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Abstract
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating
mechanical systems. Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating
due to gyroscopic effects. To overcome this issue, twomodifications of the classical IFF control scheme
are proposed. Thefirst consists of slightlymodifying the control lawwhile the second consists of
adding springs in parallel with the force sensors. Conditions for stability and optimal parameters are
derived. The results reveal that, despite their different implementations, bothmodified IFF control
scheme have almost identical damping authority on the suspensionmodes.

1. Introduction

There is an increasing need to reduce the undesirable vibration of sensitive equipment inmany different fields
such as in aerospace industry [1–3], semi conductor industry [4], microscopy [5, 6], gravitational wave detectors
[7] and particles accelerators [8, 9].

A commonmethod to reduce vibration is tomount the sensitive equipment on a suspended platformwhich
attenuates the vibrations above the frequency of the suspensionmodes [10, 11].

In order to further decrease the residual vibrations, active damping can be used for reducing the
magnification of the response in the vicinity of the resonances [12].

Many active damping techniques have been developed over the years such as Positive Position Feedback
(PPF) [13, 14], Integral Force Feedback (IFF) [15] andDirect Velocity Feedback (DVF) [16–18].

In [19], the IFF control scheme has been proposed, where a force sensor, a force actuator and an integral
controller are used to directly augment the damping of amechanical system.When the force sensor is collocated
with the actuator, the open-loop transfer function has alternating poles and zeros which facilitate to guarantee
the stability of the closed loop system [18]. It was latter shown that this property holds formultiple collated
actuator/sensor pairs [20].

Themain advantages of IFF over other active damping techniques are the guaranteed stability even in
presence offlexible dynamics, good performances and robustness properties [18].

Several improvements of the classical IFF have been proposed, such as adding a feed-through term to
increase the achievable damping [21] or adding an high passfilter to recover the loss of compliance at low
frequency [22]. Recently, an ¥ optimization criterion has been used to derive optimal gains for the IFF
controller [23].

However, when the platform is rotating, gyroscopic effects alter the systemdynamics and IFF cannot be
applied as is. The purpose of this paper is to study how the IFF strategy can be adapted to deal with these
gyroscopic effects.

The paper is structured as follows. Section 2 presents a simplemodel of a rotating suspended platform that
will be used throughout this study. Section 3 explains how the unconditional stability of IFF is lost due to
gyroscopic effects induced by the rotation. Section 4 suggests a simplemodification of the control law such that
damping can be added to the suspensionmodes in a robust way. Section 5 proposes to add springs in parallel
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with the force sensors to regain the unconditional stability of IFF. Section 6 compares both proposed
modifications to the classical IFF in terms of damping authority and closed-loop systembehavior.

2.Dynamics of rotating platforms

In order to study how the rotation affects the use of IFF, amodel of a suspended platformon top of a rotating
stage is used. Figure 1 represents a schematic of themodel which is the simplest inwhich gyroscopic forces can be
studied.

The rotating stage is supposed to be ideal,meaning it induces a perfect rotation θ(t)=ΩtwhereΩ is the
rotational speed in rad s−1.

The suspended platform consists of two orthogonal actuators each represented by three elements in parallel:
a springwith a stiffness k inNm−1, a dashpot with a damping coefficient c inN/(m/s)−1 and an ideal force
source Fu, Fv. A payloadwith amassm in kg, representing the sensitive equipment, ismounted on the (rotating)
suspended platform.

Two reference frames are used: an inertial frame ( )
  
i i i, ,x y z and a uniform rotating frame ( )

  
i i i, ,u v w rigidly

fixed on top of the rotating stage with

iw alignedwith the rotation axis. The position of the payload is represented

by (du, dv, 0) expressed in the rotating frame.
To obtain the equations ofmotion for the system represented infigure 1, the Lagrangian equations are used:
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with L= T− V the Lagrangian,T the kinetic coenergy,V the potential energy,D the dissipation function, and
Qi the generalized force associatedwith the generalized variable [q1 q2]= [du dv]. The equation ofmotion
corresponding to the constant rotation along


iw is disregarded as thismotion is considered to be imposed by the

rotation stage.
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Substituting equation (2) into equation (1) for both generalized coordinates gives two coupled differential
equations (3a) and (3b).

̈ ( ) ( ) + + - W = + Wmd cd k m d F m d a2 3u u u u v
2

Figure 1. Schematic of the studied system.
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̈ ( ) ( )      + + - W = - Wmd cd k m d F m d b2 3v v v v u
2

Centrif. Coriolis

The uniform rotation of the system induces two gyroscopic effects as shown in equation (3):

• Centrifugal forces: that can been seen as an added negative stiffness−mΩ2 along

iu and


iv

• Coriolis Forces: that adds coupling between the two orthogonal directions.

One can verify that without rotation (Ω= 0) the systembecomes equivalent to twouncoupled one degree of
freedommass-spring-damper systems.

To study the dynamics of the system, the differential equations ofmotions (3) are converted into the Laplace
domain and the 2× 2 transfer functionmatrixGd from [ ]F Fu v to [ ]d du v in equation (4) is obtained. Its
elements are shown in equation (5a).
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To simplify the analysis, the undamped natural frequencyω0 and the damping ratio ξ are used as in
equation (6).
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The elements of transfer functionmatrixGd are nowdescribe by equation (7a).
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For all further numerical analysis in this study, we considerω0= 1 rad s−1, k= 1 Nm−1 and
ξ= 0.025= 2.5%. Even though no systemwith such parameters will be encountered in practice, conclusions
can be drawn relative to these parameters such that they can be generalized to any other set of parameters.

The poles ofGd are the complex solutions p of equation (7).
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Supposing small damping (ξ= 1), two pairs of complex conjugate poles are obtained as shown in
equation (9a).
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The real and complex parts of these two pairs of complex conjugate poles are represented infigure 2 as a
function of the rotational speedΩ. As the rotational speed increases, p+ goes to higher frequencies and p− goes to
lower frequencies. The systembecomes unstable forΩ> ω0 as the real part of p− is positive. Physically, the
negative stiffness term−mΩ2 induced by centrifugal forces exceeds the spring stiffness k.

In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are
assumed (Ω< ω0).

Looking at the transfer functionmatrixGd in equation (7a), one can see that the two diagonal (direct) terms
are equal and that the two off-diagonal (coupling) terms are opposite. The bode plot of these two terms are
shown infigure 3 for several rotational speedsΩ. These plots confirm the expected behavior: the frequency of the
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two pairs of complex conjugate poles are further separated asΩ increases. ForΩ> ω0, the low frequency pair of
complex conjugate poles p− becomes unstable.

3.Decentralized Integral Force Feedback

In order to apply IFF to the rotating system, force sensors are added in series with the two actuators (figure 4). As
this study focuses on decentralized control, two identical controllersKF are used to feedback each of the sensed
force to its associated actuator and no attempt ismade to counteract the interactions in the system. The control
diagram is schematically shown infigure 5.

The forces ⎡⎣ ⎤⎦f fu v measured by the two force sensors represented infigure 4 are described by equation (10).
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The transfer functionmatrixGf from actuator forces tomeasured forces in equation (11) can be obtained by
inserting equation (7a) into equation (10). Its elements are shown in equation (12).
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Figure 2.Campbell diagram : Evolution of the complex and real parts of the system’s poles as a function of the rotational speedΩ.

Figure 3.Bode plots forGd for several rotational speedΩ.
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The zeros of the diagonal terms ofGf in equation (12a) are computed, and neglecting the damping for
simplicity, two complex conjugated poles zc are obtained in equation (13a), and two real zeros zr in
equation (13b).
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It is interesting to see that the frequency of the pair of complex conjugate zeros zc in equation (13a) always lies
between the frequency of the two pairs of complex conjugate poles p− and p+ in equation (9a).

For non-null rotational speeds, the two real zeros zr in equation (13b) induce a non-minimumphase
behavior. This can be seen in the Bode plot of the diagonal terms (figure 6)where the low frequency gain is no
longer zerowhile the phase stays at 180°.

Figure 4. Systemwith added force sensor in series with the actuators andwith a decentralized IFF architecture.

Figure 5.Control diagram for decentralized IFF.
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The low frequency gain ofGf increases with the rotational speedΩ as shown in equation (14).
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This can be explained as follows: a constant force Fu induces a small displacement of themass =
- W
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F
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w
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0
2 2 which is thenmeasured by the force sensors.

The two IFF controllersKF consist of a pure integrator as shown in equation (15)where g is a scalar
representing the gain of the controller.
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In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (figure 7)
is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller
gain g varies from0 to∞ for the two controllersKF simultaneously. As explained in [20, 24], the closed-loop
poles start at the open-loop poles (shown by ) for g= 0 and coincide with the transmission zeros (shown by ) as
g→∞. The direction of increasing gain is indicated by arrows.

Whereas collocated IFF is usually associatedwith unconditional stability [15], this property is lost due to
gyroscopic effects as soon as the rotational speed in non-null. This can be seen in theRoot Locus plot (figure 7)
where poles corresponding to the controller are bound to the right half plane implying closed-loop system
instability.

Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator
inKF and thefinite gain of the plant (figure 6). The control system is thus canceling the spring forceswhich
makes the suspended platformno able to hold the payload against centrifugal forces, hence the instability.

In order to apply decentralized IFF to rotating platforms, two solutions are proposed to deal with this
instability problem. Thefirst one consists of slightlymodifying the control law (Section 4)while the second one
consists of adding springs in parallel with the force sensors (section 5).

4. Integral Force FeedbackwithHighPass Filter

Aswas explained in the previous section, the instability comes in part from the high gain at low frequency caused
by the pure integrators.

In order to limit the low frequency controller gain, anHigh Pass Filter (HPF) can be added to the controller
as shown in equation (16).

Figure 6.Bode plot of the dynamics from a force actuator to its collocated force sensor ( fu/Fu, fv/Fv) for several rotational speedsΩ.
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This is equivalent as to slightly shifting the controller pole to the left along the real axis.
Thismodification of the IFF controller is typically done to avoid saturation associatedwith the pure

integrator [15, 25]. This is however not the case in this study as it will become clear in the next section.
The loop gains,KF(s) times the direct dynamics fu/Fu, with andwithout the addedHPF are shown infigure 8.

The effect of the addedHPF limits the low frequency gain as expected.
The Root Locus plots for the decentralized IFFwith andwithout theHPF are displayed infigure 9.With the

addedHPF, the poles of the closed loop system are shown to be stable up to some value of the gain gmax in
equation (17).

( )
⎛
⎝⎜

⎞
⎠⎟w

w
=

W
-g 1 17imax

0
2

2

It is interesting to note that gmax also corresponds to the controller gain at which the low frequency loop gain
(figure 8) reaches one.

Two parameters can be tuned for themodified controller in equation (16): the gain g and the pole’s location
ωi. The optimal values ofωi and g are here considered as the values for which the damping of all the closed-loop
poles are simultaneouslymaximized.

Figure 7.Root Locus: Evolution of the closed-loop poles with increasing controller gains g.

Figure 8.Modification of the loop gainwith the addedHFP, g = 2,ωi = 0.1ω0 andΩ = 0.1ω0.
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In order to visualize howωi does affect the attainable damping, the Root Locus plots for severalωi are
displayed infigure 10. It is shown that even though smallωi seem to allowmore damping to be added to the
suspensionmodes, the control gain gmay be limited to small values due to equation (17).

In order to study this trade off, the attainable closed-loop damping ratio ξcl is computed as a function of
ωi/ω0. The gain gopt at which thismaximumdamping is obtained is also displayed and comparedwith the gain
gmax at which the systembecomes unstable (figure 11).

Three regions can be observed:

• ωi/ω0< 0.02: the added damping is limited by themaximumallowed control gain gmax

• 0.02< ωi/ω0< 0.2: the attainable damping ratio ismaximized and is reached for g≈ 2

• 0.2< ωi/ω0: the added damping decreases asωi/ω0 increases.

5. Integral force feedbackwith parallel springs

In this section additional springs in parallel with the force sensors are added to counteract the negative stiffness
induced by the gyroscopic effects. Such springs are schematically shown infigure 12where ka is the stiffness of
the actuator and kp the stiffness in parallel with the actuator and force sensor.

Figure 9.Modification of the Root Locus with the addedHPF,ωi = 0.1ω0 andΩ = 0.1ω0.

Figure 10.Root Locus for several HPF cut-off frequenciesωi,Ω = 0.1ω0.
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Amplified piezoelectric stack actuators can be used for such purpose where a part of the piezoelectric stack is
used as an actuator while the rest is used as a force sensor [3]. The parallel stiffness kp then corresponds to the
mechanical amplification structure.

The forcesmeasured by the two force sensors represented infigure 12 are described by equation (18).

( ) ( )
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In order to keep the overall stiffness k= ka+ kp constant, thus notmodifying the open-loop poles as kp is
changed, a scalar parameterα (0� α< 1) is defined to describe the fraction of the total stiffness in parallel with
the actuator and force sensor as in equation (19).

( ) ( )a a= = -k k k k, 1 19p a

After the equations ofmotion derived and transformed in the Laplace domain, the transfer functionmatrix
Gk in equation (20) is computed. Its elements are shown in equation (21a) and (21b).
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Figure 11.Attainable damping ratio ξcl as a function ofωi/ω0. Corresponding control gain gopt and gmax are also shown.

Figure 12. Studied systemwith additional springs in parallel with the actuators and force sensors.
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ComparingGk in equation (21)withGf in equation (12) shows thatwhile the poles of the system are kept the
same, the zeros of the diagonal terms have changed. The two real zeros zr in equation (13b) that were inducing a
non-minimumphase behavior are transformed into two complex conjugate zeros if the condition in
equation (22) holds.

( )a
w

>
W

 > Wk m 22p

2

0
2

2

Thus, if the added parallel stiffness kp is higher than the negative stiffness induced by centrifugal forcesmΩ2,
the dynamics from actuator to its collocated force sensor will showminimumphase behavior. This is confirmed
by the Bode plot infigure 13. Figure 14 shows the Root Locus plots for kp= 0, kp<mΩ2 and kp>mΩ2 whenKF

is a pure integrator as in equation (15). It is shown that if the added stiffness is higher than themaximum
negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the
unconditional stability of IFF is recovered.

Even though the parallel stiffness kphas no impact on the open-loop poles (as the overall stiffness k is kept
constant), it has a large impact on the transmission zeros.Moreover, as the attainable damping is generally

Figure 13.Bode plot ofGk(1, 1) = fu/Fuwithout parallel spring, with parallel spring stiffness kp < mΩ2 and kp > mΩ2,Ω = 0.1ω0.

Figure 14.Root Locus for IFFwithout parallel spring, with parallel spring stiffness kp < mΩ2 and kp > mΩ2,Ω = 0.1ω0.
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proportional to the distance between poles and zeros [26], the parallel stiffness kp is foreseen to have a large
impact on the attainable damping.

To study this effect, Root Locus plots for several parallel stiffnesses kp>mΩ2 are shown infigure 15. The
frequencies of the transmission zeros of the system are increasingwith an increase of the parallel stiffness kp and
the associated attainable damping is reduced. Therefore, even though the parallel stiffness kp should be larger
thanmΩ2 for stability reasons, it should not be taken too large as this would limit the attainable damping.

This is confirmed by thefigure 16where the attainable closed-loop damping ratio ξcl and the associated
optimal control gain gopt are computed as a function ofα.

6. Comparison and discussion

In order to overcome the instability issue of the classical IFF strategywhen applied to rotating platforms, two
modifications of IFF have been proposed in sections 4 and 5. These twomethods are now compared in terms of
added damping, closed-loop compliance and transmissibility.

For the following comparisons, the cut-off frequency for theHPF is set toωi= 0.1ω0 and the stiffness of the
parallel springs is set to kp= 5mΩ2 (corresponding toα= 0.05). These values are chosen based on the discussion
about optimal parameters.

Figure 17 shows the Root Locus plots for the two proposed IFFmodifications.While the two pairs of
complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not. Thismeans
that the closed-loop behavior of both systemswill differ when large control gains are used.

Figure 15.Comparison of the Root Locus plots for three parallel stiffnessses kp.

Figure 16.Optimal damping ratio ξopt and the corresponding optimal gain gopt as a function ofα.
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One can observe that the closed loop poles corresponding to the systemwith added springs (in red) are
bounded to the left half plane implying unconditional stability. This is not the case for the systemwhere the
controller is augmentedwith anHPF (in blue).

It is interesting to note that themaximumadded damping is very similar for both techniques and is reached
for the same control gain gopt≈ 2ω0.

The two proposed techniques are now compared in terms of closed-loop transmissibility and compliance.
The transmissibility is here defined as the transfer function from a displacement of the rotating stage along


ix

to the displacement of the payload along the same direction. It is used to characterize howmuch vibration is
transmitted through the suspended platform to the payload.

The compliance describes the displacement response of the payload to external forces applied to it. This is a
usefulmetric when disturbances are directly applied to the payload. It is here defined as the transfer function
from external forces applied on the payload along


ix to the displacement of the payload along the same direction.

The two techniques are also comparedwith passive damping (figure 1)where the damping coefficient c is
tuned to critically damp the resonancewhen the rotating speed is null as shown in equation (23).

( )=c km2 23crit

Very similar results are obtained for the twoproposed IFFmodifications in termsof transmissibility (Figure18) and
compliance (figure19). It is also confirmed that these two techniques can significantlydamp the suspensionmodes.

On can see infigure 18 that the problemof the degradation of the transmissibility at high frequencywhen
using passive damping techniques is overcome by the use of IFF.

The addition of theHPF or the use of the parallel stiffness also permits to limit the degradation of the
compliance as comparedwith classical IFF (figure 19).

Figure 17.Root Locus for the two proposedmodifications of decentralized IFF,Ω = 0.1ω0.

Figure 18.Comparison of the two proposed active damping techniques - transmissibility.
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7. Conclusion

Due to gyroscopic effects, decentralized IFFwith pure integrators was shown to be unstable when applied to
rotating platforms. Twomodifications of the classical IFF control have been proposed to overcome this issue.

Thefirstmodification concerns the controller and consists of adding an high passfilter to the pure
integrators. This is equivalent as tomoving the controller pole to the left along the real axis. This allows the
closed loop system to be stable up to some value of the controller gain.

The second proposedmodification concerns themechanical system. Additional springs are added in parallel
with the actuators and force sensors. It was shown that if the stiffness kp of the additional springs is larger than
the negative stiffnessmΩ2 induced by centrifugal forces, the classical decentralized IFF regains its unconditional
stability property.

While having very different implementations, both proposedmodifications are very similar when it comes
to the attainable damping and the obtained closed loop systembehavior.

Futureworkwill focus on the experimental validation of the proposed IFFmodifications.
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