diff --git a/paper/dehaeze21_mechatronics_approach_nass.org b/paper/dehaeze21_mechatronics_approach_nass.org index b3125e2..1600f29 100644 --- a/paper/dehaeze21_mechatronics_approach_nass.org +++ b/paper/dehaeze21_mechatronics_approach_nass.org @@ -110,7 +110,7 @@ In order to design the NASS in a predictive way, a mechatronic approach, schemat #+name: fig:nass_mechatronics_approach #+attr_latex: :float multicolumn :width 0.9\linewidth -#+caption: Overview of the mechatronic approach +#+caption: Overview of the mechatronic approach used for the design of the NASS [[file:figs/nass_mechatronics_approach.pdf]] It consists of three main phases: @@ -136,7 +136,7 @@ Indeed, several models are used throughout the design with increasing level of c \hfill \begin{subfigure}[t]{0.48\linewidth} \centering - \includegraphics[width=0.89\linewidth]{figs/nass_simscape_3d.png} + \includegraphics[width=0.89\linewidth]{figs/nass_simscape_3d.pdf} \caption{\label{fig:nass_simscape_3d} Multi Body Model} \end{subfigure} \hfill @@ -180,12 +180,25 @@ Therefore, an alternative configuration with the encoders fixed to the plates wa ** Nano-Hexapod Specifications The nano-hexapod should have a maximum height of $95\,mm$, support samples up to $50\,kg$ and have a stroke of $\approx 100\,\mu m$. Has shown in Fig.\nbsp{}ref:fig:nano_hexapod_elements, it only has few parts: two plates and 6 active struts in between. -Each strut is composed of one flexible joint at each end, and one actuator in between (Fig.\nbsp{}ref:fig:picture_nano_hexapod_strut). +Each strut is composed of one flexible joint at each end, and one actuator in between (Fig.\nbsp{}ref:fig:nano_heaxpod_strut_picture). -#+name: fig:nano_hexapod_elements -#+attr_latex: :float multicolumn :width 0.9\linewidth -#+caption: CAD view of the nano-hexapod with key elements -[[file:figs/nano_hexapod_elements.pdf]] +#+begin_export latex +\begin{figure*}[htbp] + \begin{subfigure}[t]{0.80\linewidth} + \centering + \includegraphics[width=\linewidth]{figs/nano_hexapod_elements.pdf} + \caption{\label{fig:nano_hexapod_elements} CAD view of the nano-hexapod with key elements} + \end{subfigure} + \hfill + \begin{subfigure}[t]{0.19\linewidth} + \centering + \includegraphics[width=0.95\linewidth]{figs/nano_heaxpod_strut_picture.pdf} + \caption{\label{fig:nano_heaxpod_strut_picture} Mounted strut} + \end{subfigure} + \caption{\label{fig:nano_hexapod}Nano-hexapod} + \centering +\end{figure*} +#+end_export Based on the models used throughout the mechatronic approach, several specifications was obtained in order to maximize the performances of the system: - Actuator: axial stiffness $\approx \SI{2}{N/\um}$. @@ -202,16 +215,11 @@ The top plate geometry was manually optimized to maximize its flexible modes. First flexible modes at around $\SI{700}{Hz}$ could be obtained. Amplified Piezoelectric Actuators (APA) were found to be the most suitable actuator for the nano-hexapod due to its compact size, large stroke and adequate stiffness. -The chosen model was the APA300ML from Cedrat Technologies (shown in Fig.\nbsp{}ref:fig:picture_nano_hexapod_strut). +The chosen model was the APA300ML from Cedrat Technologies (shown in Fig.\nbsp{}ref:fig:nano_heaxpod_strut_picture). It is composed of three piezoelectric stacks, a lever mechanism increasing the stroke up to $\approx \SI{300}{\um}$ and decreasing the axial stiffness down to $\approx \SI{1.8}{\um}$. One of the three stacks can be used as a force sensor, at the price of loosing $1/3$ of the stroke. This has the benefits providing good "collocation" between the sensor stack and the actuator stacks, meaning that the active damping controller will easily be made robust cite:souleille18_concep_activ_mount_space_applic. -#+name: fig:picture_nano_hexapod_strut -#+attr_latex: :width 0.9\linewidth -#+caption: Picture of a nano-hexapod's strut -[[file:figs/picture_nano_hexapod_strut.pdf]] - ** Nano-Hexapod Mounting A bench were developed to help the mounting of the struts such that the APA and the two flexible joints are well aligned. This helped reducing the effects of flexible modes of the APA. @@ -223,7 +231,7 @@ The nano-hexapod fixed on top of the micro-station is shown in Fig.\nbsp{}ref:fi #+name: fig:nano_hexapod_picture #+attr_latex: :width 0.9\linewidth #+caption: Nano-hexapod on top of the ID31 micro-station -[[file:figs/nano_hexapod_picture.jpg]] +[[file:figs/nano_hexapod_picture.pdf]] * TEST-BENCHES ** Flexible Joints and Instrumentation diff --git a/paper/dehaeze21_mechatronics_approach_nass.pdf b/paper/dehaeze21_mechatronics_approach_nass.pdf index 22870f4..9cdb197 100644 Binary files a/paper/dehaeze21_mechatronics_approach_nass.pdf and b/paper/dehaeze21_mechatronics_approach_nass.pdf differ diff --git a/paper/dehaeze21_mechatronics_approach_nass.tex b/paper/dehaeze21_mechatronics_approach_nass.tex index 6e27753..47090eb 100644 --- a/paper/dehaeze21_mechatronics_approach_nass.tex +++ b/paper/dehaeze21_mechatronics_approach_nass.tex @@ -1,4 +1,4 @@ -% Created 2021-07-15 jeu. 17:26 +% Created 2021-07-15 jeu. 21:33 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, keeplastbox, biblatex, boxit]{jacow} @@ -72,7 +72,7 @@ In order to design the NASS in a predictive way, a mechatronic approach, schemat \begin{figure*} \centering \includegraphics[scale=1,width=0.9\linewidth]{figs/nass_mechatronics_approach.pdf} -\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach} +\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the design of the NASS} \end{figure*} It consists of three main phases: @@ -99,7 +99,7 @@ Indeed, several models are used throughout the design with increasing level of c \hfill \begin{subfigure}[t]{0.48\linewidth} \centering - \includegraphics[width=0.89\linewidth]{figs/nass_simscape_3d.png} + \includegraphics[width=0.89\linewidth]{figs/nass_simscape_3d.pdf} \caption{\label{fig:nass_simscape_3d} Multi Body Model} \end{subfigure} \hfill @@ -142,12 +142,22 @@ Therefore, an alternative configuration with the encoders fixed to the plates wa \subsection{Nano-Hexapod Specifications} The nano-hexapod should have a maximum height of \(95\,mm\), support samples up to \(50\,kg\) and have a stroke of \(\approx 100\,\mu m\). Has shown in Fig.~\ref{fig:nano_hexapod_elements}, it only has few parts: two plates and 6 active struts in between. -Each strut is composed of one flexible joint at each end, and one actuator in between (Fig.~\ref{fig:picture_nano_hexapod_strut}). +Each strut is composed of one flexible joint at each end, and one actuator in between (Fig.~\ref{fig:nano_heaxpod_strut_picture}). -\begin{figure*} -\centering -\includegraphics[scale=1,width=0.9\linewidth]{figs/nano_hexapod_elements.pdf} -\caption{\label{fig:nano_hexapod_elements}CAD view of the nano-hexapod with key elements} +\begin{figure*}[htbp] + \begin{subfigure}[t]{0.80\linewidth} + \centering + \includegraphics[width=\linewidth]{figs/nano_hexapod_elements.pdf} + \caption{\label{fig:nano_hexapod_elements} CAD view of the nano-hexapod with key elements} + \end{subfigure} + \hfill + \begin{subfigure}[t]{0.19\linewidth} + \centering + \includegraphics[width=0.95\linewidth]{figs/nano_heaxpod_strut_picture.pdf} + \caption{\label{fig:nano_heaxpod_strut_picture} Mounted strut} + \end{subfigure} + \caption{\label{fig:nano_hexapod}Nano-hexapod} + \centering \end{figure*} Based on the models used throughout the mechatronic approach, several specifications was obtained in order to maximize the performances of the system: @@ -167,17 +177,11 @@ The top plate geometry was manually optimized to maximize its flexible modes. First flexible modes at around \(\SI{700}{Hz}\) could be obtained. Amplified Piezoelectric Actuators (APA) were found to be the most suitable actuator for the nano-hexapod due to its compact size, large stroke and adequate stiffness. -The chosen model was the APA300ML from Cedrat Technologies (shown in Fig.~\ref{fig:picture_nano_hexapod_strut}). +The chosen model was the APA300ML from Cedrat Technologies (shown in Fig.~\ref{fig:nano_heaxpod_strut_picture}). It is composed of three piezoelectric stacks, a lever mechanism increasing the stroke up to \(\approx \SI{300}{\um}\) and decreasing the axial stiffness down to \(\approx \SI{1.8}{\um}\). One of the three stacks can be used as a force sensor, at the price of loosing \(1/3\) of the stroke. This has the benefits providing good ``collocation'' between the sensor stack and the actuator stacks, meaning that the active damping controller will easily be made robust \cite{souleille18_concep_activ_mount_space_applic}. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1,width=0.9\linewidth]{figs/picture_nano_hexapod_strut.pdf} -\caption{\label{fig:picture_nano_hexapod_strut}Picture of a nano-hexapod's strut} -\end{figure} - \subsection{Nano-Hexapod Mounting} A bench were developed to help the mounting of the struts such that the APA and the two flexible joints are well aligned. This helped reducing the effects of flexible modes of the APA. @@ -188,7 +192,7 @@ The nano-hexapod fixed on top of the micro-station is shown in Fig.~\ref{fig:nan \begin{figure}[htbp] \centering -\includegraphics[scale=1,width=0.9\linewidth]{figs/nano_hexapod_picture.jpg} +\includegraphics[scale=1,width=0.9\linewidth]{figs/nano_hexapod_picture.pdf} \caption{\label{fig:nano_hexapod_picture}Nano-hexapod on top of the ID31 micro-station} \end{figure} diff --git a/paper/figs/nano_heaxpod_strut_picture.pdf b/paper/figs/nano_heaxpod_strut_picture.pdf new file mode 100644 index 0000000..634abbd Binary files /dev/null and b/paper/figs/nano_heaxpod_strut_picture.pdf differ diff --git a/paper/figs/nano_heaxpod_strut_picture.svg b/paper/figs/nano_heaxpod_strut_picture.svg new file mode 100644 index 0000000..8e7f370 Binary files /dev/null and b/paper/figs/nano_heaxpod_strut_picture.svg differ diff --git a/paper/figs/nano_hexapod_elements.pdf b/paper/figs/nano_hexapod_elements.pdf index 96848e8..bdd1e8b 100644 Binary files a/paper/figs/nano_hexapod_elements.pdf and b/paper/figs/nano_hexapod_elements.pdf differ diff --git a/paper/figs/nano_hexapod_elements.svg b/paper/figs/nano_hexapod_elements.svg index 926e465..70b2e9b 100644 Binary files a/paper/figs/nano_hexapod_elements.svg and b/paper/figs/nano_hexapod_elements.svg differ diff --git a/paper/figs/nano_hexapod_picture.jpg b/paper/figs/nano_hexapod_picture.pdf similarity index 86% rename from paper/figs/nano_hexapod_picture.jpg rename to paper/figs/nano_hexapod_picture.pdf index e03ed72..f0d8126 100644 Binary files a/paper/figs/nano_hexapod_picture.jpg and b/paper/figs/nano_hexapod_picture.pdf differ diff --git a/paper/figs/nano_hexapod_picture.svg b/paper/figs/nano_hexapod_picture.svg new file mode 100644 index 0000000..04abb1b Binary files /dev/null and b/paper/figs/nano_hexapod_picture.svg differ diff --git a/paper/figs/nass_mechatronics_approach.pdf b/paper/figs/nass_mechatronics_approach.pdf index 535ec4f..e35415f 100644 Binary files a/paper/figs/nass_mechatronics_approach.pdf and b/paper/figs/nass_mechatronics_approach.pdf differ diff --git a/paper/figs/nass_mechatronics_approach.png b/paper/figs/nass_mechatronics_approach.png index be6c64c..d0efa14 100644 Binary files a/paper/figs/nass_mechatronics_approach.png and b/paper/figs/nass_mechatronics_approach.png differ diff --git a/paper/figs/nass_mechatronics_approach.svg b/paper/figs/nass_mechatronics_approach.svg index d096b9b..0dbdc4d 100644 Binary files a/paper/figs/nass_mechatronics_approach.svg and b/paper/figs/nass_mechatronics_approach.svg differ diff --git a/paper/figs/nass_simscape_3d.pdf b/paper/figs/nass_simscape_3d.pdf new file mode 100644 index 0000000..2dcda79 Binary files /dev/null and b/paper/figs/nass_simscape_3d.pdf differ diff --git a/paper/figs/nass_simscape_3d.svg b/paper/figs/nass_simscape_3d.svg new file mode 100644 index 0000000..362ec8a Binary files /dev/null and b/paper/figs/nass_simscape_3d.svg differ diff --git a/paper/figs/super_element_simscape.svg b/paper/figs/super_element_simscape.svg index 8232838..b777963 100644 Binary files a/paper/figs/super_element_simscape.svg and b/paper/figs/super_element_simscape.svg differ diff --git a/paper/figs/super_element_simscape_alt.pdf b/paper/figs/super_element_simscape_alt.pdf index d8047a5..520803d 100644 Binary files a/paper/figs/super_element_simscape_alt.pdf and b/paper/figs/super_element_simscape_alt.pdf differ diff --git a/paper/figs/super_element_simscape_alt.svg b/paper/figs/super_element_simscape_alt.svg index 4074015..c5a186e 100644 Binary files a/paper/figs/super_element_simscape_alt.svg and b/paper/figs/super_element_simscape_alt.svg differ diff --git a/tikz/figures.org b/tikz/figures.org index 5a8e0a7..bc02e87 100644 --- a/tikz/figures.org +++ b/tikz/figures.org @@ -45,7 +45,7 @@ \node[myblock, fill=lightred, label={[mylabel] Implementation}, below = 2pt of testbenches] (implementation) {}; % Text - \node[anchor=south, above, text width=8cm, align=left] at (model.south) {Extensive use of models for:\begin{itemize}[noitemsep,topsep=5pt]\item Extraction of transfer functions \\ \item Choice of control architecture \\ \item Tuning of control laws \\ \item Closed loop simulations \\ \item Noise budgets / Evaluation of performances \\ \item Sensibility to parameters / disturbances\end{itemize}Helpful for proper and predictive design!}; + \node[anchor=south, above, text width=8cm, align=left] at (model.south) {Extensive use of models for:\begin{itemize}[noitemsep,topsep=5pt]\item Extraction of transfer functions \\ \item Choice of appropriate control architecture \\ \item Tuning of control laws \\ \item Closed loop simulations \\ \item Noise budgets / Evaluation of performances \\ \item Sensibility to parameters / disturbances\end{itemize}\centerline{Models are at the core the mecatronic approach!}}; \node[mymodel] at (mustation.south) {Multiple stages \\ Complex dynamics}; \node[mymodel] at (dist.south) {Ground motion \\ Position errors}; @@ -76,13 +76,13 @@ \draw[<-] ($(instrumentation.south|-model.north)-(0.15, 0)$) -- node[left, midway]{{\small Model}} ($(instrumentation.south)-(0.15,0)$); \draw[->] ($(mounting.west-|model.east)+(0, 0.15)$) -- node[above, midway]{{\small Requirements}} ($(mounting.west)+(0, 0.15)$); - \draw[<-] ($(mounting.west-|model.east)-(0, 0.15)$) -- node[below, midway]{{\small Refinement}} ($(mounting.west)-(0, 0.15)$); + \draw[<-] ($(mounting.west-|model.east)-(0, 0.15)$) -- node[below, midway]{{\small Model refinement}} ($(mounting.west)-(0, 0.15)$); \draw[->] ($(testbenches.west-|model.east)+(0, 0.15)$) -- node[above, midway]{{\small Control Laws}} ($(testbenches.west)+(0, 0.15)$); - \draw[<-] ($(testbenches.west-|model.east)-(0, 0.15)$) -- node[below, midway]{{\small Refinement}} ($(testbenches.west)-(0, 0.15)$); + \draw[<-] ($(testbenches.west-|model.east)-(0, 0.15)$) -- node[below, midway]{{\small Model refinement}} ($(testbenches.west)-(0, 0.15)$); \draw[->] ($(implementation.west-|model.east)+(0, 0.15)$) -- node[above, midway]{{\small Control Laws}} ($(implementation.west)+(0, 0.15)$); - \draw[<-] ($(implementation.west-|model.east)-(0, 0.15)$) -- node[below, midway]{{\small Refinement}} ($(implementation.west)-(0, 0.15)$); + \draw[<-] ($(implementation.west-|model.east)-(0, 0.15)$) -- node[below, midway]{{\small Model refinement}} ($(implementation.west)-(0, 0.15)$); % Main steps \node[font=\bfseries, rotate=90, anchor=south, above] (conceptual_phase_node) at (dist.west) {1 - Conceptual Phase};