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Abstract

In order to obtain a better estimate of a quantity being measured, several sensors having different characteristics
can be merged with a technique called “sensor fusion”. The obtained “super sensor” can combine the benefits of the
individual sensors provided that the complementary filters used in the fusion are well designed. Indeed, properties
of the super sensor are linked to the magnitude of the complementary filters. Properly shaping the magnitude of
complementary filters is a difficult and time-consuming task. In this study, we address this issue and propose a new
method for designing complementary filters. This method uses weighting functions to specify the wanted shape
of the complementary filter that are then easily obtained using the standard H∞ synthesis. The proper choice of
the weighting functions is discussed, and the effectiveness and simplicity of the design method is highlighted using
several examples. Such synthesis method is further extended for the shaping of more than two complementary
filters.
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1. Introduction

Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy of the
measurement will be affected by several noise sources, such as electrical noise of the conditioning electronics being
used. Second, the frequency range in which the measurement is relevant is bounded by the bandwidth of the sensor.
One way to overcome these limitations is to combine several sensors using a technique called “sensor fusion” [1].
Fortunately, a wide variety of sensors exist, each with different characteristics. By carefully choosing the fused
sensors, a so called “super sensor” is obtained that combines benefits of individual sensors.

In some situations, sensor fusion is used to increase the bandwidth of the measurement [2–4]. For instance, in [2],
the bandwidth of a position sensor is increased by fusing it with an accelerometer providing the high frequency
motion information. For other applications, sensor fusion is used to obtain an estimate of the measured quantity
with lower noise [5–8]. More recently, the fusion of sensors measuring different physical quantities has been proposed
to obtain interesting properties for control [9, 10]. In [9], an inertial sensor used for active vibration isolation is
fused with a sensor collocated with the actuator for improving the stability margins of the feedback controller.

Practical applications of sensor fusion are numerous. It is widely used for the attitude estimation of several
autonomous vehicles such as unmanned aerial vehicle [11–13] and underwater vehicles [14, 15]. Naturally, it is of
great benefits for high performance positioning control as shown in [2–4, 10]. Sensor fusion was also shown to be
a key technology to improve the performance of active vibration isolation systems [16]. Emblematic examples are
the isolation stages of gravitational wave detectors [9, 17] such as the ones used at the LIGO [5, 6] and at the
VIRGO [18].
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There are mainly two ways to perform sensor fusion: either using a set of complementary filters [19] or using
Kalman filtering [20, 21]. For sensor fusion applications, both methods are sharing many relationships [8, 20, 22, 23].
However, for Kalman filtering, we are forced to make assumption about the probabilistic character of the sensor
noises [8] whereas it is not the case with complementary filters. Furthermore, the advantages of complementary
filters over Kalman filtering for sensor fusion are their general applicability, their low computational cost [22], and
the fact that they are intuitive as their effects can be easily interpreted in the frequency domain.

A set of filters is said to be complementary if the sum of their transfer functions is equal to one at all frequencies.
In the early days of complementary filtering, analog circuits were employed to physically realize the filters [19].
Analog complementary filters are still used today [10, 24], but most of the time they are now implemented digitally
as it allows for much more flexibility.

Several design methods have been developed over the years to optimize complementary filters. The easiest way
to design complementary filters is to use analytical formulas. Depending on the application, the formulas used are
of first order [10, 12, 25], second order [11, 13, 26] or even higher orders [2, 3, 9, 26, 27].

As the characteristics of the “super sensor” depends on the design of the complementary filters [28], several
optimization techniques have been developed over the years. Some are based on the finding optimal parameters
of analytical formulas [4, 13, 23], while other are using convex optimization tools [5, 6] such as linear matrix
inequalities [14]. As shown in [7], the design of complementary filters can also be linked to the standard mixed-
sensitivity control problem. Therefore, all the powerful tools developed for the classical control theory can also be
used for the design of complementary filters. For instance, in [13] the two gains of a Proportional Integral (PI)
controller are optimized to minimize the noise of the super sensor.

The common objective of all these complementary filters design methods is to obtain a super sensor that has
desired characteristics, usually in terms of noise and dynamics. Moreover, as reported in [3, 7], phase shifts and
magnitude bumps of the “super sensors” dynamics can be observed if either the complementary filters are poorly
designed or if the sensors are not well calibrated. Therefore, the robustness of the fusion is also of concerned when
designing the complementary filters. Although many design methods of complementary filters have been proposed
in the literature, no simple method that allows to specify the desired super sensor characteristic while ensuring
good fusion robustness has been proposed.

Fortunately, both the robustness of the fusion and the super sensor characteristics can be linked to the magnitude
of the complementary filters [28]. Based on that, this paper introduces a new way to design complementary filters
using the H∞ synthesis which allows to shape the magnitude of the complementary filters in an easy and intuitive
way.

Section 2 introduces the sensor fusion architecture and demonstrates how typical requirements can be linked
to the complementary filters magnitudes. In Section 3, the shaping of complementary filters is formulated as an
H∞ optimization problem using weighting functions, and the simplicity of the proposed method is illustrated with
an example. The synthesis method is further validated in Section 4 by designing complex complementary filters.
Section 5 compares the proposed synthesis method with the classical mixed-sensitivity synthesis, and extends it to
the shaping of more than two complementary filters.

2. Sensor Fusion and Complementary Filters Requirements

Complementary filters provides a framework for fusing signals from different sensors. As the effectiveness of the
fusion depends on the proper design of the complementary filters, they are expected to fulfill certain requirements.
These requirements are discussed in this section.

2.1. Sensor Fusion Architecture

A general sensor fusion architecture using complementary filters is shown in Fig. 1 where several sensors (here
two) are measuring the same physical quantity x. The two sensors output signals x̂1 and x̂2 are estimates of x.
Each of these estimates are then filtered out by complementary filters and combined to form a new estimate x̂.
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The resulting sensor, termed as super sensor, can have larger bandwidth and better noise characteristics in
comparison to the individual sensor. This means that the super sensor provides an estimate x̂ of x which can be
more accurate over a larger frequency band than the outputs of the individual sensors.

Super Sensor

Normalized
Sensors

Complementary
Filters

Sensor 1

Sensor 2

H1(s)

H2(s)

+x

x̂1

x̂2

x̂

Figure 1: Schematic of a sensor fusion architecture using complementary filters.

The complementary property of filters H1(s) and H2(s) implies that the sum of their transfer functions is equal
to unity. That is, unity magnitude and zero phase at all frequencies. Therefore, a pair of complementary filter
needs to satisfy the following condition:

H1(s) +H2(s) = 1 (1)

It will soon become clear why the complementary property is important for the sensor fusion architecture.

2.2. Sensor Models and Sensor Normalization

In order to study such sensor fusion architecture, a model for the sensors is required. Such model is shown in
Fig. 2a and consists of a linear time invariant (LTI) system Gi(s) representing the sensor dynamics and an input ni
representing the sensor noise. The model input x is the measured physical quantity and its output x̃i is the “raw”
output of the sensor.

Before filtering the sensor outputs x̃i by the complementary filters, the sensors are usually normalized to simplify
the fusion. This normalization consists of using an estimate Ĝi(s) of the sensor dynamics Gi(s), and filtering the
sensor output by the inverse of this estimate Ĝ−1i (s) as shown in Fig. 2b. It is here supposed that the sensor inverse
Ĝ−1i (s) is proper and stable. This way, the units of the estimates x̂i are equal to the units of the physical quantity
x. The sensor dynamics estimate Ĝ1(s) can be a simple gain or a more complex transfer function.

Sensor

+ Gi(s)x

ni

x̃i

(a) Basic sensor model consisting of a noise input ni and a linear time
invariant transfer function Gi(s).

Normalized
sensorSensor

+ Gi(s) Ĝ−1
i (s)

x

ni

x̃i x̂i

(b) Normalized sensors using the inverse of an estimate Ĝi(s) of the
sensor dynamics.

Figure 2: Sensor models with and without normalization.

Two normalized sensors are then combined to form a super sensor as shown in Fig. 3. The two sensors are
measuring the same physical quantity x with dynamics G1(s) and G2(s), and with uncorrelated noises n1 and
n2. The signals from both normalized sensors are fed into two complementary filters H1(s) and H2(s) and then
combined to yield an estimate x̂ of x.

The super sensor output is therefore equal to:

x̂ =
(
H1(s)Ĝ−11 (s)G1(s) +H2(s)Ĝ−12 (s)G2(s)

)
x+H1(s)Ĝ−11 (s)G1(s)n1 +H2(s)Ĝ−12 (s)G2(s)n2 (2)
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Figure 3: Sensor fusion architecture with two normalized sensors.

2.3. Noise Sensor Filtering

In this section, it is supposed that all the sensors are perfectly normalized, such that:

x̂i
x

= Ĝi(s)Gi(s) = 1 (3)

The effect of a non-perfect normalization will be discussed in the next section.

Provided (3) is verified, the super sensor output x̂ is then:

x̂ = x+H1(s)n1 +H2(s)n2 (4)

From (4), the complementary filters H1(s) and H2(s) are shown to only operate on the sensor’s noises. Thus,
this sensor fusion architecture permits to filter the noise of both sensors without introducing any distortion in the
physical quantity to be measured. This is why the two filters must be complementary.

The estimation error δx, defined as the difference between the sensor output x̂ and the measured quantity x, is
computed for the super sensor (5).

δx , x̂− x = H1(s)n1 +H2(s)n2 (5)

As shown in (6), the Power Spectral Density (PSD) of the estimation error Φδx depends both on the norm of
the two complementary filters and on the PSD of the noise sources Φn1 and Φn2 .

Φδx(ω) = |H1(jω)|2 Φn1
(ω) + |H2(jω)|2 Φn2

(ω) (6)

If the two sensors have identical noise characteristics, Φn1
(ω) = Φn2

(ω), a simple averaging (H1(s) = H2(s) =
0.5) is what would minimize the super sensor noise. This is the simplest form of sensor fusion with complementary
filters.

However, the two sensors have usually high noise levels over distinct frequency regions. In such case, to lower
the noise of the super sensor, the norm |H1(jω)| has to be small when Φn1

(ω) is larger than Φn2
(ω) and the norm

|H2(jω)| has to be small when Φn2
(ω) is larger than Φn1

(ω). Therefore, by properly shaping the norm of the
complementary filters, it is possible to minimize the noise of the super sensor noise.

2.4. Sensor Fusion Robustness

In practical systems the sensor normalization is not perfect and condition (3) is not verified.

In order to study such imperfection, a multiplicative input uncertainty is added to the sensor dynamics (Fig. 4a).
The nominal model is taken as the estimated model for the normalization Ĝi(s), ∆i is any stable transfer function
satisfying |∆i(jω)| ≤ 1, ∀ω, and wi(s) is a weighting transfer function representing the magnitude of the uncertainty.

4



The weight wi(s) is chosen such that the real sensor dynamics G(jω) is contained in the uncertain region
represented by a circle in the complex plane, centered on 1 and with a radius equal to |wi(jω)|.

As the nominal sensor dynamics is taken as the normalized filter, the normalized sensor can be further simplified
as shown in Fig. 4b.

Normalized
sensorSensor

w1(s) ∆1(s)

+ + Ĝ1(s) Ĝ−1
1 (s)

x

n1
x̃1 x̂1

(a) Sensor with multiplicative input uncertainty.

Normalized
sensor

w1(s) ∆1(s)

+ +x
n1

x̂1

(b) Simplified sensor model.

Figure 4: Sensor models with dynamical uncertainty.

The sensor fusion architecture with two sensor models including dynamical uncertainty is shown in Fig. 5.

Super SensorNormalized
sensor 1

Normalized
sensor 2

w1(s)

w2(s)

∆1(s)

∆2(s)

+

+

+

+

H1(s)

H2(s)

+x

n1

n2

x̂1

x̂2

x̂

Figure 5: Sensor fusion architecture with sensor dynamics uncertainty.

The super sensor dynamics (7) is no longer equal to 1 and now depends on the sensor dynamical uncertainty
weights wi(s) as well as on the complementary filters Hi(s).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (7)

The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by a circle
centered on 1 with a radius equal to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| as shown in Fig. 6.

1

|w1H1|
|w2H2|

|w1H1| + |w2H2|

Re

Im

∆φmax

Figure 6: Uncertainty region of the super sensor dynamics in the complex plane (grey circle). The contribution of both sensors 1 and 2
to the total uncertainty are represented respectively by a blue circle and a red circle. The frequency dependency ω is here omitted.

The super sensor dynamical uncertainty, and hence the robustness of the fusion, clearly depends on the com-
plementary filters norms. For instance, the phase ∆φ(ω) added by the super sensor dynamics at frequency ω is
bounded by ∆φmax(ω) which can be found by drawing a tangent from the origin to the uncertainty circle of the su-
per sensor (Fig. 6). Therefore, the phase uncertainty of the super sensor dynamics depends on the Complementary
filters norms (8).
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∆φmax(ω) = arcsin
(
|w1(jω)H1(jω)|+ |w2(jω)H2(jω)|

)
(8)

As it is generally desired to limit the maximum phase added by the super sensor, H1(s) and H2(s) should be
designed such that ∆φ is bounded to acceptable values. Typically, the norm of the complementary filter |Hi(jω)|
should be made small when |wi(jω)| is large, i.e., at frequencies where the sensor dynamics is uncertain.

3. Complementary Filters Shaping

As shown in Section 2, the noise and robustness of the super sensor are a function of the complementary filters
norms. Therefore, a complementary filters synthesis method that allows to shape their norms would be of great use.
In this section, such synthesis is proposed by writing the synthesis objective as a standardH∞ optimization problem.
As weighting functions are used to represent the wanted complementary filters shapes during the synthesis, the
proper design of weighting functions is discussed. Finally, the synthesis method is validated on an simple example.

3.1. Synthesis Objective

The synthesis objective is to shape the norm of two filters H1(s) and H2(s) while ensuring their complementary
property (1). This is equivalent as to finding proper and stable transfer functions H1(s) and H2(s) such that
conditions (9a), (9b) and (9c) are satisfied.

H1(s) +H2(s) = 1 (9a)

|H1(jω)| ≤ 1

|W1(jω)|
∀ω (9b)

|H2(jω)| ≤ 1

|W2(jω)|
∀ω (9c)

W1(s) and W2(s) are two weighting transfer functions that are carefully chosen to specify the maximum wanted
norms of the complementary filters during the synthesis.

3.2. Shaping of Complementary Filters using H∞ synthesis

In this section, it is shown that the synthesis objective can be easily expressed as a standard H∞ optimization
problem and therefore solved using convenient tools readily available.

Consider the generalized plant P (s) shown in Fig. 7a and mathematically described by (10).

z1z2
v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (10)

Applying the standard H∞ synthesis on the generalized plant P (s) is then equivalent as finding a stable filter
H2(s) which based on v, generates a signal u such that the H∞ norm of the system in Fig. 7b from w to [z1, z2] is
less than one (11). ∥∥∥∥(1−H2(s))W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (11)

By then defining H1(s) to be the complementary of $H_2(s)$ (12), the H∞ synthesis objective becomes equiv-
alent to (13) which ensure that (9b) and (9c) are satisfied.
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(a) Generalized plant.
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H2(s)

W1(s)

W2(s)

+
−

w z1
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(b) Generalized plant with the synthesized filter.

Figure 7: Architecture for the H∞ synthesis of complementary filters.

H1(s) , 1−H2(s) (12)

∥∥∥∥H1(s)W1(s)
H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (13)

Therefore, applying the H∞ synthesis on the standard plant $P(s)$ (10) will generate two filters H2(s) and
H1(s) , 1−H2(s) that are complementary (9) and such that there norms are bellow specified bounds (9b), (9c).

Note that there is not an equivalence between the H∞ norm condition (13) and the initial synthesis objec-
tives (9b) and (9c), but only an implication. Hence, the optimization may be a little bit conservative with respect
to the “set” of filters on which it is performed. There might be solutions were the objectives (9b) and (9c) are valid
but where the H∞ norm (13) is larger than one. In practice, this is however not an found to be an issue.

3.3. Weighting Functions Design

Weighting functions are used during the synthesis to specify the maximum allowed norms of the complementary
filters. The proper design of these weighting functions is of primary importance for the success of the presented
H∞ synthesis of complementary filters.

First, only proper and stable transfer functions should be used. Second, the order of the weighting functions
should stay reasonably small in order to reduce the computational costs associated with the solving of the opti-
mization problem and for the physical implementation of the filters (the order of the synthesized filters being equal
to the sum of the weighting functions orders). Third, one should not forget the fundamental limitations imposed
by the complementary property (1). This implies for instance that |H1(jω)| and |H2(jω)| cannot be made small at
the same frequency.

When designing complementary filters, it is usually desired to specify their slopes, their “blending” frequency
and their maximum gains at low and high frequency. To help with the design of the weighting functions such that
the above specification can be easily expressed, the formula (14) is proposed.

W (s) =


1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
G0

Gc

) 1
n

(
1
G∞

) 1
n 1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
1
Gc

) 1
n


n

(14)

The parameters in formula (14) are:
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• G0 = limω→0 |W (jω)|: the low frequency gain

• G∞ = limω→∞ |W (jω)|: the high frequency gain

• Gc = |W (jωc)|: the gain at a specific frequency ωc in rad/s.

• n: the slope between high and low frequency. It also corresponds to the order of the weighting function.

The parameters G0, Gc and G∞ should either satisfy condition (15a) or (15b).

G0 < 1 < G∞ and G0 < Gc < G∞ (15a)
G∞ < 1 < G0 and G∞ < Gc < G0 (15b)

An example of the obtained magnitude of a weighting function generated using (14) is shown in Fig. 8.

10!1 100 101 102 103

Frequency [Hz]

10!3

10!2

10!1

100

101

M
a
g
n
it
u
d
e

G0

G1

!c

Gc

Slope: n

0

Figure 8: Magnitude of a weighting function generated using the proposed formula (14), G0 = 1e−3, G∞ = 10, ωc = 10Hz, Gc = 2,
n = 3.

3.4. Validation of the proposed synthesis method

The proposed methodology for the design of complementary filters is now applied on a simple example where
two complementary filters H1(s) and H2(s) have to be designed such that:

• the blending frequency is around 10 Hz

• the slope of |H1(jω)| is +2 below 10 Hz, its low frequency gain is 10−3

• the slope of |H2(jω)| is −3 above 10 Hz, its high frequency gain is 10−3

The first step is to translate the above requirements into the design of the weighting functions. The proposed
formula (14) is here used for such purpose. Parameters used are summarized in Table 1. The inverse magnitudes of
the designed weighting functions, which are representing the maximum allowed norms of the complementary filters,
are shown by the dashed lines in Fig. 9.

The H∞ synthesis is then applied to the generalized plant of Fig. 7a on efficiently solved in Matlab [29] using the
Robust Control Toolbox. The filter H2(s) that minimizes the H∞ norm between w and [z1, z2]T is obtained. The
H∞ norm is here found to be close to one (16) which indicates that the synthesis is successful: the complementary
filters norms are below the maximum specified upper bounds. This is confirmed by the bode plots of the obtained
complementary filters in Fig. 10.
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Parameters W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc 2π · 10 2π · 10
Gc 0.45 0.45
n 2 3

Table 1: Parameters used for weighting functions W1(s) and W2(s)
using (14).
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Figure 9: Inverse magnitude of the weighting functions.

∥∥∥∥(1−H2(s))W1(s)
H2(s)W2(s)

∥∥∥∥
∞
≈ 1 (16)

Their transfer functions in the Laplace domain are given in (17). As expected, the obtained filters are of order
5, that is the sum of the weighting functions orders.

H2(s) =
(s+ 6.6e4)(s+ 160)(s+ 4)3

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
(17a)

H1(s) , H2(s)− 1 =
10−8(s+ 6.6e9)(s+ 3450)2(s2 + 49s+ 895)

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
(17b)
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Figure 10: Bode plot of the obtained complementary filters.

This simple example illustrates the fact that the proposed methodology for complementary filters shaping is
easy to use and effective. A more complex real life example is taken up in the next section.

4. Application: Design of Complementary Filters used in the Active Vibration Isolation System at
the LIGO

Sensor fusion using complementary filters are widely used in active vibration isolation systems in gravitational
wave detectors such at the LIGO [5, 27], the VIRGO [17, 18] and the KAGRA [30, Chap. 5].
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In the first isolation stage at the LIGO, two sets of complementary filters are used and included in a feedback
loop [31]. A set of complementary filters (L2, H2) is first used to fuse a seismometer and a geophone. Then, another
set of complementary filters (L1, H1) is used to merge the output of the first “inertial super sensor” with a position
sensor. A simplified block diagram of the sensor fusion architecture is shown in Fig. 11.

Super Sensor

"Inertial" Super Sensor

Position
Sensor

Seismometer

Geophone

L2(s)

H2(s)
+ H1(s)

L1(s)

+

Figure 11: Simplified block diagram of the sensor blending strategy for the first stage at the LIGO [31].

The fusion of the position sensor at low frequency with the “inertial super sensor” at high frequency using the
complementary filters (L1, H1) is done for several reasons, first of which is to give the super sensor a DC sensibility
and therefore allow the feedback loop to have authority at zero frequency. The requirements on those filters are
stringent and thus their design is complex and should be expressed as an optimization problem.

The approach used in [5] is to use FIR complementary filters and to write the synthesis as a convex optimization
problem. After synthesis, the obtained FIR filters were found to be compliant with the requirements. However
they are of high order so their implementation is quite complex. In this section, the effectiveness of the proposed
complementary filter synthesis strategy is demonstrated on the same set of requirements.

4.1. Complementary Filters Specifications

The specifications for the set of complementary filters (L1, H1) used at the LIGO are summarized below (for
further details, refer to [6]):

• From 0 to 0.008 Hz, the magnitude |L1(jω)| should be less or equal to 8× 10−4

• Between 0.008 Hz to 0.04 Hz, the filter L1(s) should attenuate the input signal proportional to frequency cubed

• Between 0.04 Hz to 0.1 Hz, the magnitude |L1(jω)| should be less than 3

• Above 0.1 Hz, the magnitude |H1(jω)| should be less than 0.045

These specifications are therefore upper bounds on the complementary filters’ magnitudes. They are physically
represented in Fig. 12 as well as the obtained magnitude of the FIR filters in [5].

4.2. Weighting Functions Design

The weighting functions should be designed such that their inverse magnitude is as close as possible to the
specifications in order to not over-constrain the synthesis problem. However, the order of each weight should stay
reasonably small in order to reduce the computational costs of the optimization problem as well as for the physical
implementation of the filters.

A Type I Chebyshev filter of order 20 is used for the weighting transfer function WL(s) corresponding to the
low pass filter. For the one corresponding to the high pass filter WH(s), a 7th order transfer function is designed.
The magnitudes of the weighting functions are shown in Fig. 13.
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Figure 12: Specifications and Bode plot of the obtained FIR complementary filters in [5]. The filters are here obtained using the SeDuMi
Matlab toolbox [32].
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Figure 13: Specifications and weighting functions inverse magnitudes.
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4.3. H∞ Synthesis of the complementary filters

The proposed H∞ synthesis is performed on the generalized plant shown in Fig. 7a. After optimization, the
H∞ norm from w to [z1, z2]T is found close to one indication successful synthesis. In Fig. 14, the bode plot of the
obtained complementary filters are compared with the FIR filters of order 512 obtained in [5]. Even though the
complementary filters using the H∞ synthesis are of much lower order (order 27), they are found to be close to the
FIR filters. This confirms the effectiveness of the proposed synthesis method even when the complementary filters
are subject to complex requirements.
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Figure 14: Comparison of the FIR filters (dashed) designed in [5] with the filters obtained with H∞ synthesis (solid).

5. Discussion

5.1. “Closed-Loop” complementary filters

An alternative way to implement complementary filters is by using a fundamental property of the classical
feedback architecture shown in Fig. 15. This is for instance presented in [7, 13, 33].

+
−

L(s) +x̂2 x̂

x̂1

Figure 15: “Closed-Loop” complementary filters.

Consider the feedback architecture of Fig. 15, with two inputs x̂1 and x̂2, and one output x̂. The output x̂ is
linked to the inputs by (18).

x̂ =
1

1 + L(s)︸ ︷︷ ︸
S(s)

x̂1 +
L(s)

1 + L(s)︸ ︷︷ ︸
T (s)

x̂2 (18)

As for any classical feedback architecture, we have that the sum of the sensitivity and complementary sensitivity
transfer function is equal to one (19).
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T (s) + S(s) = 1 (19)

Therefore, provided that the closed-loop system is stable, the closed-loop system in Fig. 15 is corresponding to
two complementary filters. Two sensors can then be merged as shown in Fig. 16.

Normalized
sensors

"Closed-Loop"
complementary filters

+
−

L(s) +Sensor 2

Sensor 1

x̂x x̂2

x̂1

Figure 16: Classical feedback architecture used for sensor fusion.

One of the main advantage of implementing and designing complementary filters using the feedback architecture
of Fig. 15 is that all the tools of the linear control theory can be applied for the design of the filters. If one want
to shape both x̂

x̂1
(s) = S(s) and x̂

x̂2
(s) = T (s), the H∞ mixed-sensitivity synthesis can be easily applied.

To do so, weighting functions W1(s) and W2(s) are added to respectively shape S(s) and T (s) (Fig. 17a).
Then the system is re-organized to form the generalized plant PL(s) shown in Fig. 17b. The H∞ mixed-sensitivity
synthesis can finally be performed by applying the H∞ synthesis to the generalized plant PL(s) which is described
by (20).

[
z
v

]
= PL(s)

w1

w2

u

 ; PL(s) =

[
W1(s) 0 1
−W1(s) W2(s) −1

]
(20)

The output of the synthesis is a filter L(s) such that the “closed-loop” H∞ norm from [w1, w2] to z is less than
one (21).

∥∥∥∥ z
w1
z
w2

∥∥∥∥
∞

=

∥∥∥∥∥
1

1+L(s)W1(s)
L(s)

1+L(s)W2(s)

∥∥∥∥∥
∞

≤ 1 (21)

If the synthesis is successful, two complementary filters are obtained with their magnitudes bounded by the
inverse magnitudes of the weighting functions. The sensor fusion can then be implemented as shown in Fig. 16
using the feedback architecture or more classically as shown in Fig. 1 by defining the two complementary filters as
in (22).

H1(s) =
1

1 + L(s)
; H2(s) =

L(s)

1 + L(s)
(22)

The two architectures are equivalent regarding their inputs/outputs relationships.

As an example, two “closed-loop” complementary filters are designed using the H∞ mixed-sensitivity synthesis.
The weighting functions are designed using formula (14) with parameters shown in Table 1. After synthesis, a filter
L(s) is obtained, its magnitude is shown in Fig. 18 by the dashed line. The “closed-loop” complementary filters
are compared with the inverse magnitude of the weighting functions in Fig. 18 confirming that the synthesis is
successful. The obtained “closed-loop” complementary filters are indeed equal to the ones obtained in Section 3.4.
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W2(s) +
−
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w2 w̃2 v u z
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w1

(a) Feedback architecture with included weights.

PL(s)
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W1(s) +

+
−w2

w1

u

z

v

(b) Generalized plant.

Figure 17: H∞ mixed-sensitivity synthesis.
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Figure 18: Bode plot of the obtained complementary filters after H∞ mixed-sensitivity synthesis.
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5.2. Synthesis of more than two Complementary Filters

Some applications may require to merge more than two sensors [23, 26]. For instance at the LIGO [27], three
sensors (an LVDT, a seismometer and a geophone) are merged to form a super sensor (Fig. 11).

When merging n > 2 sensors using complementary filters, two architectures can be used as shown in Fig. 19.
The fusion can either be done in a “sequential” way where n−1 sets of two complementary filters are used (Fig. 19a),
or in a “parallel” way where one set of n complementary filters is used (Fig. 19b).

In the first case, typical sensor fusion synthesis techniques can be used. However, when a parallel architecture is
used, a new synthesis method for a set of more than two complementary filters is required as only simple analytical
formulas have been proposed in the literature {[23, 26]}. A generalization of the proposed synthesis method of
complementary filters is presented in this section.

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)
+ H ′

1(s)

H ′
2(s)

+
x

x̂1

x̂2

x̂3

x̂12

x̂

(a) Sequential fusion.

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)

H3(s)

+x

x̂1

x̂2

x̂3

x̂

(b) Parallel fusion.

Figure 19: Possible sensor fusion architecture when more than two sensors are to be merged.

The synthesis objective is to compute a set of n stable transfer functions [H1(s), H2(s), . . . , Hn(s)] such that
conditions (23a) and (23b) are satisfied.

n∑
i=0

Hi(s) = 1 (23a)

|Hi(jω)| < 1

|Wi(jω)|
, ∀ω, i = 1 . . . n (23b)

where [W1(s), W2(s), . . . , Wn(s)] are weighting transfer functions that are chosen to specify the maximum wanted
norms of the complementary filters during the synthesis.

Such synthesis objective is closely related to the one described in Section 3.1, and indeed the proposed synthesis
method is a generalization of the one presented in Section 3.2.

Before presenting the generalized synthesis method, the case with three sensors is presented. Consider the
generalized plant P3(s) shown in Fig. 20a which is also described by (24).


z1
z2
z3
v

 = P3(s)

wu1
u2

 ; P3(s) =


W1(s) −W1(s) −W1(s)

0 W2(s) 0
0 0 W3(s)
1 0 0

 (24)

Applying theH∞ synthesis on the generalized plant P3(s) is equivalent as to find two stable filters [H2(s), H3(s)]
(shown in Fig. 20b) such that the H∞ norm of the transfer function from w to [z1, z2, z3] is less than one (25).

∥∥∥∥∥∥
[1−H2(s)−H3(s)]W1(s)

H2(s)W2(s)
H3(s)W3(s)

∥∥∥∥∥∥
∞

≤ 1 (25)
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P3(s)

W1(s)

W2(s)

W3(s)

+
−

+
−

[
H2(s)
H3(s)

]

w z1

z2

z3

u1

u2

v

(a) Generalized plant.

P3(s)

W1(s)

W2(s)

W3(s)

+
−

+
−

[
H2(s)
H3(s)

]

w z1

z2

z3

u1

u2

v

(b) Generalized plant with the synthesized filter.

Figure 20: Architecture for the H∞ synthesis of three complementary filters.

By defining H1(s) , 1−H2(s)−H3(s), the proposed H∞ synthesis solves the design problem (23) with n = 3.

An example is given to validate the method where three sensors are used in different frequency bands. For
instance a displacement sensor from DC up to 1 Hz, a geophone from 1 to 10 Hz and an accelerometer above
10 Hz. Three weighting functions are designed using formula (14) and their inverse magnitudes are shown in Fig. 21
(dashed curves). The H∞ synthesis is performed on the generalized plant P3(s) and the bode plot of the obtained
complementary filters are shown in Fig. 21 (solid lines).
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Figure 21: Bode plot of the inverse weighting functions and of the three complementary filters obtained using the H∞ synthesis.

Even though there might not be any practical application for a set of more than 3 complementary filters, it can
still be designed using the same procedure. A set of n complementary filters can be shaped using the generalized
plant Pn(s) described by (26).
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z1
...
zn
v

 = Pn(s)


w
u1
...

un−1

 ; Pn(s) =



W1 −W1 . . . . . . −W1

0 W2 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 Wn

1 0 . . . . . . 0


(26)

6. Conclusion

The sensor fusion robustness and the obtained super sensor noise can be linked to the magnitude of the com-
plementary filters. In this paper, a synthesis method that enables the shaping of the complementary filters norms
has been proposed. Several examples were used to emphasize the simplicity and the effectiveness of the proposed
method. Links with “closed-loop” complementary filters were highlighted, and the proposed method was generalized
for designing a set of more than two complementary filters.

The future work will aim at developing a complementary filter synthesis method that minimizes the super sensor
noise while ensuring the robustness of the fusion.
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