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Abstract

Sensor have limited bandwidth and are accurate only in a certain frequency band. In many applications, the signals
of different sensor are fused together in order to either enhance the stability or improve the operational bandwidth
of the system. The sensor signals can be fused using complementary filters. The tuning of complementary filters
is a complex task and is the subject of this paper. The filters needs to meet design specifications while satisfying
the complementary property. This paper presents a framework to shape the norm of complementary filters using
the H∞ norm minimization. The design specifications are imposed as constraints in the optimization problem by
appropriate selection of weighting functions. The proposed method is quite general and easily extendable to cases
where more than two sensors are fused. Finally, the proposed method is applied to the design of complementary
filter design for active vibration isolation of the Laser Interferometer Gravitation-wave Observatory (LIGO).
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1. Introduction

• [1] roots of sensor fusion

• Increase the bandwidth: [2]

• Increased robustness: [3]

• Decrease the noise:

• UAV: [4], [5]

• Gravitational wave observer: [6, 7, 21–23]

• [8] alternate form of complementary filters => Kalman filtering

• [9] Compare Kalman Filtering with sensor fusion using complementary filters

• [10] advantage of complementary filters over Kalman filtering

• Analog complementary filters: [11], [12]

• Analytical methods:

– first order: [13]

– second order: [14], [15], [5]

– higher order: [16], [2], [3], [17]

• [4] use LMI to generate complementary filters (convex optimization techniques), specific for navigation systems

• [6, 7]: FIR + convex optimization
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• Similar to feedback system:

– [18] use H-Infinity to optimize complementary filters (flatten the super sensor noise spectral density)
– [5] design of complementary filters with classical control theory, PID

• 3 complementary filters: [19]

• Robustness problems: [2] change of phase near the merging frequency

• Trial and error

• Although many design methods of complementary filters have been proposed in the literature, no simple
method that allows to shape the norm of the complementary filters is available.

Most of the requirements => shape of the complementary filters => propose a way to shape complementary filters.

2. Sensor Fusion and Complementary Filters Requirements

Complementary filters provides a framework for fusing signals from different sensors. As the effectiveness of the
fusion depends on the proper design of the complementary filters, they are expected to fulfill certain requirements.
These requirements are discussed in this section.

2.1. Sensor Fusion Architecture
A general sensor fusion architecture using complementary filters is shown in Figure 1 where several sensors (here

two) are measuring the same physical quantity x. The two sensors output signals are estimates x̂1 and x̂2 of x.
Each of these estimates are then filtered out by complementary filters and combined to form a new estimate x̂.

The resulting sensor, termed as “super sensor”, can have larger bandwidth and better noise characteristics in
comparison to the individual sensor. This means that the super sensor provides an estimate x̂ of x which can be
more accurate over a larger frequency band than the outputs of the individual sensors.

Super Sensor

Normalized
Sensors

Complementary
Filters

Sensor 1

Sensor 2

H1(s)

H2(s)

+x

x̂1

x̂2

x̂

Figure 1: Schematic of a sensor fusion architecture

The complementary property of filters H1(s) and H2(s) implies that the summation of their transfer functions is
equal to unity. That is, unity magnitude and zero phase at all frequencies. Therefore, a pair of strict complementary
filter needs to satisfy the following condition:

H1(s) +H2(s) = 1 (1)

It will soon become clear why the complementary property is important.

2.2. Sensor Models and Sensor Normalization
In order to study such sensor fusion architecture, a model of the sensors is required.
Such model is shown in Figure 2a and consists of a linear time invariant (LTI) system Gi(s) representing the

dynamics of the sensor and an additive noise input ni representing its noise. The model input x is the measured
physical quantity and its output x̃i is the “raw” output of the sensor.

Before filtering the sensor outputs x̃i by the complementary filters, the sensors are usually normalized to simplify
the fusion. This normalization consists of first obtaining an estimate Ĝi(s) of the sensor dynamics Gi(s). It is
supposed that the estimate of the sensor dynamics Ĝi(s) can be inverted and that its inverse Ĝ−1i (s) is proper and
stable. The raw output of the sensor x̃i is then passed through Ĝ−1i (s) as shown in Figure 2b. This way, the units
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(a) Basic sensor model consisting of a noise input ni and a dynamics
Gi(s)

Normalized
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+ Gi(s) Ĝ−1
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(b) Calibrated sensors using the inverse of an estimate Ĝ1(s) of the
sensor dynamics

Figure 2: Sensor models with an without normalization

of the estimates x̂i are equal to the units of the physical quantity x. The sensor dynamics estimate Ĝ1(s) can be a
simple gain or more complex transfer functions.

Two calibrated sensors and then combined to form a super sensor as shown in Figure 3.
The two sensors are measuring the same physical quantity x with dynamics G1(s) and G2(s), and with uncorre-

lated noises n1 and n2. The normalized signals from both calibrated sensors are fed into two complementary filters
H1(s) and H2(s) and then combined to yield an estimate x̂ of x as shown in Fig. 3.

The super sensor output is therefore equal to:

x̂ =
(
H1(s)Ĝ−11 (s)G1(s) +H2(s)Ĝ−12 (s)G2(s)

)
x+H1(s)Ĝ−11 (s)G1(s)n1 +H2(s)Ĝ−12 (s)G2(s)n2 (2)

Super SensorNormalized
sensorSensor 1

Normalized
sensorSensor 2

+

+

G1(s)

G2(s)

Ĝ−1
1 (s)

Ĝ−2
2 (s)

H1(s)

H2(s)

+x

n1
x̃1 x̂1

n2
x̃2 x̂2

x̂

Figure 3: Sensor fusion architecture

2.3. Noise Sensor Filtering
In this section, it is supposed that all the sensors are perfectly calibrated, such that:

x̂i
x

= Ĝi(s)Gi(s) = 1 (3)

The effect of a non-perfect normalization will be discussed in the next section.
The super sensor output x̂ is then:

x̂ = x+H1(s)n1 +H2(s)n2 (4)

From (4), the complementary filters H1(s) and H2(s) are shown to only operate on the sensor’s noises. Thus,
this sensor fusion architecture permits to filter the noise of both sensors without introducing any distortion in the
physical quantity to be measured.

The estimation error δx, defined as the difference between the sensor output x̂ and the measured quantity x, is
computed for the super sensor (5).

δx , x̂− x = H1(s)n1 +H2(s)n2 (5)

As shown in (6), the Power Spectral Density (PSD) of the estimation error Φδx depends both on the norm of
the two complementary filters and on the PSD of the noise sources Φn1 and Φn2 .

Φδx(ω) = |H1(jω)|2 Φn1
(ω) + |H2(jω)|2 Φn2

(ω) (6)

If the two sensors have identical noise characteristics (Φn1(ω) = Φn2(ω)), a simple averaging (H1(s) = H2(s) =
0.5) is what would minimize the super sensor noise. This the simplest form of sensor fusion with complementary
filters.
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However, the two sensors have usually high noise levels over distinct frequency regions. In such case, to lower
the noise of the super sensor, the value of the norm |H1| has to be lowered when Φn1 is larger than Φn2 and that of
|H2| lowered when Φn2

is larger than Φn1
. Therefore, by properly shaping the norm of the complementary filters,

it is possible to minimize the noise of the super sensor noise.

2.4. Sensor Fusion Robustness
In practical systems the sensor normalization is not perfect and condition (3) is not verified.
In order to study such imperfection, a multiplicative input uncertainty is added to the sensor dynamics (Figure

4a), where the nominal model is taken as the estimated model for the normalization Ĝi(s), ∆i is any stable transfer
function satisfying |∆i(jω)| ≤ 1, ∀ω, and wi(s) is a weight representing the magnitude of the uncertainty.

The weight wi(s) is chosen such that the real sensor dynamics is always contained in the uncertain region
represented by a circle centered on 1 and with a radius equal to |wi(jω)|.

As the nominal sensor dynamics is taken as the normalized filter, the normalized sensor can be further simplified
as shown in Figure 4b.

Normalized
sensorSensor

w1(s) ∆1(s)

+ + Ĝ1(s) Ĝ−1
1 (s)

x

n1
x̃1 x̂1

(a) Sensor with multiplicative input uncertainty

Normalized
sensor

w1(s) ∆1(s)

+ +x
n1

x̂1

(b) Simplified sensor model

Figure 4: Sensor models with dynamical uncertainty

A sensor fusion architecture with two sensors with dynamical uncertainty is shown in Figure 5.
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Figure 5: Sensor fusion architecture with sensor dynamics uncertainty

The super sensor dynamics (7) is no longer equal to 1 and now depends on the sensor dynamics uncertainty
weights wi(s) as well as on the complementary filters Hi(s).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (7)

The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle
centered on 1 with a radius equal to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| as shown in Figure 6.

The super sensor dynamical uncertainty (i.e. the robustness of the fusion) clearly depends on the complementary
filters norms. For instance, the phase uncertainty ∆φ(ω) added by the super sensor dynamics at frequency ω can
be found by drawing a tangent from the origin to the uncertainty circle of super sensor (Figure 6) and is bounded
by (8).

∆φ(ω) < arcsin
(
|w1(jω)H1(jω)|+ |w2(jω)H2(jω)|

)
(8)

As it is generally desired to limit the maximum phase added by the super sensor, H1(s) and H2(s) should be
designed such that ∆φ is bounded to acceptable values. Typically, the norm of the complementary filter |Hi(jω)|
should be made small when |wi(jω)| is large, i.e., at frequencies where the sensor dynamics is uncertain.
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Figure 6: Uncertainty region of the super sensor dynamics in the complex plane (solid circle). The contribution of both sensors 1 and
2 to the uncertainty are represented respectively by a blue circle and a red circle. The frequency dependency ω is here omitted.

3. Complementary Filters Shaping

As shown in Section 2, the noise and robustness of the “super sensor” are determined by the complementary
filters norms. Therefore, a complementary filters synthesis method that allows to shape their norms would be of
great use.

In this section, such synthesis is proposed by expressing this problem as a H∞ norm optimization.

3.1. Synthesis Objective
The synthesis objective is to shape the norm of two filters H1(s) and H2(s) while ensuring their complementary

property (1). This is equivalent as to finding proper and stable transfer functions H1(s) and H2(s) such that
conditions (9) are satisfied.

H1(s) +H2(s) = 1 (9a)

|H1(jω)| ≤ 1

|W1(jω)|
∀ω (9b)

|H2(jω)| ≤ 1

|W2(jω)|
∀ω (9c)

whereW1(s) andW2(s) are two weighting transfer functions that are chosen to specify the maximum wanted norms
of the complementary filters during the synthesis.

3.2. Shaping of Complementary Filters using H∞ synthesis
In this section, it is shown that the synthesis objective can be easily expressed as a standard H∞ optimal control

problem and therefore solved using convenient tools readily available.
Consider the generalized plant P (s) shown in Figure 7 and mathematically described by (10).z1z2

v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (10)

P (s)

W1(s)

W2(s)

+
−

w

u

v

z1

z2

Figure 7: Generalized plant used for H∞ synthesis of complementary filters
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Applying the standard H∞ synthesis on the generalized plant P (s) is then equivalent as finding a stable filter
H2(s) which based on v, generates a signal u such that the H∞ norm from w to [z1, z2] is less than one (11).∥∥∥∥(1−H2(s))W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (11)

By then defining H1(s) to be the complementary of H2(s) (12), the H∞ synthesis objective becomes equivalent
to (13) which ensure that (9b) and (9c) are satisfied.

H1(s) , 1−H2(s) (12)

∥∥∥∥H1(s)W1(s)
H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (13)

Therefore, applying the H∞ synthesis on the standard plant P (s) (10) will generate two filters H2(s) and
H1(s) , 1−H2(s) that are complementary (9) and such that there norms are bellow specified bounds (9b),(9c).

The above optimization problem can be efficiently solved in Matlab [20] using the Robust Control Toolbox.

3.3. Weighting Functions Design
Weighting functions are used during the synthesis to specify what is the maximum allowed norms of the com-

plementary filters. The proper design of these weighting functions is of primary importance for the success of the
presented complementary filters H∞ synthesis.

First, only proper and stable transfer functions should be used. Second, the order of the weighting functions
should stay reasonably small in order to reduce the computational costs associated with the solving of the opti-
mization problem and for the physical implementation of the filters (the order of the synthesized filters being equal
to the sum of the weighting functions order). Third, one should not forget the fundamental limitations imposed by
the complementary property (1). This implies for instance that |H1(jω)| and |H2(jω)| cannot be made small at
the same frequency.

When designing complementary filters, it is usually desired to specify its slope, its crossover frequency and its
maximum gain at low and high frequency. To help with the design of the weighting functions such that the above
specification can be easily expressed, the formula (14) is proposed.

W (s) =


1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
G0

Gc

) 1
n

(
1
G∞

) 1
n 1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
1
Gc

) 1
n


n

(14)

The parameters in formula (14) are:

• G0 = limω→0|W (jω)|: the low frequency gain

• G∞ = limω→∞|W (jω)|: the high frequency gain

• Gc = |W (jωc)|: the gain at ωc

• n: the slope between high and low frequency. It is also the order of the weighting function.

The parameters G0, Gc and G∞ should either satisfy condition (15a) or (15b).

G0 < 1 < G∞ and G0 < Gc < G∞ (15a)
G∞ < 1 < G0 and G∞ < Gc < G0 (15b)

The typical shape of a weighting function generated using (14) is shown in Figure 8.
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Figure 8: Magnitude of a weighting function generated using the proposed formula (14), G0 = 1e−3, G∞ = 10, ωc = 10Hz, Gc = 2,
n = 3

3.4. Validation of the proposed synthesis method
The proposed methodology for the design of complementary filters is now applied on a simple example where

two complementary filters H1(s) and H2(s) have to be designed such that:

• the merging frequency is around 10 Hz

• the slope of |H1(jω)| is −2 above 10 Hz

• the slope of |H2(jω)| is +3 below 10 Hz

• the maximum gain of both filters is 10−3 away from the merging frequency

The first step is to design weighting functions that translate the above requirements. They are here designed
using (14) with parameters summarized in table 1. The magnitudes of the weighting functions are shown by dashed
lines in Figure 9.

Table 1: Parameters used for weighting functions W1(s) and W2(s) using (14)

Parameters W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc 2π · 10 2π · 10
Gc 0.45 0.45
n 2 3

The H∞ synthesis is applied on the generalized plant of Figure 7 using the Matlab hinfsyn command. The
synthesized filter H2(s) is such that H∞ norm between w and [z1, z2]T is minimized and here found close to one
(16). ∥∥∥∥(1−H2(s))W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≈ 1 (16)

The bode plots of the obtained complementary filters are shown by solid lines in Figure 9 and their transfer
functions in the Laplace domain are given in (17).

H2(s) =
(s+ 6.6e4)(s+ 160)(s+ 4)3

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
(17a)

H1(s) , H2(s)− 1 =
10−8(s+ 6.6e9)(s+ 3450)2(s2 + 49s+ 895)

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
(17b)
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The obtained transfer functions are of order 5 as expected (sum of the weighting functions orders), and their
magnitudes are bellow the maximum specified ones as ensured by (16).
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Figure 9: Frequency response of the weighting functions and complementary filters obtained using H∞ synthesis

This simple example illustrates the fact that the proposed methodology for complementary filters shaping is
quite easy to use and effective. A more complex real life example is taken up in the next section.

4. Application: Design of Complementary Filters used in the Active Vibration Isolation System at
the LIGO

Sensor fusion using complementary filters are widely used in active vibration isolation systems in gravitational
wave detectors such at the LIGO [6, 17], the VIRGO [21, 22] and the KAGRA [23].

In the first isolation stage at the LIGO, two sets of complementary filters are used and included in a feedback
loop [24]. A set of complementary filters (L2, H2) is first used to fuse a seismometer and a geophone. Then, another
set of complementary filters (L1, H1) is used to merge the output of the first “inertial super sensor” with a position
sensor. A simplified block diagram of the sensor fusion architecture is shown in Figure 10.

Super Sensor

"Inertial" Super Sensor

Position
Sensor

Seismometer

Geophone

L2(s)

H2(s)
+ H1(s)

L1(s)

+

Figure 10: Simplified block diagram of the sensor blending strategy for the first stage at the LIGO [24]

The fusion of the position sensor at low frequency with the “inertial super sensor” at high frequency using the
complementary filters (L1, H1) is done for several reasons, first of which is to give the super sensor a DC sensibility
and therefore allow the feedback loop to have authority at zero frequency. The requirements on those filters are
very tight and thus their design is complex and should be expressed as an optimization problem.

The approach used in [6] is to use FIR complementary filters and to write the synthesis as a convex optimization
problem. After synthesis, the obtained FIR filters were found to be compliant with the requirements. However they
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are of very high order so their implementation is quite complex. In this section, the effectiveness of the proposed
complementary filter synthesis strategy is demonstrated on the same set of requirements.

4.1. Complementary Filters Specifications
The specifications for the set of complementary filters (L1, H1) used at the LIGO are summarized below (for

further details, refer to [7]):

• From 0 to 0.008 Hz, the magnitude |L1(jω)| should be less or equal to 8× 10−4

• Between 0.008 Hz to 0.04 Hz, the filter L1(s) should attenuate the input signal proportional to frequency cubed

• Between 0.04 Hz to 0.1 Hz, the magnitude |L1(jω)| should be less than 3

• Above 0.1 Hz, the magnitude |H1(jω)| should be less than 0.045

These specifications are therefore upper bounds on the complementary filters’ magnitudes. They are physically
represented in Figure 11 as well as the obtained magnitude of the FIR filters in [6].
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Figure 11: Specifications and Bode plot of the obtained FIR filters in [6]

4.2. Weighting Functions Design
The weighting functions should be designed such that their inverse magnitude is as close as possible to the

specifications in order to not over-constrain the synthesis problem. However, the order of each weight should stay
reasonably small in order to reduce the computational costs of the optimization problem as well as for the physical
implementation of the filters.

A Type I Chebyshev filter of order 20 is used as the weighting transfer function wL(s) corresponding to the low
pass filter. For the one corresponding to the high pass filter wH(s), a 7th order transfer function is designed. The
magnitudes of the weighting functions are shown in Fig. 12.

4.3. H∞ Synthesis
H∞ synthesis is performed using the architecture shown in Fig. 10. The complementary filters obtained are of

order 27. In Fig. 13, their bode plot is compared with the FIR filters of order 512 obtained in [6]. They are found
to be very close to each other and this shows the effectiveness of the proposed synthesis method.
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Figure 12: Specifications and weighting functions magnitudes
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Figure 13: Comparison of the FIR filters (solid) designed in [6] with the filters obtained with H∞ synthesis (dashed)
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5. Discussion

5.1. “Closed-Loop” complementary filters
It is possible to use the fundamental properties of a feedback architecture to generate complementary filters.
It has been proposed by:

• [18] use H-Infinity to optimize complementary filters (flatten the super sensor noise spectral density)

• [5] design of complementary filters with classical control theory, PID

• Maybe also cite [? ]

Consider the feedback architecture of Figure 14, with two inputs x̂1 and x̂2, and one output x̂.

+
−

L(s) +x̂2 x̂

x̂1

Figure 14: “Closed-Loop” complementary filters

The output x̂ is described by (18).

x̂ =
1

1 + L(s)︸ ︷︷ ︸
S(s)

x̂1 +
L(s)

1 + L(s)︸ ︷︷ ︸
T (s)

x̂2 (18)

with the famous relationship
T (s) + S(s) = 1 (19)

Provided that the closed-loop system is stable, this indeed forms two complementary filters. Therefore, two
filters can be merged as shown in Figure 15.

Normalized
sensors

"Closed-Loop"
complementary filters

+
−

L(s) +Sensor 2

Sensor 1

x̂x x̂2

x̂1

Figure 15: Classical feedback architecture for sensor fusion

One of the main advantage of this configuration is that standard tools of the linear control theory can be
applied. If one want to shape both the transfer functions x̂

x̂1
(s) = S(s) and x̂

x̂2
(s) = T (s), this corresponds to the

H∞ mixed-sensitivity synthesis.
The H∞ mixed-sensitivity synthesis can be perform by applying the H∞ synthesis to the generalized plant PL(s)

shown in Figure 16 and described by (20) whereW1(s) andW2(s) are weighting functions used to respectively shape
S(s) and T (s).

[
z
v

]
= PL(s)

w1

w2

u

 ; PL(s) =

[
W1(s) 0 1
−W1(s) W2(s) −1

]
(20)

This is equivalent as to find a filter L(s) such that (21) is verified.∥∥∥∥∥
1

1+L(s)W1(s)
L(s)

1+L(s)W2(s)

∥∥∥∥∥
∞

≤ 1 (21)
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The sensor fusion can be implemented as shown in Figure 15 using the feedback architecture or more classically
as shown in Figure 1 using (22).

H1(s) =
1

1 + L(s)
; H2(s) =

L(s)

1 + L(s)
(22)

The two being equivalent considering only the inputs/outputs relationships.

PL(s)

W2(s)

W1(s) +

+
−w2

w1

u

z

v

Figure 16: Generalized plant for the H∞ mixed-sensitivity synthesis

Example: same weights as in 1.
Therefore, complementary filter design is very similar to mixed-sensitivity synthesis.
They are actually equivalent by taking

L = H−1H − 1 (23)

(provided HH is invertible, therefore bi-proper)

5.2. Imposing zero at origin / roll-off
3 methods:
Link to literature about doing that with mixed sensitivity

5.3. Synthesis of Three Complementary Filters
Some applications may require to merge more than two sensors. For instance at the LIGO, three sensors (an

LVDT, a seismometer and a geophone) are merged to form a super sensor (Figure 10).
When merging n > 2 sensors using complementary filters, two architectures can be used as shown in Figure 17.
The fusion can either be done in a “sequential” way where n − 1 sets of two complementary filters are used

(Figure 17a), or in a “parallel” way where one set of n complementary filters is used (Figure 17b).
In the first case, typical sensor fusion synthesis techniques can be used. However, when a parallel architecture is

used, a new synthesis method for a set of more than two complementary filters is required. Such synthesis method
is presented in this section.

Say possible advantages of parallel architecture

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)
+ H ′

1(s)

H ′
2(s)

+
x

x̂1

x̂2

x̂3

x̂12

x̂

(a) Sequential fusion

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)

H3(s)

+x

x̂1

x̂2

x̂3

x̂

(b) Parallel fusion

Figure 17: Sensor fusion architecture with more than two sensors
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The synthesis objective is to compute a set of n stable transfer functions [H1(s), H2(s), . . . , Hn(s)] such that
(24) is satisfied.

n∑
i=0

Hi(s) = 1 (24a)

|Hi(jω)| < 1

|Wi(jω)|
, ∀ω, i = 1 . . . n (24b)

where [W1(s), W2(s), . . . , Wn(s)] are weighting transfer functions that are chosen to specify the maximum wanted
norms of the complementary filters during the synthesis.

Such synthesis objective is very close to the one described in Section 3.1, and indeed the proposed synthesis
architecture is also very similar.

Consider the generalized plant P3(s) shown in Figure 18 which is also described by (25).
z1
z2
z3
v

 = P3(s)

wu1
u2

 ; P3(s) =


W1(s) −W1(s) −W1(s)

0 W2(s) 0
0 0 W3(s)
1 0 0

 (25)

P3(s)

W1(s)

W2(s)

W3(s)

+
−

+
−

[
H2(s)
H3(s)

]

w z1

z2

z3

u1

u2

v

Figure 18: Architecture for H∞ synthesis of three complementary filters

Applying theH∞ synthesis on the generalized plant P3(s) is equivalent as to find two stable filters [H2(s), H3(s)]
(shown in Figure 18) such that the H∞ norm of the transfer function from w to [z1, z2, z3] is less than one (26).∥∥∥∥∥∥

[1−H2(s)−H3(s)]W1(s)
H2(s)W2(s)
H3(s)W3(s)

∥∥∥∥∥∥
∞

≤ 1 (26)

By defining H1(s) , 1−H2(s)−H3(s), the proposed H∞ synthesis solves the design problem (24) with n = 3.
An example is given to validate the method where three sensors are used in different frequency bands (up to

1 Hz, from 1 to 10 Hz and above 10 Hz respectively). Three weighting functions are designed using (14) and shown
by dashed curves in Fig. 19. The bode plots of the obtained complementary filters are shown in Fig. 19.

Such synthesis method can be generalized to a set of n complementary filters, even though there might not be
any practical application for n > 3.


z1
...
zn
v

 = Pn(s)


w
u1
...

un−1

 ; Pn(s) =



W1 −W1 . . . . . . −W1

0 W2 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 Wn

1 0 . . . . . . 0


(27)
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Figure 19: Frequency response of the weighting functions and three complementary filters obtained using H∞ synthesis

6. Conclusion

This paper has shown how complementary filters can be used to combine multiple sensors in order to obtain
a super sensor. Typical specification on the super sensor noise and on the robustness of the sensor fusion has
been shown to be linked to the norm of the complementary filters. Therefore, a synthesis method that permits
the shaping of the complementary filters norms has been proposed and has been successfully applied for the design
of complex filters. Future work will aim at further developing this synthesis method for the robust and optimal
synthesis of complementary filters used in sensor fusion.
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