#+TITLE: Complementary Filters Shaping Using $\mathcal{H}_\infty$ Synthesis - Tikz Figures
:DRAWER:
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD:
#+HTML_HEAD:
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/tikz/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :noweb yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
Configuration file is accessible [[file:config.org][here]].
* Fig 1: Sensor Fusion Architecture
#+begin_src latex :file fusion_super_sensor.pdf :tangle figs/fusion_super_sensor.tex
\begin{tikzpicture}
\node[branch] (x) at (0, 0);
\node[block, above right=0.5 and 0.5 of x](G1){$G_1(s)$};
\node[block, below right=0.5 and 0.5 of x](G2){$G_2(s)$};
\node[addb, right=0.8 of G1](add1){};
\node[addb, right=0.8 of G2](add2){};
\node[block, right=0.8 of add1](H1){$H_1(s)$};
\node[block, right=0.8 of add2](H2){$H_2(s)$};
\node[addb, right=5 of x](add){};
\draw[] ($(x)+(-0.7, 0)$) node[above right]{$x$} -- (x.center);
\draw[->] (x.center) |- (G1.west);
\draw[->] (x.center) |- (G2.west);
\draw[->] (G1.east) -- (add1.west);
\draw[->] (G2.east) -- (add2.west);
\draw[<-] (add1.north) -- ++(0, 0.8)node[below right](n1){$n_1$};
\draw[<-] (add2.north) -- ++(0, 0.8)node[below right](n2){$n_2$};
\draw[->] (add1.east) -- (H1.west);
\draw[->] (add2.east) -- (H2.west);
\draw[->] (H1) -| (add.north);
\draw[->] (H2) -| (add.south);
\draw[->] (add.east) -- ++(0.7, 0) node[above left]{$\hat{x}$};
\begin{scope}[on background layer]
\node[fit={($(G2.south-|x)+(-0.2, -0.3)$) ($(n1.north east-|add.east)+(0.2, 0.3)$)}, fill=black!10!white, draw, dashed, inner sep=0pt] (supersensor) {};
\node[below left] at (supersensor.north east) {Super Sensor};
\node[fit={($(G1.south west)+(-0.3, -0.1)$) ($(n1.north east)+(0.0, 0.1)$)}, fill=black!20!white, draw, dashed, inner sep=0pt] (sensor1) {};
\node[below right] at (sensor1.north west) {Sensor 1};
\node[fit={($(G2.south west)+(-0.3, -0.1)$) ($(n2.north east)+(0.0, 0.1)$)}, fill=black!20!white, draw, dashed, inner sep=0pt] (sensor2) {};
\node[below right] at (sensor2.north west) {Sensor 2};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:fusion_super_sensor
#+caption: Sensor Fusion Architecture ([[./figs/fusion_super_sensor.png][png]], [[./figs/fusion_super_sensor.pdf][pdf]], [[./figs/fusion_super_sensor.tex][tex]]).
#+RESULTS:
[[file:figs/fusion_super_sensor.png]]
* Fig 2: Sensor fusion architecture with sensor dynamics uncertainty
#+begin_src latex :file sensor_fusion_dynamic_uncertainty.pdf :tangle figs/sensor_fusion_dynamic_uncertainty.tex
\begin{tikzpicture}
\node[branch] (x) at (0, 0);
\node[addb, above right=0.8 and 4 of x](add1){};
\node[addb, below right=0.8 and 4 of x](add2){};
\node[block, above left=0.2 and 0.1 of add1](delta1){$\Delta_1(s)$};
\node[block, above left=0.2 and 0.1 of add2](delta2){$\Delta_2(s)$};
\node[block, left=0.5 of delta1](W1){$w_1(s)$};
\node[block, left=0.5 of delta2](W2){$w_2(s)$};
\node[block, right=0.5 of add1](H1){$H_1(s)$};
\node[block, right=0.5 of add2](H2){$H_2(s)$};
\node[addb, right=6 of x](add){};
\draw[] ($(x)+(-0.7, 0)$) node[above right]{$x$} -- (x.center);
\draw[->] (x.center) |- (add1.west);
\draw[->] (x.center) |- (add2.west);
\draw[->] ($(add1-|W1.west)+(-0.5, 0)$)node[branch](S1){} |- (W1.west);
\draw[->] ($(add2-|W2.west)+(-0.5, 0)$)node[branch](S1){} |- (W2.west);
\draw[->] (W1.east) -- (delta1.west);
\draw[->] (W2.east) -- (delta2.west);
\draw[->] (delta1.east) -| (add1.north);
\draw[->] (delta2.east) -| (add2.north);
\draw[->] (add1.east) -- (H1.west);
\draw[->] (add2.east) -- (H2.west);
\draw[->] (H1.east) -| (add.north);
\draw[->] (H2.east) -| (add.south);
\draw[->] (add.east) -- ++(0.7, 0) node[above left]{$\hat{x}$};
\begin{scope}[on background layer]
\node[block, fit={($(W1.north-|S1)+(-0.2, 0.2)$) ($(add1.south east)+(0.2, -0.3)$)}, fill=black!20!white, dashed, inner sep=0pt] (sensor1) {};
\node[above right] at (sensor1.south west) {Sensor 1};
\node[block, fit={($(W2.north-|S1)+(-0.2, 0.2)$) ($(add2.south east)+(0.2, -0.3)$)}, fill=black!20!white, dashed, inner sep=0pt] (sensor2) {};
\node[above right] at (sensor2.south west) {Sensor 2};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:sensor_fusion_dynamic_uncertainty
#+caption: Sensor fusion architecture with sensor dynamics uncertainty ([[./figs/sensor_fusion_dynamic_uncertainty.png][png]], [[./figs/sensor_fusion_dynamic_uncertainty.pdf][pdf]], [[./figs/sensor_fusion_dynamic_uncertainty.tex][tex]]).
#+RESULTS:
[[file:figs/sensor_fusion_dynamic_uncertainty.png]]
* Fig 3: Uncertainty set of the super sensor dynamics
#+begin_src latex :file uncertainty_set_super_sensor.pdf :tangle figs/uncertainty_set_super_sensor.tex :exports both
\begin{tikzpicture}
\begin{scope}[shift={(4, 0)}]
% Uncertainty Circle
\node[draw, circle, fill=black!20!white, minimum size=3.6cm] (c) at (0, 0) {};
\path[draw, dotted] (0, 0) circle [radius=1.0];
\path[draw, dashed] (135:1.0) circle [radius=0.8];
% Center of Circle
\node[below] at (0, 0){$1$};
\draw[<->, dashed] (0, 0) node[branch]{} -- coordinate[midway](r1) ++(45:1.0);
\draw[<->, dashed] (135:1.0)node[branch]{} -- coordinate[midway](r2) ++(90:0.8);
\node[] (l1) at (2, 1.5) {$|w_1 H_1|$};
\draw[->, dashed, out=-90, in=0] (l1.south) to (r1);
\node[] (l2) at (-2.5, 1.5) {$|w_2 H_2|$};
\draw[->, dashed, out=0, in=-180] (l2.east) to (r2);
\draw[<->, dashed] (0, 0) -- coordinate[near end](r3) ++(200:1.8);
\node[] (l3) at (-2.5, -1.5) {$|w_1 H_1| + |w_2 H_2|$};
\draw[->, dashed, out=90, in=-90] (l3.north) to (r3);
\end{scope}
% Real and Imaginary Axis
\draw[->] (-0.5, 0) -- (7.0, 0) node[below left]{Re};
\draw[->] (0, -1.7) -- (0, 1.7) node[below left]{Im};
\draw[dashed] (0, 0) -- (tangent cs:node=c,point={(0, 0)},solution=2);
\draw[dashed] (1, 0) arc (0:28:1) node[midway, right]{$\Delta \phi$};
\end{tikzpicture}
#+end_src
#+name: fig:uncertainty_set_super_sensor
#+caption: Uncertainty region of the super sensor dynamics in the complex plane (solid circle), of the sensor 1 (dotted circle) and of the sensor 2 (dashed circle) ([[./figs/uncertainty_set_super_sensor.png][png]], [[./figs/uncertainty_set_super_sensor.pdf][pdf]], [[./figs/uncertainty_set_super_sensor.tex][tex]]).
#+RESULTS:
[[file:figs/uncertainty_set_super_sensor.png]]
* Fig 4: Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters
#+begin_src latex :file h_infinity_robust_fusion.pdf :tangle figs/h_infinity_robust_fusion.tex :exports both
\begin{tikzpicture}
\node[block={4.0cm}{2.5cm}, fill=black!20!white, dashed] (P) {};
\node[above] at (P.north) {$P(s)$};
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west) + (-0.7, 0)$);
\coordinate[] (inputu) at ($(P.south west)!0.35!(P.north west) + (-0.7, 0)$);
\coordinate[] (output1) at ($(P.south east)!0.75!(P.north east) + ( 0.7, 0)$);
\coordinate[] (output2) at ($(P.south east)!0.35!(P.north east) + ( 0.7, 0)$);
\coordinate[] (outputv) at ($(P.south east)!0.1!(P.north east) + ( 0.7, 0)$);
\node[block, left=1.4 of output1] (W1){$W_1(s)$};
\node[block, left=1.4 of output2] (W2){$W_2(s)$};
\node[addb={+}{}{}{}{-}, left=of W1] (sub) {};
\node[block, below=0.3 of P] (H2) {$H_2(s)$};
\draw[->] (inputw) node[above right]{$w$} -- (sub.west);
\draw[->] (H2.west) -| ($(inputu)+(0.35, 0)$) node[above]{$u$} -- (W2.west);
\draw[->] (inputu-|sub) node[branch]{} -- (sub.south);
\draw[->] (sub.east) -- (W1.west);
\draw[->] ($(sub.west)+(-0.6, 0)$) node[branch]{} |- ($(outputv)+(-0.35, 0)$) node[above]{$v$} |- (H2.east);
\draw[->] (W1.east) -- (output1)node[above left]{$z_1$};
\draw[->] (W2.east) -- (output2)node[above left]{$z_2$};
\end{tikzpicture}
#+end_src
#+name: fig:h_infinity_robust_fusion
#+caption: Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters ([[./figs/h_infinity_robust_fusion.png][png]], [[./figs/h_infinity_robust_fusion.pdf][pdf]], [[./figs/h_infinity_robust_fusion.tex][tex]]).
#+RESULTS:
[[file:figs/h_infinity_robust_fusion.png]]
* Fig 5: Magnitude of a weighting function generated using the proposed formula
#+begin_src matlab :exports none :results none
s = zpk('s');
freqs = logspace(-1, 2, 500);
n = 2;
w0 = 2*pi*10;
G0 = 1e-3;
G1 = 10;
Gc = 2;
W = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
T = table(freqs', ...
abs(squeeze(freqresp(W, freqs, 'Hz'))), ...
'VariableNames', {'freqs', 'ampl'});
writetable(T, '../matlab/mat/weight_formula.csv');
#+end_src
#+begin_src latex :file weight_formula.pdf :tangle figs/weight_formula.tex :exports both
\setlength\fwidth{6.5cm}
\setlength\fheight{3.5cm}
\begin{tikzpicture}
\begin{axis}[%
width=1.0\fwidth,
height=1.0\fheight,
at={(0.0\fwidth, 0.0\fheight)},
scale only axis,
xmode=log,
xmin=0.1,
xmax=100,
xtick={0.1,1,10, 100},
xminorticks=true,
ymode=log,
ymin=0.0005,
ymax=20,
ytick={0.001, 0.01, 0.1, 1, 10},
yminorticks=true,
ylabel={Magnitude},
xlabel={Frequency [Hz]},
xminorgrids,
yminorgrids,
]
\addplot [color=black, line width=1.5pt, forget plot]
table [x=freqs, y=ampl, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matweight_formula.csv};
\addplot [color=black, dashed, line width=1.5pt]
table[row sep=crcr]{%
1 10\\
100 10\\
};
\addplot [color=black, dashed, line width=1.5pt]
table[row sep=crcr]{%
0.1 0.001\\
3 0.001\\
};
\addplot [color=black, line width=1.5pt]
table[row sep=crcr]{%
0.1 1\\
100 1\\
};
\addplot [color=black, dashed, line width=1.5pt]
table[row sep=crcr]{%
10 2\\
10 1\\
};
\node[below] at (2, 10) {$G_\infty$};
\node[above] at (2, 0.001) {$G_0$};
\node[branch] at (10, 2){};
\draw[dashed, line cap=round] (7, 2) -- (20, 2) node[right]{$G_c$};
\draw[dashed, line cap=round] (10, 2) -- (10, 1) node[below]{$\omega_c$};
\node[right] at (3, 0.1) {$+n$};
\end{axis}
\end{tikzpicture}
#+end_src
#+name: fig:weight_formula
#+caption: Magnitude of a weighting function generated using the proposed formula ([[./figs/weight_formula.png][png]], [[./figs/weight_formula.pdf][pdf]], [[./figs/weight_formula.tex][tex]]).
#+RESULTS:
[[file:figs/weight_formula.png]]
* Fig 6: Frequency response of the weighting functions and complementary filters obtained using $\mathcal{H}_\infty$ synthesis
#+begin_src latex :file hinf_synthesis_results.pdf :tangle figs/hinf_synthesis_results.tex :exports both
\setlength\fwidth{6.5cm}
\setlength\fheight{6cm}
\begin{tikzpicture}
\begin{axis}[%
width=1.0\fwidth,
height=0.5\fheight,
at={(0.0\fwidth, 0.47\fheight)},
scale only axis,
xmode=log,
xmin=0.1,
xmax=1000,
xtick={0.1, 1, 10, 100, 1000},
xticklabels={{}},
xminorticks=true,
ymode=log,
ymin=0.0005,
ymax=20,
ytick={0.001, 0.01, 0.1, 1, 10},
yminorticks=true,
ylabel={Magnitude},
xminorgrids,
yminorgrids,
]
\addplot [color=mycolor1, line width=1.5pt, forget plot]
table [x=freqs, y=H1, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_filters_results.csv};
\addplot [color=mycolor2, line width=1.5pt, forget plot]
table [x=freqs, y=H2, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_filters_results.csv};
\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
table [x=freqs, y=W1, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_weights.csv};
\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
table [x=freqs, y=W2, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_weights.csv};
\end{axis}
\begin{axis}[%
width=1.0\fwidth,
height=0.45\fheight,
at={(0.0\fwidth, 0.0\fheight)},
scale only axis,
xmode=log,
xmin=0.1,
xmax=1000,
xtick={0.1, 1, 10, 100, 1000},
xminorticks=true,
xlabel={Frequency [Hz]},
ymin=-200,
ymax=200,
ytick={-180, -90, 0, 90, 180},
ylabel={Phase [deg]},
xminorgrids,
legend style={at={(1,1.1)}, outer sep=2pt , anchor=north east, legend cell align=left, align=left, draw=black, nodes={scale=0.7, transform shape}},
]
\addlegendimage{color=mycolor1, dashed, line width=1.5pt}
\addlegendentry{$W_1^{-1}$};
\addlegendimage{color=mycolor2, dashed, line width=1.5pt}
\addlegendentry{$W_2^{-1}$};
\addplot [color=mycolor1, line width=1.5pt]
table [x=freqs, y=H1p, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_filters_results.csv};
\addlegendentry{$H_1$};
\addplot [color=mycolor2, line width=1.5pt]
table [x=freqs, y=H2p, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_filters_results.csv};
\addlegendentry{$H_2$};
\end{axis}
\end{tikzpicture}
#+end_src
#+name: fig:hinf_synthesis_results
#+caption: Frequency response of the weighting functions and complementary filters obtained using $\mathcal{H}_\infty$ synthesis ([[./figs/hinf_synthesis_results.png][png]], [[./figs/hinf_synthesis_results.pdf][pdf]], [[./figs/hinf_synthesis_results.tex][tex]]).
#+RESULTS:
[[file:figs/hinf_synthesis_results.png]]
* Fig 7: Architecture for $\mathcal{H}_\infty$ synthesis of three complementary filters
#+begin_src latex :file comp_filter_three_hinf.pdf :tangle figs/comp_filter_three_hinf.tex
\begin{tikzpicture}
\node[block={5.0cm}{3.5cm}, fill=black!20!white, dashed] (P) {};
\node[above] at (P.north) {$P(s)$};
\coordinate[] (inputw) at ($(P.south west)!0.8!(P.north west) + (-0.7, 0)$);
\coordinate[] (inputu) at ($(P.south west)!0.4!(P.north west) + (-0.7, 0)$);
\coordinate[] (output1) at ($(P.south east)!0.8!(P.north east) + (0.7, 0)$);
\coordinate[] (output2) at ($(P.south east)!0.55!(P.north east) + (0.7, 0)$);
\coordinate[] (output3) at ($(P.south east)!0.3!(P.north east) + (0.7, 0)$);
\coordinate[] (outputv) at ($(P.south east)!0.1!(P.north east) + (0.7, 0)$);
\node[block, left=1.4 of output1] (W1){$W_1(s)$};
\node[block, left=1.4 of output2] (W2){$W_2(s)$};
\node[block, left=1.4 of output3] (W3){$W_3(s)$};
\node[addb={+}{}{}{}{-}, left=of W1] (sub1) {};
\node[addb={+}{}{}{}{-}, left=of sub1] (sub2) {};
\node[block, below=0.3 of P] (H) {$\begin{bmatrix}H_2(s) \\ H_3(s)\end{bmatrix}$};
\draw[->] (inputw) node[above right](w){$w$} -- (sub2.west);
\draw[->] (W3-|sub1)node[branch]{} -- (sub1.south);
\draw[->] (W2-|sub2)node[branch]{} -- (sub2.south);
\draw[->] ($(sub2.west)+(-0.5, 0)$) node[branch]{} |- (outputv) |- (H.east);
\draw[->] ($(H.south west)!0.7!(H.north west)$) -| (inputu|-W2) -- (W2.west);
\draw[->] ($(H.south west)!0.3!(H.north west)$) -| ($(inputu|-W3)+(0.4, 0)$) -- (W3.west);
\draw[->] (sub2.east) -- (sub1.west);
\draw[->] (sub1.east) -- (W1.west);
\draw[->] (W1.east) -- (output1)node[above left](z){$z_1$};
\draw[->] (W2.east) -- (output2)node[above left]{$z_2$};
\draw[->] (W3.east) -- (output3)node[above left]{$z_3$};
\node[above] at (W2-|w){$u_1$};
\node[above] at (W3-|w){$u_2$};
\node[above] at (outputv-|z){$v$};
\end{tikzpicture}
#+end_src
#+name: fig:comp_filter_three_hinf
#+caption: Architecture for $\mathcal{H}_\infty$ synthesis of three complementary filters ([[./figs/comp_filter_three_hinf.png][png]], [[./figs/comp_filter_three_hinf.pdf][pdf]], [[./figs/comp_filter_three_hinf.tex][tex]]).
#+RESULTS:
[[file:figs/comp_filter_three_hinf.png]]
* Fig 8: Frequency response of the weighting functions and three complementary filters obtained using $\mathcal{H}_\infty$ synthesis
#+begin_src latex :file hinf_three_synthesis_results.pdf :tangle figs/hinf_three_synthesis_results.tex :exports both
\setlength\fwidth{6.5cm}
\setlength\fheight{6cm}
\begin{tikzpicture}
\begin{axis}[%
width=1.0\fwidth,
height=0.55\fheight,
at={(0.0\fwidth, 0.42\fheight)},
scale only axis,
xmode=log,
xmin=0.1,
xmax=100,
xticklabels={{}},
xminorticks=true,
ymode=log,
ymin=0.0005,
ymax=20,
ytick={0.001, 0.01, 0.1, 1, 10},
yminorticks=true,
ylabel={Magnitude},
xminorgrids,
yminorgrids,
legend columns=2,
legend style={
/tikz/column 2/.style={
column sep=5pt,
},
at={(1,0)}, outer sep=2pt , anchor=south east, legend cell align=left, align=left, draw=black, nodes={scale=0.7, transform shape}
},
]
\addplot [color=mycolor1, dashed, line width=1.5pt]
table [x=freqs, y=W1, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_weights.csv};
\addlegendentry{${W_1}^{-1}$};
\addplot [color=mycolor1, line width=1.5pt]
table [x=freqs, y=H1, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_results.csv};
\addlegendentry{$H_1$};
\addplot [color=mycolor2, dashed, line width=1.5pt]
table [x=freqs, y=W2, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_weights.csv};
\addlegendentry{${W_2}^{-1}$};
\addplot [color=mycolor2, line width=1.5pt]
table [x=freqs, y=H2, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_results.csv};
\addlegendentry{$H_2$};
\addplot [color=mycolor3, dashed, line width=1.5pt]
table [x=freqs, y=W3, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_weights.csv};
\addlegendentry{${W_3}^{-1}$};
\addplot [color=mycolor3, line width=1.5pt]
table [x=freqs, y=H3, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_results.csv};
\addlegendentry{$H_3$};
\end{axis}
\begin{axis}[%
width=1.0\fwidth,
height=0.4\fheight,
at={(0.0\fwidth, 0.0\fheight)},
scale only axis,
xmode=log,
xmin=0.1,
xmax=100,
xminorticks=true,
xlabel={Frequency [Hz]},
ymin=-240,
ymax=240,
ytick={-180, -90, 0, 90, 180},
ylabel={Phase [deg]},
xminorgrids,
]
\addplot [color=mycolor1, line width=1.5pt]
table [x=freqs, y=H1p, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_results.csv};
\addplot [color=mycolor2, line width=1.5pt]
table [x=freqs, y=H2p, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_results.csv};
\addplot [color=mycolor3, line width=1.5pt]
table [x=freqs, y=H3p, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/mathinf_three_results.csv};
\end{axis}
\end{tikzpicture}
#+end_src
#+name: fig:hinf_three_synthesis_results
#+caption: Frequency response of the weighting functions and three complementary filters obtained using $\mathcal{H}_\infty$ synthesis ([[./figs/hinf_three_synthesis_results.png][png]], [[./figs/hinf_three_synthesis_results.pdf][pdf]], [[./figs/hinf_three_synthesis_results.tex][tex]]).
#+RESULTS:
[[file:figs/hinf_three_synthesis_results.png]]
* Fig 9: Specifications and weighting functions magnitude used for $\mathcal{H}_\infty$ synthesis
#+begin_src latex :file ligo_weights.pdf :tangle figs/ligo_weights.tex :exports both
\setlength\fwidth{6.5cm}
\setlength\fheight{3.2cm}
\begin{tikzpicture}
\begin{axis}[%
width=1.0\fwidth,
height=1.0\fheight,
at={(0.0\fwidth, 0.0\fheight)},
scale only axis,
separate axis lines,
every outer x axis line/.append style={black},
every x tick label/.append style={font=\color{black}},
every x tick/.append style={black},
xmode=log,
xmin=0.001,
xmax=1,
xminorticks=true,
xlabel={Frequency [Hz]},
every outer y axis line/.append style={black},
every y tick label/.append style={font=\color{black}},
every y tick/.append style={black},
ymode=log,
ymin=0.005,
ymax=20,
yminorticks=true,
ylabel={Magnitude},
axis background/.style={fill=white},
xmajorgrids,
xminorgrids,
ymajorgrids,
yminorgrids,
legend style={at={(0,1)}, outer sep=2pt, anchor=north west, legend cell align=left, align=left, draw=black, nodes={scale=0.7, transform shape}}
]
\addplot [color=mycolor1, line width=1.5pt]
table [x=freqs, y=wHm, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matligo_weights.csv};
\addlegendentry{$|w_H|^{-1}$}
\addplot [color=mycolor2, line width=1.5pt]
table [x=freqs, y=wLm, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matligo_weights.csv};
\addlegendentry{$|w_L|^{-1}$}
\addplot [color=black, dotted, line width=1.5pt]
table[row sep=crcr]{%
0.0005 0.008\\
0.008 0.008\\
};
\addlegendentry{Specifications}
\addplot [color=black, dotted, line width=1.5pt, forget plot]
table[row sep=crcr]{%
0.008 0.008\\
0.04 1\\
};
\addplot [color=black, dotted, line width=1.5pt, forget plot]
table[row sep=crcr]{%
0.04 3\\
0.1 3\\
};
\addplot [color=black, dotted, line width=1.5pt]
table[row sep=crcr]{%
0.1 0.045\\
2 0.045\\
};
\end{axis}
\end{tikzpicture}
#+end_src
#+name: fig:ligo_weights
#+caption: Specifications and weighting functions magnitude used for $\mathcal{H}_\infty$ synthesis ([[./figs/ligo_weights.png][png]], [[./figs/ligo_weights.pdf][pdf]], [[./figs/ligo_weights.tex][tex]]).
#+RESULTS:
[[file:figs/ligo_weights.png]]
* Fig 10: Comparison of the FIR filters (solid) with the filters obtained with $\mathcal{H}_\infty$ synthesis (dashed)
#+begin_src latex :file comp_fir_ligo_hinf.pdf :tangle figs/comp_fir_ligo_hinf.tex :exports both
\setlength\fwidth{6.5cm}
\setlength\fheight{6.8cm}
\begin{tikzpicture}
\begin{axis}[%
width=1.0\fwidth,
height=0.60\fheight,
at={(0.0\fwidth, 0.32\fheight)},
scale only axis,
xmode=log,
xmin=0.001,
xmax=1,
xtick={0.001,0.01,0.1,1},
xticklabels={{}},
xminorticks=true,
ymode=log,
ymin=0.002,
ymax=5,
ytick={0.001, 0.01, 0.1, 1, 10},
yminorticks=true,
ylabel={Magnitude},
xminorgrids,
yminorgrids,
legend style={at={(1,0)}, outer sep=2pt, anchor=south east, legend cell align=left, align=left, draw=black, nodes={scale=0.7, transform shape}}
]
\addplot [color=mycolor1, line width=1.5pt]
table [x=freqs, y=Hhm, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_hinf.csv};
\addlegendentry{$H_H(s)$ - $\mathcal{H}_\infty$}
\addplot [color=mycolor1, dashed, line width=1.5pt]
table [x=freqs, y=Hhm, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_fir.csv};
\addlegendentry{$H_H(s)$ - FIR}
\addplot [color=mycolor2, line width=1.5pt]
table [x=freqs, y=Hlm, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_hinf.csv};
\addlegendentry{$H_L(s)$ - $\mathcal{H}_\infty$}
\addplot [color=mycolor2, dashed, line width=1.5pt]
table [x=freqs, y=Hlm, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_fir.csv};
\addlegendentry{$H_L(s)$ - FIR}
\end{axis}
\begin{axis}[%
width=1.0\fwidth,
height=0.3\fheight,
at={(0.0\fwidth, 0.0\fheight)},
scale only axis,
xmode=log,
xmin=0.001,
xmax=1,
xtick={0.001, 0.01, 0.1, 1},
xminorticks=true,
xlabel={Frequency [Hz]},
ymin=-180,
ymax=180,
ytick={-180, -90, 0, 90, 180},
ylabel={Phase [deg]},
xminorgrids,
]
\addplot [color=mycolor1, line width=1.5pt, forget plot]
table [x=freqs, y=Hhp, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_hinf.csv};
\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
table [x=freqs, y=Hhp, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_fir.csv};
\addplot [color=mycolor2, line width=1.5pt, forget plot]
table [x=freqs, y=Hlp, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_hinf.csv};
\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
table [x=freqs, y=Hlp, col sep=comma] {/home/thomas/Cloud/thesis/papers/dehaeze19_desig_compl_filte/matlab/matcomp_ligo_fir.csv};
\end{axis}
\end{tikzpicture}
#+end_src
#+name: fig:comp_fir_ligo_hinf
#+caption: Comparison of the FIR filters (solid) with the filters obtained with $\mathcal{H}_\infty$ synthesis (dashed) ([[./figs/comp_fir_ligo_hinf.png][png]], [[./figs/comp_fir_ligo_hinf.pdf][pdf]], [[./figs/comp_fir_ligo_hinf.tex][tex]]).
#+RESULTS:
[[file:figs/comp_fir_ligo_hinf.png]]