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Abstract

For many applications, large bandwidth and dynamic ranges are requiring to
use several sensors, whose signals are combined using complementary filters.
This paper presents a method for designing these complementary filters using
H∞ synthesis that allows to shape the filter norms. This method is shown to
be easily applicable for the synthesis of complex complementary filters.
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1. Introduction

A set of filters is said to be complementary if the sum of their transfer
functions is equal to one at all frequencies. These filters are used when two
or more sensors are measuring the same physical quantity with different noise
characteristics. Unreliable frequencies of each sensor are filtered out by the
complementary filters and then combined to form a super sensor giving a better
estimate of the physical quantity over a wider bandwidth. This technique is
called sensor fusion and is used in many applications.

In [1, 2, 3], various sensors (accelerometers, gyroscopes, vision sensors, etc.)
are merged using complementary filters for the attitude estimation of Unmanned
Aerial Vehicles (UAV). In [4], several sensor fusion configurations using different
types of sensors are discussed in order to increase the control bandwidth of active
vibration isolation systems. Furthermore, sensor fusion is used in the isolation
systems of the Laser Interferometer Gravitational-Wave Observator (LIGO) to
merge inertial sensors with relative sensors [5, 6].

As the super sensor noise characteristics largely depend on the complemen-
tary filter norms, their proper design is of primary importance for sensor fusion.
In [2, 7, 3], first and second order analytical formulas of complementary filters
have been presented. Higher order complementary filters have been used in
[8, 1, 4]. In [7], the sensitivity and complementary sensitivity transfer functions
of a feedback architecture have been proposed to be used as complementary fil-
ters. The design of such filters can then benefit from the classical control theory
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developments. Linear Matrix Inequalities (LMIs) are used in [9] for the synthesis
of complementary filters satisfying some frequency-like performance. Finally, a
synthesis method of high order Finite Impulse Response (FIR) complementary
filters using convex optimization has been developed in [10, 6].

Although many design methods of complementary filters have been proposed
in the literature, no simple method that allows to shape the norm of the com-
plementary filters is available. This paper presents a new design method of
complementary filters based on H∞ synthesis. This design method permits to
easily shape the norms of the generated filters.

The section 2 gives a brief overview of sensor fusion using complementary
filters and explains how the typical requirements for such fusion can be expressed
as upper bounds on the filters norms. In section 3, a new design method for the
shaping of complementary filters using H∞ synthesis is proposed. In section 4,
the method is used to design complex complementary filters that are used for
sensor fusion at the LIGO. Our conclusions are drawn in the final section.

2. Complementary Filters Requirements

2.1. Sensor Fusion Architecture
Let’s consider two sensors measuring the same physical quantity x with

dynamics G1(s) and G2(s), and with uncorrelated noise characteristics n1 and
n2.

The signals from both sensors are fed into two complementary filters H1(s)
and H2(s) and then combined to yield an estimate x̂ of x as shown in Fig. 1.

x̂ = (G1H1 +G2H2)x+H1n1 +H2n2 (1)
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Figure 1: Sensor fusion architecture

The complementary property of H1(s) and H2(s) implies that their transfer
function sum is equal to one at all frequencies (2).

H1(s) +H2(s) = 1 (2)
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2.2. Noise Sensor Filtering
Let’s first consider sensors with perfect dynamics

G1(s) = G2(s) = 1 (3)

The estimate x̂ is then described by

x̂ = x+H1n1 +H2n2 (4)

From (4), the complementary filters H1(s) and H2(s) are shown to only
operate on the sensor’s noise. Thus, this sensor fusion architecture permits to
filter the noise of both sensors without introducing any distortion in the physical
quantity to be measured.

Let’s define the estimation error δx by (5).

δx , x̂− x = H1n1 +H2n2 (5)

As shown in (6), the Power Spectral Density (PSD) of the estimation error
Φδx depends both on the norm of the two complementary filters and on the
PSD of the noise sources Φn1 and Φn2 .

Φδx = |H1|2 Φn1 + |H2|2 Φn2 (6)

Usually, the two sensors have high noise levels over distinct frequency regions.
In order to lower the noise of the super sensor, the value of the norm |H1| has
to be lowered when Φn1 is larger than Φn2 and that of |H2| lowered when Φn2

is larger than Φn1
.

2.3. Robustness of the Fusion
In practical systems the sensor dynamics is not perfect and (3) is not verified.

In such case, one can use an inversion filter Ĝ−1i (s) to normalize the sensor
dynamics, where Ĝi(s) is an estimate of the sensor dynamics Gi(s). However,
as there is always some level of uncertainty on the dynamics, it cannot be
perfectly inverted and Ĝ−1i (s)Gi(s) 6= 1.

Let’s represent the resulting dynamic uncertainty of the inverted sensors
by an input multiplicative uncertainty as shown in Fig. 2 where ∆i is any
stable transfer function satisfying |∆i(jω)| ≤ 1, ∀ω, and |wi(s)| is a weight
representing the magnitude of the uncertainty.

The super sensor dynamics (7) is no longer equal to 1 and now depends on
the sensor dynamics uncertainty weights wi(s) as well as on the complementary
filters Hi(s).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (7)

The uncertainty region of the super sensor can be represented in the com-
plex plane by a circle centered on 1 with a radius equal to |w1(jω)H1(jω)| +
|w2(jω)H2(jω)| as shown in Fig. 3.
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Figure 2: Sensor fusion architecture with sensor dynamics uncertainty
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Figure 3: Uncertainty region of the super sensor dynamics in the complex plane (solid circle).
The contribution of both sensors 1 and 2 to the uncertainty are represented respectively by a
dotted and a dashed circle
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The maximum phase added ∆φ(ω) by the super sensor dynamics at fre-
quency ω is then

∆φ(ω) = arcsin
(
|w1(jω)H1(jω)|+ |w2(jω)H2(jω)|

)
(8)

As it is generally desired to limit the maximum phase added by the super
sensor, H1(s) and H2(s) should be designed such that (9) is satisfied.

max
ω

(
|w1H1|+ |w2H2|

)
< sin (∆φmax) (9)

where ∆φmax is the maximum allowed added phase.
Thus the norm of the complementary filter |Hi| should be made small at

frequencies where |wi| is large.

3. Complementary Filters Shaping using H∞ Synthesis

As shown in Sec. 2, the performance and robustness of the sensor fusion
architecture depends on the complementary filters norms. Therefore, the devel-
opment of a synthesis method of complementary filters that allows the shaping
of their norm is necessary.

3.1. Shaping of Complementary Filters using H∞ synthesis
The synthesis objective is to shape the norm of two filters H1(s) and H2(s)

while ensuring their complementary property (2). This is equivalent as to finding
stable transfer functions H1(s) and H2(s) such that conditions (10) are satisfied.

H1(s) +H2(s) = 1 (10a)

|H1(jω)| ≤ 1

|W1(jω)|
∀ω (10b)

|H2(jω)| ≤ 1

|W2(jω)|
∀ω (10c)

where W1(s) and W2(s) are two weighting transfer functions that are chosen to
shape the norms of the corresponding filters.

In order to express this optimization problem as a standardH∞ problem, the
architecture shown in Fig. 4 is used where the generalized plant P is described
by (11). z1z2

v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (11)

The H∞ filter design problem is then to find a stable filter H2(s) which
based on v, generates a signal u such that the H∞ norm from w to [z1, z2] is
less than one (12). ∥∥∥∥[1−H2(s)]W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (12)
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Figure 4: Architecture used for H∞ synthesis of complementary filters

This is equivalent to having (13) by defining H1(s) as the complementary
filter of H2(s) (14). ∥∥∥∥H1(s)W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (13)

H1(s) , 1−H2(s) (14)

The complementary condition (10a) is ensured by (14). The conditions (10b)
and (10c) on the filters shapes are satisfied by (13). Therefore, all the conditions
(10) are satisfied using this synthesis method based on H∞ synthesis, and thus
it permits to shape complementary filters as desired.

3.2. Weighting Functions Design
The proper design of the weighting functions is of primary importance for

the success of the presented complementary filters H∞ synthesis.
First, only proper, stable and minimum phase transfer functions should be

used. Second, the order of the weights should stay reasonably small in order to
reduce the computational costs associated with the solving of the optimization
problem and for the physical implementation of the filters (the order of the syn-
thesized filters being equal to the sum of the weighting functions order). Third,
one should not forget the fundamental limitations imposed by the complemen-
tary property (2). This implies for instance that |H1(jω)| and |H2(jω)| cannot
be made small at the same time.

When designing complementary filters, it is usually desired to specify the
slope of the filter, its crossover frequency and its gain at low and high fre-
quency. To help with the design of the weighting functions such that the above
specification can be easily expressed, the following formula is proposed.

W (s) =


1
ω0

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
G0

Gc

) 1
n

(
1
G∞

) 1
n 1
ω0

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
1
Gc

) 1
n


n

(15)
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The parameters permit to specify:

• the low frequency gain: G0 = limω→0|W (jω)|

• the high frequency gain: G∞ = limω→∞|W (jω)|

• the absolute gain at ω0: Gc = |W (jω0)|

• the absolute slope between high and low frequency: n

The parameters G0, Gc and G∞ should either satisfy condition (16a) or
(16b).

G0 < 1 < G∞ and G0 < Gc < G∞ (16a)
G∞ < 1 < G0 and G∞ < Gc < G0 (16b)

The general shape of a weighting function generated using (15) is shown in
Fig. 5.
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Figure 5: Magnitude of a weighting function generated using the proposed formula (15),
G0 = 1e−3, G∞ = 10, ωc = 10Hz, Gc = 2, n = 3

3.3. Validation of the proposed synthesis method
Let’s validate the proposed design method of complementary filters with a

simple example where two complementary filters H1(s) and H2(s) have to be
designed such that:

• the merging frequency is around 10 Hz

• the slope of |H1(jω)| is −2 above 10 Hz

• the slope of |H2(jω)| is +3 below 10 Hz

• the gain of both filters is equal to 10−3 away from the merging frequency
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Table 1: Parameters used for W1(s) and W2(s)

Parameter W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc [Hz] 11 10
Gc 0.5 0.5
n 2 3

The weighting functions W1(s) and W2(s) are designed using (15). The
parameters used are summarized in table 1 and the magnitude of the weighting
functions is shown in Fig. 6.

The bode plots of the obtained complementary filters are shown in Fig. 6
and their transfer functions in the Laplace domain are given below.

H1(s) =
10−8(s+ 6.6e9)(s+ 3450)2(s2 + 49s+ 895)

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)

H2(s) =
(s+ 6.6e4)(s+ 160)(s+ 4)3

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
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Figure 6: Frequency response of the weighting functions and complementary filters obtained
using H∞ synthesis

3.4. Synthesis of Three Complementary Filters
Some applications may require to merge more than two sensors. In such

a case, it is necessary to design as many complementary filters as the number
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of sensors used. The synthesis problem is then to compute n stable transfer
functions Hi(s) such that (17) is satisfied.

n∑
i=0

Hi(s) = 1 (17a)

|Hi(jω)| < 1

|Wi(jω)|
, ∀ω, i = 1 . . . n (17b)

The synthesis method is generalized here for the synthesis of three complemen-
tary filters using the architecture shown in Fig. 7.

The H∞ synthesis objective applied on P (s) is to design two stable filters
H2(s) and H3(s) such that the H∞ norm of the transfer function from w to
[z1, z2, z3] is less than one (18).∥∥∥∥∥∥

[1−H2(s)−H3(s)]W1(s)
H2(s)W2(s)
H3(s)W3(s)

∥∥∥∥∥∥
∞

≤ 1 (18)
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W3(s)

+
−

+
−

[
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H3(s)

]

w z1

z2
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u1

u2

v

Figure 7: Architecture for H∞ synthesis of three complementary filters

By choosing H1(s) , 1−H2(s)−H3(s), the proposed H∞ synthesis solves
the design problem (17).

An example is given to validate the method where three sensors are used
in different frequency bands (up to 1 Hz, from 1 to 10 Hz and above 10 Hz
respectively). Three weighting functions are designed using (15) and shown by
dashed curves in Fig. 8. The bode plots of the obtained complementary filters
are shown in Fig. 8.

4. Application: Design of Complementary Filters used in the Active
Vibration Isolation System at the LIGO

Several complementary filters are used in the active isolation system at the
LIGO [10, 6]. The requirements on those filters are very tight and thus their
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Figure 8: Frequency response of the weighting functions and three complementary filters
obtained using H∞ synthesis

design is complex. The approach used in [10] for their design is to write the
synthesis of complementary FIR filters as a convex optimization problem. The
obtained FIR filters are compliant with the requirements. However they are of
very high order so their implementation is quite complex.

The effectiveness of the proposed method is demonstrated by designing com-
plementary filters with the same requirements as the one described in [10].

4.1. Complementary Filters Specifications
The specifications for one pair of complementary filters used at the LIGO

are summarized below (for further details, refer to [6]) and shown in Fig. 9:

• From 0 to 0.008 Hz, the magnitude of the filter’s transfer function should
be less or equal to 8× 10−4

• Between 0.008 Hz to 0.04 Hz, the filter should attenuate the input signal
proportional to frequency cubed

• Between 0.04 Hz to 0.1 Hz, the magnitude of the transfer function should
be less than 3

• Above 0.1 Hz, the magnitude of the complementary filter should be less
than 0.045

4.2. Weighting Functions Design
The weighting functions should be designed such that their inverse magni-

tude is as close as possible to the specifications in order to not over-constrain the
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synthesis problem. However, the order of each weight should stay reasonably
small in order to reduce the computational costs of the optimization problem
as well as for the physical implementation of the filters.

A Type I Chebyshev filter of order 20 is used as the weighting transfer
function wL(s) corresponding to the low pass filter. For the one corresponding
to the high pass filter wH(s), a 7th order transfer function is designed. The
magnitudes of the weighting functions are shown in Fig. 9.
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Figure 9: Specifications and weighting functions magnitudes

4.3. H∞ Synthesis
H∞ synthesis is performed using the architecture shown in Fig. 11. The

complementary filters obtained are of order 27. In Fig. 10, their bode plot is
compared with the FIR filters of order 512 obtained in [10]. They are found
to be very close to each other and this shows the effectiveness of the proposed
synthesis method.

5. Conclusion

This paper has shown how complementary filters can be used to combine
multiple sensors in order to obtain a super sensor. Typical specification on the
super sensor noise and on the robustness of the sensor fusion has been shown
to be linked to the norm of the complementary filters. Therefore, a synthesis
method that permits the shaping of the complementary filters norms has been
proposed and has been successfully applied for the design of complex filters.
Future work will aim at further developing this synthesis method for the robust
and optimal synthesis of complementary filters used in sensor fusion.
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Figure 10: Comparison of the FIR filters (solid) designed in [10] with the filters obtained with
H∞ synthesis (dashed)
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