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Abstract

Sensor have limited bandwidth and are accurate only in a certain frequency band. In many

applications, the signals of different sensor are fused together in order to either enhance the

stability or improve the operational bandwidth of the system. The sensor signals can be fused

using complementary filters. The tuning of complementary filters is a complex task and is

the subject of this paper. The filters needs to meet design specifications while satisfying the

complementary property. This paper presents a framework to shape the norm of comple-

mentary filters using the H∞ norm minimization. The design specifications are imposed as

constraints in the optimization problem by appropriate selection of weighting functions. The

proposed method is quite general and easily extendable to cases where more than two sensors

are fused. Finally, the proposed method is applied to the design of complementary filter de-

sign for active vibration isolation of the Laser Interferometer Gravitation-wave Observatory

(LIGO).

Keywords: Sensor fusion, Optimal filters, H∞ synthesis, Vibration isolation, Precision

1. Introduction

The sensors used for measuring physical quantity often works well within a limited fre-

quency range called as the bandwidth of the sensor. The signals recorded by the sensor
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beyond its bandwidth are often corrupt with noise and are not reliable. Many dynamical sys-

tems require measurements over a wide frequency range. Very often a variety of sensors are

utilized to sense the same quantity. These sensors have different operational bandwidth and

are reliable only in a particular frequency range. The signals from the different sensors are

fused together in order to get the reliable measurement of the physical quantity over wider

frequency band. The combining of signals from various sensor is called sensor fusion [1].

The resulting sensor is referred as “super sensor” since it can have better noise characteristics

and can operate over a wider frequency band as compared to the individual sensor used for

merging [2].

Sensor fusion is most commonly employed in the navigation systems to accurately mea-

sure the position of a vehicle. The GPS sensors, which are accurate in low frequency band,

are merged with the high-frequency accelerometers. Zimmermann and Sulzer [3] used sensor

fusion to measure the orientation of a robot. They merged inclinometer and accelerometers

for accurate angular measurements over large frequency band. Corke [4] merged inertial

measurement unit with the stereo vision system for measurement of attitude, height and ve-

locity of an unmanned helicopter. Min and Jeung [5] used accelerometer and gyroscope for

angle estimations. Baerveldt and Klang [6] used an inclinometer and a gyroscope to measure

the orientation of the autonomous helicopter. The measurement of the 3D orientation using a

gyroscope and an accelerometer was demonstrated by Roberts et al. [7]. Cao et al. [8] used

sensor fusion to obtain the lateral and longitudinal velocities of the autonomous vehicle.

Sensor fusion is also used for enhancing the working range of the active isolation system.

For example, the active vibration isolation system at the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [9] utilizes sensor fusion. The position sensors, seismometer and

geophones are used for measuring the motion of the LIGO platform in different frequency

bands [10]. Tjepkema et al. [11] used sensor fusion to isolate precision equipment from the

ground motion. The feedback from the accelerometer was used for active isolation at low

frequency while force sensor was used at high frequency. Various configurations of sensor

fusion for active vibration isolation systems are discussed by Collette and Matichard [12].

Ma and Ghasemi-Nejhad [13] used laser sensor and piezoelectric patches for simultaneous
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tracking and vibration control in smart structures. Recently, Verma et al. [14] presented

virtual sensor fusion for high precision control where the signals from a physical sensor are

fused with a sensor simulated virtually.

Fusing signals from different sensors can typically be done using Kalman filtering [15–

20] or complementary filters [21]. A set of filters is said to be complementary if the sum of

their transfer functions is equal to one at all frequencies. When two filters are complemen-

tary, usually one is a low pass filter while the other is an high pass filter. The complementary

filters are designed in such a way that their magnitude is close to one in the bandwidth of

the sensor they are combined with. This enables to measure the physical quantity over larger

bandwidth. There are two different categories of complementary filters — frequency do-

main complementary filters and state space complementary filters. Earliest application of the

the frequency domain complementary filters was seen in Anderson and Fritze [22]. A sim-

ple RC circuit was used to physically realize the complementary filters. Frequency domain

complementary filters were also used in [2, 3, 6, 7]. State space complementary filter finds

application in tracking orientation of the flexible links in a robot [23–25] and are particularly

useful for multi-input multi-output systems. Pascoal et al. [26] presented complementary

filters which can adapt with time for navigation system capable of estimating position and

velocity using GPS and SONAR sensors.

The noise characteristics of the super sensor are governed by the norms of the comple-

mentary filters. Therefore, the proper design of the complementary filters for sensor fusion is

of immense importance. The design of complementary filters is a complex task as they need

to tuned as per the specification of the sensor. In many applications, analytical formulas of

first and second order complementary filters are used [4, 27]. These filters are easy to tune

and simple to implement using an analog circuit [28? ]. However, these low order com-

plementary filters are not optimal, and high order complementary filters can lead to better

fusion [2, 27].

Several design techniques have been proposed to design higher order complementary fil-

ters. Pascoal [26] used linear matrix inequalities (LMIs) [29] for the design of time varying

complementary filters. LMIs were also used by Hua et al. [1] to design finite impulse re-
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sponse (FIR) filters for the active vibration isolation system at LIGO. Plummer [30] proposed

an optimal design method using the H∞ synthesis and weighting functions representing the

measurement noise of the sensors.

Although various methods have been presented in the literature for the design of com-

plementary filters, there is a lack of general and simple framework that allows to shape the

norm of complementary filters. Such a method would prove to be very useful as the noise of

the “supper sensor” and its dynamical characteristics depend on the norm of the filters. This

paper presents such a framework based on theH∞ norm minimization. The proposed method

is quite general and can be easily extended to a case where more than two complementary

filters needs to be designed. The organization of this paper is as follows. Section 2 presents

the design requirements of ideal complementary filters. It also demonstrates how the noise

and robustness characteristics of the “super sensor” can be transformed into upper bounds

on the norm of the complementary filters. The framework for the design of complementary

filters is detailed in Section 3. This is followed by the application of the design method to

complementary filter design for the active vibration isolation at LIGO in Section 4. Finally,

concluding remarks are presented in Section 5.

2. Complementary filters requirements

Complementary filters provides a framework for fusing signals from different sensors.

As the effectiveness of the fusion depends on the proper design of the complementary filters,

they are expected to fulfill certain requirements. These requirements are discussed in this

section.

2.1. Complementary characteristics

Consider a case where two different sensors are used for measuring the same quantity, x

in different frequency range. The inherent dynamics of the sensors is represented by transfer

functions G1(s) and G2(s). The two sensor also have uncorrelated noise characteristics given

by n1 and n2. The signals from these two sensors are fused using complementary filters

H1(s) and H2(s). The architecture of sensor fusion using complementary filters is shown in
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Figure 1: Block diagram of sensor fusion with complementary filters

Figure 1. The resulting sensor, termed as “super sensor”, can have larger bandwidth and

better noise characteristics in comparison to the individual sensor. This means that the super

sensor provides an estimate x̂ of x which can be more accurate over a larger frequency band

than the outputs of the individual sensors. Based on Figure 1, the estimate of the physical

quantity as measured by the super sensor can be written as

x̂ = (G1H1 + G2H2) x + H1n1 + H2n2 (1)

The complementary property of filters H1(s) and H2(s) simply implies that the summation

of their transfer functions is equal to unity. That is, unity magnitude and zero phase at all

frequencies (filters which satisfies only the magnitude condition are referred as “magnitude

complementary filter pair”). Therefore, a pair of strict complementary filter needs to satisfy

the following condition.

H1(s) + H2(s) = 1 (2)

2.2. Noise characterization

In order to compute the noise characteristics associated with the estimate x̂, it is first

assumed that the dynamics of the individual sensors are perfect:

G1(s) = G2(s) = 1 (3)

The output of the super sensor, x̂, based on the block diagram shown in Figure 1 can be

written as

x̂ = x + H1n1 + H2n2 (4)
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The complementary are operating only on the noise component of the individual sensor.

Thus, this sensor fusion architecture permits to filter the noise of both sensors without intro-

ducing any distortion in the physical quantity to be measured. The estimation error, δx, of

the super sensor can be written as

δx , x̂ − x = H1n1 + H2n2 (5)

The power spectral density (PSD) of the super sensor’s estimation error is given by

Φδx = |H1|
2 Φn1 + |H2|

2 Φn2 (6)

where, Φδx is the PSD of estimation error, Φn1 and Φn2 are the PSDs of the noise associated

with the individual sensor. It can be seen that the estimation error’s PSD depends on the PSD

of the noise in individual sensor as well as the norm of the complementary filters. Therefore,

by properly shaping the norm of the complementary filters, it is possible to minimize the

noise of the super sensor noise.

2.3. Robustness requirements

In the previous subsection, the inherent sensor dynamics were ignored. However in the

real system, the sensor dynamics is not equal to unity. In such cases, the output of the sen-

sor is normalized using a filter whose transfer function is equal to the inverse of the sensor

dynamics. There are two major concerns in using inversion. First being the sensors may not

have been calibrated properly and the actual sensor dynamics is not exactly compensated by

the inverse filter. The second problem is that the inversion of sensor dynamics can result in an

improper transfer function and hence may not be physically realizable. We here suppose that

the sensor dynamics can be inverted using a proper and stable transfer function Ĝi(s). How-

ever, we suppose there exists a normalization error since Ĝ−1
i (s)Gi(s) , 1. This normalization

error can be represented using frequency dependent multiplicative uncertainty (Figure 2). In

Figure 2, ∆i(s) satisfies ‖∆i(s)‖∞ ≤ 1 and |wi(s)| is a frequency dependent weighting function

that represents the uncertainty corresponding to the normalization error.

Based on Figure 2, the super sensor dynamics can be written as

x̂
x

= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (7)
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Figure 2: Representation of normalization error in sensor fusion using multiplicative uncertainty

The dynamics of the super sensor now depends on the weighting functions (w1(s),w2(s))

and the complementary filters (H1(s),H2(s)).

The robust stability of the fusion can be studied graphically (refer Figure 3). The fre-

quency response of the fusion output is plotted in a complex plane. The unity transfer func-

tion leads to a point (1, 0) located on the real axis. The uncertainty associated with first sensor

at a particular frequency is represented by a circle with the center at (1,0) and radius |w1H1|.

The uncertainty associated with the second is also represented using a circle centered at any

point on the circle representing uncertainty associated with the first sensor and radius equal to

|w2H2|. Therefore, the overall uncertainty of the fusion is represented with a circle centered

at (1,0) and radius equal to |w1H1| + |w2H2|. The maximum phase difference that can result

from the fusion is found by drawing a tangent from the origin to the uncertainty circle of

super sensor. Mathematically, the maximum phase difference at frequency ω that can result

from fusion is given by

∆φ(ω) = arcsin (|w1( jω)H1( jω)| + |w2( jω)H2( jω)|) (8)

A constraint on the maximum phase difference at a given frequency can be incorporated

in the design problem using the following equation:

max
ω

(
|w1H1| + |w2H2|

)
< sin (∆φmax) (9)

where ∆φmax is the maximum allowable phase difference. It can also be inferred from the

above equation that the magnitude of the complementary filter (|Hi|) should be tuned to a
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Figure 3: Robustness analysis of sensor fusion in the complex plane. The uncertainty associated with the

super sensor dynamics are represented with a solid circle while those associated with individual sensors are

represented with dashed circles.

smaller value at the frequencies where the magnitude of weighing transfer functions (|wi|)

representing sensor uncertainty is large.

3. Design formulation usingH∞ synthesis

In this section, the shaping of complementary filters is expressed as an optimal H∞ syn-

thesis problem. The synthesis goal is to shape the frequency response of the filters such that

they satisfy the design requirements presented in Section 2.

3.1. Synthesis problem formulation

The first step is to formulate the filter design problem as a generalized plant-controller

structure [31]. The generalized plant and controller structure for complementary filters design

is shown in Figure 4. In the figure, P(s) is the generalized plant, u is the “control input”, v

is the “measured output” and H2(s) is the controller (filter) to be designed. The regulated

outputs of the generalized plant, z1 and z2, are given by

z1 = W1(s)(1 − H2(s))w = W1(s)H1(s)w by defining H1(s) , 1 − H2(s)

z2 = W2(s)H2(s)w
(10)

where w is the “exogenous input” to the plant, W1(s),W2(s) are the weighting functions for

shaping the complementary filters.
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Figure 4: Generalized plant controller structure for the design of complementary filters

The dynamics of the generalized plant can be written as
z1

z2

v

 = P(s)

wu
 ; P(s) =


W1(s) −W1(s)

0 W2(s)

1 0

 (11)

The weighting functions are chosen based on the specifications and requirements set for

the complementary filters (discussed in Section 3.2). The objective of the optimization is to

design a filter H2(s) such that the following conditions are satisfied∣∣∣∣∣z1

w

∣∣∣∣∣ = |1 − H2(s)| ≤
1

|W1(s)|∣∣∣∣∣z1

w

∣∣∣∣∣ = |H2(s)| ≤
1

|W2(s)|

, ∀ω ∈ R+ (12)

Based on Figure 4, theH∞ synthesis problem for the complementary filters can be stated

as

Find a stable transfer function, H2(s), which takes measured output, v, as input

and generates a control input, u, such that the H∞ norm of the generalized plant

from exogenous input, w, to the regulated output, [z1, z2]T is less than unity.

Mathematically, the synthesis objective can be written as∥∥∥∥∥∥∥∥[1 − H2(s)] W1(s)

H2(s)W2(s)

∥∥∥∥∥∥∥∥
∞

≤ 1

⇐⇒

∥∥∥∥∥∥∥∥H1(s)W1(s)

H2(s)W2(s)

∥∥∥∥∥∥∥∥
∞

≤ 1; H1(s) , 1 − H2(s)

(13)
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The above optimization problem can be efficiently solved in Matlab [32] using Riccati for-

mulae, linear matrix inequality based method or maximum entropy method.

3.2. Design of weighting functions

The choice of weighting function governs the shape of the designed complementary fil-

ters. Therefore, it is very important that the design specifications are appropriately trans-

formed into the weighting functions. The choice of weighting functions is also constrained

by the following factors

(a) Only proper and stable transfer functions can be used as weighting functions

(b) As the order of the designed filter is equal to the sum of the orders of the weighting

functions, the order of the weighting function needs to be reasonably small to ensure

the physical implementation of the designed complementary filters. This also reduces

the computational cost of the optimization problem.

(c) The complementary property of the filter imposes a fundamental limitations on the

weighting functions. The imposes a restriction that the magnitude of the filters H1(s)

and H2(s) cannot be made small simultaneously at the same frequency.

The specifications of the complementary filters are typically expressed using the following

parameters — low frequency gain, high frequency gain, slope (order of the filter) and the

crossover frequency. We propose a weighting function that allows to translate the above

requirements by setting simple parameters:

W(s) =



1
ω0

√√√√√√√√√√√√√√√√√√√√√√
1 −

(
G0

Gc

)2
n

1 −
(

Gc

G∞

)2
n

s +

(
G0

Gc

)1
n

(
1

G∞

)1
n 1
ω0

√√√√√√√√√√√√√√√√√√√√√√
1 −

(
G0

Gc

)2
n

1 −
(

Gc

G∞

)2
n

s +

(
1

Gc

)1
n



n

(14)
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Figure 5: Magnitude of the frequency response of the weighting function obtained using equation (14) with the

parameters G0 = 0.001, G∞ = 10, ωc = 10 Hz, Gc = 2, n = 3

where, G0 = limω→0 |W( jω)| is the low frequency gain, G∞ = limω→∞ |W( jω)| is the high

frequency gain, ωc is the crossover frequency, Gc = |W( jωc)| is the absolute gain at the

crossover frequency and n is the order of the filter. As an illustration, the magnitude of the

frequency response of the weighting function with the parameters G0 = 0.001, G∞ = 10,

ωc = 10 Hz, Gc = 2, n = 3 and having high pass characteristics is shown in Figure 5.

3.3. Verification

The proposed methodology for the design of complementary filters is now applied on the

following example.

Example. Design complementary filters with the merging frequency around 10 Hz. The low

pass filter should have DC gain of 0.001 and slope -2 above the merging frequency. The high

pass filter should have a slope of 3 below the merging frequency and 0.001 high frequency

gain.

The first step is to design the weighting functions that translate the above requirements. To

do so, equation (14) is used. The parameters corresponding to W1(s) and W2(s) are listed in

Table 1. The obtained transfer functions of the weighting functions are

W1(s) =
1000(s + 34.55)2

(s + 3455)2

W2(s) =
0.1(s + 87.43)3

(s + 4.058)3

(15)
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Table 1: Parameters used for W1(s) and W2(s)

Parameter W1(s) W2(s)

n 2 3

Gc 0.5 0.5

G∞ 1000 0.1

G0 0.1 1000

ωc [Hz] 11 10

Using these weighting functions, the generalized plant is evaluated using equation (11).

The optimal complementary filters are obtained by solving the optimization problem given

by equation (13). The complementary filters obtained after optimization are

H1(s) =
10−8(s + 6.6 × 109)(s + 3450)2(s2 + 49s + 895)

(s + 6.6e4)(s2 + 106s + 3 × 103)(s2 + 72s + 3580)

H2(s) =
(s + 6.6 × 104)(s + 160)(s + 4)3

(s + 6.6 × 104)(s2 + 106s + 3 × 103)(s2 + 72s + 3580)

(16)

The obtained complementary filters are of order 5 which corresponds to the sum of the

orders of the weighting functions used. The frequency responses of the designed comple-

mentary filters are shown in Figure 6. It can be seen that the designed filters fulfills all the

design specifications and hence demonstrates the effectiveness of the designed methodology

(more complex real life example is taken up in Section 4).

3.4. Extension to set of three complementary filters

In certain applications, more than two sensors are used to measure the same quantity and

can be merged together to form a “super sensor”. In such case, a set of three (or more) com-

plementary filters is required. It is here shown that the proposed method can be generalized

for the design of a set of arbitrary number of complementary filters. The control objective

is now to design of a set of n complementary filters (Hi(s), i = 1, · · · , n) which satisfy the
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Figure 6: Bode plot of the weighting functions and designed complementary filters
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Figure 7: Generalized plant controller setup for designing a set of three complementary filters using H∞ syn-

thesis

following conditions

n∑
i=0

Hi(s) = 1

|Hi(s)| <
1

|Wi(s)|

(17)

Here, we extend the method to a case of three complementary filters. The generalized plant

controller setup for this case is shown in Figure 7. The synthesis objective is to design filters

H2(s) and H3(s) such that the H∞ norm from exogenous input w to regulated output vector

[z1, z2, z3]T is less than unity. That is,∥∥∥∥∥∥∥∥∥∥∥∥∥
[1 − H2(s) − H3(s)] W1(s)

H2(s)W2(s)

H3(s)W3(s)

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤ 1

≡

∥∥∥∥∥∥∥∥∥∥∥∥∥
H1(s)W1(s)

H2(s)W2(s)

H3(s)W3(s)

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤ 1; H1(s) , 1 − H2(s) − H3(s)

(18)

To validate this synthesis method, let’s take an example where 3 sensors are merged together.

The three sensors are working in the following three frequency range — below 1 Hz, between
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Figure 8: Bode plot of the weighting functions and designed set of three complementary filters

1Hz to 10Hz and above 10Hz. The weighting functions used for the synthesis are

W1(s) =
1000(s + 3.141)2

(s + 314.1)2

W2(s) =
2200(s + 62.83)2(s + 6.283)2

(s + 6283)2(s + 0.06283)2

W3(s) =
0.1(s + 87.43)3

(s + 4.058)3

(19)

The complementary filters are obtained by solving the optimization problem given by equa-

tion (18). The frequency response of the designed filters and the weighting functions are

shown in Figure 8.

4. Application: Complementary Filter Design for Active Vibration Isolation of LIGO

Gravitational waves can help in detection various astrophysical events occurring in our

universe. This can also pave a path to validate theories built around the existence of gravita-
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Figure 9: Schematics of LIGO

tional waves. However, the detection of these waves is an arduous task owing to the extraordi-

nary small strain experienced by the earth due to gravitational waves. Various methods have

been proposed for their detection, out of which laser interferometers are the most popular

ones. Laser interferometers offers large projection range and high displacement sensitivity.

Among the existing detector, Laser interferometer gravitation-wave observatory (LIGO) is

the most sensitive operational detector. LIGO consists of two longs arms, referred as beam

tubes, that are placed orthogonal to each other. The arms of the LIGO accommodates a Mich-

leson interferometer with a cavity (Fabry-Perot). The mirrors at the extremity of the cavity

serve as inertial test masses which responds to the strain induced due to the gravitational

waves. The optics of the LIGO are suspended like a pendulum. The schematics of the LIGO

are shown in Figure 9.

The isolation of the terrestrial interferometers is necessary in order to isolate the motion

of the suspended inertial masses from the seismic ground motion. The vibration isolation

system attenuates the effect of disturbances on the motion of the suspended masses in the

gravitational wave band. The other sources that can affect the sensitivity of the LIGO are

thermal noise, human activities, tidal motion etc. The suspensions of the LIGO needs to

serve two purpose — isolation and alignment. The alignment is also important in order to

ensure that the interferometer beam is targeted at the center of the suspended mass. The

current vibration isolation system for LIGO has seven different stages. In the first stage,
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hydraulically actuated external pre-isolators are used for attenuating large ground motions.

Two stages of active electromagnetic isolation system are placed next to pre-isolators. This

is followed by four stages of pendulum based passive isolation system.

In the active isolation stage of LIGO, different sensors are used to sense the same physical

signal in different frequency range. For example, seismometers are used to sense the position

of the platform in the frequency band 0.5–10 Hz while geophones are employed above 10 Hz.

The signals recorded from different sensor are fused using complementary filters [1, 10]. The

stringent requirements on these filters complicate their design. Hua [10] proposed comple-

mentary FIR filters which were synthesized using convex optimization. The designed FIR

filters were found to be compliant with the design specifications. However, the order of the

designed filter was very high, which limits its application to a practical system. In this sec-

tion, we demonstrate the design of complementary filters with the same specification using

the proposed method based onH∞- synthesis.

4.1. Design specifications

The design specification of the complementary filters (as listed out in [10]) are as follows:

(a) In the frequency range 0-0.008 Hz: the high pass filter’s magnitude should be less than

8 × 10−4.

(b) For frequency range 0.008 Hz-0.04 Hz: slope of the high pass filter is equal to three.

(c) Between 0.04 Hz-0.1 Hz frequency range: the high pass filter’s magnitude should be

less than 3.

(d) For frequencies above 0.1 Hz: the low pass filter’s magnitude should be less than 0.045.

The specification of the complementary filters are shown graphically by dashed black lines

in Figure 10.

4.2. Weighting Functions Design

As the synthesis objective of the complementary filters is described by Eq. (17), it is clear

that the weighting functions should be chosen such that their inverse magnitude represent

the maximum allowed norm of the complementary filters. This can be done manually using
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Figure 10: Specifications and weighting functions magnitudes

by combining poles and zeros or using useful formulas such as Eq. (14). It is important

to note that the order of the filters should be kept reasonable small in order to keep the

computational cost of the optimization reasonable. This will also ensure that the designed

filters are realizable in the physical world. The transfer function representing weights should

also be stable and minimum phase.

The weighting function corresponding to the low pass filter, wL(s), is here taken as Type

I Chebyshev filter. The order of the weighting function for low pass filter is set as 20.

The weighting function for the high pass filter, wH(s), is designed in such a way that its

magnitude response is as close as possible to the design specifications. This was achieved

using a combination of high-, low- and band-pass filters in the particular frequency band. The

overall order of the weighting function for high pass filter is 7.

The magnitude responses of the inverse of the designed weighting functions and their

comparison with the specifications are shown in Figure 10. It can be seen that the inverse of

the designed weights, shown in solid blue line for high pass filter and solid red line for low

pass filter, are close to the specifications shown in black dotted line.

4.3. H∞ synthesis of complementary filters

The complementary filters are designed using H∞ synthesis based on the architecture

shown in Figure 4. The generalized plant is obtained by substituting the transfer functions of
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the designed weighting functions in equation (11), i.e., W1(s) = wH(s) and W2(s) = wL(s).

The objective of the H∞ synthesis is given by equation (13). The optimization problem

in solved in Matlab [32] using Ricatti method. The frequency responses of the designed

optimal complementary filters are shown in Figure 11. The order of the filters obtained using

H∞ optimization is 27.

Now, we compare the designed complementary filters with the FIR filters designed by

Hua [10]. The transfer function of the FIR filter, G(ω), is the Fourier transform of its coeffi-

cients, g(n). That is,

G(ω) =
∑

n

g(n)e− j2nπω (20)

The FIR filter synthesis was formulated as a convex optimization problem. The objective of

the optimization problem was to find the filter’s coefficients such that their norm are below

the specified upper bounds. The optimization problem was solved using SeDuMi [33] and the

obtained order for the FIR filters is 512. The bode plot of the FIR filters are shown with dotted

lines in Figure 11. It can be seen that frequency responses of the designed complementary

filters matches quite well with those of the FIR filters. The designed complementary filters

are of much lower order and can be implemented with less computational cost can the FIR

filters. The proposed methodology for the design of complementary filters can be effectively

employed to obtain physically realizable filters.

5. Concluding remarks

The measurements from the sensors are reliable only within its bandwidth. The signals

from different sensors are usually fused in order to measure a physical quantity over larger

bandwidth. The sensor obtained after fusion is called as super sensor as it has superior noise

characteristics and wider bandwidth. Complementary filters are used for the combining the

signals from different sensors. A new framework based onH∞ synthesis has been presented

in this paper to aid the design of complementary filters. The method presented allows to shape

the complementary filters based on the design specifications. The task of filter design is posed

as anH∞ synthesis problem. The design specifications of the systems are transformed in the
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Figure 11: Bode plot of the filters designed usingH∞ synthesis and FIR filters [10]
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form of weighting functions. These weighting functions are used in the optimization problem

to constraint the filter response in a frequency band. The method has also been demonstrated

for designing a set of three complementary filters. The design frame is general, simple to

implement and can easily be extended to difference scenarios of sensor fusion. The effective-

ness of the method is demonstrated for a real life application where complementary filters

are designed for active vibration isolation of Laser Interferometer Gravitational-Wave Ob-

servatory (LIGO). The filters designed with the proposed method have been with compared

with the finite impulse response (FIR) filters. It was found that the filters designed usingH∞

have lower order compared to FIR filters. The designed filters are physically realizable and

have lesser computational cost compared to FIR filters. The proposed method can be effec-

tively used to shape complementary filters based on design specifications. The method can

be further be extended for the design of robust complementary filters with desired noise char-

acteristics considering uncertainties in the sensor dynamics. This is the focus of our future

research.
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