: HAC-LAC

Inverse
Kinematics

SpeedGoat

Compute
the sample
"pose" error
in the frame

of the 
nano-hexapod

Amplifier Force
Sensors

Metrology

Low Authority Control

• Collocated sensors/actuators
• Guaranteed Stability, simple K
• Adds damping
• ↘ vibration near resonances

High Authority Control

• Position sensors
• Complex dynamics
• Use transformation matrices
• ↘ vibration in the bandwidth
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Multi-Body Models - Simulations

Validation of the concept
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Outline - Detail Design Phase

Help the proper design of each element
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Nano-Hexapod Overview - Key elements
Top flexible Joint

Amplified
Piezoelectric

Actuator

Encoder

Ruler support

Top plate

Bottom plate

Strut

Bot Flexible Joint

95mm

General Specifications

• Flexible modes as high as possible
• Only flexible elements (no backlash,
play, etc.)

• Integrated Force Sensor and
Displacement Sensor
• Predictable dynamics
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Choice of Actuator and Flexible Joint Design
Characteristic Specs Doc.

Axial Stiff. ≈2 N/µm 1.8 N/µm
Sufficient Stroke >100 µm 368 µm

Height <50 mm 30 mm
High Resolution <5 nm 3 nm

Fig.: Picture of the APA300ML

Characteristic Specs FEM

Axial Stiff. >100 N/µm 94
Bending Stiff. <100 Nm/rad 5
Torsion Stiff. <500 Nm/rad 260
Bending Stroke >1 mrad 20

Fig.: Picture of the joint



16/30

Instrumentation

Fig.: PiezoDrive - PD200 Amplifier

Characteristics Manual

Gain 20
Noise 0.7 mV rms
Small Signal BW 7.4 kHz
Large Signal BW 300 Hz

Fig.: Renishaw - Vionic Encoder

Characteristics Manual

Range Ruler length
Resolution 2.5 nm
Sub-Divisional Error < ± 15 nm
Bandwidth >5 kHz

Fig.: Speedgoat - Target Machine

Characteristics Manual

ADC (x16) 16bit, ±10 V
DAC (x8) 16bit, ±10 V
Digital I/O (x30) < ± 15 nm
Sampling Freq. >10 kHz

All elements could be chosen/design based on the models
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Outline - Experimental Phase

Help with the design of the controllers
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Flexible Joints - Measurements

Linear Stage

Clamps

Force Sensor

Flexible Joint

Displacement Sensor Other Measurement Benches

• Amplifier Output Noise and Bandwidth
• Encoder Measurement Noise
• DAC Output Noise
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Amplified Piezoelectric Actuator - Test Bench
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Goals

• Identify Dynamics
• Tune APA Model
• Test IFF
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Amplified Piezoelectric Actuator - Measured FRF and Extracted Model

Encoder Output Force Sensor Output
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Amplified Piezoelectric Actuator - Integral Force Feedback
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Strut - Mounting Tool
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Strut - Dynamical Measurements
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Goals

• Identify Dynamics
• Tune Model
• Flexible joints effects
• Encoder effect
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Strut - Encoders Output and Spurious Modes

Encoder Output

Interferometer
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Nano-Hexapod Mounting Tool



26/30

Mounted Nano-Hexapod
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Nano-Hexapod - Identified Dynamics (Diagonal elements)
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Nano-Hexapod - Damped Dynamics
Diagonal Elements Off-diagonal Elements
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The Nano-Hexapod on top of the Micro-Station
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The Nano-Hexapod on top of the Micro-Station
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Conclusion
Mechatronics Approach:
• Use of several models
• Predictive design
• Beneficial in terms of: cost,
delays, performances

Future Work:
• Optimal/Robust control
• Control Test Bench
• Implementation on ID31
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