Complementary Filters Shaping Using \mathcal{H}_∞ Synthesis - Matlab Computation

Thomas Dehaeze

December 11, 2020

Contents

1	H-Infinity synthesis of complementary filters1.1Synthesis Architecture1.2Design of Weighting Function1.3H-Infinity Synthesis1.4Obtained Complementary Filters	4 5 6 7
2	Generating 3 complementary filters 2.1 Theory 2.2 Weights 2.3 H-Infinity Synthesis 2.4 Obtained Complementary Filters	9 10 10 11
3	Implement complementary filters for LIGO3.1Specifications3.2FIR Filter3.3Weights3.4H-Infinity Synthesis3.5Compare FIR and H-Infinity Filters	 13 13 16 17 18
4	Alternative Synthesis 4.1 Two generalized plants 4.2 Shaping the Low pass filter or the high pass filter?	20 20 22
5	Impose a positive slope at DC or a negative slope at infinite frequency5.1Manually shift zeros to the origin after synthesis5.2Imposing a positive slope at DC during the synthesis phase5.3Imposing a negative slope at infinity frequency during the synthesis phase	25 25 27 29

In this document, the design of complementary filters is studied.

One use of complementary filter is described below:

he basic idea of a complementary filter involves taking two or more sensors, filtering out unreliable frequencies for each sensor, and combining the filtered outputs to get a better estimate throughout the entire bandwidth of the system. To achieve this, the sensors included in the filter should complement one another by performing better over specific parts of the system bandwidth.

This document is divided into several sections:

- in section 1, the \mathcal{H}_{∞} synthesis is used for generating two complementary filters
- in section 2, a method using the \mathcal{H}_{∞} synthesis is proposed to shape three of more complementary

filters

 \bullet in section 3, the \mathcal{H}_∞ synthesis is used and compared with FIR complementary filters used for LIGO

Note

Add the Matlab code use to obtain the results presented in the paper are accessible here and presented below.

1 H-Infinity synthesis of complementary filters

Note

The Matlab file corresponding to this section is accessible here.

1.1 Synthesis Architecture

We here synthesize two complementary filters using the \mathcal{H}_{∞} synthesis. The goal is to specify upper bounds on the norms of the two complementary filters $H_1(s)$ and $H_2(s)$ while ensuring their complementary property $(H_1(s) + H_2(s) = 1)$.

In order to do so, we use the generalized plant shown on figure 1.1 where $W_1(s)$ and $W_2(s)$ are weighting transfer functions that will be used to shape $H_1(s)$ and $H_2(s)$ respectively.

Figure 1.1: \mathcal{H}_{∞} synthesis of the complementary filters

The \mathcal{H}_{∞} synthesis applied on this generalized plant will give a transfer function H_2 (figure 1.1) such that the \mathcal{H}_{∞} norm of the transfer function from w to $[z_1, z_2]$ is less than one:

$$\left\| \begin{array}{c} (1 - H_2(s))W_1(s) \\ H_2(s)W_2(s) \end{array} \right\|_{\infty} < 1$$

Thus, if the above condition is verified, we can define $H_1(s) = 1 - H_2(s)$ and we have that:

$$\left|\begin{array}{c} H_1(s)W_1(s)\\ H_2(s)W_2(s)\end{array}\right|_{\infty} < 1$$

Which is almost (with an maximum error of $\sqrt{2}$) equivalent to:

$$\begin{aligned} |H_1(j\omega)| &< \frac{1}{|W_1(j\omega)|}, \quad \forall \omega \\ |H_2(j\omega)| &< \frac{1}{|W_2(j\omega)|}, \quad \forall \omega \end{aligned}$$

We then see that $W_1(s)$ and $W_2(s)$ can be used to shape both $H_1(s)$ and $H_2(s)$ while ensuring their complementary property by the definition of $H_1(s) = 1 - H_2(s)$.

1.2 Design of Weighting Function

A formula is proposed to help the design of the weighting functions:

$$W(s) = \left(\frac{\frac{1}{\omega_0}\sqrt{\frac{1-\left(\frac{G_0}{G_c}\right)^{\frac{2}{n}}}{1-\left(\frac{G_c}{G_c}\right)^{\frac{2}{n}}}s + \left(\frac{G_0}{G_c}\right)^{\frac{1}{n}}}{\left(\frac{1}{G_{\infty}}\right)^{\frac{1}{n}}\frac{1}{\omega_0}\sqrt{\frac{1-\left(\frac{G_0}{G_c}\right)^{\frac{2}{n}}}{1-\left(\frac{G_0}{G_{\infty}}\right)^{\frac{2}{n}}}s + \left(\frac{1}{G_c}\right)^{\frac{1}{n}}}\right)^n}$$
(1.1)

The parameters permits to specify:

- the low frequency gain: $G_0 = \lim_{\omega \to 0} |W(j\omega)|$
- the high frequency gain: $G_{\infty} = \lim_{\omega \to \infty} |W(j\omega)|$
- the absolute gain at ω_0 : $G_c = |W(j\omega_0)|$
- the absolute slope between high and low frequency: \boldsymbol{n}

The general shape of a weighting function generated using the formula is shown in figure 1.2.

Figure 1.2: Gain of the Weighting Function formula

Figure 1.3: Weights on the complementary filters W_1 and W_2 and the associated performance weights

1.3 H-Infinity Synthesis

We define the generalized plant P on matlab.

		Matlab
P = [W1	1 -W1;	
0	W2;	
1	0];	

And we do the \mathcal{H}_{∞} synthesis using the hinfsyn command.

	Results											
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); Resetting value of Gamma min based on D_11, D_12, D_21 terms												
Test bounds: 0.1000 < gamma <= 1050.0000												
gamma	hamx_eig	xinf_eig	hamy_eig	yinf_eig	nrho_xy	p/f						
1.050e+03	2.8e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р						
525.050	2.8e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р						
262.575	2.8e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р						
131.337	2.8e+01	2.4e-07	4.1e+00	-1.0e-13	0.0000	р						
65.719	2.8e+01	2.4e-07	4.1e+00	-9.5e-14	0.0000	р						
32.909	2.8e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р						

	16.505	2.8e+01	2.4e-07	4.1e+00	-1.0e-13	0.0000	р
	8.302	2.8e+01	2.4e-07	4.1e+00	-7.2e-14	0.0000	p
	4.201	2.8e+01	2.4e-07	4.1e+00	-2.5e-25	0.0000	р
	2.151	2.7e+01	2.4e-07	4.1e+00	-3.8e-14	0.0000	р
	1.125	2.6e+01	2.4e-07	4.1e+00	-5.4e-24	0.0000	р
	0.613	2.3e+01	-3.7e+01#	4.1e+00	0.0e+00	0.0000	f
	0.869	2.6e+01	-3.7e+02#	4.1e+00	0.0e+00	0.0000	f
	0.997	2.6e+01	-1.1e+04#	4.1e+00	0.0e+00	0.0000	f
	1.061	2.6e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р
	1.029	2.6e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р
	1.013	2.6e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р
	1.005	2.6e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р
	1.001	2.6e+01	-3.1e+04#	4.1e+00	-3.8e-14	0.0000	f
	1.003	2.6e+01	-2.8e+05#	4.1e+00	0.0e+00	0.0000	f
	1.004	2.6e+01	2.4e-07	4.1e+00	-5.8e-24	0.0000	р
	1.004	2.6e+01	2.4e-07	4.1e+00	0.0e+00	0.0000	р
(Gamma valu	e achieve	ed: 1.0	036			

We then define the high pass filter $H_1 = 1 - H_2$. The bode plot of both H_1 and H_2 is shown on figure 1.4.

H1 = 1 - H2;

_ Matlab _

1.4 Obtained Complementary Filters

The obtained complementary filters are shown on figure 1.4.

Figure 1.4: Obtained complementary filters using \mathcal{H}_∞ synthesis

2 Generating 3 complementary filters

$\mathbf{Not}\epsilon$

The Matlab file corresponding to this section is accessible here.

2.1 Theory

We want:

$$\begin{split} |H_1(j\omega)| &< 1/|W_1(j\omega)|, \quad \forall \omega \\ |H_2(j\omega)| &< 1/|W_2(j\omega)|, \quad \forall \omega \\ |H_3(j\omega)| &< 1/|W_3(j\omega)|, \quad \forall \omega \\ H_1(s) + H_2(s) + H_3(s) &= 1 \end{split}$$

For that, we use the \mathcal{H}_{∞} synthesis with the architecture shown on figure 2.1.

Figure 2.1: Generalized architecture for generating 3 complementary filters

The \mathcal{H}_{∞} objective is:

$$\begin{split} |(1 - H_2(j\omega) - H_3(j\omega))W_1(j\omega)| < 1, & \forall \omega \\ |H_2(j\omega)W_2(j\omega)| < 1, & \forall \omega \\ |H_3(j\omega)W_3(j\omega)| < 1, & \forall \omega \end{split}$$

And thus if we choose $H_1 = 1 - H_2 - H_3$ we have solved the problem.

2.2 Weights

First we define the weights.

```
\begin{array}{c} & \text{Matlab} \\ \hline n = 2; \ w0 = 2 \pm pi \pm 1; \ G0 = 1/10; \ G1 = 1000; \ Gc = 1/2; \\ W1 = (((1/w0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)})/((1/G1)^{(1/n)} \pm (1/W0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)}))^n; \\ W2 = 0.22 \pm (1 \pm s/2/pi/1)^2/(sqrt(1e-4) \pm s/2/pi/1)^2 \pm (1 \pm s/2/pi/10)^2/(1 \pm s/2/pi/1000)^2; \\ n = 3; \ w0 = 2 \pm pi \pm 10; \ G0 = 1000; \ G1 = 0.1; \ Gc = 1/2; \\ W3 = (((1/w0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)})/((1/G1)^{(1/n)} \pm (1/W0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)})/(1/W0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)}) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)}) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)}) \pm sqrt((1-(G0/Gc)^{(2/n)})) \pm sqrt((1-(G0/G
```


Figure 2.2: Three weighting functions used for the \mathcal{H}_{∞} synthesis of the complementary filters

2.3 H-Infinity Synthesis

Then we create the generalized plant P.

 P = [W1 -W1 -W1;
 Matlab

 0
 W2 0;

 0
 0

 1
 0

 0;

And we do the \mathcal{H}_{∞} synthesis.

Results											
<pre>[H, ~, gamma, ~] = hinfsyn(P, 1, 2, 'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');</pre>											
Resetting value of Gamma min based on D_11, D_12, D_21 terms											
Test bound	Fest bounds: 0.1000 < gamma <= 1050.0000										
gamma	hamx_eig	xinf_eig	hamy_eig	yinf_eig	nrho_xy	p/f					
1.050e+03	3.2e+00	4.5e-13	6.3e-02	-1.2e-11	0.0000	р					
525.050	3.2e+00	1.3e-13	6.3e-02	0.0e+00	0.0000	р					
262.575	3.2e+00	2.1e-12	6.3e-02	-1.5e-13	0.0000	р					
131.337	3.2e+00	1.1e-12	6.3e-02	-7.2e-29	0.0000	р					
65.719	3.2e+00	2.0e-12	6.3e-02	0.0e+00	0.0000	р					
32.909	3.2e+00	7.4e-13	6.3e-02	-5.9e-13	0.0000	р					
16.505	3.2e+00	1.4e-12	6.3e-02	0.0e+00	0.0000	р					
8.302	3.2e+00	1.6e-12	6.3e-02	0.0e+00	0.0000	р					
4.201	3.2e+00	1.6e-12	6.3e-02	0.0e+00	0.0000	р					
2.151	3.2e+00	1.6e-12	6.3e-02	0.0e+00	0.0000	р					
1.125	3.2e+00	2.8e-12	6.3e-02	0.0e+00	0.0000	р					
0.613	3.0e+00	-2.5e+03#	6.3e-02	0.0e+00	0.0000	f					
0.869	3.1e+00	-2.9e+01#	6.3e-02	0.0e+00	0.0000	f					
0.997	3.2e+00	1.9e-12	6.3e-02	0.0e+00	0.0000	р					
0.933	3.1e+00	-6.9e+02#	6.3e-02	0.0e+00	0.0000	f					
0.965	3.1e+00	-3.0e+03#	6.3e-02	0.0e+00	0.0000	f					
0.981	3.1e+00	-8.6e+03#	6.3e-02	0.0e+00	0.0000	f					
0.989	3.2e+00	-2.7e+04#	6.3e-02	0.0e+00	0.0000	f					
0.993	3.2e+00	-5.7e+05#	6.3e-02	0.0e+00	0.0000	f					
0.995	3.2e+00	2.2e-12	6.3e-02	0.0e+00	0.0000	р					
0.994	3.2e+00	1.6e-12	6.3e-02	0.0e+00	0.0000	p					
0.994	3.2e+00	1.0e-12	6.3e-02	0.0e+00	0.0000	р					
Gamma val	ue achieve	ed: 0.9	936								

2.4 Obtained Complementary Filters

The obtained filters are:

	Matlan
H2 = tf(H(1));	
H3 = tf(H(2));	
H1 = 1 - H2 - H3;	

Figure 2.3: The three complementary filters obtained after \mathcal{H}_∞ synthesis

3 Implement complementary filters for LIGO

 \mathbf{Note}

The Matlab file corresponding to this section is accessible here.

Let's try to design complementary filters that are corresponding to the complementary filters design for the LIGO and described in [hua05_low_ligo].

The FIR complementary filters designed in [hua05 low ligo] are of order 512.

3.1 Specifications

The specifications for the filters are:

- 1. From 0 to 0.008 Hz, the magnitude of the filter's transfer function should be less than or equal to 8×10^{-3}
- 2. From 0.008 Hz to 0.04 Hz, it attenuates the input signal proportional to frequency cubed
- 3. Between 0.04 Hz and 0.1 Hz, the magnitude of the transfer function should be less than 3
- 4. Above 0.1 Hz, the maximum of the magnitude of the complement filter should be as close to zero as possible. In our system, we would like to have the magnitude of the complementary filter to be less than 0.1. As the filters obtained in [hua05_low_ligo] have a magnitude of 0.045, we will set that as our requirement

The specifications are translated in upper bounds of the complementary filters are shown on figure 3.1.

3.2 FIR Filter

We here try to implement the FIR complementary filter synthesis as explained in [hua05_low_ligo]. For that, we use the CVX matlab Toolbox.

We setup the CVX toolbox and use the SeDuMi solver.

Figure 3.1: Specification for the LIGO complementary filters

	Matlab
cvx_startup; cvx_solver <mark>sedumi</mark> ;	

We define the frequency vectors on which we will constrain the norm of the FIR filter.

 w1 = 0:4.06e-4:0.008;
 Matlab

 w2 = 0.008:4.06e-4:0.04;
 w3 = 0.04:8.12e-4:0.1;

 w4 = 0.1:8.12e-4:0.83;
 Matlab

We then define the order of the FIR filter.

 Matlab

 n = 512;

 A1 = [ones(length(w1),1), cos(kron(w1'.*(2*pi),[1:n-1]))];

 A2 = [ones(length(w2),1), cos(kron(w2'.*(2*pi),[1:n-1]))];

 A3 = [ones(length(w3),1), cos(kron(w3'.*(2*pi),[1:n-1]))];

 A4 = [ones(length(w4),1), cos(kron(w1'.*(2*pi),[1:n-1]))];

 B1 = [zeros(length(w2),1), sin(kron(w1'.*(2*pi),[1:n-1]))];

 B2 = [zeros(length(w3),1), sin(kron(w3'.*(2*pi),[1:n-1]))];

 B3 = [zeros(length(w3),1), sin(kron(w3'.*(2*pi),[1:n-1]))];

 B4 = [zeros(length(w4),1), sin(kron(w4'.*(2*pi),[1:n-1]))];

We run the convex optimization.

	Matlab
cvx_begin	
variable y(n+1,1)	
% t	

```
maximize(-y(1))
for i = 1:length(w1)
    norm([0 A1(i,:); 0 B1(i,:)]*y) <= 8e-3;
end
for i = 1:length(w2)
    norm([0 A2(i,:); 0 B2(i,:)]*y) <= 8e-3*(2*pi*w2(i)/(0.008*2*pi))^3;
end
for i = 1:length(w3)
    norm([0 A3(i,:); 0 B3(i,:)]*y) <= 3;
end
for i = 1:length(w4)
    norm([[1 0]'- [0 A4(i,:); 0 B4(i,:)]*y]) <= y(1);
end
cvx_end
h = y(2:end);</pre>
```

cvx begin variable y(n+1,1) % t maximize(-y(1)) for i = 1:length(w1) norm([0 A1(i,:); 0 B1(i,:)]*y) <= 8e-3;</pre> end for i = 1:length(w2)norm([0 A2(i,:); 0 B2(i,:)]*y) <= 8e-3*(2*pi*w2(i)/(0.008*2*pi))^3;</pre> end for i = 1:length(w3) norm([0 A3(i,:); 0 B3(i,:)]*y) <= 3;</pre> end for i = 1:length(w4) norm([[1 0]'- [0 A4(i,:); 0 B4(i,:)]*y]) <= y(1);</pre> end cvx end Calling SeDuMi 1.34: 4291 variables, 1586 equality constraints For improved efficiency, SeDuMi is solving the dual problem. SeDuMi 1.34 (beta) by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003. Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500 eqs m = 1586, order n = 3220, dim = 4292, blocks = 1073 nnz(A) = 1100727 + 0, nnz(ADA) = 1364794, nnz(L) = 683190 it : gap delta 4.11E+02 0.000 b*y delta rate t/tP* t/tD* feas cg cg prec 0 : 1 : -2.58E+00 1.25E+02 0.000 0.3049 0.9000 0.9000 4.87 1 1 3.0E+02 : -2.36E+00 3.90E+01 0.000 0.3118 0.9000 0.9000 1.83 1 1 6.6E+01 2 : -1.69E+00 1.31E+01 0.000 0.3354 0.9000 0.9000 1.76 1 1 1.5E+01 3 4 : -8.60E-01 7.10E+00 0.000 0.5424 0.9000 0.9000 2.48 1 1 4.8E+00 5 : -4.91E-01 5.44E+00 0.000 0.7661 0.9000 0.9000 3.12 1 1 2.5E+00 6 : -2.96E-01 3.88E+00 0.000 0.7140 0.9000 0.9000 2.62 1 1 1.4E+00 : -1.98E-01 2.82E+00 0.000 0.7271 0.9000 0.9000 2.14 1 1 8.5E-01 7 : -1.39E-01 2.00E+00 0.000 0.7092 0.9000 0.9000 1.78 1 1 5.4E-01 : -9.99E-02 1.30E+00 0.000 0.6494 0.9000 0.9000 9 1.51 1 1 3.3E-01 : -7.57E-02 8.03E-01 0.000 0.6175 0.9000 0.9000 1.31 1 1 2.0E-01 10 11 : -5.99E-02 4.22E-01 0.000 0.5257 0.9000 0.9000 1 17 1 1 1 0F-01 12 : -5.28E-02 2.45E-01 0.000 0.5808 0.9000 0.9000 1.08 1 1 5.9E-02 13 : -4.82E-02 1.28E-01 0.000 0.5218 0.9000 0.9000 1 3.1E-02 1.05 1 14 : -4.56E-02 5.65E-02 0.000 0.4417 0.9045 0.9000 1.02 1 1.4E-02 1 : -4.43E-02 2.41E-02 0.000 0.4265 0.9004 0.9000 15 1.01 1 1 6.0E-03 : -4.37E-02 8.90E-03 0.000 0.3690 0.9070 0.9000 16 1.00 1 2.3E-03 17 : -4.35E-02 3.24E-03 0.000 0.3641 0.9164 0.9000 1.00 1 1 9.5E-04 18 : -4.34E-02 1.55E-03 0.000 0.4788 0.9086 0.9000 1.00 1 1 4.7E-04 19 : -4.34E-02 8.77E-04 0.000 0.5653 0.9169 0.9000 1.00 1 1 2.8E-04 1.6E-04 20 : -4.34E-02 5.05E-04 0.000 0.5754 0.9034 0.9000 1.00 1 1 21 : -4.34E-02 2.94E-04 0.000 0.5829 0.9136 0.9000 1.00 9.9E-05 1 1 22 : -4.34E-02 1.63E-04 0.015 0.5548 0.9000 0.0000 1.00 1 1 6.6E-05 23 : -4.33E-02 9.42E-05 0.000 0.5774 0.9053 0.9000 1.00 1 1 3.9E-05 24 : -4.33E-02 6.27E-05 0.000 0.6658 0.9148 0.9000 1.00 1 1 2.6E-05 25 : -4.33E-02 3.75E-05 0.000 0.5972 0.9187 0.9000 1.00 1 1 1.6E-05

_ Results _

```
26
27
       -4.33E-02 1.89E-05 0.000 0.5041 0.9117 0.9000
                                                            1.00
                                                                        8.6E-06
                                                                        4.5E-06
       -4.33E-02 9.72E-06 0.000 0.5149 0.9050 0.9000
                                                           1 00
                                                                  1
       -4.33E-02 2.94E-06 0.000 0.3021 0.9194 0.9000
                                                           1.00
28 :
                                                                        1.5E-06
                                                                  1
                                                                     1
       -4.33E-02 9.73E-07 0.000 0.3312 0.9189 0.9000
                                                                     2
                                                                        5.3E-07
29
                                                           1.00
                                                                 2
       -4.33E-02 2.82E-07 0.000 0.2895 0.9063 0.9000
                                                                    2
30
                                                           1.00
                                                                 2
                                                                        1.6E-07
       -4.33E-02 8.05E-08 0.000 0.2859 0.9049 0.9000
                                                           1.00
                                                                     2
                                                                        4.7E-08
 31
                                                                  2
32
       -4.33E-02 1.43E-08 0.000 0.1772 0.9059 0.9000
                                                           1.00
                                                                  2
                                                                     2
                                                                        8.8E-09
iter seconds digits
                            c*x
                                               b*\
                6.8 -4.3334083581e-02 -4.3334090214e-02
        49.4 6.8 -4.3334083581e-02 -4.3334090214e-02
= 3.7e-09, [Ay-c]_+ = 1.1E-10, |x|= 1.0e+00, |y|= 2.6e+00
32
|Ax-b| =
Detailed timing (sec)
Pre
3.902E+00
                 TPM
                               Post
              4.576E+01
                           1.035E-02
Max-norms: ||b||=1, ||c|| = 3,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 4.26267.
Status: Solved
Optimal value (cvx_optval): -0.0433341
h = y(2:end);
```

Finally, we compute the filter response over the frequency vector defined and the result is shown on figure 3.2 which is very close to the filters obtain in [hua05_low_ligo].

Figure 3.2: FIR Complementary filters obtain after convex optimization

3.3 Weights

We design weights that will be used for the \mathcal{H}_{∞} synthesis of the complementary filters. These weights will determine the order of the obtained filters. Here are the requirements on the filters:

• reasonable order

- to be as close as possible to the specified upper bounds
- stable minimum phase

The bode plot of the weights is shown on figure 3.3.

Figure 3.3: Weights for the \mathcal{H}_{∞} synthesis

_ Matlab

3.4 H-Infinity Synthesis

We define the generalized plant as shown on figure 1.1.

P = [0 wL; wH -wH; 1 0];

And we do the \mathcal{H}_{∞} synthesis using the hinfsyn command.

[Hl, ~, gamma, ~] = hinfsyn(P, 1, 1, 'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');

	Results										
[H1, ~, ga	mma, ~] = hinfsyn(P,	1, 1, 'TOL	GAM', 0.001,	'METHOD',	'ric', 'DISPLAY', 'on');						
Resetting	Resetting value of Gamma min based on D 11. D 12. D 21 terms										
U	······································										
Test bounds: 0.3276 < gamma <= 1.8063											
gamma	hamx_eig xinf_eig	hamy_eig	yinf_eig	nrho_xy	p/f						
1.806	1.4e-02 -1.7e-16	3.6e-03	-4.8e-12	0.0000	p						
1.067	1.3e-02 -4.2e-14	3.6e-03	-1.9e-12	0.0000	p						
0.697	1.3e-02 -3.0e-01#	3.6e-03	-3.5e-11	0.0000	f						
0.882	1.3e-02 -9.5e-01#	3.6e-03	-1.2e-34	0.0000	f						
0.975	1.3e-02 -2.7e+00#	3.6e-03	-1.6e-12	0.0000	f						
1.021	1.3e-02 -8.7e+00#	3.6e-03	-4.5e-16	0.0000	f						
1.044	1.3e-02 -6.5e-14	3.6e-03	-3.0e-15	0.0000	р						
1.032	1.3e-02 -1.8e+01#	3.6e-03	0.0e+00	0.0000	f						
1.038	1.3e-02 -3.8e+01#	3.6e-03	0.0e+00	0.0000	f						
1.041	1.3e-02 -8.3e+01#	3.6e-03	-2.9e-33	0.0000	f						
1.042	1.3e-02 -1.9e+02#	3.6e-03	-3.4e-11	0.0000	f						
1.043	1.3e-02 -5.3e+02#	3.6e-03	-7.5e-13	0.0000	f						
Gamma val	Gamma value achieved: 1.0439										

The high pass filter is defined as $H_H = 1 - H_L$.

Hh = 1 - H1;

Matlab .

The size of the filters is shown below.

```
______ Results _____
size(Hh), size(H1)
State-space model with 1 outputs, 1 inputs, and 27 states.
State-space model with 1 outputs, 1 inputs, and 27 states.
```

The bode plot of the obtained filters as shown on figure 3.4.

Figure 3.4: Obtained complementary filters using the \mathcal{H}_{∞} synthesis

3.5 Compare FIR and H-Infinity Filters

Let's now compare the FIR filters designed in [hua05_low_ligo] and the one obtained with the \mathcal{H}_{∞} synthesis on figure 3.5.

Figure 3.5: Comparison between the FIR filters developped for LIGO and the \mathcal{H}_{∞} complementary filters

4 Alternative Synthesis

4.1 Two generalized plants

In order to synthesize the complementary filter using the proposed method, we can use two alternative generalized plant as shown in Figures 4.1 and 4.2.

Figure 4.1: Complementary Filter Synthesis - Conf 1

$$P_2 = \begin{bmatrix} 0 & W_1 & 1 \\ W_2 & -W_1 & 0 \end{bmatrix}$$
(4.2)

Let's run the \mathcal{H}_{∞} synthesis for both generalized plant using the same weights and see if the obtained filters are the same:

```
\begin{array}{c} & \mbox{Matlab} \\ \hline n = 2; \ w0 = 2*pi*11; \ G0 = 1/10; \ G1 = 1000; \ Gc = 1/2; \\ \ W1 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + \\ \hookrightarrow \ (G0/Gc)^{(1/n)}/((1/G1)^{(1/n)}*(1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + (1/Gc)^{(1/n)})^n; \\ n = 3; \ w0 = 2*pi*10; \ G0 = 1000; \ G1 = 0.1; \ Gc = 1/2; \\ \ W2 = (((1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + \\ \hookrightarrow \ (G0/Gc)^{(1/n)})/((1/G1)^{(1/n)}*(1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + (1/Gc)^{(1/n)})^n; \\ \end{array}
```

```
P1 = [W1 -W1;
0 W2;
1 0];
```


Figure 4.2: Complementary Filter Synthesis - Conf 2

				Resu	lts			
[H2, ~, gamma,	~] = hinfsy	n(P1, 1, 1,	'TOLGAM', 0.00	1, 'METHOD',	'ric',	'DISPLAY',	'on');	
Test bounds:	0.3263 <=	gamma <=	1000					
gamma	X>=0	Y>=0	rho(XY)<1	p/f				
1.807e+01	1.4e-07	0.0e+00	1.185e-18	р				
2.428e+00	1.5e-07	0.0e+00	1.285e-18	р				
8.902e-01	-2.9e+02 #	-7.1e-17	5.168e-19	f				
1.470e+00	1.5e-07	0.0e+00	1.462e-14	р				
1.144e+00	1.5e-07	0.0e+00	1.260e-14	р				
1.009e+00	1.5e-07	0.0e+00	4.120e-13	р				
9.478e-01	-6.8e+02 #	-2.4e-17	1.449e-14	f				
9.780e-01	-1.6e+03 #	-7.3e-17	6.791e-14	f				
9.934e-01	-4.2e+03 #	-1.2e-16	3.524e-14	f				
1.001e+00	-2.0e+04 #	-2.3e-17	5.717e-20	f				
1.005e+00	1.5e-07	0.0e+00	8.953e-18	р				
1.003e+00	-2.2e+05 #	-1.8e-17	3.225e-12	f				
1.004e+00	1.5e-07	0.0e+00	2.445e-12	р				
Limiting gai	ns							
1.004e+00	1.6e-07	0.0e+00	5.811e-18	р				
Best perform	ance (actual): 1.004						

P2 = [0 W1 1; W2 -W1 0]; . Matlab _

Test bounds: 0.3263 <= gamma <= 1000

gamma	X>=0	Y>=0	rho(XY)<1	p/f
1.807e+01	0.0e+00	1.4e-07	2.055e-16	р
2.428e+00	0.0e+00	1.4e-07	1.894e-18	р
8.902e-01	-2.1e-16	-2.7e+02 #	1.466e-16	f
1.470e+00	0.0e+00	1.4e-07	4.118e-16	р
1.144e+00	0.0e+00	1.5e-07	2.105e-18	р
1.009e+00	0.0e+00	1.5e-07	2.590e-13	р
9.478e-01	-9.5e-17	-6.3e+02 #	1.663e-19	f
9.780e-01	-1.1e-16	-1.5e+03 #	1.546e-14	f
9.934e-01	-2.8e-17	-4.0e+03 #	3.934e-14	f
1.001e+00	-3.1e-17	-1.9e+04 #	1.191e-19	f
1.005e+00	0.0e+00	1.5e-07	1.443e-12	р
1.003e+00	-8.3e-17	-2.1e+05 #	8.807e-13	f
1.004e+00	0.0e+00	1.5e-07	1.459e-15	р
Limiting ga	ains			
1.004e+00	0.0e+00	1.5e-07	9.086e-19	р
Best perfor	-mance (actua	al): 1.004		

And indeed, we can see that the exact same filters are obtained (Figure 4.3).

Figure 4.3: Comparison of $H_2(s)$ when using $P_1(s)$ or $P_2(s)$

4.2 Shaping the Low pass filter or the high pass filter?

Let's see if there is a difference by explicitly shaping $H_1(s)$ or $H_2(s)$.

```
\begin{array}{c} & \mbox{Matlab} \\ \hline n = 2; \ w0 = 2*pi*11; \ G0 = 1/10; \ G1 = 1000; \ Gc = 1/2; \\ \ W1 = (((1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + \\ \hookrightarrow \quad (G0/Gc)^{(1/n)})/((1/G1)^{(1/n)}*(1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + (1/Gc)^{(1/n)}))^n; \\ n = 3; \ w0 = 2*pi*10; \ G0 = 1000; \ G1 = 0.1; \ Gc = 1/2; \\ \ W2 = (((1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + \\ \leftrightarrow \quad (G0/Gc)^{(1/n)})/((1/G1)^{(1/n)}*(1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + (1/Gc)^{(1/n)}))^n; \end{array}
```

Let's first synthesize $H_1(s)$:

_ Matlab __

					- Results		
[H1, ~, gamma,	~] = hinfsy	n(P1, 1, 1,	'TOLGAM', 0.00	1, 'MET	HOD', 'ric',	'DISPLAY',	'on');
Test bounds:	0.3263 <=	gamma <=	1.712				
gamma	X>=0	Y>=0	rho(XY)<1	p/f			
7.476e-01	-2.5e+01 #	-8.3e-18	4.938e-20	f			
1.131e+00	1.9e-07	0.0e+00	1.566e-16	р			
9.197e-01	-1.4e+02 #	-7.9e-17	4.241e-17	f			
1.020e+00	1.9e-07	0.0e+00	2.095e-16	р			
9.686e-01	-3.8e+02 #	-7.0e-17	1.463e-23	f			
9.940e-01	-1.5e+03 #	-1.3e-17	3.168e-19	f			
1.007e+00	1.9e-07	0.0e+00	1.696e-15	р			
1.000e+00	-4.8e+03 #	-7.1e-18	7.203e-20	f			
1.004e+00	1.9e-07	0.0e+00	1.491e-14	р			
1.002e+00	-1.1e+04 #	-2.6e-16	2.579e-14	f			
1.003e+00	-2.8e+04 #	-6.0e-18	8.558e-20	f			
Limiting gai	ns						
1.004e+00	2.0e-07	0.0e+00	5.647e-18	р			
1.004e+00	1.0e-06	0.0e+00	5.648e-18	p			
Best perform	ance (actual): 1.004					
•	-	-					

And now $H_2(s)$:

			Matlab
P2 =	[W1	-W1;	
	0	W2;	
	1	0];	

					_ Results
H2b, ~, gamma, ~] = hinfsyn(P2, 1, 1, 'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');					
Test bounds:	0.3263 <=	gamma <=	1000		
gamma	X>=0	Y>=0	rho(XY)<1	p/f	
1.807e+01	1.4e-07	0.0e+00	1.185e-18	р	
2.428e+00	1.5e-07	0.0e+00	1.285e-18	p	
8.902e-01	-2.9e+02 #	-7.1e-17	5.168e-19	f	
1.470e+00	1.5e-07	0.0e+00	1.462e-14	р	
1.144e+00	1.5e-07	0.0e+00	1.260e-14	p	
1.009e+00	1.5e-07	0.0e+00	4.120e-13	р	
9.478e-01	-6.8e+02 #	-2.4e-17	1.449e-14	f	
9.780e-01	-1.6e+03 #	-7.3e-17	6.791e-14	f	
9.934e-01	-4.2e+03 #	-1.2e-16	3.524e-14	f	
1.001e+00	-2.0e+04 #	-2.3e-17	5.717e-20	f	
1.005e+00	1.5e-07	0.0e+00	8.953e-18	р	
1.003e+00	-2.2e+05 #	-1.8e-17	3.225e-12	f	
1.004e+00	1.5e-07	0.0e+00	2.445e-12	р	
Limiting gai	.ns				
1.004e+00	1.6e-07	0.0e+00	5.811e-18	р	

And compare $H_1(s)$ with $1 - H_2(s)$ and $H_2(s)$ with $1 - H_1(s)$ in Figure 4.4.

Figure 4.4: Comparison of $H_1(s)$ with $1 - H_2(s)$, and $H_2(s)$ with $1 - H_1(s)$

5 Impose a positive slope at DC or a negative slope at infinite frequency

5.1 Manually shift zeros to the origin after synthesis

Suppose we want $H_2(s)$ to be an high pass filter with a slope of +2 at low frequency (from 0Hz).

We cannot impose that using the weight $W_2(s)$ as it would be improper.

However, we may manually shift 2 of the low frequency zeros to the origin.

P = [W1 -W1; 0 W2; 1 0]; Matlab

_ Matlab

And we do the \mathcal{H}_{∞} synthesis using the hinfsyn command:

[z,p,k] = zpkdata(H2)

Matlab

Looking at the zeros, we see two low frequency complex conjugate zeros.

 $\begin{array}{c} & \\ \hline z\{1\} \\ ans = \\ & \\ & -4690930.24283199 + 0i \\ & -163.420524657426 + 0i \\ & -0.853192261081498 + 0.713416012479897i \\ & -0.853192261081498 - 0.713416012479897i \\ & -3.15812268762265 + 0i \end{array}$

We manually put these zeros at the origin:

	Matlab
$z\{1\}([3,4]) = 0;$	

Matlab

And we create a modified filter $H_{2z}(s)$:

H2z = zpk(z,p,k);

And as usual, $H_{1z}(s)$ is defined as the complementary of $H_{2z}(s)$:

	Matlah
H1z = 1 - H2z;	

The bode plots of $H_1(s)$, $H_2(s)$, $H_{1z}(s)$ and $H_{2z}(s)$ are shown in Figure 5.1. And we see that $H_{1z}(s)$ is slightly modified when setting the zeros at the origin for $H_{2z}(s)$.

Figure 5.1: Bode plots of $H_1(s)$, $H_2(s)$, $H_{1z}(s)$ and $H_{2z}(s)$

5.2 Imposing a positive slope at DC during the synthesis phase

Suppose we want to synthesize $H_2(s)$ such that it has a slope of +2 from DC. We can include this "feature" in the generalized plant as shown in Figure 5.2.

Figure 5.2: Generalized plant with included wanted feature represented by $H_{2w}(s)$

After synthesis, the obtained filter will be:

$$H_2(s) = H'_2(s)H_{2w}(s) \tag{5.1}$$

and therefore the "feature" will be included in the filter.

For $H_1(s)$ nothing is changed: $H_1(s) = 1 - H_2(s)$.

The weighting functions are defined as usual:

```
\begin{array}{c} & \text{Matlab} \\ \hline n = 2; \ w0 = 2*pi*11; \ G0 = 1/10; \ G1 = 1000; \ Gc = 1/2; \\ w1 = (((1/w0)*sqrt((1-(G0/Gc)^{(2/n)}))'(1-(Gc/G1)^{(2/n)}))*s + \\ \leftrightarrow \quad (G0/Gc)^{(1/n)})'((1/G1)^{(1/n)}*(1/w0)*sqrt((1-(G0/Gc)^{(2/n)}))'(1-(Gc/G1)^{(2/n)}))*s + (1/Gc)^{(1/n)}))^n; \\ n = 3; \ w0 = 2*pi*10; \ G0 = 1e4; \ G1 = 0.1; \ Gc = 1/2; \\ w2 = (((1/w0)*sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))*s + (1/Gc)^{(1/n)})^n; \\ \leftrightarrow \quad (G0/Gc)^{(1/n)})'((1/G1)^{(1/n)}*(1/w0)*sqrt((1-(G0/Gc)^{(2/n)}))*s + (1/Gc)^{(1/n)})^n; \\ \end{array}
```

The wanted feature here is a +2 slope at low frequency. For that, we use an high pass filter with a slope of +2 at low frequency.

Matlab _

w0 = 2*pi*50; H2w = (s/w0/(s/w0+1))^2;

We define the generalized plant as shown in Figure 5.2.

	Matlab
P = [W1 -W1;	
0 W2;	
H2w 0];	

And we do the \mathcal{H}_{∞} synthesis using the hinfsyn command.

Finally, we define $H_2(s)$ as the product of the synthesized filter and the wanted "feature":

	Matlah
$H2 = H2p \star H2w;$	

And we define $H_1(s)$ to be the complementary of $H_2(s)$:

	Matlab
H1 = 1 - H2;	

The obtained complementary filters are shown in Figure 5.3.

Figure 5.3: Obtained complementary fitlers

5.3 Imposing a negative slope at infinity frequency during the synthesis phase

Let's suppose we now want to shape a low pass filter that as a negative slope until infinite frequency.

The used technique is the same as in the previous section, and the generalized plant is shown in Figure 5.2.

The weights are defined as usual.

```
\begin{array}{c} & \mbox{Matlab} \\ \hline n = 3; \ w0 = 2 \pm pi \pm 10; \ G0 = 1000; \ G1 = 0.1; \ Gc = 1/2; \\ W1 = (((1/w0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)})/((1/G1)^{(1/n)} \pm (1/w0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)}))^n; \\ n = 2; \ w0 = 2 \pm pi \pm 11; \ G0 = 1/10; \ G1 = 1000; \ Gc = 1/2; \\ W2 = (((1/w0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)})) \pm s + (1/Gc)^{(1/n)}))^n; \\ \rightarrow \ (G0/Gc)^{(1/n)}/(((1/G1)^{(1/n)} \pm (1/w0) \pm sqrt((1-(G0/Gc)^{(2/n)})/(1-(Gc/G1)^{(2/n)}))) \pm s + (1/Gc)^{(1/n)})^n; \\ \end{array}
```

This time, the feature is a low pass filter with a slope of -2 at high frequency.

	_ Matlab
$H_{2w} = 1/(s/(2*pi*10) + 1)^{2};$	

The generalized plant is defined:

P = [W1 -W1; 0 W2; H2w 0];

And we do the \mathcal{H}_{∞} synthesis using the hinfsyn command.

The feature is added to the synthesized filter:

__________Matlab ___________Matlab _______

And $H_1(s)$ is defined as follows:

H1 = 1 - H2;

- Matlab

The obtained complementary filters are shown in Figure 5.4.

 ref

Figure 5.4: Obtained complementary fitlers