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Abstract. This paper investigates the use of Integral Force Feedback (IFF) for
the active damping of rotating mechanical systems. Guaranteed stability, typical
benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
To overcome this issue, two modifications of the classical IFF control scheme
are proposed. The first consists of slightly modifying the control law while the
second consists of adding springs in parallel with the force sensors. Conditions
for stability and optimal parameters are derived. The results reveal that, despite
their different implementations, both modified IFF control scheme have almost
identical damping authority on the suspension modes.
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1. Introduction

There is an increasing need to reduce the undesirable
vibration of sensitive equipment in many different fields
such as in aerospace industry [1–3], semi conductor
industry [4], microscopy [5, 6], gravitational wave
detectors [7] and particles accelerators [8, 9].

A common method to reduce vibration is to mount
the sensitive equipment on a suspended platform which
attenuates the vibrations above the frequency of the
suspension modes [10, 11].

In order to further decrease the residual vibra-
tions, active damping can be used for reducing the
magnification of the response in the vicinity of the res-
onances [12].

Many active damping techniques have been
developed over the years such as Positive Position
Feedback (PPF) [13, 14], Integral Force Feedback
(IFF) [15] and Direct Velocity Feedback (DVF) [16–
18].

In [19], the IFF control scheme has been proposed,
where a force sensor, a force actuator and an
integral controller are used to directly augment the
damping of a mechanical system. When the force
sensor is collocated with the actuator, the open-loop
transfer function has alternating poles and zeros which
facilitate to guarantee the stability of the closed loop
system [18]. It was latter shown that this property
holds for multiple collated actuator/sensor pairs [20].

The main advantages of IFF over other active
damping techniques are the guaranteed stability even
in presence of flexible dynamics, good performances
and robustness properties [18].

Several improvements of the classical IFF have
been proposed, such as adding a feed-through term
to increase the achievable damping [21] or adding an
high pass filter to recover the loss of compliance at low
frequency [22]. Recently, an H∞ optimization criterion
has been used to derive optimal gains for the IFF
controller [23].

However, when the platform is rotating, gyro-
scopic effects alter the system dynamics and IFF can-
not be applied as is. The purpose of this paper is to
study how the IFF strategy can be adapted to deal
with these gyroscopic effects.

The paper is structured as follows. Section
2 presents a simple model of a rotating suspended
platform that will be used throughout this study.
Section 3 explains how the unconditional stability of

IFF is lost due to gyroscopic effects induced by the
rotation. Section 4 suggests a simple modification of
the control law such that damping can be added to the
suspension modes in a robust way. Section 5 proposes
to add springs in parallel with the force sensors to
regain the unconditional stability of IFF. Section 6
compares both proposed modifications to the classical
IFF in terms of damping authority and closed-loop
system behavior.

2. Dynamics of Rotating Platforms

In order to study how the rotation affects the use of
IFF, a model of a suspended platform on top of a
rotating stage is used. Figure 1 represents a schematic
of the model which is the simplest in which gyroscopic
forces can be studied.
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Figure 1: Schematic of the studied system

The rotating stage is supposed to be ideal,
meaning it induces a perfect rotation θ(t) = Ωt where
Ω is the rotational speed in rad s−1.

The suspended platform consists of two orthog-
onal actuators each represented by three elements in
parallel: a spring with a stiffness k in N m−1, a dash-
pot with a damping coefficient c in N/(m/s)−1 and an
ideal force source Fu, Fv. A payload with a mass m in
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kg, representing the sensitive equipment, is mounted
on the (rotating) suspended platform.

Two reference frames are used: an inertial frame
(~ix,~iy,~iz) and a uniform rotating frame (~iu,~iv,~iw)

rigidly fixed on top of the rotating stage with~iw aligned
with the rotation axis. The position of the payload
is represented by (du, dv, 0) expressed in the rotating
frame.

To obtain the equations of motion for the system
represented in Figure 1, the Lagrangian equations are
used:

d

dt

(
∂L

∂q̇i

)
+
∂D

∂q̇i
− ∂L

∂qi
= Qi (1)

with L = T−V the Lagrangian, T the kinetic coenergy,
V the potential energy, D the dissipation function, and
Qi the generalized force associated with the generalized
variable

[
q1 q2

]
=
[
du dv

]
. The equation of motion

corresponding to the constant rotation along ~iw is
disregarded as this motion is considered to be imposed
by the rotation stage.

T =
1

2
m
(

(ḋu − Ωdv)2 + (ḋv + Ωdu)2
)
,

V =
1

2
k
(
du

2 + dv
2
)
, Q1 = Fu,

D =
1

2
c
(
ḋu

2 + ḋv
2
)
, Q2 = Fv

(2)

Substituting Eq. (2) into Eq. (1) for both
generalized coordinates gives two coupled differential
equations (3a) and (3b).

md̈u + cḋu + (k −mΩ2)du = Fu + 2mΩḋv (3a)

md̈v + cḋv + (k−mΩ2︸ ︷︷ ︸
Centrif.

)dv = Fv − 2mΩḋu︸ ︷︷ ︸
Coriolis

(3b)

The uniform rotation of the system induces two
gyroscopic effects as shown in Eq. (3):

• Centrifugal forces: that can been seen as an added
negative stiffness −mΩ2 along ~iu and ~iv

• Coriolis Forces: that adds coupling between the
two orthogonal directions.

One can verify that without rotation (Ω = 0)
the system becomes equivalent to two uncoupled one
degree of freedom mass-spring-damper systems.

To study the dynamics of the system, the
differential equations of motions (3) are converted into
the Laplace domain and the 2 × 2 transfer function
matrix Gd from

[
Fu Fv

]
to
[
du dv

]
in Eq. (4) is

obtained. Its elements are shown in Eq. (5).[
du
dv

]
= Gd

[
Fu

Fv

]
(4)

Gd(1, 1) = Gd(2, 2) = . . .

ms2 + cs+ k −mΩ2

(ms2 + cs+ k −mΩ2)
2

+ (2mΩs)
2 (5a)

Gd(1, 2) = −Gd(1, 2) = . . .

2mΩs

(ms2 + cs+ k −mΩ2)
2

+ (2mΩs)
2 (5b)

To simplify the analysis, the undamped natural
frequency ω0 and the damping ratio ξ are used as in
Eq. (6).

ω0 =

√
k

m
in rad s−1, ξ =

c

2
√
km

(6)

The elements of transfer function matrix Gd are
now describe by Eq. (7).

Gd(1, 1) =
1
k

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0

)
2

(7a)

Gd(1, 2) =
1
k (2 Ω

ω0
s
ω0

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0

)
2

(7b)

For all further numerical analysis in this study, we
consider ω0 = 1 rad s−1, k = 1 N m−1 and ξ = 0.025 =
2.5 %. Even though no system with such parameters
will be encountered in practice, conclusions can be
drawn relative to these parameters such that they can
be generalized to any other set of parameters.

The poles of Gd are the complex solutions p of Eq.
(8).

(
p2

ω0
2

+ 2ξ
p

ω0
+ 1− Ω2

ω0
2

)2

+

(
2

Ω

ω0

p

ω0

)2

= 0 (8)

Supposing small damping (ξ � 1), two pairs of
complex conjugate poles are obtained as shown in Eq.
(9).

p+ = −ξω0

(
1 +

Ω

ω0

)
± jω0

(
1 +

Ω

ω0

)
(9a)

p− = −ξω0

(
1− Ω

ω0

)
± jω0

(
1− Ω

ω0

)
(9b)

The real and complex parts of these two pairs of
complex conjugate poles are represented in Figure 2 as
a function of the rotational speed Ω. As the rotational
speed increases, p+ goes to higher frequencies and
p− goes to lower frequencies. The system becomes
unstable for Ω > ω0 as the real part of p− is positive.
Physically, the negative stiffness term −mΩ2 induced
by centrifugal forces exceeds the spring stiffness k.
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Figure 2: Campbell diagram : Evolution of the
complex and real parts of the system’s poles as a
function of the rotational speed Ω

In the rest of this study, rotational speeds smaller
than the undamped natural frequency of the system
are assumed (Ω < ω0).

Looking at the transfer function matrix Gd in Eq.
(7), one can see that the two diagonal (direct) terms
are equal and that the two off-diagonal (coupling)
terms are opposite. The bode plot of these two terms
are shown in Figure 3 for several rotational speeds
Ω. These plots confirm the expected behavior: the
frequency of the two pairs of complex conjugate poles
are further separated as Ω increases. For Ω > ω0,
the low frequency pair of complex conjugate poles p−
becomes unstable.
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Figure 3: Bode plots for Gd for several rotational speed
Ω

3. Decentralized Integral Force Feedback

In order to apply IFF to the rotating system, force
sensors are added in series with the two actuators
(Figure 4). As this study focuses on decentralized
control, two identical controllers KF are used to
feedback each of the sensed force to its associated
actuator and no attempt is made to counteract the
interactions in the system. The control diagram is
schematically shown in Figure 5.
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Figure 4: System with added force sensor in series with
the actuators and with a decentralized IFF architecture
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Figure 5: Control diagram for decentralized IFF

The forces
[
fu fv

]
measured by the two force

sensors represented in Figure 4 are described by Eq.
(10). [

fu
fv

]
=

[
Fu

Fv

]
− (cs+ k)

[
du
dv

]
(10)

The transfer function matrix Gf from actuator
forces to measured forces in Eq. (11) can be obtained
by inserting Eq. (7) into Eq. (10). Its elements are
shown in Eq. (12).
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[
fu
fv

]
= Gf

[
Fu

Fv

]
(11)

Gf (1, 1) = Gf (2, 2) = . . .(
s2

ω0
2 − Ω2

ω0
2

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+(2 Ω

ω0
s
ω0

)
2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0

)
2

(12a)

Gf (1, 2) = −Gf (2, 1) = . . .

−(2ξ s
ω0

+1)(2 Ω
ω0

s
ω0

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0

)
2

(12b)

The zeros of the diagonal terms of Gf in Eq.
(12a) are computed, and neglecting the damping
for simplicity, two complex conjugated poles zc are
obtained in Eq. (13a), and two real zeros zr in Eq.
(13b).

zc = ±jω0

√√√√1

2

√
8

Ω2

ω0
2

+ 1 +
Ω2

ω0
2

+
1

2
(13a)

zr = ±ω0

√√√√1

2

√
8

Ω2

ω0
2

+ 1− Ω2

ω0
2
− 1

2
(13b)

It is interesting to see that the frequency of the
pair of complex conjugate zeros zc in Eq. (13a) always
lies between the frequency of the two pairs of complex
conjugate poles p− and p+ in Eq. (9).

For non-null rotational speeds, the two real zeros
zr in Eq. (13b) induce a non-minimum phase behavior.
This can be seen in the Bode plot of the diagonal terms
(Figure 6) where the low frequency gain is no longer
zero while the phase stays at 180°.

The low frequency gain of Gf increases with the
rotational speed Ω as shown in Eq. (14).

lim
ω→0
|Gf (jω)| =

[
Ω2

ω0
2−Ω2 0

0 Ω2

ω0
2−Ω2

]
(14)

This can be explained as follows: a constant
force Fu induces a small displacement of the mass
du = Fu

k−mΩ2 , which increases the centrifugal force

mΩ2du = Ω2

ω0
2−Ω2Fu which is then measured by the

force sensors.
The two IFF controllers KF consist of a pure

integrator as shown in Eq. (15) where g is a scalar
representing the gain of the controller.

KF (s) =

[
KF (s) 0

0 KF (s)

]
KF (s) = g · 1

s

(15)

In order to see how the IFF controller affects the
poles of the closed loop system, a Root Locus plot
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Figure 6: Bode plot of the dynamics from a force
actuator to its collocated force sensor (fu/Fu, fv/Fv)
for several rotational speeds Ω

(Figure 7) is constructed as follows: the poles of the
closed-loop system are drawn in the complex plane
as the controller gain g varies from 0 to ∞ for the
two controllers KF simultaneously. As explained in
[20, 24], the closed-loop poles start at the open-loop
poles (shown by ) for g = 0 and coincide with the
transmission zeros (shown by ) as g → ∞. The
direction of increasing gain is indicated by arrows .

Figure 7: Root Locus: Evolution of the closed-loop
poles with increasing controller gains g

Whereas collocated IFF is usually associated with
unconditional stability [15], this property is lost due
to gyroscopic effects as soon as the rotational speed
in non-null. This can be seen in the Root Locus plot
(Figure 7) where poles corresponding to the controller
are bound to the right half plane implying closed-loop
system instability.

Physically, this can be explained like so: at low
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frequency, the loop gain is very large due to the pure
integrator inKF and the finite gain of the plant (Figure
6). The control system is thus canceling the spring
forces which makes the suspended platform no able to
hold the payload against centrifugal forces, hence the
instability.

In order to apply decentralized IFF to rotating
platforms, two solutions are proposed to deal with this
instability problem. The first one consists of slightly
modifying the control law (Section 4) while the second
one consists of adding springs in parallel with the force
sensors (Section 5).

4. Integral Force Feedback with High Pass
Filter

As was explained in the previous section, the instability
comes in part from the high gain at low frequency
caused by the pure integrators.

In order to limit the low frequency controller
gain, an High Pass Filter (HPF) can be added to the
controller as shown in Eq. (16).

KF (s) = g · 1

s
· s/ωi

1 + s/ωi︸ ︷︷ ︸
HPF

= g · 1

s+ ωi
(16)

This is equivalent as to slightly shifting the
controller pole to the left along the real axis.

This modification of the IFF controller is typically
done to avoid saturation associated with the pure
integrator [15, 25]. This is however not the case in
this study as it will become clear in the next section.

The loop gains, KF (s) times the direct dynamics
fu/Fu, with and without the added HPF are shown in
Figure 8. The effect of the added HPF limits the low
frequency gain as expected.

The Root Locus plots for the decentralized IFF
with and without the HPF are displayed in Figure
9. With the added HPF, the poles of the closed loop
system are shown to be stable up to some value of the
gain gmax in Eq. (17).

gmax = ωi

(
ω0

2

Ω2
− 1

)
(17)

It is interesting to note that gmax also corresponds
to the controller gain at which the low frequency loop
gain (Figure 8) reaches one.

Two parameters can be tuned for the modified
controller in Eq. (16): the gain g and the pole’s
location ωi. The optimal values of ωi and g are here
considered as the values for which the damping of all
the closed-loop poles are simultaneously maximized.

In order to visualize how ωi does affect the
attainable damping, the Root Locus plots for several
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Figure 8: Modification of the loop gain with the added
HFP, g = 2, ωi = 0.1ω0 and Ω = 0.1ω0

Figure 9: Modification of the Root Locus with the
added HPF, ωi = 0.1ω0 and Ω = 0.1ω0

ωi are displayed in Figure 10. It is shown that even
though small ωi seem to allow more damping to be
added to the suspension modes, the control gain g may
be limited to small values due to Eq. (17).

In order to study this trade off, the attainable
closed-loop damping ratio ξcl is computed as a function
of ωi/ω0. The gain gopt at which this maximum
damping is obtained is also displayed and compared
with the gain gmax at which the system becomes
unstable (Figure 11).

Three regions can be observed:

• ωi/ω0 < 0.02: the added damping is limited by
the maximum allowed control gain gmax

• 0.02 < ωi/ω0 < 0.2: the attainable damping ratio
is maximized and is reached for g ≈ 2

• 0.2 < ωi/ω0: the added damping decreases as
ωi/ω0 increases.
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Figure 10: Root Locus for several HPF cut-off
frequencies ωi, Ω = 0.1ω0
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Figure 11: Attainable damping ratio ξcl as a function
of ωi/ω0. Corresponding control gain gopt and gmax are
also shown

5. Integral Force Feedback with Parallel
Springs

In this section additional springs in parallel with the
force sensors are added to counteract the negative
stiffness induced by the gyroscopic effects. Such
springs are schematically shown in Figure 12 where ka
is the stiffness of the actuator and kp the stiffness in
parallel with the actuator and force sensor.

Amplified piezoelectric stack actuators can be
used for such purpose where a part of the piezoelectric
stack is used as an actuator while the rest is used
as a force sensor [3]. The parallel stiffness kp then
corresponds to the mechanical amplification structure.

The forces measured by the two force sensors
represented in Figure 12 are described by Eq. (18).[

fu
fv

]
=

[
Fu

Fv

]
− (cs+ ka)

[
du
dv

]
(18)

In order to keep the overall stiffness k = ka + kp
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Figure 12: Studied system with additional springs in
parallel with the actuators and force sensors

constant, thus not modifying the open-loop poles as kp
is changed, a scalar parameter α (0 ≤ α < 1) is defined
to describe the fraction of the total stiffness in parallel
with the actuator and force sensor as in Eq. (19).

kp = αk, ka = (1− α)k (19)

After the equations of motion derived and
transformed in the Laplace domain, the transfer
function matrix Gk in Eq. (20) is computed. Its
elements are shown in Eq. (21a) and (21b).[

fu
fv

]
= Gk

[
Fu

Fv

]
(20)

Gk(1, 1) = Gk(2, 2) = . . .(
s2

ω0
2 − Ω2

ω0
2 +α

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+

(
2 Ω
ω0

s
ω0

)2(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+

(
2 Ω
ω0

s
ω0

)2 (21a)

Gk(1, 2) = −Gk(2, 1) = . . .

−(2ξ s
ω0

+1−α)(2 Ω
ω0

s
ω0

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0

)
2

(21b)

Comparing Gk in Eq. (21) with Gf in Eq. (12)
shows that while the poles of the system are kept the
same, the zeros of the diagonal terms have changed.
The two real zeros zr in Eq. (13b) that were inducing
a non-minimum phase behavior are transformed into
two complex conjugate zeros if the condition in Eq.
(22) holds.

α >
Ω2

ω0
2
⇔ kp > mΩ2 (22)
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Thus, if the added parallel stiffness kp is higher
than the negative stiffness induced by centrifugal forces
mΩ2, the dynamics from actuator to its collocated
force sensor will show minimum phase behavior. This
is confirmed by the Bode plot in Figure 13.

Figure 14 shows the Root Locus plots for kp = 0,
kp < mΩ2 and kp > mΩ2 when KF is a pure integrator
as in Eq. (15). It is shown that if the added stiffness is
higher than the maximum negative stiffness, the poles
of the closed-loop system are bounded on the (stable)
left half-plane, and hence the unconditional stability of
IFF is recovered.
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Figure 13: Bode plot of Gk(1, 1) = fu/Fu without
parallel spring, with parallel spring stiffness kp < mΩ2

and kp > mΩ2, Ω = 0.1ω0

Figure 14: Root Locus for IFF without parallel spring,
with parallel spring stiffness kp < mΩ2 and kp > mΩ2,
Ω = 0.1ω0

Even though the parallel stiffness kp has no impact
on the open-loop poles (as the overall stiffness k is kept
constant), it has a large impact on the transmission

zeros. Moreover, as the attainable damping is generally
proportional to the distance between poles and zeros
[26], the parallel stiffness kp is foreseen to have a large
impact on the attainable damping.

To study this effect, Root Locus plots for several
parallel stiffnesses kp > mΩ2 are shown in Figure 15.
The frequencies of the transmission zeros of the system
are increasing with an increase of the parallel stiffness
kp and the associated attainable damping is reduced.
Therefore, even though the parallel stiffness kp should
be larger than mΩ2 for stability reasons, it should not
be taken too large as this would limit the attainable
damping.

This is confirmed by the Figure 16 where the
attainable closed-loop damping ratio ξcl and the
associated optimal control gain gopt are computed as a
function of α.

Figure 15: Comparison of the Root Locus plots for
three parallel stiffnessses kp
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Figure 16: Optimal damping ratio ξopt and the
corresponding optimal gain gopt as a function of α
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6. Comparison and Discussion

In order to overcome the instability issue of the
classical IFF strategy when applied to rotating
platforms, two modifications of IFF have been
proposed in Sections 4 and 5. These two methods are
now compared in terms of added damping, closed-loop
compliance and transmissibility.

For the following comparisons, the cut-off fre-
quency for the HPF is set to ωi = 0.1ω0 and the stiff-
ness of the parallel springs is set to kp = 5mΩ2 (corre-
sponding to α = 0.05). These values are chosen based
on the discussion about optimal parameters.

Figure 17 shows the Root Locus plots for the two
proposed IFF modifications. While the two pairs of
complex conjugate open-loop poles are identical for
both techniques, the transmission zeros are not. This
means that the closed-loop behavior of both systems
will differ when large control gains are used.

One can observe that the closed loop poles
corresponding to the system with added springs (in
red) are bounded to the left half plane implying
unconditional stability. This is not the case for the
system where the controller is augmented with an HPF
(in blue).

It is interesting to note that the maximum added
damping is very similar for both techniques and is
reached for the same control gain gopt ≈ 2ω0.

Figure 17: Root Locus for the two proposed
modifications of decentralized IFF, Ω = 0.1ω0

The two proposed techniques are now compared in
terms of closed-loop transmissibility and compliance.

The transmissibility is here defined as the transfer
function from a displacement of the rotating stage
along ~ix to the displacement of the payload along
the same direction. It is used to characterize how
much vibration is transmitted through the suspended
platform to the payload.

The compliance describes the displacement re-
sponse of the payload to external forces applied to it.
This is a useful metric when disturbances are directly
applied to the payload. It is here defined as the trans-
fer function from external forces applied on the payload
along ~ix to the displacement of the payload along the
same direction.

The two techniques are also compared with passive
damping (Figure 1) where the damping coefficient c
is tuned to critically damp the resonance when the
rotating speed is null as shown in Eq. (23).

ccrit = 2
√
km (23)

Very similar results are obtained for the two
proposed IFF modifications in terms of transmissibility
(Figure 18) and compliance (Figure 19). It is also
confirmed that these two techniques can significantly
damp the suspension modes.
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Figure 18: Comparison of the two proposed active
damping techniques - transmissibility
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Figure 19: Comparison of the two proposed active
damping techniques - compliance

On can see in Figure 18 that the problem of the
degradation of the transmissibility at high frequency
when using passive damping techniques is overcome by
the use of IFF.
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The addition of the HPF or the use of the parallel
stiffness also permits to limit the degradation of the
compliance as compared with classical IFF (Figure 19).

7. Conclusion

Due to gyroscopic effects, decentralized IFF with pure
integrators was shown to be unstable when applied to
rotating platforms. Two modifications of the classical
IFF control have been proposed to overcome this issue.

The first modification concerns the controller and
consists of adding an high pass filter to the pure
integrators. This is equivalent as to moving the
controller pole to the left along the real axis. This
allows the closed loop system to be stable up to some
value of the controller gain.

The second proposed modification concerns the
mechanical system. Additional springs are added in
parallel with the actuators and force sensors. It was
shown that if the stiffness kp of the additional springs
is larger than the negative stiffness mΩ2 induced
by centrifugal forces, the classical decentralized IFF
regains its unconditional stability property.

While having very different implementations, both
proposed modifications are very similar when it comes
to the attainable damping and the obtained closed loop
system behavior.

Future work will focus on the experimental
validation of the proposed IFF modifications.

Data Availability

Matlab [27] was used for this study. The source code is
available under a MIT License and archived in Zenodo
[28].
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