diff --git a/matlab/data/sensor_fusion.zip b/matlab/data/sensor_fusion.zip
new file mode 100644
index 0000000..02f20e5
Binary files /dev/null and b/matlab/data/sensor_fusion.zip differ
diff --git a/matlab/figs/Kr_bode_plot_input_usage.pdf b/matlab/figs/Kr_bode_plot_input_usage.pdf
new file mode 100644
index 0000000..db96b92
Binary files /dev/null and b/matlab/figs/Kr_bode_plot_input_usage.pdf differ
diff --git a/matlab/figs/Kr_bode_plot_input_usage.png b/matlab/figs/Kr_bode_plot_input_usage.png
new file mode 100644
index 0000000..1f47fa1
Binary files /dev/null and b/matlab/figs/Kr_bode_plot_input_usage.png differ
diff --git a/matlab/figs/Kr_bode_plot_input_usage.svg b/matlab/figs/Kr_bode_plot_input_usage.svg
new file mode 100644
index 0000000..c62008b
--- /dev/null
+++ b/matlab/figs/Kr_bode_plot_input_usage.svg
@@ -0,0 +1,344 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/Kr_bode_plot_input_usage.tex b/matlab/figs/Kr_bode_plot_input_usage.tex
new file mode 100644
index 0000000..77f5201
--- /dev/null
+++ b/matlab/figs/Kr_bode_plot_input_usage.tex
@@ -0,0 +1,1426 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=2.593in,
+height=1.991in,
+at={(0.475in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1000,
+ymax=100000000,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9216.51719081629\\
+0.302329468440578 9156.57439362406\\
+0.488302208687788 9048.41984903025\\
+0.668074391569561 8895.77022498476\\
+0.841249704973612 8704.2852958811\\
+1.01159111222383 8473.74281979462\\
+1.1723818032866 8218.13371547544\\
+1.33390569003906 7924.68751422842\\
+1.48995507285285 7606.83139699254\\
+1.64898694447106 7248.85813798416\\
+1.7916503273639 6899.21009678835\\
+1.94665634334226 6489.72475299129\\
+2.09566239948044 6068.27777195718\\
+2.2353696459098 5649.82351989119\\
+2.38439047009372 5180.72982150632\\
+2.52000499376409 4736.05747217165\\
+2.66333272517498 4251.74692504046\\
+2.81481236050758 3731.0688776775\\
+2.97490754721444 3185.29304754871\\
+3.17322963473498 2559.58914710908\\
+3.35371015200293 2128.23450503408\\
+3.44776405473446 2004.43346959609\\
+3.51192753045073 1975.3244412959\\
+3.54445567397044 1979.63027757491\\
+3.61041859717334 2028.83312405715\\
+3.67760910160103 2133.03277360448\\
+3.78074666359935 2386.84162097141\\
+3.99578030189527 3181.12393658679\\
+4.34147833005509 4872.36112567832\\
+4.67379510799246 6750.81743052959\\
+5.03154894503806 8951.09539018752\\
+5.46685729972018 11823.3837096566\\
+5.99484250318941 15553.5595580903\\
+6.63470812109235 20404.912648195\\
+7.47952251562183 27356.907664737\\
+8.74866812047991 39077.2058005133\\
+11.7508713090481 74241.4271266614\\
+16.2259528707809 147110.204711834\\
+19.8745954958099 220959.014725538\\
+23.6796006783308 307277.201948126\\
+27.9541599906786 411454.812225883\\
+33.0003479112529 539993.385558094\\
+38.957456157755 695271.142881128\\
+45.9899209052244 879823.151938927\\
+54.7947233690029 1109810.59305886\\
+66.5001803043112 1411776.15281457\\
+82.9695852083491 1829369.69716703\\
+107.406615333343 2437452.06267619\\
+149.683929307726 3471017.84649489\\
+237.342425002387 5584195.21939397\\
+436.153778920801 10317113.4349985\\
+559.432570616938 13116899.464662\\
+642.403365939419 14804449.7160439\\
+704.446227729904 15869977.2158384\\
+758.367791499719 16600328.7245067\\
+808.924348680594 17080530.6951292\\
+854.932706626838 17324283.7266202\\
+895.26571259964 17380491.0445164\\
+937.501501514529 17285573.6203917\\
+981.729840618884 17031385.5178213\\
+1000 16885202.0015993\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9370.94756873912\\
+0.275702332560958 9212.77441653564\\
+0.492824957004051 9055.38925709945\\
+0.680507369673521 8885.09611920841\\
+0.856905505126835 8683.46499346579\\
+1.03041699495059 8443.41314532514\\
+1.19420002813353 8178.39340833535\\
+1.35872990190271 7874.71231415556\\
+1.51768339028341 7546.07121080538\\
+1.6642601764859 7212.83856041143\\
+1.80824493487795 6857.94423395407\\
+1.94665634334226 6491.79701817757\\
+2.09566239948044 6071.33934020118\\
+2.2353696459098 5653.73980406749\\
+2.38439047009372 5185.44218775673\\
+2.52000499376409 4741.36089769826\\
+2.66333272517498 4257.5101495567\\
+2.81481236050758 3737.11210610892\\
+2.97490754721444 3191.39586816305\\
+3.17322963473498 2565.49533496467\\
+3.35371015200293 2133.95486796305\\
+3.44776405473446 2010.23688044213\\
+3.51192753045073 1981.33034239186\\
+3.54445567397044 1985.79722023813\\
+3.61041859717334 2035.46560749475\\
+3.67760910160103 2140.34725099686\\
+3.78074666359935 2395.62805649023\\
+3.99578030189527 3194.585298563\\
+4.34147833005509 4897.63044604063\\
+4.67379510799246 6792.54710370872\\
+5.03154894503806 9016.70339501755\\
+5.46685729972018 11927.6126005575\\
+5.99484250318941 15720.0683431431\\
+6.63470812109235 20670.8528347805\\
+7.47952251562183 27793.6948216338\\
+8.74866812047991 39842.8243519256\\
+11.4303112911448 71557.9374016831\\
+15.4949503931463 136555.893160995\\
+18.979216428391 205518.435626751\\
+22.6128006633728 286479.332927707\\
+26.6947849403432 384629.927737068\\
+31.5136348486648 506268.580328289\\
+37.2023668141307 653803.367209384\\
+43.9180089259609 829723.77765377\\
+52.3261423948667 1049467.91456154\\
+63.5042516859596 1338393.56128413\\
+78.5045620020451 1719837.90340695\\
+100.693863147603 2273812.08107546\\
+137.765076954906 3182836.55413446\\
+210.534524276671 4940862.21122526\\
+390.473523688556 9238211.49041574\\
+534.229329953835 12558916.2454787\\
+624.87880720069 14460306.2281801\\
+691.575882873852 15655899.6038212\\
+751.408106111698 16505425.8673027\\
+801.500696156541 17009942.5369771\\
+847.08682665574 17282075.152417\\
+895.26571259964 17366274.8407052\\
+937.501501514529 17271713.5407915\\
+981.729840618884 17018256.0017434\\
+1000 16872460.1457305\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9419.41985217608\\
+0.305129701718287 9357.62257135977\\
+0.492824957004051 9246.34730813299\\
+0.674262224177834 9089.2404802161\\
+0.849041520408875 8892.07936821042\\
+1.02096066230605 8654.58095871917\\
+1.18324062745838 8391.10881244616\\
+1.34626057929891 8088.44703168113\\
+1.50375532129974 7760.39019567864\\
+1.6642601764859 7390.66905318224\\
+1.80824493487795 7029.29511890935\\
+1.96468664618044 6605.78448704379\\
+2.11507282486879 6169.60770644421\\
+2.25607406649686 5736.28355155348\\
+2.40647515001543 5250.32596908643\\
+2.54334576130465 4789.62896992659\\
+2.68800102153761 4288.12356534321\\
+2.84088369018331 3749.94978142995\\
+3.00246170908555 3188.72802444251\\
+3.23228397818138 2474.7587255913\\
+3.38477285594598 2146.75683724799\\
+3.44776405473446 2071.91566112034\\
+3.51192753045073 2042.72909741659\\
+3.54445567397044 2047.64772903239\\
+3.61041859717334 2099.52488616601\\
+3.67760910160103 2208.43127399448\\
+3.78074666359935 2473.1093385237\\
+3.99578030189527 3301.62563314843\\
+4.34147833005509 5071.60120540775\\
+4.67379510799246 7048.01743819923\\
+5.03154894503806 9377.3820259666\\
+5.46685729972018 12441.2039615825\\
+5.99484250318941 16457.0718512568\\
+6.69616005485322 22265.0014507829\\
+7.618717702323 30713.4581066284\\
+8.9114823228402 44170.9152284185\\
+11.2214776820798 73374.5774826492\\
+14.5265392594678 126635.690663572\\
+17.7930438991858 190223.182388737\\
+21.3958887134342 269366.133109876\\
+25.4921465445143 366909.882657025\\
+30.0939003444972 482207.544535895\\
+35.5263467657814 622260.611497104\\
+42.3278906557355 799714.9520363\\
+50.8987019351968 1023068.72555491\\
+61.771875973385 1303490.22893536\\
+77.070271142123 1691770.66186027\\
+99.7697764236321 2257343.01483652\\
+137.765076954906 3187239.62458475\\
+214.452607597167 5036612.44671011\\
+401.424249049933 9490602.24546946\\
+539.17746403875 12651473.7373079\\
+624.87880720069 14435350.6202691\\
+691.575882873852 15624511.793382\\
+751.408106111698 16469024.1340506\\
+801.500696156541 16970479.0410383\\
+847.08682665574 17241065.6409248\\
+895.26571259964 17325080.7200085\\
+937.501501514529 17231556.6563807\\
+981.729840618884 16980216.481294\\
+1000 16835542.9531396\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9616.30536630901\\
+0.305129701718287 9553.61614804599\\
+0.492824957004051 9440.72443151939\\
+0.674262224177834 9281.31242199873\\
+0.849041520408875 9081.21987542988\\
+1.02096066230605 8840.13233119358\\
+1.18324062745838 8572.60296231698\\
+1.34626057929891 8265.18023115092\\
+1.50375532129974 7931.83909976776\\
+1.6642601764859 7556.00425092927\\
+1.80824493487795 7188.48850006279\\
+1.96468664618044 6757.56562032369\\
+2.11507282486879 6313.50699538744\\
+2.25607406649686 5872.09732076338\\
+2.40647515001543 5376.76249674895\\
+2.54334576130465 4906.86728383334\\
+2.68800102153761 4395.00203504893\\
+2.84088369018331 3845.30558841865\\
+3.00246170908555 3271.6275712668\\
+3.23228397818138 2541.25956543248\\
+3.38477285594598 2205.7782053734\\
+3.44776405473446 2129.43146038067\\
+3.51192753045073 2100.00088426818\\
+3.54445567397044 2105.34968048973\\
+3.61041859717334 2159.3059416424\\
+3.67760910160103 2271.98833444575\\
+3.78074666359935 2545.47384791817\\
+3.99578030189527 3401.6970867092\\
+4.38168993151419 5470.54420387912\\
+4.71708469091702 7570.39095086177\\
+5.07815211232767 10046.7192417487\\
+5.51749237612913 13313.6600261871\\
+6.05036787939122 17614.8623284272\\
+6.75818116816111 23869.0318883036\\
+7.68928372075831 33011.8585218501\\
+8.99402217409205 47591.5172173485\\
+10.9153593533139 72916.399289886\\
+13.6186523675608 116032.299241809\\
+16.6810053720006 173797.02256021\\
+20.0586777950823 245773.832669635\\
+23.8989256623105 334913.012565763\\
+28.4743916646725 447511.32504806\\
+33.9258338274099 586581.178559106\\
+40.4209583979631 755108.82044864\\
+48.6056423214214 967978.971792891\\
+58.9889642550851 1235876.47758183\\
+72.9227205872831 1590240.73174308\\
+93.534315202924 2105294.59778844\\
+126.795284678643 2921739.2959332\\
+190.230118866895 4455084.74697181\\
+346.369417737173 8184472.95617498\\
+510.161531474983 11996913.3693287\\
+607.832312829724 14084945.8748948\\
+678.940681269611 15398578.1239475\\
+737.679760252773 16275878.728381\\
+786.857150693686 16821920.787489\\
+831.610415323096 17145516.2585754\\
+878.909065341996 17295142.1060897\\
+920.373199661823 17263355.276713\\
+963.79347996158 17076552.1376937\\
+1000 16813548.5026355\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9089.91643937663\\
+0.302329468440578 9030.80996121492\\
+0.488302208687788 8924.15920917054\\
+0.668074391569561 8773.62172547116\\
+0.841249704973612 8584.77138609287\\
+1.01159111222383 8357.38258642839\\
+1.1723818032866 8105.25161542217\\
+1.33390569003906 7815.78086269197\\
+1.48995507285285 7502.21696475731\\
+1.64898694447106 7149.06866074922\\
+1.7916503273639 6804.13147386828\\
+1.94665634334226 6400.16865066277\\
+2.09566239948044 5984.4187013624\\
+2.2353696459098 5571.63959567499\\
+2.38439047009372 5108.93406889774\\
+2.52000499376409 4670.3451585195\\
+2.66333272517498 4192.69177639033\\
+2.81481236050758 3679.20612605968\\
+2.97490754721444 3141.0055564579\\
+3.17322963473498 2524.02806489971\\
+3.35371015200293 2098.72562856084\\
+3.44776405473446 1976.68693832876\\
+3.51192753045073 1948.01890723058\\
+3.54445567397044 1952.28695331419\\
+3.61041859717334 2000.86068541888\\
+3.67760910160103 2103.68585185142\\
+3.78074666359935 2354.12844588217\\
+3.99578030189527 3137.98214568412\\
+4.34147833005509 4807.94966346847\\
+4.67379510799246 6664.8026531163\\
+5.03154894503806 8843.31942821773\\
+5.46685729972018 11694.4504680539\\
+5.99484250318941 15412.0862380969\\
+6.69616005485322 20764.150865797\\
+7.618717702323 28536.7001783792\\
+9.07732652521022 42726.5677468618\\
+12.534242654614 87350.9752956814\\
+15.9295021257212 145775.423012204\\
+19.1550055557353 211514.402241897\\
+22.6128006633728 289656.225265245\\
+26.6947849403432 388537.770845469\\
+31.5136348486648 510650.653622912\\
+37.2023668141307 658390.469134735\\
+43.9180089259609 834280.208838691\\
+52.3261423948667 1053799.55452012\\
+63.5042516859596 1342331.97849842\\
+79.2316862486626 1741568.971337\\
+102.567793074442 2322940.1137012\\
+141.62866162992 3278869.70744264\\
+220.466873523941 5180675.33057214\\
+412.682084570295 9762173.34899506\\
+549.211648388779 12886122.6352524\\
+636.507908129558 14680221.5624945\\
+704.446227729904 15853801.0822057\\
+758.367791499719 16581876.9424035\\
+808.924348680594 17060540.0114785\\
+854.932706626838 17303556.0161149\\
+895.26571259964 17359693.0237795\\
+937.501501514529 17265262.9781074\\
+981.729840618884 17012117.2495914\\
+1000 16866492.5655028\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10127.4530494838\\
+0.307955871291422 10061.1108517507\\
+0.497389595879007 9941.87149230215\\
+0.680507369673521 9773.42925227259\\
+0.856905505126835 9561.89468667701\\
+1.03041699495059 9306.86665067777\\
+1.19420002813353 9023.67495690238\\
+1.35872990190271 8698.0079536562\\
+1.51768339028341 8344.59022577263\\
+1.6642601764859 7985.36976879734\\
+1.80824493487795 7601.92397268438\\
+1.96468664618044 7151.78687194795\\
+2.11507282486879 6687.30923950626\\
+2.25607406649686 6224.96420912609\\
+2.40647515001543 5705.35999361273\\
+2.54334576130465 5211.66531081788\\
+2.68800102153761 4672.99734322088\\
+2.84088369018331 4093.48639353518\\
+3.00246170908555 3487.56850836915\\
+3.23228397818138 2714.74744388388\\
+3.38477285594598 2359.94551787143\\
+3.44776405473446 2279.75242696061\\
+3.51192753045073 2249.7772564625\\
+3.54445567397044 2256.30082039709\\
+3.61041859717334 2315.80563461023\\
+3.67760910160103 2438.49903118408\\
+3.78074666359935 2735.29550509159\\
+3.99578030189527 3664.97310611985\\
+4.38168993151419 5924.34180982284\\
+4.71708469091702 8238.64520695404\\
+5.12518692705333 11373.2347971191\\
+5.62017384808319 15588.8913390872\\
+6.22004882563472 21272.376883401\\
+7.01206358900718 29710.0945994102\\
+7.97814457207663 41380.9336120262\\
+9.24625711640575 58795.9417001127\\
+10.7159339982267 81494.7371235126\\
+12.534242654614 112569.528920683\\
+14.796880626864 154989.089507954\\
+17.7930438991858 216468.143686541\\
+21.5940615210357 301336.297150614\\
+26.2070669648386 411551.498910706\\
+31.5136348486648 544145.172965931\\
+37.8947091907467 707437.269775448\\
+45.9899209052244 916166.993819528\\
+56.3314267060136 1181562.08681371\\
+70.2824426430835 1535099.62354158\\
+90.9827289445557 2050975.46906165\\
+124.478714618791 2871353.1663282\\
+190.230118866895 4457287.40760145\\
+349.577557436328 8252578.9201529\\
+510.161531474983 11970496.1618318\\
+607.832312829724 14042946.7988158\\
+678.940681269611 15344596.8064548\\
+737.679760252773 16213031.3207659\\
+786.857150693686 16753354.1238221\\
+831.610415323096 17073695.54455\\
+878.909065341996 17222257.7491221\\
+920.373199661823 17191589.5419945\\
+963.79347996158 17007812.4083152\\
+1000 16748508.4090393\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9664.25611377571\\
+0.278255940220713 9624.5001012521\\
+0.466303492974273 9519.8086211776\\
+0.649849535446989 9365.2161495529\\
+0.825879938784427 9169.18548660517\\
+0.99310918137498 8939.99952577622\\
+1.1616226326085 8667.06721502215\\
+1.32166418394661 8369.21891733422\\
+1.47628147190939 8046.15360396229\\
+1.63385387780986 7681.76349920132\\
+1.7916503273639 7282.02246962511\\
+1.94665634334226 6856.3500542836\\
+2.09566239948044 6417.4890990263\\
+2.2353696459098 5980.9795395298\\
+2.38439047009372 5490.72796312028\\
+2.52000499376409 5025.09232930708\\
+2.66333272517498 4516.93417113319\\
+2.81481236050758 3969.42942520049\\
+2.97490754721444 3394.2269562969\\
+3.17322963473498 2733.29715068375\\
+3.35371015200293 2277.39376592539\\
+3.44776405473446 2147.35153555469\\
+3.51192753045073 2117.84947939511\\
+3.54445567397044 2123.33479077303\\
+3.61041859717334 2177.94453749296\\
+3.67760910160103 2291.81055295007\\
+3.78074666359935 2568.055006641\\
+3.99578030189527 3432.96444047333\\
+4.38168993151419 5524.24539907686\\
+4.71708469091702 7649.17310016676\\
+5.07815211232767 10158.0734792489\\
+5.51749237612913 13472.7704055305\\
+6.05036787939122 17844.4703747211\\
+6.75818116816111 24213.9348922117\\
+7.68928372075831 33542.9086391927\\
+8.99402217409205 48429.1923888516\\
+10.9153593533139 74224.7613414689\\
+13.4936714058831 115696.76887084\\
+16.527920614649 172958.392362975\\
+19.8745954958099 244143.460252512\\
+23.6796006783308 332229.888353995\\
+28.2130767593947 443502.087069427\\
+33.6144900010877 580999.620290266\\
+40.0500075787361 747727.012212884\\
+48.1595791019235 958451.027081522\\
+58.4476113163364 1223775.23240777\\
+72.2534949178722 1574845.83496721\\
+92.6759330114688 2085192.138436\\
+125.631660247412 2894193.95593702\\
+188.48434090338 4413446.20628746\\
+343.190719745904 8108108.77371613\\
+510.161531474983 11993628.3938104\\
+607.832312829724 14079699.4950545\\
+678.940681269611 15391820.9040616\\
+737.679760252773 16268001.8611531\\
+786.857150693686 16813320.4808687\\
+831.610415323096 17136503.2776277\\
+878.909065341996 17285992.5728057\\
+920.373199661823 17254344.8686993\\
+963.79347996158 17067921.477673\\
+1000 16805382.9075318\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10816.5361050653\\
+0.307955871291422 10747.2680786914\\
+0.497389595879007 10622.1507329674\\
+0.680507369673521 10445.3212958068\\
+0.856905505126835 10223.1541487272\\
+1.03041699495059 9955.15704241771\\
+1.19420002813353 9657.36038540692\\
+1.35872990190271 9314.61724476488\\
+1.51768339028341 8942.31013874022\\
+1.67967487209265 8521.68908115301\\
+1.82499324481615 8109.4862837836\\
+1.96468664618044 7682.77047191838\\
+2.11507282486879 7190.97027040975\\
+2.25607406649686 6700.63747276269\\
+2.40647515001543 6148.60358421719\\
+2.54334576130465 5623.10856705686\\
+2.68800102153761 5048.614884154\\
+2.84088369018331 4429.22324552787\\
+3.00246170908555 3780.13551868606\\
+3.26222200971167 2860.36554214466\\
+3.38477285594598 2569.80880517444\\
+3.44776405473446 2484.57359915027\\
+3.51192753045073 2454.06389803552\\
+3.54445567397044 2462.30009808066\\
+3.61041859717334 2529.61820702097\\
+3.67760910160103 2666.2643822159\\
+3.78074666359935 2995.46178838406\\
+3.99578030189527 4027.48423044804\\
+4.38168993151419 6555.48091940879\\
+4.71708469091702 9177.94379591135\\
+5.12518692705333 12785.4549219623\\
+5.62017384808319 17739.3249738578\\
+6.2776601058065 25307.5151287188\\
+7.14255928554313 37010.7011753745\\
+8.20188949920221 53899.6001881437\\
+9.24625711640575 72688.7136078146\\
+10.3279473191895 93396.184443753\\
+11.5361810173648 117022.831148434\\
+13.0051125217341 145845.480184399\\
+14.9339321612425 184097.746575109\\
+18.2920450484629 253694.125935171\\
+23.8989256623105 380048.444458441\\
+30.3726357970331 537041.143110896\\
+37.8947091907467 726435.34333413\\
+46.8458011587306 954510.878489478\\
+58.4476113163364 1249086.44737472\\
+74.2798248256493 1646236.74198232\\
+98.8541702191957 2252861.0000242\\
+141.62866162992 3291615.84661235\\
+233.006141069692 5479889.51909317\\
+424.255643071778 9987485.82398813\\
+549.211648388779 12788480.2800335\\
+630.666554056741 14430612.6309219\\
+697.981390783067 15582030.2268073\\
+751.408106111698 16305879.4108013\\
+801.500696156541 16794325.0223963\\
+847.08682665574 17058496.7811599\\
+895.26571259964 17142036.987261\\
+937.501501514529 17053298.6583127\\
+981.729840618884 16811438.9207803\\
+1000 16671755.003137\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9244.03242331393\\
+0.305129701718287 9183.08163944595\\
+0.492824957004051 9073.33899623913\\
+0.674262224177834 8918.4145030986\\
+0.849041520408875 8724.02301326402\\
+1.02096066230605 8489.90711671175\\
+1.18324062745838 8230.24740706309\\
+1.34626057929891 7932.04428472707\\
+1.50375532129974 7608.91744215361\\
+1.6642601764859 7244.87588193096\\
+1.80824493487795 6889.18208123234\\
+1.94665634334226 6522.0831165126\\
+2.09566239948044 6100.40833472281\\
+2.2353696459098 5681.48921277949\\
+2.38439047009372 5211.59461919026\\
+2.52000499376409 4765.891798723\\
+2.66333272517498 4280.1599269977\\
+2.81481236050758 3757.60841103687\\
+2.97490754721444 3209.49274925777\\
+3.17322963473498 2580.68077028206\\
+3.35371015200293 2147.10771279316\\
+3.44776405473446 2022.89758425736\\
+3.51192753045073 1993.99642074199\\
+3.54445567397044 1998.58884119917\\
+3.61041859717334 2048.78249354456\\
+3.67760910160103 2154.57565056268\\
+3.78074666359935 2411.95254823397\\
+3.99578030189527 3217.52540531128\\
+4.34147833005509 4935.95059887529\\
+4.67379510799246 6850.29687718053\\
+5.03154894503806 9100.46470201066\\
+5.46685729972018 12050.6328808115\\
+5.99484250318941 15902.7283386548\\
+6.63470812109235 20944.2023389533\\
+7.47952251562183 28216.8729937055\\
+8.74866812047991 40545.0326349513\\
+11.2214776820798 70102.1210779736\\
+14.9339321612425 128728.21390961\\
+18.2920450484629 193987.838961329\\
+21.9959306803007 275488.365902382\\
+25.9665597293487 370189.894771988\\
+30.6539529505653 487816.027916435\\
+36.1874981241128 630801.797504587\\
+42.7199396630679 801627.199250957\\
+50.8987019351968 1015323.70655197\\
+61.771875973385 1296573.40979043\\
+76.3629826128224 1668052.72137695\\
+97.9469667069541 2207557.42336306\\
+132.777082935543 3062598.5985854\\
+201.04964162605 4713315.40371207\\
+369.46012051993 8738634.4001183\\
+524.468874949512 12337359.5578904\\
+619.144175597785 14341050.187681\\
+685.229159528407 15543509.1541341\\
+744.512291079514 16410244.8666811\\
+794.145171902934 16937894.2382231\\
+839.312949816637 17237319.9913847\\
+887.04968896544 17355056.7801001\\
+928.89787201645 17291822.6903254\\
+972.720319245054 17070868.3542584\\
+1000 16862067.8104336\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10858.3482129049\\
+0.310808217386906 10787.0841232564\\
+0.501996513311008 10659.2503382883\\
+0.686810358899531 10478.6126108244\\
+0.864842327573173 10251.6652403649\\
+1.03996091395412 9977.90105413914\\
+1.20526093687084 9673.69416721942\\
+1.37131471775395 9323.57242790127\\
+1.53174046370208 8943.25316603242\\
+1.67967487209265 8556.28962677602\\
+1.82499324481615 8142.77531494013\\
+1.96468664618044 7714.67141092645\\
+2.11507282486879 7221.23165955727\\
+2.25607406649686 6729.22035558609\\
+2.40647515001543 6175.24253776883\\
+2.54334576130465 5647.84204023614\\
+2.68800102153761 5071.20217419389\\
+2.84088369018331 4449.42162761367\\
+3.00246170908555 3797.74779557574\\
+3.26222200971167 2874.19750062743\\
+3.38477285594598 2582.47007379818\\
+3.44776405473446 2496.93647662925\\
+3.51192753045073 2466.40084455337\\
+3.54445567397044 2474.74388322792\\
+3.61041859717334 2542.54153576065\\
+3.67760910160103 2680.03984076676\\
+3.78074666359935 3011.21365513992\\
+3.99578030189527 4049.48911714268\\
+4.38168993151419 6594.01876179449\\
+4.71708469091702 9235.67710286973\\
+5.12518692705333 12873.1216771753\\
+5.62017384808319 17874.8082522277\\
+6.2776601058065 25530.5313262878\\
+7.14255928554313 37399.0295421677\\
+8.20188949920221 54568.7642659802\\
+9.24625711640575 73683.2217425638\\
+10.3279473191895 94706.3069899699\\
+11.4303112911448 116496.332059652\\
+12.7675070431927 142886.147314272\\
+14.6610868404699 180397.510191324\\
+17.7930438991858 244740.685205291\\
+23.4622884814226 371288.142096047\\
+30.0939003444972 531396.514945717\\
+37.5469422407334 718694.810533593\\
+46.4158883361278 944482.914103612\\
+57.9112264764176 1236297.47156853\\
+73.5981447526577 1629861.25681102\\
+97.9469667069541 2231070.4411958\\
+139.041083409007 3229422.48132891\\
+226.649807927369 5328353.49596673\\
+416.504424854519 9806750.71618978\\
+544.17142868659 12678304.5191413\\
+630.666554056741 14427351.6248775\\
+697.981390783067 15578003.483941\\
+751.408106111698 16301332.8455093\\
+801.500696156541 16789424.1757932\\
+847.08682665574 17053422.6290014\\
+895.26571259964 17136952.4874823\\
+937.501501514529 17048347.5561419\\
+981.729840618884 16806749.9963399\\
+1000 16667203.8531997\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10986.0369744309\\
+0.305129701718287 10912.5227411636\\
+0.497389595879007 10781.6864270068\\
+0.680507369673521 10601.4861378165\\
+0.856905505126835 10376.1210691559\\
+1.03041699495059 10104.7127696818\\
+1.19420002813353 9803.30997416083\\
+1.35872990190271 9456.48345503692\\
+1.51768339028341 9079.73811083332\\
+1.67967487209265 8654.05014933627\\
+1.82499324481615 8236.80135895836\\
+1.96468664618044 7804.76183778187\\
+2.11507282486879 7306.68597204428\\
+2.25607406649686 6809.93596866193\\
+2.40647515001543 6250.47482753775\\
+2.54334576130465 5717.70147088712\\
+2.68800102153761 5135.01039083687\\
+2.84088369018331 4506.49327920869\\
+3.00246170908555 3847.52478002563\\
+3.26222200971167 2913.3078358104\\
+3.38477285594598 2618.27828221585\\
+3.44776405473446 2531.90489741474\\
+3.51192753045073 2501.30014352669\\
+3.54445567397044 2509.94758620266\\
+3.61041859717334 2579.10648086896\\
+3.67760910160103 2719.02081018881\\
+3.78074666359935 3055.79622120783\\
+3.99578030189527 4111.79557857924\\
+4.38168993151419 6703.21900852344\\
+4.71708469091702 9399.37265784757\\
+5.12518692705333 13121.8759756588\\
+5.62017384808319 18259.5803158499\\
+6.2776601058065 26164.5867339475\\
+7.14255928554313 38504.1774935999\\
+8.20188949920221 56471.6400751844\\
+9.24625711640575 76497.1712187732\\
+10.2331657833025 96441.8448619095\\
+11.3254131515281 118647.078205063\\
+12.534242654614 142864.169615841\\
+14.2611370719413 177071.180782486\\
+17.1488196987054 235518.504628327\\
+23.2469705998565 369837.623087091\\
+30.3726357970331 541253.176246487\\
+38.24569722467 738905.825242307\\
+47.7176094893875 979688.530936649\\
+60.0867589171969 1292877.40593956\\
+77.070271142123 1717518.31391577\\
+103.517795563018 2368252.18446884\\
+151.070330448666 3519742.03313841\\
+257.87628875938 6071025.95528571\\
+448.385594802119 10538904.5043862\\
+564.614141930367 13105547.6062487\\
+642.403365939419 14635315.5381859\\
+704.446227729904 15665070.5666\\
+758.367791499719 16369142.3532334\\
+808.924348680594 16831953.9944558\\
+854.932706626838 17067860.8167401\\
+903.557834613894 17118350.305852\\
+946.184819472201 16999930.8079931\\
+990.822809900381 16728285.4389342\\
+1000 16655669.8376547\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9311.61344384893\\
+0.302329468440578 9249.43631286965\\
+0.488302208687788 9139.26661428575\\
+0.668074391569561 8985.19770663834\\
+0.841249704973612 8792.65062038883\\
+1.01159111222383 8561.14867311336\\
+1.1723818032866 8304.57201790881\\
+1.33390569003906 8009.98966466273\\
+1.48995507285285 7690.79915813944\\
+1.64898694447106 7331.1539743968\\
+1.7916503273639 6979.68203969534\\
+1.94665634334226 6567.81057968825\\
+2.09566239948044 6143.6208519034\\
+2.2353696459098 5722.15291223532\\
+2.38439047009372 5249.335300729\\
+2.52000499376409 4800.79486283748\\
+2.66333272517498 4311.89686511498\\
+2.81481236050758 3785.85305390354\\
+2.97490754721444 3233.98003039489\\
+3.17322963473498 2600.7502111508\\
+3.35371015200293 2164.10644196932\\
+3.44776405473446 2039.06516898515\\
+3.51192753045073 2010.03696615554\\
+3.54445567397044 2014.71961560553\\
+3.61041859717334 2065.43010305465\\
+3.67760910160103 2172.20387636725\\
+3.78074666359935 2431.89713534403\\
+3.99578030189527 3244.72903977263\\
+4.34147833005509 4979.19543125759\\
+4.67379510799246 6912.35894462029\\
+5.03154894503806 9185.81773154383\\
+5.46685729972018 12168.17237888\\
+5.99484250318941 16064.4687715031\\
+6.63470812109235 21166.0411696023\\
+7.47952251562183 28526.258367814\\
+8.74866812047991 40994.6638544781\\
+11.1184960481927 69418.4662029402\\
+14.796880626864 127290.079838544\\
+18.1241754737424 191674.469739746\\
+21.7940698430296 272116.267171922\\
+25.7282596744793 365655.04641194\\
+30.3726357970331 481932.672586341\\
+35.8553985745982 623395.483126995\\
+42.3278906557355 792522.270676419\\
+50.4315948717136 1004211.34363091\\
+61.204983724767 1282923.927811\\
+75.6621850048106 1651121.32988812\\
+97.0480887738031 2185872.73639236\\
+131.558562404571 3033302.13313415\\
+199.204570845387 4669058.03080654\\
+366.069514759691 8657442.6453166\\
+524.468874949512 12335217.5545372\\
+619.144175597785 14337742.7059558\\
+685.229159528407 15539358.8992455\\
+744.512291079514 16405426.9463977\\
+794.145171902934 16932657.4305157\\
+839.312949816637 17231858.8758781\\
+887.04968896544 17349545.8574116\\
+928.89787201645 17286426.3317381\\
+972.720319245054 17065731.3568658\\
+1000 16857150.2370287\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9305.03978070816\\
+0.305129701718287 9243.87224957238\\
+0.492824957004051 9133.73442563412\\
+0.674262224177834 8978.24122399941\\
+0.849041520408875 8783.11803129175\\
+1.02096066230605 8548.0937902465\\
+1.18324062745838 8287.39143056721\\
+1.34626057929891 7987.9443923579\\
+1.50375532129974 7663.41242266282\\
+1.6642601764859 7297.71489284178\\
+1.80824493487795 6940.32672595621\\
+1.96468664618044 6521.55469283052\\
+2.11507282486879 6090.33519122445\\
+2.25607406649686 5662.01392989878\\
+2.40647515001543 5181.76008036236\\
+2.54334576130465 4726.56164381246\\
+2.68800102153761 4231.14287363437\\
+2.84088369018331 3699.61689517262\\
+3.00246170908555 3145.45187459399\\
+3.23228397818138 2440.61556780662\\
+3.38477285594598 2116.80199664688\\
+3.44776405473446 2042.86724445668\\
+3.51192753045073 2013.94940631445\\
+3.54445567397044 2018.72659686705\\
+3.61041859717334 2069.71946852746\\
+3.67760910160103 2176.91519054292\\
+3.78074666359935 2437.5285011194\\
+3.99578030189527 3253.3021180847\\
+4.34147833005509 4995.25827632467\\
+4.67379510799246 6939.00424583452\\
+5.03154894503806 9228.08708042901\\
+5.46685729972018 12236.2791320254\\
+5.99484250318941 16175.3801196603\\
+6.69616005485322 21866.6142096809\\
+7.618717702323 30139.2049059383\\
+8.99402217409205 44226.2205224735\\
+11.4303112911448 74902.3340573893\\
+14.796880626864 129293.106402514\\
+18.1241754737424 194247.234837168\\
+21.7940698430296 275074.700619645\\
+25.7282596744793 368817.402632104\\
+30.3726357970331 485158.127435633\\
+35.8553985745982 626557.670223397\\
+42.7199396630679 805771.116453458\\
+50.8987019351968 1019107.57685395\\
+61.771875973385 1299899.12313235\\
+76.3629826128224 1670856.91884723\\
+97.9469667069541 2209770.13586357\\
+134.006889636395 3094082.3493448\\
+204.791209666509 4803868.72223544\\
+379.821530619074 8982298.45383311\\
+529.326605836057 12439579.1855894\\
+619.144175597785 14331957.2614343\\
+685.229159528407 15532049.6701916\\
+744.512291079514 16396907.2295247\\
+794.145171902934 16923373.7841515\\
+839.312949816637 17222160.1936089\\
+887.04968896544 17339743.5959907\\
+928.89787201645 17276816.9467845\\
+972.720319245054 17056574.4572028\\
+1000 16848379.4867877\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10311.163376668\\
+0.325471160553185 10216.487996523\\
+0.516074871038591 10087.3720175537\\
+0.699592016543537 9910.33027754767\\
+0.872852662384837 9694.94745101379\\
+1.03996091395412 9442.82521952757\\
+1.20526093687084 9150.73307764496\\
+1.37131471775395 8814.8518065346\\
+1.53174046370208 8450.33802570879\\
+1.67967487209265 8079.81160650145\\
+1.82499324481615 7684.26258837957\\
+1.96468664618044 7275.2021118826\\
+2.11507282486879 6804.28650323768\\
+2.25607406649686 6335.36252079114\\
+2.40647515001543 5808.1509176538\\
+2.54334576130465 5307.0100135359\\
+2.68800102153761 4759.96702824678\\
+2.84088369018331 4171.1482454209\\
+3.00246170908555 3555.1705930318\\
+3.23228397818138 2769.1086103288\\
+3.38477285594598 2408.29175135343\\
+3.44776405473446 2326.91052837103\\
+3.51192753045073 2296.78428656426\\
+3.54445567397044 2303.68722123375\\
+3.61041859717334 2364.95749953469\\
+3.67760910160103 2490.82253274364\\
+3.78074666359935 2794.9963819159\\
+3.99578030189527 3747.95033449483\\
+4.38168993151419 6068.0447472809\\
+4.71708469091702 8451.34793069686\\
+5.12518692705333 11690.5592251674\\
+5.62017384808319 16066.8169596875\\
+6.22004882563472 22000.4588464827\\
+7.01206358900718 30868.510830835\\
+7.97814457207663 43206.9249856643\\
+9.16140245713852 60336.0995145906\\
+10.5201521761616 82176.0670500975\\
+12.0804213467733 109361.752972962\\
+14.1302599059953 147717.760266929\\
+16.835508029612 202287.755277698\\
+20.4319732019527 280817.739700249\\
+25.0264009641792 388636.738463793\\
+30.3726357970331 520734.606327621\\
+36.8609536217216 685759.826406069\\
+44.7353305449847 888165.76174951\\
+54.7947233690029 1146007.80235432\\
+68.3651600451024 1489884.306859\\
+88.5007491447344 1991924.1904169\\
+121.082975023204 2790319.04835674\\
+183.342548256229 4292574.77857721\\
+333.828586473176 7877832.71632978\\
+500.840798984821 11754580.7524671\\
+596.727119597332 13809222.1674346\\
+672.709913571234 15225081.4752673\\
+730.909932860292 16106754.3239442\\
+786.857150693686 16733744.8786134\\
+831.610415323096 17053171.8433303\\
+878.909065341996 17201441.2741084\\
+920.373199661823 17171097.5491037\\
+963.79347996158 16988185.5994862\\
+1000 16729936.454596\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9957.37917778582\\
+0.194217468148902 10021.3516600313\\
+0.350384224529068 9984.06653072399\\
+0.530548052536957 9868.2616840374\\
+0.706071771413778 9701.94281007528\\
+0.880937190447399 9487.37223114705\\
+1.04959323055823 9235.24403026236\\
+1.21642429385737 8942.76141699392\\
+1.38401609657313 8606.29420047907\\
+1.54592773641948 8241.15139367657\\
+1.69523234155412 7870.07743562931\\
+1.84189668079971 7474.10017554916\\
+1.98288394912707 7064.81056283921\\
+2.13466303332425 6593.95664351869\\
+2.27697025538168 6125.51350890259\\
+2.42876438246045 5599.4706981439\\
+2.56690271549195 5100.25152282603\\
+2.71289780037246 4556.58761254494\\
+2.86719649749377 3973.7656761431\\
+3.0302710828664 3368.94210500721\\
+3.41612326858553 2301.78041180373\\
+3.4796979038877 2245.70214975254\\
+3.51192753045073 2237.55925714344\\
+3.54445567397044 2243.99044025143\\
+3.61041859717334 2303.04995246835\\
+3.67760910160103 2424.93508647994\\
+3.78074666359935 2719.84585305468\\
+3.99578030189527 3643.5813836227\\
+4.38168993151419 5887.56872022651\\
+4.71708469091702 8184.59341807439\\
+5.12518692705333 11293.3172395715\\
+5.62017384808319 15469.8844508676\\
+6.22004882563472 21093.5878914179\\
+7.01206358900718 29430.6251390608\\
+7.97814457207663 40948.6281576722\\
+9.24625711640575 58134.6837414331\\
+10.8151870255229 82178.5924536439\\
+12.650337203959 113477.071926232\\
+15.0722530931076 159048.832157163\\
+18.1241754737424 222146.778226531\\
+21.9959306803007 309232.033506235\\
+26.6947849403432 422159.024821119\\
+32.1001089554318 557754.5724819\\
+38.5999361767977 724441.831730773\\
+46.8458011587306 937198.69285213\\
+57.3797641421414 1207445.47368451\\
+71.5904108596489 1567265.63741821\\
+92.6759330114688 2092259.90899001\\
+126.795284678643 2927295.78100067\\
+193.770333747799 4542085.7840018\\
+359.381366380463 8484855.85494613\\
+514.88674501375 12077662.702895\\
+607.832312829724 14045933.0841668\\
+678.940681269611 15348423.5631026\\
+737.679760252773 16217478.7698409\\
+786.857150693686 16758201.028757\\
+831.610415323096 17078768.7966697\\
+878.909065341996 17227403.4574977\\
+920.373199661823 17196654.900924\\
+963.79347996158 17012663.5779699\\
+1000 16753098.4750923\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9752.18440979432\\
+0.283434330615131 9686.16736406714\\
+0.457784053837662 9568.14639642583\\
+0.632121847581245 9400.60291024164\\
+0.803350197712474 9191.47506282349\\
+0.97496491834841 8940.00255475104\\
+1.14039960197003 8659.20951427133\\
+1.29751716865759 8358.27194511376\\
+1.46273335620113 8006.21613780079\\
+1.6188596901782 7640.33654965894\\
+1.77520801171764 7242.07975910292\\
+1.92879150802078 6820.49679069854\\
+2.07643010725577 6387.78169121515\\
+2.21485523372636 5958.78964128524\\
+2.36250846547795 5478.16481686454\\
+2.49687842888433 5022.42878357954\\
+2.63889081445751 4525.434639058\\
+2.78898029238044 3989.59890558518\\
+2.94760625512486 3424.56226142511\\
+3.14410830314726 2766.26901734035\\
+3.35371015200293 2228.31884109343\\
+3.44776405473446 2099.79756401226\\
+3.51192753045073 2070.07669082512\\
+3.54445567397044 2074.99165871657\\
+3.61041859717334 2127.42176321815\\
+3.67760910160103 2237.63170739075\\
+3.78074666359935 2505.57493176573\\
+3.99578030189527 3344.36578828103\\
+4.34147833005509 5135.90839438911\\
+4.67379510799246 7135.66870881863\\
+5.03154894503806 9491.46685827157\\
+5.46685729972018 12588.0347561632\\
+5.99484250318941 16642.7205571525\\
+6.63470812109235 21963.2813138433\\
+7.47952251562183 29650.5295280026\\
+8.66837993001977 41784.1563638463\\
+10.7159339982267 66616.5159177579\\
+14.000583824681 117181.974463543\\
+17.3076553419573 179563.828641753\\
+20.8122156998634 254885.355835027\\
+24.7967289250216 348300.229233336\\
+29.2729483504282 459332.651548109\\
+34.5571993676214 594832.036601419\\
+41.1731993116168 767151.034759628\\
+49.0558370636506 972787.164538106\\
+59.5353313081437 1243853.19166811\\
+73.5981447526577 1602193.55613166\\
+94.400647894176 2122738.178141\\
+127.969686821594 2947527.20363833\\
+191.992066559329 4496171.7566119\\
+349.577557436328 8263243.13960532\\
+514.88674501375 12112606.4076732\\
+607.832312829724 14100288.3164304\\
+678.940681269611 15418412.2401068\\
+737.679760252773 16299047.3760968\\
+786.857150693686 16847249.6989823\\
+831.610415323096 17172084.0166271\\
+878.909065341996 17322131.2212079\\
+920.373199661823 17289945.8765034\\
+963.79347996158 17102030.5101774\\
+1000 16837658.5408236\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10853.2541123669\\
+0.25142033481428 10863.2879234464\\
+0.43314832233764 10771.5034419918\\
+0.614877765381002 10617.2656065008\\
+0.795977700231498 10407.6108601752\\
+0.97496491834841 10146.8133394088\\
+1.14039960197003 9858.84793343838\\
+1.30953502048267 9518.18124114173\\
+1.47628147190939 9136.8906256713\\
+1.63385387780986 8735.52372200865\\
+1.7916503273639 8294.14026498891\\
+1.94665634334226 7822.8546320855\\
+2.09566239948044 7335.55587583128\\
+2.2353696459098 6849.40198865474\\
+2.38439047009372 6301.59500155447\\
+2.52000499376409 5779.47826907935\\
+2.66333272517498 5207.60722141444\\
+2.81481236050758 4588.98568692311\\
+2.97490754721444 3936.3088752326\\
+3.17322963473498 3183.19541551325\\
+3.35371015200293 2663.3061393209\\
+3.44776405473446 2516.9977180315\\
+3.51192753045073 2486.43319133575\\
+3.54445567397044 2494.95645787217\\
+3.61041859717334 2563.54725490244\\
+3.67760910160103 2702.44606377045\\
+3.78074666359935 3036.86167205458\\
+3.99578030189527 4085.39738153455\\
+4.38168993151419 6657.15044169459\\
+4.71708469091702 9330.56348481239\\
+5.12518692705333 13017.7495528785\\
+5.62017384808319 18099.2631633832\\
+6.2776601058065 25901.7793652289\\
+7.14255928554313 38048.4540074493\\
+8.20188949920221 55690.2831480718\\
+9.24625711640575 75345.6158883961\\
+10.2331657833025 94973.1382936326\\
+11.3254131515281 116931.810326604\\
+12.650337203959 143315.973594327\\
+14.3932264471941 177831.503491659\\
+17.3076553419573 237104.099743949\\
+23.2469705998565 368421.626338061\\
+30.0939003444972 533187.331447547\\
+37.5469422407334 720206.905132754\\
+46.4158883361278 945750.86291386\\
+57.9112264764176 1237333.6792469\\
+74.2798248256493 1647642.43235084\\
+98.8541702191957 2253860.39966941\\
+141.62866162992 3292147.17802123\\
+233.006141069692 5479628.90054954\\
+424.255643071778 9984596.23470881\\
+549.211648388779 12782630.3707282\\
+630.666554056741 14422422.3853274\\
+697.981390783067 15571925.0857066\\
+751.408106111698 16294475.0195006\\
+801.500696156541 16782035.942852\\
+847.08682665574 17045775.9812441\\
+895.26571259964 17129292.5214509\\
+937.501501514529 17040890.0017385\\
+981.729840618884 16799688.3955073\\
+1000 16660350.0726937\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10345.083903544\\
+0.307955871291422 10277.6756526224\\
+0.497389595879007 10156.5184975607\\
+0.680507369673521 9985.36051653099\\
+0.856905505126835 9770.3992969205\\
+1.03041699495059 9511.20847646248\\
+1.19420002813353 9223.34497134186\\
+1.35872990190271 8892.23118113776\\
+1.51768339028341 8532.80217013502\\
+1.67967487209265 8127.04768472289\\
+1.82499324481615 7729.75079120276\\
+1.96468664618044 7318.82787261432\\
+2.11507282486879 6845.70036634261\\
+2.25607406649686 6374.50170250204\\
+2.40647515001543 5844.64584590671\\
+2.54334576130465 5340.90504922571\\
+2.68800102153761 4790.9265794785\\
+2.84088369018331 4198.83367149522\\
+3.00246170908555 3579.3059581499\\
+3.23228397818138 2788.55814195989\\
+3.38477285594598 2425.61385592052\\
+3.44776405473446 2343.81689692993\\
+3.51192753045073 2313.64663982645\\
+3.54445567397044 2320.6908579023\\
+3.61041859717334 2382.60559004329\\
+3.67760910160103 2509.62132044874\\
+3.78074666359935 2816.46666128389\\
+3.99578030189527 3777.85264441992\\
+4.38168993151419 6120.02284343603\\
+4.71708469091702 8528.53306444575\\
+5.12518692705333 11806.1622867958\\
+5.62017384808319 16241.742420452\\
+6.22004882563472 22268.3687059092\\
+7.01206358900718 31297.3292494519\\
+7.97814457207663 43885.944994144\\
+9.16140245713852 61367.0725416376\\
+10.5201521761616 83591.8707937305\\
+12.0804213467733 111107.158744708\\
+14.000583824681 147179.519630399\\
+16.6810053720006 201119.064448212\\
+20.4319732019527 282826.715079393\\
+25.0264009641792 390506.257622276\\
+30.6539529505653 529500.243674934\\
+37.2023668141307 696010.514781963\\
+45.149677720361 900122.211238276\\
+55.302242561929 1160058.75040428\\
+68.9983712143002 1506709.46494342\\
+89.3204599858098 2012872.14680976\\
+122.204468663149 2818035.4016418\\
+185.04070195423 4333440.06831012\\
+340.041193270371 8024039.43210632\\
+505.479682119125 11855918.8180592\\
+602.254120146193 13916151.772918\\
+672.709913571234 15220059.0824896\\
+730.909932860292 16100900.950042\\
+786.857150693686 16727277.3367886\\
+831.610415323096 17046405.9738046\\
+878.909065341996 17194581.4468572\\
+920.373199661823 17164346.1811789\\
+963.79347996158 16981720.2699338\\
+1000 16723819.0608674\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9418.20856759361\\
+0.182079168009946 9555.13101665098\\
+0.457784053837662 9793.28913219154\\
+0.609234915240071 9755.0414638178\\
+0.76715811767793 9636.63298376623\\
+0.931041348706908 9450.6341447412\\
+1.0991097009295 9204.34164459723\\
+1.26212131452255 8917.21946486895\\
+1.42283045721435 8590.57735305659\\
+1.57469771464309 8243.81561866218\\
+1.72678090388436 7860.69778048004\\
+1.87617469143912 7450.49888375898\\
+2.01978575681988 7025.63194187979\\
+2.17438947560008 6536.24902397042\\
+2.31934505927443 6049.12197602643\\
+2.45126006203334 5584.17810580832\\
+2.59067785868801 5073.5826492081\\
+2.73802517792786 4518.1178868221\\
+2.89375301905095 3924.41230294652\\
+3.05833803237843 3313.02478786063\\
+3.38477285594598 2381.93990742667\\
+3.44776405473446 2301.41165033082\\
+3.51192753045073 2271.57392839957\\
+3.54445567397044 2278.3785087865\\
+3.61041859717334 2338.92577595265\\
+3.67760910160103 2463.34792363701\\
+3.78074666359935 2764.05964958597\\
+3.99578030189527 3706.12986442406\\
+4.38168993151419 5999.20424239244\\
+4.71708469091702 8353.95162341648\\
+5.12518692705333 11553.1750969454\\
+5.62017384808319 15873.6935962713\\
+6.22004882563472 21729.8979741589\\
+7.01206358900718 30482.2333825994\\
+8.05203967082547 43666.4196779607\\
+9.24625711640575 60917.0577277734\\
+10.61759183483 82949.4622779869\\
+12.1923125164911 110437.047196342\\
+14.2611370719413 149301.056096185\\
+16.9914417203463 204654.817551538\\
+20.6212180399914 284296.355866657\\
+25.2582002696278 393527.15545301\\
+30.6539529505653 527186.345934579\\
+37.2023668141307 693973.767062988\\
+45.149677720361 898362.261871174\\
+55.302242561929 1158578.5525811\\
+68.9983712143002 1505514.81078127\\
+89.3204599858098 2011981.56108775\\
+122.204468663149 2817483.68305939\\
+185.04070195423 4333365.24333213\\
+340.041193270371 8025418.30484949\\
+505.479682119125 11860230.893485\\
+602.254120146193 13922897.5064833\\
+672.709913571234 15228690.517806\\
+730.909932860292 16110945.5576458\\
+786.857150693686 16738364.3950376\\
+831.610415323096 17057996.993807\\
+878.909065341996 17206326.931926\\
+920.373199661823 17175901.2665082\\
+963.79347996158 16992781.7520079\\
+1000 16734282.4615596\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 10950.5826632344\\
+0.29680586086656 10877.1593394172\\
+0.483820966492596 10745.7837135483\\
+0.668074391569561 10561.5422301502\\
+0.849041520408875 10328.5387953539\\
+1.02096066230605 10059.2326594521\\
+1.19420002813353 9740.32347785465\\
+1.35872990190271 9393.16478661927\\
+1.51768339028341 9016.8793803456\\
+1.67967487209265 8592.32636016772\\
+1.82499324481615 8176.5997123138\\
+1.96468664618044 7746.43429889022\\
+2.11507282486879 7250.79953973581\\
+2.25607406649686 6756.72045099439\\
+2.40647515001543 6200.50131737838\\
+2.54334576130465 5671.01596349781\\
+2.68800102153761 5092.12311622101\\
+2.84088369018331 4467.92171959746\\
+3.00246170908555 3813.70298449059\\
+3.26222200971167 2886.52480932239\\
+3.38477285594598 2593.67181736757\\
+3.44776405473446 2507.83399674314\\
+3.51192753045073 2477.23523870978\\
+3.54445567397044 2485.6517329711\\
+3.61041859717334 2553.82726640236\\
+3.67760910160103 2692.02417612041\\
+3.78074666359935 3024.83858312864\\
+3.99578030189527 4068.29787257498\\
+4.38168993151419 6626.2708269701\\
+4.71708469091702 9283.11424966445\\
+5.12518692705333 12943.5494081009\\
+5.62017384808319 17980.6896731206\\
+6.2776601058065 25698.5365855818\\
+7.14255928554313 37677.9873022362\\
+8.20188949920221 55023.3796682624\\
+9.24625711640575 74324.6970934737\\
+10.3279473191895 95509.7278279922\\
+11.4303112911448 117401.825253806\\
+12.7675070431927 143834.17816386\\
+14.6610868404699 181316.575049128\\
+17.7930438991858 245549.608141168\\
+23.6796006783308 377003.851483432\\
+30.3726357970331 538818.164852514\\
+37.8947091907467 727944.202605264\\
+46.8458011587306 955780.635279762\\
+58.4476113163364 1250126.3621426\\
+74.9678187496688 1664174.63522305\\
+99.7697764236321 2275852.52983899\\
+142.940453343176 3323546.127117\\
+237.342425002387 5582968.41998283\\
+428.185179865242 10076540.1746406\\
+549.211648388779 12784844.6300617\\
+630.666554056741 14425527.8901932\\
+697.981390783067 15575759.8401274\\
+751.408106111698 16298804.7610341\\
+801.500696156541 16786703.0526397\\
+847.08682665574 17050608.1935625\\
+895.26571259964 17134134.7628372\\
+937.501501514529 17045605.4448373\\
+981.729840618884 16804154.4623664\\
+1000 16664685.0624832\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9992.24653910644\\
+0.307955871291422 9926.48524081145\\
+0.497389595879007 9808.30433354459\\
+0.680507369673521 9641.38653932583\\
+0.856905505126835 9431.81079786886\\
+1.03041699495059 9179.20439454618\\
+1.19420002813353 8898.77280614928\\
+1.35872990190271 8576.36654052764\\
+1.51768339028341 8226.5874827484\\
+1.6642601764859 7871.16901752487\\
+1.80824493487795 7491.8949938182\\
+1.96468664618044 7046.8038201067\\
+2.11507282486879 6587.70154517666\\
+2.25607406649686 6130.87882673679\\
+2.40647515001543 5617.68775215232\\
+2.54334576130465 5130.2920358953\\
+2.68800102153761 4598.72814949946\\
+2.84088369018331 4027.13080007\\
+3.00246170908555 3429.78191990981\\
+3.23228397818138 2668.25761185212\\
+3.38477285594598 2318.59171160156\\
+3.44776405473446 2239.4128001309\\
+3.51192753045073 2209.56537708375\\
+3.54445567397044 2215.76391211362\\
+3.61041859717334 2273.75795943362\\
+3.67760910160103 2393.73841790259\\
+3.78074666359935 2684.22619479646\\
+3.99578030189527 3594.00965625692\\
+4.38168993151419 5801.55772188095\\
+4.71708469091702 8057.14498557871\\
+5.12518692705333 11103.0666000025\\
+5.62017384808319 15183.4430626466\\
+6.22004882563472 20658.0016875115\\
+7.01206358900718 28740.272381117\\
+7.97814457207663 39865.711132381\\
+9.24625711640575 56452.4764548114\\
+10.8151870255229 79763.3152637999\\
+12.7675070431927 112445.830203452\\
+15.211855179861 158138.324292126\\
+18.2920450484629 221818.736702252\\
+22.1996611911996 309980.158170707\\
+26.6947849403432 418277.15747409\\
+32.1001089554318 554117.095853266\\
+38.5999361767977 721126.218914411\\
+46.4158883361278 923166.487107398\\
+56.8531791387375 1191470.77578102\\
+70.93341204988 1548660.50642848\\
+91.8254283565628 2069642.41139594\\
+125.631660247412 2897939.75422037\\
+190.230118866895 4456800.63320218\\
+349.577557436328 8254711.27473225\\
+510.161531474983 11977366.6436388\\
+607.832312829724 14053826.6682274\\
+678.940681269611 15358555.4093068\\
+737.679760252773 16229264.958533\\
+786.857150693686 16771053.2055351\\
+831.610415323096 17092226.4937935\\
+878.909065341996 17241057.5904073\\
+920.373199661823 17210098.4421603\\
+963.79347996158 17025540.4568314\\
+1000 16765283.2050726\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9992.30205143302\\
+0.307955871291423 9927.00822496829\\
+0.497389595879006 9809.65231829421\\
+0.680507369673522 9643.86668277165\\
+0.856905505126836 9435.65760033355\\
+1.03041699495059 9184.61730110639\\
+1.19420002813353 8905.82038311717\\
+1.35872990190271 8585.15827477217\\
+1.5176833902834 8237.10787596012\\
+1.6642601764859 7883.27152678577\\
+1.80824493487796 7505.49188974699\\
+1.96468664618045 7061.89910626648\\
+2.11507282486879 6604.05363969673\\
+2.25607406649686 6148.1907055744\\
+2.40647515001542 5635.7325037445\\
+2.54334576130465 5148.69560822575\\
+2.68800102153761 4617.15092485983\\
+2.84088369018331 4045.14685830374\\
+3.00246170908556 3446.91618572105\\
+3.23228397818138 2683.70017352493\\
+3.38477285594598 2333.30247734948\\
+3.44776405473447 2254.15321651854\\
+3.51192753045073 2224.65384464753\\
+3.54445567397044 2231.17532175285\\
+3.61041859717334 2290.16471819415\\
+3.67760910160103 2411.657379447\\
+3.78074666359936 2705.45803050689\\
+3.99578030189527 3625.74889449764\\
+4.38168993151419 5863.11190412464\\
+4.71708469091702 8156.13611581372\\
+5.12518692705333 11263.9292219417\\
+5.62017384808319 15447.5841488125\\
+6.22004882563472 21097.3505873724\\
+7.01206358900718 29514.9061127292\\
+8.05203967082547 42215.1308206601\\
+9.50556592010121 63047.8725722363\\
+11.4303112911448 95939.2438627346\\
+14.2611370719413 154788.787822819\\
+19.1550055557353 285542.108154745\\
+31.5136348486648 782003.799603132\\
+134.006889636395 14196328.4340409\\
+356.083255262927 100158859.170403\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/S_T_result.pdf b/matlab/figs/S_T_result.pdf
new file mode 100644
index 0000000..9d48732
Binary files /dev/null and b/matlab/figs/S_T_result.pdf differ
diff --git a/matlab/figs/S_T_result.png b/matlab/figs/S_T_result.png
new file mode 100644
index 0000000..2890b15
Binary files /dev/null and b/matlab/figs/S_T_result.png differ
diff --git a/matlab/figs/S_T_result.svg b/matlab/figs/S_T_result.svg
new file mode 100644
index 0000000..3ac10a6
--- /dev/null
+++ b/matlab/figs/S_T_result.svg
@@ -0,0 +1,286 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/S_T_result.tex b/matlab/figs/S_T_result.tex
new file mode 100644
index 0000000..fb39773
--- /dev/null
+++ b/matlab/figs/S_T_result.tex
@@ -0,0 +1,168 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.219in,
+height=1.989in,
+at={(0.55in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.001,
+ymax=2,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00020954496384\\
+0.470622484984128 1.00481874529079\\
+0.803350197712474 1.01394744788264\\
+1.14039960197003 1.02777511642482\\
+1.48995507285286 1.04662484292862\\
+1.85895667963569 1.07098030783181\\
+2.25607406649686 1.10155933897897\\
+2.68800102153761 1.13890816258292\\
+3.20262069365765 1.18724499727488\\
+3.85110700232557 1.2507769136108\\
+6.10640754223204 1.43249898597831\\
+6.69616005485322 1.45556617301175\\
+7.27548352919623 1.46450164542205\\
+7.8323825991792 1.45983077984003\\
+8.35452805838287 1.44404253069608\\
+8.9114823228402 1.41616129434941\\
+9.5055659201012 1.37578269678233\\
+10.1392540755882 1.32334765699627\\
+10.8151870255229 1.26015448352197\\
+11.5361810173648 1.1882166195253\\
+12.4192135270178 1.09846724237074\\
+13.4936714058831 0.992523905086805\\
+14.796880626864 0.874506215795286\\
+16.3762407452169 0.750452285958278\\
+18.4614694632455 0.617482258035887\\
+21.3958887134342 0.478388363187936\\
+25.9665597293487 0.336523176420069\\
+33.6144900010877 0.206887359426314\\
+50.4315948717136 0.0944973373925253\\
+111.441525146679 0.0203773154980849\\
+148.31025143361 0.0119374815717014\\
+185.04070195423 0.00801466436367219\\
+222.508879812837 0.00583855218889526\\
+262.675410372384 0.00445916480918004\\
+304.42722120643 0.00356295816675496\\
+346.369417737173 0.00296783739678319\\
+394.090164040345 0.002506686745748\\
+444.270674960688 0.00217070519810115\\
+500.840798984821 0.00190240169754667\\
+575.121707184161 0.00165401195093536\\
+758.367791499719 0.00125661813988618\\
+823.978568452852 0.0011395566240337\\
+878.909065341995 0.00104395024350009\\
+911.92675984593 0.00098726789669818\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.211020342856859 0.00099135526076278\\
+0.525679112201842 0.00610067243304447\\
+2.49687842888433 0.135548429003483\\
+3.67760910160103 0.287985763575926\\
+4.67379510799246 0.451758082992574\\
+5.51749237612913 0.607280098979099\\
+6.2776601058065 0.752699847775669\\
+6.94771254846024 0.878715367247834\\
+7.618717702323 0.997438507058426\\
+8.27785696619848 1.10252421086972\\
+8.9114823228402 1.19004648809038\\
+9.5055659201012 1.25893512355348\\
+10.1392540755882 1.31829721627157\\
+10.8151870255229 1.36652253370845\\
+11.5361810173648 1.40279571126562\\
+12.3052400435926 1.42713097980344\\
+13.1255683577184 1.44026740741525\\
+14.1302599059953 1.44320784995819\\
+15.3527502878042 1.43395003067397\\
+16.835508029612 1.41215881904675\\
+18.979216428391 1.37259299224172\\
+23.0336287314213 1.29863416860594\\
+30.9378757173014 1.19489737728979\\
+37.2023668141307 1.14407515612396\\
+44.7353305449847 1.10459603391689\\
+54.2918617761894 1.07370698023966\\
+67.1161176749628 1.04969439733019\\
+85.2964449974102 1.03157204444327\\
+114.566872863487 1.01799577717887\\
+170.306502925284 1.00853838930227\\
+312.964801067075 1.00300467532262\\
+1000 1.00081388192113\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+10.0462042134681 2.00349813925421\\
+11.8597101233767 1.72145584402149\\
+14.1302599059953 1.45115372725788\\
+17.1488196987054 1.18824449291305\\
+21.1995345753607 0.943491337665097\\
+26.4498018242772 0.733001070688183\\
+33.3060034362459 0.556823398892502\\
+42.3278906557355 0.413171875129235\\
+53.793615039807 0.302776885904966\\
+68.9983712143002 0.216462796668177\\
+90.9827289445556 0.14704550049335\\
+127.969686821594 0.0899288618742684\\
+216.438908606402 0.0421286044661777\\
+265.108360190854 0.0319262081593458\\
+312.964801067075 0.0257932599867752\\
+359.381366380463 0.0218605610825003\\
+408.894822629486 0.018959488980598\\
+460.960448682843 0.01680481268757\\
+514.886745013749 0.0151929304514569\\
+575.121707184161 0.0138789253878444\\
+642.403365939419 0.0128103940133396\\
+717.556091893693 0.0119433952692876\\
+801.50069615654 0.0112412878899585\\
+895.26571259964 0.0106736764921637\\
+1000 0.0102154679782451\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+20 0.7\\
+50 0.7\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+50 0.1\\
+500 0.1\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+500 0.01\\
+1000 0.01\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.136766110409167 0.000467624223911311\\
+2 0.1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/bode_Kfb.pdf b/matlab/figs/bode_Kfb.pdf
new file mode 100644
index 0000000..2a9fcd7
Binary files /dev/null and b/matlab/figs/bode_Kfb.pdf differ
diff --git a/matlab/figs/bode_Kfb.png b/matlab/figs/bode_Kfb.png
new file mode 100644
index 0000000..e34aa41
Binary files /dev/null and b/matlab/figs/bode_Kfb.png differ
diff --git a/matlab/figs/bode_Kfb.tex b/matlab/figs/bode_Kfb.tex
new file mode 100644
index 0000000..c11f792
--- /dev/null
+++ b/matlab/figs/bode_Kfb.tex
@@ -0,0 +1,285 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.535in,2.189in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={0.1,1,10,100,1000},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1000,
+ymax=100000000,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 43470401.5635197\\
+0.140652724210524 22406118.4606333\\
+0.225088005209546 8841324.97190729\\
+0.402350554886929 2759551.18650976\\
+0.632121847581245 1099567.22973382\\
+0.864842327573171 571911.118634823\\
+1.08902296226373 348238.834272102\\
+1.30953502048267 230413.727914817\\
+1.5176833902834 162916.926170144\\
+1.72678090388436 118180.38299581\\
+1.92879150802078 88053.4489201859\\
+2.11507282486879 67600.1593337435\\
+2.29805998875885 52196.4252310799\\
+2.47396410088682 40551.3529146903\\
+2.63889081445751 31757.3998192352\\
+2.81481236050758 24156.5912162984\\
+2.97490754721444 18564.407716775\\
+3.20262069365765 12562.3365624369\\
+3.35371015200293 9903.39866696113\\
+3.44776405473447 8860.70330148828\\
+3.51192753045073 8439.59373188045\\
+3.54445567397044 8315.55083857103\\
+3.57728509936788 8248.9891824612\\
+3.61041859717334 8238.41528485595\\
+3.64385898376354 8281.29862424784\\
+3.71167181947577 8513.11679296013\\
+3.78074666359936 8910.71745272145\\
+3.92277675892772 10060.0006461556\\
+4.3016357581068 13826.7614234338\\
+4.50457325175946 15807.7747001244\\
+4.76077523022638 18134.5901302594\\
+5.03154894503805 20378.4927614313\\
+5.31772317785097 22542.0240862418\\
+5.67222897164455 24991.3110735361\\
+6.10640754223204 27751.7418918669\\
+6.75818116816111 31647.5291959361\\
+8.35452805838285 41529.1212967548\\
+9.1614024571385 47350.5265741091\\
+10.0462042134682 54704.5281630713\\
+11.0164594963366 64124.7677611584\\
+12.0804213467733 76239.9049999386\\
+13.4936714058831 95386.2088374544\\
+15.3527502878042 126058.172628886\\
+18.292045048463 187487.904152082\\
+36.8609536217215 934555.32079059\\
+47.7176094893875 1644338.09622994\\
+62.9214610961035 2961671.49590373\\
+87.6885609458744 5900456.23627333\\
+136.500780654601 14541991.6515201\\
+275.067600790807 59592410.0067978\\
+359.381366380463 101766885.625809\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.535in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.364714507098\\
+0.108651577465251 -157.046895384675\\
+0.118051652856881 -158.584357803454\\
+0.128264983052803 -159.984829386242\\
+0.138082976521811 -161.120662469234\\
+0.148652484499784 -162.158997873773\\
+0.160031031373875 -163.104451315672\\
+0.17228054471314 -163.961327712226\\
+0.185467692308466 -164.73360707904\\
+0.19783188827842 -165.342829955295\\
+0.211020342856859 -165.892308734626\\
+0.22508800520954 -166.384071523065\\
+0.240093487686069 -166.81994455208\\
+0.253749037973356 -167.1503027674\\
+0.268181260945295 -167.4416997254\\
+0.283434330615137 -167.69493021744\\
+0.296805860866562 -167.877298293101\\
+0.310808217386903 -168.033977785229\\
+0.325471160553176 -168.165253579362\\
+0.337698031082518 -168.252140784466\\
+0.350384224529072 -168.323012215744\\
+0.363546996129332 -168.377939090849\\
+0.373742574239103 -168.408700768469\\
+0.384224084605498 -168.430533609922\\
+0.391374560198028 -168.440131065105\\
+0.398658107358057 -168.445762067993\\
+0.406077202570047 -168.447424767234\\
+0.413634368406335 -168.445115830121\\
+0.421332174384734 -168.438830428563\\
+0.429173237842218 -168.428562223998\\
+0.43716022482485 -168.414303351192\\
+0.44942026621191 -168.385411529502\\
+0.462024137175122 -168.347480797508\\
+0.474981480322836 -168.300464719448\\
+0.492824957004062 -168.223548151042\\
+0.511338753841437 -168.130228710593\\
+0.530548052536955 -168.020325903023\\
+0.555577622239876 -167.859305809794\\
+0.58178800743451 -167.671571713614\\
+0.609234915240079 -167.456573441619\\
+0.643885742724037 -167.161691937189\\
+0.680507369673503 -166.825379829582\\
+0.719211887222132 -166.446184720641\\
+0.760117761795532 -166.022438813388\\
+0.81079098067315 -165.469202597187\\
+0.864842327573189 -164.849226494558\\
+0.922497005259214 -164.158439265126\\
+0.983995229627797 -163.392091955358\\
+1.04959323055824 -162.544626583723\\
+1.11956431948387 -161.609503572351\\
+1.1942000281335 -160.578971747741\\
+1.27381132318649 -159.443756915773\\
+1.3587299019027 -158.192632667642\\
+1.44930957412626 -156.81181708356\\
+1.54592773641949 -155.284105754867\\
+1.64898694447104 -153.587594567159\\
+1.75891659032778 -151.693744713082\\
+1.87617469143913 -149.564356623681\\
+1.98288394912704 -147.512246613038\\
+2.0956623994805 -145.202606833263\\
+2.21485523372639 -142.570787084104\\
+2.31934505927442 -140.064916106496\\
+2.4287643824604 -137.191964459757\\
+2.54334576130472 -133.836807389325\\
+2.63889081445755 -130.691255387186\\
+2.73802517792786 -126.994823196645\\
+2.84088369018327 -122.552004496845\\
+2.94760625512479 -117.067590923778\\
+3.03027108286649 -112.006977633487\\
+3.11525422355555 -105.839500800734\\
+3.20262069365769 -98.2098344235929\\
+3.29243733300778 -88.7057129662501\\
+3.38477285594596 -76.9948766579058\\
+3.51192753045066 -58.191856460893\\
+3.74605003274907 -24.1759283952212\\
+3.8867766908927 -8.9549654600952\\
+3.99578030189527 0.05424674730898\\
+4.14588849683285 9.57226472391096\\
+4.30163575810668 17.0676193959614\\
+4.46323392671051 23.2117407770243\\
+4.6737951079925 29.6565710826308\\
+4.93962174387827 36.2665264048853\\
+5.26892142135084 43.0942325055928\\
+5.7777901179705 52.0572530148357\\
+8.27785696619849 86.3727118716517\\
+10.8151870255226 112.406946070662\\
+11.9695570235905 121.552177865682\\
+13.0051125217337 128.478501914037\\
+14.1302599059955 134.819669591624\\
+15.2118551798608 139.932375678172\\
+16.3762407452172 144.544746230039\\
+17.4679621512724 148.176911238822\\
+18.6324631193151 151.445726911439\\
+19.8745954958102 154.36855666213\\
+21.1995345753606 156.965517430503\\
+22.6128006633721 159.258251071286\\
+23.8989256623109 160.998181225102\\
+25.2582002696278 162.544964165632\\
+26.6947849403426 163.912362292937\\
+28.2130767593954 165.113720376764\\
+29.8177229001969 166.161840342236\\
+31.5136348486643 167.068888278142\\
+33.3060034362469 167.846326749679\\
+34.8772747481423 168.402936323835\\
+36.5226736430817 168.882777608427\\
+38.2456972246693 169.291252815606\\
+40.0500075787373 169.633378481628\\
+41.5545533471895 169.862433154403\\
+43.1156199031825 170.054192980089\\
+44.7353305449843 170.210701908133\\
+46.4158883361268 170.333854209\\
+47.7176094893859 170.40538524839\\
+49.0558370636517 170.459824579316\\
+50.4315948717143 170.497813484418\\
+51.3701354335138 170.514297645932\\
+52.3261423948667 170.523904524208\\
+53.2999408084406 170.526793188252\\
+53.7936150398065 170.525765744081\\
+54.794723369002 170.518858182568\\
+55.8144624945484 170.505596032206\\
+56.8531791387359 170.486111558014\\
+58.4476113163379 170.445489432615\\
+60.0867589171979 170.391538567918\\
+61.7718759733854 170.324616137437\\
+64.0924401935642 170.215762940957\\
+66.50018030431 170.085099181676\\
+69.6374473062844 169.891975079658\\
+72.9227205872842 169.666607449389\\
+76.3629826128223 169.409719163214\\
+80.7062014114933 169.060571856472\\
+85.2964449974123 168.66733699213\\
+90.9827289445557 168.153086563827\\
+97.0480887738009 167.578826478813\\
+103.51779556302 166.943723901156\\
+111.441525146678 166.141606661108\\
+119.971773543585 165.255344346467\\
+129.154966501489 164.281229865536\\
+139.041083409004 163.21473404092\\
+149.683929307729 162.050505533379\\
+161.141427725301 160.782352536145\\
+173.475935923388 159.403205311421\\
+186.754584276109 157.905057879654\\
+202.911801804663 156.066120624088\\
+220.466873523944 154.050554173503\\
+239.540735872084 151.841722750434\\
+260.264788196906 149.420577135854\\
+280.186655645918 147.072566796613\\
+301.63343472593 144.521878314074\\
+324.721849207315 141.74828535307\\
+349.577557436321 138.728468220433\\
+376.335836228661 135.435365683924\\
+405.142317111462 131.837387817798\\
+436.153778920815 127.897493655173\\
+469.539001068009 123.572179690684\\
+505.479682119114 118.810514287571\\
+544.1714286866 113.553525472907\\
+585.82482001525 107.734558232872\\
+630.666554056761 101.281715619792\\
+678.940681269615 94.1241711336394\\
+730.909932860277 86.2047189454912\\
+786.8571506937 77.500553662828\\
+854.93270662683 66.8230752479042\\
+946.184819472219 52.7908656572718\\
+1000 44.8958338224281\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/bode_plot_K_sisotool_comp.pdf b/matlab/figs/bode_plot_K_sisotool_comp.pdf
new file mode 100644
index 0000000..7a86d5a
Binary files /dev/null and b/matlab/figs/bode_plot_K_sisotool_comp.pdf differ
diff --git a/matlab/figs/bode_plot_K_sisotool_comp.png b/matlab/figs/bode_plot_K_sisotool_comp.png
new file mode 100644
index 0000000..3f817a3
Binary files /dev/null and b/matlab/figs/bode_plot_K_sisotool_comp.png differ
diff --git a/matlab/figs/bode_plot_controller.pdf b/matlab/figs/bode_plot_controller.pdf
new file mode 100644
index 0000000..a91ba4e
Binary files /dev/null and b/matlab/figs/bode_plot_controller.pdf differ
diff --git a/matlab/figs/bode_plot_controller.png b/matlab/figs/bode_plot_controller.png
new file mode 100644
index 0000000..e774d97
Binary files /dev/null and b/matlab/figs/bode_plot_controller.png differ
diff --git a/matlab/figs/bode_plot_loop_gain.pdf b/matlab/figs/bode_plot_loop_gain.pdf
new file mode 100644
index 0000000..6f64dbf
Binary files /dev/null and b/matlab/figs/bode_plot_loop_gain.pdf differ
diff --git a/matlab/figs/bode_plot_loop_gain.png b/matlab/figs/bode_plot_loop_gain.png
new file mode 100644
index 0000000..b92b960
Binary files /dev/null and b/matlab/figs/bode_plot_loop_gain.png differ
diff --git a/matlab/figs/bode_plot_loop_gain.svg b/matlab/figs/bode_plot_loop_gain.svg
new file mode 100644
index 0000000..3c12304
--- /dev/null
+++ b/matlab/figs/bode_plot_loop_gain.svg
@@ -0,0 +1,373 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/bode_plot_loop_gain.tex b/matlab/figs/bode_plot_loop_gain.tex
new file mode 100644
index 0000000..af80217
--- /dev/null
+++ b/matlab/figs/bode_plot_loop_gain.tex
@@ -0,0 +1,283 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.535in,2.189in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={0.1,1,10,100,1000},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.000839826664244425,
+ymax=100000,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 4351.30066559668\\
+0.14195547660501 2204.82467106182\\
+0.240093487686065 781.88410115415\\
+1.0991097009295 38.5863311084398\\
+1.56024641436637 19.6731219991235\\
+2.03849339825246 11.9393739233154\\
+2.54334576130465 8.01104989711584\\
+3.08666494333727 5.72825533399503\\
+3.71167181947577 4.22049551615354\\
+4.4222739805059 3.20087649062788\\
+5.26892142135068 2.46007717667909\\
+6.33580499265825 1.88932769380087\\
+7.76050333513357 1.4309193418116\\
+10.423606739764 0.967981782735701\\
+14.9339321612425 0.599939394601807\\
+18.2920450484629 0.452552135718153\\
+21.9959306803007 0.345922383404315\\
+26.2070669648385 0.264570646408659\\
+31.2244282309286 0.199717761793566\\
+37.5469422407334 0.146549459045651\\
+45.9899209052244 0.102803892538117\\
+58.4476113163363 0.0666234955958302\\
+81.4537176628074 0.0359602867197856\\
+144.264395121816 0.0124164368593772\\
+181.659978837533 0.00821726848185247\\
+218.443607114943 0.00598932500171654\\
+255.509709035251 0.00463926584634863\\
+293.404970921579 0.0037505100182471\\
+333.828586473176 0.00311412685513269\\
+376.335836228653 0.00265201416353158\\
+420.362168384471 0.00231155104488257\\
+469.539001068006 0.00203594091453817\\
+529.326605836056 0.00179358854065749\\
+613.462171799251 0.00155164432840315\\
+730.909932860291 0.00130568441470115\\
+794.145171902934 0.00119085081149171\\
+847.08682665574 0.00109793515647738\\
+903.557834613893 0.00100057295410498\\
+963.793479961579 0.000899050671300346\\
+1000 0.000839826664244425\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.535in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-270,
+ymax=0,
+ytick={-270, -180, -90, 0},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.730410010604\\
+0.108651577465251 -157.444329842179\\
+0.118051652856881 -159.016305563146\\
+0.128264983052803 -160.454312864014\\
+0.139361927422416 -161.766002170186\\
+0.151418932530433 -162.958631144936\\
+0.163009236097978 -163.924315989144\\
+0.175486714964814 -164.805798805554\\
+0.188919277620761 -165.607251881691\\
+0.2033800305847 -166.332537314949\\
+0.218947676285658 -166.985205158253\\
+0.233543813990654 -167.499274260959\\
+0.24911300260678 -167.962206209181\\
+0.265720110532445 -168.375798945693\\
+0.283434330615137 -168.74167489725\\
+0.299554933435982 -169.018407931952\\
+0.316592411198347 -169.261965935831\\
+0.334598912055007 -169.473073387997\\
+0.350384224529072 -169.624669444468\\
+0.366914237840248 -169.75449639023\\
+0.384224084605498 -169.862835751751\\
+0.398658107358057 -169.934199655476\\
+0.413634368406335 -169.992071969196\\
+0.425234633452872 -170.026676678307\\
+0.43716022482485 -170.053774811373\\
+0.44942026621191 -170.073393329798\\
+0.457784053837654 -170.082328116866\\
+0.466303492974262 -170.087953921985\\
+0.474981480322836 -170.090275173747\\
+0.48382096649261 -170.089295371996\\
+0.492824957004062 -170.085017096763\\
+0.501996513311016 -170.077442017453\\
+0.511338753841437 -170.066570902318\\
+0.525679112201842 -170.044083651815\\
+0.540421642070586 -170.01417571457\\
+0.555577622239876 -169.976838587048\\
+0.576448828292606 -169.915476501316\\
+0.598104096238105 -169.840841797148\\
+0.620572880677654 -169.752879660892\\
+0.649849535446982 -169.624081686899\\
+0.680507369673503 -169.474196167453\\
+0.712611543011191 -169.303038112888\\
+0.753142016597439 -169.069270441224\\
+0.795977700231485 -168.804157497829\\
+0.841249704973636 -168.507248325863\\
+0.897331581458357 -168.120016590165\\
+0.95715215389917 -167.688024548217\\
+1.02096066230607 -167.21042358717\\
+1.0991097009295 -166.60765156004\\
+1.18324062745835 -165.942960546518\\
+1.27381132318649 -165.215223922646\\
+1.38401609657311 -164.319998682273\\
+1.50375532129977 -163.342883605381\\
+1.63385387780984 -162.28359595955\\
+1.79165032736394 -161.010952285749\\
+1.96468664618042 -159.639931573803\\
+2.17438947560012 -158.02352460103\\
+2.4287643824604 -156.141688970368\\
+2.76338529005317 -153.813804956048\\
+3.26222200971169 -150.675040793428\\
+4.46323392671051 -144.712585392441\\
+4.98537346387382 -142.750788899754\\
+5.46685729972028 -141.230345647877\\
+5.93982669392029 -139.974898128475\\
+6.39448842855712 -138.964276398578\\
+6.82077673286572 -138.170971035104\\
+7.20871503378203 -137.564197358623\\
+7.61871770232323 -137.029112413269\\
+7.97814457207674 -136.640412323733\\
+8.35452805838285 -136.305498337816\\
+8.74866812047975 -136.025757499902\\
+9.07732652520994 -135.842444893024\\
+9.41833153464815 -135.695597729428\\
+9.68246611930323 -135.609591102768\\
+9.95400828762154 -135.544372724393\\
+10.1392540755881 -135.512471769439\\
+10.3279473191894 -135.489842692645\\
+10.5201521761614 -135.476485339516\\
+10.6175918348298 -135.47328149161\\
+10.7159339982264 -135.472392170035\\
+10.8151870255226 -135.473815278185\\
+10.9153593533136 -135.477548257956\\
+11.118496048193 -135.491931293482\\
+11.3254131515284 -135.515511589385\\
+11.5361810173649 -135.548252090693\\
+11.8597101233768 -135.614439075708\\
+12.192312516491 -135.700954071076\\
+12.5342426546138 -135.807579299964\\
+13.0051125217337 -135.980583697503\\
+13.4936714058834 -136.188179011162\\
+14.1302599059955 -136.49506046189\\
+14.7968806268638 -136.852863183877\\
+15.638467583022 -137.346459227106\\
+16.5279206146492 -137.906215148844\\
+17.629753752872 -138.636698197218\\
+18.9792164283904 -139.56365114987\\
+20.6212180399915 -140.707979086463\\
+22.6128006633721 -142.081517225486\\
+25.4921465445141 -143.980581035505\\
+38.9574561577541 -150.818491561461\\
+43.1156199031825 -152.292378930197\\
+47.2796959160026 -153.530759774255\\
+51.3701354335138 -154.550448738739\\
+55.302242561928 -155.37441864889\\
+59.5353313081449 -156.11600451482\\
+63.5042516859595 -156.694462104983\\
+67.7377599751758 -157.205218929792\\
+71.5904108596503 -157.588047492811\\
+75.6621850048106 -157.919442390876\\
+79.2316862486613 -158.155977357457\\
+82.9695852083464 -158.356297712351\\
+86.0864769614942 -158.490412787294\\
+89.3204599858103 -158.601273293247\\
+92.6759330114683 -158.688893907112\\
+95.2750047242714 -158.739383322341\\
+97.9469667069515 -158.776853269827\\
+99.7697764236289 -158.794618722137\\
+101.626508939302 -158.806628236826\\
+103.51779556302 -158.812897379575\\
+105.444279352618 -158.813443658655\\
+107.406615333344 -158.808286577014\\
+109.405470720574 -158.797447692839\\
+111.441525146678 -158.780950688716\\
+114.566872863485 -158.745653454244\\
+117.779870119709 -158.697781347301\\
+121.082975023208 -158.637443831784\\
+125.631660247414 -158.537817197554\\
+130.351224468151 -158.416579908374\\
+135.248087041786 -158.274111715337\\
+141.628661629916 -158.066837891998\\
+148.310251433614 -157.828056926875\\
+156.74554102056 -157.501564384406\\
+165.660595894989 -157.133726658968\\
+176.704352608899 -156.656116134062\\
+190.230118866895 -156.053077922383\\
+206.688024962902 -155.313799873592\\
+230.867799418716 -154.258437163579\\
+285.40097698292 -152.21981175333\\
+307.246884270909 -151.589904612471\\
+324.721849207315 -151.176005010836\\
+340.041193270368 -150.882498192212\\
+352.81541153808 -150.688877511189\\
+362.710025233077 -150.57150370737\\
+372.882130718292 -150.480909180991\\
+379.82153061908 -150.436755399541\\
+386.890073932801 -150.406593243892\\
+394.090164040346 -150.391310985555\\
+397.740302405804 -150.389535648406\\
+401.424249049931 -150.391827114438\\
+405.142317111462 -150.398305018997\\
+408.894822629482 -150.409090963391\\
+416.504424854512 -150.444083317905\\
+424.255643071768 -150.497817003391\\
+432.151112778964 -150.571337440438\\
+444.2706749607 -150.721086698389\\
+456.730127016882 -150.921572700448\\
+469.539001068009 -151.176749890355\\
+482.707096560317 -151.490746493983\\
+500.840798984813 -152.008364864025\\
+519.655724382751 -152.64888225052\\
+539.177464038763 -153.423469450032\\
+559.432570616944 -154.343745369635\\
+580.448594276896 -155.421679482729\\
+607.832312829711 -157.009344358197\\
+636.507908129576 -158.885996498353\\
+666.5363268125 -161.074189606786\\
+697.981390783064 -163.593949108199\\
+730.909932860277 -166.460804534995\\
+772.48114514036 -170.37056544538\\
+816.416760492152 -174.787371383423\\
+870.843149769058 -180.536564323253\\
+937.50150151455 -187.757089622514\\
+1000 -194.454742635627\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/bode_plot_mech_sys.pdf b/matlab/figs/bode_plot_mech_sys.pdf
new file mode 100644
index 0000000..1e9a1ea
Binary files /dev/null and b/matlab/figs/bode_plot_mech_sys.pdf differ
diff --git a/matlab/figs/bode_plot_mech_sys.png b/matlab/figs/bode_plot_mech_sys.png
new file mode 100644
index 0000000..fb3ca67
Binary files /dev/null and b/matlab/figs/bode_plot_mech_sys.png differ
diff --git a/matlab/figs/bode_plot_mech_sys.svg b/matlab/figs/bode_plot_mech_sys.svg
new file mode 100644
index 0000000..e3ffd20
--- /dev/null
+++ b/matlab/figs/bode_plot_mech_sys.svg
@@ -0,0 +1,384 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/bode_plot_mech_sys.tex b/matlab/figs/bode_plot_mech_sys.tex
new file mode 100644
index 0000000..71dacd8
--- /dev/null
+++ b/matlab/figs/bode_plot_mech_sys.tex
@@ -0,0 +1,248 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,2.19in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=100,
+xtick={0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1.27224178695051e-07,
+ymax=0.000450028866247803,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000100077040681054\\
+0.249113002606779 0.000100479968224368\\
+0.387782841458945 0.000101170832409288\\
+0.520854855057767 0.00010213180838189\\
+0.649849535446989 0.000103357234728721\\
+0.781435060784454 0.000104926144723671\\
+0.905642837944529 0.000106727006421945\\
+1.03041699495059 0.000108878898669169\\
+1.15096220088503 0.000111318861459395\\
+1.27381132318648 0.000114213816903526\\
+1.39683511798874 0.000117580091200327\\
+1.51768339028341 0.000121407497498927\\
+1.63385387780986 0.000125647870325187\\
+1.74277467840892 0.000130202667205506\\
+1.85895667963569 0.000135783136872805\\
+1.96468664618044 0.000141622689614222\\
+2.07643010725577 0.000148731565293715\\
+2.17438947560008 0.000155905672606119\\
+2.27697025538168 0.000164549233772308\\
+2.38439047009372 0.000175098920250184\\
+2.49687842888433 0.000188169528939554\\
+2.61467321180109 0.000204643647279112\\
+2.71289780037246 0.000221118739603659\\
+2.81481236050758 0.000241498328527855\\
+2.92055551218275 0.000266981926224583\\
+3.05833803237843 0.000308168175769497\\
+3.38477285594598 0.000429008974300086\\
+3.44776405473446 0.000444104914201693\\
+3.4796979038877 0.000448404557818924\\
+3.51192753045073 0.000450028866247803\\
+3.54445567397044 0.000448731850351484\\
+3.57728509936788 0.000444428041937895\\
+3.61041859717334 0.000437211195644724\\
+3.67760910160103 0.000415223932589207\\
+3.746050032749 0.000386154947629177\\
+3.85110700232557 0.000337492807976321\\
+4.4222739805059 0.000163676758894729\\
+4.67379510799246 0.000127877923720101\\
+4.93962174387833 0.000102339850135891\\
+5.26892142135068 8.08353445953809e-05\\
+5.62017384808319 6.51412568470101e-05\\
+6.05036787939122 5.18614334423699e-05\\
+6.57382014340959 4.08624059100159e-05\\
+7.20871503378214 3.18885732879709e-05\\
+7.97814457207663 2.4650243237454e-05\\
+8.99402217409205 1.84618667690213e-05\\
+10.3279473191895 1.34221643174956e-05\\
+12.0804213467733 9.47864532120636e-06\\
+14.6610868404699 6.25073642168979e-06\\
+18.6324631193156 3.78253821122638e-06\\
+25.4921465445143 1.98666735058239e-06\\
+40.0500075787361 7.95720896664219e-07\\
+86.8838263525119 1.6805187841812e-07\\
+100.693863147603 1.25064338714231e-07\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=100,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.360279720677909\\
+0.109657929126777 -0.395137447580197\\
+0.119145069811978 -0.429395502811047\\
+0.129452997822788 -0.466637926966143\\
+0.140652724210525 -0.507128728568574\\
+0.152821403602584 -0.551156409160285\\
+0.166042865718756 -0.599036553911958\\
+0.180408192871936 -0.651114782035393\\
+0.194217468148908 -0.701236456999254\\
+0.209083769055575 -0.755264903107047\\
+0.22508800520954 -0.813516689954668\\
+0.242317279423763 -0.876337020223474\\
+0.260865361762251 -0.944103038726894\\
+0.280833199882324 -1.01722768382518\\
+0.302329468440578 -1.09616419995589\\
+0.325471160553176 -1.18141146084878\\
+0.350384224529072 -1.27352029277685\\
+0.377204249341695 -1.37310103885019\\
+0.406077202570047 -1.48083267286324\\
+0.43716022482485 -1.59747386003858\\
+0.470622484984116 -1.7238764798156\\
+0.501996513311016 -1.84323918563692\\
+0.535462089927357 -1.9715352107489\\
+0.571158647812626 -2.10957933285724\\
+0.609234915240079 -2.25829175026661\\
+0.649849535446982 -2.41871775903215\\
+0.693171727615563 -2.59205216832214\\
+0.739381991917593 -2.77966981749412\\
+0.788672861561404 -2.98316401860725\\
+0.841249704973636 -3.20439538997709\\
+0.897331581458357 -3.44555445323468\\
+0.95715215389917 -3.70924266547007\\
+1.01159111222386 -3.95553955700314\\
+1.06912633917349 -4.22300981911786\\
+1.12993393803321 -4.51443277177717\\
+1.1942000281335 -4.83313632826204\\
+1.26212131452257 -5.18314168545086\\
+1.33390569003905 -5.56935581222265\\
+1.40977287162893 -5.99783106277079\\
+1.47628147190943 -6.39257013751163\\
+1.54592773641949 -6.82726911667632\\
+1.61885969017819 -7.30855838144461\\
+1.69523234155408 -7.84466520490108\\
+1.77520801171768 -8.44592074542533\\
+1.8589566796357 -9.12547061850532\\
+1.94665634334225 -9.90028991253442\\
+2.01978575681984 -10.6034852457339\\
+2.0956623994805 -11.3965112455736\\
+2.17438947560012 -12.298204277866\\
+2.25607406649687 -13.3329959495336\\
+2.34082727617828 -14.533096929574\\
+2.4287643824604 -15.9417520223495\\
+2.49687842888425 -17.169946826887\\
+2.56690271549201 -18.5815586597051\\
+2.63889081445755 -20.219953813452\\
+2.71289780037248 -22.1424757746008\\
+2.78898029238043 -24.4260335361339\\
+2.86719649749373 -27.1751716707795\\
+2.94760625512479 -30.5335398833852\\
+3.03027108286649 -34.6993661036932\\
+3.11525422355555 -39.9434046326928\\
+3.20262069365769 -46.6200528783391\\
+3.29243733300778 -55.1406148156697\\
+3.38477285594596 -65.8363555516\\
+3.47969790388763 -78.6296109135982\\
+3.74605003274907 -114.646524618511\\
+3.85110700232562 -125.250279839548\\
+3.95911026646847 -133.687314810928\\
+4.07014245321941 -140.297241967609\\
+4.18428850790151 -145.490638558789\\
+4.30163575810668 -149.618562714362\\
+4.42227398050602 -152.948467327068\\
+4.54629546953248 -155.675990585521\\
+4.6737951079925 -157.942900643549\\
+4.80487043965512 -159.852408854026\\
+4.93962174387827 -161.480482626305\\
+5.12518692705321 -163.309349610502\\
+5.31772317785112 -164.835059566858\\
+5.51749237612921 -166.126800666128\\
+5.72476623970219 -167.234567932816\\
+5.93982669392029 -168.195258838395\\
+6.16296625513279 -169.036629080627\\
+6.39448842855712 -169.779919053979\\
+6.6961600548533 -170.595907423712\\
+7.01206358900715 -171.308982714832\\
+7.34287044716661 -171.937907735413\\
+7.68928372075853 -172.497125933675\\
+8.05203967082557 -172.997927988859\\
+8.43190929286622 -173.449262263598\\
+8.91148232283998 -173.935576788937\\
+9.41833153464815 -174.370819924864\\
+9.95400828762154 -174.762801666966\\
+10.5201521761614 -175.117768789539\\
+11.118496048193 -175.44077755107\\
+11.7508713090482 -175.735965244565\\
+12.4192135270177 -176.006751110299\\
+13.2471398786616 -176.29560546788\\
+14.1302599059955 -176.558872295477\\
+15.0722530931073 -176.799659828368\\
+16.0770442167387 -177.020561466945\\
+17.1488196987055 -177.223761294251\\
+18.2920450484626 -177.411114733914\\
+19.5114834684666 -177.584210869368\\
+20.8122156998634 -177.744421068702\\
+22.1996611911991 -177.892937268722\\
+23.8989256623109 -178.049682840758\\
+25.7282596744791 -178.193872214568\\
+27.6976193503698 -178.326689577425\\
+29.8177229001969 -178.449173503186\\
+32.100108955431 -178.562240634481\\
+34.557199367622 -178.666704669104\\
+37.2023668141304 -178.763291701594\\
+40.0500075787373 -178.852652714557\\
+43.1156199031825 -178.935373825321\\
+46.4158883361268 -179.011984753022\\
+49.9687745385497 -179.082965865836\\
+53.7936150398065 -179.148754088302\\
+57.9112264764194 -179.209747887951\\
+62.3440188862789 -179.266311513819\\
+67.7377599751758 -179.325064505592\\
+73.5981447526585 -179.379065853773\\
+79.965545258922 -179.428710154495\\
+86.8838263525134 -179.474356978471\\
+94.4006478941749 -179.516334463482\\
+100.693863147606 -179.546639658564\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/bode_plot_weights.pdf b/matlab/figs/bode_plot_weights.pdf
new file mode 100644
index 0000000..3719eec
Binary files /dev/null and b/matlab/figs/bode_plot_weights.pdf differ
diff --git a/matlab/figs/bode_plot_weights.png b/matlab/figs/bode_plot_weights.png
new file mode 100644
index 0000000..79c8baf
Binary files /dev/null and b/matlab/figs/bode_plot_weights.png differ
diff --git a/matlab/figs/bode_plot_weights.svg b/matlab/figs/bode_plot_weights.svg
new file mode 100644
index 0000000..061f37b
--- /dev/null
+++ b/matlab/figs/bode_plot_weights.svg
@@ -0,0 +1,315 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/bode_plot_weights.tex b/matlab/figs/bode_plot_weights.tex
new file mode 100644
index 0000000..f4acfdf
--- /dev/null
+++ b/matlab/figs/bode_plot_weights.tex
@@ -0,0 +1,162 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.632in,
+height=1.991in,
+at={(0.551in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.001,
+ymax=10,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 4.76100991590828\\
+0.479380849508911 4.74142527327249\\
+0.818300681586739 4.70271823354146\\
+1.15096220088503 4.64622189875955\\
+1.47628147190939 4.57452203442608\\
+1.80824493487795 4.48620448383121\\
+2.15443469003188 4.37981637168679\\
+2.49687842888433 4.26245362773302\\
+2.86719649749377 4.1246194153153\\
+3.23228397818138 3.98033166957675\\
+3.61041859717334 3.82486484671119\\
+4.03278998219371 3.64713653765075\\
+4.4632339267104 3.4647619825248\\
+4.93962174387832 3.26480194796314\\
+5.46685729972018 3.04925839907739\\
+6.05036787939122 2.82113529913371\\
+6.69616005485322 2.58433297473304\\
+7.41088151564157 2.34341563310535\\
+8.2018894992022 2.10327517992625\\
+9.07732652521023 1.86874101690569\\
+10.1392540755882 1.62441576093477\\
+11.4303112911448 1.37851305256105\\
+13.0051125217341 1.14008905236091\\
+14.9339321612425 0.917854238055838\\
+17.4679621512725 0.707763275334409\\
+20.8122156998634 0.521723677525708\\
+25.7282596744793 0.355127638575637\\
+33.3060034362459 0.218852355295698\\
+47.7176094893875 0.109683242413354\\
+119.971773543588 0.0185302783860461\\
+155.307057393346 0.011476348897964\\
+190.230118866894 0.00798799480050497\\
+226.649807927369 0.00592480300553732\\
+265.108360190854 0.00460058967167214\\
+304.42722120643 0.00373107031932976\\
+346.369417737173 0.00310997571143914\\
+390.473523688556 0.00266040632221317\\
+436.153778920801 0.0023309089597649\\
+482.707096560318 0.00208663214807546\\
+534.229329953835 0.00188718187213126\\
+591.250841383188 0.00172433492968875\\
+654.358601888324 0.00159137569438841\\
+724.202233460732 0.00148282003877247\\
+801.50069615654 0.00139418971090831\\
+887.04968896544 0.0013218279786433\\
+990.82280990038 0.00125794881012626\\
+1000 0.00125323629492883\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.203380030584698 0.000989777819887578\\
+0.449420266211914 0.0047942767347441\\
+5.12518692705333 0.622210572704616\\
+20.6212180399914 10.0725642635729\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 4.7609074288834\\
+0.457784053837662 4.74112847250108\\
+0.781435060784454 4.70208061093208\\
+1.0991097009295 4.64559165613624\\
+1.42283045721435 4.57144906349989\\
+1.75891659032773 4.47927616460061\\
+2.09566239948043 4.37423445322045\\
+2.45126006203334 4.25274519592358\\
+2.8408836901833 4.11095719445138\\
+3.26222200971167 3.95170788088451\\
+3.71167181947577 3.77948905141281\\
+4.18428850790158 3.59988757314696\\
+4.71708469091702 3.40317136463527\\
+5.31772317785097 3.19223684289429\\
+5.99484250318941 2.97087790006113\\
+6.82077673286568 2.72585419958062\\
+7.76050333513357 2.47949503869403\\
+8.9114823228402 2.2201435349723\\
+10.3279473191895 1.95491825546796\\
+12.0804213467733 1.69160934903556\\
+14.3932264471941 1.42447068049222\\
+17.3076553419573 1.17667603248786\\
+21.1995345753607 0.943491337665097\\
+26.2070669648385 0.740920673515988\\
+32.6974974451177 0.569453372601831\\
+41.1731993116168 0.427919272009563\\
+51.8459354389291 0.317863515154134\\
+65.8898955079995 0.230558428152838\\
+85.2964449974102 0.1611173349527\\
+114.566872863487 0.105607825522203\\
+228.74908173557 0.0390036255196556\\
+272.543253128103 0.0307810979565345\\
+315.863540826782 0.025500739341156\\
+359.381366380463 0.0218605610825003\\
+405.142317111465 0.0191453206052172\\
+452.538627817017 0.0171066280251345\\
+505.479682119124 0.0154393411147139\\
+559.432570616938 0.0141825204910006\\
+619.144175597784 0.0131421696026314\\
+685.229159528406 0.012282656024432\\
+758.367791499719 0.0115737646620205\\
+847.08682665574 0.0109423524789141\\
+946.1848194722 0.0104322816237634\\
+1000 0.0102154679782451\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+20 0.7\\
+40 0.7\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+40 0.1\\
+500 0.1\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+500 0.01\\
+1000 0.01\\
+};
+\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.126191468896039 0.000398107170553497\\
+2 0.1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/bode_requirements.pdf b/matlab/figs/bode_requirements.pdf
new file mode 100644
index 0000000..1de007b
Binary files /dev/null and b/matlab/figs/bode_requirements.pdf differ
diff --git a/matlab/figs/bode_requirements.png b/matlab/figs/bode_requirements.png
new file mode 100644
index 0000000..e45de81
Binary files /dev/null and b/matlab/figs/bode_requirements.png differ
diff --git a/matlab/figs/bode_requirements.svg b/matlab/figs/bode_requirements.svg
new file mode 100644
index 0000000..550fd3f
--- /dev/null
+++ b/matlab/figs/bode_requirements.svg
@@ -0,0 +1,313 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/bode_requirements.tex b/matlab/figs/bode_requirements.tex
new file mode 100644
index 0000000..1a227cc
--- /dev/null
+++ b/matlab/figs/bode_requirements.tex
@@ -0,0 +1,105 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.632in,
+height=1.991in,
+at={(0.551in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.001,
+ymax=10,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 4.7609074288834\\
+0.457784053837662 4.74112847250108\\
+0.781435060784454 4.70208061093208\\
+1.0991097009295 4.64559165613624\\
+1.42283045721435 4.57144906349989\\
+1.75891659032773 4.47927616460061\\
+2.09566239948043 4.37423445322045\\
+2.45126006203334 4.25274519592358\\
+2.8408836901833 4.11095719445138\\
+3.26222200971167 3.95170788088451\\
+3.71167181947577 3.77948905141281\\
+4.18428850790158 3.59988757314696\\
+4.71708469091702 3.40317136463527\\
+5.31772317785097 3.19223684289429\\
+5.99484250318941 2.97087790006113\\
+6.82077673286568 2.72585419958062\\
+7.76050333513357 2.47949503869403\\
+8.9114823228402 2.2201435349723\\
+10.3279473191895 1.95491825546796\\
+12.0804213467733 1.69160934903556\\
+14.3932264471941 1.42447068049222\\
+17.3076553419573 1.17667603248786\\
+21.1995345753607 0.943491337665097\\
+26.2070669648385 0.740920673515988\\
+32.6974974451177 0.569453372601831\\
+41.1731993116168 0.427919272009563\\
+51.8459354389291 0.317863515154134\\
+65.8898955079995 0.230558428152838\\
+85.2964449974102 0.1611173349527\\
+114.566872863487 0.105607825522203\\
+228.74908173557 0.0390036255196556\\
+272.543253128103 0.0307810979565345\\
+315.863540826782 0.025500739341156\\
+359.381366380463 0.0218605610825003\\
+405.142317111465 0.0191453206052172\\
+452.538627817017 0.0171066280251345\\
+505.479682119124 0.0154393411147139\\
+559.432570616938 0.0141825204910006\\
+619.144175597784 0.0131421696026314\\
+685.229159528406 0.012282656024432\\
+758.367791499719 0.0115737646620205\\
+847.08682665574 0.0109423524789141\\
+946.1848194722 0.0104322816237634\\
+1000 0.0102154679782451\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+20 0.7\\
+40 0.7\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+40 0.1\\
+500 0.1\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+500 0.01\\
+1000 0.01\\
+};
+\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.126191468896039 0.000398107170553497\\
+2 0.1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/bode_wi.pdf b/matlab/figs/bode_wi.pdf
new file mode 100644
index 0000000..e499caa
Binary files /dev/null and b/matlab/figs/bode_wi.pdf differ
diff --git a/matlab/figs/bode_wi.png b/matlab/figs/bode_wi.png
new file mode 100644
index 0000000..5b56254
Binary files /dev/null and b/matlab/figs/bode_wi.png differ
diff --git a/matlab/figs/bode_wi.svg b/matlab/figs/bode_wi.svg
new file mode 100644
index 0000000..92d5bb6
--- /dev/null
+++ b/matlab/figs/bode_wi.svg
@@ -0,0 +1,243 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/bode_wi.tex b/matlab/figs/bode_wi.tex
new file mode 100644
index 0000000..aeaec91
--- /dev/null
+++ b/matlab/figs/bode_wi.tex
@@ -0,0 +1,79 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.219in,
+height=1.991in,
+at={(0.55in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.1,
+ymax=10,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100019996\\
+0.441209286319119 0.100388537226533\\
+0.746230289139111 0.101107472954714\\
+1.04959323055823 0.102179314797175\\
+1.35872990190271 0.103626152490691\\
+1.6642601764859 0.105393461421337\\
+1.98288394912707 0.107575784901393\\
+2.31934505927443 0.110233765846541\\
+2.66333272517498 0.113300362991026\\
+3.0302710828664 0.116929529805118\\
+3.44776405473446 0.121466576707203\\
+3.88677669089267 0.126656400703978\\
+4.38168993151419 0.132959862451461\\
+4.93962174387832 0.140563212888104\\
+5.56859644428641 0.149669395663762\\
+6.2776601058065 0.160497806614737\\
+7.14255928554313 0.174356696579744\\
+8.12661920009194 0.190806599078577\\
+9.33189771573324 0.211702891269057\\
+10.9153593533139 0.240063663088148\\
+13.0051125217341 0.278568988496604\\
+15.9295021257212 0.333746248310502\\
+20.4319732019527 0.420346478149912\\
+27.9541599906786 0.567070439640123\\
+45.5678626584106 0.913043260592671\\
+98.8541702191957 1.9420192016414\\
+135.248087041788 2.61290613637558\\
+171.883914281715 3.2523236432537\\
+210.534524276671 3.88179275803392\\
+250.841505927754 4.48505718443669\\
+290.712337727258 5.02713742628793\\
+333.828586473176 5.55332650390554\\
+379.821530619074 6.04955496400537\\
+428.185179865241 6.50497411436347\\
+482.707096560318 6.94593403636414\\
+544.171428686589 7.36391921149691\\
+613.462171799251 7.75172901027199\\
+691.575882873852 8.10406344935583\\
+779.636013040524 8.41781975602753\\
+887.04968896544 8.71154899433816\\
+1000 8.94438371269928\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_1st_order.pdf b/matlab/figs/comp_filter_1st_order.pdf
new file mode 100644
index 0000000..adeb61b
Binary files /dev/null and b/matlab/figs/comp_filter_1st_order.pdf differ
diff --git a/matlab/figs/comp_filter_1st_order.png b/matlab/figs/comp_filter_1st_order.png
new file mode 100644
index 0000000..d4118ae
Binary files /dev/null and b/matlab/figs/comp_filter_1st_order.png differ
diff --git a/matlab/figs/comp_filter_1st_order.svg b/matlab/figs/comp_filter_1st_order.svg
new file mode 100644
index 0000000..97846d6
--- /dev/null
+++ b/matlab/figs/comp_filter_1st_order.svg
@@ -0,0 +1,420 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_1st_order.tex b/matlab/figs/comp_filter_1st_order.tex
new file mode 100644
index 0000000..322dadf
--- /dev/null
+++ b/matlab/figs/comp_filter_1st_order.tex
@@ -0,0 +1,345 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.551in,2.205in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.00999950003749688,
+ymax=1,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00999950003749688\\
+0.0781435060784454 0.0779060051871087\\
+0.135872990190271 0.134635885624904\\
+0.192879150802078 0.189388470073189\\
+0.249687842888433 0.242250570697203\\
+0.308666494333727 0.294936078220483\\
+0.367760910160103 0.34515977418261\\
+0.430163575810679 0.395154561931371\\
+0.493962174387832 0.442877628294029\\
+0.556859644428641 0.486513323734419\\
+0.62776601058065 0.531682500309765\\
+0.701206358900718 0.574125061053536\\
+0.776050333513357 0.61308994196178\\
+0.858882855954625 0.651551970546209\\
+0.941833153464795 0.685618150124747\\
+1.03279473191895 0.718420929727937\\
+1.13254131515281 0.749608335515165\\
+1.24192135270178 0.778887675762587\\
+1.36186523675608 0.806038251038401\\
+1.50722530931076 0.833277344034096\\
+1.66810053720006 0.857688019461277\\
+1.84614694632455 0.879291221056981\\
+2.06212180399914 0.899782695587539\\
+2.32469705998565 0.918614648361775\\
+2.64498018242772 0.935380254259452\\
+3.03726357970331 0.949842198766414\\
+3.55263467657814 0.962592904642806\\
+4.27199396630678 0.973679498477765\\
+5.28107971193433 0.982540437116619\\
+6.89983712143002 0.989660118392818\\
+9.7946966706954 0.994828590250486\\
+16.4140297114447 0.998149314353036\\
+43.6153778920801 0.999737264025473\\
+100 0.999950003749688\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.999950003749688\\
+0.0668074391569562 0.997775825531856\\
+0.115096220088503 0.993441519432428\\
+0.163385387780986 0.986914027766574\\
+0.211507282486879 0.97835587911059\\
+0.259067785868801 0.968041910806357\\
+0.308666494333727 0.955516985596761\\
+0.357728509936787 0.941567123076339\\
+0.410784088996565 0.924997125494708\\
+0.463090280179974 0.907422856313341\\
+0.517265738721602 0.888208813943108\\
+0.57777901179705 0.865864610401702\\
+0.639448842855694 0.84248216033635\\
+0.707701066118189 0.816267840586774\\
+0.776050333513357 0.79001311575524\\
+0.851000724712225 0.761563109315656\\
+0.933189771573324 0.731107620984681\\
+1.02331657833024 0.698911718635762\\
+1.12214776820798 0.665305570252569\\
+1.24192135270178 0.62716344643574\\
+1.37447909267754 0.588317463152321\\
+1.5211855179861 0.549317450112417\\
+1.69914417203463 0.507209816953862\\
+1.91550055557353 0.46278730959425\\
+2.17940698430296 0.417035544136608\\
+2.50264009641792 0.371052853392094\\
+2.92729483504282 0.323270052271167\\
+3.48772747481418 0.275614496115232\\
+4.31156199031823 0.225937117607347\\
+5.58144624945496 0.176356853344754\\
+7.85045620020451 0.126360100932962\\
+12.7969686821594 0.0779060051871086\\
+31.0092663593193 0.0322316695009781\\
+100 0.00999950003749688\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.551in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 89.4270613023165\\
+0.0109657929126781 89.3717315290859\\
+0.0120248614203741 89.3110593964178\\
+0.0131862140139475 89.2445293733452\\
+0.0144597292179202 89.1715762763439\\
+0.0157107238924746 89.0999158779669\\
+0.0170699493403842 89.0220589241049\\
+0.0185467692308472 88.9374702188989\\
+0.0201513573381558 88.8455685189148\\
+0.0218947676285658 88.745722621367\\
+0.0237890104107886 88.6372471342313\\
+0.0258471350746954 88.5193979064433\\
+0.0280833199882315 88.3913670960939\\
+0.0305129701718286 88.2522778546731\\
+0.0331528234231942 88.1011786061323\\
+0.0360210656235708 87.9370369010414\\
+0.0391374560198041 87.7587328286753\\
+0.0425234633452872 87.565051973813\\
+0.0462024137175137 87.354677910809\\
+0.0501996513311016 87.1261842356453\\
+0.0545427130532976 86.8780261478907\\
+0.0592615181247549 86.6085316096622\\
+0.0643885742724037 86.3158921288756\\
+0.0699592016543535 85.9981532406606\\
+0.0760117761795532 85.6532047954402\\
+0.0825879938784429 85.2787712068662\\
+0.0897331581458357 84.8724018699676\\
+0.0974964918348418 84.4314620323563\\
+0.105931476351838 83.9531244924189\\
+0.115096220088505 83.4343626117381\\
+0.125053858729037 82.871945268422\\
+0.13587299019027 82.2624345473586\\
+0.147628147190938 81.6021871659272\\
+0.160400310705681 80.8873608712293\\
+0.174277467840892 80.1139273167059\\
+0.18935521797563 79.2776932268565\\
+0.205737431343292 78.3743319764768\\
+0.223536964590981 77.399428022839\\
+0.242876438246048 76.3485368985183\\
+0.266333272517501 75.0864181916033\\
+0.292055551218278 73.719262860514\\
+0.320262069365769 72.2417087031909\\
+0.351192753045077 70.6490947310592\\
+0.385110700232562 68.9377707352067\\
+0.426215882901536 66.9155269809215\\
+0.471708469091704 64.7463512504026\\
+0.522056752784699 62.4328857335041\\
+0.58313051135262 59.7522340757541\\
+0.657382014340949 56.6798002114858\\
+0.754879928165345 52.9515775591225\\
+0.907732652521024 47.7689484386557\\
+1.36186523675607 36.2893557362444\\
+1.57833140565212 32.3575497518978\\
+1.77930438991856 29.3367436790486\\
+1.98745954958095 26.7094783217305\\
+2.21996611911998 24.2495318606514\\
+2.45691646298281 22.1470233577592\\
+2.71915794303603 20.1915492791366\\
+2.98177229001969 18.5399600253116\\
+3.26974974451178 17.0054032260634\\
+3.58553985745983 15.5836816184612\\
+3.93182875570579 14.2697479456193\\
+4.31156199031825 13.0579901585031\\
+4.72796959160041 11.942467265621\\
+5.18459354389293 10.9170981708404\\
+5.68531791387378 9.9758082019293\\
+6.17718759733854 9.19560663953442\\
+6.71161176749636 8.47447059109713\\
+7.29227205872842 7.80835216850473\\
+7.92316862486613 7.19338767107824\\
+8.60864769614914 6.62591128804402\\
+9.3534315202923 6.10246213595279\\
+10.1626508939299 5.6197861710567\\
+11.0418805085416 5.17483424126608\\
+11.9971773543589 4.76475730086372\\
+13.0351224468151 4.38689960481101\\
+14.1628661629921 4.03879052659268\\
+15.3881775003836 3.71813550097808\\
+16.7194975973201 3.42280647704889\\
+18.165997883753 3.15083217347687\\
+19.7376432630023 2.90038835364977\\
+21.4452607597165 2.66978827952406\\
+23.3006141069691 2.45747345713322\\
+25.3164847863135 2.26200475104221\\
+27.5067600790807 2.08205391764814\\
+29.8865287355039 1.91639558639288\\
+32.4721849207315 1.76389970228814\\
+35.2815411538092 1.62352443154175\\
+38.3339510176665 1.49430952362114\\
+41.6504424854525 1.37537011708024\\
+45.2538627817011 1.26589097234756\\
+49.1690357762798 1.16512111197839\\
+53.9177464038745 1.06252978110111\\
+59.1250841383182 0.968968043775334\\
+64.8353428605466 0.883642073403919\\
+71.0970943231237 0.805827610765192\\
+77.9636013040516 0.734863920885289\\
+85.493270662683 0.670148261902611\\
+93.7501501514519 0.611130825714156\\
+100 0.572938697683483\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.572938697683483\\
+0.0109657929126781 -0.628268470914065\\
+0.0120248614203741 -0.688940603582196\\
+0.0131862140139475 -0.755470626654827\\
+0.0144597292179202 -0.828423723656115\\
+0.0157107238924746 -0.900084122033078\\
+0.0170699493403842 -0.977941075895146\\
+0.0185467692308472 -1.06252978110111\\
+0.0201513573381558 -1.15443148108517\\
+0.0218947676285658 -1.25427737863302\\
+0.0237890104107886 -1.36275286576873\\
+0.0258471350746954 -1.48060209355668\\
+0.0280833199882315 -1.60863290390606\\
+0.0305129701718286 -1.74772214532689\\
+0.0331528234231942 -1.89882139386773\\
+0.0360210656235708 -2.0629630989586\\
+0.0391374560198041 -2.24126717132472\\
+0.0425234633452872 -2.43494802618703\\
+0.0462024137175137 -2.64532208919094\\
+0.0501996513311016 -2.8738157643547\\
+0.0545427130532976 -3.12197385210929\\
+0.0592615181247549 -3.39146839033785\\
+0.0643885742724037 -3.68410787112443\\
+0.0699592016543535 -4.00184675933943\\
+0.0760117761795532 -4.34679520455984\\
+0.0825879938784429 -4.7212287931338\\
+0.0897331581458357 -5.12759813003245\\
+0.0974964918348418 -5.56853796764368\\
+0.105931476351838 -6.04687550758116\\
+0.115096220088505 -6.56563738826192\\
+0.125053858729037 -7.12805473157803\\
+0.13587299019027 -7.73756545264141\\
+0.147628147190938 -8.39781283407282\\
+0.160400310705681 -9.11263912877071\\
+0.174277467840892 -9.8860726832941\\
+0.18935521797563 -10.7223067731436\\
+0.205737431343292 -11.6256680235232\\
+0.223536964590981 -12.600571977161\\
+0.242876438246048 -13.6514631014817\\
+0.266333272517501 -14.9135818083967\\
+0.292055551218278 -16.280737139486\\
+0.320262069365769 -17.7582912968091\\
+0.351192753045077 -19.3509052689408\\
+0.385110700232562 -21.0622292647933\\
+0.426215882901536 -23.0844730190785\\
+0.471708469091704 -25.2536487495974\\
+0.522056752784699 -27.5671142664959\\
+0.58313051135262 -30.2477659242459\\
+0.657382014340949 -33.3201997885142\\
+0.754879928165345 -37.0484224408775\\
+0.907732652521024 -42.2310515613444\\
+1.36186523675607 -53.7106442637557\\
+1.57833140565212 -57.6424502481022\\
+1.77930438991856 -60.6632563209514\\
+1.98745954958095 -63.2905216782695\\
+2.21996611911998 -65.7504681393486\\
+2.45691646298281 -67.8529766422408\\
+2.71915794303603 -69.8084507208634\\
+2.98177229001969 -71.4600399746884\\
+3.26974974451178 -72.9945967739366\\
+3.58553985745983 -74.4163183815388\\
+3.93182875570579 -75.7302520543808\\
+4.31156199031825 -76.9420098414969\\
+4.72796959160041 -78.057532734379\\
+5.18459354389293 -79.0829018291596\\
+5.68531791387378 -80.0241917980707\\
+6.17718759733854 -80.8043933604656\\
+6.71161176749636 -81.5255294089029\\
+7.29227205872842 -82.1916478314953\\
+7.92316862486613 -82.8066123289218\\
+8.60864769614914 -83.374088711956\\
+9.3534315202923 -83.8975378640472\\
+10.1626508939299 -84.3802138289433\\
+11.0418805085416 -84.8251657587339\\
+11.9971773543589 -85.2352426991363\\
+13.0351224468151 -85.613100395189\\
+14.1628661629921 -85.9612094734073\\
+15.3881775003836 -86.2818644990219\\
+16.7194975973201 -86.5771935229511\\
+18.165997883753 -86.8491678265231\\
+19.7376432630023 -87.0996116463502\\
+21.4452607597165 -87.330211720476\\
+23.3006141069691 -87.5425265428668\\
+25.3164847863135 -87.7379952489578\\
+27.5067600790807 -87.9179460823519\\
+29.8865287355039 -88.0836044136071\\
+32.4721849207315 -88.2361002977119\\
+35.2815411538092 -88.3764755684582\\
+38.3339510176665 -88.5056904763789\\
+41.6504424854525 -88.6246298829198\\
+45.2538627817011 -88.7341090276524\\
+49.1690357762798 -88.8348788880216\\
+53.9177464038745 -88.9374702188989\\
+59.1250841383182 -89.0310319562247\\
+64.8353428605466 -89.1163579265961\\
+71.0970943231237 -89.1941723892348\\
+77.9636013040516 -89.2651360791147\\
+85.493270662683 -89.3298517380974\\
+93.7501501514519 -89.3888691742859\\
+100 -89.4270613023165\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.pdf b/matlab/figs/comp_filter_1st_order_loop_gain.pdf
new file mode 100644
index 0000000..f1e81df
Binary files /dev/null and b/matlab/figs/comp_filter_1st_order_loop_gain.pdf differ
diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.png b/matlab/figs/comp_filter_1st_order_loop_gain.png
new file mode 100644
index 0000000..121473c
Binary files /dev/null and b/matlab/figs/comp_filter_1st_order_loop_gain.png differ
diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.svg b/matlab/figs/comp_filter_1st_order_loop_gain.svg
new file mode 100644
index 0000000..fc81bef
--- /dev/null
+++ b/matlab/figs/comp_filter_1st_order_loop_gain.svg
@@ -0,0 +1,471 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.tex b/matlab/figs/comp_filter_1st_order_loop_gain.tex
new file mode 100644
index 0000000..6bcb76e
--- /dev/null
+++ b/matlab/figs/comp_filter_1st_order_loop_gain.tex
@@ -0,0 +1,75 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.551in,2.205in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.01,
+ymax=100,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 100\\
+100 0.01\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.551in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -90\\
+100 -90\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.pdf b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.pdf
new file mode 100644
index 0000000..d9b168d
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.pdf differ
diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.png b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.png
new file mode 100644
index 0000000..93481a1
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.png differ
diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.svg b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.svg
new file mode 100644
index 0000000..563f118
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.svg
@@ -0,0 +1,57 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.tex b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.tex
new file mode 100644
index 0000000..9377b04
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.tex
@@ -0,0 +1,43 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.229in,
+height=1.991in,
+at={(0.419in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmin=0,
+xmax=10,
+xlabel={$\alpha$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=0,
+ymax=15,
+ylabel={$M_S$},
+axis background/.style={fill=white},
+xmajorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.0999999999999996 14.8660687473185\\
+0.166810053720006 9.21227215633969\\
+0.278255940220712 5.83254838196024\\
+0.464158883361279 3.81995380172187\\
+0.774263682681127 2.63045631106656\\
+1.29154966501488 1.93584500051015\\
+2.15443469003188 1.53597028119978\\
+3.59381366380463 1.30819135334922\\
+5.99484250318941 1.17867353218953\\
+10 1.10453610171873\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_2nd_order_alphas.pdf b/matlab/figs/comp_filter_2nd_order_alphas.pdf
new file mode 100644
index 0000000..c7fbf10
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alphas.pdf differ
diff --git a/matlab/figs/comp_filter_2nd_order_alphas.png b/matlab/figs/comp_filter_2nd_order_alphas.png
new file mode 100644
index 0000000..13460f3
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alphas.png differ
diff --git a/matlab/figs/comp_filter_2nd_order_alphas.svg b/matlab/figs/comp_filter_2nd_order_alphas.svg
new file mode 100644
index 0000000..a5eb481
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_alphas.svg
@@ -0,0 +1,539 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_2nd_order_alphas.tex b/matlab/figs/comp_filter_2nd_order_alphas.tex
new file mode 100644
index 0000000..32127ce
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_alphas.tex
@@ -0,0 +1,1234 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.561in,
+at={(0.551in,2.203in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.0001,
+ymax=20,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00011000999153452\\
+0.0948368186628592 0.00997503172507125\\
+0.164898694447106 0.0306716741665862\\
+0.231934505927443 0.0622407363222623\\
+0.294760625512486 0.103883295418649\\
+0.357728509936787 0.159692614062287\\
+0.418428850790158 0.230132782973217\\
+0.476077523022637 0.316572332147375\\
+0.531772317785097 0.42416171550181\\
+0.583130511352623 0.551999278551874\\
+0.633580499265825 0.715130451386288\\
+0.682077673286569 0.922743072959983\\
+0.727548352919623 1.18526940704043\\
+0.768928372075831 1.51245017775262\\
+0.805203967082547 1.90830296813349\\
+0.843190929286625 2.50214806142132\\
+0.874866812047991 3.23350828714072\\
+0.907732652521023 4.39346332533332\\
+0.941833153464795 6.3584279243046\\
+0.977214696972572 9.33895693272526\\
+0.986265846131282 9.99890007147308\\
+0.995400828762153 10.421644699365\\
+1.00462042134681 10.5135656937003\\
+1.01392540755882 10.2658182173333\\
+1.03279473191895 9.10747255049796\\
+1.11184960481927 4.95253209414263\\
+1.15361810173648 3.9657763566303\\
+1.19695570235904 3.32609635792297\\
+1.24192135270178 2.88423447889367\\
+1.28857621318552 2.56317834756565\\
+1.34936714058831 2.26897110886958\\
+1.41302599059953 2.05185704318564\\
+1.4796880626864 1.88580201055633\\
+1.54949503931463 1.75522496626969\\
+1.63762407452169 1.63172429543273\\
+1.73076553419573 1.53429824322843\\
+1.84614694632455 1.44431745974059\\
+1.96922025547917 1.37297391535643\\
+2.11995345753607 1.30813288680465\\
+2.2822244741869 1.25652206630929\\
+2.47967289250216 1.21023169662896\\
+2.71915794303602 1.16972000632176\\
+3.00939003444972 1.13500934534776\\
+3.39258338274099 1.10372991648813\\
+3.8957456157755 1.07705722865243\\
+4.55678626584106 1.05537215724102\\
+5.47947233690029 1.03776370586108\\
+6.89983712143002 1.02354762255081\\
+9.35343152029239 1.01270288018394\\
+14.2940453343176 1.00540729711164\\
+28.804441533963 1.00132721107208\\
+100 1.00011000979108\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00011000979108\\
+0.0598104096238094 1.00394759144816\\
+0.103041699495059 1.01179102194002\\
+0.144930957412622 1.02354762255081\\
+0.185895667963569 1.03922800960517\\
+0.225607406649686 1.05867394683249\\
+0.263889081445751 1.0817373619654\\
+0.30302710828664 1.11017316412578\\
+0.341612326858553 1.14361709756659\\
+0.378074666359935 1.18085418678031\\
+0.414588849683291 1.22448280681905\\
+0.450457325175946 1.27455991007988\\
+0.484937406733523 1.33067985110484\\
+0.517265738721602 1.3917727135042\\
+0.551749237612912 1.46786175437543\\
+0.583130511352623 1.54905944332692\\
+0.616296625513294 1.65026069542283\\
+0.65134909462728 1.7790344048865\\
+0.682077673286569 1.91577909874005\\
+0.714255928554313 2.09055466867537\\
+0.747952251562182 2.32054249650641\\
+0.776050333513357 2.56317834756565\\
+0.805203967082547 2.88423447889366\\
+0.835452805838287 3.32609635792296\\
+0.866837993001977 3.9657763566303\\
+0.89114823228402 4.6605850766061\\
+0.916140245713852 5.65942751852079\\
+0.95055659201012 7.74413624785297\\
+0.977214696972572 9.75814758247962\\
+0.986265846131282 10.2658182173333\\
+0.995400828762153 10.5135656937003\\
+1.00462042134681 10.421644699365\\
+1.01392540755882 9.99890007147309\\
+1.03279473191895 8.56448066999078\\
+1.11184960481927 4.04663885599879\\
+1.15361810173648 3.02038240758742\\
+1.20804213467733 2.2326550891716\\
+1.2650337203959 1.73213799663557\\
+1.33698374182495 1.33351824980578\\
+1.41302599059953 1.06066070530867\\
+1.50722530931076 0.835860496725985\\
+1.62259528707809 0.654171723842226\\
+1.76297537528721 0.508883676890327\\
+1.93324228755505 0.393428228078886\\
+2.15940615210357 0.295147645384062\\
+2.45691646298279 0.215441770866556\\
+2.84743916646725 0.153152765429669\\
+3.42400613797143 0.101821549172881\\
+4.31156199031823 0.0622407363222622\\
+5.84476113163363 0.033084158524133\\
+9.01477631452492 0.0136890732065714\\
+18.6754584276108 0.00316215463550021\\
+100 0.00011000999153452\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000200002499984275\\
+0.254334576130465 0.130396384379877\\
+0.64537154016467 0.845298735555639\\
+0.720871503378214 1.03455438511031\\
+0.78323825991792 1.18766939310827\\
+0.835452805838287 1.30689415455522\\
+0.882969995549409 1.40396754515418\\
+0.933189771573324 1.49153384757856\\
+0.977214696972572 1.55410681973306\\
+1.02331657833024 1.60507585169601\\
+1.07159339982267 1.6432116966054\\
+1.12214776820798 1.66818082338756\\
+1.17508713090481 1.68051772481778\\
+1.23052400435926 1.68145530213416\\
+1.30051125217341 1.66991840006451\\
+1.38720978054162 1.64309691578595\\
+1.49339321612425 1.60079215794376\\
+1.66810053720006 1.52623854777293\\
+2.34622884814226 1.31009566957629\\
+2.69420371368188 1.24379072523403\\
+3.09378757173014 1.19008035470123\\
+3.55263467657814 1.14728899801843\\
+4.11731993116168 1.11162143381601\\
+4.81595791019235 1.08275967517945\\
+5.73797641421413 1.05898967011018\\
+7.02824426430835 1.03969653824807\\
+8.93204599858097 1.02476090024529\\
+12.1082975023204 1.01354959471703\\
+18.3342548256229 1.00593220623828\\
+35.9381366380463 1.00154733001747\\
+100 1.0001999800035\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.0001999800035\\
+0.0462024137175131 1.0042602463122\\
+0.0788672861561415 1.01236354570269\\
+0.110928986489522 1.0243139192752\\
+0.143600898465126 1.04042077069286\\
+0.177520801171763 1.06114056512513\\
+0.211507282486879 1.08574204351403\\
+0.247396410088681 1.11558710633772\\
+0.286719649749377 1.15242994167755\\
+0.329243733300777 1.19657090205498\\
+0.378074666359935 1.25187250280279\\
+0.434147833005509 1.31995107455361\\
+0.503154894503806 1.40731073694288\\
+0.68839520696455 1.61772792535009\\
+0.741088151564157 1.65605532050137\\
+0.790492762269643 1.67723529487113\\
+0.835452805838287 1.68217365560447\\
+0.874866812047991 1.67457557685657\\
+0.916140245713852 1.65476758816363\\
+0.959360828709314 1.62190938578185\\
+1.00462042134681 1.57597495934258\\
+1.05201521761616 1.51784259281095\\
+1.10164594963366 1.44922327520549\\
+1.16430313292088 1.35633167680745\\
+1.24192135270178 1.23915349502241\\
+1.33698374182495 1.10196786385343\\
+1.46610868404698 0.937036072039732\\
+1.6527920614649 0.746809070862658\\
+1.98745954958098 0.517922013367215\\
+22.6649807927369 0.00389425992481629\\
+100 0.000200002499984275\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00109459501424697\\
+0.0199664245010979 0.00430115733604247\\
+0.0299554933435981 0.00945910726019446\\
+0.0402350554886929 0.0165301675946335\\
+0.0506646100892127 0.0252071445623184\\
+0.062057288067765 0.036026063938788\\
+0.0746230289139111 0.0491329068813126\\
+0.0880937190447399 0.0640897791231573\\
+0.103041699495059 0.0813320067178546\\
+0.120526093687084 0.101906000032255\\
+0.140977287162897 0.126090323972934\\
+0.164898694447106 0.154163916825114\\
+0.192879150802078 0.186424004137343\\
+0.227697025538168 0.225498885284812\\
+0.271289780037246 0.272638212300862\\
+0.323228397818138 0.32617591990016\\
+0.385110700232557 0.386229704610632\\
+0.45462954695324 0.448859273477362\\
+0.531772317785097 0.512429740578937\\
+0.616296625513294 0.575126956945611\\
+0.707701066118189 0.635176738609605\\
+0.805203967082547 0.691066916069106\\
+0.916140245713852 0.745523051311799\\
+1.03279473191895 0.793722092315571\\
+1.16430313292088 0.838734666226132\\
+1.31255683577184 0.879862764245451\\
+1.49339321612425 0.91928022142434\\
+1.69914417203463 0.953386213285263\\
+1.95114834684662 0.984068321553667\\
+2.26128006633728 1.01047368303178\\
+2.64498018242772 1.03205924387224\\
+3.15136348486648 1.04933061717622\\
+3.824569722467 1.06135356501523\\
+4.77176094893875 1.06768352771173\\
+6.1204983724767 1.0673103167763\\
+8.29695852083491 1.05899335616854\\
+13.9041083409007 1.03603979631949\\
+22.874908173557 1.01736925763048\\
+36.2710025233065 1.00771932389322\\
+67.8940681269611 1.00233114028795\\
+100 1.00108813352155\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00108813352155\\
+0.0253749037973357 1.00661687106089\\
+0.0425234633452868 1.01659108018125\\
+0.0668074391569562 1.03278330043247\\
+0.156024641436637 1.06652704396054\\
+0.203849339825246 1.06799911216205\\
+0.256690271549195 1.06216085134681\\
+0.314410830314726 1.05006070637405\\
+0.378074666359935 1.03205924387224\\
+0.446323392671039 1.00900393358045\\
+0.517265738721602 0.982206398785581\\
+0.593982669392036 0.951127154684815\\
+0.675818116816111 0.916639458278087\\
+0.768928372075831 0.876849105056871\\
+0.866837993001977 0.835402512752721\\
+0.977214696972572 0.790117327490484\\
+1.10164594963366 0.741707797302705\\
+1.24192135270178 0.691066916069106\\
+1.41302599059953 0.635176738609605\\
+1.62259528707809 0.575126956945611\\
+1.86324631193156 0.516280035813484\\
+2.15940615210357 0.456133959943077\\
+2.52582002696278 0.396294893968173\\
+2.98177229001967 0.338279915746869\\
+3.55263467657814 0.283368943385507\\
+4.23278906557355 0.234906605230083\\
+4.99687745385488 0.19465725120724\\
+5.84476113163363 0.161366371750978\\
+6.83651600451024 0.132335354090866\\
+7.99655452589235 0.107261456422579\\
+9.35343152029239 0.0858626913913848\\
+10.9405470720574 0.0678623481643624\\
+12.7969686821594 0.052968280560563\\
+15.1070330448665 0.0402264899025542\\
+18.1659978837533 0.0292251438100276\\
+22.2508879812837 0.0202789457939604\\
+28.2781797962534 0.0129752865416223\\
+37.9821530619074 0.00737585961313597\\
+56.4614141930367 0.00339818308874041\\
+100 0.00109459501424697\\
+};
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00714177854284208\\
+0.0116968270397038 0.00897940567704633\\
+0.0136815762796747 0.0111557824544801\\
+0.0161513269350309 0.0138688340306831\\
+0.0192435097523033 0.0172444920420194\\
+0.0231400538013065 0.0214499179845134\\
+0.0286059553517574 0.0272648378662239\\
+0.0366914237840249 0.0357334970261255\\
+0.0497389595879006 0.0491947457751519\\
+0.0739381991917587 0.0738095980935781\\
+0.120526093687084 0.120454816918421\\
+0.18935521797563 0.187666868580361\\
+0.263889081445751 0.25754684711699\\
+0.341612326858553 0.326395528596839\\
+0.422304418720667 0.392855746258358\\
+0.507815211232767 0.457264232776662\\
+0.593982669392036 0.51577181914434\\
+0.68839520696455 0.57269630387518\\
+0.790492762269643 0.626350164678265\\
+0.899402217409204 0.675431582854443\\
+1.02331657833024 0.722397026926264\\
+1.16430313292088 0.766237374255524\\
+1.32471398786612 0.806164124024245\\
+1.50722530931076 0.841673864359173\\
+1.73076553419573 0.874593518724949\\
+1.98745954958098 0.902305288237749\\
+2.32469705998565 0.927880019243842\\
+2.76976193503689 0.950062028652928\\
+3.36144900010876 0.968152214633505\\
+4.23278906557355 0.983019344417046\\
+5.63314267060136 0.994518730127834\\
+8.29695852083491 1.00277439573499\\
+14.9683929307726 1.00763432746443\\
+42.0362168384471 1.00830506289828\\
+100 1.00501244024626\\
+};
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00501244024626\\
+0.0421332174384729 1.00866981635658\\
+0.104959323055823 1.00449221186842\\
+0.169523234155412 0.995856539708304\\
+0.234082727617829 0.983494129179552\\
+0.300246170908555 0.967420706310597\\
+0.367760910160103 0.948010810063962\\
+0.438168993151419 0.925170353041762\\
+0.512518692705333 0.898900451286246\\
+0.593982669392036 0.868433666321489\\
+0.682077673286569 0.834451083296424\\
+0.776050333513357 0.797967702355188\\
+0.882969995549409 0.757149657660153\\
+0.995400828762153 0.715857452984255\\
+1.13254131515281 0.668523948777075\\
+1.28857621318552 0.619230987106355\\
+1.4796880626864 0.565532206953117\\
+1.71488196987054 0.508753595603613\\
+2.00586777950823 0.450582053501637\\
+2.38989256623105 0.389787694077374\\
+2.92729483504282 0.326395528596839\\
+3.72023668141307 0.262026421175816\\
+4.99687745385488 0.19796907792997\\
+7.35981447526576 0.13562893598495\\
+11.9971773543588 0.0833064218451001\\
+18.848434090338 0.0525892644236617\\
+26.5108360190854 0.0368027768552253\\
+34.6369417737173 0.0275445800016243\\
+43.2151112778977 0.0214499179845134\\
+52.4468874949512 0.0170525834940166\\
+62.4878807200689 0.0137062878781458\\
+73.7679760252773 0.0110177769746878\\
+86.285125663669 0.0088622532037533\\
+100 0.00714177854284208\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.561in,
+at={(0.551in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.699,2.8)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 179.890616186259\\
+0.0118051652856881 179.870870152282\\
+0.0138082976521811 179.848958367422\\
+0.0158562396177109 179.82655608827\\
+0.0182079168009943 179.800830792788\\
+0.0207164967560208 179.773388468632\\
+0.0233543813990654 179.744530805876\\
+0.0260865361762251 179.714640848219\\
+0.0291383170483282 179.681252794687\\
+0.0325471160553176 179.643956865912\\
+0.0360210656235708 179.605945791722\\
+0.0398658107358057 179.563874500998\\
+0.0441209286319117 179.51730849136\\
+0.048382096649261 179.470671342178\\
+0.0530548052536955 179.419523691123\\
+0.058178800743451 179.363427775434\\
+0.0637976680860626 179.301902795932\\
+0.0699592016543557 179.234420475085\\
+0.0767158117677927 179.160400069187\\
+0.0833529396509846 179.087664934189\\
+0.0905642837944531 179.008607142611\\
+0.0983995229627797 178.922669864954\\
+0.106912633917349 178.82924461827\\
+0.116162263260848 178.727665450323\\
+0.126212131452257 178.617202051044\\
+0.137131471775393 178.497051438827\\
+0.148995507285289 178.366327713044\\
+0.161885969017819 178.224049130801\\
+0.175891659032778 178.069121414555\\
+0.191109062168914 177.900315664591\\
+0.207643010725571 177.716238436402\\
+0.225607406649687 177.515290287949\\
+0.245126006203328 177.295607145322\\
+0.266333272517501 177.054975744727\\
+0.286719649749373 176.821336663173\\
+0.308666494333735 176.56671740572\\
+0.332293251639897 176.288242136401\\
+0.357728509936777 175.982250008116\\
+0.385110700232562 175.643959408457\\
+0.41078408899656 175.316470334147\\
+0.438168993151433 174.953590342049\\
+0.46737951079925 174.547476418624\\
+0.493962174387827 174.156822245438\\
+0.522056752784682 173.716989432436\\
+0.551749237612921 173.214833709043\\
+0.577779011797049 172.735511875204\\
+0.605036787939111 172.184866361391\\
+0.633580499265845 171.54148401753\\
+0.657382014340971 170.939615595619\\
+0.682077673286572 170.236209388027\\
+0.707701066118183 169.399176682674\\
+0.734287044716661 168.381536760081\\
+0.761871770232323 167.11183453999\\
+0.783238259917936 165.928079064579\\
+0.805203967082557 164.46580364877\\
+0.827785696619849 162.611123957826\\
+0.851000724712218 160.180938797392\\
+0.874866812047975 156.864030033359\\
+0.891148232283998 153.898512899943\\
+0.907732652520995 150.018885336893\\
+0.9246257116406 144.77959242105\\
+0.941833153464815 137.463345996736\\
+0.959360828709328 126.97401057248\\
+0.97721469697258 112.027985763161\\
+1.04236067397639 47.5780285296383\\
+1.06175918348298 37.0937495208465\\
+1.08151870255226 29.7843856775866\\
+1.10164594963369 24.5537900046789\\
+1.13254131515284 19.113954417124\\
+1.16430313292089 15.4147632241557\\
+1.19695570235905 12.7568801249449\\
+1.23052400435925 10.7635531355031\\
+1.26503372039588 9.21761532002122\\
+1.30051125217337 7.98628099235009\\
+1.34936714058834 6.6907092804561\\
+1.40005838246811 5.67657498367879\\
+1.45265392594678 4.86362680748721\\
+1.50722530931073 4.19952127115729\\
+1.5638467583022 3.64868446121062\\
+1.62259528707813 3.18609403408996\\
+1.69914417203464 2.70481229070225\\
+1.77930438991856 2.3078910443175\\
+1.86324631193151 1.97714078508898\\
+1.95114834684666 1.69923163591278\\
+2.04319732019529 1.46415030588136\\
+2.1395888713434 1.26421232472131\\
+2.24052786929996 1.09341003992219\\
+2.34622884814232 0.946970498075387\\
+2.45691646298281 0.821048376570019\\
+2.57282596744791 0.712508054708564\\
+2.69420371368182 0.618765868027879\\
+2.82130767593954 0.537673831422154\\
+2.9544079988804 0.467432470459926\\
+3.09378757173011 0.406524436673124\\
+3.23974262952812 0.353663201702176\\
+3.4240061379715 0.299319935435449\\
+3.61874981241128 0.253397301941078\\
+3.82456972246693 0.214565648059079\\
+4.04209583979642 0.181713753461906\\
+4.27199396630681 0.153910153948516\\
+4.51496777203605 0.130372192041392\\
+4.8159579101925 0.107429432008587\\
+5.13701354335138 0.0885292117016263\\
+5.5302242561928 0.0709681455149109\\
+5.95353313081449 0.0568919720068664\\
+6.46860766154627 0.0443650957495549\\
+7.09334120498816 0.0336534221946465\\
+7.92316862486613 0.0241549368843721\\
+9.01477631452495 0.0164044563326513\\
+10.5444279352618 0.0102537330737391\\
+12.9154966501489 0.00558135255624848\\
+17.188391428171 0.00236853618349642\\
+27.5067600790807 0.000578044547125955\\
+92.0373199661849 1.54327884160921e-05\\
+100 1.20319814698178e-05\\
+};
+\addlegendentry{$\alpha = 0.1$}
+
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -1.20319814698178e-05\\
+0.0506646100892133 -0.00156435955159395\\
+0.0739381991917593 -0.00486073243558849\\
+0.0931041348706901 -0.00970221248641678\\
+0.10991097009295 -0.0159572460626407\\
+0.126212131452257 -0.0241549368843721\\
+0.140977287162893 -0.0336534221946465\\
+0.154592773641949 -0.0443650957495549\\
+0.167967487209262 -0.0568919720068664\\
+0.180824493487798 -0.0709681455148825\\
+0.194665634334225 -0.0885292117016263\\
+0.207643010725571 -0.107429432008587\\
+0.221485523372639 -0.130372192041392\\
+0.234082727617828 -0.153910153948516\\
+0.247396410088675 -0.181713753461906\\
+0.261467321180114 -0.214565648059079\\
+0.276338529005317 -0.253397301941078\\
+0.28937530190509 -0.291120322516832\\
+0.303027108286649 -0.334520694051378\\
+0.317322963473503 -0.384479591127587\\
+0.332293251639897 -0.442025996989429\\
+0.347969790388763 -0.508365885616513\\
+0.364385898376366 -0.584918817023379\\
+0.381576466127131 -0.673364399428948\\
+0.399578030189527 -0.775702070503229\\
+0.418428850790151 -0.894329125007914\\
+0.438168993151433 -1.03214413114233\\
+0.458840412645483 -1.19268626486235\\
+0.480487043965512 -1.38032637645068\\
+0.503154894503796 -1.60053403940825\\
+0.526892142135084 -1.86025864345731\\
+0.551749237612921 -2.1684858632876\\
+0.572476623970219 -2.45783044941797\\
+0.593982669392029 -2.79362847192951\\
+0.616296625513279 -3.18609403408996\\
+0.639448842855712 -3.64868446121062\\
+0.663470812109245 -4.19952127115729\\
+0.688395206964551 -4.86362680748721\\
+0.714255928554305 -5.67657498367879\\
+0.741088151564139 -6.6907092804561\\
+0.761871770232323 -7.6300617888578\\
+0.783238259917936 -8.77716895914736\\
+0.805203967082557 -10.2063642915651\\
+0.827785696619849 -12.0316496115693\\
+0.851000724712218 -14.4362319869988\\
+0.874866812047975 -17.7314229043297\\
+0.891148232283998 -20.6846598589626\\
+0.907732652520995 -24.553790004679\\
+0.9246257116406 -29.7843856775865\\
+0.941833153464815 -37.0937495208463\\
+0.959360828709328 -47.5780285296376\\
+0.97721469697258 -62.5208315624776\\
+1.04236067397639 -126.97401057248\\
+1.06175918348298 -137.463345996736\\
+1.08151870255226 -144.77959242105\\
+1.10164594963369 -150.018885336893\\
+1.13254131515284 -155.475136786748\\
+1.16430313292089 -159.194732385009\\
+1.19695570235905 -161.876933019613\\
+1.23052400435925 -163.898401681179\\
+1.26503372039588 -165.476203509588\\
+1.30051125217337 -166.743010467117\\
+1.34936714058834 -168.091275449524\\
+1.40005838246811 -169.163972937608\\
+1.45265392594678 -170.041004818518\\
+1.50722530931073 -170.77434309062\\
+1.57833140565207 -171.54148401753\\
+1.65279206146492 -172.184866361391\\
+1.73076553419573 -172.735511875204\\
+1.82920450484626 -173.303560975847\\
+1.9332422875551 -173.794211763824\\
+2.04319732019529 -174.225052674339\\
+2.17940698430292 -174.668485433235\\
+2.32469705998571 -175.061292069653\\
+2.47967289250217 -175.413364910008\\
+2.66947849403426 -175.774967425527\\
+2.87381269185112 -176.100495879283\\
+3.09378757173011 -176.395678020667\\
+3.33060034362469 -176.664826381851\\
+3.61874981241128 -176.940622965401\\
+3.93182875570566 -177.191393081447\\
+4.27199396630681 -177.420088615373\\
+4.64158883361268 -177.629114860254\\
+5.04315948717143 -177.820478679981\\
+5.4794723369002 -177.99588859785\\
+5.95353313081449 -178.156823632671\\
+6.46860766154627 -178.304581539006\\
+7.02824426430854 -178.440313301867\\
+7.63629826128223 -178.565048343193\\
+8.29695852083464 -178.679713370898\\
+9.01477631452495 -178.785146815748\\
+9.79469667069515 -178.882110158887\\
+10.7406615333344 -178.980754704548\\
+11.7779870119709 -179.070661780782\\
+12.9154966501489 -179.152614374599\\
+14.1628661629916 -179.227322714135\\
+15.5307057393347 -179.295431797835\\
+17.030650292528 -179.357527914337\\
+18.6754584276109 -179.41414435352\\
+20.4791209666503 -179.465766454201\\
+22.4569799553979 -179.512836096701\\
+24.8539485742973 -179.559833841532\\
+27.5067600790807 -179.602295119778\\
+30.4427221206439 -179.640658490246\\
+34.0041193270367 -179.678300042692\\
+37.982153061908 -179.711997472261\\
+42.4255643071768 -179.742164368861\\
+47.8277201772749 -179.771289387427\\
+54.41714286866 -179.798985939841\\
+61.9144175597768 -179.823328120186\\
+71.0970943231237 -179.846147359735\\
+82.3978568452854 -179.867248647582\\
+96.3793479961591 -179.886506923185\\
+100 -179.890616186259\\
+};
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 179.140541819131\\
+0.0108651577465251 179.066180913746\\
+0.0118051652856881 178.985385425413\\
+0.0128264983052803 178.897598324276\\
+0.0139361927422416 178.802214293323\\
+0.0151418932530433 178.698575523814\\
+0.0164519058775369 178.585967139322\\
+0.0178752552590422 178.463612214069\\
+0.0194217468148908 178.33066634769\\
+0.0211020342856859 178.186211754458\\
+0.0229276931286557 178.029250820384\\
+0.024911300260678 177.858699076228\\
+0.0270665207003317 177.673377528297\\
+0.0294082017058709 177.472004281686\\
+0.0319524750575915 177.253185382145\\
+0.0347168681892662 177.01540479274\\
+0.0377204249341695 176.757013409527\\
+0.0409838367175735 176.476217006071\\
+0.0445295850994262 176.171062979232\\
+0.048382096649261 175.839425747327\\
+0.0525679112201842 175.478990625575\\
+0.0571158647812626 175.087235971119\\
+0.0620572880677654 174.661413349196\\
+0.0674262224177818 174.198525420591\\
+0.0732596542821532 173.69530118524\\
+0.0795977700231485 173.148168133228\\
+0.0864842327573189 172.55322074672\\
+0.0939664831495459 171.906184656432\\
+0.102096066230607 171.202375573443\\
+0.110928986489522 170.436651876487\\
+0.120526093687088 169.603359416286\\
+0.130953502048267 168.696266674078\\
+0.142283045721431 167.708487843283\\
+0.154592773641949 166.632390639035\\
+0.167967487209262 165.459484609244\\
+0.182499324481618 164.180284327355\\
+0.198288394912704 162.784139964763\\
+0.215443469003193 161.25902520788\\
+0.234082727617828 159.591269104258\\
+0.254334576130472 157.765213979058\\
+0.273802517792786 155.994605453913\\
+0.294760625512479 154.070012521692\\
+0.317322963473503 151.974508346327\\
+0.341612326858549 149.688398843799\\
+0.367760910160114 147.188598890997\\
+0.395911026646847 144.447868713858\\
+0.426215882901522 141.43390558696\\
+0.458840412645483 138.108318646075\\
+0.493962174387827 134.425585791316\\
+0.526892142135084 130.868387374552\\
+0.562017384808323 126.956012476093\\
+0.599484250318932 122.643476990318\\
+0.639448842855712 117.883742338743\\
+0.682077673286572 112.631890851862\\
+0.72754835291961 106.852448921247\\
+0.783238259917936 99.583768053304\\
+0.851000724712218 90.6087674158485\\
+0.941833153464815 78.7708783057402\\
+1.1430311291145 55.9187419707596\\
+1.24192135270177 47.0880801000996\\
+1.32471398786616 40.8912374401886\\
+1.41302599059955 35.3325151356853\\
+1.50722530931073 30.4091041821993\\
+1.59295021257217 26.6706174789304\\
+1.68355080296122 23.3449774883793\\
+1.77930438991856 20.3977730401079\\
+1.88050405512853 17.7936207145015\\
+1.98745954958102 15.4980702643012\\
+2.10049824165391 13.4786596598881\\
+2.21996611911991 11.7054117283705\\
+2.34622884814232 10.1509893653246\\
+2.47967289250217 8.79065689917491\\
+2.62070669648381 7.60214152983144\\
+2.76976193503698 6.56545117925415\\
+2.92729483504285 5.66268047001788\\
+3.09378757173011 4.87782126735144\\
+3.26974974451167 4.19658522382875\\
+3.4557199367622 3.60624078908364\\
+3.65226736430817 3.09546462758993\\
+3.85999361767968 2.65420629832997\\
+4.07953450345255 2.27356474062231\\
+4.31156199031825 1.94567518410261\\
+4.55678626584099 1.66360532736672\\
+4.8159579101925 1.4212598839477\\
+5.08987019351974 1.2132928157354\\
+5.37936150398065 1.03502674034729\\
+5.68531791387359 0.882379108899897\\
+6.00867589171979 0.751794812774932\\
+6.35042516859595 0.640184904609157\\
+6.71161176749614 0.544871122134708\\
+7.09334120498816 0.463535894124391\\
+7.49678187496691 0.394177493551723\\
+7.92316862486613 0.335069989677692\\
+8.37380653526675 0.284727641492367\\
+8.85007491447353 0.24187337143951\\
+9.3534315202923 0.205410961081128\\
+9.88541702191929 0.174400618945526\\
+10.4476597156082 0.148037584405415\\
+11.0418805085416 0.12563344898075\\
+11.7779870119709 0.103718921983869\\
+12.5631660247414 0.085607549215041\\
+13.5248087041786 0.0687310983303746\\
+14.5600599502069 0.0551690376783256\\
+15.819734815786 0.0430727965863014\\
+17.3475935923388 0.0327083725645139\\
+19.3770333747798 0.0235007069800588\\
+22.0466873523944 0.0159747533442669\\
+25.7876288759386 0.00999326540318179\\
+31.5863540826787 0.00544347880594387\\
+42.0362168384463 0.00231143679599199\\
+67.8940681269615 0.000548984449835643\\
+100 0.000171852971391218\\
+};
+\addlegendentry{$\alpha = 1$}
+
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.000171852971391218\\
+0.0229276931286557 -0.00206951628675256\\
+0.0319524750575915 -0.00559593178542173\\
+0.0398658107358057 -0.0108559947941558\\
+0.0470622484984116 -0.0178380173853441\\
+0.0535462089927357 -0.0262393964248417\\
+0.0598104096238105 -0.036516493471737\\
+0.0655868565957134 -0.0480828054025153\\
+0.0712611543011191 -0.0615794597090655\\
+0.0767158117677927 -0.0767089343469536\\
+0.0818300681586717 -0.092948646376442\\
+0.0872852662384851 -0.112602540939889\\
+0.0931041348706901 -0.136379594716431\\
+0.0983995229627797 -0.160683739104343\\
+0.103996091395414 -0.189277512401475\\
+0.10991097009295 -0.222905322260715\\
+0.116162263260848 -0.262436947294901\\
+0.122769104798839 -0.308887535881297\\
+0.128560960694331 -0.353729794456513\\
+0.13462605792989 -0.404981901632993\\
+0.140977287162893 -0.463535894124391\\
+0.147628147190943 -0.530402259747262\\
+0.154592773641949 -0.606724380842252\\
+0.161885969017819 -0.693794465186755\\
+0.169523234155408 -0.793071064487521\\
+0.177520801171768 -0.906198278556502\\
+0.18589566796357 -1.03502674034732\\
+0.194665634334225 -1.18163647359813\\
+0.203849339825241 -1.3483617115879\\
+0.21346630333243 -1.53781776348328\\
+0.223536964590981 -1.75293001529448\\
+0.234082727617828 -1.99696515726978\\
+0.245126006203328 -2.27356474062231\\
+0.256690271549201 -2.5867811858829\\
+0.268800102153763 -2.94111639479911\\
+0.281481236050756 -3.34156315870447\\
+0.297490754721436 -3.89079062182367\\
+0.314410830314732 -4.52508075064765\\
+0.332293251639897 -5.25644327732672\\
+0.351192753045066 -6.09836869664178\\
+0.371167181947586 -7.06598395266519\\
+0.392277675892774 -8.17622276853098\\
+0.414588849683285 -9.4480096490496\\
+0.438168993151433 -10.9024529956355\\
+0.463090280179979 -12.5630360219451\\
+0.489428989611449 -14.4557823527101\\
+0.517265738721588 -16.6093536662103\\
+0.546685729972028 -19.0550060994948\\
+0.577779011797049 -21.826286788193\\
+0.610640754223191 -24.9582899308336\\
+0.645371540164686 -28.4862173121549\\
+0.682077673286572 -32.4429202494216\\
+0.720871503378203 -36.8550857323478\\
+0.768928372075853 -42.5975208479043\\
+0.820188949920225 -48.971272736377\\
+0.88296999554939 -56.9520182239236\\
+0.97721469697258 -68.7971139737399\\
+1.18597101233768 -91.6434780099358\\
+1.28857621318549 -100.53055754767\\
+1.38720978054164 -107.711255867259\\
+1.49339321612424 -114.184979506065\\
+1.59295021257217 -119.292018274622\\
+1.69914417203464 -123.919199052386\\
+1.82920450484626 -128.679043311146\\
+1.96922025547921 -132.941832821426\\
+2.11995345753606 -136.771839681245\\
+2.28222447418683 -140.225608052001\\
+2.45691646298281 -143.351570122283\\
+2.64498018242767 -146.19067340454\\
+2.84743916646731 -148.777379356969\\
+3.06539529505651 -151.140712524996\\
+3.30003479112518 -153.305218656845\\
+3.58553985745983 -155.528512278089\\
+3.89574561577541 -157.551788429064\\
+4.2327890655736 -159.396499306032\\
+4.59899209052235 -161.08103079855\\
+4.99687745385497 -162.621286411947\\
+5.42918617761888 -164.031139396366\\
+5.89889642550864 -165.322784381401\\
+6.40924401935642 -166.50701276971\\
+6.96374473062844 -167.593430316242\\
+7.56621850048106 -168.590630746017\\
+8.22081575524031 -169.50633577533\\
+8.93204599858103 -170.347509284417\\
+9.70480887738009 -171.120451443748\\
+10.5444279352618 -171.830877155225\\
+11.4566872863485 -172.483982103412\\
+12.4478714618793 -173.08449892198\\
+13.5248087041786 -173.636745393414\\
+14.6949180062486 -174.144666161795\\
+15.9662602210142 -174.611869109573\\
+17.3475935923388 -175.04165730116\\
+18.848434090338 -175.437057207651\\
+20.4791209666503 -175.800843782949\\
+22.2508879812839 -176.135562850686\\
+24.1759407916908 -176.443551175377\\
+26.2675410372388 -176.726954524162\\
+28.540097698292 -176.987743972711\\
+31.00926635932 -177.227730667064\\
+33.6920570598025 -177.448579219803\\
+36.6069514759701 -177.651819892065\\
+39.7740302405804 -177.838859691163\\
+43.2151112778964 -178.010992495726\\
+46.9539001068009 -178.169408305628\\
+51.0161531474972 -178.315201701751\\
+55.4298551568474 -178.449379590437\\
+60.2254120146183 -178.572868298837\\
+65.4358601888336 -178.686520080045\\
+71.0970943231237 -178.7911190806\\
+77.248114514036 -178.88738681752\\
+84.7086826655735 -178.985385425413\\
+92.8897872016474 -179.074751248027\\
+100 -179.140541819131\\
+};
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 173.767987881634\\
+0.0108651577465251 173.232411722796\\
+0.0118051652856881 172.651504308286\\
+0.0128264983052803 172.021622361073\\
+0.0139361927422416 171.338883456892\\
+0.0151418932530433 170.599165489829\\
+0.0164519058775369 169.798111131377\\
+0.0178752552590422 168.931138825769\\
+0.0194217468148908 167.993462168442\\
+0.0211020342856859 166.980119832225\\
+0.0229276931286557 165.88601851242\\
+0.024911300260678 164.705991617222\\
+0.0270665207003317 163.434876573892\\
+0.0296805860866562 161.909547381834\\
+0.0325471160553176 160.258919633282\\
+0.0356904934567525 158.476989062439\\
+0.0391374560198028 156.558651485957\\
+0.0429173237842218 154.500047664193\\
+0.0474981480322836 152.070962309239\\
+0.0525679112201842 149.46933974188\\
+0.0587176639073341 146.438488228466\\
+0.0655868565957134 143.216164362615\\
+0.0739381991917593 139.527643127606\\
+0.0849041520408896 135.05194598772\\
+0.10023075482839 129.443095902018\\
+0.128560960694331 120.759236130762\\
+0.192879150802077 106.614510079601\\
+0.254334576130472 97.2457396733486\\
+0.536697694554061 72.1273787181079\\
+0.701206358900715 62.7552215007156\\
+1.13254131515284 45.8922598551574\\
+1.32471398786616 40.654018156767\\
+1.52118551798608 36.2566977649485\\
+1.71488196987055 32.651773337785\\
+1.9332422875551 29.2595031825873\\
+2.15940615210354 26.3273473708357\\
+2.38989256623109 23.8109586984392\\
+2.64498018242767 21.4580493622055\\
+2.92729483504285 19.2654975088367\\
+3.23974262952812 17.2283058929592\\
+3.58553985745983 15.3402826933505\\
+3.93182875570566 13.7476485048756\\
+4.31156199031825 12.267562242767\\
+4.72796959160025 10.8951106968915\\
+5.18459354389293 9.62579093828208\\
+5.68531791387359 8.45561551387414\\
+6.17718759733854 7.48436247831347\\
+6.71161176749614 6.58842618592649\\
+7.29227205872842 5.76584337629589\\
+7.92316862486613 5.01475562700494\\
+8.52964449974123 4.40561369177098\\
+9.18254283565626 3.8500180658541\\
+9.88541702191929 3.34632954457729\\
+10.6420924406474 2.89265820232654\\
+11.3515470892099 2.53502031490746\\
+12.1082975023208 2.21236527290836\\
+12.9154966501489 1.92287603787884\\
+13.7765076954903 1.66458592695201\\
+14.6949180062486 1.43540758694417\\
+15.674554102056 1.23316905890371\\
+16.7194975973196 1.05565385485613\\
+17.6704352608899 0.921492153641282\\
+18.6754584276109 0.802484131852594\\
+19.7376432630023 0.697286685780881\\
+20.8602408924844 0.604606538966635\\
+22.0466873523944 0.523211860530779\\
+23.3006141069691 0.451941193609173\\
+24.6258591635048 0.389709721988936\\
+26.0264788196906 0.335513037438744\\
+27.5067600790807 0.288428666113788\\
+29.0712337727252 0.247615671273934\\
+30.7246884270909 0.212312675899597\\
+32.4721849207315 0.18183464885368\\
+34.6369417737168 0.151561417271409\\
+36.946012051994 0.126166385951251\\
+39.4090164040346 0.10490567145709\\
+42.0362168384463 0.0871378854584748\\
+45.2538627817026 0.0704069182876594\\
+49.1690357762798 0.0553229721856781\\
+53.9177464038763 0.0422648705111044\\
+59.6727119597324 0.031388014920168\\
+66.65363268125 0.0226574270769788\\
+76.5391938823037 0.0150512734304868\\
+90.3557834613866 0.00919652330205167\\
+100 0.00680068670362743\\
+};
+\addlegendentry{$\alpha = 10$}
+
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.00680068670362743\\
+0.0122486461375092 -0.0124296666127748\\
+0.0143270295340984 -0.0197731404117576\\
+0.0163009236097978 -0.0289353474596226\\
+0.0180408192871936 -0.038975921849385\\
+0.019783188827842 -0.051037304140209\\
+0.0214947467343796 -0.0649788816414514\\
+0.0231400538013072 -0.0804530829740315\\
+0.024911300260678 -0.0994984143854367\\
+0.0265720110532445 -0.119699899297672\\
+0.0283434330615137 -0.143842487144866\\
+0.0299554933435982 -0.168210800538134\\
+0.0316592411198347 -0.196510481441493\\
+0.0334598912055007 -0.229319982805919\\
+0.0353629550135508 -0.267287664932383\\
+0.0373742574239103 -0.311136265887171\\
+0.0394999546122053 -0.361666610193595\\
+0.041746552892532 -0.419760246562134\\
+0.0441209286319117 -0.486380678712351\\
+0.0466303492974262 -0.562572842806986\\
+0.0492824957004062 -0.64946049738694\\
+0.0520854855057768 -0.748241233595991\\
+0.0550478980785488 -0.860178890450157\\
+0.058178800743451 -0.98659327510785\\
+0.0614877765381008 -1.12884724096989\\
+0.0649849535446982 -1.28833136139451\\
+0.068681035889951 -1.46644664243232\\
+0.0732596542821532 -1.69965238071305\\
+0.0781435060784446 -1.96227416249079\\
+0.0833529396509846 -2.25638417728109\\
+0.0889096598952924 -2.58392930254652\\
+0.0948368186628579 -2.94670337469708\\
+0.101159111222386 -3.34632954457729\\
+0.108902296226373 -3.8500180658541\\
+0.117238180328657 -4.40561369177101\\
+0.126212131452257 -5.01475562700494\\
+0.13587299019027 -5.67889236758711\\
+0.147628147190943 -6.4934401074764\\
+0.160400310705681 -7.38113211946805\\
+0.174277467840897 -8.34391357476068\\
+0.18935521797563 -9.38394231629525\\
+0.207643010725571 -10.6331316057776\\
+0.227697025538168 -11.9846120710478\\
+0.249687842888425 -13.4427892795182\\
+0.273802517792786 -15.0125067544606\\
+0.300246170908546 -16.6988759468203\\
+0.329243733300778 -18.5070315681355\\
+0.364385898376366 -20.6424336116422\\
+0.403278998219369 -22.9365561876743\\
+0.446323392671051 -25.3932842927217\\
+0.493962174387827 -28.0141801801146\\
+0.551749237612921 -31.0587811721591\\
+0.622004882563454 -34.5675440439644\\
+0.707701066118183 -38.572502459645\\
+0.812661920009201 -43.0895677243135\\
+0.959360828709328 -48.7494411158829\\
+1.2192312516491 -57.1911395388745\\
+1.84614694632451 -71.8082409367754\\
+2.38989256623109 -80.6252162091673\\
+3.4557199367622 -92.9373679092422\\
+4.86056423214227 -104.406995377757\\
+6.35042516859595 -113.641037632829\\
+11.3515470892099 -133.824903006706\\
+13.2777082935543 -138.94354345483\\
+15.1070330448668 -142.939445116564\\
+17.030650292528 -146.438488228466\\
+19.0230118866895 -149.46933974188\\
+21.0534524276677 -152.070962309239\\
+23.3006141069691 -154.500047664193\\
+25.7876288759386 -156.75674497942\\
+28.2781797962532 -158.66124477687\\
+31.00926635932 -160.429797951913\\
+34.0041193270367 -162.067613569192\\
+37.2882130718292 -163.580768538239\\
+40.8894822629482 -164.975910714914\\
+44.8385594802129 -166.260010352645\\
+49.1690357762798 -167.440159251587\\
+53.9177464038763 -168.5234138619\\
+58.582482001525 -169.421208185571\\
+63.6507908129576 -170.250981052612\\
+69.1575882873853 -171.017408028452\\
+75.1408106111675 -171.724947907654\\
+81.6416760492152 -172.377828239546\\
+88.704968896542 -172.980038172175\\
+96.3793479961591 -173.535326939423\\
+100 -173.767987881634\\
+};
+\addplot [color=mycolor4, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 134.429869219535\\
+0.0134316117004605 125.901276157632\\
+0.015710723892474 121.579497177967\\
+0.0178752552590422 118.202342230103\\
+0.0201513573381558 115.240387623513\\
+0.022508800520954 112.66673020743\\
+0.025142033481428 110.25130446357\\
+0.0280833199882324 107.992980153203\\
+0.0313686982456683 105.886489860202\\
+0.0347168681892662 104.081744239374\\
+0.0387782841458937 102.240626519257\\
+0.0433148322337641 100.520779823389\\
+0.048382096649261 98.9088401625908\\
+0.0545427130532976 97.2680987443109\\
+0.0620572880677654 95.6035097401205\\
+0.0712611543011191 93.9123996171436\\
+0.0841249704973636 91.9704895327478\\
+0.148995507285289 85.3647703105094\\
+0.171093390726897 83.6354280252806\\
+0.192879150802077 82.04998887688\\
+0.215443469003193 80.4983937897742\\
+0.240647515001538 78.8475828691373\\
+0.266333272517501 77.2353781780828\\
+0.294760625512479 75.5181257818689\\
+0.326222200971169 73.6866227134979\\
+0.361041859717323 71.7329366690178\\
+0.399578030189527 69.6508974874241\\
+0.446323392671051 67.2287596451743\\
+0.498537346387382 64.6484129003636\\
+0.562017384808323 61.6794966641921\\
+0.639448842855712 58.2955360905227\\
+0.741088151564139 54.2272084122106\\
+0.891148232283998 48.9321024282303\\
+1.33698374182498 37.2156544818656\\
+1.54949503931459 33.1979727064698\\
+1.7629753752872 29.8778246630139\\
+1.96922025547921 27.2018567777363\\
+2.19959306803003 24.6958575939076\\
+2.43436887354314 22.5535214844478\\
+2.69420371368182 20.5605295408353\\
+2.9544079988804 18.8768295647621\\
+3.23974262952812 17.3120294254147\\
+3.55263467657817 15.8618755863371\\
+3.89574561577541 14.521244866858\\
+4.27199396630681 13.2844333485099\\
+4.68458011587293 12.1453959846036\\
+5.13701354335138 11.0979389244363\\
+5.63314267060121 10.1358690778208\\
+6.17718759733854 9.25310665162323\\
+6.71161176749614 8.52155940202724\\
+7.29227205872842 7.84536354437196\\
+7.92316862486613 7.22058857654213\\
+8.60864769614942 6.64350445126479\\
+9.3534315202923 6.1105883687421\\
+10.1626508939302 5.61852651233434\\
+11.0418805085416 5.16421200356669\\
+11.9971773543585 4.74474011457508\\
+13.0351224468151 4.35740157349909\\
+14.1628661629916 3.99967462957315\\
+15.3881775003836 3.66921640646314\\
+16.7194975973196 3.36385396066478\\
+18.1659978837536 3.0815753721221\\
+19.9204570845384 2.79274938442364\\
+21.8443607114946 2.52778725711099\\
+23.9540735872084 2.28455375446623\\
+26.2675410372388 2.06110964420716\\
+28.8044415339625 1.85570189432681\\
+31.5863540826787 1.66675528908996\\
+34.6369417737168 1.49286525736275\\
+37.982153061908 1.33279150781939\\
+41.6504424854512 1.18545183327458\\
+45.6730127016882 1.04991520162051\\
+50.0840798984813 0.925393039869903\\
+54.9211648388788 0.811227515314982\\
+60.2254120146183 0.706875719962255\\
+65.4358601888336 0.620977531072015\\
+71.0970943231237 0.542385953255945\\
+77.248114514036 0.470850973838679\\
+83.9312949816634 0.406132833689327\\
+91.192675984596 0.347984602729838\\
+98.172984061889 0.301595822406654\\
+100 0.290752352319515\\
+};
+\addlegendentry{$\alpha = 100$}
+
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.290752352319515\\
+0.0107654461284229 -0.335928495198914\\
+0.0115894830343983 -0.386032809404355\\
+0.0125921561369413 -0.448532721727645\\
+0.013681576279675 -0.517768771418162\\
+0.0148652484499784 -0.593981248783336\\
+0.0161513269350313 -0.677414743413465\\
+0.0175486714964814 -0.768336131680201\\
+0.0190669084051219 -0.86705210600968\\
+0.0207164967560208 -0.973925035172272\\
+0.0227172813302684 -1.10276702924216\\
+0.024911300260678 -1.24292249620893\\
+0.027317215984413 -1.39523578140782\\
+0.0299554933435982 -1.56069746865896\\
+0.0328485736602995 -1.74045223220028\\
+0.0360210656235708 -1.93580533949023\\
+0.0391374560198028 -2.12617280418837\\
+0.0425234633452872 -2.33155798721751\\
+0.0462024137175122 -2.55327202129939\\
+0.0501996513311016 -2.79274938442364\\
+0.0545427130532976 -3.05155381811124\\
+0.0592615181247569 -3.33138502549684\\
+0.0643885742724037 -3.63408610460263\\
+0.0699592016543557 -3.96165162356058\\
+0.0760117761795532 -4.31623619769741\\
+0.0825879938784402 -4.70016337841497\\
+0.0897331581458357 -5.11593460591413\\
+0.0974964918348386 -5.56623790739843\\
+0.105931476351838 -6.05395593491127\\
+0.115096220088501 -6.58217282790275\\
+0.125053858729041 -7.15417925056943\\
+0.13587299019027 -7.7734747888309\\
+0.147628147190943 -8.44376669308426\\
+0.160400310705681 -9.16896371867671\\
+0.174277467840897 -9.9531635471136\\
+0.18935521797563 -10.8006319726142\\
+0.205737431343286 -11.7157717229899\\
+0.223536964590981 -12.7030784735448\\
+0.24287643824604 -13.7670813448704\\
+0.266333272517501 -15.0447094417173\\
+0.292055551218269 -16.4284915645732\\
+0.320262069365769 -17.9239308421593\\
+0.351192753045066 -19.5358400095196\\
+0.385110700232562 -21.2680331032256\\
+0.426215882901522 -23.3152627432337\\
+0.471708469091704 -25.5118005593203\\
+0.522056752784682 -27.8552858201255\\
+0.58313051135262 -30.572081044157\\
+0.657382014340971 -33.6881695490706\\
+0.75487992816532 -37.4733823226056\\
+0.89940221740918 -42.4772708488694\\
+1.43932264471941 -56.0302535660939\\
+1.65279206146492 -59.7680405543664\\
+1.88050405512853 -63.0715742549907\\
+2.11995345753606 -65.9582317266228\\
+2.36796006783313 -68.4596549713112\\
+2.64498018242767 -70.8027585686856\\
+2.9544079988804 -72.9906961885291\\
+3.26974974451167 -74.8657928829914\\
+3.65226736430817 -76.7778605207868\\
+4.07953450345255 -78.5618232105142\\
+4.55678626584099 -80.2305283041758\\
+5.08987019351974 -81.7976791221669\\
+5.73797641421395 -83.3972737642177\\
+6.52852114112777 -85.0262212391076\\
+7.56621850048106 -86.7976115424125\\
+9.18254283565626 -89.0312450900688\\
+13.5248087041786 -93.4740925517387\\
+15.674554102056 -95.2584940087113\\
+17.8341022071005 -96.9031987522802\\
+20.1049641626046 -98.5210843063741\\
+22.4569799553979 -100.108217421366\\
+25.0841505927762 -101.79980320994\\
+27.7615329443679 -103.453777345475\\
+30.7246884270909 -105.216680406261\\
+34.0041193270367 -107.097246661348\\
+37.6335836228661 -109.102748268289\\
+41.6504424854512 -111.238470128996\\
+46.5229952396024 -113.719959520221\\
+51.9655724382751 -116.358701073143\\
+58.582482001525 -119.387291158323\\
+66.65363268125 -122.827915547209\\
+77.9636013040541 -127.209103633797\\
+97.2720319245064 -133.621537922863\\
+100 -134.429869219535\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.pdf b/matlab/figs/comp_filter_2nd_order_dist_reject.pdf
new file mode 100644
index 0000000..f5c6418
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_dist_reject.pdf differ
diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.png b/matlab/figs/comp_filter_2nd_order_dist_reject.png
new file mode 100644
index 0000000..14e3c2f
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_dist_reject.png differ
diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.svg b/matlab/figs/comp_filter_2nd_order_dist_reject.svg
new file mode 100644
index 0000000..b3b0540
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_dist_reject.svg
@@ -0,0 +1,141 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.tex b/matlab/figs/comp_filter_2nd_order_dist_reject.tex
new file mode 100644
index 0000000..6fbdb62
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_dist_reject.tex
@@ -0,0 +1,46 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.23in,
+height=1.991in,
+at={(0.42in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=10,
+xminorticks=true,
+xlabel={$\alpha$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=20,
+ymax=40,
+ylabel={Disturbance Rejection at $\frac{\omega_0}{10} [dB]$},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 39.0927624128451\\
+0.166810053720006 38.5853642652969\\
+0.278255940220711 37.800492132895\\
+0.464158883361275 36.633478159408\\
+0.774263682681121 34.9882633805142\\
+1.29154966501489 32.8183632679137\\
+2.1544346900319 30.1740773166798\\
+3.59381366380464 27.248002577377\\
+5.99484250318942 24.4161341645066\\
+10 22.1818723661571\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.pdf b/matlab/figs/comp_filter_2nd_order_loop_gain.pdf
new file mode 100644
index 0000000..ce7f473
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_loop_gain.pdf differ
diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.png b/matlab/figs/comp_filter_2nd_order_loop_gain.png
new file mode 100644
index 0000000..776bdce
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_loop_gain.png differ
diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.svg b/matlab/figs/comp_filter_2nd_order_loop_gain.svg
new file mode 100644
index 0000000..b260c22
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_loop_gain.svg
@@ -0,0 +1,413 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.tex b/matlab/figs/comp_filter_2nd_order_loop_gain.tex
new file mode 100644
index 0000000..cba60cb
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_loop_gain.tex
@@ -0,0 +1,626 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.535in,2.205in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-05,
+ymax=100000,
+yminorticks=true,
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 9091.08341742991\\
+0.207643010725577 21.2526324000572\\
+0.388677669089266 6.17071225805235\\
+0.622004882563471 2.47832462496036\\
+1.12214776820798 0.802851145043177\\
+1.96922025547917 0.272762212832622\\
+3.15136348486648 0.108839931022181\\
+5.8988964255085 0.0314431204032983\\
+20.104964162605 0.0027200729129216\\
+100 0.000109997890689546\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 5000.93738869333\\
+0.0680507369673521 108.902697611881\\
+0.119420002813353 35.9823630157725\\
+0.171093390726901 17.9872437590633\\
+0.225607406649686 10.7092178810218\\
+0.28408836901833 7.05466822709913\\
+0.347969790388769 4.95651868873903\\
+0.418428850790158 3.64494456712196\\
+0.503154894503806 2.71722518182495\\
+0.605036787939122 2.05227695520967\\
+0.747952251562182 1.50631980847815\\
+1.00462042134681 0.993567075932296\\
+1.43932264471941 0.596978472492681\\
+1.76297537528721 0.442289819373678\\
+2.11995345753607 0.332581164924332\\
+2.54921465445142 0.246749981786\\
+3.06539529505653 0.180612235200713\\
+3.75469422407334 0.126316588473328\\
+4.68458011587305 0.0842926685059711\\
+6.1204983724767 0.0509178784502966\\
+8.52964449974102 0.0268096456909702\\
+13.6500780654601 0.01062768131029\\
+30.442722120643 0.0021537058223458\\
+100 0.00019996251148053\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 914.573993569895\\
+0.0190669084051225 255.501881163518\\
+0.0280833199882317 120.642742766896\\
+0.0373742574239106 70.3671700641027\\
+0.0470622484984128 46.2186430288807\\
+0.0576448828292587 32.3940633536575\\
+0.068681035889953 24.153556885544\\
+0.0810790980673169 18.5294363785798\\
+0.0957152153899187 14.4085000873703\\
+0.111956431948388 11.5052897767874\\
+0.130953502048267 9.29534203267109\\
+0.154592773641948 7.50342653576355\\
+0.184189668079971 6.05361621109962\\
+0.223536964590979 4.82833186554327\\
+0.278898029238044 3.77000043022161\\
+0.364385898376354 2.82691177323528\\
+0.512518692705333 1.97945737589136\\
+0.866837993001977 1.15635993299742\\
+2.15940615210357 0.45481952030918\\
+3.03726357970331 0.317510082089385\\
+3.93182875570577 0.239559066440656\\
+4.86056423214213 0.188217557796226\\
+5.8988964255085 0.149414919687434\\
+7.02824426430835 0.119909113220614\\
+8.29695852083491 0.0962291212108758\\
+9.70480887738031 0.0772716977842117\\
+11.35154708921 0.0613063211832702\\
+13.2777082935543 0.0480489703131676\\
+15.674554102056 0.0366483381517822\\
+18.848434090338 0.0267423043070313\\
+23.0867799418717 0.01863133656203\\
+29.0712337727258 0.012173404984012\\
+38.333951017666 0.00719522874994623\\
+55.4298551568467 0.00351170627682357\\
+95.4948563979197 0.00119831398464171\\
+100 0.00109340524334904\\
+};
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 140.722991369362\\
+0.0116968270397038 112.009500385658\\
+0.0136815762796747 90.2223234709831\\
+0.0161513269350309 72.6218422631043\\
+0.0192435097523033 58.4403896624145\\
+0.0233543813990648 46.5074927772157\\
+0.0288709091735923 36.6171251755414\\
+0.0370312667586993 27.9527553394362\\
+0.0506646100892127 20.1109982378222\\
+0.0781435060784454 12.8992743266897\\
+0.157469771464309 6.36295771038197\\
+0.924625711640574 1.08153538605668\\
+10.5444279352617 0.0943242140652724\\
+18.504070195423 0.053157410225393\\
+26.5108360190854 0.0364845131768829\\
+34.6369417737173 0.0273096261709795\\
+43.2151112778977 0.0212744468678705\\
+52.4468874949512 0.0169214928938233\\
+62.4878807200689 0.0136090471731015\\
+73.7679760252773 0.0109470588630036\\
+86.285125663669 0.00881172207239461\\
+100 0.00710615934375111\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.535in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.672,2.817)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -179.89062821824\\
+0.0118051652856881 -179.870889947099\\
+0.0138082976521811 -179.848990045094\\
+0.0158562396177109 -179.826604053944\\
+0.0182079168009943 -179.800903421263\\
+0.0207164967560208 -179.773495440718\\
+0.0233543813990654 -179.744684063158\\
+0.0263281546564798 -179.712217040898\\
+0.0294082017058709 -179.678606032088\\
+0.0328485736602995 -179.641084913115\\
+0.0363546996129332 -179.602873164325\\
+0.0402350554886941 -179.560617414893\\
+0.0445295850994262 -179.513898269155\\
+0.04883022086878 -179.467166998388\\
+0.0535462089927357 -179.415991048157\\
+0.0587176639073341 -179.35996285977\\
+0.0643885742724037 -179.298642341248\\
+0.0706071771413795 -179.231555850334\\
+0.0774263682681121 -179.158195727156\\
+0.0849041520408896 -179.078020619364\\
+0.0931041348706901 -178.990456917035\\
+0.102096066230607 -178.894901707353\\
+0.111956431948387 -178.790727772598\\
+0.122769104798839 -178.67729129079\\
+0.13462605792989 -178.553943056235\\
+0.147628147190943 -178.420044213\\
+0.161885969017819 -178.274987677839\\
+0.177520801171768 -178.118226600187\\
+0.194665634334225 -177.949311330601\\
+0.21346630333243 -177.767936390176\\
+0.236250846547792 -177.553917814402\\
+0.261467321180114 -177.324954193994\\
+0.292055551218269 -177.059070005904\\
+0.332293251639897 -176.73026813339\\
+0.392277675892774 -176.286590526034\\
+0.512518692705321 -175.569015639672\\
+0.567222897164457 -175.316317097488\\
+0.616296625513279 -175.126209597573\\
+0.663470812109245 -174.973864361778\\
+0.707701066118183 -174.856065470197\\
+0.747952251562161 -174.768248012158\\
+0.783238259917936 -174.705248023726\\
+0.820188949920225 -174.652155384713\\
+0.851000724712218 -174.617170784391\\
+0.88296999554939 -174.589091203872\\
+0.91614024571388 -174.568100723531\\
+0.941833153464815 -174.557095517583\\
+0.968246611930323 -174.550198473814\\
+0.995400828762154 -174.547435596827\\
+1.02331657833024 -174.548817325639\\
+1.05201521761614 -174.554338438078\\
+1.08151870255226 -174.563978098636\\
+1.1118496048193 -174.577700048945\\
+1.1430311291145 -174.595452937688\\
+1.18597101233768 -174.625277729275\\
+1.23052400435925 -174.661954816682\\
+1.28857621318549 -174.717073774523\\
+1.34936714058834 -174.78198472998\\
+1.42611370719414 -174.871922466285\\
+1.50722530931073 -174.973864361778\\
+1.60770442167387 -175.106235152464\\
+1.73076553419573 -175.272583202277\\
+1.89792164283904 -175.498306673297\\
+2.1395888713434 -175.811688743346\\
+3.36144900010886 -177.013239852119\\
+3.78947091907461 -177.303420434949\\
+4.2327890655736 -177.553917814402\\
+4.68458011587293 -177.767936390176\\
+5.18459354389293 -177.966759878272\\
+5.68531791387359 -178.134443185507\\
+6.23440188862789 -178.290011637976\\
+6.83651600451004 -178.433926542505\\
+7.49678187496691 -178.566742284265\\
+8.22081575524031 -178.689070277116\\
+9.01477631452495 -178.801551272081\\
+9.88541702191929 -178.904834561406\\
+10.8401435917834 -178.999562746311\\
+11.8870769771187 -179.086360910107\\
+13.0351224468151 -179.165829221832\\
+14.2940453343172 -179.238538169841\\
+15.674554102056 -179.305025780619\\
+17.188391428171 -179.365796311617\\
+18.848434090338 -179.42132001828\\
+20.6688024962902 -179.472033686185\\
+22.874908173557 -179.522744816343\\
+25.3164847863143 -179.568619455794\\
+28.0186655645918 -179.610109876706\\
+31.00926635932 -179.64762843086\\
+34.6369417737168 -179.684467959792\\
+38.6890073932801 -179.717467709625\\
+43.6153778920815 -179.749343718745\\
+49.1690357762798 -179.777630219317\\
+55.9432570616943 -179.804538573582\\
+64.2403365939436 -179.829770457488\\
+73.7679760252756 -179.851747985357\\
+85.493270662683 -179.872074484969\\
+100 -179.89062821824\\
+};
+\addlegendentry{$\alpha = 0.1$}
+
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -179.140713672102\\
+0.0108651577465251 -179.066401332976\\
+0.0118051652856881 -178.985668134057\\
+0.0128264983052803 -178.897960922238\\
+0.0139361927422416 -178.802679351933\\
+0.0151418932530433 -178.699171989373\\
+0.0164519058775369 -178.586732132507\\
+0.0178752552590422 -178.464593336682\\
+0.0194217468148908 -178.331924639481\\
+0.0211020342856859 -178.187825482794\\
+0.0229276931286557 -178.031320336671\\
+0.024911300260678 -177.861353038358\\
+0.0270665207003317 -177.676780871837\\
+0.0294082017058709 -177.476368428947\\
+0.0319524750575915 -177.25878131393\\
+0.0347168681892662 -177.022579780236\\
+0.0377204249341695 -176.766212423251\\
+0.0409838367175735 -176.488010097329\\
+0.0445295850994262 -176.186180282296\\
+0.048382096649261 -175.858802196334\\
+0.0525679112201842 -175.503823041914\\
+0.0571158647812626 -175.119055882815\\
+0.0620572880677654 -174.702179786913\\
+0.0674262224177818 -174.25074303503\\
+0.0732596542821532 -173.762170393854\\
+0.0795977700231485 -173.233775682443\\
+0.0864842327573189 -172.662781126378\\
+0.0939664831495459 -172.046345286011\\
+0.102096066230607 -171.381601653462\\
+0.111956431948387 -170.582888902638\\
+0.122769104798839 -169.717280200335\\
+0.13462605792989 -168.781314650408\\
+0.147628147190943 -167.772011625173\\
+0.161885969017819 -166.687104732643\\
+0.179165032736394 -165.404907234097\\
+0.198288394912704 -164.029912813447\\
+0.221485523372639 -162.427387581\\
+0.249687842888425 -160.579783541073\\
+0.286719649749373 -158.326672045838\\
+0.344776405473441 -155.192669143444\\
+0.438168993151433 -151.128061047637\\
+0.489428989611449 -149.362989711645\\
+0.536697694554061 -147.994015996808\\
+0.58313051135262 -146.865989833988\\
+0.627766010580631 -145.962635753552\\
+0.66961600548533 -145.259530635507\\
+0.707701066118183 -144.72805494589\\
+0.747952251562161 -144.267002416098\\
+0.783238259917936 -143.939418942835\\
+0.820188949920225 -143.665400762207\\
+0.851000724712218 -143.485861590985\\
+0.88296999554939 -143.342343726257\\
+0.907732652520995 -143.258681289731\\
+0.933189771573347 -143.195775133703\\
+0.950556592010137 -143.16543818997\\
+0.968246611930323 -143.144417089579\\
+0.986265846131287 -143.132732120231\\
+0.995400828762154 -143.130394562143\\
+1.00462042134681 -143.130394562143\\
+1.01392540755881 -143.132732120231\\
+1.03279473191894 -143.144417089579\\
+1.05201521761614 -143.16543818997\\
+1.07159339982264 -143.195775133703\\
+1.10164594963369 -143.258681289731\\
+1.13254131515284 -143.342343726257\\
+1.16430313292089 -143.446581224983\\
+1.20804213467733 -143.617174297524\\
+1.25342426546138 -143.823285292258\\
+1.3125568357718 -144.129658733923\\
+1.37447909267756 -144.488468571401\\
+1.45265392594678 -144.985255634364\\
+1.53527502878039 -145.550307794039\\
+1.63762407452172 -146.289528147261\\
+1.7629753752872 -147.229723113893\\
+1.91550055557359 -148.393099018839\\
+2.10049824165391 -149.79340448287\\
+2.34622884814232 -151.584894952284\\
+2.76976193503698 -154.400444167452\\
+3.61874981241128 -158.938285677829\\
+4.15545533471895 -161.159778581127\\
+4.68458011587293 -162.973078382118\\
+5.23261423948667 -164.54053672614\\
+5.79112264764194 -165.881956219645\\
+6.40924401935642 -167.130247168621\\
+7.02824426430854 -168.184697442532\\
+7.70702711421226 -169.164347712783\\
+8.45136633068495 -170.071781223378\\
+9.26759330114683 -170.910196132864\\
+10.1626508939302 -171.683190317359\\
+11.1441525146678 -172.394590003708\\
+12.2204468663152 -173.048316808337\\
+13.4006889636394 -173.648287290847\\
+14.5600599502069 -174.145473560762\\
+15.819734815786 -174.604936036591\\
+17.188391428171 -175.029275906316\\
+18.6754584276109 -175.420973130622\\
+20.2911801804663 -175.782378108704\\
+22.0466873523944 -176.115707660148\\
+23.9540735872084 -176.423044276402\\
+26.0264788196906 -176.706337800454\\
+28.2781797962532 -176.967408865866\\
+30.7246884270909 -177.207953569069\\
+33.3828586473175 -177.429548965519\\
+36.2710025233077 -177.633659074507\\
+39.4090164040346 -177.82164115293\\
+42.818517986523 -177.99475205815\\
+46.5229952396024 -178.154154567274\\
+50.5479682119114 -178.300923557011\\
+54.9211648388788 -178.436051976864\\
+59.6727119597324 -178.560456570436\\
+64.8353428605487 -178.674983316398\\
+70.4446227729899 -178.780412573347\\
+77.248114514036 -178.887759582164\\
+84.7086826655735 -178.985668134057\\
+92.8897872016474 -179.074965655215\\
+100 -179.140713672102\\
+};
+\addlegendentry{$\alpha = 1$}
+
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -173.774788568338\\
+0.0108651577465251 -173.241117523925\\
+0.0118051652856881 -172.662645022726\\
+0.0128264983052803 -172.035873157032\\
+0.0139361927422416 -171.357103775202\\
+0.0151418932530433 -170.622447869888\\
+0.0164519058775369 -169.827842250323\\
+0.0178752552590422 -168.969075452545\\
+0.0194217468148908 -168.041825160296\\
+0.0211020342856859 -167.041709707718\\
+0.0231400538013072 -165.839695512164\\
+0.0253749037973356 -164.536479621209\\
+0.0278255940220721 -163.126552859854\\
+0.0305129701718286 -161.604982695695\\
+0.0334598912055007 -159.967699797059\\
+0.0366914237840248 -158.211832283408\\
+0.0406077202570047 -156.141917446541\\
+0.044942026621191 -153.928033137591\\
+0.0501996513311016 -151.354162060036\\
+0.0565917016324609 -148.392143199999\\
+0.0643885742724037 -145.026415676857\\
+0.0753142016597439 -140.752022751736\\
+0.133390569003905 -124.970190995014\\
+0.151768339028343 -121.712035329542\\
+0.169523234155408 -119.085953718258\\
+0.187617469143913 -116.829422172782\\
+0.207643010725571 -114.725916834058\\
+0.227697025538168 -112.95042165589\\
+0.249687842888425 -111.306436179918\\
+0.273802517792786 -109.793283489004\\
+0.297490754721436 -108.541597582752\\
+0.323228397818141 -107.391936961811\\
+0.351192753045066 -106.341555283281\\
+0.378074666359942 -105.488763628973\\
+0.407014245321941 -104.709750164265\\
+0.438168993151433 -104.002233106655\\
+0.471708469091704 -103.363961244476\\
+0.503154894503796 -102.860565523684\\
+0.536697694554061 -102.4071380194\\
+0.572476623970219 -102.0023817884\\
+0.610640754223191 -101.645098848711\\
+0.645371540164686 -101.375813118603\\
+0.682077673286572 -101.139987845429\\
+0.720871503378203 -100.937073715689\\
+0.75487992816532 -100.792770891729\\
+0.790492762269657 -100.670749103433\\
+0.820188949920225 -100.58903552245\\
+0.851000724712218 -100.521362226817\\
+0.88296999554939 -100.467655890934\\
+0.907732652520995 -100.436506256515\\
+0.933189771573347 -100.413160768401\\
+0.959360828709328 -100.397605083772\\
+0.97721469697258 -100.391557374186\\
+0.995400828762154 -100.388965794125\\
+1.01392540755881 -100.389829634446\\
+1.03279473191894 -100.394149131537\\
+1.05201521761614 -100.401925467233\\
+1.07159339982264 -100.413160768401\\
+1.10164594963369 -100.436506256515\\
+1.13254131515284 -100.467655890934\\
+1.16430313292089 -100.506628777634\\
+1.20804213467733 -100.570804040044\\
+1.25342426546138 -100.648999863587\\
+1.30051125217337 -100.741300689837\\
+1.36186523675611 -100.876664311684\\
+1.42611370719414 -101.034448524116\\
+1.49339321612424 -101.214913760989\\
+1.57833140565207 -101.461828112581\\
+1.66810053720008 -101.742401082043\\
+1.7629753752872 -102.057270781196\\
+1.88050405512853 -102.46890426975\\
+2.00586777950826 -102.929388531421\\
+2.1395888713434 -103.440033624148\\
+2.28222447418683 -104.002233106655\\
+2.45691646298281 -104.709750164265\\
+2.64498018242767 -105.488763628973\\
+2.84743916646731 -106.341555283281\\
+3.06539529505651 -107.270379009627\\
+3.33060034362469 -108.408865974246\\
+3.61874981241128 -109.649093482434\\
+3.93182875570566 -110.993388178224\\
+4.31156199031825 -112.611101780128\\
+4.72796959160025 -114.360322503503\\
+5.18459354389293 -116.240301017883\\
+5.73797641421395 -118.455770930664\\
+6.40924401935642 -121.04021431995\\
+7.22534949178734 -124.019763979012\\
+8.22081575524031 -127.406059862663\\
+9.70480887738009 -131.957220006039\\
+15.9662602210142 -145.761219943347\\
+18.3342548256232 -149.321608647415\\
+20.6688024962902 -152.229961736558\\
+23.0867799418716 -154.749533939061\\
+25.5509709035258 -156.911395962608\\
+28.2781797962532 -158.928532441803\\
+31.2964801067081 -160.801017114723\\
+34.31907197459 -162.380001463229\\
+37.6335836228661 -163.84518001327\\
+41.268208457029 -165.201092599289\\
+45.2538627817026 -166.452992788869\\
+49.6244487762885 -167.606586124146\\
+54.41714286866 -168.667817035064\\
+59.6727119597324 -169.642700731847\\
+65.4358601888336 -170.537194697284\\
+71.0970943231237 -171.278308057139\\
+77.248114514036 -171.963091643144\\
+83.9312949816634 -172.5954547906\\
+91.192675984596 -173.179117438889\\
+99.0822809900383 -173.71760002056\\
+100 -173.774788568338\\
+};
+\addlegendentry{$\alpha = 10$}
+
+\addplot [color=mycolor4, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -134.720621571854\\
+0.0130652016212468 -127.162762935638\\
+0.0151418932530433 -123.188483573552\\
+0.017228054471314 -119.895823576509\\
+0.0194217468148908 -117.022997900084\\
+0.0216938351838516 -114.544095914055\\
+0.0240093487686069 -112.423921962271\\
+0.0265720110532445 -110.450957470892\\
+0.0291383170483282 -108.783920333702\\
+0.0319524750575915 -107.234564882802\\
+0.0350384224529072 -105.798854157874\\
+0.0384224084605498 -104.471858026018\\
+0.0421332174384734 -103.248045501123\\
+0.0462024137175122 -102.12152767536\\
+0.0506646100892133 -101.086253141056\\
+0.0555577622239876 -100.136160358257\\
+0.0603643850607596 -99.3489804810077\\
+0.0655868565957134 -98.6217565289625\\
+0.0712611543011191 -97.9504337309399\\
+0.0774263682681121 -97.3311403799273\\
+0.0841249704973636 -96.760202900847\\
+0.0914031074875622 -96.2341539962272\\
+0.099310918137495 -95.7497354572084\\
+0.107902879151619 -95.3038969470492\\
+0.117238180328657 -94.8937918174262\\
+0.127381132318649 -94.5167708061136\\
+0.138401609657311 -94.1703742867668\\
+0.150375532129977 -93.8523235945575\\
+0.163385387780984 -93.5605118316037\\
+0.177520801171768 -93.2929944596024\\
+0.192879150802077 -93.0479799101055\\
+0.20956623994805 -92.823820382074\\
+0.227697025538168 -92.6190029487679\\
+0.247396410088675 -92.4321410591314\\
+0.268800102153763 -92.2619664905094\\
+0.292055551218269 -92.107321788024\\
+0.317322963473503 -91.9671532098275\\
+0.341612326858549 -91.8539363344348\\
+0.367760910160114 -91.7507891500901\\
+0.395911026646847 -91.6571542973635\\
+0.426215882901522 -91.5725253875397\\
+0.458840412645483 -91.4964444042\\
+0.493962174387827 -91.4284993366669\\
+0.531772317785112 -91.3683220385804\\
+0.567222897164457 -91.3217814635875\\
+0.605036787939111 -91.2807445305175\\
+0.645371540164686 -91.2450408337594\\
+0.688395206964551 -91.2145220781734\\
+0.72754835291961 -91.1923932581215\\
+0.768928372075853 -91.1739127480907\\
+0.812661920009201 -91.1590241320323\\
+0.858882855954615 -91.1476819546261\\
+0.907732652520995 -91.1398515853396\\
+0.959360828709328 -91.1355091147888\\
+1.01392540755881 -91.134641283149\\
+1.07159339982264 -91.1372454404396\\
+1.13254131515284 -91.1433295385864\\
+1.19695570235905 -91.1529121552403\\
+1.26503372039588 -91.166022549413\\
+1.33698374182498 -91.1827007490638\\
+1.41302599059955 -91.2029976708537\\
+1.49339321612424 -91.2269752723557\\
+1.59295021257217 -91.2596993793799\\
+1.69914417203464 -91.2976693157392\\
+1.81241754737421 -91.3410427738754\\
+1.9332422875551 -91.3899998408709\\
+2.06212180399915 -91.4447437252492\\
+2.21996611911991 -91.5146865790831\\
+2.38989256623109 -91.5928641592475\\
+2.57282596744791 -91.6796997684186\\
+2.76976193503698 -91.7756632852815\\
+2.98177229001969 -91.8812735884256\\
+3.2100108955431 -91.9971012137578\\
+3.4557199367622 -92.1237712517941\\
+3.72023668141304 -92.2619664905094\\
+4.00500075787373 -92.412430808287\\
+4.35149650092505 -92.5973780122744\\
+4.72796959160025 -92.8001341455062\\
+5.13701354335138 -93.0220722227044\\
+5.58144624945484 -93.2646907170347\\
+6.06432939540815 -93.5296220109336\\
+6.58898955079985 -93.818641249006\\
+7.15904108596503 -94.1336755113687\\
+7.77841107128642 -94.4768131899695\\
+8.45136633068495 -94.8503134041327\\
+9.18254283565626 -95.2566152323905\\
+9.97697764236288 -95.6983464626441\\
+10.8401435917834 -96.1783314685151\\
+11.7779870119709 -96.6995977027236\\
+12.7969686821595 -97.2653801545594\\
+13.9041083409004 -97.8791229442509\\
+15.1070330448668 -98.5444770191928\\
+16.4140297114445 -99.265292674015\\
+17.8341022071005 -100.045605339698\\
+19.3770333747798 -100.889612782487\\
+21.0534524276677 -101.801641534822\\
+22.874908173557 -102.786100072425\\
+24.8539485742973 -103.847415993793\\
+27.2543253128104 -105.122101458955\\
+29.886528735503 -106.502794795633\\
+32.772948499234 -107.994760013654\\
+35.9381366380452 -109.602520255081\\
+39.4090164040346 -111.32954134885\\
+43.6153778920815 -113.369404065259\\
+48.2707096560317 -115.556185155078\\
+53.9177464038763 -118.105563266959\\
+60.2254120146183 -120.816671583798\\
+68.5229159528409 -124.163001769611\\
+79.4145171902947 -128.184488440397\\
+97.2720319245064 -133.928667052571\\
+100 -134.720621571854\\
+};
+\addlegendentry{$\alpha = 100$}
+
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.pdf b/matlab/figs/comp_filter_2nd_order_study_alphas.pdf
new file mode 100644
index 0000000..12fd3c6
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_study_alphas.pdf differ
diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.png b/matlab/figs/comp_filter_2nd_order_study_alphas.png
new file mode 100644
index 0000000..6c25080
Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_study_alphas.png differ
diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.svg b/matlab/figs/comp_filter_2nd_order_study_alphas.svg
new file mode 100644
index 0000000..76ca319
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_study_alphas.svg
@@ -0,0 +1,269 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.tex b/matlab/figs/comp_filter_2nd_order_study_alphas.tex
new file mode 100644
index 0000000..6af42fa
--- /dev/null
+++ b/matlab/figs/comp_filter_2nd_order_study_alphas.tex
@@ -0,0 +1,86 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=2.092in,
+height=2.123in,
+at={(0.441in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=10,
+xminorticks=true,
+xlabel={$\alpha$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=0,
+ymax=25,
+ylabel={Guaranted GM $\frac{M_S}{M_S-1}$ [dB]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.868279070864499\\
+0.166810053720006 1.44760531281904\\
+0.278255940220711 2.41199453173858\\
+0.464158883361279 3.92417178049961\\
+0.774263682681128 6.29619810673849\\
+1.29154966501488 9.61984426601562\\
+2.15443469003188 13.2966860920625\\
+3.59381366380464 17.3469113506894\\
+5.99484250318942 20.3663405291447\\
+10 23.8787551492833\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=2.092in,
+height=2.123in,
+at={(3.195in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=10,
+xminorticks=true,
+xlabel={$\alpha$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=0,
+ymax=60,
+ylabel={Guaranted PM $\frac{1}{M_S}$ [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 5.45056462682881\\
+0.166810053720006 8.79570936236155\\
+0.278255940220711 13.8924640050576\\
+0.464158883361275 20.8276034046066\\
+0.774263682681121 29.5426011321039\\
+1.29154966501489 38.3666597446777\\
+2.1544346900319 44.8995865551335\\
+3.59381366380464 49.5194068502131\\
+5.99484250318942 51.8028300175911\\
+10 53.6298435453589\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_3rd_order.pdf b/matlab/figs/comp_filter_3rd_order.pdf
new file mode 100644
index 0000000..54854d1
Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order.pdf differ
diff --git a/matlab/figs/comp_filter_3rd_order.png b/matlab/figs/comp_filter_3rd_order.png
new file mode 100644
index 0000000..d49947d
Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order.png differ
diff --git a/matlab/figs/comp_filter_3rd_order.svg b/matlab/figs/comp_filter_3rd_order.svg
new file mode 100644
index 0000000..94b0f48
--- /dev/null
+++ b/matlab/figs/comp_filter_3rd_order.svg
@@ -0,0 +1,407 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_3rd_order.tex b/matlab/figs/comp_filter_3rd_order.tex
new file mode 100644
index 0000000..4dd0f26
--- /dev/null
+++ b/matlab/figs/comp_filter_3rd_order.tex
@@ -0,0 +1,1308 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.561in,
+at={(0.535in,2.203in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-05,
+ymax=20,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.30372917994101e-05\\
+0.0223022329796594 0.000141954629654633\\
+0.0343982648902292 0.000505192396763455\\
+0.0470622484984128 0.00123988847248683\\
+0.0609234915240071 0.00254398508684075\\
+0.0760117761795532 0.00461788803975752\\
+0.0939664831495469 0.00801327596139176\\
+0.115096220088503 0.0133127191942067\\
+0.142283045721435 0.0221952692242937\\
+0.17916503273639 0.0379588389121872\\
+0.245126006203334 0.0771995634341209\\
+0.361041859717334 0.185897641235229\\
+0.430163575810679 0.281784232789983\\
+0.489428989611453 0.389499660058445\\
+0.546685729972018 0.523960297782072\\
+0.599484250318941 0.684690726075178\\
+0.64537154016467 0.864820411795381\\
+0.68839520696455 1.08255428589344\\
+0.734287044716676 1.39180846844897\\
+0.776050333513357 1.77977231399786\\
+0.812661920009195 2.25349412382089\\
+0.851000724712225 2.97341335645449\\
+0.88296999554941 3.87447854340857\\
+0.916140245713852 5.32870951880466\\
+0.959360828709315 8.61806336694939\\
+0.977214696972572 10.3353500171443\\
+0.986265846131283 11.0571169386989\\
+0.995400828762152 11.5156014507724\\
+1.00462042134681 11.6080423674042\\
+1.01392540755882 11.3255442744948\\
+1.03279473191895 10.0316115682198\\
+1.11184960481927 5.41954601963318\\
+1.15361810173648 4.32527478699975\\
+1.19695570235904 3.61539444591566\\
+1.24192135270178 3.12447617002054\\
+1.28857621318552 2.76723844233463\\
+1.34936714058831 2.43920811581565\\
+1.41302599059953 2.19648640792004\\
+1.4796880626864 2.01028319539522\\
+1.56384675830224 1.83767258864406\\
+1.6527920614649 1.70369865417603\\
+1.74679621512725 1.59713530858884\\
+1.86324631193156 1.49790009659606\\
+1.98745954958099 1.41855976411536\\
+2.13958887134342 1.34585272174678\\
+2.30336287314213 1.28750704081914\\
+2.50264009641792 1.23476705958324\\
+2.74434330322837 1.18825821353078\\
+3.03726357970331 1.14813182997047\\
+3.39258338274099 1.11421197616025\\
+3.85999361767977 1.08425069752001\\
+4.47353305449847 1.05922580710622\\
+5.28107971193433 1.03941935590867\\
+6.40924401935646 1.02401781368817\\
+8.14537176628075 1.0124947874117\\
+11.2473717836475 1.00476871161683\\
+18.504070195423 1.00089381295404\\
+75.1408106111698 1.0000041422328\\
+100 1.0000013302442\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.0000013302442\\
+0.0803350197712474 1.0034508863198\\
+0.118324062745838 1.01124888476675\\
+0.154592773641948 1.02344224263379\\
+0.191109062168914 1.04033621362514\\
+0.227697025538168 1.06191819045578\\
+0.263889081445751 1.0880078684118\\
+0.300246170908555 1.11926926442123\\
+0.335371015200293 1.15470708840852\\
+0.371167181947577 1.19670264756357\\
+0.407014245321944 1.24548685078128\\
+0.44222739805059 1.30095733626888\\
+0.476077523022637 1.36251830710181\\
+0.512518692705333 1.43952826361555\\
+0.546685729972018 1.52394959251956\\
+0.583130511352622 1.63011925909583\\
+0.616296625513294 1.74485907435538\\
+0.65134909462728 1.89020094588586\\
+0.682077673286568 2.04394295584679\\
+0.714255928554312 2.23980114877677\\
+0.747952251562183 2.4967699410094\\
+0.776050333513357 2.76723844233463\\
+0.805203967082547 3.12447617002053\\
+0.835452805838287 3.61539444591565\\
+0.866837993001977 4.32527478699975\\
+0.899402217409205 5.41954601963316\\
+0.933189771573324 7.2191753896861\\
+0.977214696972572 10.756909101882\\
+0.986265846131283 11.3255442744948\\
+0.995400828762152 11.6080423674042\\
+1.00462042134681 11.5156014507724\\
+1.01392540755882 11.0571169386989\\
+1.03279473191895 9.48555512035695\\
+1.11184960481927 4.50865093721403\\
+1.15361810173648 3.37476371390535\\
+1.20804213467733 2.50305285194715\\
+1.2650337203959 1.94811167291939\\
+1.33698374182495 1.50511584268312\\
+1.41302599059953 1.20100989443977\\
+1.50722530931076 0.949612883839094\\
+1.62259528707809 0.745568688034507\\
+1.76297537528721 0.581582617159815\\
+1.95114834684662 0.439572492831897\\
+2.19959306803007 0.322971071692721\\
+2.52582002696278 0.230802732809771\\
+3.03726357970331 0.150332837569071\\
+4.19394395566719 0.0725451408993513\\
+5.95353313081437 0.032717853835944\\
+7.49678187496688 0.0190349912219486\\
+9.18254283565628 0.0116134473976016\\
+11.2473717836475 0.00695405080920123\\
+13.7765076954905 0.00408542296236347\\
+17.1883914281715 0.00224132942870532\\
+22.0466873523941 0.00111699825229259\\
+29.6122543798804 0.000478891124292071\\
+43.6153778920801 0.000154035874586985\\
+77.9636013040524 2.74269851899507e-05\\
+100 1.30372917994101e-05\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 2.28883335307516e-05\\
+0.0223022329796594 0.000249148373226688\\
+0.0343982648902292 0.000886259541182149\\
+0.0470622484984128 0.00217359592449624\\
+0.0609234915240071 0.00445515533783693\\
+0.0760117761795532 0.00807553430477928\\
+0.0931041348706907 0.013659881334838\\
+0.112993393803322 0.0221398836375915\\
+0.137131471775395 0.0352359329757082\\
+0.167967487209265 0.0563130939329024\\
+0.209566239948043 0.0922687189583984\\
+0.271289780037246 0.161250276680452\\
+0.371167181947577 0.312152543730475\\
+0.512518692705333 0.60693659762447\\
+0.616296625513294 0.875702591227312\\
+0.694771254846024 1.09585335094203\\
+0.7618717702323 1.28336527978096\\
+0.82018894992022 1.43604759483327\\
+0.874866812047991 1.56321130533495\\
+0.924625711640573 1.66104099061614\\
+0.968246611930311 1.73086171900095\\
+1.01392540755882 1.78750459728328\\
+1.061759183483 1.82944943463121\\
+1.11184960481927 1.85618799807251\\
+1.16430313292088 1.8682207478754\\
+1.21923125164911 1.86688376055284\\
+1.28857621318552 1.85032101514791\\
+1.36186523675608 1.82096982691867\\
+1.46610868404699 1.76821360558792\\
+1.60770442167383 1.69045371994042\\
+1.95114834684662 1.5221081713973\\
+2.32469705998565 1.38957849634921\\
+2.66947849403432 1.30352305749068\\
+3.03726357970331 1.23745847903284\\
+3.45571993676214 1.18364945713668\\
+3.93182875570577 1.14039596968131\\
+4.5149677720361 1.10388218602153\\
+5.23261423948667 1.07410563011519\\
+6.1204983724767 1.05071872374465\\
+7.35981447526577 1.03152533826166\\
+9.09827289445557 1.01748666130785\\
+11.7779870119712 1.00800693529655\\
+17.0306502925285 1.00234285514795\\
+34.3190719745904 1.00017567562551\\
+100 1.00000261437514\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00000261437514\\
+0.0655868565957144 1.00343044858512\\
+0.0948368186628593 1.0112862748344\\
+0.121642429385737 1.02331619434523\\
+0.148995507285285 1.04015249968475\\
+0.177520801171764 1.06216359379293\\
+0.207643010725577 1.08980667056381\\
+0.240647515001542 1.12467392642575\\
+0.276338529005317 1.16707864181028\\
+0.314410830314726 1.21692125466924\\
+0.357728509936787 1.27841929774388\\
+0.407014245321944 1.35317782392074\\
+0.467379510799246 1.44917801824601\\
+0.572476623970218 1.61704377927536\\
+0.663470812109235 1.74580170380079\\
+0.720871503378214 1.80898759323059\\
+0.768928372075831 1.84621493355107\\
+0.812661920009195 1.86517235612996\\
+0.851000724712225 1.86896840626738\\
+0.89114823228402 1.85973873182944\\
+0.933189771573324 1.83601149986839\\
+0.977214696972572 1.79710079101992\\
+1.02331657833024 1.74330678392549\\
+1.07159339982267 1.67595620004615\\
+1.12214776820798 1.59725581598496\\
+1.18597101233767 1.49178104534953\\
+1.2650337203959 1.3600492579906\\
+1.36186523675608 1.20717235112154\\
+1.49339321612425 1.02464116448177\\
+1.6835508029612 0.81503417472472\\
+2.00586777950823 0.573766704266909\\
+2.69420371368188 0.312152543730475\\
+3.75469422407334 0.15502522393656\\
+4.90558370636506 0.0868215972429831\\
+6.1204983724767 0.0528776953987631\\
+7.49678187496688 0.0330082042625187\\
+9.09827289445557 0.0206874535455754\\
+11.0418805085416 0.0127299823846923\\
+13.5248087041788 0.0075056697973338\\
+16.7194975973199 0.00423585201984218\\
+21.2484535249888 0.00217359592449624\\
+28.2781797962534 0.000960108013675621\\
+40.8894822629486 0.000327000283359231\\
+69.7981390783067 6.69699238234403e-05\\
+100 2.28883335307516e-05\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000120810041575603\\
+0.0183765620038817 0.000732723664334145\\
+0.026572011053245 0.00214005399255292\\
+0.0347168681892656 0.0045628489788087\\
+0.043314832233764 0.00836690026203811\\
+0.0520854855057766 0.0136000313193919\\
+0.0614877765381002 0.0206552230318047\\
+0.0712611543011175 0.0294044239874606\\
+0.0818300681586739 0.0402288724402295\\
+0.0931041348706907 0.0530084589213122\\
+0.105931476351837 0.0686846557917211\\
+0.119420002813353 0.086048863729901\\
+0.134626057929891 0.106267782192676\\
+0.151768339028341 0.129448407166035\\
+0.171093390726901 0.155672410466576\\
+0.194665634334226 0.187399071779651\\
+0.221485523372636 0.22282837545166\\
+0.254334576130465 0.265004225533727\\
+0.292055551218275 0.311643328588078\\
+0.338477285594598 0.366369286367668\\
+0.392277675892772 0.426153279849465\\
+0.45462954695324 0.490667559682381\\
+0.522056752784698 0.554845983667922\\
+0.599484250318941 0.621681568209721\\
+0.682077673286569 0.685354812535141\\
+0.776050333513357 0.748986557025543\\
+0.874866812047991 0.806800587783178\\
+0.986265846131282 0.862202378919257\\
+1.11184960481927 0.914112866839418\\
+1.2534242654614 0.96162241386286\\
+1.41302599059953 1.00405616883873\\
+1.59295021257212 1.0410015645299\\
+1.81241754737424 1.07447008129281\\
+2.08122156998634 1.10313888780523\\
+2.38989256623105 1.12468932794375\\
+2.76976193503689 1.14034820426186\\
+3.2397426295282 1.14936238123809\\
+3.824569722467 1.15112406317722\\
+4.59899209052244 1.14470930888895\\
+5.58144624945496 1.12994145018007\\
+7.093341204988 1.10353025818439\\
+13.4006889636395 1.03193260752924\\
+16.8743567772738 1.01702255742126\\
+22.0466873523941 1.00737689523929\\
+31.8789129267765 1.00203860093398\\
+66.6536326812491 1.00012315289902\\
+100 1.00002491158231\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00002491158231\\
+0.0366914237840249 1.00357380499278\\
+0.0520854855057766 1.01151183715088\\
+0.0674262224177834 1.02449999837145\\
+0.0849041520408875 1.04344801943156\\
+0.111956431948388 1.074680721848\\
+0.174277467840892 1.1272742312698\\
+0.213466303332424 1.14363002492736\\
+0.256690271549195 1.15086096775643\\
+0.305833803237843 1.14966297956734\\
+0.361041859717334 1.14034820426186\\
+0.422304418720667 1.12346528457448\\
+0.489428989611453 1.09973658940156\\
+0.562017384808319 1.07008994076856\\
+0.639448842855694 1.03568404801231\\
+0.720871503378214 0.997877840274319\\
+0.812661920009195 0.954629725916815\\
+0.916140245713852 0.906392786930997\\
+1.03279473191895 0.853880804116332\\
+1.16430313292088 0.79803456975982\\
+1.31255683577184 0.739951522898666\\
+1.49339321612425 0.676229575244133\\
+1.69914417203463 0.61265836095034\\
+1.95114834684662 0.546111948080342\\
+2.24052786930002 0.482363944555623\\
+2.59665597293487 0.41841188182965\\
+3.00939003444972 0.35924835982332\\
+3.45571993676214 0.308393685075095\\
+3.96824610456948 0.262054641181804\\
+4.55678626584106 0.220172910082138\\
+5.18459354389291 0.185011190860187\\
+5.8988964255085 0.153545490069556\\
+6.65001803043112 0.127558175371153\\
+7.49678187496688 0.104608499962422\\
+8.45136633068472 0.0846133984587136\\
+9.52750047242729 0.0674632980618271\\
+10.7406615333343 0.0530084589213122\\
+12.2204468663149 0.0402288724402295\\
+14.0328908478587 0.0294044239874605\\
+16.2633950404819 0.0206552230318047\\
+19.0230118866894 0.0139266565962817\\
+22.6649807927369 0.00879117541594256\\
+27.761532944368 0.00505553033954477\\
+35.2815411538088 0.00257414366543915\\
+47.8277201772749 0.00106907622465819\\
+72.4202233460732 0.000315282038524681\\
+100 0.000120810041575603\\
+};
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000782478264187488\\
+0.0121362379834424 0.00125498192148055\\
+0.014728827239075 0.00197486193787603\\
+0.0178752552590424 0.0030531747439827\\
+0.0218947676285662 0.00473813408521687\\
+0.0270665207003324 0.00737920199285985\\
+0.0337698031082509 0.0115265247982059\\
+0.0417465528925313 0.0174042827961823\\
+0.0511338753841433 0.0254281275451852\\
+0.0614877765381002 0.0353833658394229\\
+0.0732596542821523 0.047746252180617\\
+0.0864842327573172 0.0625355656883898\\
+0.101159111222383 0.0796191684531449\\
+0.118324062745838 0.100039953284998\\
+0.138401609657313 0.1240797812722\\
+0.16188596901782 0.152018290758724\\
+0.18935521797563 0.184152114236563\\
+0.223536964590979 0.22310367977162\\
+0.263889081445751 0.267498302940898\\
+0.314410830314726 0.320616520228633\\
+0.374605003274899 0.380323068165969\\
+0.44222739805059 0.442761135800226\\
+0.517265738721602 0.506352845410017\\
+0.599484250318941 0.569321763631969\\
+0.68839520696455 0.629900181894651\\
+0.78323825991792 0.686547926164131\\
+0.89114823228402 0.742014894624105\\
+1.00462042134681 0.791353776602864\\
+1.13254131515281 0.837655370549098\\
+1.27675070431927 0.880164021344053\\
+1.45265392594678 0.921097817907267\\
+1.6527920614649 0.956677206502501\\
+1.8979216428391 0.988819628849604\\
+2.19959306803007 1.01658914708904\\
+2.57282596744793 1.03936690615779\\
+3.06539529505653 1.0576421973448\\
+3.72023668141307 1.07038129104847\\
+4.59899209052244 1.07692155514441\\
+5.84476113163363 1.07678092839139\\
+7.77841107128649 1.06867865726835\\
+11.6698981861715 1.04886735075487\\
+21.2484535249888 1.02101820644871\\
+32.4721849207313 1.00958989057012\\
+54.9211648388779 1.00303297944635\\
+100 1.0006101896723\\
+};
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.0006101896723\\
+0.0240093487686065 1.00570214952576\\
+0.0394999546122064 1.01544514820863\\
+0.0598104096238094 1.03074131748854\\
+0.174277467840892 1.07703535108454\\
+0.223536964590979 1.07645535968445\\
+0.278898029238044 1.06849446653157\\
+0.338477285594598 1.05436862536619\\
+0.403278998219371 1.03458868714953\\
+0.471708469091702 1.01024955160307\\
+0.546685729972018 0.980842910966497\\
+0.62776601058065 0.947065430693802\\
+0.714255928554313 0.909939899900219\\
+0.812661920009195 0.867525077586536\\
+0.916140245713852 0.823781679985695\\
+1.03279473191895 0.776455790869369\\
+1.16430313292088 0.726362681755378\\
+1.32471398786612 0.670427098412389\\
+1.50722530931076 0.613676413567991\\
+1.73076553419573 0.553364272856913\\
+2.00586777950823 0.4910365234715\\
+2.34622884814226 0.428419260277995\\
+2.76976193503689 0.367209490829135\\
+3.26974974451177 0.311792073570812\\
+3.8957456157755 0.259706188549371\\
+4.59899209052244 0.216243778220223\\
+5.42918617761894 0.17816272667211\\
+6.35042516859596 0.146791883503488\\
+7.42798248256492 0.119562265540299\\
+8.60864769614924 0.0974550120064611\\
+9.9769776423632 0.0785247047844594\\
+11.6698981861715 0.0616282333871573\\
+13.6500780654601 0.047746252180617\\
+16.1141427725302 0.035958741595925\\
+19.3770333747799 0.0258604093190297\\
+23.5164288449435 0.018025961261854\\
+29.0712337727258 0.0119542289149106\\
+35.9381366380463 0.00780920921941068\\
+44.4270674960688 0.0050245680442644\\
+54.4171428686589 0.00324489792317317\\
+66.0419396233031 0.00210387737637082\\
+80.150069615654 0.00134048625606773\\
+96.3793479961579 0.00085743774493564\\
+100 0.000782478264187488\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.561in,
+at={(0.535in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.672,1.056)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -95.8559252566972\\
+0.0108651577465251 -96.3589666386454\\
+0.0118051652856881 -96.9045252593416\\
+0.0128264983052803 -97.4960011522396\\
+0.0139361927422416 -98.1370125139095\\
+0.0151418932530433 -98.8313944400424\\
+0.0164519058775369 -99.5831925172105\\
+0.0178752552590422 -100.396649715901\\
+0.0194217468148908 -101.276184725661\\
+0.0211020342856859 -102.226359554879\\
+0.0229276931286557 -103.251833910709\\
+0.024911300260678 -104.357303618958\\
+0.027317215984413 -105.685078309933\\
+0.0299554933435982 -107.123510643368\\
+0.0328485736602995 -108.67831852478\\
+0.0360210656235708 -110.354514005208\\
+0.0394999546122053 -112.156089854211\\
+0.043716022482485 -114.285710697559\\
+0.048382096649261 -116.571164477356\\
+0.0535462089927357 -119.01023318005\\
+0.0598104096238105 -121.839061629693\\
+0.0674262224177818 -125.085892792209\\
+0.0774263682681121 -129.034613430599\\
+0.0914031074875622 -133.986902751852\\
+0.166426017648587 -152.091421824674\\
+0.192879150802077 -156.229827894861\\
+0.221485523372639 -159.918484957152\\
+0.254334576130472 -163.4163394138\\
+0.292055551218269 -166.732118596957\\
+0.338477285594596 -170.092476213666\\
+0.399578030189527 -173.707117674703\\
+0.531772317785112 -179.83452353453\\
+0.536697694554061 179.960722000356\\
+0.58853157751914 177.836714732873\\
+0.633580499265845 175.975933318091\\
+0.66961600548533 174.414925137664\\
+0.701206358900715 172.941431809171\\
+0.734287044716661 171.22725748658\\
+0.761871770232323 169.595415529684\\
+0.790492762269657 167.61185849705\\
+0.812661920009201 165.782504303664\\
+0.835452805838285 163.517583187649\\
+0.858882855954615 160.600072606874\\
+0.88296999554939 156.653349098581\\
+0.89940221740918 153.127233496297\\
+0.91614024571388 148.494325128414\\
+0.933189771573347 142.188690546363\\
+0.950556592010137 133.311350417084\\
+0.968246611930323 120.601382117212\\
+0.986265846131287 103.089088653605\\
+1.03279473191894 54.4764881440879\\
+1.05201521761614 41.7872369619359\\
+1.07159339982264 32.9398001746451\\
+1.09153593533136 26.6732319291677\\
+1.1118496048193 22.0885226650838\\
+1.1430311291145 17.1880554837578\\
+1.17508713090482 13.7509370846181\\
+1.20804213467733 11.2124970234075\\
+1.24192135270177 9.2613405524032\\
+1.27675070431924 7.71416328564726\\
+1.32471398786616 6.08849900405249\\
+1.37447909267756 4.81436733770465\\
+1.42611370719414 3.79024001685875\\
+1.47968806268638 2.9512838448841\\
+1.53527502878039 2.25412553199402\\
+1.59295021257217 1.66858997942396\\
+1.65279206146492 1.17296712009789\\
+1.73076553419573 0.655760170045738\\
+1.81241754737421 0.230922835513525\\
+1.89792164283904 -0.11864230164494\\
+1.98745954958102 -0.405899738423017\\
+2.06212180399915 -0.597706992403772\\
+2.1395888713434 -0.760346918942673\\
+2.21996611911991 -0.897378039571208\\
+2.3033628731422 -1.01184651785795\\
+2.38989256623109 -1.10638595898226\\
+2.47967289250217 -1.18329272477524\\
+2.57282596744791 -1.24458356470754\\
+2.66947849403426 -1.29204032385445\\
+2.74434330322828 -1.31951269633007\\
+2.82130767593954 -1.34069981040915\\
+2.90043049386403 -1.35615592347347\\
+2.98177229001969 -1.36639130190898\\
+3.06539529505651 -1.37187631237566\\
+3.15136348486643 -1.37304499361036\\
+3.23974262952812 -1.3702981978262\\
+3.33060034362469 -1.36400637318962\\
+3.4240061379715 -1.35451204491648\\
+3.55263467657817 -1.33741542517774\\
+3.68609536217214 -1.31587232550575\\
+3.85999361767968 -1.28362768478593\\
+4.07953450345255 -1.23854145896718\\
+4.35149650092505 -1.17914411585707\\
+4.72796959160025 -1.09530314111325\\
+5.37936150398065 -0.956129863409899\\
+6.650018030431 -0.727395781439412\\
+7.42798248256497 -0.616229943379295\\
+8.22081575524031 -0.522212677890593\\
+9.01477631452495 -0.44432780954557\\
+9.79469667069515 -0.380848885044543\\
+10.6420924406474 -0.323792782463158\\
+11.4566872863485 -0.278439710331185\\
+12.3336349791381 -0.238000117000951\\
+13.2777082935543 -0.202260996570743\\
+14.2940453343172 -0.170945363441803\\
+15.3881775003836 -0.143729510445667\\
+16.5660595894989 -0.120259772775256\\
+17.9992850678251 -0.0978755896649375\\
+19.5565071586593 -0.0792420692194469\\
+21.2484535249894 -0.063852681145363\\
+23.3006141069691 -0.0499830840867332\\
+25.7876288759386 -0.0379769609545519\\
+28.8044415339625 -0.0279894139433736\\
+32.772948499234 -0.0194873745063262\\
+38.3339510176665 -0.0124668492289004\\
+46.5229952396024 -0.00712177924995672\\
+60.2254120146183 -0.003343017842667\\
+88.704968896542 -0.00106174459426711\\
+100 -0.000743082755064961\\
+};
+\addlegendentry{$\alpha = 0.1$}
+
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000743082755064961\\
+0.0166042865718756 0.00334301784263857\\
+0.0218947676285658 0.00751423018320452\\
+0.0268181260945295 0.0134958869691388\\
+0.0313686982456683 0.0210697586779247\\
+0.0356904934567525 0.0302229405399999\\
+0.0398658107358057 0.0409523394486939\\
+0.0441209286319117 0.0538211531624313\\
+0.048382096649261 0.0686520706197769\\
+0.0525679112201842 0.0850683222665793\\
+0.0571158647812626 0.10489454316911\\
+0.0614877765381008 0.1257960294719\\
+0.0661943345877428 0.150168099774987\\
+0.0712611543011191 0.178376634933528\\
+0.0767158117677927 0.210769324196946\\
+0.0825879938784402 0.247659799350004\\
+0.0889096598952924 0.289310670310954\\
+0.095715215389917 0.335916270019169\\
+0.103041699495061 0.38758586010826\\
+0.111956431948387 0.451773217157438\\
+0.12164242938574 0.522212677890565\\
+0.133390569003905 0.607347450477192\\
+0.147628147190943 0.708330141271603\\
+0.167967487209262 0.845212464802842\\
+0.223536964590981 1.15196345757516\\
+0.240647515001538 1.2222272220252\\
+0.256690271549201 1.27655776447452\\
+0.268800102153763 1.30986570484754\\
+0.281481236050756 1.33741542517771\\
+0.292055551218269 1.35451204491645\\
+0.300246170908546 1.3640063731896\\
+0.308666494333735 1.37029819782617\\
+0.317322963473503 1.37304499361034\\
+0.326222200971169 1.37187631237563\\
+0.335371015200292 1.36639130190898\\
+0.344776405473441 1.35615592347344\\
+0.354445567397035 1.34069981040915\\
+0.364385898376366 1.31951269633007\\
+0.374605003274907 1.29204032385445\\
+0.385110700232562 1.25767972255204\\
+0.395911026646847 1.21577371649681\\
+0.41078408899656 1.14691140360918\\
+0.426215882901522 1.06145668963612\\
+0.442227398050602 0.957259322281146\\
+0.458840412645483 0.831862495582385\\
+0.476077523022638 0.682437080717108\\
+0.493962174387827 0.505695080486731\\
+0.512518692705321 0.297774135369338\\
+0.531772317785112 0.0540811358281985\\
+0.551749237612921 -0.230922835513553\\
+0.572476623970219 -0.564023224890946\\
+0.593982669392029 -0.953680320199879\\
+0.616296625513279 -1.4106519659868\\
+0.639448842855712 -1.94892024285227\\
+0.663470812109245 -2.5871077231435\\
+0.688395206964551 -3.3507096166779\\
+0.714255928554305 -4.27574037282241\\
+0.741088151564139 -5.41494799509641\\
+0.761871770232323 -6.45685202540011\\
+0.783238259917936 -7.71416328564726\\
+0.805203967082557 -9.26134055240317\\
+0.827785696619849 -11.2124970234075\\
+0.851000724712218 -13.7509370846181\\
+0.874866812047975 -17.1880554837577\\
+0.891148232283998 -20.240428791008\\
+0.907732652520995 -24.2123301367473\\
+0.9246257116406 -29.5493463868058\\
+0.941833153464815 -36.9687921411497\\
+0.959360828709328 -47.5668238565431\\
+0.97721469697258 -62.6270574466089\\
+1.04236067397639 -127.520255509764\\
+1.06175918348298 -138.143599917471\\
+1.08151870255226 -145.597533854627\\
+1.10164594963369 -150.978187036326\\
+1.13254131515284 -156.653349098581\\
+1.16430313292089 -160.600072606874\\
+1.19695570235905 -163.517583187648\\
+1.23052400435925 -165.782504303664\\
+1.27675070431924 -168.14937716387\\
+1.32471398786616 -170.030934745488\\
+1.37447909267756 -171.594705118938\\
+1.43932264471941 -173.252252473515\\
+1.52118551798608 -174.956029564582\\
+1.62259528707813 -176.697146943215\\
+1.74679621512724 -178.491605751788\\
+1.86324631193151 -179.960722000356\\
+1.88050405512853 179.83452353453\\
+2.17940698430292 176.650445348226\\
+2.90043049386403 170.501546284602\\
+3.36144900010886 167.161469660098\\
+3.85999361767968 163.868621343465\\
+4.39180089259608 160.633232904656\\
+5.04315948717143 156.982780843922\\
+5.79112264764194 153.144680837835\\
+6.77377599751758 148.591571151813\\
+8.22081575524031 142.746938501856\\
+12.7969686821595 129.304423967636\\
+14.8310251433614 125.085892792209\\
+16.8743567772734 121.596909064786\\
+18.848434090338 118.782280622784\\
+21.0534524276677 116.144089159216\\
+23.3006141069691 113.886905980391\\
+25.7876288759386 111.785595767982\\
+28.2781797962532 110.009354808424\\
+31.00926635932 108.357793773062\\
+34.0041193270367 106.826688766612\\
+37.2882130718292 105.410863004858\\
+40.8894822629482 104.104490786499\\
+44.8385594802129 102.901352593107\\
+49.1690357762798 101.795041990655\\
+53.9177464038763 100.779128101949\\
+59.1250841383182 99.8472790514764\\
+64.2403365939436 99.0754085913707\\
+69.7981390783064 98.3623475484874\\
+75.8367791499744 97.7039827039655\\
+82.3978568452854 97.0964077904721\\
+89.5265712599616 96.5359319460557\\
+97.2720319245064 96.0190825379419\\
+100 95.8559252566972\\
+};
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -96.5581620806762\\
+0.0108651577465251 -97.1219631226807\\
+0.0118051652856881 -97.7335395133065\\
+0.0128264983052803 -98.3967466027448\\
+0.0139361927422416 -99.1156974115247\\
+0.0151418932530433 -99.8947648170723\\
+0.0164519058775369 -100.738578903759\\
+0.0178752552590422 -101.652017951189\\
+0.0194217468148908 -102.640191234055\\
+0.0211020342856859 -103.708411492354\\
+0.0229276931286557 -104.86215462806\\
+0.024911300260678 -106.107003933763\\
+0.0270665207003317 -107.448576020726\\
+0.0296805860866562 -109.059402851403\\
+0.0325471160553176 -110.803841133101\\
+0.0356904934567525 -112.688715710788\\
+0.0391374560198028 -114.720036253051\\
+0.0429173237842218 -116.90266239713\\
+0.0474981480322836 -119.482247298766\\
+0.0525679112201842 -122.25071073146\\
+0.058178800743451 -125.206529429588\\
+0.0649849535446982 -128.638446258908\\
+0.0732596542821532 -132.586554614313\\
+0.0833529396509846 -137.080593837586\\
+0.0966017479952245 -142.478883400887\\
+0.114039960197002 -148.814238555847\\
+0.140977287162893 -157.190797132991\\
+0.182499324481618 -167.676472510515\\
+0.227697025538168 -176.93370259695\\
+0.24287643824604 -179.704874508684\\
+0.245126006203328 179.89578517388\\
+0.286719649749373 172.940403285066\\
+0.326222200971169 166.898672839968\\
+0.364385898376366 161.400440188365\\
+0.403278998219369 156.015598553134\\
+0.442227398050602 150.754068922601\\
+0.480487043965512 145.647463801008\\
+0.522056752784682 140.111207759837\\
+0.562017384808323 134.758294689978\\
+0.605036787939111 128.92687063289\\
+0.651349094627294 122.544431197968\\
+0.701206358900715 115.544096790666\\
+0.75487992816532 107.880550766761\\
+0.820188949920225 98.4697367432748\\
+0.89940221740918 87.1791647425513\\
+1.18597101233768 52.641129122266\\
+1.27675070431924 44.6155386066345\\
+1.36186523675611 38.2858377522511\\
+1.45265392594678 32.6276525933546\\
+1.54949503931459 27.624658085582\\
+1.63762407452172 23.8280248183814\\
+1.73076553419573 20.4513482024369\\
+1.82920450484626 17.4598558324548\\
+1.9332422875551 14.8187427575085\\
+2.04319732019529 12.494581501962\\
+2.15940615210354 10.4560423012939\\
+2.28222447418683 8.67418000166364\\
+2.41202820761804 7.1224691881238\\
+2.54921465445141 5.77670659859317\\
+2.69420371368182 4.61485396415239\\
+2.84743916646731 3.61686322289916\\
+2.98177229001969 2.89717469645541\\
+3.12244282309282 2.26893114272212\\
+3.26974974451167 1.72321766473129\\
+3.4240061379715 1.25181352237169\\
+3.58553985745983 0.847146033543851\\
+3.75469422407329 0.502248614986087\\
+3.93182875570566 0.210722182192569\\
+4.11731993116176 -0.0333007818972817\\
+4.31156199031825 -0.235190047736893\\
+4.47353305449843 -0.369675640036206\\
+4.64158883361268 -0.48265181540944\\
+4.8159579101925 -0.576259301055273\\
+4.99687745385497 -0.652479783744212\\
+5.18459354389293 -0.713144982112567\\
+5.37936150398065 -0.759945407056733\\
+5.5302242561928 -0.786888808188081\\
+5.68531791387359 -0.807522849825261\\
+5.84476113163379 -0.822420735437589\\
+6.00867589171979 -0.832119868414935\\
+6.17718759733854 -0.837123573636148\\
+6.35042516859595 -0.837902752833031\\
+6.52852114112777 -0.834897473213033\\
+6.71161176749614 -0.828518489301331\\
+6.8998371214298 -0.819148698483275\\
+7.15904108596503 -0.802615684803811\\
+7.49678187496691 -0.776534352029472\\
+7.92316862486613 -0.739058938142449\\
+8.45136633068495 -0.689346348802019\\
+9.3534315202923 -0.604182307769548\\
+11.2473717836474 -0.448522007887021\\
+12.3336349791381 -0.377454472868436\\
+13.4006889636394 -0.319482484687995\\
+14.4264395121811 -0.273209960785607\\
+15.5307057393347 -0.231999187770299\\
+16.7194975973196 -0.195745846612539\\
+17.9992850678251 -0.164199895874447\\
+19.3770333747798 -0.13701537022996\\
+20.8602408924844 -0.113791024744273\\
+22.4569799553979 -0.0941022005226557\\
+24.399862972595 -0.0756506928243823\\
+26.5108360190857 -0.0605605868344412\\
+29.0712337727252 -0.0470931542629671\\
+32.174181506764 -0.0355507351391964\\
+35.9381366380452 -0.026042143033095\\
+40.8894822629482 -0.0180242760407054\\
+47.8277201772749 -0.011464998623012\\
+58.0448594276896 -0.00651521242531317\\
+75.8367791499744 -0.00296210381745254\\
+100 -0.00130282023422978\\
+};
+\addlegendentry{$\alpha = 1$}
+
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00130282023425821\\
+0.015002933220192 0.00433764319950569\\
+0.0192435097523039 0.00900531890508205\\
+0.0231400538013072 0.0153737575563468\\
+0.0268181260945295 0.0234545320376469\\
+0.0302329468440578 0.0329028334109864\\
+0.0337698031082518 0.0447609083205691\\
+0.037031266758699 0.0576093095407089\\
+0.0402350554886941 0.0720263384852444\\
+0.043716022482485 0.0896824287943616\\
+0.0470622484984116 0.108554094766276\\
+0.0506646100892133 0.130854415184018\\
+0.0545427130532976 0.157009884797816\\
+0.0587176639073341 0.187430260571375\\
+0.0632121847581245 0.222478785581416\\
+0.0680507369673503 0.262433790863241\\
+0.0732596542821532 0.307441197194549\\
+0.0788672861561404 0.35745786513516\\
+0.0856905505126854 0.419331429072088\\
+0.0948368186628579 0.501634707793187\\
+0.126212131452257 0.739058938142449\\
+0.133390569003905 0.776534352029444\\
+0.139683511798871 0.802615684803783\\
+0.144930957412626 0.819148698483275\\
+0.150375532129977 0.830995480003281\\
+0.154592773641949 0.836293786405435\\
+0.158928286562298 0.838084636101883\\
+0.163385387780984 0.835947668658605\\
+0.167967487209262 0.82943271107996\\
+0.17267809038843 0.818058233733638\\
+0.177520801171768 0.801309739451398\\
+0.182499324481618 0.778638086013984\\
+0.187617469143913 0.749457742712877\\
+0.192879150802077 0.713144982112539\\
+0.2001249798969 0.652479783744184\\
+0.207643010725571 0.576259301055245\\
+0.215443469003193 0.482651815409412\\
+0.223536964590981 0.369675640036206\\
+0.231934505927442 0.235190047736864\\
+0.240647515001538 0.0768858916779038\\
+0.249687842888425 -0.10772408443313\\
+0.261467321180114 -0.379573639252925\\
+0.273802517792786 -0.702385321034058\\
+0.286719649749373 -1.08234140469813\\
+0.300246170908546 -1.52617700560151\\
+0.314410830314732 -2.04121753611813\\
+0.329243733300778 -2.63541923117262\\
+0.344776405473441 -3.31741349476169\\
+0.361041859717323 -4.09655586366327\\
+0.378074666359942 -4.98298030229088\\
+0.395911026646847 -5.98765924740636\\
+0.418428850790151 -7.36615977977709\\
+0.442227398050602 -8.95448744045089\\
+0.46737951079925 -10.7772225580007\\
+0.493962174387827 -12.861289533937\\
+0.522056752784682 -15.2360384292312\\
+0.551749237612921 -17.9331776248118\\
+0.58313051135262 -20.9864292284839\\
+0.616296625513279 -24.4307137734902\\
+0.651349094627294 -28.3005950791861\\
+0.688395206964551 -32.6276525933547\\
+0.734287044716661 -38.2858377522511\\
+0.783238259917936 -44.6155386066345\\
+0.843190929286622 -52.641129122266\\
+0.91614024571388 -62.5304165124039\\
+1.04236067397639 -78.9459738646735\\
+1.19695570235905 -96.2736260758388\\
+1.30051125217337 -105.859676725262\\
+1.41302599059955 -114.622968424648\\
+1.52118551798608 -121.704400369838\\
+1.63762407452172 -128.160673910565\\
+1.7629753752872 -134.057016579678\\
+1.91550055557359 -140.111207759837\\
+2.08122156998634 -145.647463801008\\
+2.28222447418683 -151.298349834643\\
+2.50264009641792 -156.521155514105\\
+2.76976193503698 -161.872256830669\\
+3.09378757173011 -167.342175144698\\
+3.52003147279672 -173.359650400263\\
+4.07953450345255 -179.89578517388\\
+4.11731993116176 179.704874508684\\
+4.95102015955645 171.880401665915\\
+6.29214610961035 162.023833089837\\
+8.07062014114933 152.061137450436\\
+9.88541702191929 144.21422826764\\
+11.5628013120735 138.406009457048\\
+13.2777082935543 133.529473234496\\
+15.1070330448668 129.230719501311\\
+17.030650292528 125.484379444432\\
+19.0230118866895 122.25071073146\\
+21.0534524276677 119.482247298766\\
+23.3006141069691 116.90266239713\\
+25.7876288759386 114.510164992181\\
+28.2781797962532 112.493729491714\\
+31.00926635932 110.62318492925\\
+34.0041193270367 108.892425672803\\
+37.2882130718292 107.294562225197\\
+40.8894822629482 105.822209512427\\
+44.8385594802129 104.4677278745\\
+49.1690357762798 103.223417246708\\
+53.9177464038763 102.081668142904\\
+58.582482001525 101.135657517105\\
+63.6507908129576 100.2615154943\\
+69.1575882873853 99.4542584459638\\
+75.1408106111675 98.7091444251995\\
+81.6416760492152 98.0216855736302\\
+88.704968896542 97.3876533930898\\
+96.3793479961591 96.8030785386165\\
+100 96.5581620806762\\
+};
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -101.896635788716\\
+0.0108651577465251 -102.918703798299\\
+0.0118051652856881 -104.027188810135\\
+0.0128264983052803 -105.229010373724\\
+0.0139361927422416 -106.531534665812\\
+0.0151418932530433 -107.94257284337\\
+0.0164519058775369 -109.470369181399\\
+0.0178752552590422 -111.123575892106\\
+0.0194217468148908 -112.91121091289\\
+0.0211020342856859 -114.842594314145\\
+0.0229276931286557 -116.927258363931\\
+0.024911300260678 -119.174825775263\\
+0.027317215984413 -121.874794743836\\
+0.0299554933435982 -124.800360068183\\
+0.0328485736602995 -127.963368160339\\
+0.0360210656235708 -131.374292459552\\
+0.0394999546122053 -135.04161002204\\
+0.0433148322337641 -138.971092450688\\
+0.0479380849508926 -143.598942626162\\
+0.0530548052536955 -148.543757385885\\
+0.0592615181247569 -154.287226801382\\
+0.0668074391569548 -160.891945222355\\
+0.0760117761795532 -168.395507101966\\
+0.0889096598952924 -177.936112227571\\
+0.0914031074875622 -179.656553224198\\
+0.0922497005259214 179.768052231666\\
+0.122769104798839 161.689012170511\\
+0.156024641436638 146.707949520232\\
+0.18589566796357 136.192347468411\\
+0.217438947560012 127.198686332329\\
+0.254334576130472 118.620264397583\\
+0.297490754721436 110.435969649141\\
+0.351192753045066 102.143977088946\\
+0.422304418720659 93.2895891600464\\
+0.526892142135084 83.0230942928922\\
+0.675818116816117 71.8004326510265\\
+0.858882855954615 61.3001950784795\\
+1.04236067397639 53.1221143941752\\
+1.2192312516491 46.7824700661106\\
+1.40005838246811 41.4525743308531\\
+1.59295021257217 36.73650002854\\
+1.79578464700207 32.6014141500569\\
+2.02444650997683 28.7130813100483\\
+2.26128006633722 25.3471361882134\\
+2.52582002696278 22.1954224709978\\
+2.79541599906793 19.492166738122\\
+3.09378757173011 16.9634092636423\\
+3.4240061379715 14.6059704293788\\
+3.78947091907461 12.4174567208524\\
+4.15545533471895 10.5736421206389\\
+4.55678626584099 8.86919471944256\\
+4.95102015955645 7.45586843463971\\
+5.37936150398065 6.15904577646285\\
+5.79112264764194 5.10617831815716\\
+6.23440188862789 4.14918428385411\\
+6.71161176749614 3.28955918590322\\
+7.15904108596503 2.61793509080897\\
+7.63629826128223 2.02143002054893\\
+8.07062014114933 1.56930331624127\\
+8.52964449974123 1.17068149167821\\
+9.01477631452495 0.823958666259614\\
+9.44006478941749 0.573129207011334\\
+9.88541702191929 0.355321016870818\\
+10.351779556302 0.168761556994326\\
+10.8401435917834 0.0114656697946884\\
+11.3515470892099 -0.118728219892574\\
+11.7779870119709 -0.204908886363654\\
+12.2204468663152 -0.276428478680458\\
+12.6795284678645 -0.334523139731658\\
+13.1558562404571 -0.380431976449159\\
+13.65007806546 -0.415381458656611\\
+14.0328908478584 -0.435124324881912\\
+14.4264395121811 -0.449869549365303\\
+14.8310251433614 -0.460093127514369\\
+15.2469572701759 -0.466253034910039\\
+15.674554102056 -0.468787152925586\\
+16.1141427725301 -0.468111563456688\\
+16.5660595894989 -0.46461921383235\\
+17.188391428171 -0.456215068297894\\
+17.8341022071005 -0.444261966595604\\
+18.6754584276109 -0.42542942351082\\
+19.9204570845384 -0.393985295185644\\
+22.0466873523944 -0.338529669759595\\
+25.7876288759386 -0.253026169772312\\
+28.2781797962532 -0.208076663158238\\
+30.7246884270909 -0.172409163402534\\
+33.0764978074424 -0.144710457157771\\
+35.6083255262919 -0.120686687687879\\
+38.3339510176665 -0.100099551825963\\
+41.6504424854512 -0.0806517237785158\\
+45.2538627817026 -0.064654797168572\\
+49.6244487762885 -0.05032189147434\\
+54.9211648388788 -0.0380053005656293\\
+61.3462171799237 -0.0278431566221684\\
+69.7981390783064 -0.0192678658184207\\
+80.8924348680602 -0.0125842032753667\\
+97.2720319245064 -0.00734584902650681\\
+100 -0.00677306181484028\\
+};
+\addlegendentry{$\alpha = 10$}
+
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00677306181484028\\
+0.0122486461375092 0.0122516953903755\\
+0.0143270295340984 0.0192678658184207\\
+0.0163009236097978 0.0278431566221684\\
+0.0182079168009943 0.0380053005656578\\
+0.0201513573381558 0.05032189147434\\
+0.0220975611479586 0.064654797168572\\
+0.0240093487686069 0.0806517237785158\\
+0.0260865361762251 0.100099551825991\\
+0.0280833199882324 0.120686687687879\\
+0.0302329468440578 0.144710457157771\\
+0.0325471160553176 0.172409163402534\\
+0.0350384224529072 0.203880643704139\\
+0.0380697987140222 0.243625457802779\\
+0.0421332174384734 0.297378311379106\\
+0.0520854855057768 0.412537126390703\\
+0.0550478980785488 0.437184727229607\\
+0.0576448828292606 0.453529769375393\\
+0.0598104096238105 0.462893609021904\\
+0.0614877765381008 0.467241702452668\\
+0.0632121847581245 0.468898698914131\\
+0.0649849535446982 0.467479596206744\\
+0.0668074391569548 0.462575893759634\\
+0.068681035889951 0.453756805560346\\
+0.0706071771413795 0.440570841718426\\
+0.0725873365081736 0.422547760480001\\
+0.0746230289139115 0.399200883588463\\
+0.0767158117677927 0.370029758330105\\
+0.0795977700231485 0.321190199235787\\
+0.0825879938784402 0.259855628508916\\
+0.0856905505126854 0.184786187425601\\
+0.0889096598952924 0.0947489880741728\\
+0.0922497005259214 -0.0114656697947169\\
+0.0966017479952245 -0.168761556994326\\
+0.101159111222386 -0.355321016870846\\
+0.105931476351838 -0.573129207011334\\
+0.110928986489522 -0.823958666259642\\
+0.116162263260848 -1.10934167435204\\
+0.122769104798839 -1.49918731884259\\
+0.129751716865759 -1.9423081303286\\
+0.137131471775393 -2.43986140748734\\
+0.146273335620117 -3.08998385296627\\
+0.156024641436638 -3.81535156229575\\
+0.166426017648587 -4.61559233129231\\
+0.179165032736394 -5.62073744078162\\
+0.192879150802077 -6.72087055624681\\
+0.20956623994805 -8.06977015416345\\
+0.227697025538168 -9.53415788556097\\
+0.249687842888425 -11.2945057491854\\
+0.273802517792786 -13.1938321819057\\
+0.300246170908546 -15.2320761343993\\
+0.332293251639897 -17.6359544165005\\
+0.367760910160114 -20.2119722400368\\
+0.407014245321941 -22.96338845996\\
+0.454629546953248 -26.1684758739246\\
+0.507815211232757 -29.5881396753901\\
+0.567222897164457 -33.2217238557217\\
+0.639448842855712 -37.3939434755092\\
+0.72754835291961 -42.1473683346776\\
+0.835452805838285 -47.5128825920727\\
+0.97721469697258 -53.8860647195161\\
+1.16430313292089 -61.3001950784795\\
+1.45265392594678 -70.981247178906\\
+1.86324631193151 -82.181098208399\\
+2.34622884814232 -92.8549448639857\\
+2.84743916646731 -102.143977088946\\
+3.36144900010886 -110.435969649141\\
+3.93182875570566 -118.620264397583\\
+4.55678626584099 -126.682608989793\\
+5.32999408084406 -135.651958208738\\
+6.29214610961035 -145.580343634727\\
+7.63629826128223 -157.609830756566\\
+10.8401435917834 -179.768052231666\\
+10.9405470720574 179.656553224198\\
+13.0351224468151 168.945030710174\\
+14.9683929307729 160.891945222355\\
+16.8743567772734 154.287226801381\\
+18.848434090338 148.543757385885\\
+21.0534524276677 143.165037206888\\
+23.3006141069691 138.566250493701\\
+25.7876288759386 134.287312971759\\
+28.2781797962532 130.671833161141\\
+31.00926635932 127.311243873974\\
+34.0041193270367 124.196614525443\\
+37.2882130718292 121.317150225088\\
+40.8894822629482 118.660796324159\\
+44.8385594802129 116.214745455405\\
+49.1690357762798 113.965848406929\\
+53.9177464038763 111.900936360174\\
+58.582482001525 110.189116761394\\
+63.6507908129576 108.606673588763\\
+69.1575882873853 107.144785711033\\
+75.1408106111675 105.795023519636\\
+81.6416760492152 104.549381182949\\
+88.704968896542 103.400294009574\\
+96.3793479961591 102.340644289248\\
+100 101.896635788716\\
+};
+\addplot [color=mycolor4, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -141.229771392824\\
+0.0127087870920203 -149.706171416515\\
+0.0207164967560208 -167.020011576302\\
+0.0299554933435982 -179.789438374345\\
+0.0302329468440578 179.891875414199\\
+0.0409838367175735 169.257988371514\\
+0.0506646100892133 161.598463204067\\
+0.0614877765381008 154.352786995255\\
+0.0760117761795532 146.140644423255\\
+0.101159111222386 134.765611440646\\
+0.146273335620117 120.12571108475\\
+0.180824493487798 111.990547215588\\
+0.221485523372639 104.472662662765\\
+0.278898029238043 96.2021889354448\\
+0.418428850790151 81.9683071592618\\
+0.577779011797049 70.5210552233361\\
+0.89940221740918 54.5043776361669\\
+1.12214776820801 46.6485386197244\\
+1.3125568357718 41.3110314263167\\
+1.50722530931073 36.8300707339825\\
+1.71488196987055 32.8813584110931\\
+1.9332422875551 29.4387873407962\\
+2.15940615210354 26.4628515681879\\
+2.41202820761804 23.6841757174869\\
+2.66947849403426 21.3093799277767\\
+2.9544079988804 19.0958287207522\\
+3.26974974451167 17.0382346905258\\
+3.61874981241128 15.1302418064619\\
+3.96824610456936 13.5197952369956\\
+4.35149650092505 12.0222844948072\\
+4.77176094893859 10.6329417664736\\
+5.23261423948667 9.34748640460771\\
+5.73797641421395 8.16221975202308\\
+6.23440188862789 7.17855749108531\\
+6.77377599751758 6.27160123226159\\
+7.35981447526585 5.43965971982655\\
+7.9965545258922 4.68113189083331\\
+8.60864769614942 4.06716936084212\\
+9.26759330114683 3.50857072261277\\
+9.97697764236288 3.00378051735393\\
+10.7406615333344 2.55094643500641\\
+11.4566872863485 2.19562390445083\\
+12.2204468663152 1.87672231866023\\
+13.0351224468151 1.59235935684561\\
+13.9041083409004 1.34047914693878\\
+14.8310251433614 1.11888523941013\\
+15.674554102056 0.951314163022232\\
+16.5660595894989 0.802828011931581\\
+17.5082703173578 0.671938467735345\\
+18.5040701954232 0.557169538696513\\
+19.5565071586593 0.457076517422479\\
+20.6688024962902 0.370262623358258\\
+21.8443607114946 0.295392886267479\\
+23.0867799418716 0.231205052164341\\
+24.399862972595 0.17651749222938\\
+25.7876288759386 0.130234256833177\\
+27.2543253128104 0.0913475360010239\\
+28.8044415339625 0.0589378648584784\\
+30.4427221206439 0.0321724520120199\\
+32.174181506764 0.0103020169562171\\
+34.0041193270367 -0.00734349307433035\\
+35.9381366380452 -0.0213599684954033\\
+38.3339510176665 -0.0338257262414743\\
+40.8894822629482 -0.0427971377129666\\
+44.0193518520901 -0.0495704071273622\\
+47.8277201772749 -0.0536865237644122\\
+52.4468874949529 -0.0549786672598032\\
+58.582482001525 -0.0533226147053085\\
+67.8940681269615 -0.0477848340073876\\
+91.192675984596 -0.0326830060770078\\
+100 -0.0280570641660063\\
+};
+\addlegendentry{$\alpha = 100$}
+
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.0280570641660347\\
+0.0175486714964814 0.0539934155791002\\
+0.0196016347431923 0.054893128243549\\
+0.0214947467343796 0.0526701240125647\\
+0.0231400538013072 0.0481829428862852\\
+0.024911300260678 0.0405521089289209\\
+0.0265720110532445 0.0306505209623822\\
+0.0280833199882324 0.0192527197723962\\
+0.0296805860866562 0.00466980385812121\\
+0.0313686982456683 -0.0136365430171281\\
+0.0331528234231953 -0.0362741959297921\\
+0.0350384224529072 -0.0639260777207085\\
+0.0366914237840248 -0.0913475360010239\\
+0.0384224084605498 -0.123265409940956\\
+0.0402350554886941 -0.16020752607605\\
+0.0421332174384734 -0.202744283615516\\
+0.0441209286319117 -0.251488784912453\\
+0.0462024137175122 -0.307096251328375\\
+0.04883022086878 -0.38386694716084\\
+0.0516074871038594 -0.472799502345396\\
+0.0545427130532976 -0.575240027829835\\
+0.0576448828292606 -0.692594334480248\\
+0.0609234915240079 -0.82631356874964\\
+0.0643885742724037 -0.977877147178617\\
+0.0680507369673503 -1.14877347249191\\
+0.0719211887222133 -1.34047914693878\\
+0.0760117761795532 -1.55443761183699\\
+0.081079098067315 -1.83403063169737\\
+0.0864842327573189 -2.14787854008986\\
+0.0922497005259214 -2.49789009001361\\
+0.0983995229627797 -2.88578069061242\\
+0.104959323055824 -3.31306118172495\\
+0.112993393803321 -3.85128463979859\\
+0.12164242938574 -4.44431976834585\\
+0.130953502048267 -5.09356866039892\\
+0.140977287162893 -5.80025317075246\\
+0.15317404637021 -6.66533508105002\\
+0.166426017648587 -7.60616337538693\\
+0.180824493487798 -8.62451550239922\\
+0.198288394912704 -9.84945229520949\\
+0.217438947560012 -11.1759850873854\\
+0.238439047009369 -12.6080509917198\\
+0.261467321180114 -14.1501418153404\\
+0.286719649749373 -15.8071744503021\\
+0.314410830314732 -17.5842798284613\\
+0.347969790388763 -19.6838103358658\\
+0.385110700232562 -21.9408739071075\\
+0.426215882901522 -24.3603496205264\\
+0.471708469091704 -26.9451705912183\\
+0.526892142135084 -29.953796972858\\
+0.58853157751914 -33.155324196824\\
+0.663470812109245 -36.8300707339825\\
+0.75487992816532 -41.0050218000039\\
+0.874866812047975 -46.0086055922065\\
+1.05201521761614 -52.5161162887823\\
+1.49339321612424 -65.1999101833371\\
+2.08122156998634 -77.0942753852293\\
+3.15136348486643 -91.6552817179141\\
+4.2327890655736 -102.131489188053\\
+5.23261423948667 -109.914730098843\\
+6.40924401935642 -117.621057914162\\
+8.07062014114933 -126.662068719915\\
+15.9662602210142 -153.649602956379\\
+19.5565071586593 -161.259143250838\\
+23.9540735872084 -168.602066496202\\
+30.4427221206439 -177.017949135725\\
+33.0764978074424 -179.891875414199\\
+33.3828586473175 179.789438374345\\
+56.9843705946916 161.192512007846\\
+100 141.229771392824\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.pdf b/matlab/figs/comp_filter_3rd_order_loop_gain.pdf
new file mode 100644
index 0000000..2f286a8
Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order_loop_gain.pdf differ
diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.png b/matlab/figs/comp_filter_3rd_order_loop_gain.png
new file mode 100644
index 0000000..1e1b2d9
Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order_loop_gain.png differ
diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.svg b/matlab/figs/comp_filter_3rd_order_loop_gain.svg
new file mode 100644
index 0000000..687f0c1
--- /dev/null
+++ b/matlab/figs/comp_filter_3rd_order_loop_gain.svg
@@ -0,0 +1,430 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.tex b/matlab/figs/comp_filter_3rd_order_loop_gain.tex
new file mode 100644
index 0000000..91c402c
--- /dev/null
+++ b/matlab/figs/comp_filter_3rd_order_loop_gain.tex
@@ -0,0 +1,618 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.535in,2.205in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-05,
+ymax=100000,
+yminorticks=true,
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 12614.5943851416\\
+0.0121362379834424 7847.00121371501\\
+0.014728827239075 4969.76537651407\\
+0.0182079168009946 3069.59141346463\\
+0.0229276931286565 1851.2467219802\\
+0.0299554933435981 1048.07320582255\\
+0.0417465528925313 526.448381991054\\
+0.0649849535446989 213.885913238138\\
+0.125053858729039 57.4163471150871\\
+0.256690271549195 13.740413550181\\
+0.426215882901533 5.08764667562955\\
+0.65134909462728 2.25111381291762\\
+1.15361810173648 0.763637595184974\\
+1.8979216428391 0.296065637322442\\
+2.90043049386399 0.130007379271673\\
+4.86056423214214 0.0469618628043642\\
+9.88541702191957 0.011391479434645\\
+19.0230118866895 0.00304187017238188\\
+28.804441533963 0.00129820438012985\\
+39.0473523688556 0.000684891903759987\\
+50.0840798984821 0.000399612319495467\\
+62.487880720069 0.000243485627537464\\
+76.5391938823016 0.000151967701642799\\
+92.889787201645 9.51959526846281e-05\\
+100 7.92732583758601e-05\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 6966.8541345835\\
+0.0121362379834424 4334.09412415782\\
+0.014728827239075 2745.22882618454\\
+0.0182079168009946 1695.91776439478\\
+0.0229276931286565 1023.12677374785\\
+0.029680586086656 590.919941658386\\
+0.0406077202570037 308.553623396575\\
+0.0603643850607586 137.955311578277\\
+0.0948368186628592 56.008454687348\\
+0.140977287162897 25.7764137683415\\
+0.191109062168914 14.4194508335806\\
+0.245126006203334 9.09655238930423\\
+0.30302710828664 6.23138435481899\\
+0.367760910160103 4.4733125236513\\
+0.44222739805059 3.30773831525362\\
+0.531772317785097 2.47981325810869\\
+0.64537154016467 1.85770908909834\\
+0.805203967082547 1.3533301561265\\
+1.6835508029612 0.476366906670615\\
+2.0244465099768 0.359947315684773\\
+2.41202820761801 0.272439752736852\\
+2.90043049386399 0.200484009387826\\
+3.52003147279668 0.143250955020123\\
+4.35149650092505 0.0977066754998443\\
+5.58144624945496 0.0613976300811138\\
+7.49678187496688 0.0348515880585207\\
+10.8401435917833 0.0169036066787928\\
+16.8743567772738 0.00698452883981047\\
+25.5509709035251 0.0030045997004841\\
+35.2815411538088 0.00153591718805008\\
+46.0960448682843 0.000867049936097951\\
+58.0448594276898 0.000520913041803124\\
+71.0970943231243 0.000327247685425228\\
+86.285125663669 0.000206419265172534\\
+100 0.000143536807385703\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1278.7705875911\\
+0.0121362379834424 797.673032910501\\
+0.014728827239075 507.270786955154\\
+0.0178752552590424 328.478285273947\\
+0.0218947676285662 212.035084457428\\
+0.0270665207003324 136.513925586232\\
+0.0334598912054997 89.3531110478596\\
+0.0409838367175726 60.4994355912368\\
+0.0497389595879006 42.3285394561985\\
+0.0592615181247555 31.0714983777361\\
+0.0699592016543538 23.4963213303783\\
+0.0825879938784426 18.0182314802896\\
+0.0966017479952265 14.2093116099788\\
+0.112993393803322 11.3486221680649\\
+0.132166418394661 9.17322943340844\\
+0.156024641436637 7.40960921008803\\
+0.185895667963569 5.98202813368665\\
+0.225607406649686 4.7744531709082\\
+0.281481236050758 3.73022254217783\\
+0.367760910160103 2.79855205893701\\
+0.522056752784698 1.9418340431861\\
+0.899402217409204 1.1137752190663\\
+2.13958887134342 0.459286945220401\\
+3.00939003444972 0.320783280859351\\
+3.8957456157755 0.242170523072144\\
+4.86056423214213 0.188365884886592\\
+5.8988964255085 0.149557901506003\\
+7.02824426430835 0.120033296937539\\
+8.29695852083491 0.0963205769077305\\
+9.70480887738031 0.0773183444292607\\
+11.35154708921 0.061296267203471\\
+13.2777082935543 0.0479739566651277\\
+15.5307057393346 0.037073017298446\\
+18.3342548256229 0.0278479425435813\\
+21.8443607114943 0.0203100148443539\\
+26.5108360190854 0.0141181952240709\\
+32.4721849207313 0.00949959527378332\\
+40.1424249049932 0.00617824074680248\\
+49.1690357762803 0.00403009620744181\\
+59.6727119597332 0.00263882567872763\\
+72.4202233460732 0.0016987798099349\\
+87.0843149769072 0.00109769656289539\\
+100 0.000782001095195476\\
+};
+\addplot [color=mycolor4, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 197.030139248659\\
+0.0113777413322149 153.683357037076\\
+0.0128264983052806 123.83211455958\\
+0.0144597292179202 101.137909915259\\
+0.0164519058775366 82.4725843880068\\
+0.0187185529496558 68.134655266143\\
+0.0214947467343798 56.2303503604923\\
+0.0249113002606779 46.3735993979845\\
+0.0294082017058706 37.7889819031355\\
+0.0353629550135504 30.4536559694169\\
+0.043716022482485 24.0258881454982\\
+0.0565917016324624 18.200783737071\\
+0.0788672861561415 12.8754094402821\\
+0.126212131452255 7.97094394048092\\
+0.286719649749377 3.49177559967367\\
+11.35154708921 0.0870163662109368\\
+16.8743567772738 0.0576828262442257\\
+22.4569799553977 0.0424700902608626\\
+28.018665564592 0.0331842886798009\\
+34.0041193270371 0.026462739921475\\
+40.1424249049932 0.0215639935864772\\
+46.5229952396019 0.0177839902043827\\
+53.4229329953835 0.0146768189564307\\
+60.7832312829723 0.0121252414656406\\
+69.1575882873853 0.00988748927912266\\
+77.9636013040524 0.00807544960010246\\
+87.8909065341995 0.00650688545122523\\
+99.082280990038 0.00516911583380925\\
+100 0.00507536564615612\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.535in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.672,2.817)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 135.119588480617\\
+0.0131862140139471 142.98433479359\\
+0.0152821403602584 146.987377600749\\
+0.0173876240021625 150.309067205979\\
+0.0196016347431923 153.212413406738\\
+0.0218947676285658 155.722840465389\\
+0.0242317279423763 157.875016344521\\
+0.0268181260945295 159.883239760144\\
+0.0296805860866562 161.749284276937\\
+0.0325471160553176 163.325784367274\\
+0.0356904934567525 164.792650187166\\
+0.0391374560198028 166.155216846314\\
+0.0429173237842218 167.419426825071\\
+0.0470622484984116 168.591593582327\\
+0.0516074871038594 169.678212318756\\
+0.0565917016324609 170.685813201366\\
+0.0620572880677654 171.620851173078\\
+0.0680507369673503 172.48962616514\\
+0.0746230289139115 173.29822776453\\
+0.0825879938784402 174.125154862851\\
+0.0914031074875622 174.893736906462\\
+0.101159111222386 175.61096256692\\
+0.112993393803321 176.342526285274\\
+0.126212131452257 177.028735029912\\
+0.142283045721431 177.72945438292\\
+0.161885969017819 178.443932417804\\
+0.187617469143913 179.221271924269\\
+0.217438947560012 179.968124957671\\
+0.219452908620335 -179.985984461197\\
+0.268800102153763 -178.994206486432\\
+0.335371015200292 -177.945006244406\\
+0.399578030189527 -177.144116723752\\
+0.458840412645483 -176.542974305161\\
+0.512518692705321 -176.092838502769\\
+0.562017384808323 -175.746540975163\\
+0.605036787939111 -175.49319610834\\
+0.645371540164686 -175.291913839562\\
+0.688395206964551 -175.112248316102\\
+0.72754835291961 -174.977265546196\\
+0.761871770232323 -174.879268370885\\
+0.797814457207674 -174.795237273189\\
+0.827785696619849 -174.738513792646\\
+0.858882855954615 -174.691444522386\\
+0.891148232283998 -174.654276928918\\
+0.91614024571388 -174.633020550954\\
+0.941833153464815 -174.617511174259\\
+0.968246611930323 -174.607796241214\\
+0.986265846131287 -174.604554231169\\
+1.00462042134681 -174.60390560689\\
+1.02331657833024 -174.60585125741\\
+1.04236067397639 -174.610388516571\\
+1.07159339982264 -174.622039123962\\
+1.10164594963369 -174.639470296345\\
+1.13254131515284 -174.662628819938\\
+1.16430313292089 -174.691444522386\\
+1.20804213467733 -174.738513792646\\
+1.25342426546138 -174.795237273189\\
+1.3125568357718 -174.879268370885\\
+1.37447909267756 -174.977265546196\\
+1.45265392594678 -175.112248316102\\
+1.53527502878039 -175.264866969573\\
+1.63762407452172 -175.46321110661\\
+1.7629753752872 -175.713630860342\\
+1.91550055557359 -176.021242054753\\
+2.10049824165391 -176.389339283747\\
+2.34622884814232 -176.859220265941\\
+2.69420371368182 -177.477133947399\\
+3.23974262952812 -178.334452757323\\
+4.04209583979642 -179.396164691781\\
+4.55678626584099 -179.985984461197\\
+4.59899209052235 179.968124957671\\
+5.4794723369002 179.078166832191\\
+6.35042516859595 178.293861817558\\
+7.22534949178734 177.571249759605\\
+8.14537176628054 176.861022546974\\
+9.09827289445557 176.16418780863\\
+10.0693863147606 175.484076061706\\
+11.1441525146678 174.75801382446\\
+12.3336349791381 173.979355627406\\
+13.5248087041786 173.21990683133\\
+14.8310251433614 172.405555107386\\
+16.2633950404818 171.530431658536\\
+17.8341022071005 170.588423955442\\
+19.5565071586593 169.573213716733\\
+21.4452607597172 168.478334432985\\
+23.5164288449433 167.297253920118\\
+25.7876288759386 166.023487889953\\
+28.2781797962532 164.650750718759\\
+31.00926635932 163.173149217496\\
+34.0041193270367 161.585423916225\\
+37.2882130718292 159.883239760144\\
+41.268208457029 157.875016344521\\
+45.6730127016882 155.722840465389\\
+50.5479682119114 153.427974647732\\
+56.4614141930371 150.767634501129\\
+63.6507908129576 147.714822707608\\
+73.0909932860277 144.002686843109\\
+86.2851256636678 139.350315979885\\
+100 135.119588480618\\
+};
+\addlegendentry{$\alpha = 0.1$}
+
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 135.866639032337\\
+0.013681576279675 145.025714456894\\
+0.0160031031373875 149.392262750818\\
+0.0183765620038813 153.04688279657\\
+0.0207164967560208 156.038671480405\\
+0.0233543813990654 158.856593757588\\
+0.0260865361762251 161.301598982582\\
+0.0291383170483282 163.600240348017\\
+0.0325471160553176 165.759969510356\\
+0.0363546996129332 167.791221079529\\
+0.0409838367175735 169.861413442143\\
+0.0462024137175122 171.81359654767\\
+0.0525679112201842 173.806035778137\\
+0.0609234915240079 175.974732061085\\
+0.0732596542821532 178.578009288717\\
+0.081079098067315 179.983110819151\\
+0.0818300681586717 -179.889521115303\\
+0.112993393803321 -175.386107453616\\
+0.133390569003905 -172.967610103772\\
+0.154592773641949 -170.716300584504\\
+0.177520801171768 -168.499979225983\\
+0.203849339825241 -166.172050429343\\
+0.236250846547792 -163.567380822012\\
+0.278898029238043 -160.509922714442\\
+0.446323392671051 -151.749542067968\\
+0.493962174387827 -150.027999693757\\
+0.541668691103327 -148.57994929659\\
+0.58313051135262 -147.520814568332\\
+0.627766010580631 -146.564575888385\\
+0.66961600548533 -145.822182108109\\
+0.707701066118183 -145.262048413698\\
+0.747952251562161 -144.776836160727\\
+0.783238259917936 -144.432472463364\\
+0.820188949920225 -144.144658927142\\
+0.851000724712218 -143.956198221135\\
+0.88296999554939 -143.805614813092\\
+0.907732652520995 -143.71786045271\\
+0.933189771573347 -143.651890526218\\
+0.950556592010137 -143.620080022034\\
+0.968246611930323 -143.598039370922\\
+0.986265846131287 -143.585788199272\\
+0.995400828762154 -143.583337419148\\
+1.00462042134681 -143.583337419148\\
+1.01392540755881 -143.585788199272\\
+1.02331657833024 -143.59068921369\\
+1.04236067397639 -143.607837034203\\
+1.06175918348298 -143.634765608906\\
+1.08151870255226 -143.671450963373\\
+1.1118496048193 -143.744699186169\\
+1.1430311291145 -143.839678179725\\
+1.17508713090482 -143.956198221135\\
+1.2192312516491 -144.144658927142\\
+1.26503372039588 -144.370330683317\\
+1.32471398786616 -144.703525575567\\
+1.38720978054164 -145.091787957086\\
+1.46610868404698 -145.627402498871\\
+1.54949503931459 -146.235115253627\\
+1.65279206146492 -147.029022690587\\
+1.77930438991856 -148.038344503072\\
+1.91550055557359 -149.143920791031\\
+2.10049824165391 -150.640224508758\\
+2.34622884814232 -152.567068928407\\
+2.69420371368182 -155.109610367003\\
+4.47353305449843 -164.558133087157\\
+5.18459354389293 -167.116803836187\\
+5.95353313081449 -169.399593301807\\
+6.83651600451004 -171.573313095923\\
+7.92316862486613 -173.785625345881\\
+9.44006478941749 -176.301648080159\\
+12.2204468663152 -179.889521115302\\
+12.3336349791381 179.983110819151\\
+15.9662602210142 176.371367395968\\
+18.6754584276109 174.082761229751\\
+21.4452607597172 171.959421974071\\
+24.1759407916908 170.01553208274\\
+27.2543253128104 167.955075351323\\
+30.4427221206439 165.933986061586\\
+34.0041193270367 163.785396828638\\
+37.982153061908 161.498663108646\\
+42.4255643071768 159.066050540548\\
+47.3887960971767 156.483651045247\\
+53.4229329953849 153.51817441204\\
+60.7832312829711 150.139403657404\\
+69.7981390783064 146.331409039535\\
+83.1610415323096 141.296697232236\\
+100 135.866639032337\\
+};
+\addlegendentry{$\alpha = 1$}
+
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 141.25782845699\\
+0.0127087870920203 149.746596855189\\
+0.02033800305847 166.43033138603\\
+0.0280833199882324 177.579864141309\\
+0.0299554933435982 179.791331216972\\
+0.0302329468440578 -179.8928654785\\
+0.0474981480322836 -164.302302660939\\
+0.068681035889951 -151.2804106029\\
+0.0914031074875622 -141.269992519576\\
+0.107902879151619 -135.689359137369\\
+0.123906215694794 -131.263380526629\\
+0.139683511798871 -127.637362222654\\
+0.156024641436638 -124.488860782599\\
+0.17267809038843 -121.784452469303\\
+0.191109062168914 -119.262216503451\\
+0.20956623994805 -117.130935516548\\
+0.229805998875885 -115.154392230691\\
+0.252000499376417 -113.331337921629\\
+0.273802517792786 -111.819534645806\\
+0.297490754721436 -110.426946142374\\
+0.323228397818141 -109.150162474584\\
+0.351192753045066 -107.985413455279\\
+0.378074666359942 -107.040931458026\\
+0.407014245321941 -106.179013747101\\
+0.438168993151433 -105.396867092387\\
+0.471708469091704 -104.691784102583\\
+0.503154894503796 -104.136022759072\\
+0.536697694554061 -103.635663859708\\
+0.572476623970219 -103.18919576699\\
+0.610640754223191 -102.795230787728\\
+0.645371540164686 -102.498380208932\\
+0.682077673286572 -102.238471935274\\
+0.720871503378203 -102.014877225689\\
+0.75487992816532 -101.85589026076\\
+0.790492762269657 -101.72146625667\\
+0.820188949920225 -101.631454766016\\
+0.851000724712218 -101.556913790353\\
+0.88296999554939 -101.497760035695\\
+0.907732652520995 -101.463452053807\\
+0.933189771573347 -101.437740054283\\
+0.959360828709328 -101.420607765698\\
+0.97721469697258 -101.413947163492\\
+0.995400828762154 -101.41109295478\\
+1.01392540755881 -101.412044335344\\
+1.03279473191894 -101.416801573262\\
+1.05201521761614 -101.425366008841\\
+1.07159339982264 -101.437740054283\\
+1.10164594963369 -101.463452053807\\
+1.13254131515284 -101.497760035695\\
+1.16430313292089 -101.540685680796\\
+1.20804213467733 -101.611372704482\\
+1.25342426546138 -101.697507831935\\
+1.30051125217337 -101.799187037159\\
+1.36186523675611 -101.948318312399\\
+1.42611370719414 -102.122171535382\\
+1.49339321612424 -102.321043787008\\
+1.57833140565207 -102.59319235545\\
+1.66810053720008 -102.902510467599\\
+1.7629753752872 -103.249731486601\\
+1.88050405512853 -103.703810301075\\
+2.00586777950826 -104.211988531941\\
+2.1395888713434 -104.775794611939\\
+2.28222447418683 -105.396867092387\\
+2.45691646298281 -106.179013747101\\
+2.64498018242767 -107.040931458026\\
+2.84743916646731 -107.985413455279\\
+3.06539529505651 -109.015284731907\\
+3.33060034362469 -110.279429027015\\
+3.61874981241128 -111.658973787557\\
+3.93182875570566 -113.157377948217\\
+4.27199396630681 -114.777571992694\\
+4.68458011587293 -116.723262290049\\
+5.13701354335138 -118.823583526712\\
+5.63314267060121 -121.078261103554\\
+6.23440188862789 -123.733612592555\\
+6.96374473062844 -126.831586811859\\
+7.77841107128642 -130.125314588668\\
+8.85007491447353 -134.188079399986\\
+10.2567793074445 -139.0706817497\\
+12.3336349791381 -145.427947761283\\
+17.8341022071005 -158.466637122255\\
+24.8539485742973 -170.072428841069\\
+33.0764978074424 -179.8928654785\\
+33.3828586473175 179.791331216972\\
+50.5479682119114 165.463077280532\\
+68.5229159528409 154.690283085552\\
+100 141.25782845699\\
+};
+\addlegendentry{$\alpha = 10$}
+
+\addplot [color=mycolor4, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -179.43549947792\\
+0.0129452997822788 -164.759056183386\\
+0.015002933220192 -156.754934854135\\
+0.0170699493403842 -150.122479502771\\
+0.0192435097523039 -144.336094828809\\
+0.0214947467343796 -139.344072327171\\
+0.0237890104107894 -135.075458768145\\
+0.0263281546564798 -131.104227571426\\
+0.0288709091735928 -127.749603926456\\
+0.0316592411198347 -124.632508984386\\
+0.0347168681892662 -121.744675724217\\
+0.0380697987140222 -119.076043335305\\
+0.041746552892532 -116.615354645809\\
+0.0457784053837654 -114.350649565103\\
+0.0501996513311016 -112.269659727455\\
+0.0550478980785488 -110.360114476483\\
+0.0598104096238105 -108.77814758564\\
+0.0649849535446982 -107.316779432235\\
+0.0706071771413795 -105.967826925531\\
+0.0767158117677927 -104.723481815635\\
+0.0833529396509846 -103.576339779458\\
+0.0905642837944531 -102.519415728366\\
+0.0983995229627797 -101.546148538646\\
+0.106912633917349 -100.650397828515\\
+0.116162263260848 -99.8264349013712\\
+0.126212131452257 -99.0689295457683\\
+0.137131471775393 -98.3729340240504\\
+0.148995507285289 -97.7338652866608\\
+0.161885969017819 -97.1474862096559\\
+0.175891659032778 -96.6098864606348\\
+0.191109062168914 -96.1174634453691\\
+0.207643010725571 -95.6669036669255\\
+0.225607406649687 -95.2551647349894\\
+0.245126006203328 -94.8794581902949\\
+0.266333272517501 -94.5372332532935\\
+0.28937530190509 -94.22616156393\\
+0.311525422355555 -93.9740883208354\\
+0.335371015200292 -93.7435928261774\\
+0.361041859717323 -93.533430738018\\
+0.38867766908927 -93.3424663663522\\
+0.418428850790151 -93.1696668893992\\
+0.450457325175955 -93.0140970508552\\
+0.484937406733521 -92.8749143247432\\
+0.517265738721588 -92.765977015351\\
+0.551749237612921 -92.6685553243716\\
+0.58853157751914 -92.5822448176624\\
+0.627766010580631 -92.5066870832391\\
+0.663470812109245 -92.4502425655415\\
+0.701206358900715 -92.4012944989136\\
+0.741088151564139 -92.3596934725267\\
+0.776050333513376 -92.3305459834826\\
+0.812661920009201 -92.3063502265361\\
+0.851000724712218 -92.2870549012104\\
+0.891148232283998 -92.2726190946174\\
+0.9246257116406 -92.2645483882152\\
+0.959360828709328 -92.2595570343043\\
+0.995400828762154 -92.2576382592786\\
+1.03279473191894 -92.2587894592063\\
+1.07159339982264 -92.2630121963597\\
+1.1118496048193 -92.2703122012974\\
+1.1536181017365 -92.280699380499\\
+1.19695570235905 -92.2941878295618\\
+1.25342426546138 -92.3154378384214\\
+1.3125568357718 -92.3416075470941\\
+1.37447909267756 -92.3727524397406\\
+1.43932264471941 -92.4089385434855\\
+1.52118551798608 -92.4591250315\\
+1.60770442167387 -92.5168350814735\\
+1.69914417203464 -92.5822448176624\\
+1.81241754737421 -92.6685553243716\\
+1.9332422875551 -92.765977015351\\
+2.06212180399915 -92.8749143247432\\
+2.19959306803003 -92.9958193387509\\
+2.34622884814232 -93.1291936118087\\
+2.52582002696278 -93.2976017002527\\
+2.71915794303594 -93.4839319193285\\
+2.92729483504285 -93.689192220815\\
+3.15136348486643 -93.9144920544459\\
+3.39258338274108 -94.1610480301771\\
+3.65226736430817 -94.4301900706982\\
+3.93182875570566 -94.7233680649126\\
+4.2327890655736 -95.042159030283\\
+4.59899209052235 -95.4335512942533\\
+4.99687745385497 -95.8621849738352\\
+5.42918617761888 -96.3309593232963\\
+5.89889642550864 -96.8430350528091\\
+6.40924401935642 -97.4018518827295\\
+6.96374473062844 -98.0111468475\\
+7.56621850048106 -98.674973154251\\
+8.22081575524031 -99.3977193194881\\
+8.93204599858103 -100.184128202118\\
+9.70480887738009 -101.039315416956\\
+10.5444279352618 -101.968786443346\\
+11.4566872863485 -102.978451531216\\
+12.4478714618793 -104.074637243841\\
+13.5248087041786 -105.264093154328\\
+14.6949180062486 -106.553991823637\\
+15.9662602210142 -107.951919725755\\
+17.3475935923388 -109.465856248351\\
+18.848434090338 -111.104137289989\\
+20.4791209666503 -112.875399314601\\
+22.2508879812839 -114.788499045374\\
+24.1759407916908 -116.852403345014\\
+26.5108360190857 -119.333356394021\\
+29.0712337727252 -122.023417831217\\
+31.8789129267769 -124.933749094245\\
+34.9577557436321 -128.07426022057\\
+38.3339510176665 -131.453002030857\\
+42.0362168384463 -135.075458768145\\
+46.5229952396024 -139.344072327171\\
+51.4886745013736 -143.906989795268\\
+57.5121707184161 -149.207784007933\\
+64.8353428605487 -155.301546680644\\
+74.4512291079494 -162.722036664831\\
+87.8909065341978 -172.030705807668\\
+100 -179.43549947792\\
+};
+\addlegendentry{$\alpha = 100$}
+
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filters_loop_gain.pdf b/matlab/figs/comp_filters_loop_gain.pdf
new file mode 100644
index 0000000..2375a65
Binary files /dev/null and b/matlab/figs/comp_filters_loop_gain.pdf differ
diff --git a/matlab/figs/comp_filters_loop_gain.png b/matlab/figs/comp_filters_loop_gain.png
new file mode 100644
index 0000000..0522cac
Binary files /dev/null and b/matlab/figs/comp_filters_loop_gain.png differ
diff --git a/matlab/figs/comp_filters_loop_gain.svg b/matlab/figs/comp_filters_loop_gain.svg
new file mode 100644
index 0000000..2d3e1ee
--- /dev/null
+++ b/matlab/figs/comp_filters_loop_gain.svg
@@ -0,0 +1,418 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filters_loop_gain.tex b/matlab/figs/comp_filters_loop_gain.tex
new file mode 100644
index 0000000..9313b5e
--- /dev/null
+++ b/matlab/figs/comp_filters_loop_gain.tex
@@ -0,0 +1,398 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.535in,2.189in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-05,
+ymax=100000,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 100\\
+100 0.01\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 4452.70738062487\\
+0.0603643850607586 123.255961479085\\
+0.104959323055823 41.4860876658547\\
+0.150375532129974 20.7469459594487\\
+0.196468664618044 12.5718126492539\\
+0.245126006203334 8.42095804539062\\
+0.300246170908555 5.9165140185489\\
+0.361041859717334 4.35336515292742\\
+0.430163575810679 3.29696026169505\\
+0.512518692705333 2.53006503479395\\
+0.616296625513294 1.93981910507326\\
+0.761871770232299 1.44815343138913\\
+1.0423606739764 0.953362265859272\\
+1.43932264471941 0.618081072555738\\
+1.76297537528721 0.465162228361309\\
+2.10049824165392 0.359717438792584\\
+2.50264009641792 0.274677819928194\\
+2.98177229001967 0.206968748901517\\
+3.58553985745982 0.15151896622923\\
+4.35149650092505 0.107710246650006\\
+5.42918617761894 0.0718824792826439\\
+7.093341204988 0.0434183214062307\\
+9.88541702191957 0.0228579836757209\\
+15.819734815786 0.00906007100693446\\
+35.2815411538088 0.00183588735411689\\
+100 0.000228928833851165\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.0125921561369415 101491.596159216\\
+0.172678090388436 39.7797829846157\\
+0.231934505927443 16.8033863636911\\
+0.278898029238044 10.0043490471442\\
+0.320262069365765 6.91277373483255\\
+0.361041859717334 5.11805341723831\\
+0.399578030189527 4.04178744190975\\
+0.438168993151419 3.31590059296286\\
+0.480487043965513 2.76635130573283\\
+0.526892142135068 2.34623524719731\\
+0.577779011797051 2.02030321187599\\
+0.633580499265825 1.76251082228349\\
+0.701206358900718 1.53526789548917\\
+0.790492762269642 1.3198868337325\\
+0.933189771573324 1.08431962221283\\
+1.31255683577184 0.726277026211204\\
+1.4796880626864 0.623011580023913\\
+1.63762407452169 0.541225051579819\\
+1.7957846470021 0.470686125609692\\
+1.96922025547917 0.403791844849419\\
+2.13958887134342 0.347113507663843\\
+2.32469705998565 0.294401143531218\\
+2.54921465445143 0.241298560659569\\
+2.82130767593947 0.190374762740941\\
+3.15136348486648 0.144225272295667\\
+3.58553985745982 0.102262511913719\\
+4.23278906557355 0.064285904088498\\
+5.28107971193433 0.0338426545259227\\
+7.63629826128224 0.0113342149786448\\
+20.6688024962908 0.00057371185817525\\
+80.1500696156541 9.83916882380797e-06\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.535in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-270,
+ymax=90,
+ytick={-270, -180, -90, 0, 90},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.562,3.158)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -90\\
+100 -90\\
+};
+\addlegendentry{1st order}
+
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -178.957003034352\\
+0.0108651577465251 -178.866810244641\\
+0.0118051652856881 -178.768826475063\\
+0.0128264983052803 -178.662381105018\\
+0.0139361927422416 -178.546746460124\\
+0.0151418932530433 -178.421133148156\\
+0.0164519058775369 -178.284685067875\\
+0.0178752552590422 -178.136474083827\\
+0.0194217468148908 -177.975494365462\\
+0.0211020342856859 -177.800656396364\\
+0.0229276931286557 -177.610780669387\\
+0.024911300260678 -177.404591097025\\
+0.0270665207003317 -177.180708184193\\
+0.0294082017058709 -176.937642034026\\
+0.0319524750575915 -176.673785287792\\
+0.0347168681892662 -176.38740613922\\
+0.0377204249341695 -176.076641613817\\
+0.0409838367175735 -175.739491367411\\
+0.0445295850994262 -175.373812338418\\
+0.048382096649261 -174.977314688424\\
+0.0525679112201842 -174.547559589349\\
+0.0571158647812626 -174.08195956661\\
+0.0620572880677654 -173.577782289778\\
+0.0674262224177818 -173.032158918076\\
+0.0732596542821532 -172.442098358514\\
+0.0795977700231485 -171.804509077097\\
+0.0864842327573189 -171.116230410629\\
+0.0939664831495459 -170.37407564209\\
+0.103041699495061 -169.482436450549\\
+0.112993393803321 -168.516222824858\\
+0.123906215694794 -167.471591904478\\
+0.13587299019027 -166.345231365715\\
+0.148995507285289 -165.134612999381\\
+0.164898694447104 -163.703936571506\\
+0.182499324481618 -162.169716094556\\
+0.203849339825241 -160.381377716493\\
+0.229805998875885 -158.31871653437\\
+0.261467321180114 -155.972596756133\\
+0.311525422355555 -152.645144617672\\
+0.422304418720659 -146.846472539726\\
+0.471708469091704 -144.876260138199\\
+0.517265738721588 -143.347062017852\\
+0.562017384808323 -142.082929539107\\
+0.605036787939111 -141.064584651059\\
+0.645371540164686 -140.265085247662\\
+0.682077673286572 -139.653847594782\\
+0.720871503378203 -139.115467955745\\
+0.75487992816532 -138.725195702185\\
+0.790492762269657 -138.390023464222\\
+0.827785696619849 -138.111573850448\\
+0.858882855954615 -137.930569117342\\
+0.891148232283998 -137.787294464749\\
+0.91614024571388 -137.704869763854\\
+0.941833153464815 -137.644063124785\\
+0.959360828709328 -137.615589131292\\
+0.97721469697258 -137.596792889179\\
+0.995400828762154 -137.58768890975\\
+1.00462042134681 -137.586774007244\\
+1.01392540755881 -137.588284220971\\
+1.02331657833024 -137.59221925947\\
+1.04236067397639 -137.607360305118\\
+1.06175918348298 -137.632185455269\\
+1.08151870255226 -137.666675542532\\
+1.1118496048193 -137.736472130002\\
+1.1430311291145 -137.827831850675\\
+1.17508713090482 -137.9405958583\\
+1.2192312516491 -138.123899042406\\
+1.26503372039588 -138.344334104422\\
+1.32471398786616 -138.671043950268\\
+1.38720978054164 -139.053116017368\\
+1.45265392594678 -139.488700184785\\
+1.53527502878039 -140.079050862312\\
+1.63762407452172 -140.855824439885\\
+1.74679621512724 -141.720394781674\\
+1.88050405512853 -142.805569136392\\
+2.04319732019529 -144.134465562819\\
+2.24052786929996 -145.721897135137\\
+2.52582002696278 -147.915005842776\\
+3.03726357970331 -151.44285609824\\
+3.89574561577541 -156.185774414586\\
+4.47353305449843 -158.68364267057\\
+5.04315948717143 -160.724814576918\\
+5.63314267060121 -162.491221169974\\
+6.23440188862789 -164.004438070156\\
+6.8998371214298 -165.413885129215\\
+7.56621850048106 -166.605414264188\\
+8.29695852083464 -167.713170155591\\
+9.09827289445557 -168.739881732982\\
+9.97697764236288 -169.689000771499\\
+10.9405470720574 -170.564459360223\\
+11.9971773543585 -171.370474411371\\
+13.1558562404571 -172.111394308948\\
+14.4264395121811 -172.791581841864\\
+15.674554102056 -173.355373036494\\
+17.030650292528 -173.876484146789\\
+18.5040701954232 -174.357837139881\\
+20.1049641626046 -174.802222614342\\
+21.8443607114946 -175.212289168741\\
+23.7342425002384 -175.590537859071\\
+25.7876288759386 -175.939320537386\\
+28.0186655645918 -176.260841094317\\
+30.4427221206439 -176.557158824031\\
+33.0764978074424 -176.830193293882\\
+35.9381366380452 -177.081730235641\\
+39.0473523688559 -177.313428084679\\
+42.4255643071768 -177.526824881582\\
+46.0960448682849 -177.723345320863\\
+50.0840798984813 -177.904307786967\\
+54.41714286866 -178.070931261306\\
+59.1250841383182 -178.224342017946\\
+64.2403365939436 -178.365580051744\\
+69.7981390783064 -178.495605202759\\
+75.8367791499744 -178.615302955963\\
+82.3978568452854 -178.725489906648\\
+89.5265712599616 -178.826918890367\\
+98.172984061889 -178.930188150367\\
+100 -178.949725392766\\
+};
+\addlegendentry{2nd order}
+
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -268.559706368244\\
+0.0108651577465251 -268.435040678086\\
+0.0118051652856874 -268.299573175461\\
+0.0128264983052811 -268.152364740733\\
+0.0139361927422416 -267.992393709843\\
+0.0151418932530433 -267.818548367858\\
+0.0164519058775359 -267.629618690512\\
+0.0178752552590433 -267.424287240017\\
+0.0194217468148908 -267.201119105339\\
+0.0211020342856859 -266.958550757566\\
+0.0229276931286557 -266.694877666935\\
+0.0249113002606763 -266.408240498577\\
+0.0270665207003335 -266.09660966765\\
+0.0294082017058709 -265.757767989608\\
+0.0319524750575915 -265.389291106001\\
+0.0347168681892639 -264.988525297787\\
+0.0377204249341719 -264.552562214069\\
+0.0409838367175735 -264.0782099409\\
+0.0445295850994262 -263.561959708845\\
+0.0483820966492578 -262.999947385468\\
+0.0525679112201876 -262.38790871625\\
+0.0571158647812663 -261.72112706228\\
+0.0620572880677654 -260.994372135473\\
+0.0674262224177818 -260.201827957339\\
+0.0732596542821484 -259.337007980368\\
+0.0795977700231537 -258.392655043266\\
+0.0864842327573189 -257.360623642869\\
+0.0939664831495459 -256.231742004148\\
+0.102096066230601 -254.995651801261\\
+0.109910970092957 -253.7974554544\\
+0.118324062745842 -252.496031035399\\
+0.127381132318649 -251.080996495873\\
+0.137131471775393 -249.5407357266\\
+0.147628147190933 -247.862278435322\\
+0.158928286562308 -246.031203684947\\
+0.171093390726908 -244.031594669447\\
+0.184189668079973 -241.846087546318\\
+0.198288394912704 -239.456078013494\\
+0.213466303332416 -236.842175905452\\
+0.2298059988759 -233.985028106631\\
+0.247396410088691 -230.866656313354\\
+0.266333272517501 -227.472462792915\\
+0.28937530190509 -223.314155182831\\
+0.314410830314712 -218.79944041624\\
+0.344776405473464 -213.397604586938\\
+0.385110700232562 -206.492270612153\\
+0.517265738721622 -187.785856771055\\
+0.562017384808323 -183.077027308029\\
+0.605036787939111 -179.291104959751\\
+0.645371540164644 -176.338732370898\\
+0.682077673286527 -174.099978935363\\
+0.72087150337825 -172.144504026192\\
+0.754879928165369 -170.737644861378\\
+0.790492762269657 -169.536693767311\\
+0.820188949920225 -168.725518991483\\
+0.851000724712218 -168.047956420126\\
+0.88296999554939 -167.504328254059\\
+0.907732652520995 -167.184598441752\\
+0.933189771573286 -166.940320912698\\
+0.950556592010074 -166.819391240799\\
+0.96824661193026 -166.731999151588\\
+0.986265846131223 -166.678143777145\\
+0.995400828762089 -166.66379208272\\
+1.00462042134688 -166.657824284025\\
+1.01392540755888 -166.660240352052\\
+1.0233165783303 -166.671040298629\\
+1.03279473191901 -166.690224175228\\
+1.05201521761621 -166.753744086483\\
+1.07159339982271 -166.850800984501\\
+1.09153593533143 -166.981395630633\\
+1.12214776820801 -167.240170067956\\
+1.1536181017365 -167.574393635307\\
+1.18597101233768 -167.984035832293\\
+1.23052400435925 -168.647425125976\\
+1.27675070431924 -169.444471137042\\
+1.3369837418249 -170.627872753272\\
+1.40005838246802 -172.017388550973\\
+1.46610868404707 -173.609979297813\\
+1.54949503931469 -175.782510879849\\
+1.63762407452172 -178.228899255372\\
+1.74679621512724 -181.406338625306\\
+1.88050405512853 -185.418095065069\\
+2.04319732019515 -190.32799902709\\
+2.3033628731422 -197.903019273894\\
+2.90043049386384 -212.599410102468\\
+3.21001089554331 -218.57847227479\\
+3.52003147279672 -223.591269790894\\
+3.82456972246693 -227.72644584513\\
+4.15545533471868 -231.502543624031\\
+4.51496777203634 -234.932856984827\\
+4.86056423214227 -237.709606317426\\
+5.23261423948667 -240.249268900511\\
+5.63314267060121 -242.57132789173\\
+6.06432939540775 -244.69498973638\\
+6.52852114112819 -246.638494805646\\
+7.02824426430854 -248.418754342825\\
+7.63629826128223 -250.245576768037\\
+8.29695852083464 -251.905013728132\\
+9.01477631452437 -253.41453557213\\
+9.79469667069579 -254.789551865633\\
+10.6420924406474 -256.043636928345\\
+11.5628013120735 -257.188754452214\\
+12.5631660247406 -258.235466680925\\
+13.6500780654609 -259.193121811654\\
+14.8310251433614 -260.070017949603\\
+16.1141427725301 -260.873544447254\\
+17.5082703173566 -261.610302664265\\
+19.0230118866882 -262.286208638849\\
+20.6688024962916 -262.906580204172\\
+22.4569799553979 -263.476210915662\\
+24.399862972595 -263.999432894991\\
+26.510836019084 -264.480170409803\\
+28.8044415339644 -264.92198573034\\
+31.2964801067081 -265.328118551701\\
+34.0041193270367 -265.701520050035\\
+36.9460120519916 -266.044882453329\\
+40.1424249049957 -266.36066485035\\
+43.6153778920815 -266.651115831411\\
+47.3887960971767 -266.918293448036\\
+51.4886745013736 -267.164082891683\\
+55.9432570616907 -267.390212221046\\
+60.7832312829751 -267.598266410184\\
+66.0419396233041 -267.78969994328\\
+71.7556091893683 -267.965848144262\\
+77.963601304049 -268.127937398956\\
+84.708682665579 -268.277094402665\\
+92.0373199661849 -268.414354545784\\
+100 -268.540669533537\\
+};
+\addlegendentry{3rd order}
+
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filters_magnitude.pdf b/matlab/figs/comp_filters_magnitude.pdf
new file mode 100644
index 0000000..a9b1d7f
Binary files /dev/null and b/matlab/figs/comp_filters_magnitude.pdf differ
diff --git a/matlab/figs/comp_filters_magnitude.png b/matlab/figs/comp_filters_magnitude.png
new file mode 100644
index 0000000..c0d6cc8
Binary files /dev/null and b/matlab/figs/comp_filters_magnitude.png differ
diff --git a/matlab/figs/comp_filters_magnitude.svg b/matlab/figs/comp_filters_magnitude.svg
new file mode 100644
index 0000000..bb121b4
--- /dev/null
+++ b/matlab/figs/comp_filters_magnitude.svg
@@ -0,0 +1,1080 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filters_magnitude.tex b/matlab/figs/comp_filters_magnitude.tex
new file mode 100644
index 0000000..0bd5141
--- /dev/null
+++ b/matlab/figs/comp_filters_magnitude.tex
@@ -0,0 +1,347 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=1.094in,
+height=2.082in,
+at={(0.475in,0.361in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-06,
+ymax=10,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+title style={font=\bfseries},
+title={1st Order},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.999950003749688\\
+0.0872852662384838 0.996212270690056\\
+0.153174046370208 0.988471330430528\\
+0.217438947560008 0.977166698892772\\
+0.28408836901833 0.961935999785096\\
+0.351192753045073 0.943506928797092\\
+0.422304418720667 0.921222425190311\\
+0.493962174387832 0.89658206894665\\
+0.572476623970218 0.867851063718372\\
+0.657382014340959 0.835613749888064\\
+0.747952251562182 0.800786420009844\\
+0.851000724712225 0.761563109315656\\
+0.968246611930312 0.718420929727937\\
+1.10164594963366 0.672121971177384\\
+1.2534242654614 0.623652758680333\\
+1.43932264471941 0.570576865353009\\
+1.6527920614649 0.517660922485174\\
+1.93324228755505 0.45943998828332\\
+2.30336287314213 0.398236356286246\\
+2.79541599906786 0.336825403943566\\
+3.52003147279668 0.273274829278965\\
+4.68458011587305 0.208762849610014\\
+6.89983712143002 0.14343238847176\\
+12.5631660247412 0.0793468039750842\\
+44.4270674960688 0.0225031006887017\\
+100 0.00999950003749688\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00999950003749688\\
+0.103041699495059 0.102498990038406\\
+0.180824493487795 0.17793881538738\\
+0.259067785868801 0.250788474460806\\
+0.338477285594598 0.320609557068459\\
+0.418428850790158 0.38600008899331\\
+0.503154894503806 0.449466781039234\\
+0.593982669392036 0.510686647281754\\
+0.68839520696455 0.567029432413203\\
+0.790492762269643 0.620136666948723\\
+0.899402217409204 0.668719136891543\\
+1.02331657833024 0.715207948469259\\
+1.16430313292088 0.758604000567722\\
+1.32471398786612 0.798126612349091\\
+1.50722530931076 0.833277344034096\\
+1.73076553419573 0.865864610401702\\
+2.00586777950823 0.894950178808985\\
+2.34622884814226 0.919927785702932\\
+2.79541599906786 0.941567123076339\\
+3.42400613797143 0.959899597972468\\
+4.35149650092505 0.974596471947885\\
+5.8988964255085 0.985933406372556\\
+8.93204599858097 0.99379118517986\\
+17.1883914281715 0.998311897747327\\
+80.150069615654 0.999922176367756\\
+100 0.999950003749688\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1\\
+100 1\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=1.094in,
+height=2.082in,
+at={(1.803in,0.361in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-06,
+ymax=10,
+ytick={1e-06,0.0001,0.01,1},
+yticklabels={{}},
+yminorticks=true,
+axis background/.style={fill=white},
+title style={font=\bfseries},
+title={2nd Order},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00016377132585\\
+0.0445295850994266 1.00438648202937\\
+0.0753142016597437 1.01257579052477\\
+0.105931476351837 1.02468691048855\\
+0.137131471775394 1.04084922409924\\
+0.169523234155412 1.06136808672723\\
+0.203849339825246 1.08680814192809\\
+0.242876438246045 1.11965866545935\\
+0.28408836901833 1.15795198108141\\
+0.332293251639897 1.2060155853829\\
+0.395911026646846 1.27196415891242\\
+0.633580499265825 1.47640941055518\\
+0.68839520696455 1.49978972972523\\
+0.741088151564157 1.51013647391034\\
+0.790492762269643 1.5084552042335\\
+0.835452805838287 1.49740162706414\\
+0.882969995549409 1.47639092294907\\
+0.933189771573324 1.44482895707393\\
+0.986265846131282 1.40267598138555\\
+1.0423606739764 1.35051511435535\\
+1.10164594963366 1.28952961287854\\
+1.17508713090481 1.20946971625427\\
+1.2534242654614 1.12281491654952\\
+1.34936714058831 1.01985700974011\\
+1.46610868404698 0.904200940054408\\
+1.62259528707809 0.769699678427727\\
+1.82920450484629 0.627097871742793\\
+2.13958887134342 0.472171362546278\\
+2.64498018242772 0.316316507798087\\
+3.58553985745982 0.175098662912075\\
+6.00867589171969 0.0630624953644263\\
+18.1659978837533 0.00693468485742134\\
+100 0.000228981306820758\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000224619245288355\\
+0.192879150802078 0.0829019455276375\\
+0.326222200971167 0.233223786060789\\
+0.434147833005509 0.403474368996168\\
+0.526892142135067 0.576322717214644\\
+0.605036787939122 0.73311034738626\\
+0.675818116816111 0.876721088464686\\
+0.741088151564157 1.00442185286882\\
+0.805203967082547 1.12031631825209\\
+0.866837993001977 1.21904162195405\\
+0.924625711640574 1.29816671951776\\
+0.977214696972572 1.35810917447162\\
+1.03279473191895 1.4090527017493\\
+1.09153593533139 1.44987847781789\\
+1.15361810173648 1.48007575426307\\
+1.21923125164911 1.49975410446223\\
+1.28857621318552 1.50956613098593\\
+1.37447909267754 1.50996861241749\\
+1.4796880626864 1.4984259145893\\
+1.60770442167382 1.47404788046638\\
+1.77930438991858 1.43385598174158\\
+2.08122156998634 1.36238443581031\\
+2.82130767593947 1.23257637859913\\
+3.33060034362459 1.17672345677722\\
+3.8957456157755 1.13446631718882\\
+4.59899209052244 1.09958690954159\\
+5.47947233690029 1.07187933161953\\
+6.65001803043112 1.04973675519239\\
+8.29695852083491 1.0324209111066\\
+10.9405470720574 1.01885786790594\\
+15.674554102056 1.00926028534539\\
+26.5108360190854 1.00325321010476\\
+71.0970943231243 1.00045336891739\\
+100 1.00022921083688\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.999939189304582\\
+100 1.00000026800852\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=1.094in,
+height=2.082in,
+at={(3.131in,0.361in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-06,
+ymax=10,
+ytick={1e-06,0.0001,0.01,1},
+yticklabels={{}},
+yminorticks=true,
+axis background/.style={fill=white},
+title style={font=\bfseries},
+title={3rd Order},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00000440419727\\
+0.123906215694792 1.00351590110718\\
+0.167967487209265 1.01083278879879\\
+0.201978575681988 1.02177511975267\\
+0.231934505927443 1.03689264325123\\
+0.259067785868801 1.05624593841567\\
+0.28408836901833 1.07980543901471\\
+0.308666494333727 1.10907422845028\\
+0.332293251639897 1.14357187418883\\
+0.357728509936787 1.18828317333386\\
+0.385110700232557 1.245767392777\\
+0.410784088996565 1.30886528208706\\
+0.438168993151419 1.38623463186899\\
+0.471708469091701 1.49525180666427\\
+0.507815211232767 1.62994893702938\\
+0.551749237612913 1.81714347271175\\
+0.605036787939122 2.07566726792674\\
+0.694771254846024 2.57121060181105\\
+0.776050333513357 3.04021561804489\\
+0.827785696619847 3.30899111249278\\
+0.866837993001977 3.47343298706502\\
+0.899402217409205 3.57337808342612\\
+0.924625711640573 3.62258790680529\\
+0.950556592010119 3.644936539194\\
+0.977214696972572 3.63718898228141\\
+1.00462042134681 3.59769421346398\\
+1.03279473191895 3.52674472675655\\
+1.061759183483 3.42662385177374\\
+1.10164594963366 3.2548082911528\\
+1.14303112911448 3.05063190731606\\
+1.19695570235904 2.76988900050791\\
+1.2650337203959 2.42459935558282\\
+1.36186523675608 1.99141240613546\\
+1.5211855179861 1.45035193831892\\
+1.8979216428391 0.749610199674972\\
+29.6122543798804 0.000195112092751456\\
+100 5.0660881919855e-06\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 4.93482333447769e-06\\
+0.741088151564157 1.98676638023732\\
+0.805203967082547 2.47715460604889\\
+0.858882855954626 2.88197529170197\\
+0.899402217409205 3.15706467170718\\
+0.933189771573324 3.35068067123016\\
+0.968246611930311 3.50648367705466\\
+0.995400828762152 3.59160674768559\\
+1.02331657833024 3.6458913078532\\
+1.05201521761616 3.66809434817401\\
+1.08151870255229 3.65899538338404\\
+1.11184960481927 3.62117127622932\\
+1.14303112911448 3.55851311478299\\
+1.18597101233767 3.44434217601995\\
+1.24192135270178 3.26804066825263\\
+1.31255683577184 3.0319513722648\\
+1.43932264471941 2.63586178262707\\
+1.74679621512725 1.9567674585573\\
+1.91550055557353 1.72179903658829\\
+2.08122156998634 1.5533813113718\\
+2.24052786930002 1.43315421270535\\
+2.41202820761801 1.33651803347738\\
+2.59665597293487 1.25971336116203\\
+2.79541599906785 1.19930402188214\\
+3.00939003444972 1.15223402358913\\
+3.2397426295282 1.11585572009131\\
+3.52003147279668 1.08494006400998\\
+3.85999361767977 1.06001107651414\\
+4.27199396630678 1.04089406407639\\
+4.86056423214214 1.02510937774104\\
+5.68531791387375 1.0139477710702\\
+7.093341204988 1.0061781794792\\
+10.16265089393 1.00175237604172\\
+24.853948574298 1.00012619800216\\
+100 1.00000585443872\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00000428017157\\
+0.450457325175946 0.996694666262656\\
+0.536697694554048 0.98734275360145\\
+0.605036787939122 0.974238970865239\\
+0.663470812109235 0.957787233441095\\
+0.720871503378214 0.936263139986073\\
+0.776050333513357 0.910911895252813\\
+0.866837993001977 0.865977095351657\\
+0.924625711640574 0.844499990153353\\
+0.959360828709314 0.837866259470929\\
+0.995400828762153 0.837053582267126\\
+1.03279473191895 0.842470479199627\\
+1.08151870255229 0.856866574825527\\
+1.16430313292088 0.889846951277577\\
+1.27675070431927 0.93106519695075\\
+1.36186523675608 0.953675690815719\\
+1.46610868404698 0.972478367175539\\
+1.59295021257212 0.986394776026136\\
+1.76297537528721 0.996295008207651\\
+2.04319732019527 1.00275523152596\\
+2.59665597293487 1.00486075878916\\
+100 1.00000572543161\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filters_order.pdf b/matlab/figs/comp_filters_order.pdf
new file mode 100644
index 0000000..f31378d
Binary files /dev/null and b/matlab/figs/comp_filters_order.pdf differ
diff --git a/matlab/figs/comp_filters_order.png b/matlab/figs/comp_filters_order.png
new file mode 100644
index 0000000..b594f6a
Binary files /dev/null and b/matlab/figs/comp_filters_order.png differ
diff --git a/matlab/figs/comp_filters_order.svg b/matlab/figs/comp_filters_order.svg
new file mode 100644
index 0000000..5f4312c
--- /dev/null
+++ b/matlab/figs/comp_filters_order.svg
@@ -0,0 +1,409 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filters_order.tex b/matlab/figs/comp_filters_order.tex
new file mode 100644
index 0000000..8c77811
--- /dev/null
+++ b/matlab/figs/comp_filters_order.tex
@@ -0,0 +1,977 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,2.19in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=4.93482333447769e-06,
+ymax=3.66537978450645,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00999950003749688\\
+0.102096066230605 0.101568085638313\\
+0.17916503273639 0.176356853344754\\
+0.256690271549195 0.248629832174517\\
+0.335371015200293 0.317965972351183\\
+0.414588849683291 0.382979317717209\\
+0.498537346387389 0.446166087292351\\
+0.588531577519145 0.507209816953862\\
+0.682077673286569 0.56348315791626\\
+0.78323825991792 0.616615588845145\\
+0.89114823228402 0.665305570252569\\
+1.01392540755882 0.711979093211986\\
+1.15361810173648 0.755625007091445\\
+1.31255683577184 0.795444370736509\\
+1.49339321612425 0.830917492023446\\
+1.69914417203463 0.861822604475904\\
+1.95114834684662 0.889926498418906\\
+2.26128006633728 0.914562501549143\\
+2.66947849403432 0.936450730716741\\
+3.2397426295282 0.955516985596761\\
+4.04209583979631 0.970734264832939\\
+5.32999408084409 0.982851268057162\\
+7.7070271142123 0.991687064322705\\
+13.2777082935543 0.997175894082823\\
+38.6890073932798 0.999666130082362\\
+100 0.999950003749688\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.999950003749688\\
+0.0864842327573172 0.996281087554613\\
+0.151768339028341 0.988678397669297\\
+0.215443469003188 0.977569937168538\\
+0.281481236050758 0.962592904642806\\
+0.347969790388769 0.94445467641036\\
+0.418428850790158 0.922498743249636\\
+0.489428989611453 0.898192859312452\\
+0.567222897164454 0.869814584067362\\
+0.65134909462728 0.837926693078512\\
+0.741088151564157 0.803423671129156\\
+0.843190929286625 0.764502100386909\\
+0.95055659201012 0.724797959265652\\
+1.08151870255229 0.678893868833002\\
+1.23052400435926 0.630668312819054\\
+1.4000583824681 0.581222144127462\\
+1.60770442167382 0.528168837545644\\
+1.86324631193156 0.472894551469131\\
+2.19959306803007 0.413866387478076\\
+2.64498018242772 0.353643577548813\\
+3.30003479112529 0.290004594975956\\
+4.31156199031823 0.225937117607347\\
+6.1204983724767 0.161247331133137\\
+10.2567793074442 0.0970363897319065\\
+26.5108360190854 0.0376936186516494\\
+100 0.00999950003749688\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000224619245288355\\
+0.191109062168914 0.0813996356372382\\
+0.323228397818138 0.229078534120534\\
+0.430163575810679 0.396528685022918\\
+0.522056752784698 0.566866311913839\\
+0.599484250318941 0.721813329551954\\
+0.669616005485322 0.864257958255737\\
+0.734287044716676 0.991491278311319\\
+0.797814457207663 1.10758224238472\\
+0.858882855954625 1.20709599519481\\
+0.916140245713852 1.28740935948856\\
+0.968246611930312 1.34870532469992\\
+1.02331657833024 1.40124170250884\\
+1.08151870255229 1.44380633906726\\
+1.14303112911448 1.47578364825597\\
+1.20804213467733 1.49718301746525\\
+1.27675070431927 1.50857497416311\\
+1.36186523675608 1.51056879970641\\
+1.45265392594678 1.50234424166125\\
+1.57833140565212 1.48029199737409\\
+1.74679621512725 1.44173894210322\\
+2.00586777950823 1.37951379237709\\
+2.90043049386399 1.22245037512628\\
+3.42400613797143 1.16854915726718\\
+4.00500075787361 1.12799136627674\\
+4.72796959160039 1.09464183904902\\
+5.63314267060136 1.06822614642457\\
+6.83651600451024 1.04716299116814\\
+8.60864769614924 1.03017242266178\\
+11.35154708921 1.01753622862039\\
+16.4140297114447 1.00845033528628\\
+28.2781797962534 1.00286019763328\\
+81.6416760492147 1.00034385121491\\
+100 1.00022921083688\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00016377132585\\
+0.0441209286319119 1.00430551279924\\
+0.0746230289139111 1.01234727004673\\
+0.104959323055823 1.02424380157456\\
+0.135872990190271 1.04012647184764\\
+0.167967487209265 1.0603014136938\\
+0.201978575681988 1.08533247964411\\
+0.238439047009372 1.11573862584329\\
+0.278898029238044 1.15296119372435\\
+0.326222200971167 1.199824170638\\
+0.385110700232557 1.260721012829\\
+0.484937406733523 1.36169351224739\\
+0.583130511352623 1.44476239847869\\
+0.64537154016467 1.48246251633602\\
+0.701206358900718 1.50343668846147\\
+0.754879928165344 1.51078373549621\\
+0.805203967082547 1.50582129500218\\
+0.851000724712225 1.4915438851559\\
+0.899402217409204 1.46705700591255\\
+0.95055659201012 1.43193896596339\\
+1.00462042134681 1.38635418651397\\
+1.061759183483 1.33109319460882\\
+1.12214776820798 1.26751763946793\\
+1.19695570235904 1.18524062421643\\
+1.27675070431927 1.09730321100964\\
+1.37447909267754 0.993962948868638\\
+1.49339321612425 0.879013387798035\\
+1.6527920614649 0.746484727904752\\
+1.86324631193156 0.606986421063823\\
+2.17940698430296 0.456286764961849\\
+2.69420371368188 0.305309700999766\\
+3.68609536217216 0.165842398322749\\
+6.23440188862786 0.0586031504987276\\
+19.9204570845387 0.00576754699084555\\
+100 0.000228981306820758\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 4.93482333447769e-06\\
+0.741088151564157 1.98676638023732\\
+0.805203967082547 2.47715460604889\\
+0.851000724712225 2.82454913250656\\
+0.89114823228402 3.10429614552555\\
+0.924625711640573 3.30531784208848\\
+0.959360828709315 3.47175260692808\\
+0.986265846131283 3.56653961996898\\
+1.01392540755882 3.63134169791789\\
+1.0423606739764 3.66425033489904\\
+1.07159339982267 3.66537978450645\\
+1.10164594963366 3.63675144790826\\
+1.13254131515281 3.5818821000916\\
+1.17508713090481 3.47563297419233\\
+1.21923125164911 3.34189031388941\\
+1.28857621318552 3.1121196259812\\
+1.38720978054162 2.79133557378838\\
+1.82920450484629 1.83255606009323\\
+1.98745954958099 1.64226846588816\\
+2.13958887134342 1.50528204317285\\
+2.30336287314213 1.39435917749967\\
+2.47967289250216 1.30558462249053\\
+2.66947849403432 1.23531138017321\\
+2.87381269185107 1.18024082272902\\
+3.09378757173014 1.13746822061218\\
+3.33060034362459 1.1045009557736\\
+3.61874981241128 1.07654926634613\\
+3.96824610456949 1.05405492649794\\
+4.4324785912404 1.03556893809753\\
+5.04315948717136 1.02185294658319\\
+5.95353313081437 1.01175037629673\\
+7.56621850048106 1.00489541751621\\
+11.4566872863487 1.0011780572749\\
+38.6890073932798 1.00004396191027\\
+100 1.00000585443872\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00000440419727\\
+0.123906215694792 1.00351590110718\\
+0.167967487209265 1.01083278879879\\
+0.201978575681988 1.02177511975267\\
+0.231934505927443 1.03689264325123\\
+0.259067785868801 1.05624593841567\\
+0.28408836901833 1.07980543901471\\
+0.308666494333727 1.10907422845028\\
+0.332293251639897 1.14357187418883\\
+0.357728509936787 1.18828317333386\\
+0.381576466127125 1.23778581639082\\
+0.407014245321944 1.29903179040831\\
+0.434147833005509 1.37421808862223\\
+0.467379510799246 1.48030151703999\\
+0.503154894503806 1.6115710813329\\
+0.546685729972018 1.79431597060294\\
+0.599484250318941 2.04725681180119\\
+0.682077673286568 2.49794906435226\\
+0.776050333513357 3.04021561804489\\
+0.82018894992022 3.27250302800675\\
+0.858882855954626 3.44348115375323\\
+0.89114823228402 3.55172520763604\\
+0.916140245713852 3.60897389739492\\
+0.941833153464796 3.64069907065137\\
+0.968246611930311 3.64325512493666\\
+0.995400828762152 3.61441056308839\\
+1.02331657833024 3.55378768533992\\
+1.05201521761616 3.46302268984096\\
+1.08151870255229 3.34558158770775\\
+1.12214776820798 3.15593192938601\\
+1.17508713090481 2.88422903927553\\
+1.24192135270178 2.53899063670831\\
+1.33698374182495 2.09502713039766\\
+1.4796880626864 1.57233067187331\\
+1.77930438991858 0.909988687504521\\
+100 5.0660881919855e-06\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.589,3.135)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 89.4270613023165\\
+0.0109657929126781 89.3717315290859\\
+0.0120248614203741 89.3110593964178\\
+0.0131862140139475 89.2445293733452\\
+0.0144597292179202 89.1715762763439\\
+0.0157107238924746 89.0999158779669\\
+0.0170699493403842 89.0220589241049\\
+0.0185467692308472 88.9374702188989\\
+0.0201513573381558 88.8455685189148\\
+0.0218947676285658 88.745722621367\\
+0.0237890104107886 88.6372471342313\\
+0.0258471350746954 88.5193979064433\\
+0.0280833199882315 88.3913670960939\\
+0.0305129701718286 88.2522778546731\\
+0.0331528234231942 88.1011786061323\\
+0.0360210656235708 87.9370369010414\\
+0.0391374560198041 87.7587328286753\\
+0.0425234633452872 87.565051973813\\
+0.0462024137175137 87.354677910809\\
+0.0501996513311016 87.1261842356453\\
+0.0545427130532976 86.8780261478907\\
+0.0592615181247549 86.6085316096622\\
+0.0643885742724037 86.3158921288756\\
+0.0699592016543535 85.9981532406606\\
+0.0760117761795532 85.6532047954402\\
+0.0825879938784429 85.2787712068662\\
+0.0897331581458357 84.8724018699676\\
+0.0974964918348418 84.4314620323563\\
+0.105931476351838 83.9531244924189\\
+0.115096220088505 83.4343626117381\\
+0.125053858729037 82.871945268422\\
+0.13587299019027 82.2624345473586\\
+0.147628147190938 81.6021871659272\\
+0.160400310705681 80.8873608712293\\
+0.174277467840892 80.1139273167059\\
+0.18935521797563 79.2776932268565\\
+0.205737431343292 78.3743319764768\\
+0.223536964590981 77.399428022839\\
+0.242876438246048 76.3485368985183\\
+0.266333272517501 75.0864181916033\\
+0.292055551218278 73.719262860514\\
+0.320262069365769 72.2417087031909\\
+0.351192753045077 70.6490947310592\\
+0.385110700232562 68.9377707352067\\
+0.426215882901536 66.9155269809215\\
+0.471708469091704 64.7463512504026\\
+0.522056752784699 62.4328857335041\\
+0.58313051135262 59.7522340757541\\
+0.657382014340949 56.6798002114858\\
+0.754879928165345 52.9515775591225\\
+0.907732652521024 47.7689484386557\\
+1.36186523675607 36.2893557362444\\
+1.57833140565212 32.3575497518978\\
+1.77930438991856 29.3367436790486\\
+1.98745954958095 26.7094783217305\\
+2.21996611911998 24.2495318606514\\
+2.45691646298281 22.1470233577592\\
+2.71915794303603 20.1915492791366\\
+2.98177229001969 18.5399600253116\\
+3.26974974451178 17.0054032260634\\
+3.58553985745983 15.5836816184612\\
+3.93182875570579 14.2697479456193\\
+4.31156199031825 13.0579901585031\\
+4.72796959160041 11.942467265621\\
+5.18459354389293 10.9170981708404\\
+5.68531791387378 9.9758082019293\\
+6.17718759733854 9.19560663953442\\
+6.71161176749636 8.47447059109713\\
+7.29227205872842 7.80835216850473\\
+7.92316862486613 7.19338767107824\\
+8.60864769614914 6.62591128804402\\
+9.3534315202923 6.10246213595279\\
+10.1626508939299 5.6197861710567\\
+11.0418805085416 5.17483424126608\\
+11.9971773543589 4.76475730086372\\
+13.0351224468151 4.38689960481101\\
+14.1628661629921 4.03879052659268\\
+15.3881775003836 3.71813550097808\\
+16.7194975973201 3.42280647704889\\
+18.165997883753 3.15083217347687\\
+19.7376432630023 2.90038835364977\\
+21.4452607597165 2.66978827952406\\
+23.3006141069691 2.45747345713322\\
+25.3164847863135 2.26200475104221\\
+27.5067600790807 2.08205391764814\\
+29.8865287355039 1.91639558639288\\
+32.4721849207315 1.76389970228814\\
+35.2815411538092 1.62352443154175\\
+38.3339510176665 1.49430952362114\\
+41.6504424854525 1.37537011708024\\
+45.2538627817011 1.26589097234756\\
+49.1690357762798 1.16512111197839\\
+53.9177464038745 1.06252978110111\\
+59.1250841383182 0.968968043775334\\
+64.8353428605466 0.883642073403919\\
+71.0970943231237 0.805827610765192\\
+77.9636013040516 0.734863920885289\\
+85.493270662683 0.670148261902611\\
+93.7501501514519 0.611130825714156\\
+100 0.572938697683483\\
+};
+\addlegendentry{1st order}
+
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.572938697683483\\
+0.0109657929126781 -0.628268470914065\\
+0.0120248614203741 -0.688940603582196\\
+0.0131862140139475 -0.755470626654827\\
+0.0144597292179202 -0.828423723656115\\
+0.0157107238924746 -0.900084122033078\\
+0.0170699493403842 -0.977941075895146\\
+0.0185467692308472 -1.06252978110111\\
+0.0201513573381558 -1.15443148108517\\
+0.0218947676285658 -1.25427737863302\\
+0.0237890104107886 -1.36275286576873\\
+0.0258471350746954 -1.48060209355668\\
+0.0280833199882315 -1.60863290390606\\
+0.0305129701718286 -1.74772214532689\\
+0.0331528234231942 -1.89882139386773\\
+0.0360210656235708 -2.0629630989586\\
+0.0391374560198041 -2.24126717132472\\
+0.0425234633452872 -2.43494802618703\\
+0.0462024137175137 -2.64532208919094\\
+0.0501996513311016 -2.8738157643547\\
+0.0545427130532976 -3.12197385210929\\
+0.0592615181247549 -3.39146839033785\\
+0.0643885742724037 -3.68410787112443\\
+0.0699592016543535 -4.00184675933943\\
+0.0760117761795532 -4.34679520455984\\
+0.0825879938784429 -4.7212287931338\\
+0.0897331581458357 -5.12759813003245\\
+0.0974964918348418 -5.56853796764368\\
+0.105931476351838 -6.04687550758116\\
+0.115096220088505 -6.56563738826192\\
+0.125053858729037 -7.12805473157803\\
+0.13587299019027 -7.73756545264141\\
+0.147628147190938 -8.39781283407282\\
+0.160400310705681 -9.11263912877071\\
+0.174277467840892 -9.8860726832941\\
+0.18935521797563 -10.7223067731436\\
+0.205737431343292 -11.6256680235232\\
+0.223536964590981 -12.600571977161\\
+0.242876438246048 -13.6514631014817\\
+0.266333272517501 -14.9135818083967\\
+0.292055551218278 -16.280737139486\\
+0.320262069365769 -17.7582912968091\\
+0.351192753045077 -19.3509052689408\\
+0.385110700232562 -21.0622292647933\\
+0.426215882901536 -23.0844730190785\\
+0.471708469091704 -25.2536487495974\\
+0.522056752784699 -27.5671142664959\\
+0.58313051135262 -30.2477659242459\\
+0.657382014340949 -33.3201997885142\\
+0.754879928165345 -37.0484224408775\\
+0.907732652521024 -42.2310515613444\\
+1.36186523675607 -53.7106442637557\\
+1.57833140565212 -57.6424502481022\\
+1.77930438991856 -60.6632563209514\\
+1.98745954958095 -63.2905216782695\\
+2.21996611911998 -65.7504681393486\\
+2.45691646298281 -67.8529766422408\\
+2.71915794303603 -69.8084507208634\\
+2.98177229001969 -71.4600399746884\\
+3.26974974451178 -72.9945967739366\\
+3.58553985745983 -74.4163183815388\\
+3.93182875570579 -75.7302520543808\\
+4.31156199031825 -76.9420098414969\\
+4.72796959160041 -78.057532734379\\
+5.18459354389293 -79.0829018291596\\
+5.68531791387378 -80.0241917980707\\
+6.17718759733854 -80.8043933604656\\
+6.71161176749636 -81.5255294089029\\
+7.29227205872842 -82.1916478314953\\
+7.92316862486613 -82.8066123289218\\
+8.60864769614914 -83.374088711956\\
+9.3534315202923 -83.8975378640472\\
+10.1626508939299 -84.3802138289433\\
+11.0418805085416 -84.8251657587339\\
+11.9971773543589 -85.2352426991363\\
+13.0351224468151 -85.613100395189\\
+14.1628661629921 -85.9612094734073\\
+15.3881775003836 -86.2818644990219\\
+16.7194975973201 -86.5771935229511\\
+18.165997883753 -86.8491678265231\\
+19.7376432630023 -87.0996116463502\\
+21.4452607597165 -87.330211720476\\
+23.3006141069691 -87.5425265428668\\
+25.3164847863135 -87.7379952489578\\
+27.5067600790807 -87.9179460823519\\
+29.8865287355039 -88.0836044136071\\
+32.4721849207315 -88.2361002977119\\
+35.2815411538092 -88.3764755684582\\
+38.3339510176665 -88.5056904763789\\
+41.6504424854525 -88.6246298829198\\
+45.2538627817011 -88.7341090276524\\
+49.1690357762798 -88.8348788880216\\
+53.9177464038745 -88.9374702188989\\
+59.1250841383182 -89.0310319562247\\
+64.8353428605466 -89.1163579265961\\
+71.0970943231237 -89.1941723892348\\
+77.9636013040516 -89.2651360791147\\
+85.493270662683 -89.3298517380974\\
+93.7501501514519 -89.3888691742859\\
+100 -89.4270613023165\\
+};
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 178.958774772763\\
+0.0108651577465251 178.868689289385\\
+0.0118051652856881 178.770809121075\\
+0.0128264983052803 178.66445965882\\
+0.0139361927422416 178.548907859801\\
+0.0151418932530433 178.423357172291\\
+0.0164519058775369 178.286942015928\\
+0.0178752552590422 178.138721777319\\
+0.0194217468148908 177.977674277012\\
+0.0211020342856859 177.802688659531\\
+0.0229276931286557 177.612557653217\\
+0.024911300260678 177.4059691411\\
+0.0270665207003317 177.181496977722\\
+0.0294082017058709 176.937590979622\\
+0.0319524750575915 176.672566008985\\
+0.0347168681892662 176.384590060387\\
+0.0377204249341695 176.071671249495\\
+0.0409838367175735 175.73164358957\\
+0.0445295850994262 175.362151426301\\
+0.048382096649261 174.96063238323\\
+0.0525679112201842 174.524298648228\\
+0.0571158647812626 174.050116405105\\
+0.0620572880677654 173.534783182467\\
+0.0674262224177818 172.974702852792\\
+0.0732596542821532 172.365957966566\\
+0.0795977700231485 171.704279046752\\
+0.0864842327573189 170.985010394715\\
+0.0939664831495459 170.203071866161\\
+0.102096066230607 169.352915959472\\
+0.110928986489522 168.428479412889\\
+0.120526093687088 167.423128323356\\
+0.130953502048267 166.32959556917\\
+0.142283045721431 165.139909029886\\
+0.154592773641949 163.845308738689\\
+0.167967487209262 162.436150664156\\
+0.182499324481618 160.901794295164\\
+0.198288394912704 159.230470604115\\
+0.215443469003193 157.409126330257\\
+0.234082727617828 155.423239960847\\
+0.254334576130472 153.25660451824\\
+0.276338529005317 150.89107273569\\
+0.300246170908546 148.306262276446\\
+0.326222200971169 145.479223873799\\
+0.354445567397035 142.384086374478\\
+0.381576466127131 139.384306959844\\
+0.41078408899656 136.126931037731\\
+0.442227398050602 132.586933798959\\
+0.476077523022638 128.737246719287\\
+0.512518692705321 124.549329966698\\
+0.551749237612921 119.994376569392\\
+0.593982669392029 115.045480291924\\
+0.645371540164686 108.98069682162\\
+0.701206358900715 102.376476115125\\
+0.768928372075853 94.4260620622819\\
+0.851000724712218 85.0385713160959\\
+0.995400828762154 69.7668947584327\\
+1.1536181017365 55.5976981647374\\
+1.26503372039588 47.366106093259\\
+1.37447909267756 40.5762683712219\\
+1.47968806268638 35.1030738566793\\
+1.59295021257217 30.1816808704777\\
+1.69914417203464 26.3242900395022\\
+1.81241754737421 22.8699980422471\\
+1.9332422875551 19.7962998011996\\
+2.06212180399915 17.0765303679044\\
+2.19959306803003 14.6820113881724\\
+2.32469705998571 12.866304154033\\
+2.45691646298281 11.2499785590229\\
+2.59665597293484 9.81549017845717\\
+2.74434330322828 8.54607521837175\\
+2.90043049386403 7.4258780446367\\
+3.06539529505651 6.44002631450027\\
+3.23974262952812 5.57466891644975\\
+3.4240061379715 4.81698719536945\\
+3.61874981241128 4.15518662173753\\
+3.82456972246693 3.57847384838379\\
+4.04209583979642 3.07702268378722\\
+4.27199396630681 2.64193163984521\\
+4.51496777203605 2.26517518472303\\
+4.77176094893859 1.93955050364187\\
+5.04315948717143 1.6586213456614\\
+5.32999408084406 1.4166603533443\\
+5.63314267060121 1.20859110258311\\
+5.95353313081449 1.02993090819214\\
+6.29214610961035 0.876735274805696\\
+6.650018030431 0.745544695899696\\
+7.02824426430854 0.633334332425193\\
+7.42798248256497 0.53746694272678\\
+7.85045620020441 0.455649292005972\\
+8.29695852083464 0.385892145764188\\
+8.76885609458755 0.326473848844699\\
+9.26759330114683 0.275907409807587\\
+9.79469667069515 0.232910948187111\\
+10.351779556302 0.196381317703299\\
+10.9405470720574 0.165370689308418\\
+11.5628013120735 0.139065861481612\\
+12.2204468663152 0.116770058934236\\
+13.0351224468151 0.0950346542594218\\
+13.9041083409004 0.077148109812299\\
+14.9683929307729 0.0605712661693474\\
+16.1141427725301 0.0473415068873067\\
+17.5082703173578 0.0356442659875142\\
+19.1992066559328 0.0257394133919604\\
+21.4452607597172 0.0170874875774985\\
+24.399862972595 0.0101949669293049\\
+28.540097698292 0.00493829942135449\\
+35.281541153808 0.00111849889387372\\
+47.8277201772749 -0.00101003996221039\\
+84.7086826655735 -0.00141452347560289\\
+100 -0.00129284154621701\\
+};
+\addlegendentry{2nd order}
+
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00177173841174749\\
+0.0244561668345247 0.00148131149543929\\
+0.0325471160553176 -0.00153304606075721\\
+0.0394999546122053 -0.00646726715254431\\
+0.0457784053837654 -0.0131849779292565\\
+0.0516074871038594 -0.021643320889666\\
+0.0571158647812626 -0.031843161505094\\
+0.0620572880677654 -0.0429991073105214\\
+0.0674262224177818 -0.0574560652841569\\
+0.0725873365081736 -0.0738214455620039\\
+0.0774263682681121 -0.0915146170443961\\
+0.0825879938784402 -0.113049156511437\\
+0.0872852662384851 -0.135167134275065\\
+0.0922497005259214 -0.161289272417122\\
+0.0974964918348386 -0.192112761357635\\
+0.103041699495061 -0.228451291982736\\
+0.108902296226373 -0.271253249784223\\
+0.114039960197002 -0.312649996196171\\
+0.11942000281335 -0.36003101723341\\
+0.125053858729041 -0.414225367654439\\
+0.130953502048267 -0.476170238413204\\
+0.137131471775393 -0.546923580649434\\
+0.143600898465122 -0.627677874190596\\
+0.150375532129977 -0.719775072202594\\
+0.157469771464309 -0.82472273744375\\
+0.164898694447104 -0.944211365480868\\
+0.17267809038843 -1.08013286605419\\
+0.180824493487798 -1.23460014553291\\
+0.18935521797563 -1.40996770129448\\
+0.198288394912704 -1.60885310333947\\
+0.207643010725571 -1.83415920023259\\
+0.217438947560012 -2.08909684647483\\
+0.227697025538168 -2.37720790776899\\
+0.240647515001538 -2.77224175072539\\
+0.254334576130472 -3.22812753389167\\
+0.268800102153763 -3.75315289276941\\
+0.284088369018327 -4.35649171028166\\
+0.300246170908546 -5.04824988335605\\
+0.317322963473503 -5.83950413570608\\
+0.335371015200292 -6.74233168467933\\
+0.354445567397035 -7.7698279847549\\
+0.374605003274907 -8.93610879237855\\
+0.395911026646847 -10.2562912095619\\
+0.418428850790151 -11.746445894448\\
+0.442227398050602 -13.4235089655394\\
+0.46737951079925 -15.3051369750373\\
+0.493962174387827 -17.4094815096181\\
+0.522056752784682 -19.7548516431628\\
+0.556859644428648 -22.8196793024619\\
+0.593982669392029 -26.2636472356879\\
+0.633580499265845 -30.1093812608257\\
+0.675818116816117 -34.3726358339085\\
+0.72754835291961 -39.7623371416018\\
+0.783238259917936 -45.6879985141108\\
+0.851000724712218 -52.9337316765418\\
+0.941833153464815 -62.4414302449628\\
+1.33698374182498 -95.9753348913397\\
+1.46610868404698 -103.82487050262\\
+1.59295021257217 -110.330043988931\\
+1.73076553419573 -116.294711877071\\
+1.88050405512853 -121.736929720326\\
+2.04319732019529 -126.689990141649\\
+2.21996611911991 -131.193876634269\\
+2.41202820761804 -135.289895771935\\
+2.62070669648381 -139.017694551826\\
+2.84743916646731 -142.413841223678\\
+3.09378757173011 -145.511333671903\\
+3.36144900010886 -148.339609129863\\
+3.65226736430817 -150.924794874129\\
+3.96824610456936 -153.290052128846\\
+4.31156199031825 -155.45593525331\\
+4.68458011587293 -157.440728919146\\
+5.08987019351974 -159.260748338069\\
+5.5302242561928 -160.930599170729\\
+6.00867589171979 -162.463399243098\\
+6.52852114112777 -163.870966422653\\
+7.09334120498816 -165.163977563638\\
+7.70702711421226 -166.35210320115\\
+8.37380653526675 -167.444122125462\\
+9.09827289445557 -168.448019336994\\
+9.88541702191929 -169.371070279125\\
+10.7406615333344 -170.219913715121\\
+11.6698981861712 -171.0006151684\\
+12.6795284678645 -171.718722478456\\
+13.7765076954903 -172.379314728238\\
+14.9683929307729 -172.987045561126\\
+16.2633950404818 -173.546181716155\\
+17.6704352608899 -174.060637459255\\
+19.1992066559328 -174.534005468038\\
+20.8602408924844 -174.969584631801\\
+22.664980792737 -175.370405151563\\
+24.6258591635048 -175.739251263276\\
+26.7563844455207 -176.078681857487\\
+29.0712337727252 -176.391049228225\\
+31.5863540826787 -176.678516150848\\
+34.31907197459 -176.943071461368\\
+37.2882130718292 -177.186544287295\\
+40.5142317111462 -177.410617061244\\
+44.0193518520901 -177.616837432835\\
+47.8277201772749 -177.806629181087\\
+51.9655724382751 -177.981302218147\\
+56.4614141930371 -178.142061765505\\
+61.3462171799237 -178.290016775408\\
+66.65363268125 -178.426187662899\\
+72.420223346072 -178.55151340754\\
+78.68571506937 -178.666858078217\\
+85.493270662683 -178.773016829503\\
+92.8897872016474 -178.87072141361\\
+100 -178.951018234312\\
+};
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -91.4729819266035\\
+0.0108651577465251 -91.6004228323139\\
+0.0118051652856881 -91.7388907246842\\
+0.0128264983052803 -91.8893399902479\\
+0.0139361927422416 -92.0528076919703\\
+0.0151418932530433 -92.2304207523064\\
+0.0164519058775369 -92.4234037662641\\
+0.0178752552590422 -92.6330875013994\\
+0.0194217468148908 -92.8609181472843\\
+0.0211020342856859 -93.1084673832812\\
+0.0229276931286557 -93.3774433405441\\
+0.024911300260678 -93.6697025421953\\
+0.0270665207003317 -93.9872629147567\\
+0.0294082017058709 -94.3323179743785\\
+0.0319524750575915 -94.7072523034604\\
+0.0347168681892662 -95.1146584472465\\
+0.0377204249341695 -95.5573553763198\\
+0.0409838367175735 -96.0384086801595\\
+0.0445295850994262 -96.5611526797496\\
+0.048382096649261 -97.129214674504\\
+0.0525679112201842 -97.7465415716401\\
+0.0571158647812626 -98.4174291860372\\
+0.0620572880677654 -99.1465545474302\\
+0.0674262224177818 -99.9390116119855\\
+0.0732596542821532 -100.800350850064\\
+0.0795977700231485 -101.736623275543\\
+0.0864842327573189 -102.754429600026\\
+0.0939664831495459 -103.860975345054\\
+0.102096066230607 -105.064132937117\\
+0.110928986489522 -106.37251205732\\
+0.120526093687088 -107.795539838634\\
+0.130953502048267 -109.343552924281\\
+0.142283045721431 -111.027903956806\\
+0.154592773641949 -112.861085809444\\
+0.167967487209262 -114.85687787235\\
+0.182499324481618 -117.030520072601\\
+0.198288394912704 -119.398922197172\\
+0.215443469003193 -121.980918743226\\
+0.234082727617828 -124.79758331437\\
+0.254334576130472 -127.872622109276\\
+0.276338529005317 -131.232874274902\\
+0.300246170908546 -134.908959416608\\
+0.326222200971169 -138.936132051766\\
+0.351192753045066 -142.843603882916\\
+0.378074666359942 -147.094447530199\\
+0.407014245321941 -151.728114126567\\
+0.438168993151433 -156.791552763384\\
+0.471708469091704 -162.341597821224\\
+0.507815211232757 -168.448386897006\\
+0.546685729972028 -175.200268558338\\
+0.572476623970219 -179.796896786087\\
+0.577779011797049 179.245400184145\\
+0.616296625513279 172.146057778335\\
+0.657382014340971 164.265735191644\\
+0.701206358900715 155.456122256162\\
+0.747952251562161 145.540325118994\\
+0.790492762269657 136.017789148591\\
+0.843190929286622 123.581559710736\\
+0.89940221740918 109.709973780041\\
+0.986265846131287 88.0500713870053\\
+1.10164594963369 62.0721702550615\\
+1.17508713090482 48.5329668320409\\
+1.24192135270177 38.3474534067449\\
+1.3125568357718 29.5361264319106\\
+1.37447909267756 23.1988901191872\\
+1.43932264471941 17.7062797855079\\
+1.50722530931073 12.9846713910184\\
+1.57833140565207 8.96169352785913\\
+1.65279206146492 5.56976918294751\\
+1.73076553419573 2.74680697271432\\
+1.79578464700207 0.859494530789476\\
+1.86324631193151 -0.727877118797124\\
+1.9332422875551 -2.04157741950593\\
+2.00586777950826 -3.10691694533327\\
+2.08122156998634 -3.94842134703757\\
+2.1395888713434 -4.44701183163079\\
+2.19959306803003 -4.84289109564196\\
+2.26128006633722 -5.14559677712393\\
+2.32469705998571 -5.36438953957961\\
+2.36796006783313 -5.46806505590706\\
+2.41202820761804 -5.54099366047873\\
+2.45691646298281 -5.58566366292757\\
+2.47967289250217 -5.59815710349068\\
+2.50264009641792 -5.60448171222541\\
+2.52582002696278 -5.60492469075618\\
+2.54921465445141 -5.59976749618471\\
+2.57282596744791 -5.5892857003474\\
+2.62070669648381 -5.55342038778207\\
+2.66947849403426 -5.49941088821279\\
+2.74434330322828 -5.38868059735228\\
+2.82130767593954 -5.24780178993009\\
+2.92729483504285 -5.02284909987927\\
+3.06539529505651 -4.69862829258665\\
+3.30003479112518 -4.12531301077462\\
+3.82456972246693 -2.97186641524272\\
+4.11731993116176 -2.45498324368361\\
+4.39180089259608 -2.05088207558876\\
+4.68458011587293 -1.69432627229517\\
+4.95102015955645 -1.42596990422729\\
+5.23261423948667 -1.19025327815592\\
+5.5302242561928 -0.984845414544736\\
+5.84476113163379 -0.807090067316011\\
+6.17718759733854 -0.654218454683871\\
+6.52852114112777 -0.523493454582166\\
+6.83651600451004 -0.429583479603309\\
+7.15904108596503 -0.347817573544091\\
+7.49678187496691 -0.276877266910304\\
+7.85045620020441 -0.21554920279678\\
+8.22081575524031 -0.162726085341518\\
+8.60864769614942 -0.117404381393612\\
+9.01477631452495 -0.0786798497586574\\
+9.44006478941749 -0.0457417026358655\\
+9.88541702191929 -0.0178659925023226\\
+10.351779556302 0.00559134593345334\\
+10.9405470720574 0.0287074003430234\\
+11.5628013120735 0.0471427090313341\\
+12.2204468663152 0.0616390713599628\\
+12.9154966501489 0.0728323154096415\\
+13.7765076954903 0.0824367711224738\\
+14.6949180062486 0.0890083276923122\\
+15.819734815786 0.0935711307970735\\
+17.3475935923388 0.0959022915167225\\
+19.1992066559328 0.0953541353839\\
+21.8443607114946 0.0915789587252505\\
+26.5108360190857 0.0824710145205643\\
+55.4298551568474 0.0449473141841565\\
+75.8367791499744 0.0334104994155382\\
+100 0.02554384906\\
+};
+\addlegendentry{3rd order}
+
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.0326882948475316\\
+0.013556017853294 -0.0440064712358321\\
+0.0178752552590422 -0.0573747414159413\\
+0.0231400538013072 -0.0729300432375339\\
+0.0302329468440578 -0.0922138500961012\\
+0.0545427130532976 -0.136450572067616\\
+0.0609234915240079 -0.140583876640477\\
+0.0668074391569548 -0.140997606621482\\
+0.0719211887222133 -0.13848259447218\\
+0.0767158117677927 -0.133527685217501\\
+0.0818300681586717 -0.125306907159512\\
+0.0864842327573189 -0.115053242894305\\
+0.0914031074875622 -0.101205425091393\\
+0.095715215389917 -0.086413820627314\\
+0.10023075482839 -0.0681676192842247\\
+0.104959323055824 -0.0459339059266028\\
+0.10991097009295 -0.0191103094616949\\
+0.115096220088501 0.0129819545315399\\
+0.120526093687088 0.0511051162927743\\
+0.126212131452257 0.0961117050319729\\
+0.13216641839466 0.148950858692928\\
+0.138401609657311 0.210673582371243\\
+0.144930957412626 0.282436260513265\\
+0.151768339028343 0.365501488025529\\
+0.158928286562298 0.461234981162079\\
+0.166426017648587 0.571096948938475\\
+0.174277467840897 0.696625839238038\\
+0.182499324481618 0.839411813536486\\
+0.191109062168914 1.00105665050202\\
+0.201978575681984 1.2221067989519\\
+0.21346630333243 1.47497582650823\\
+0.225607406649687 1.76154808876856\\
+0.238439047009369 2.08277985941925\\
+0.254334576130472 2.50060028589877\\
+0.273802517792786 3.02894734389398\\
+0.305833803237852 3.88490340497921\\
+0.335371015200292 4.57936491405576\\
+0.351192753045066 4.88198372067768\\
+0.364385898376366 5.08453007026736\\
+0.374605003274907 5.20518267841916\\
+0.385110700232562 5.29244522174722\\
+0.392277675892774 5.32887394105933\\
+0.395911026646847 5.33980178856444\\
+0.399578030189527 5.34551840838694\\
+0.403278998219369 5.34575102724281\\
+0.407014245321941 5.34022093551008\\
+0.41078408899656 5.32864362410362\\
+0.418428850790151 5.28618119125437\\
+0.426215882901522 5.21597739831802\\
+0.434147833005496 5.11556319568132\\
+0.442227398050602 4.98239234155872\\
+0.454629546953248 4.7154728137759\\
+0.46737951079925 4.35983821184183\\
+0.480487043965512 3.9060876231479\\
+0.493962174387827 3.34456062757346\\
+0.507815211232757 2.66536236277884\\
+0.526892142135084 1.55920343240172\\
+0.546685729972028 0.201235506853862\\
+0.567222897164457 -1.43394978058063\\
+0.58853157751914 -3.37275197431561\\
+0.610640754223191 -5.64284034764637\\
+0.639448842855712 -8.99111385347643\\
+0.66961600548533 -12.964508494436\\
+0.701206358900715 -17.6300819740982\\
+0.734287044716661 -23.0598309318798\\
+0.768928372075853 -29.3274706978384\\
+0.805203967082557 -36.5002738230011\\
+0.851000724712218 -46.3628250590261\\
+0.89940221740918 -57.5728184584075\\
+0.959360828709328 -72.0849485175713\\
+1.18597101233768 -121.243833531979\\
+1.26503372039588 -133.973565618642\\
+1.34936714058834 -145.260943247491\\
+1.43932264471941 -155.242549695583\\
+1.53527502878039 -164.105474845264\\
+1.63762407452172 -172.028173016927\\
+1.74679621512724 -179.160958908652\\
+1.7629753752872 179.877178895485\\
+1.89792164283904 172.637818729657\\
+2.04319732019529 166.117857364047\\
+2.19959306803003 160.212590270403\\
+2.36796006783313 154.839990517442\\
+2.54921465445141 149.934487767867\\
+2.74434330322828 145.442599304436\\
+2.98177229001969 140.828574383002\\
+3.23974262952812 136.629020989318\\
+3.52003147279672 132.799395744967\\
+3.82456972246693 129.301687739627\\
+4.15545533471895 126.103068383036\\
+4.51496777203605 123.174900347863\\
+4.90558370636517 120.4919934599\\
+5.32999408084406 118.032034482807\\
+5.79112264764194 115.77514209481\\
+6.29214610961035 113.703513821264\\
+6.83651600451004 111.801141734857\\
+7.42798248256497 110.053580416344\\
+8.07062014114933 108.447755211885\\
+8.76885609458755 106.97180197709\\
+9.52750047242714 105.614931728529\\
+10.351779556302 104.367315227231\\
+11.2473717836474 103.219983688395\\
+12.2204468663152 102.164742675584\\
+13.2777082935543 101.194096883036\\
+14.4264395121811 100.301183996647\\
+15.674554102056 99.4797161948239\\
+17.030650292528 98.723928134972\\
+18.5040701954232 98.0285304915103\\
+20.1049641626046 97.3886682828982\\
+21.8443607114946 96.7998833598618\\
+23.7342425002384 96.2580805335176\\
+25.7876288759386 95.7594969069084\\
+28.0186655645918 95.3006740414822\\
+30.4427221206439 94.8784326449965\\
+33.0764978074424 94.4898495120482\\
+35.9381366380452 94.1322364850893\\
+39.0473523688559 93.8031212340827\\
+42.4255643071768 93.5002296781646\\
+46.0960448682849 93.2214698938357\\
+50.0840798984813 92.9649173720824\\
+54.41714286866 92.7288015020586\\
+59.1250841383182 92.5114931720193\\
+64.2403365939436 92.3114933894821\\
+69.7981390783064 92.1274228324041\\
+75.8367791499744 91.9580122517461\\
+82.3978568452854 91.802093653352\\
+89.5265712599616 91.6585921937565\\
+97.2720319245064 91.5265187304747\\
+100 91.4848743155231\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_filters_param_alpha.pdf b/matlab/figs/comp_filters_param_alpha.pdf
new file mode 100644
index 0000000..6c5dc4c
Binary files /dev/null and b/matlab/figs/comp_filters_param_alpha.pdf differ
diff --git a/matlab/figs/comp_filters_param_alpha.png b/matlab/figs/comp_filters_param_alpha.png
new file mode 100644
index 0000000..b637f4e
Binary files /dev/null and b/matlab/figs/comp_filters_param_alpha.png differ
diff --git a/matlab/figs/comp_filters_phase.pdf b/matlab/figs/comp_filters_phase.pdf
new file mode 100644
index 0000000..24685e7
Binary files /dev/null and b/matlab/figs/comp_filters_phase.pdf differ
diff --git a/matlab/figs/comp_filters_phase.png b/matlab/figs/comp_filters_phase.png
new file mode 100644
index 0000000..de99ec8
Binary files /dev/null and b/matlab/figs/comp_filters_phase.png differ
diff --git a/matlab/figs/comp_filters_phase.svg b/matlab/figs/comp_filters_phase.svg
new file mode 100644
index 0000000..871832c
--- /dev/null
+++ b/matlab/figs/comp_filters_phase.svg
@@ -0,0 +1,515 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/comp_filters_phase.tex b/matlab/figs/comp_filters_phase.tex
new file mode 100644
index 0000000..6259135
--- /dev/null
+++ b/matlab/figs/comp_filters_phase.tex
@@ -0,0 +1,944 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=1.094in,
+height=2.082in,
+at={(0.461in,0.361in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+title style={font=\bfseries},
+title={1st Order},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.572938697683483\\
+0.0109657929126781 -0.628268470914065\\
+0.0120248614203741 -0.688940603582196\\
+0.0131862140139475 -0.755470626654827\\
+0.0144597292179202 -0.828423723656115\\
+0.0158562396177114 -0.908419482436457\\
+0.0173876240021625 -0.996137091977161\\
+0.0188919277620767 -1.08229898060307\\
+0.0205263775270926 -1.17590967001985\\
+0.0223022329796596 -1.27761202789692\\
+0.0242317279423763 -1.38810409650254\\
+0.0263281546564806 -1.50814374103925\\
+0.028605955351757 -1.63855366488903\\
+0.0310808217386903 -1.78022681361419\\
+0.0337698031082507 -1.93413218868533\\
+0.0366914237840248 -2.10132109019342\\
+0.0398658107358044 -2.28293380496768\\
+0.0433148322337641 -2.4802067522069\\
+0.0470622484984131 -2.69448009248191\\
+0.0511338753841437 -2.92720579720063\\
+0.0555577622239895 -3.17995616361287\\
+0.0603643850607596 -3.45443274425313\\
+0.0655868565957134 -3.75247563822874\\
+0.0712611543011167 -4.07607306354578\\
+0.0774263682681121 -4.4273710929881\\
+0.0841249704973608 -4.80868338882681\\
+0.0914031074875622 -5.22250071132758\\
+0.0993109181374982 -5.6714998996999\\
+0.107902879151619 -6.15855192843563\\
+0.117238180328661 -6.68672852320007\\
+0.127381132318649 -7.25930667468168\\
+0.138401609657315 -7.87977021233783\\
+0.150375532129972 -8.55180738977413\\
+0.163385387780984 -9.27930318815474\\
+0.177520801171762 -10.0663247651335\\
+0.192879150802077 -10.9170981708404\\
+0.209566239948043 -11.8359741336331\\
+0.227697025538168 -12.8273804120148\\
+0.249687842888433 -14.0194090224949\\
+0.273802517792786 -15.3124449408146\\
+0.300246170908556 -16.7121833149952\\
+0.329243733300778 -18.2238055905532\\
+0.361041859717334 -19.8517041994425\\
+0.395911026646847 -21.5991588470565\\
+0.438168993151419 -23.6615422975312\\
+0.484937406733521 -25.8704817729604\\
+0.541668691103309 -28.4430183037575\\
+0.610640754223211 -31.409939875674\\
+0.694771254846023 -34.7904621309793\\
+0.812661920009201 -39.0994466723111\\
+1.03279473191894 -45.9242628931196\\
+1.32471398786611 -52.9515775591226\\
+1.53527502878044 -56.9218267964615\\
+1.74679621512724 -60.2098714420423\\
+1.96922025547915 -63.0778468964483\\
+2.19959306803011 -65.5520522300093\\
+2.43436887354314 -67.6679215440322\\
+2.6942037136819 -69.6367267623445\\
+2.98177229001969 -71.4600399746884\\
+3.26974974451178 -72.9945967739366\\
+3.58553985745983 -74.4163183815388\\
+3.93182875570579 -75.7302520543808\\
+4.31156199031825 -76.9420098414969\\
+4.72796959160041 -78.057532734379\\
+5.18459354389293 -79.0829018291596\\
+5.68531791387378 -80.0241917980707\\
+6.23440188862789 -80.8873608712293\\
+6.83651600451027 -81.6781712994107\\
+7.49678187496691 -82.4021345746486\\
+8.1453717662808 -83.000872418562\\
+8.85007491447353 -83.5532987322419\\
+9.61574600143223 -84.0628054508666\\
+10.4476597156079 -84.5325779454815\\
+11.3515470892099 -84.9655980195703\\
+12.3336349791376 -85.3646494493703\\
+13.4006889636394 -85.7323253123063\\
+14.5600599502065 -86.0710365103108\\
+15.819734815786 -86.3830210280839\\
+17.1883914281715 -86.6703535743942\\
+18.6754584276109 -86.9349553411703\\
+20.291180180467 -87.1786036839459\\
+22.0466873523944 -87.4029415813856\\
+23.9540735872092 -87.6094867738781\\
+26.0264788196897 -87.7996405138609\\
+28.2781797962532 -87.9746958855775\\
+30.7246884270898 -88.1358456709355\\
+33.3828586473175 -88.2841897523381\\
+36.2710025233065 -88.4207420538308\\
+39.4090164040346 -88.5464370294707\\
+43.2151112778978 -88.6744091469209\\
+47.3887960971767 -88.79112191112\\
+51.9655724382768 -88.8975641767222\\
+56.9843705946916 -88.9946383810541\\
+62.4878807200691 -89.0831679924523\\
+68.5229159528409 -89.1639043418392\\
+75.1408106111699 -89.2375328824053\\
+82.3978568452854 -89.3046789205885\\
+90.3557834613896 -89.3659128594643\\
+99.0822809900383 -89.4217549933514\\
+100 -89.4270613023165\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 89.4270613023165\\
+0.0109657929126781 89.3717315290859\\
+0.0120248614203741 89.3110593964178\\
+0.0131862140139475 89.2445293733452\\
+0.0144597292179202 89.1715762763439\\
+0.0158562396177114 89.0915805175635\\
+0.0173876240021625 89.0038629080228\\
+0.0188919277620767 88.9177010193969\\
+0.0205263775270926 88.8240903299802\\
+0.0223022329796596 88.7223879721031\\
+0.0242317279423763 88.6118959034975\\
+0.0263281546564806 88.4918562589608\\
+0.028605955351757 88.361446335111\\
+0.0310808217386903 88.2197731863858\\
+0.0337698031082507 88.0658678113147\\
+0.0366914237840248 87.8986789098066\\
+0.0398658107358044 87.7170661950323\\
+0.0433148322337641 87.5197932477931\\
+0.0470622484984131 87.3055199075181\\
+0.0511338753841437 87.0727942027994\\
+0.0555577622239895 86.8200438363871\\
+0.0603643850607596 86.5455672557469\\
+0.0655868565957134 86.2475243617713\\
+0.0712611543011167 85.9239269364542\\
+0.0774263682681121 85.5726289070119\\
+0.0841249704973608 85.1913166111732\\
+0.0914031074875622 84.7774992886724\\
+0.0993109181374982 84.3285001003001\\
+0.107902879151619 83.8414480715644\\
+0.117238180328661 83.3132714767999\\
+0.127381132318649 82.7406933253183\\
+0.138401609657315 82.1202297876622\\
+0.150375532129972 81.4481926102259\\
+0.163385387780984 80.7206968118453\\
+0.177520801171762 79.9336752348665\\
+0.192879150802077 79.0829018291596\\
+0.209566239948043 78.1640258663669\\
+0.227697025538168 77.1726195879852\\
+0.249687842888433 75.9805909775051\\
+0.273802517792786 74.6875550591854\\
+0.300246170908556 73.2878166850048\\
+0.329243733300778 71.7761944094468\\
+0.361041859717334 70.1482958005575\\
+0.395911026646847 68.4008411529435\\
+0.438168993151419 66.3384577024688\\
+0.484937406733521 64.1295182270396\\
+0.541668691103309 61.5569816962425\\
+0.610640754223211 58.590060124326\\
+0.694771254846023 55.2095378690207\\
+0.812661920009201 50.9005533276889\\
+1.03279473191894 44.0757371068804\\
+1.32471398786611 37.0484224408775\\
+1.53527502878044 33.0781732035385\\
+1.74679621512724 29.7901285579577\\
+1.96922025547915 26.9221531035517\\
+2.19959306803011 24.4479477699907\\
+2.43436887354314 22.3320784559678\\
+2.6942037136819 20.3632732376555\\
+2.98177229001969 18.5399600253116\\
+3.26974974451178 17.0054032260634\\
+3.58553985745983 15.5836816184612\\
+3.93182875570579 14.2697479456193\\
+4.31156199031825 13.0579901585031\\
+4.72796959160041 11.942467265621\\
+5.18459354389293 10.9170981708404\\
+5.68531791387378 9.9758082019293\\
+6.23440188862789 9.11263912877071\\
+6.83651600451027 8.32182870058935\\
+7.49678187496691 7.59786542535146\\
+8.1453717662808 6.99912758143803\\
+8.85007491447353 6.44670126775813\\
+9.61574600143223 5.93719454913335\\
+10.4476597156079 5.46742205451854\\
+11.3515470892099 5.03440198042969\\
+12.3336349791376 4.6353505506297\\
+13.4006889636394 4.26767468769376\\
+14.5600599502065 3.92896348968922\\
+15.819734815786 3.61697897191611\\
+17.1883914281715 3.32964642560582\\
+18.6754584276109 3.06504465882973\\
+20.291180180467 2.82139631605415\\
+22.0466873523944 2.59705841861435\\
+23.9540735872092 2.39051322612191\\
+26.0264788196897 2.20035948613913\\
+28.2781797962532 2.0253041144225\\
+30.7246884270898 1.86415432906452\\
+33.3828586473175 1.71581024766191\\
+36.2710025233065 1.57925794616921\\
+39.4090164040346 1.45356297052933\\
+43.2151112778978 1.32559085307912\\
+47.3887960971767 1.20887808888\\
+51.9655724382768 1.1024358232778\\
+56.9843705946916 1.00536161894591\\
+62.4878807200691 0.916832007547683\\
+68.5229159528409 0.836095658160787\\
+75.1408106111699 0.762467117594724\\
+82.3978568452854 0.695321079411471\\
+90.3557834613896 0.634087140535684\\
+99.0822809900383 0.578245006648629\\
+100 0.572938697683483\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0\\
+100 -0\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=1.094in,
+height=2.082in,
+at={(1.79in,0.361in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180,-90,0,90,180},
+yticklabels={{}},
+axis background/.style={fill=white},
+title style={font=\bfseries},
+title={2nd Order},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00177173841174749\\
+0.0246826845225571 0.00143081008724266\\
+0.0328485736602995 -0.00169821960045624\\
+0.0398658107358057 -0.0067962647631532\\
+0.0462024137175122 -0.0137247101025082\\
+0.0520854855057768 -0.0224401645442924\\
+0.0576448828292606 -0.032943805128582\\
+0.062632074521987 -0.0444273706029605\\
+0.0680507369673503 -0.0593041851469138\\
+0.0732596542821532 -0.0761403919479449\\
+0.0781435060784446 -0.0943387008234708\\
+0.0833529396509846 -0.116483881847813\\
+0.088093719044741 -0.139225253620168\\
+0.0931041348706901 -0.166079596859106\\
+0.0983995229627797 -0.197762353426356\\
+0.103996091395414 -0.235108335762561\\
+0.10991097009295 -0.27909031805666\\
+0.116162263260848 -0.330840147606267\\
+0.12164242938574 -0.380841227928642\\
+0.127381132318649 -0.438016855902077\\
+0.133390569003905 -0.503350948454283\\
+0.139683511798871 -0.5779535506679\\
+0.146273335620117 -0.663075071766769\\
+0.15317404637021 -0.760121705588688\\
+0.160400310705681 -0.870672043442738\\
+0.167967487209262 -0.996494865534146\\
+0.175891659032778 -1.13956807132763\\
+0.184189668079973 -1.30209867939166\\
+0.192879150802077 -1.48654379372365\\
+0.201978575681984 -1.69563239685539\\
+0.21346630333243 -1.98334700596078\\
+0.225607406649687 -2.31675010233937\\
+0.238439047009369 -2.70238826044135\\
+0.252000499376417 -3.14757973583454\\
+0.266333272517501 -3.66046928931476\\
+0.281481236050756 -4.25007975822527\\
+0.297490754721436 -4.92635879589423\\
+0.314410830314732 -5.7002189839184\\
+0.332293251639897 -6.58356919654028\\
+0.351192753045066 -7.58933455951598\\
+0.371167181947586 -8.73146144688135\\
+0.392277675892774 -10.0249024908483\\
+0.414588849683285 -11.4855742787637\\
+0.438168993151433 -13.1302769702281\\
+0.463090280179979 -14.9765601819204\\
+0.489428989611449 -17.0425129500251\\
+0.517265738721588 -19.3464474657689\\
+0.551749237612921 -22.3592234354949\\
+0.58853157751914 -25.7475221369438\\
+0.627766010580631 -29.5347005363872\\
+0.66961600548533 -33.7376983005682\\
+0.720871503378203 -39.0587072315874\\
+0.776050333513376 -44.9192793753528\\
+0.843190929286622 -52.101550420519\\
+0.933189771573347 -61.5548910839333\\
+1.36186523675611 -97.595233415695\\
+1.49339321612424 -105.317253243851\\
+1.62259528707813 -111.701932450038\\
+1.7629753752872 -117.548239151387\\
+1.91550055557359 -122.878533083722\\
+2.08122156998634 -127.728210575112\\
+2.26128006633722 -132.137915237445\\
+2.45691646298281 -136.14877570317\\
+2.66947849403426 -139.799836382218\\
+2.90043049386403 -143.126891607605\\
+3.15136348486643 -146.162135554792\\
+3.4240061379715 -148.934243254603\\
+3.72023668141304 -151.468651741164\\
+4.04209583979642 -153.787912286722\\
+4.39180089259608 -155.912046910476\\
+4.77176094893859 -157.858878100066\\
+5.18459354389293 -159.644320106651\\
+5.63314267060121 -161.282630067391\\
+6.12049837247677 -162.786621787828\\
+6.650018030431 -164.167846764743\\
+7.22534949178734 -165.43674735435\\
+7.85045620020441 -166.602786660272\\
+8.52964449974123 -167.6745591343\\
+9.26759330114683 -168.659885251599\\
+10.0693863147606 -169.565893032553\\
+10.9405470720574 -170.399088670915\\
+11.8870769771187 -171.165418099303\\
+12.9154966501489 -171.870320972805\\
+14.0328908478584 -172.518778268964\\
+15.2469572701759 -173.115354476383\\
+16.5660595894989 -173.664235164057\\
+17.9992850678251 -174.169260580031\\
+19.5565071586593 -174.633955813767\\
+21.2484535249894 -175.061557965274\\
+23.0867799418716 -175.455040690963\\
+25.0841505927762 -175.817136437342\\
+27.2543253128104 -176.1503566261\\
+29.6122543798796 -176.45701001543\\
+32.174181506764 -176.739219430826\\
+34.9577557436321 -176.998937032488\\
+37.982153061908 -177.237958264923\\
+41.268208457029 -177.457934616253\\
+44.8385594802129 -177.660385299592\\
+48.717802187946 -177.846707956032\\
+52.9326605836072 -178.018188467784\\
+57.5121707184161 -178.176009960643\\
+62.4878807200671 -178.321261066796\\
+67.8940681269615 -178.454943511896\\
+73.7679760252756 -178.577979084146\\
+80.8924348680602 -178.703227596348\\
+88.704968896542 -178.817443490115\\
+97.2720319245064 -178.921598824774\\
+100 -178.951018234312\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 178.958774772763\\
+0.0108651577465251 178.868689289385\\
+0.0118051652856881 178.770809121075\\
+0.0128264983052803 178.66445965882\\
+0.0139361927422416 178.548907859801\\
+0.0151418932530433 178.423357172291\\
+0.0164519058775369 178.286942015928\\
+0.0178752552590422 178.138721777319\\
+0.0194217468148908 177.977674277012\\
+0.0211020342856859 177.802688659531\\
+0.0229276931286557 177.612557653217\\
+0.024911300260678 177.4059691411\\
+0.0270665207003317 177.181496977722\\
+0.0294082017058709 176.937590979622\\
+0.0319524750575915 176.672566008985\\
+0.0347168681892662 176.384590060387\\
+0.0377204249341695 176.071671249495\\
+0.0409838367175735 175.73164358957\\
+0.0445295850994262 175.362151426301\\
+0.048382096649261 174.96063238323\\
+0.0525679112201842 174.524298648228\\
+0.0571158647812626 174.050116405105\\
+0.0620572880677654 173.534783182467\\
+0.0674262224177818 172.974702852792\\
+0.0732596542821532 172.365957966566\\
+0.0795977700231485 171.704279046752\\
+0.0864842327573189 170.985010394715\\
+0.0939664831495459 170.203071866161\\
+0.102096066230607 169.352915959472\\
+0.110928986489522 168.428479412889\\
+0.120526093687088 167.423128323356\\
+0.130953502048267 166.32959556917\\
+0.142283045721431 165.139909029886\\
+0.154592773641949 163.845308738689\\
+0.167967487209262 162.436150664156\\
+0.182499324481618 160.901794295164\\
+0.198288394912704 159.230470604115\\
+0.215443469003193 157.409126330257\\
+0.234082727617828 155.423239960847\\
+0.254334576130472 153.25660451824\\
+0.276338529005317 150.89107273569\\
+0.300246170908546 148.306262276446\\
+0.326222200971169 145.479223873799\\
+0.354445567397035 142.384086374478\\
+0.385110700232562 138.991714257204\\
+0.418428850790151 135.269452622278\\
+0.450457325175955 131.654641697475\\
+0.484937406733521 127.723109933585\\
+0.522056752784682 123.446106459316\\
+0.567222897164457 118.186023757265\\
+0.616296625513279 112.416246612501\\
+0.66961600548533 106.111999810471\\
+0.72754835291961 99.2707553039372\\
+0.797814457207674 91.081430905533\\
+0.891148232283998 80.60502400948\\
+1.20804213467733 51.4010643235916\\
+1.3125568357718 44.269339172817\\
+1.41302599059955 38.4598088822155\\
+1.52118551798608 33.1926935337196\\
+1.62259528707813 29.0373693217823\\
+1.73076553419573 25.2970966962781\\
+1.84614694632451 21.9540717621705\\
+1.96922025547921 18.9843391614605\\
+2.10049824165391 16.3604704670553\\
+2.24052786929996 14.0535124783317\\
+2.36796006783313 12.3062560563088\\
+2.50264009641792 10.752457024241\\
+2.64498018242767 9.3748129569349\\
+2.79541599906793 8.1568515734576\\
+2.9544079988804 7.08303875295971\\
+3.12244282309282 6.13883984510034\\
+3.30003479112518 5.31074773095179\\
+3.48772747481423 4.58628686313608\\
+3.68609536217214 3.95399959855237\\
+3.89574561577541 3.40341922056848\\
+4.11731993116176 2.92503283998806\\
+4.35149650092505 2.51023662695991\\
+4.59899209052235 2.15128537866812\\
+4.86056423214227 1.84123814288506\\
+5.13701354335138 1.57390141225832\\
+5.42918617761888 1.34377122937536\\
+5.73797641421395 1.14597537317917\\
+6.06432939540815 0.976216624036368\\
+6.40924401935642 0.830717927886155\\
+6.77377599751758 0.706170104260764\\
+7.15904108596503 0.599682574841808\\
+7.56621850048106 0.508737434403344\\
+7.9965545258922 0.431147048845901\\
+8.45136633068495 0.365015248125871\\
+8.93204599858103 0.30870208611978\\
+9.44006478941749 0.260792064326637\\
+9.97697764236288 0.220065660278124\\
+10.5444279352618 0.185473962425419\\
+11.1441525146678 0.156116188606887\\
+11.7779870119709 0.131219852410908\\
+12.5631660247414 0.106935667513056\\
+13.4006889636394 0.0869393102208278\\
+14.2940453343172 0.0704916230522201\\
+15.3881775003836 0.0552563153775338\\
+16.7194975973196 0.0417707815389008\\
+18.3342548256232 0.030335660425493\\
+20.2911801804663 0.0210352773104887\\
+22.874908173557 0.0132831028595319\\
+26.5108360190857 0.00707342428381708\\
+31.8789129267769 0.00259394675782687\\
+41.268208457029 -0.000298748835064089\\
+63.0666554056761 -0.00147301030571612\\
+100 -0.00129284154621701\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00200601691089553\\
+0.0280833199882317 0.00562936773200384\\
+0.0545427130532983 0.0109073128298331\\
+0.0897331581458352 0.0178452009683325\\
+0.134626057929891 0.0264744293091574\\
+0.194665634334226 0.0374185891666969\\
+0.286719649749377 0.0521606148877072\\
+0.430163575810679 0.0672471596266186\\
+0.498537346387389 0.0696303992950749\\
+0.556859644428641 0.0686214443998545\\
+0.610640754223204 0.0650189971820159\\
+0.663470812109235 0.05897611886809\\
+0.720871503378214 0.0498018695603055\\
+0.78323825991792 0.0372931366580405\\
+0.858882855954625 0.0198200501807029\\
+0.986265846131282 -0.0105108654175918\\
+1.11184960481927 -0.0357501288429378\\
+1.20804213467733 -0.0500397336837661\\
+1.30051125217341 -0.0597056543525389\\
+1.4000583824681 -0.0663889331535286\\
+1.5211855179861 -0.0706478762785947\\
+1.66810053720006 -0.0720810668031295\\
+1.86324631193156 -0.0705455442950655\\
+2.17940698430296 -0.0649241754504564\\
+4.90558370636505 -0.0311934132051426\\
+6.89983712143002 -0.0222187757869086\\
+10.3517795563018 -0.0148142021024298\\
+17.0306502925284 -0.00900410883132485\\
+32.7729484992338 -0.00467874185593953\\
+83.9312949816636 -0.00182687924260927\\
+100 -0.00153332126581152\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=1.094in,
+height=2.082in,
+at={(3.118in,0.361in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180,-90,0,90,180},
+yticklabels={{}},
+axis background/.style={fill=white},
+title style={font=\bfseries},
+title={3rd Order},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.0326882948475316\\
+0.013556017853294 -0.0440064712358321\\
+0.0178752552590422 -0.0573747414159413\\
+0.0231400538013072 -0.0729300432375339\\
+0.0302329468440578 -0.0922138500961012\\
+0.0545427130532976 -0.136450572067616\\
+0.0609234915240079 -0.140583876640477\\
+0.0668074391569548 -0.140997606621482\\
+0.0719211887222133 -0.13848259447218\\
+0.0767158117677927 -0.133527685217501\\
+0.0818300681586717 -0.125306907159512\\
+0.0864842327573189 -0.115053242894305\\
+0.0914031074875622 -0.101205425091393\\
+0.095715215389917 -0.086413820627314\\
+0.10023075482839 -0.0681676192842247\\
+0.104959323055824 -0.0459339059266028\\
+0.10991097009295 -0.0191103094616949\\
+0.115096220088501 0.0129819545315399\\
+0.120526093687088 0.0511051162927743\\
+0.126212131452257 0.0961117050319729\\
+0.13216641839466 0.148950858692928\\
+0.138401609657311 0.210673582371243\\
+0.144930957412626 0.282436260513265\\
+0.151768339028343 0.365501488025529\\
+0.158928286562298 0.461234981162079\\
+0.166426017648587 0.571096948938475\\
+0.174277467840897 0.696625839238038\\
+0.182499324481618 0.839411813536486\\
+0.192879150802077 1.0357872095594\\
+0.203849339825241 1.26198260328309\\
+0.215443469003193 1.52035765691022\\
+0.227697025538168 1.81267190546927\\
+0.24287643824604 2.19752886986726\\
+0.259067785868806 2.62800151458424\\
+0.278898029238043 3.16794940997818\\
+0.344776405473441 4.76644789920948\\
+0.361041859717323 5.03794223082519\\
+0.371167181947586 5.16836860045845\\
+0.381576466127131 5.26745912274549\\
+0.38867766908927 5.31300157563541\\
+0.395911026646847 5.33980178856444\\
+0.399578030189527 5.34551840838694\\
+0.403278998219369 5.34575102724281\\
+0.407014245321941 5.34022093551008\\
+0.41078408899656 5.32864362410362\\
+0.418428850790151 5.28618119125437\\
+0.426215882901522 5.21597739831802\\
+0.434147833005496 5.11556319568132\\
+0.442227398050602 4.98239234155872\\
+0.454629546953248 4.7154728137759\\
+0.46737951079925 4.35983821184183\\
+0.480487043965512 3.9060876231479\\
+0.493962174387827 3.34456062757346\\
+0.512518692705321 2.41107158750029\\
+0.531772317785112 1.24429623210909\\
+0.551749237612921 -0.180559243386966\\
+0.572476623970219 -1.88912958552825\\
+0.593982669392029 -3.90810252244336\\
+0.616296625513279 -6.26551674723629\\
+0.645371540164686 -9.73371775907859\\
+0.675818116816117 -13.8400061895493\\
+0.707701066118183 -18.652530083911\\
+0.741088151564139 -24.2440081680086\\
+0.776050333513376 -30.6877260942437\\
+0.812661920009201 -38.0480585553191\\
+0.858882855954615 -48.1402390475074\\
+0.907732652520995 -59.5617869069918\\
+0.97721469697258 -76.4328244235946\\
+1.16430313292089 -117.33969048171\\
+1.24192135270177 -130.486719295838\\
+1.32471398786616 -142.176910161281\\
+1.41302599059955 -152.513137765819\\
+1.50722530931073 -161.676495232519\\
+1.60770442167387 -169.851141346151\\
+1.71488196987055 -177.196069154062\\
+1.74679621512724 -179.160958908652\\
+1.7629753752872 179.877178895485\\
+1.89792164283904 172.637818729657\\
+2.04319732019529 166.117857364047\\
+2.19959306803003 160.212590270403\\
+2.36796006783313 154.839990517442\\
+2.54921465445141 149.934487767867\\
+2.76976193503698 144.907899822659\\
+3.00939003444972 140.342368968256\\
+3.26974974451167 136.185984957574\\
+3.55263467657817 132.395011599766\\
+3.85999361767968 128.932072673796\\
+4.19394395566725 125.764848917254\\
+4.55678626584099 122.865119063465\\
+4.95102015955645 120.208038114972\\
+5.37936150398065 117.771583099852\\
+5.84476113163379 115.536119685827\\
+6.35042516859595 113.484057753085\\
+6.8998371214298 111.599573618193\\
+7.49678187496691 109.868382995444\\
+8.14537176628054 108.27755314031\\
+8.85007491447353 106.815345651986\\
+9.61574600143192 105.471083560688\\
+10.4476597156082 104.235037872819\\
+11.3515470892099 103.098329877464\\
+12.3336349791381 102.052846353676\\
+13.4006889636394 101.091165443236\\
+14.5600599502069 100.206491425699\\
+15.819734815786 99.3925969923573\\
+17.188391428171 98.6437718921867\\
+18.6754584276109 97.9547770368818\\
+20.2911801804663 97.3208033190766\\
+22.0466873523944 96.7374345290289\\
+23.9540735872084 96.2006138588601\\
+26.0264788196906 95.7066135661743\\
+28.2781797962532 95.2520074352805\\
+30.7246884270909 94.8336457279298\\
+33.3828586473175 94.4486323592037\\
+36.2710025233077 94.0943040700673\\
+39.4090164040346 93.7682113977746\\
+42.818517986523 93.4681012700258\\
+46.5229952396024 93.191901069535\\
+50.5479682119114 92.9377040332231\\
+54.9211648388788 92.7037558652157\\
+59.6727119597324 92.4884424556744\\
+64.8353428605487 92.2902786085932\\
+70.4446227729899 92.10789769136\\
+76.5391938823037 91.9400421273414\\
+83.1610415323096 91.7855546602019\\
+90.3557834613866 91.6433703252644\\
+98.172984061889 91.5125090690879\\
+100 91.4848743155231\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -91.4729819266035\\
+0.0108651577465251 -91.6004228323139\\
+0.0118051652856881 -91.7388907246842\\
+0.0128264983052803 -91.8893399902479\\
+0.0139361927422416 -92.0528076919703\\
+0.0151418932530433 -92.2304207523064\\
+0.0164519058775369 -92.4234037662641\\
+0.0178752552590422 -92.6330875013994\\
+0.0194217468148908 -92.8609181472843\\
+0.0211020342856859 -93.1084673832812\\
+0.0229276931286557 -93.3774433405441\\
+0.024911300260678 -93.6697025421953\\
+0.0270665207003317 -93.9872629147567\\
+0.0294082017058709 -94.3323179743785\\
+0.0319524750575915 -94.7072523034604\\
+0.0347168681892662 -95.1146584472465\\
+0.0377204249341695 -95.5573553763198\\
+0.0409838367175735 -96.0384086801595\\
+0.0445295850994262 -96.5611526797496\\
+0.048382096649261 -97.129214674504\\
+0.0525679112201842 -97.7465415716401\\
+0.0571158647812626 -98.4174291860372\\
+0.0620572880677654 -99.1465545474302\\
+0.0674262224177818 -99.9390116119855\\
+0.0732596542821532 -100.800350850064\\
+0.0795977700231485 -101.736623275543\\
+0.0864842327573189 -102.754429600026\\
+0.0939664831495459 -103.860975345054\\
+0.102096066230607 -105.064132937117\\
+0.110928986489522 -106.37251205732\\
+0.120526093687088 -107.795539838634\\
+0.130953502048267 -109.343552924281\\
+0.142283045721431 -111.027903956806\\
+0.154592773641949 -112.861085809444\\
+0.167967487209262 -114.85687787235\\
+0.182499324481618 -117.030520072601\\
+0.198288394912704 -119.398922197172\\
+0.215443469003193 -121.980918743226\\
+0.234082727617828 -124.79758331437\\
+0.254334576130472 -127.872622109276\\
+0.276338529005317 -131.232874274902\\
+0.300246170908546 -134.908959416608\\
+0.326222200971169 -138.936132051766\\
+0.354445567397035 -143.355433792926\\
+0.381576466127131 -147.651837627392\\
+0.41078408899656 -152.336481876386\\
+0.442227398050602 -157.457403298648\\
+0.476077523022638 -163.07288663769\\
+0.512518692705321 -169.255041106911\\
+0.551749237612921 -176.094932035442\\
+0.572476623970219 -179.796896786087\\
+0.577779011797049 179.245400184145\\
+0.616296625513279 172.146057778335\\
+0.657382014340971 164.265735191644\\
+0.701206358900715 155.456122256162\\
+0.747952251562161 145.540325118994\\
+0.797814457207674 134.330756185917\\
+0.851000724712218 121.6851313611\\
+0.907732652520995 107.62281153476\\
+1.00462042134681 83.6105600376169\\
+1.1118496048193 60.0397100296699\\
+1.18597101233768 46.7402023003137\\
+1.25342426546138 36.7841591340694\\
+1.32471398786616 28.1977191856582\\
+1.38720978054164 22.0351214668527\\
+1.45265392594678 16.7026459608527\\
+1.52118551798608 12.1264271232473\\
+1.59295021257217 8.23488867848013\\
+1.66810053720008 4.96155490617863\\
+1.74679621512724 2.24537971665308\\
+1.81241754737421 0.435576911129942\\
+1.88050405512853 -1.08095548501097\\
+1.95114834684666 -2.33022560336721\\
+2.02444650997683 -3.33733531527614\\
+2.10049824165391 -4.12662969589277\\
+2.15940615210354 -4.58990762202677\\
+2.21996611911991 -4.95368225679462\\
+2.28222447418683 -5.22740271324949\\
+2.34622884814232 -5.42022921972935\\
+2.38989256623109 -5.50821535324386\\
+2.43436887354314 -5.56670859366685\\
+2.47967289250217 -5.59815710349068\\
+2.50264009641792 -5.60448171222541\\
+2.52582002696278 -5.60492469075618\\
+2.54921465445141 -5.59976749618471\\
+2.57282596744791 -5.5892857003474\\
+2.62070669648381 -5.55342038778207\\
+2.66947849403426 -5.49941088821279\\
+2.74434330322828 -5.38868059735228\\
+2.82130767593954 -5.24780178993009\\
+2.92729483504285 -5.02284909987927\\
+3.09378757173011 -4.62967992220246\\
+3.39258338274108 -3.90373969244311\\
+3.82456972246693 -2.97186641524272\\
+4.11731993116176 -2.45498324368361\\
+4.39180089259608 -2.05088207558876\\
+4.68458011587293 -1.69432627229517\\
+4.95102015955645 -1.42596990422729\\
+5.23261423948667 -1.19025327815592\\
+5.5302242561928 -0.984845414544736\\
+5.84476113163379 -0.807090067316011\\
+6.17718759733854 -0.654218454683871\\
+6.52852114112777 -0.523493454582166\\
+6.8998371214298 -0.412302448716105\\
+7.22534949178734 -0.332803822940377\\
+7.56621850048106 -0.263879628822792\\
+7.92316862486613 -0.204337767671973\\
+8.29695852083464 -0.153091963123103\\
+8.68838263525133 -0.109158951936536\\
+9.09827289445557 -0.0716536828458914\\
+9.52750047242714 -0.039783281484091\\
+9.97697764236288 -0.012840338418215\\
+10.5444279352618 0.0138673731424035\\
+11.1441525146678 0.0353336153015391\\
+11.7779870119709 0.0523790474221641\\
+12.4478714618793 0.0657085513799132\\
+13.2777082935543 0.0773633590250711\\
+14.1628661629916 0.0855868389065222\\
+15.2469572701759 0.0916377055854696\\
+16.5660595894989 0.0951394230837366\\
+18.3342548256232 0.0959344560744171\\
+20.6688024962902 0.0935209846257408\\
+24.399862972595 0.086693551438799\\
+33.6920570598025 0.0693553630796941\\
+49.1690357762798 0.0501704007647845\\
+67.2709913571241 0.0374692115946686\\
+93.750150151455 0.0272056615622205\\
+100 0.02554384906\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.0329709488572609\\
+0.0134316117004602 -0.0442995035265241\\
+0.0172280544713139 -0.0568471244511874\\
+0.0214947467343798 -0.0709725602577356\\
+0.0263281546564802 -0.0870117975526092\\
+0.0316592411198352 -0.104759144441628\\
+0.0373742574239106 -0.123863699288104\\
+0.043716022482485 -0.145176605580429\\
+0.0501996513311008 -0.167109560555827\\
+0.0571158647812643 -0.190689438164912\\
+0.0643885742724041 -0.215716905906586\\
+0.0725873365081725 -0.244253427477892\\
+0.0810790980673168 -0.274213729978673\\
+0.0897331581458352 -0.305217976108595\\
+0.099310918137498 -0.340145904881193\\
+0.108902296226373 -0.375835477506926\\
+0.119420002813353 -0.415870193058013\\
+0.129751716865759 -0.456193816802721\\
+0.140977287162897 -0.501221985876413\\
+0.153174046370208 -0.551698963024884\\
+0.164898694447106 -0.601865501394538\\
+0.177520801171764 -0.657805335373176\\
+0.191109062168914 -0.720423819635529\\
+0.203849339825246 -0.781539106349433\\
+0.217438947560008 -0.849449783746755\\
+0.231934505927443 -0.92515901794161\\
+0.247396410088681 -1.0098409399264\\
+0.263889081445751 -1.10486821147227\\
+0.281481236050758 -1.21184198244521\\
+0.300246170908555 -1.33262303129188\\
+0.320262069365765 -1.46936167957507\\
+0.338477285594598 -1.60112621799482\\
+0.357728509936787 -1.74816157197039\\
+0.378074666359935 -1.91237943887293\\
+0.399578030189527 -2.09583737558633\\
+0.422304418720667 -2.30068450364074\\
+0.44632339267104 -2.52905738248729\\
+0.476077523022637 -2.82778757006738\\
+0.507815211232767 -3.1632716324823\\
+0.541668691103315 -3.53539933228937\\
+0.588531577519145 -4.05940551008649\\
+0.669616005485322 -4.88439050043578\\
+0.694771254846024 -5.07848920283678\\
+0.714255928554312 -5.19303347680563\\
+0.727548352919623 -5.24860926294422\\
+0.741088151564157 -5.28297096069873\\
+0.747952251562183 -5.29078832089644\\
+0.754879928165343 -5.29153743390858\\
+0.7618717702323 -5.28455194043129\\
+0.768928372075831 -5.26912883380961\\
+0.776050333513357 -5.24453011817798\\
+0.790492762269642 -5.1646958752653\\
+0.805203967082547 -5.03857587206912\\
+0.82018894992022 -4.85944260435586\\
+0.835452805838287 -4.62061791865164\\
+0.858882855954626 -4.13718558497643\\
+0.88296999554941 -3.49010161025628\\
+0.907732652521022 -2.67471248792292\\
+0.941833153464796 -1.34973094266931\\
+1.00462042134681 1.33703125013178\\
+1.05201521761616 3.15821555026413\\
+1.09153593533139 4.34023789382966\\
+1.12214776820798 5.01561993178652\\
+1.15361810173648 5.50441559064801\\
+1.17508713090481 5.73273147331334\\
+1.19695570235904 5.89052590764791\\
+1.21923125164911 5.98559159797505\\
+1.23052400435926 6.01216995239798\\
+1.24192135270178 6.02615394547515\\
+1.2534242654614 6.02855481418119\\
+1.2650337203959 6.02035540948022\\
+1.27675070431927 6.002502595581\\
+1.30051125217341 5.94141185421494\\
+1.32471398786612 5.85196177823951\\
+1.36186523675608 5.67728696501606\\
+1.41302599059953 5.39362424877099\\
+1.5211855179861 4.75190106999753\\
+1.66810053720006 3.96249738105201\\
+1.77930438991858 3.46860529079711\\
+1.88050405512858 3.0923582155922\\
+1.98745954958099 2.75909117695907\\
+2.10049824165392 2.46587702697837\\
+2.21996611911996 2.20883100029776\\
+2.34622884814226 1.98383175253663\\
+2.47967289250216 1.78689468048721\\
+2.62070669648386 1.61435028326874\\
+2.76976193503689 1.4629144463227\\
+2.92729483504282 1.32970014089076\\
+3.09378757173014 1.21219876541527\\
+3.26974974451177 1.10824717570462\\
+3.48772747481418 1.00163498656921\\
+3.72023668141307 0.908459959130635\\
+3.96824610456949 0.826651468318584\\
+4.23278906557355 0.754489377924091\\
+4.5149677720361 0.690544296878844\\
+4.81595791019235 0.633627072489432\\
+5.18459354389291 0.575920705874706\\
+5.58144624945497 0.524882676892678\\
+6.00867589171969 0.479514549676417\\
+6.52852114112785 0.434238414896067\\
+7.093341204988 0.394153841408204\\
+7.7070271142123 0.358490376596905\\
+8.45136633068472 0.323289636547949\\
+9.26759330114688 0.292073822408409\\
+10.2567793074442 0.261664698497865\\
+11.4566872863487 0.232492696454519\\
+12.7969686821594 0.206877600378867\\
+14.4264395121816 0.182546532303766\\
+16.4140297114447 0.159731072041973\\
+18.848434090338 0.138593562130166\\
+21.8443607114943 0.119235096995142\\
+25.787628875938 0.100758286952988\\
+31.0092663593193 0.0836326264090825\\
+37.9821530619074 0.0681820567957105\\
+47.3887960971766 0.0545924042884183\\
+60.7832312829724 0.0425316947679395\\
+80.8924348680594 0.031943192761438\\
+100 0.025834018724245\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/comp_hinf_analytical.pdf b/matlab/figs/comp_hinf_analytical.pdf
new file mode 100644
index 0000000..24f8070
Binary files /dev/null and b/matlab/figs/comp_hinf_analytical.pdf differ
diff --git a/matlab/figs/comp_hinf_analytical.png b/matlab/figs/comp_hinf_analytical.png
new file mode 100644
index 0000000..5ca712a
Binary files /dev/null and b/matlab/figs/comp_hinf_analytical.png differ
diff --git a/matlab/figs/compare_weights_upper_bounds_S_T.pdf b/matlab/figs/compare_weights_upper_bounds_S_T.pdf
new file mode 100644
index 0000000..dfe10db
Binary files /dev/null and b/matlab/figs/compare_weights_upper_bounds_S_T.pdf differ
diff --git a/matlab/figs/compare_weights_upper_bounds_S_T.png b/matlab/figs/compare_weights_upper_bounds_S_T.png
new file mode 100644
index 0000000..0305dc7
Binary files /dev/null and b/matlab/figs/compare_weights_upper_bounds_S_T.png differ
diff --git a/matlab/figs/complementary_filters_second_order.pdf b/matlab/figs/complementary_filters_second_order.pdf
new file mode 100644
index 0000000..090a8d5
Binary files /dev/null and b/matlab/figs/complementary_filters_second_order.pdf differ
diff --git a/matlab/figs/complementary_filters_second_order.png b/matlab/figs/complementary_filters_second_order.png
new file mode 100644
index 0000000..fa71777
Binary files /dev/null and b/matlab/figs/complementary_filters_second_order.png differ
diff --git a/matlab/figs/complementary_filters_third_order.pdf b/matlab/figs/complementary_filters_third_order.pdf
new file mode 100644
index 0000000..1401431
Binary files /dev/null and b/matlab/figs/complementary_filters_third_order.pdf differ
diff --git a/matlab/figs/complementary_filters_third_order.png b/matlab/figs/complementary_filters_third_order.png
new file mode 100644
index 0000000..12c867a
Binary files /dev/null and b/matlab/figs/complementary_filters_third_order.png differ
diff --git a/matlab/figs/filter_order_bode_plot.pdf b/matlab/figs/filter_order_bode_plot.pdf
new file mode 100644
index 0000000..b1836ff
Binary files /dev/null and b/matlab/figs/filter_order_bode_plot.pdf differ
diff --git a/matlab/figs/filter_order_bode_plot.png b/matlab/figs/filter_order_bode_plot.png
new file mode 100644
index 0000000..13d9f79
Binary files /dev/null and b/matlab/figs/filter_order_bode_plot.png differ
diff --git a/matlab/figs/filter_order_bode_plot.svg b/matlab/figs/filter_order_bode_plot.svg
new file mode 100644
index 0000000..3a2e987
--- /dev/null
+++ b/matlab/figs/filter_order_bode_plot.svg
@@ -0,0 +1,396 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/filter_order_bode_plot.tex b/matlab/figs/filter_order_bode_plot.tex
new file mode 100644
index 0000000..3881ffd
--- /dev/null
+++ b/matlab/figs/filter_order_bode_plot.tex
@@ -0,0 +1,688 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.561in,
+at={(0.535in,2.203in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-05,
+ymax=20,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.000239990562901708\\
+0.142283045721435 0.048196349957875\\
+0.245126006203334 0.140705435813733\\
+0.338477285594598 0.261906774974733\\
+0.422304418720667 0.395508581425881\\
+0.498537346387389 0.531625588339423\\
+0.572476623970218 0.670842699257944\\
+0.639448842855694 0.797569775779907\\
+0.701206358900718 0.910540287721556\\
+0.761871770232299 1.01434346427032\\
+0.82018894992022 1.10486965985512\\
+0.882969995549409 1.19024364311825\\
+0.941833153464795 1.25800147217012\\
+1.00462042134681 1.31709442414582\\
+1.07159339982267 1.36592649714493\\
+1.14303112911448 1.40355609102866\\
+1.21923125164911 1.42976625635778\\
+1.30051125217341 1.44501899013449\\
+1.38720978054162 1.45031772363591\\
+1.49339321612425 1.44593859120674\\
+1.62259528707809 1.43044590635232\\
+1.7957846470021 1.40082752078125\\
+2.04319732019527 1.35362036175419\\
+3.48772747481418 1.16485079759162\\
+4.11731993116168 1.12415798861893\\
+4.90558370636505 1.09079386912484\\
+5.8988964255085 1.06458391602289\\
+7.22534949178721 1.04398243369497\\
+9.18254283565628 1.02768819830159\\
+12.3336349791378 1.0155361351838\\
+18.3342548256229 1.00709000201383\\
+33.6920570598027 1.00210986288269\\
+100 1.00023994337346\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00023994337346\\
+0.0429173237842216 1.0044014200165\\
+0.0725873365081725 1.01249010306924\\
+0.102096066230605 1.02441595695104\\
+0.133390569003906 1.04098147582399\\
+0.16642601764859 1.06238976059097\\
+0.201978575681988 1.08928232042815\\
+0.240647515001542 1.12216819734946\\
+0.28408836901833 1.16233996504902\\
+0.338477285594598 1.21518217086752\\
+0.422304418720667 1.29576168856765\\
+0.541668691103315 1.39135177557127\\
+0.605036787939122 1.42579657374727\\
+0.663470812109235 1.44471510705481\\
+0.714255928554313 1.45033847757317\\
+0.761871770232299 1.44635661872273\\
+0.812661920009195 1.43259773894975\\
+0.866837993001977 1.40799565181008\\
+0.916140245713852 1.37784402838761\\
+0.968246611930312 1.33935013319552\\
+1.02331657833024 1.29294570980569\\
+1.09153593533139 1.22991092340698\\
+1.16430313292088 1.15905477983677\\
+1.24192135270178 1.08258453669297\\
+1.33698374182495 0.991310628508709\\
+1.45265392594678 0.88760296512871\\
+1.59295021257212 0.775651517941682\\
+1.77930438991858 0.650962981857989\\
+2.0244465099768 0.523178075225787\\
+2.36796006783308 0.395508581425881\\
+2.90043049386399 0.271210002966324\\
+3.824569722467 0.15952460257937\\
+5.68531791387375 0.073334710901727\\
+11.1441525146679 0.0192634860180548\\
+61.9144175597784 0.000626012643354404\\
+100 0.000239990562901708\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 2.65545074120215e-05\\
+0.024231727942376 0.00037140258628664\\
+0.0380697987140228 0.00139901221859594\\
+0.0525679112201842 0.00353394052760504\\
+0.0680507369673521 0.00726495213246285\\
+0.0849041520408874 0.0132039504613998\\
+0.103996091395412 0.022377085246567\\
+0.125053858729039 0.0354747583272142\\
+0.150375532129974 0.0551905562927319\\
+0.180824493487795 0.0842594253784922\\
+0.215443469003188 0.123816106181075\\
+0.256690271549195 0.179011857686184\\
+0.305833803237843 0.254602099652161\\
+0.357728509936787 0.343788949402809\\
+0.414588849683291 0.449533755823001\\
+0.471708469091701 0.560821253311769\\
+0.531772317785097 0.67956844500004\\
+0.593982669392035 0.800566442446507\\
+0.657382014340959 0.918189828297773\\
+0.720871503378214 1.02730134077546\\
+0.783238259917919 1.1240293556758\\
+0.843190929286625 1.20618130583567\\
+0.907732652521022 1.2823373132786\\
+0.977214696972572 1.3503381849764\\
+1.0423606739764 1.40170255576517\\
+1.11184960481927 1.44450424498237\\
+1.18597101233767 1.47818146741657\\
+1.2650337203959 1.50254702322984\\
+1.36186523675608 1.51923005339568\\
+1.46610868404699 1.52475095850917\\
+1.59295021257212 1.51909476944275\\
+1.73076553419572 1.50287191195891\\
+1.91550055557353 1.47196706579764\\
+2.15940615210357 1.42487018301208\\
+2.54921465445143 1.35082288286245\\
+3.75469422407334 1.18941132094598\\
+4.4324785912404 1.13648385179978\\
+5.18459354389291 1.09689686232593\\
+6.06432939540806 1.06663736303525\\
+7.15904108596489 1.04330929537848\\
+8.60864769614924 1.02575813756251\\
+10.6420924406472 1.01347432048707\\
+13.9041083409007 1.00556061264036\\
+21.0534524276671 1.00125534169887\\
+59.1250841383188 1.00002303075705\\
+100 1.0000028521488\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 1.00000285214879\\
+0.0626320745219869 1.00343093972918\\
+0.0889096598952915 1.01128532186658\\
+0.112993393803322 1.02374105185298\\
+0.137131471775395 1.04119509140565\\
+0.16188596901782 1.06363313770823\\
+0.18935521797563 1.09287471979718\\
+0.221485523372636 1.13131019333771\\
+0.259067785868801 1.17979754964229\\
+0.308666494333727 1.24572357199348\\
+0.507815211232767 1.4619154844749\\
+0.567222897164455 1.49805688323417\\
+0.622004882563472 1.51777369640101\\
+0.675818116816111 1.52471125751858\\
+0.727548352919623 1.52050988400498\\
+0.783238259917919 1.50527361043554\\
+0.835452805838287 1.48223206905353\\
+0.89114823228402 1.4498823561324\\
+0.950556592010119 1.40835842829937\\
+1.01392540755882 1.35816909466915\\
+1.08151870255229 1.30018052519061\\
+1.16430313292088 1.22587067300532\\
+1.2534242654614 1.14500431431229\\
+1.34936714058831 1.05986300883665\\
+1.46610868404699 0.961796684296777\\
+1.60770442167383 0.853454906027826\\
+1.77930438991858 0.738876047257277\\
+1.98745954958099 0.623005686914239\\
+2.24052786930002 0.510959085096822\\
+2.54921465445143 0.407250016761977\\
+2.95440799888038 0.309738554121075\\
+3.45571993676214 0.228213997889654\\
+4.07953450345245 0.162716148043293\\
+4.86056423214214 0.112066583676384\\
+5.79112264764176 0.0759344636148444\\
+6.89983712143002 0.0505981655845309\\
+8.22081575524054 0.0331450022119096\\
+9.88541702191957 0.0208496990808223\\
+11.9971773543589 0.0125730602386382\\
+14.8310251433611 0.0070832042056604\\
+18.848434090338 0.00362739834095076\\
+25.3164847863136 0.00155702609379137\\
+36.946012051993 0.000515006239601614\\
+64.8353428605473 9.69550538174257e-05\\
+100 2.65545074120217e-05\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.561in,
+at={(0.535in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.562,1.056)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 178.863623616218\\
+0.0108651577465251 178.765307154159\\
+0.0118051652856881 178.658484207923\\
+0.0128264983052803 178.542418674377\\
+0.0139361927422416 178.416310721186\\
+0.0151418932530433 178.279291260619\\
+0.0164519058775369 178.130415941673\\
+0.0178752552590422 177.968658617868\\
+0.0194217468148908 177.792904244025\\
+0.0211020342856859 177.601941151011\\
+0.0229276931286557 177.39445264248\\
+0.024911300260678 177.169007852265\\
+0.0270665207003317 176.924051794965\\
+0.0294082017058709 176.657894535475\\
+0.0319524750575915 176.368699395532\\
+0.0347168681892662 176.054470106654\\
+0.0377204249341695 175.713036809\\
+0.0409838367175735 175.342040784319\\
+0.0445295850994262 174.938917798231\\
+0.048382096649261 174.500879911995\\
+0.0525679112201842 174.024895606465\\
+0.0571158647812626 173.507668040468\\
+0.0620572880677654 172.945611241809\\
+0.0674262224177818 172.33482400069\\
+0.0732596542821532 171.671061201683\\
+0.0795977700231485 170.949702290309\\
+0.0864842327573189 170.165716522657\\
+0.0939664831495459 169.313624589708\\
+0.102096066230607 168.387456140844\\
+0.110928986489522 167.38070265187\\
+0.120526093687088 166.286264991125\\
+0.130953502048267 165.096394933056\\
+0.142283045721431 163.802629755121\\
+0.154592773641949 162.39571893867\\
+0.167967487209262 160.865541894398\\
+0.182499324481618 159.201015580647\\
+0.198288394912704 157.389990938927\\
+0.215443469003193 155.41913734388\\
+0.234082727617828 153.273814943688\\
+0.254334576130472 150.937936174528\\
+0.276338529005317 148.393820408353\\
+0.300246170908546 145.622050516878\\
+0.326222200971169 142.601348497571\\
+0.354445567397035 139.308501319999\\
+0.385110700232562 135.71839081168\\
+0.418428850790151 131.804216520061\\
+0.454629546953248 127.538051841529\\
+0.493962174387827 122.891942422227\\
+0.536697694554061 117.83983422892\\
+0.58313051135262 112.36067867715\\
+0.633580499265845 106.443038680383\\
+0.694771254846023 99.3596814111201\\
+0.768928372075853 90.9989413015776\\
+0.866837993001965 80.5153338101079\\
+1.19695570235905 51.9055936398149\\
+1.3125568357718 44.5049227945011\\
+1.42611370719414 38.3830462194279\\
+1.53527502878039 33.4178187376651\\
+1.65279206146492 28.9181840190651\\
+1.7629753752872 25.3619664020259\\
+1.88050405512853 22.1515819005542\\
+2.00586777950826 19.2718741737416\\
+2.1395888713434 16.7038791407503\\
+2.28222447418683 14.42627386531\\
+2.43436887354314 12.4164975776052\\
+2.59665597293484 10.6515947404326\\
+2.74434330322828 9.31647514152058\\
+2.90043049386403 8.13062092372084\\
+3.06539529505651 7.08062026725631\\
+3.23974262952812 6.15369172556549\\
+3.4240061379715 5.33776219835298\\
+3.61874981241128 4.62151840616434\\
+3.82456972246693 3.99443653115341\\
+4.04209583979642 3.44679371373951\\
+4.27199396630681 2.96966445971302\\
+4.51496777203605 2.55490460551451\\
+4.77176094893859 2.19512521833869\\
+5.04315948717143 1.88365860382868\\
+5.32999408084406 1.61451841228302\\
+5.63314267060121 1.38235564922095\\
+5.95353313081449 1.18241219763252\\
+6.29214610961035 1.01047324722097\\
+6.650018030431 0.862819806223172\\
+7.02824426430854 0.736182252238137\\
+7.42798248256497 0.627695668302437\\
+7.85045620020441 0.534857516301543\\
+8.29695852083464 0.455488026784849\\
+8.76885609458755 0.387693535288236\\
+9.26759330114683 0.329832871346639\\
+9.79469667069515 0.280486806891986\\
+10.351779556302 0.238430493933834\\
+10.9405470720574 0.202608764839226\\
+11.5628013120735 0.172114129318999\\
+12.2204468663152 0.146167277470539\\
+13.0351224468151 0.120757686422706\\
+13.9041083409004 0.0997341473184861\\
+14.8310251433614 0.0823480014385325\\
+15.9662602210142 0.0661376528165647\\
+17.3475935923388 0.0516655527610794\\
+19.0230118866895 0.0392541662689894\\
+21.0534524276677 0.0290058187458726\\
+23.7342425002384 0.0202779461433806\\
+27.2543253128104 0.0134111209164303\\
+32.4721849207315 0.00793988652637267\\
+40.8894822629482 0.00398128462191494\\
+57.5121707184161 0.00143221908558644\\
+100 0.000272636311223096\\
+};
+\addlegendentry{2nd order}
+
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 -0.000272636311223096\\
+0.0205263775270926 -0.00235533302242175\\
+0.0280833199882324 -0.00602457260959\\
+0.0347168681892662 -0.0113657345407319\\
+0.0406077202570047 -0.0181617881785883\\
+0.0462024137175122 -0.026706957672701\\
+0.0516074871038594 -0.0371540244928497\\
+0.0565917016324609 -0.0489046237613877\\
+0.0614877765381008 -0.0626077738535855\\
+0.0661943345877428 -0.0779586338937577\\
+0.0706071771413795 -0.0944249300297031\\
+0.0753142016597439 -0.114338726877719\\
+0.0803350197712457 -0.138410535985486\\
+0.0849041520408896 -0.162995003214576\\
+0.0897331581458357 -0.19189293443273\\
+0.0948368186628579 -0.225844841490243\\
+0.10023075482839 -0.265713439510762\\
+0.105931476351838 -0.312502353415653\\
+0.111956431948387 -0.367377263540362\\
+0.117238180328657 -0.420252024401776\\
+0.122769104798839 -0.480570403069805\\
+0.128560960694331 -0.549340080962367\\
+0.13462605792989 -0.627695668302408\\
+0.140977287162893 -0.716912520647099\\
+0.147628147190943 -0.818421577000294\\
+0.154592773641949 -0.933825187872515\\
+0.161885969017819 -1.06491387284797\\
+0.169523234155408 -1.21368391352533\\
+0.177520801171768 -1.38235564922095\\
+0.18589566796357 -1.57339229991544\\
+0.194665634334225 -1.78951909423515\\
+0.203849339825241 -2.03374243072494\\
+0.215443469003193 -2.36857554516999\\
+0.227697025538168 -2.7549675017936\\
+0.240647515001538 -3.19994195174823\\
+0.254334576130472 -3.71126163868755\\
+0.268800102153763 -4.29745870496325\\
+0.284088369018327 -4.96785604233435\\
+0.300246170908546 -5.73257741753997\\
+0.317322963473503 -6.60254387265681\\
+0.335371015200292 -7.58945357131526\\
+0.354445567397035 -8.70574175382038\\
+0.374605003274907 -9.9645166738822\\
+0.395911026646847 -11.3794662005277\\
+0.418428850790151 -12.9647280713868\\
+0.442227398050602 -14.7347145129413\\
+0.46737951079925 -16.7038791407502\\
+0.498537346387382 -19.2718741737415\\
+0.531772317785112 -22.1515819005542\\
+0.567222897164457 -25.3619664020259\\
+0.605036787939111 -28.9181840190651\\
+0.645371540164686 -32.8297859719302\\
+0.694771254846023 -37.7372802470706\\
+0.747952251562161 -43.0976083242855\\
+0.812661920009201 -49.6255533135195\\
+0.89940221740918 -58.1964927554504\\
+1.04236067397639 -71.3693008505441\\
+1.27675070431924 -89.4226573506414\\
+1.42611370719414 -98.6230729440817\\
+1.5638467583022 -105.758450779\\
+1.71488196987055 -112.36067867715\\
+1.86324631193151 -117.83983422892\\
+2.02444650997683 -122.891942422227\\
+2.19959306803003 -127.538051841529\\
+2.38989256623109 -131.804216520061\\
+2.59665597293484 -135.71839081168\\
+2.82130767593954 -139.308501319999\\
+3.06539529505651 -142.601348497571\\
+3.33060034362469 -145.622050516878\\
+3.61874981241128 -148.393820408353\\
+3.93182875570566 -150.937936174528\\
+4.27199396630681 -153.273814943688\\
+4.64158883361268 -155.41913734388\\
+5.04315948717143 -157.389990938927\\
+5.4794723369002 -159.201015580647\\
+5.95353313081449 -160.865541894398\\
+6.46860766154627 -162.39571893867\\
+7.02824426430854 -163.802629755121\\
+7.63629826128223 -165.096394933056\\
+8.29695852083464 -166.286264991125\\
+9.01477631452495 -167.38070265187\\
+9.79469667069515 -168.387456140844\\
+10.6420924406474 -169.313624589708\\
+11.5628013120735 -170.165716522657\\
+12.5631660247414 -170.949702290309\\
+13.65007806546 -171.671061201683\\
+14.8310251433614 -172.33482400069\\
+16.1141427725301 -172.945611241809\\
+17.5082703173578 -173.507668040468\\
+19.0230118866895 -174.024895606465\\
+20.6688024962902 -174.500879911995\\
+22.4569799553979 -174.938917798231\\
+24.399862972595 -175.342040784319\\
+26.5108360190857 -175.713036809\\
+28.8044415339625 -176.054470106654\\
+31.2964801067081 -176.368699395532\\
+34.0041193270367 -176.657894535475\\
+36.946012051994 -176.924051794965\\
+40.1424249049931 -177.169007852265\\
+43.6153778920815 -177.39445264248\\
+47.3887960971767 -177.601941151011\\
+51.4886745013736 -177.792904244025\\
+55.9432570616943 -177.968658617868\\
+60.7832312829711 -178.130415941673\\
+66.0419396233041 -178.279291260619\\
+71.7556091893683 -178.416310721186\\
+77.9636013040541 -178.542418674377\\
+84.7086826655735 -178.658484207923\\
+92.0373199661849 -178.765307154159\\
+100 -178.863623616218\\
+};
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -96.1651247510944\\
+0.0108651577465251 -96.6963175241823\\
+0.0118051652856881 -97.2728530866312\\
+0.0128264983052803 -97.8984831715272\\
+0.0139361927422416 -98.5772369146544\\
+0.0151418932530433 -99.3134321165136\\
+0.0164519058775369 -100.111684175552\\
+0.0178752552590422 -100.976911702396\\
+0.0194217468148908 -101.914337584839\\
+0.0211020342856859 -102.929483999749\\
+0.0229276931286557 -104.028159567193\\
+0.024911300260678 -105.216436527586\\
+0.0270665207003317 -106.500615519397\\
+0.0294082017058709 -107.887175282736\\
+0.0319524750575915 -109.382704473146\\
+0.0350384224529072 -111.180244200545\\
+0.0384224084605498 -113.129396751144\\
+0.0421332174384734 -115.238713270539\\
+0.0462024137175122 -117.516091451038\\
+0.0506646100892133 -119.968454246808\\
+0.0555577622239876 -122.601399568008\\
+0.0614877765381008 -125.710826308131\\
+0.0680507369673503 -129.045825853701\\
+0.0753142016597439 -132.605403791301\\
+0.0841249704973636 -136.739246999108\\
+0.0948368186628579 -141.50054453827\\
+0.106912633917349 -146.537607144296\\
+0.12164242938574 -152.244841000659\\
+0.140977287162893 -159.091146852716\\
+0.164898694447104 -166.707832999839\\
+0.192879150802077 -174.659368817141\\
+0.21346630333243 -179.987494059157\\
+0.215443469003193 179.520605483702\\
+0.252000499376417 170.949154451959\\
+0.28937530190509 163.016120547222\\
+0.329243733300778 155.238117431243\\
+0.374605003274907 147.035585330711\\
+0.422304418720659 138.983712593159\\
+0.476077523022638 130.46752663069\\
+0.536697694554061 121.458550261378\\
+0.610640754223191 111.204504917535\\
+0.701206358900715 99.6417075961787\\
+0.843190929286622 83.5773088036379\\
+1.10164594963369 60.293412520198\\
+1.24192135270177 50.4789107974606\\
+1.37447909267756 42.720979405281\\
+1.50722530931073 36.1987620593357\\
+1.63762407452172 30.8088866649691\\
+1.77930438991856 25.8996144956904\\
+1.91550055557359 21.9480932662289\\
+2.06212180399915 18.3840974346638\\
+2.19959306803003 15.5779895291538\\
+2.34622884814232 13.0549536902761\\
+2.50264009641792 10.8041750556057\\
+2.66947849403426 8.81273085204094\\
+2.82130767593954 7.30117047107925\\
+2.98177229001969 5.9595169751899\\
+3.15136348486643 4.77733515494876\\
+3.33060034362469 3.74384452176264\\
+3.52003147279672 2.84806591646915\\
+3.72023668141304 2.07895694996537\\
+3.89574561577541 1.52686751439728\\
+4.07953450345255 1.04884750695544\\
+4.27199396630681 0.638756146861084\\
+4.47353305449843 0.290616007522118\\
+4.68458011587293 -0.00135368801647928\\
+4.90558370636517 -0.242707988153541\\
+5.08987019351974 -0.402921939955348\\
+5.28107971193432 -0.536733936643856\\
+5.4794723369002 -0.646619155167258\\
+5.68531791387359 -0.734931751087231\\
+5.89889642550864 -0.803901507549142\\
+6.06432939540815 -0.844205024241091\\
+6.23440188862789 -0.87565378620701\\
+6.40924401935642 -0.899047100674466\\
+6.58898955079985 -0.915143622291339\\
+6.77377599751758 -0.924661528863254\\
+6.8998371214298 -0.927688478057973\\
+7.02824426430854 -0.928284826375659\\
+7.15904108596503 -0.92663387144151\\
+7.35981447526585 -0.920325816752865\\
+7.56621850048106 -0.909915449725929\\
+7.85045620020441 -0.890552523390653\\
+8.14537176628054 -0.86596155514988\\
+8.52964449974123 -0.829426042988985\\
+9.09827289445557 -0.770566955448231\\
+9.97697764236288 -0.677997134688411\\
+11.8870769771187 -0.501221539324433\\
+12.9154966501489 -0.42509003823838\\
+13.9041083409004 -0.363670218288235\\
+14.9683929307729 -0.308660528901271\\
+16.1141427725301 -0.260135266757914\\
+17.188391428171 -0.222830398863522\\
+18.3342548256232 -0.190060777035768\\
+19.5565071586593 -0.16148974368619\\
+20.8602408924844 -0.136743055266635\\
+22.4569799553979 -0.112646962041055\\
+24.1759407916908 -0.0924698990138211\\
+26.0264788196906 -0.0756720809959859\\
+28.2781797962532 -0.0601985900821376\\
+31.00926635932 -0.0465265368921166\\
+34.31907197459 -0.0349212361818445\\
+38.3339510176665 -0.0254465853474528\\
+43.6153778920815 -0.0175242667228588\\
+51.0161531474972 -0.0110946364618769\\
+62.4878807200671 -0.00610968249554844\\
+82.3978568452854 -0.00269196658322812\\
+100 -0.00151265754368524\\
+};
+\addlegendentry{3rd order}
+
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 0.00151265754371366\\
+0.0147288272390749 0.00478074918021321\\
+0.0187185529496553 0.00969205561673903\\
+0.0223022329796589 0.0161709946132476\\
+0.0256099310025844 0.0241316075721727\\
+0.0288709091735928 0.0340166099495889\\
+0.0319524750575915 0.0453351258907446\\
+0.0350384224529072 0.0586765696345708\\
+0.0380697987140222 0.0737847304536388\\
+0.0409838367175735 0.0901959984207679\\
+0.0441209286319117 0.109921940494985\\
+0.0474981480322836 0.133497421701463\\
+0.0506646100892133 0.157729349129397\\
+0.0540421642070586 0.185730594977173\\
+0.0576448828292606 0.217878621230653\\
+0.0614877765381008 0.254517226043106\\
+0.0655868565957134 0.295925622438432\\
+0.0699592016543557 0.342278769247542\\
+0.0753142016597439 0.40132678367047\\
+0.0818300681586717 0.475087702371525\\
+0.0897331581458357 0.564650002575604\\
+0.116162263260848 0.821490899902273\\
+0.122769104798839 0.865961555150108\\
+0.127381132318649 0.89055252339088\\
+0.13216641839466 0.909915449726157\\
+0.13587299019027 0.920325816753092\\
+0.139683511798871 0.926633871441737\\
+0.142283045721431 0.928284826375858\\
+0.144930957412626 0.927688478058229\\
+0.147628147190943 0.924661528863481\\
+0.150375532129977 0.91901291008972\\
+0.15317404637021 0.9105437079306\\
+0.157469771464309 0.892096713204495\\
+0.161885969017819 0.866104549862285\\
+0.166426017648587 0.83179502465245\\
+0.171093390726897 0.788355266191644\\
+0.175891659032778 0.73493175108743\\
+0.182499324481618 0.646619155167457\\
+0.18935521797563 0.536733936644055\\
+0.196468664618042 0.402921939955547\\
+0.203849339825241 0.24270798815374\\
+0.211507282486886 0.0535002848547492\\
+0.219452908620335 -0.167404101768739\\
+0.229805998875885 -0.492394405576817\\
+0.240647515001538 -0.876998297693405\\
+0.252000499376417 -1.32711830602517\\
+0.263889081445755 -1.84883413118706\\
+0.276338529005317 -2.4483668678223\\
+0.28937530190509 -3.1320391895251\\
+0.303027108286649 -3.90623163885718\\
+0.320262069365769 -4.96374532508241\\
+0.338477285594596 -6.17176456144486\\
+0.357728509936777 -7.5410227809011\\
+0.378074666359942 -9.0818825717698\\
+0.399578030189527 -10.8041750556055\\
+0.426215882901522 -13.0549536902759\\
+0.454629546953248 -15.5779895291536\\
+0.484937406733521 -18.3840974346636\\
+0.517265738721588 -21.4814906064621\\
+0.556859644428648 -25.3843888821954\\
+0.599484250318932 -29.6758260813824\\
+0.651349094627294 -34.9604992919035\\
+0.707701066118183 -40.7080531331827\\
+0.776050333513376 -47.592778191968\\
+0.858882855954615 -55.6885887636402\\
+0.97721469697258 -66.5913457523266\\
+1.23052400435925 -86.8253315656705\\
+1.49339321612424 -103.555026566453\\
+1.71488196987055 -114.930586406056\\
+1.95114834684666 -124.982701726327\\
+2.19959306803003 -133.800207337064\\
+2.47967289250217 -142.13337120621\\
+2.82130767593954 -150.607056866625\\
+3.2100108955431 -158.619799343353\\
+3.68609536217214 -166.765596459029\\
+4.27199396630681 -175.033642897372\\
+4.64158883361268 -179.520605483702\\
+4.68458011587293 179.987494059158\\
+5.4794723369002 171.814639651708\\
+6.46860766154627 163.530568325641\\
+7.56621850048106 156.055670564056\\
+8.76885609458755 149.356305996668\\
+9.97697764236288 143.792381909225\\
+11.2473717836474 138.90118558388\\
+12.6795284678645 134.296530390215\\
+14.1628661629916 130.314396402387\\
+15.674554102056 126.897430655102\\
+17.3475935923388 123.706082237428\\
+19.1992066559328 120.739162866272\\
+21.0534524276677 118.233143373549\\
+23.0867799418716 115.903943375106\\
+25.3164847863143 113.744999800615\\
+27.7615329443679 111.748672010859\\
+30.4427221206439 109.906573466698\\
+33.3828586473175 108.20986490503\\
+36.6069514759701 106.649502032637\\
+40.1424249049931 105.216436527587\\
+44.0193518520901 103.901772930032\\
+47.8277201772749 102.812673676138\\
+51.9655724382751 101.806444639073\\
+56.4614141930371 100.877308101087\\
+61.3462171799237 100.019774666158\\
+66.65363268125 99.2286551339033\\
+72.420223346072 98.4990647316711\\
+78.68571506937 97.8264214750919\\
+85.493270662683 97.2064401290062\\
+92.8897872016474 96.6351229706328\\
+100 96.1651247510944\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/filter_order_loop_gain.pdf b/matlab/figs/filter_order_loop_gain.pdf
new file mode 100644
index 0000000..fe4af22
Binary files /dev/null and b/matlab/figs/filter_order_loop_gain.pdf differ
diff --git a/matlab/figs/filter_order_loop_gain.png b/matlab/figs/filter_order_loop_gain.png
new file mode 100644
index 0000000..4dfa5ac
Binary files /dev/null and b/matlab/figs/filter_order_loop_gain.png differ
diff --git a/matlab/figs/filter_order_loop_gain.svg b/matlab/figs/filter_order_loop_gain.svg
new file mode 100644
index 0000000..8ceedcd
--- /dev/null
+++ b/matlab/figs/filter_order_loop_gain.svg
@@ -0,0 +1,415 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/filter_order_loop_gain.tex b/matlab/figs/filter_order_loop_gain.tex
new file mode 100644
index 0000000..d1ec2c9
--- /dev/null
+++ b/matlab/figs/filter_order_loop_gain.tex
@@ -0,0 +1,383 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.551in,2.205in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xtick={0.01,0.1,1,10,100},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-05,
+ymax=100000,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 4167.83031499084\\
+0.0571158647812643 128.882727474017\\
+0.0983995229627823 44.1797163360685\\
+0.140977287162897 22.0941948352123\\
+0.184189668079971 13.3888092756032\\
+0.229805998875885 8.9692194180794\\
+0.278898029238044 6.40287237314112\\
+0.335371015200293 4.70974142072698\\
+0.399578030189527 3.56664669856831\\
+0.476077523022637 2.7380132984489\\
+0.567222897164454 2.12886004430877\\
+0.68839520696455 1.63220853655452\\
+0.874866812047991 1.18948113400539\\
+1.5211855179861 0.575697142382613\\
+1.84614694632455 0.440139324158912\\
+2.19959306803007 0.341120696395563\\
+2.59665597293487 0.264738239870324\\
+3.09378757173014 0.199908614643401\\
+3.68609536217216 0.148967495371519\\
+4.47353305449847 0.106134845315272\\
+5.58144624945496 0.070971552342041\\
+7.22534949178721 0.043700646597467\\
+9.9769776423632 0.0234626082806174\\
+15.5307057393346 0.00983695087146654\\
+32.4721849207313 0.00227007919185389\\
+100 0.000239932992570067\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.01 37658.4975436629\\
+0.024231727942376 2692.75184743704\\
+0.0380697987140228 715.18019785956\\
+0.0520854855057765 290.972976436668\\
+0.0668074391569562 145.429843325373\\
+0.0825879938784427 82.2336800387916\\
+0.099310918137498 51.0945660472151\\
+0.11723818032866 33.9270425378139\\
+0.137131471775395 23.4752364028676\\
+0.158928286562298 16.8952112668581\\
+0.182499324481615 12.6159560759637\\
+0.209566239948043 9.57310338111182\\
+0.240647515001542 7.38130837218514\\
+0.276338529005317 5.78070526405181\\
+0.317322963473497 4.5947623751088\\
+0.364385898376354 3.70259206183731\\
+0.422304418720667 2.98121752025748\\
+0.493962174387832 2.39963042868381\\
+0.583130511352622 1.93023087824691\\
+0.707701066118189 1.51499468206959\\
+0.924625711640573 1.09773501747064\\
+1.46610868404699 0.630789361980254\\
+1.77930438991858 0.494065212832848\\
+2.10049824165392 0.396421038774207\\
+2.43436887354311 0.322394550628276\\
+2.79541599906785 0.262613592171841\\
+3.21001089554318 0.211250301723534\\
+3.65226736430818 0.170273472754588\\
+4.15545533471888 0.135477336750797\\
+4.72796959160039 0.106338415915071\\
+5.42918617761894 0.0807771512507995\\
+6.23440188862786 0.0603820640833641\\
+7.15904108596489 0.0444285744279711\\
+8.29695852083491 0.0314966982589575\\
+9.70480887738031 0.0214710009406213\\
+11.5628013120738 0.0137227122618482\\
+14.0328908478587 0.00819779974952794\\
+17.5082703173573 0.0044547385113859\\
+22.6649807927369 0.00214105374641159\\
+31.5863540826782 0.000816426173116526\\
+50.5479682119125 0.000203481922291505\\
+100 2.65544316748313e-05\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.563in,
+at={(0.551in,0.433in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.01,
+xmax=100,
+xminorticks=true,
+xlabel={Relative Frequency $\frac{\omega}{\omega_0}$},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.589,1.064)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 -178.86389625253\\
+0.0108651577465251 -178.765656829879\\
+0.0118051652856881 -178.658932687332\\
+0.0128264983052803 -178.542993867828\\
+0.0139361927422416 -178.417048419416\\
+0.0151418932530433 -178.280237357785\\
+0.0164519058775369 -178.1316292845\\
+0.0178752552590422 -177.970214656726\\
+0.0194217468148908 -177.794899710882\\
+0.0211020342856859 -177.604500051876\\
+0.0229276931286557 -177.39773393194\\
+0.024911300260678 -177.17321525959\\
+0.0270665207003317 -176.929446400906\\
+0.0294082017058709 -176.664810863656\\
+0.0319524750575915 -176.377565991347\\
+0.0347168681892662 -176.065835841195\\
+0.0377204249341695 -175.72760447973\\
+0.0409838367175735 -175.360710005082\\
+0.0445295850994262 -174.96283969933\\
+0.048382096649261 -174.531526831195\\
+0.0525679112201842 -174.064149772734\\
+0.0571158647812626 -173.557934267192\\
+0.0620572880677654 -173.009959891961\\
+0.0674262224177818 -172.417172002129\\
+0.0732596542821532 -171.776400715216\\
+0.0795977700231485 -171.084388800348\\
+0.0864842327573189 -170.337830651976\\
+0.0939664831495459 -169.533424835215\\
+0.103041699495061 -168.567872755043\\
+0.112993393803321 -167.52273530089\\
+0.123906215694794 -166.394261620209\\
+0.13587299019027 -165.179372206502\\
+0.148995507285289 -163.875944202022\\
+0.164898694447104 -162.338966539622\\
+0.182499324481618 -160.695141108603\\
+0.203849339825241 -158.785235672343\\
+0.229805998875885 -156.59129214136\\
+0.263889081445755 -153.927219750964\\
+0.326222200971169 -149.681968764827\\
+0.403278998219369 -145.473884038646\\
+0.454629546953248 -143.231554220289\\
+0.498537346387382 -141.622962721924\\
+0.541668691103327 -140.2867838758\\
+0.58313051135262 -139.203683958513\\
+0.622004882563454 -138.34680791396\\
+0.663470812109245 -137.582510862134\\
+0.701206358900715 -137.00611916351\\
+0.741088151564139 -136.50626914252\\
+0.776050333513376 -136.150488677998\\
+0.812661920009201 -135.851616023186\\
+0.843190929286622 -135.654373771699\\
+0.874866812047975 -135.494936871635\\
+0.89940221740918 -135.400438462815\\
+0.9246257116406 -135.327602884186\\
+0.950556592010137 -135.276543193256\\
+0.968246611930323 -135.254641610843\\
+0.986265846131287 -135.242469175405\\
+0.995400828762154 -135.240034269182\\
+1.00462042134681 -135.240034269182\\
+1.01392540755881 -135.242469175405\\
+1.02331657833024 -135.247338568712\\
+1.04236067397639 -135.26437704447\\
+1.06175918348298 -135.291137961948\\
+1.08151870255226 -135.327602884186\\
+1.1118496048193 -135.400438462815\\
+1.1430311291145 -135.494936871635\\
+1.17508713090482 -135.610951237688\\
+1.2192312516491 -135.798789337931\\
+1.26503372039588 -136.024032155882\\
+1.32471398786616 -136.357221814983\\
+1.38720978054164 -136.746417332851\\
+1.45265392594678 -137.189915456654\\
+1.53527502878039 -137.791033215479\\
+1.62259528707813 -138.463715324247\\
+1.73076553419573 -139.333229186973\\
+1.86324631193151 -140.429394661033\\
+2.02444650997683 -141.778353381596\\
+2.21996611911991 -143.398591451948\\
+2.47967289250217 -145.473884038646\\
+2.87381269185112 -148.383495618817\\
+4.15545533471895 -155.717142496745\\
+4.72796959160025 -158.123207246533\\
+5.32999408084406 -160.228769519762\\
+5.95353313081449 -162.04795409203\\
+6.58898955079985 -163.604533934094\\
+7.29227205872842 -165.053038665896\\
+7.9965545258922 -166.276704936754\\
+8.76885609458755 -167.413694995299\\
+9.61574600143192 -168.467006354219\\
+10.5444279352618 -169.440334136039\\
+11.5628013120735 -170.337830651976\\
+12.6795284678645 -171.163912013074\\
+13.9041083409004 -171.923106788381\\
+15.2469572701759 -172.619940808897\\
+16.5660595894989 -173.197443862416\\
+17.9992850678251 -173.731165521983\\
+19.5565071586593 -174.224117418108\\
+21.2484535249894 -174.679172278531\\
+23.0867799418716 -175.099053970693\\
+25.0841505927762 -175.48633256734\\
+27.2543253128104 -175.843423234125\\
+29.6122543798796 -176.17258796804\\
+32.174181506764 -176.47593941091\\
+34.9577557436321 -176.755446125261\\
+37.982153061908 -177.012938853996\\
+41.268208457029 -177.250117394261\\
+44.8385594802129 -177.468557803506\\
+48.717802187946 -177.669719725526\\
+52.9326605836072 -177.854953679405\\
+57.5121707184161 -178.025508197518\\
+62.4878807200671 -178.18253673233\\
+67.8940681269615 -178.327104277686\\
+73.7679760252756 -178.460193670091\\
+80.1500696156551 -178.582711550473\\
+87.0843149769058 -178.695493978192\\
+94.6184819472219 -178.799311697296\\
+100 -178.86389625253\\
+};
+\addlegendentry{2nd order}
+
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.01 96.1666374086381\\
+0.0108651577465251 96.6982544551025\\
+0.0118051652856881 97.275332538795\\
+0.0128264983052803 97.901655965562\\
+0.0139361927422416 98.5812952215261\\
+0.0151418932530433 99.3186205015811\\
+0.0164519058775369 100.118313444126\\
+0.0178752552590422 100.985376182329\\
+0.0194217468148908 101.925136587154\\
+0.0211020342856859 102.943248300086\\
+0.0229276931286557 104.045683833916\\
+0.024911300260678 105.238718662684\\
+0.0270665207003317 106.528903838895\\
+0.0294082017058709 107.923024290398\\
+0.0319524750575915 109.428039599036\\
+0.0347168681892662 111.051003806532\\
+0.0380697987140222 113.00119581342\\
+0.041746552892532 115.115139174183\\
+0.0457784053837654 117.401777938796\\
+0.0501996513311016 119.869217990201\\
+0.0550478980785488 122.524329170688\\
+0.0603643850607596 125.372297491323\\
+0.0668074391569548 128.731342377322\\
+0.0739381991917593 132.327628995556\\
+0.0825879938784402 136.516209042549\\
+0.0922497005259214 140.969197544659\\
+0.103996091395414 146.067585255783\\
+0.11942000281335 152.257337531121\\
+0.140977287162893 160.018875959741\\
+0.18589566796357 173.352700326605\\
+0.21346630333243 179.988847747174\\
+0.215443469003193 -179.573422204816\\
+0.254334576130472 -171.857350885965\\
+0.28937530190509 -166.148159736747\\
+0.326222200971169 -161.156167576587\\
+0.361041859717323 -157.211869149794\\
+0.395911026646847 -153.8786046677\\
+0.430163575810668 -151.103135502122\\
+0.46737951079925 -148.554720391206\\
+0.503154894503796 -146.489605303328\\
+0.541668691103327 -144.620068670202\\
+0.577779011797049 -143.149151149649\\
+0.616296625513279 -141.835446440461\\
+0.651349094627294 -140.836472862808\\
+0.688395206964551 -139.956157100848\\
+0.72754835291961 -139.195543358914\\
+0.761871770232323 -138.653742562989\\
+0.797814457207674 -138.19602973303\\
+0.827785696619849 -137.8906089012\\
+0.858882855954615 -137.639322679173\\
+0.891148232283998 -137.442268390534\\
+0.91614024571388 -137.330112642386\\
+0.941833153464815 -137.248527427559\\
+0.959360828709328 -137.21112934281\\
+0.97721469697258 -137.187328977744\\
+0.986265846131287 -137.180528647657\\
+0.995400828762154 -137.177128445023\\
+1.00462042134681 -137.177128445023\\
+1.01392540755881 -137.180528647657\\
+1.02331657833024 -137.187328977744\\
+1.04236067397639 -137.21112934281\\
+1.06175918348298 -137.248527427559\\
+1.08151870255226 -137.299519896141\\
+1.1118496048193 -137.401487702182\\
+1.1430311291145 -137.534011399697\\
+1.17508713090482 -137.697063376306\\
+1.2192312516491 -137.961893336282\\
+1.26503372039588 -138.280829661339\\
+1.3125568357718 -138.653742562989\\
+1.37447909267756 -139.195543358914\\
+1.43932264471941 -139.82105059125\\
+1.52118551798608 -140.681482383955\\
+1.60770442167387 -141.660762166523\\
+1.69914417203464 -142.757643955745\\
+1.81241754737421 -144.183934120536\\
+1.9332422875551 -145.765279444896\\
+2.08122156998634 -147.757792418098\\
+2.24052786929996 -149.941729660967\\
+2.43436887354314 -152.617868082378\\
+2.64498018242767 -155.513637572909\\
+2.90043049386403 -158.970458577235\\
+3.2100108955431 -163.036655817639\\
+3.58553985745983 -167.747446172715\\
+4.07953450345255 -173.540814825183\\
+4.64158883361268 -179.573422204816\\
+4.68458011587293 179.988847747174\\
+6.06432939540815 167.552038024081\\
+7.77841107128642 155.669570282615\\
+9.09827289445557 148.507404164454\\
+10.4476597156082 142.50895890127\\
+11.7779870119709 137.605334585589\\
+13.1558562404571 133.349160582031\\
+14.6949180062486 129.3676279675\\
+16.2633950404818 125.965343534174\\
+17.9992850678251 122.800378996945\\
+19.7376432630023 120.126183595938\\
+21.6438908606406 117.640261442729\\
+23.7342425002384 115.335890221154\\
+26.0264788196906 113.205068832141\\
+28.540097698292 111.23892077018\\
+31.2964801067081 109.428039599036\\
+34.31907197459 107.762774167361\\
+37.6335836228661 106.233456052327\\
+40.8894822629482 104.965438753738\\
+44.42706749607 103.79309408254\\
+48.2707096560317 102.709929173911\\
+52.4468874949529 101.709733957971\\
+56.9843705946916 100.786605760339\\
+61.9144175597768 99.9349630107506\\
+67.2709913571241 99.1495504352761\\
+73.0909932860277 98.4254377288612\\
+79.4145171902947 97.7580133552951\\
+86.2851256636678 97.1429748113412\\
+93.750150151455 96.5763164239792\\
+100 96.1666374086381\\
+};
+\addlegendentry{3rd order}
+
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/hinf-filter-order.pdf b/matlab/figs/hinf-filter-order.pdf
new file mode 100644
index 0000000..55f9a82
Binary files /dev/null and b/matlab/figs/hinf-filter-order.pdf differ
diff --git a/matlab/figs/hinf-filter-order.png b/matlab/figs/hinf-filter-order.png
new file mode 100644
index 0000000..5628006
Binary files /dev/null and b/matlab/figs/hinf-filter-order.png differ
diff --git a/matlab/figs/hinf-filter-order.svg b/matlab/figs/hinf-filter-order.svg
new file mode 100644
index 0000000..e24b05f
--- /dev/null
+++ b/matlab/figs/hinf-filter-order.svg
@@ -0,0 +1,393 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/hinf-filter-order.tex b/matlab/figs/hinf-filter-order.tex
new file mode 100644
index 0000000..a7bcc70
--- /dev/null
+++ b/matlab/figs/hinf-filter-order.tex
@@ -0,0 +1,1036 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,2.19in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={0.1,1,10,100,1000},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=7.35816570791648e-06,
+ymax=3.6909895197137,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.0100610509182665\\
+1.02096066230605 0.102193353033543\\
+1.7916503273639 0.177442798067662\\
+2.56690271549195 0.250161365488649\\
+3.35371015200293 0.319925518933163\\
+4.14588849683291 0.385340796626081\\
+4.98537346387389 0.448918881894676\\
+5.88531577519145 0.51034139151094\\
+6.82077673286568 0.566964637895895\\
+7.8323825991792 0.62042815330859\\
+8.9114823228402 0.669422195628778\\
+10.1392540755882 0.716387821829617\\
+11.5361810173648 0.76030748584311\\
+13.1255683577184 0.800377121708942\\
+14.9339321612425 0.836073625662994\\
+16.9914417203463 0.867173676708\\
+19.5114834684662 0.895455075866722\\
+22.6128006633728 0.920246813992533\\
+26.6947849403432 0.94227340740986\\
+32.397426295282 0.961459959036311\\
+40.4209583979631 0.976772601098163\\
+53.2999408084409 0.988963826117125\\
+77.070271142123 0.997848462637035\\
+132.777082935543 1.00334436805967\\
+372.882130718283 1.00554913459476\\
+1000 1.00444137484913\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.999949866793236\\
+0.864842327573173 0.996281338893946\\
+1.51768339028341 0.988679433353032\\
+2.15443469003188 0.977572069935144\\
+2.81481236050758 0.962596425247675\\
+3.47969790388769 0.944459738745286\\
+4.18428850790158 0.922505470417609\\
+4.89428989611453 0.898201175646561\\
+5.67222897164454 0.869824423222101\\
+6.5134909462728 0.837937822445794\\
+7.41088151564157 0.803435702538861\\
+8.43190929286626 0.764514541910122\\
+9.5055659201012 0.724810162897247\\
+10.8151870255229 0.678904975484428\\
+12.3052400435926 0.630677312055845\\
+14.000583824681 0.581227942507024\\
+16.0770442167382 0.528169969124625\\
+18.6324631193156 0.472889332538526\\
+21.9959306803007 0.413852427618899\\
+26.4498018242772 0.353618041608761\\
+33.0003479112529 0.289962623228855\\
+43.1156199031823 0.225871248131669\\
+61.204983724767 0.161141688775833\\
+98.8541702191957 0.100462458354192\\
+183.342548256229 0.0541140412590764\\
+301.63343472592 0.0325673066595738\\
+424.255643071778 0.0227838851728939\\
+554.298551568467 0.0170516523447337\\
+691.575882873852 0.0132797679754393\\
+839.312949816636 0.0105588888779105\\
+1000 0.00848847234576089\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000210908676770225\\
+5.26892142135068 0.574724053348516\\
+6.16296625513294 0.770330820203487\\
+6.8839520696455 0.935048445045635\\
+7.54879928165344 1.08401236672988\\
+8.12661920009194 1.20484352626503\\
+8.66837993001978 1.30633958752512\\
+9.16140245713852 1.38618413655614\\
+9.68246611930312 1.45611645104344\\
+10.2331657833025 1.51353494795101\\
+10.7159339982267 1.55057933283328\\
+11.2214776820798 1.57737957140134\\
+11.7508713090481 1.59412509755522\\
+12.4192135270178 1.60191736195988\\
+13.1255683577184 1.59801617271945\\
+14.000583824681 1.58159510601789\\
+15.0722530931076 1.55147958034872\\
+16.527920614649 1.50356500281873\\
+19.3324228755505 1.41327197185789\\
+24.5691646298279 1.28679144240635\\
+28.4743916646725 1.22387558446665\\
+33.0003479112529 1.17277557174094\\
+38.24569722467 1.13220601947628\\
+44.7353305449847 1.09878153900146\\
+52.8107971193433 1.07211711738466\\
+63.5042516859596 1.0505687010645\\
+79.2316862486625 1.0328539933318\\
+103.517795563018 1.01941098866853\\
+146.949180062482 1.00969123097697\\
+243.998629725955 1.00352777301748\\
+613.462171799251 1.0005577424931\\
+1000 1.00020893012145\\
+};
+\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00021002696669\\
+0.453582882551019 1.00431568988372\\
+0.76715811767793 1.01228408451326\\
+1.07902879151618 1.02412092539841\\
+1.39683511798874 1.04001658901187\\
+1.72678090388436 1.06036521875437\\
+2.07643010725577 1.08586575250644\\
+2.45126006203334 1.11724005903282\\
+2.8408836901833 1.15369595700743\\
+3.29243733300777 1.19997128074072\\
+3.81576466127125 1.25758628008144\\
+4.4632339267104 1.33203490088021\\
+6.69616005485322 1.55538616469364\\
+7.20871503378214 1.58414659145146\\
+7.68928372075831 1.59883006035894\\
+8.12661920009194 1.60081407225073\\
+8.58882855954625 1.59075159490495\\
+8.99402217409204 1.57191806750589\\
+9.41833153464795 1.54294970216059\\
+9.86265846131282 1.50377213614064\\
+10.3279473191895 1.45487455257225\\
+10.9153593533139 1.38485738205147\\
+11.5361810173648 1.30496655172508\\
+12.3052400435926 1.20346715268893\\
+13.2471398786612 1.08269079064104\\
+14.3932264471941 0.948383145639889\\
+15.9295021257212 0.795342165549446\\
+18.2920450484629 0.615765406709386\\
+22.4052786930002 0.415922424972552\\
+32.6974974451177 0.196561785804128\\
+149.683929307726 0.00939011961621383\\
+1000 0.000209052714458813\\
+};
+\addplot [color=mycolor3, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 7.36557215977501e-06\\
+0.114831241454351 1.03010761293241e-05\\
+0.134316117004602 1.53621455523103e-05\\
+0.16003103137387 2.44906108707516e-05\\
+0.197831888278416 4.39877285922066e-05\\
+0.256099310025846 9.17068864383122e-05\\
+0.360210656235707 0.000247694124607272\\
+0.592615181247555 0.00108166373944068\\
+1.46273335620113 0.0161094417711988\\
+6.94771254846024 1.6991333564711\\
+7.76050333513357 2.30673017688029\\
+8.27785696619847 2.70925874308317\\
+8.74866812047991 3.05348859534254\\
+9.16140245713852 3.31247153941154\\
+9.50556592010119 3.48299827511015\\
+9.77214696972572 3.58128196835467\\
+10.0462042134681 3.64976130025327\\
+10.3279473191895 3.68632945277003\\
+10.61759183483 3.69090840385623\\
+10.9153593533139 3.66536352296655\\
+11.2214776820798 3.61311028670598\\
+11.6430313292088 3.50955497404138\\
+12.0804213467733 3.37763022597776\\
+12.650337203959 3.18877480771608\\
+13.4936714058831 2.90818729927586\\
+15.4949503931463 2.34823012580118\\
+17.4679621512725 1.96103674552618\\
+19.1550055557353 1.727623407639\\
+20.8122156998634 1.5598149872487\\
+22.4052786930002 1.43963169425086\\
+24.1202820761801 1.34270560220409\\
+25.9665597293487 1.26539806199172\\
+27.9541599906786 1.20437350898583\\
+30.0939003444972 1.15665227291926\\
+32.397426295282 1.11963924386927\\
+35.2003147279668 1.08806856015941\\
+38.5999361767977 1.06250976312386\\
+42.7199396630679 1.04282548794006\\
+48.1595791019235 1.02741298372253\\
+56.3314267060136 1.01537710025649\\
+69.6374473062822 1.0071545794124\\
+97.0480887738031 1.00229450473326\\
+202.911801804668 1.00026292128729\\
+1000 1.00000726491069\\
+};
+\addplot [color=mycolor3, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00000732601488\\
+1.1616226326085 1.00346049766053\\
+1.60400310705682 1.01069830254505\\
+1.94665634334226 1.02167714565443\\
+2.2353696459098 1.03618064658438\\
+2.49687842888433 1.05461810131051\\
+2.73802517792786 1.07695779875005\\
+2.97490754721444 1.10461925777523\\
+3.20262069365765 1.13714499807218\\
+3.44776405473446 1.17922805960809\\
+3.71167181947577 1.23326793809153\\
+3.95911026646846 1.29254540941189\\
+4.22304418720667 1.36521386131018\\
+4.5462954695324 1.46762694700062\\
+4.89428989611453 1.59425597457456\\
+5.31772317785097 1.77051027195887\\
+5.83130511352622 2.01472639711805\\
+6.57382014340959 2.41724380299339\\
+7.68928372075831 3.07030107482984\\
+8.20188949920221 3.34259690377259\\
+8.58882855954626 3.51050189601167\\
+8.9114823228402 3.61379887888406\\
+9.16140245713852 3.66577843234685\\
+9.41833153464796 3.6909895197137\\
+9.68246611930313 3.68603481557758\\
+9.95400828762152 3.64907546161316\\
+10.2331657833025 3.58022026829525\\
+10.5201521761616 3.48160542653704\\
+10.9153593533139 3.31074421671199\\
+11.3254131515281 3.10631813717482\\
+11.8597101233767 2.82382986931968\\
+12.534242654614 2.47501673372142\\
+13.4936714058831 2.03603678207077\\
+15.0722530931076 1.48622455606771\\
+18.8050405512858 0.7715648085314\\
+67.7377599751776 0.016556859906172\\
+204.791209666509 0.000608262889139883\\
+330.764978074424 0.000148300341078653\\
+456.730127016875 5.85481822765703e-05\\
+580.448594276898 2.99428386438527e-05\\
+710.970943231244 1.73270996545922e-05\\
+839.312949816637 1.1289176469156e-05\\
+972.720319245054 7.85780793117409e-06\\
+1000 7.35816570791648e-06\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-180,
+ymax=180,
+ytick={-180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+legend style={at={(3.842,3.135)}, anchor=south west, legend cell align=left, align=left, draw=black}
+]
+\addplot [color=mycolor1, line width=1.5pt]
+ table[row sep=crcr]{%
+0.1 89.4262705732967\\
+0.109657929126781 89.3710140522104\\
+0.120248614203741 89.3104090684166\\
+0.131862140139475 89.243940662\\
+0.144597292179202 89.1710441733917\\
+0.157107238924746 89.0994308391177\\
+0.170699493403842 89.0216176070453\\
+0.185467692308472 88.9370695822599\\
+0.201513573381558 88.8452058012513\\
+0.218947676285666 88.7453953220397\\
+0.237890104107886 88.6369529960668\\
+0.258471350746954 88.5191349000302\\
+0.280833199882315 88.3911334056125\\
+0.305129701718286 88.2520718651374\\
+0.331528234231942 88.1009988919511\\
+0.360210656235708 87.9368822157895\\
+0.391374560198041 87.7586020959901\\
+0.425234633452872 87.5649442793139\\
+0.462024137175137 87.3545924949488\\
+0.501996513311016 87.1261204873898\\
+0.545427130532976 86.877983599117\\
+0.592615181247549 86.6085099301547\\
+0.643885742724037 86.3158911217779\\
+0.699592016543535 85.9981728382163\\
+0.760117761795532 85.653245054824\\
+0.825879938784429 85.2788323058566\\
+0.897331581458357 84.8724841021642\\
+0.974964918348418 84.4315658015638\\
+1.05931476351838 83.9532503057334\\
+1.15096220088505 83.4345110707583\\
+1.25053858729037 82.8721170578671\\
+1.3587299019027 82.2626304202141\\
+1.47628147190938 81.6024079240348\\
+1.60400310705681 80.887607340016\\
+1.74277467840892 80.1142003124824\\
+1.8935521797563 79.2779935148408\\
+2.05737431343292 78.3746602174065\\
+2.23536964590981 77.399784705768\\
+2.42876438246048 76.3489222571808\\
+2.66333272517501 75.0868352467094\\
+2.92055551218278 73.719710782076\\
+3.20262069365769 72.2421857571518\\
+3.51192753045077 70.6495980057148\\
+3.85110700232562 68.9382958255359\\
+4.26215882901536 66.9160687669657\\
+4.71708469091704 64.7468991779115\\
+5.22056752784699 62.4334257099173\\
+5.8313051135262 59.7527445386411\\
+6.57382014340949 56.6802476137435\\
+7.54879928165345 52.9519021992764\\
+9.07732652521024 47.7690072756729\\
+13.6186523675607 36.2883287905546\\
+15.7833140565212 32.3559416093383\\
+17.7930438991856 29.3345882591436\\
+19.8745954958095 26.7067571440997\\
+22.1996611911998 24.2461851897481\\
+24.5691646298281 22.1430485874388\\
+27.1915794303603 20.1868909565131\\
+29.8177229001969 18.5346287768486\\
+32.6974974451178 16.9993460671487\\
+35.8553985745983 15.5768410065701\\
+39.3182875570579 14.2620610309128\\
+43.1156199031825 13.0493880284571\\
+47.2796959160041 11.9328741800874\\
+51.8459354389293 10.906430781555\\
+56.8531791387378 9.96397474939047\\
+61.7718759733854 9.18263765318851\\
+67.1161176749635 8.46027692964573\\
+72.9227205872842 7.79283675672205\\
+79.2316862486613 7.1764448792589\\
+86.0864769614914 6.60742628472329\\
+93.534315202923 6.08231021477869\\
+101.626508939299 5.59783205456711\\
+110.418805085416 5.15093136667606\\
+119.971773543589 4.73874709592667\\
+130.351224468151 4.35861076553988\\
+141.628661629921 4.00803831330614\\
+153.881775003836 3.68472107499508\\
+167.194975973201 3.38651630764964\\
+181.65997883753 3.11143755376182\\
+197.376432630023 2.85764507495502\\
+214.452607597165 2.62343652737546\\
+233.006141069691 2.4072380075705\\
+253.164847863135 2.2075955646239\\
+277.615329443679 2.00355964284756\\
+304.427221206429 1.81661927601931\\
+333.828586473175 1.64523280397366\\
+366.069514759689 1.48799663377777\\
+401.424249049931 1.34363637304966\\
+440.193518520886 1.21099919602182\\
+482.707096560317 1.08904737649006\\
+529.326605836054 0.976852851378197\\
+580.448594276896 0.873592582691614\\
+636.507908129555 0.778544363332912\\
+697.981390783064 0.691082571187138\\
+765.391938823012 0.61067323674834\\
+839.312949816634 0.536867689936429\\
+920.373199661819 0.469294045673394\\
+1000 0.413551697568764\\
+};
+\addlegendentry{n = 1}
+
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.576465480133137\\
+0.109657929126781 -0.632135868436649\\
+0.120248614203741 -0.693181512834229\\
+0.131862140139475 -0.760121121522317\\
+0.144597292179202 -0.833523362138948\\
+0.157107238924746 -0.905624962155301\\
+0.170699493403842 -0.983961289255035\\
+0.185467692308472 -1.06907084193907\\
+0.201513573381558 -1.16153845206999\\
+0.218947676285666 -1.26199922138872\\
+0.237890104107886 -1.37114277828697\\
+0.258471350746954 -1.48971787682643\\
+0.280833199882315 -1.61853736029542\\
+0.305129701718286 -1.75848351147347\\
+0.331528234231942 -1.91051381107485\\
+0.360210656235708 -2.07566712435739\\
+0.391374560198041 -2.2550703333483\\
+0.425234633452872 -2.44994542821517\\
+0.462024137175137 -2.66161706556413\\
+0.501996513311016 -2.89152059332859\\
+0.545427130532976 -3.14121053072699\\
+0.592615181247549 -3.41236947664169\\
+0.643885742724037 -3.70681739961576\\
+0.699592016543535 -4.02652123612806\\
+0.760117761795532 -4.37360468922954\\
+0.825879938784429 -4.75035807499277\\
+0.897331581458357 -5.15924800712357\\
+0.974964918348418 -5.60292663766678\\
+1.05931476351838 -6.08424008073546\\
+1.15096220088505 -6.60623553296024\\
+1.25053858729037 -7.17216646502474\\
+1.3587299019027 -7.78549508941225\\
+1.47628147190938 -8.44989110709625\\
+1.60400310705681 -9.16922549849484\\
+1.74277467840892 -9.94755785233744\\
+1.8935521797563 -10.7891154253712\\
+2.05737431343292 -11.6982618082595\\
+2.23536964590981 -12.6794527611292\\
+2.42876438246048 -13.737176513019\\
+2.66333272517501 -15.0075850276678\\
+2.92055551218278 -16.383834134299\\
+3.20262069365769 -17.8713645518459\\
+3.51192753045077 -19.4749235504497\\
+3.85110700232562 -21.1982561510822\\
+4.26215882901536 -23.2350624344552\\
+4.71708469091704 -25.4203669415388\\
+5.22056752784699 -27.7516971009108\\
+5.8313051135262 -30.4540384639267\\
+6.57382014340949 -33.5528686632726\\
+7.54879928165345 -37.3157910649799\\
+8.99402217409209 -42.2871548965864\\
+14.1302599059955 -55.2151676824147\\
+16.2259528707807 -58.9317432208417\\
+18.4614694632457 -62.2139924252508\\
+20.8122156998634 -65.0773196476246\\
+23.2469705998564 -67.5523672749941\\
+25.7282596744791 -69.6766166309946\\
+28.4743916646721 -71.6637739683089\\
+31.5136348486643 -73.5177676565948\\
+34.8772747481423 -75.244633448863\\
+38.5999361767981 -76.8519591761566\\
+42.7199396630681 -78.3484102842777\\
+47.2796959160041 -79.7433435697918\\
+52.3261423948667 -81.0465064977074\\
+58.447611316336 -82.3751261503121\\
+65.2852114112777 -83.6192092338815\\
+73.5981447526585 -84.8863378554329\\
+83.7380653526647 -86.17492497243\\
+97.0480887738041 -87.5753656518136\\
+117.779870119713 -89.342012482149\\
+170.306502925286 -92.6939641678016\\
+197.376432630023 -94.107473884784\\
+224.569799553979 -95.4120991024695\\
+253.164847863135 -96.6980621095647\\
+282.781797962532 -97.9629717016249\\
+312.964801067071 -99.1993653982879\\
+346.369417737179 -100.519540535705\\
+383.339510176665 -101.933393267335\\
+424.255643071782 -103.450614711336\\
+469.539001068009 -105.080453283809\\
+519.655724382768 -106.831397934218\\
+575.121707184161 -108.710774721884\\
+636.507908129555 -110.724255694316\\
+704.446227729899 -112.875289916241\\
+786.857150693675 -115.379372645545\\
+878.909065342007 -118.043846879999\\
+990.822809900383 -121.099911264823\\
+1000 -121.341774609449\\
+};
+\addplot [color=mycolor2, line width=1.5pt]
+ table[row sep=crcr]{%
+0.1 174.758561997669\\
+0.106666495827951 174.965254793286\\
+0.113777413322151 175.151025531792\\
+0.121362379834424 175.316638224316\\
+0.129452997822788 175.462774580674\\
+0.13681576279675 175.572991132119\\
+0.144597292179202 175.66967568372\\
+0.152821403602584 175.753120962585\\
+0.160031031373875 175.812728800767\\
+0.167580786453079 175.863444078125\\
+0.175486714964814 175.905373282359\\
+0.182079168009943 175.932650376586\\
+0.188919277620761 175.954397538857\\
+0.196016347431923 175.970643806867\\
+0.201513573381558 175.97923180583\\
+0.207164967560208 175.984744198095\\
+0.212974853574551 175.987184990654\\
+0.218947676285658 175.986555842459\\
+0.22508800520954 175.982856064239\\
+0.231400538013072 175.976082616559\\
+0.237890104107894 175.966230106036\\
+0.246826845225571 175.948290031192\\
+0.256099310025844 175.924837084091\\
+0.265720110532445 175.89583881581\\
+0.275702332560967 175.861255204721\\
+0.288709091735928 175.810097969117\\
+0.302329468440578 175.750028574473\\
+0.316592411198347 175.680917909991\\
+0.334598912055007 175.585840178724\\
+0.353629550135508 175.477233995279\\
+0.373742574239103 175.354763305367\\
+0.394999546122053 175.218049028106\\
+0.421332174384734 175.039979357531\\
+0.44942026621191 174.841193205631\\
+0.479380849508926 174.62085110625\\
+0.511338753841437 174.378021430733\\
+0.550478980785488 174.071642424504\\
+0.592615181247569 173.732847866203\\
+0.637976680860626 173.359756139473\\
+0.68681035889951 172.950289576657\\
+0.739381991917593 172.50216077598\\
+0.795977700231485 172.012857173252\\
+0.856905505126854 171.479623626618\\
+0.922497005259214 170.899442719851\\
+0.99310918137495 170.26901242345\\
+1.07902879151619 169.495204191122\\
+1.17238180328657 168.647559004786\\
+1.27381132318649 167.719813555667\\
+1.38401609657311 166.705028749186\\
+1.50375532129977 165.595504851126\\
+1.63385387780984 164.382680000263\\
+1.77520801171768 163.057007781683\\
+1.92879150802077 161.607808263024\\
+2.0956623994805 160.023085231896\\
+2.27697025538168 158.289300272093\\
+2.47396410088675 156.391091756209\\
+2.68800102153763 154.310923904981\\
+2.8937530190509 152.292909261294\\
+3.11525422355555 150.099025232095\\
+3.35371015200292 147.710711090459\\
+3.61041859717323 145.106631521551\\
+3.8867766908927 142.262175209741\\
+4.18428850790151 139.148909093268\\
+4.50457325175956 135.734043708944\\
+4.84937406733521 131.980028956515\\
+5.22056752784682 127.844509657473\\
+5.62017384808323 123.281046151788\\
+6.05036787939111 118.241256831985\\
+6.51349094627294 112.679332132633\\
+7.01206358900715 106.560049608415\\
+7.5487992816532 99.8711110256614\\
+8.20188949920225 91.7004290703118\\
+9.07732652520994 80.9699780475939\\
+11.7508713090482 53.1664738755912\\
+12.7675070431924 45.1915761601225\\
+13.7447909267756 38.7899796296613\\
+14.6610868404698 33.7582489757467\\
+15.638467583022 29.2571745319086\\
+16.6810053720008 25.2648603423178\\
+17.7930438991856 21.7473922312487\\
+18.8050405512853 19.0801783919889\\
+19.8745954958102 16.7061866569749\\
+21.0049824165391 14.5992889438156\\
+22.1996611911991 12.7343286656402\\
+23.4622884814232 11.0875440623085\\
+24.7967289250217 9.63677807532372\\
+26.2070669648381 8.36155371615911\\
+27.6976193503698 7.24306861354458\\
+29.2729483504285 6.26414348911877\\
+30.9378757173011 5.40914606040104\\
+32.6974974451167 4.66390308724999\\
+34.557199367622 4.01560773737319\\
+36.5226736430817 3.45272612682072\\
+38.5999361767968 2.96490501873723\\
+40.7953450345255 2.54288168611816\\
+43.1156199031825 2.17839648686137\\
+45.5678626584099 1.86410851894041\\
+48.159579101925 1.59351467059221\\
+50.8987019351974 1.36087236971514\\
+53.7936150398065 1.16112632482015\\
+56.8531791387359 0.989839519377341\\
+60.0867589171979 0.843128669641999\\
+63.5042516859595 0.717604287829715\\
+67.1161176749614 0.610315415373236\\
+70.9334120498816 0.518699012525474\\
+74.9678187496691 0.440533917017206\\
+79.2316862486613 0.373899220200599\\
+83.7380653526675 0.317136856645533\\
+88.5007491447353 0.268818163460878\\
+93.534315202923 0.227714138413035\\
+98.8541702191929 0.192769110162459\\
+104.476597156082 0.163077528066054\\
+110.418805085416 0.137863581258927\\
+117.779870119709 0.113226312006361\\
+125.631660247414 0.0928934241926811\\
+134.006889636394 0.0761242471191963\\
+144.264395121811 0.0605387439296692\\
+156.74554102056 0.0466801828255825\\
+171.88391428171 0.0348556886864628\\
+190.230118866895 0.0251565950279371\\
+214.452607597172 0.0169718409561312\\
+248.539485742973 0.0102844825882471\\
+298.86528735503 0.00528670247405216\\
+383.339510176665 0.0018787969852383\\
+564.614141930371 3.56267034362645e-06\\
+1000 -0.000410099606767744\\
+};
+\addlegendentry{n = 2}
+
+\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.00110369171810021\\
+0.209083769055575 -0.00369059462710197\\
+0.294082017058709 -0.00765395942377722\\
+0.366914237840248 -0.0130014149223427\\
+0.433148322337641 -0.0198234299723765\\
+0.497389595879016 -0.0285454282850139\\
+0.555577622239876 -0.0384859575872269\\
+0.609234915240079 -0.0495660373505302\\
+0.661943345877428 -0.0624053071161086\\
+0.712611543011191 -0.0767213134298288\\
+0.767158117677927 -0.094455161272748\\
+0.818300681586717 -0.113415375815066\\
+0.872852662384851 -0.136285047418795\\
+0.922497005259214 -0.159604280230184\\
+0.974964918348386 -0.186983038851878\\
+1.03041699495061 -0.219121999774529\\
+1.08902296226373 -0.256839400175124\\
+1.15096220088501 -0.301089680589115\\
+1.2164242938574 -0.352984768403275\\
+1.27381132318649 -0.402997665833482\\
+1.33390569003905 -0.460072348037187\\
+1.39683511798871 -0.525180118168095\\
+1.46273335620117 -0.59941891345116\\
+1.5317404637021 -0.684028200152198\\
+1.60400310705681 -0.780405270974683\\
+1.67967487209262 -0.890123006120973\\
+1.75891659032778 -1.01494914815282\\
+1.84189668079973 -1.15686712726327\\
+1.92879150802077 -1.31809845787433\\
+2.01978575681984 -1.50112671008625\\
+2.11507282486886 -1.7087230412061\\
+2.21485523372639 -1.94397325431635\\
+2.31934505927442 -2.21030633388577\\
+2.4287643824604 -2.51152439398643\\
+2.54334576130472 -2.85183396391778\\
+2.68800102153763 -3.31837701548287\\
+2.84088369018327 -3.85684849318571\\
+3.00246170908546 -4.4772365484867\\
+3.17322963473503 -5.19068200856614\\
+3.35371015200292 -6.00957049641238\\
+3.54445567397035 -6.94762612973824\\
+3.74605003274907 -8.02000518552103\\
+3.95911026646847 -9.24338657701986\\
+4.18428850790151 -10.6360532028701\\
+4.42227398050602 -12.2179534948224\\
+4.6737951079925 -14.0107248703259\\
+4.93962174387827 -16.0376491159762\\
+5.22056752784682 -18.3234927278403\\
+5.51749237612921 -20.8941619935802\\
+5.8313051135262 -23.7760735148582\\
+6.16296625513279 -26.9951095470208\\
+6.57382014340971 -31.2081806111606\\
+7.01206358900715 -35.9417811175174\\
+7.47952251562161 -41.2101549780822\\
+8.05203967082557 -47.8722557559392\\
+8.74866812047975 -56.0997275773775\\
+9.68246611930323 -66.9228160481401\\
+12.192312516491 -91.8336019612403\\
+13.3698374182498 -100.872153032005\\
+14.5265392594678 -108.278980736452\\
+15.638467583022 -114.258880964268\\
+16.8355080296122 -119.689862881078\\
+18.1241754737421 -124.610924010669\\
+19.5114834684666 -129.069167560424\\
+21.0049824165391 -133.112806362749\\
+22.6128006633721 -136.787374107378\\
+24.3436887354314 -140.134034113966\\
+26.2070669648381 -143.189110771288\\
+28.2130767593954 -145.98425899128\\
+30.6539529505651 -148.852125558421\\
+33.3060034362469 -151.459220732293\\
+36.1874981241128 -153.834202992095\\
+39.3182875570566 -156.001668480274\\
+42.7199396630681 -157.98286771412\\
+46.4158883361268 -159.796291251214\\
+50.4315948717143 -161.458141531457\\
+54.794723369002 -162.9827108729\\
+59.5353313081449 -164.382684248649\\
+64.6860766154627 -165.669382687797\\
+70.2824426430854 -166.852960149623\\
+76.3629826128223 -167.942564019396\\
+82.9695852083464 -168.946467122822\\
+90.1477631452495 -169.872177356753\\
+97.9469667069515 -170.726529630342\\
+106.420924406474 -171.515763731062\\
+116.698981861712 -172.323247579082\\
+127.969686821595 -173.064534534816\\
+140.328908478584 -173.746146689352\\
+153.881775003836 -174.374044780823\\
+168.743567772734 -174.95369191245\\
+185.040701954232 -175.490109729401\\
+202.911801804663 -175.987928341834\\
+224.569799553979 -176.496049460393\\
+248.539485742973 -176.967916954766\\
+275.067600790807 -177.408415466183\\
+307.246884270909 -177.858518148626\\
+346.369417737168 -178.316487418248\\
+394.090164040346 -178.782525472997\\
+460.96044868285 -179.321364807133\\
+564.614141930371 -179.994587626434\\
+569.843705946916 179.97506842925\\
+758.367791499744 179.023587445261\\
+887.04968896542 178.47688578349\\
+1000 178.037502138887\\
+};
+\addplot [color=mycolor3, line width=1.5pt]
+ table[row sep=crcr]{%
+0.1 -174.059216072178\\
+0.111698681846785 -166.693805151502\\
+0.123620954373676 -160.413690699931\\
+0.13556017853294 -155.103743634088\\
+0.148652484499784 -150.173980355743\\
+0.163009236097978 -145.619115088595\\
+0.178752552590422 -141.429953217908\\
+0.194217468148908 -137.962485926509\\
+0.211020342856859 -134.771413987415\\
+0.229276931286572 -131.845869200527\\
+0.24911300260678 -129.174619091049\\
+0.270665207003317 -126.746392963978\\
+0.291383170483282 -124.783050382977\\
+0.313686982456683 -122.995511949919\\
+0.337698031082518 -121.376656005879\\
+0.363546996129332 -119.91978929088\\
+0.387782841458937 -118.773017413936\\
+0.413634368406335 -117.741671993433\\
+0.441209286319117 -116.822242570006\\
+0.470622484984116 -116.011554041649\\
+0.497389595879016 -115.401072188849\\
+0.525679112201842 -114.866820009559\\
+0.555577622239876 -114.407413935687\\
+0.58178800743451 -114.080886464485\\
+0.609234915240079 -113.804923786279\\
+0.632121847581245 -113.620229791275\\
+0.655868565957134 -113.467378970247\\
+0.680507369673503 -113.346206492838\\
+0.699592016543558 -113.276039566437\\
+0.719211887222132 -113.223583161975\\
+0.732596542821532 -113.19843866443\\
+0.746230289139115 -113.18115013678\\
+0.760117761795532 -113.171716036564\\
+0.767158117677927 -113.169944622708\\
+0.774263682681121 -113.170137411906\\
+0.781435060784446 -113.172294941899\\
+0.795977700231485 -113.182507195076\\
+0.81079098067315 -113.20058896597\\
+0.825879938784402 -113.22655047861\\
+0.849041520408896 -113.280296168737\\
+0.872852662384851 -113.351855649581\\
+0.897331581458357 -113.441297355526\\
+0.931041348706901 -113.588513930337\\
+0.966017479952245 -113.767902657383\\
+1.0023075482839 -113.979742144634\\
+1.04959323055824 -114.29067391383\\
+1.0991097009295 -114.653556363617\\
+1.15096220088501 -115.069242586397\\
+1.2164242938574 -115.639146357004\\
+1.28560960694331 -116.288415004552\\
+1.3587299019027 -117.01923634283\\
+1.43600898465122 -117.834079519558\\
+1.5317404637021 -118.894630144243\\
+1.63385387780984 -120.078251058422\\
+1.74277467840897 -121.390494423914\\
+1.8589566796357 -122.837583078115\\
+1.98288394912704 -124.426469149559\\
+2.1346630333243 -126.425951305041\\
+2.29805998875885 -128.633784446299\\
+2.47396410088675 -131.064667879495\\
+2.66333272517501 -133.735257032395\\
+2.86719649749373 -136.664480104225\\
+3.08666494333735 -139.873945570377\\
+3.32293251639897 -143.38847535228\\
+3.57728509936777 -147.236815208557\\
+3.85110700232562 -151.452599792651\\
+4.14588849683285 -156.075689834485\\
+4.46323392671051 -161.15405992819\\
+4.80487043965512 -166.74650511151\\
+5.17265738721588 -172.926555154473\\
+5.51749237612921 -178.88929662283\\
+5.56859644428648 -179.788112671068\\
+5.62017384808323 179.300562934893\\
+5.99484250318932 172.546653095587\\
+6.39448842855712 165.055191418352\\
+6.82077673286572 156.688162176223\\
+7.2754835291961 147.276788055827\\
+7.68928372075853 138.235142304052\\
+8.12661920009201 128.176288482043\\
+8.66837993001965 115.0821976115\\
+9.33189771573347 98.5026920813232\\
+11.3254131515284 53.7867359360936\\
+11.9695570235905 42.9297637213374\\
+12.6503372039588 33.4278814087536\\
+13.3698374182498 25.2694226252475\\
+14.0005838246811 19.4294165329545\\
+14.6610868404698 14.3847102236577\\
+15.3527502878039 10.0618434088759\\
+16.0770442167387 6.39143445354128\\
+16.8355080296122 3.30988009787043\\
+17.629753752872 0.759125609282052\\
+18.2920450484626 -0.93538263998073\\
+18.9792164283904 -2.35026600483926\\
+19.6922025547921 -3.51023050863515\\
+20.4319732019529 -4.43914810857495\\
+21.1995345753606 -5.16019703965142\\
+21.7940698430292 -5.57814825915997\\
+22.4052786929996 -5.90111643974026\\
+23.033628731422 -6.13811859524904\\
+23.4622884814232 -6.25269229942126\\
+23.8989256623109 -6.33546882065008\\
+24.3436887354314 -6.38889826255922\\
+24.5691646298281 -6.40535396245554\\
+24.7967289250217 -6.41535878798746\\
+25.0264009641792 -6.41919789138825\\
+25.2582002696278 -6.417151273868\\
+25.4921465445141 -6.40949363527818\\
+25.9665597293484 -6.37841673754158\\
+26.4498018242767 -6.3280535441711\\
+27.1915794303594 -6.22068099651415\\
+27.9541599906793 -6.08069505346455\\
+29.0043049386403 -5.85329039646246\\
+30.3726357970331 -5.52063019781414\\
+32.6974974451167 -4.92326940771869\\
+38.9574561577541 -3.47900993959522\\
+41.9394395566725 -2.93871834762297\\
+44.7353305449843 -2.51528238509877\\
+47.7176094893859 -2.1398890906292\\
+50.4315948717143 -1.85556813899242\\
+53.2999408084406 -1.60397504983897\\
+56.3314267060121 -1.38276593910058\\
+59.5353313081449 -1.18930782380653\\
+62.9214610961035 -1.02087510400864\\
+66.50018030431 -0.874782668933534\\
+70.2824426430854 -0.748471482004589\\
+74.2798248256497 -0.639559466483774\\
+78.5045620020441 -0.545867718923688\\
+82.9695852083464 -0.465429684450527\\
+87.6885609458755 -0.396488974644313\\
+92.6759330114683 -0.337489968300332\\
+97.9469667069515 -0.28706415160957\\
+103.51779556302 -0.244014263478419\\
+109.405470720574 -0.207297653127256\\
+115.628013120735 -0.176009778006147\\
+122.204468663152 -0.149368426961587\\
+129.154966501489 -0.126699011902758\\
+137.765076954903 -0.104501756577378\\
+146.949180062486 -0.0861418682643205\\
+158.19734815786 -0.0690249104772533\\
+170.30650292528 -0.0552666763642264\\
+185.040701954232 -0.0429973382201467\\
+202.911801804663 -0.0324909951176551\\
+226.64980792737 -0.0231692379513788\\
+257.876288759386 -0.0155680763134001\\
+301.63343472593 -0.00955208549873987\\
+369.46012051994 -0.00501185465233789\\
+491.690357762798 -0.00193892953816999\\
+794.145171902947 -0.000293345943504164\\
+1000 -6.6907766353097e-05\\
+};
+\addlegendentry{n = 3}
+
+\addplot [color=mycolor3, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 4.36785903161763e-05\\
+0.205263775270926 0.00194882169219568\\
+0.280833199882324 0.00556685934674306\\
+0.347168681892662 0.0109365892261053\\
+0.406077202570047 0.0178281399620346\\
+0.462024137175122 0.026534098640326\\
+0.511338753841437 0.0361776859013503\\
+0.56072348828519 0.0478787831997067\\
+0.609234915240079 0.0615405654625931\\
+0.655868565957134 0.0768565856827195\\
+0.699592016543558 0.0932922700907284\\
+0.746230289139115 0.113172224259529\\
+0.795977700231485 0.137201360357579\\
+0.841249704973636 0.161735005388948\\
+0.889096598952924 0.190558764807236\\
+0.939664831495459 0.224398165464436\\
+0.99310918137495 0.264093367807021\\
+1.04959323055824 0.310614405465145\\
+1.10928986489522 0.365077341483328\\
+1.16162263260848 0.41744710646816\\
+1.2164242938574 0.477051165822218\\
+1.27381132318649 0.544816236680589\\
+1.33390569003905 0.621766677055831\\
+1.39683511798871 0.709028123662591\\
+1.46273335620117 0.807828742013612\\
+1.54592773641949 0.94349831969808\\
+1.63385387780984 1.10017215215868\\
+1.7267809038843 1.28047462879027\\
+1.82499324481618 1.48711774217767\\
+1.92879150802077 1.72279354971718\\
+2.03849339825241 1.9900116344086\\
+2.15443469003193 2.29086424024769\\
+2.27697025538168 2.62669917061027\\
+2.4287643824604 3.06284613006164\\
+2.61467321180114 3.61590117497835\\
+2.86719649749373 4.36967466608249\\
+3.29243733300778 5.50923949180401\\
+3.47969790388763 5.90116129628754\\
+3.61041859717323 6.11692896957871\\
+3.71167181947586 6.24600493829587\\
+3.81576466127131 6.34041202918283\\
+3.8867766908927 6.38090963507082\\
+3.92277675892774 6.39367030807222\\
+3.95911026646847 6.40108936270451\\
+3.99578030189527 6.40289763668278\\
+4.03278998219369 6.39882051590808\\
+4.07014245321941 6.38857807655847\\
+4.1078408899656 6.37188523440108\\
+4.18428850790151 6.31798314173409\\
+4.26215882901522 6.23473639278976\\
+4.34147833005496 6.11969498551412\\
+4.42227398050602 5.97034218362595\\
+4.54629546953248 5.67632400314983\\
+4.6737951079925 5.29035789850064\\
+4.80487043965512 4.80325976062227\\
+4.93962174387827 4.20562124876392\\
+5.12518692705321 3.22016673960474\\
+5.31772317785112 1.99770294458855\\
+5.51749237612921 0.514128816586293\\
+5.72476623970219 -1.25555043119519\\
+5.93982669392029 -3.33748330883233\\
+6.16296625513279 -5.75931101611343\\
+6.45371540164686 -9.30974435179806\\
+6.75818116816117 -13.5001415197901\\
+7.07701066118183 -18.3989423141205\\
+7.41088151564139 -24.0792110769124\\
+7.76050333513376 -30.6140162217016\\
+8.12661920009201 -38.0658938644382\\
+8.58882855954615 -48.2612991592695\\
+9.07732652520994 -59.762400145209\\
+9.7721469697258 -76.6592771079781\\
+11.430311291145 -113.171519752366\\
+12.192312516491 -126.463175658825\\
+13.0051125217337 -138.295497767507\\
+13.8720978054164 -148.747379547193\\
+14.7968806268638 -157.995187115592\\
+15.7833140565207 -166.226487743425\\
+16.8355080296122 -173.605484364774\\
+17.7930438991856 -179.353797307211\\
+17.9578464700207 179.734539785979\\
+19.332422875551 172.869612093132\\
+20.8122156998634 166.685224710358\\
+22.4052786929996 161.087693578806\\
+24.1202820761804 156.003627794417\\
+25.9665597293484 151.374312649284\\
+27.9541599906793 147.15181194068\\
+30.0939003444972 143.296273676163\\
+32.3974262952812 139.774051065175\\
+34.8772747481423 136.55637144474\\
+37.5469422407329 133.618375360917\\
+40.4209583979642 130.938408898283\\
+43.5149650092505 128.497492224417\\
+46.8458011587293 126.278913093678\\
+50.4315948717143 124.267910715877\\
+54.2918617761888 122.451426244071\\
+58.4476113163379 120.817903289616\\
+62.3440188862789 119.530595473656\\
+66.50018030431 118.369449247042\\
+70.9334120498816 117.329037832953\\
+75.6621850048106 116.404539505049\\
+79.965545258922 115.701128306567\\
+84.5136633068495 115.077372214647\\
+89.3204599858103 114.531174398602\\
+94.4006478941749 114.060698608381\\
+98.8541702191929 113.725327080416\\
+103.51779556302 113.440644975531\\
+107.406615333344 113.248937294689\\
+111.441525146678 113.088940210763\\
+115.628013120735 112.960402499887\\
+118.870769771187 112.884517870741\\
+122.204468663152 112.826139650718\\
+125.631660247414 112.78520946154\\
+127.969686821595 112.76759319793\\
+130.351224468151 112.757701172927\\
+131.558562404571 112.755649292706\\
+132.777082935543 112.755525844379\\
+134.006889636394 112.757330285458\\
+136.5007806546 112.766721461666\\
+139.041083409004 112.783821658468\\
+141.628661629916 112.80863224035\\
+145.600599502069 112.86031425464\\
+149.683929307729 112.929377582757\\
+153.881775003836 113.015858435252\\
+159.662602210142 113.158346132638\\
+165.660595894989 113.332036064851\\
+171.88391428171 113.537116873938\\
+179.992850678251 113.837961145057\\
+188.48434090338 114.188739428655\\
+197.376432630023 114.590072191307\\
+208.602408924844 115.13941239483\\
+220.466873523944 115.763983548507\\
+233.006141069691 116.465372763894\\
+248.539485742973 117.383118724273\\
+265.108360190857 118.410948533366\\
+282.781797962532 119.5522900556\\
+301.63343472593 120.810872402662\\
+324.721849207315 122.397970276468\\
+349.577557436321 124.149844449953\\
+376.335836228661 126.073272148903\\
+405.142317111462 128.175333175053\\
+436.153778920815 130.463312137883\\
+473.887960971767 133.268690224951\\
+514.886745013736 136.329063885986\\
+559.432570616944 139.654360655079\\
+607.832312829711 143.253659948226\\
+660.419396233041 147.134710886131\\
+724.20223346072 151.784483774916\\
+794.145171902947 156.793599012344\\
+878.909065341978 162.717662559472\\
+972.720319245064 169.065838910473\\
+1000 170.868328357576\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/hinf_filters_result.pdf b/matlab/figs/hinf_filters_result.pdf
new file mode 100644
index 0000000..2bbfed9
Binary files /dev/null and b/matlab/figs/hinf_filters_result.pdf differ
diff --git a/matlab/figs/hinf_filters_result.png b/matlab/figs/hinf_filters_result.png
new file mode 100644
index 0000000..b422805
Binary files /dev/null and b/matlab/figs/hinf_filters_result.png differ
diff --git a/matlab/figs/hinf_filters_result.svg b/matlab/figs/hinf_filters_result.svg
new file mode 100644
index 0000000..2c42d8d
--- /dev/null
+++ b/matlab/figs/hinf_filters_result.svg
@@ -0,0 +1,315 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/hinf_filters_result.tex b/matlab/figs/hinf_filters_result.tex
new file mode 100644
index 0000000..ea2732d
--- /dev/null
+++ b/matlab/figs/hinf_filters_result.tex
@@ -0,0 +1,194 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.632in,
+height=1.991in,
+at={(0.551in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.001,
+ymax=10,
+yminorticks=true,
+ylabel={Magnitude},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00020952606124\\
+0.449420266211914 1.00439444056532\\
+0.76715811767793 1.01272784524132\\
+1.07902879151618 1.02491454851703\\
+1.39683511798874 1.04114413762629\\
+1.74277467840892 1.06277127886704\\
+2.1150728248688 1.09005589290585\\
+2.52000499376409 1.12358430111627\\
+2.97490754721444 1.1647515613402\\
+3.54445567397044 1.21915995877579\\
+4.4222739805059 1.30220386269588\\
+5.51749237612913 1.38869606135927\\
+6.16296625513294 1.42329223210868\\
+6.69616005485322 1.44002371458486\\
+7.20871503378214 1.4451033802025\\
+7.68928372075831 1.43993984995528\\
+8.2018894992022 1.42428828042971\\
+8.66837993001978 1.40175058285261\\
+9.16140245713852 1.37050262756076\\
+9.68246611930312 1.33069793321537\\
+10.3279473191895 1.27424467776163\\
+11.0164594963366 1.20854214707295\\
+11.7508713090481 1.13570495506675\\
+12.650337203959 1.04677883765563\\
+13.7447909267754 0.943679050123237\\
+15.0722530931076 0.830394240297457\\
+16.6810053720006 0.712414936441653\\
+18.8050405512858 0.586622272210216\\
+21.7940698430296 0.455264142531017\\
+26.2070669648385 0.326579283518924\\
+33.3060034362459 0.208672671063449\\
+46.8458011587305 0.108471783502643\\
+124.478714618791 0.0164997756678873\\
+159.662602210143 0.0104152887225431\\
+195.565071586595 0.0072640647690405\\
+233.006141069692 0.00540031929981286\\
+270.042071883777 0.00426457540484721\\
+310.092663593193 0.00346444056474815\\
+349.577557436328 0.0029289521926441\\
+394.090164040345 0.00250741699876454\\
+440.193518520887 0.00219836200013106\\
+487.178021879463 0.00196912938874112\\
+539.17746403875 0.00178183136845956\\
+596.727119597332 0.00162874587725399\\
+660.419396233031 0.00150356016008975\\
+730.909932860291 0.00140111130596261\\
+808.924348680594 0.00131717393449145\\
+895.26571259964 0.00124828640279652\\
+1000 0.00118697716847575\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.211020342856859 0.000991355164946403\\
+0.492824957004051 0.00536343282029864\\
+2.42876438246045 0.128327524780232\\
+3.54445567397044 0.267992154829373\\
+4.4632339267104 0.413805848676621\\
+5.26892142135068 0.557587736797486\\
+5.99484250318941 0.693160496305138\\
+6.63470812109235 0.81193792953703\\
+7.27548352919623 0.925424392834698\\
+7.90492762269643 1.02770565894096\\
+8.51000724712225 1.11478829979149\\
+9.07732652521023 1.18510732855918\\
+9.68246611930312 1.24761337860369\\
+10.3279473191895 1.30053311262914\\
+11.0164594963366 1.34273501848344\\
+11.7508713090481 1.37382109949711\\
+12.534242654614 1.39409360664554\\
+13.3698374182495 1.4044213762404\\
+14.3932264471941 1.40566001105301\\
+15.6384675830225 1.39616695613207\\
+17.1488196987054 1.37570643727067\\
+19.3324228755505 1.33943394453979\\
+23.6796006783308 1.26895368211008\\
+31.2244282309286 1.18029446890997\\
+37.5469422407334 1.13328156575089\\
+44.7353305449847 1.09818850827496\\
+53.793615039807 1.07013138018377\\
+65.8898955079995 1.04777741305257\\
+82.9695852083491 1.03046080493667\\
+110.418805085416 1.01711094138512\\
+159.662602210143 1.00783805748313\\
+275.067600790807 1.00210387254234\\
+794.145171902934 0.999522245381891\\
+1000 0.999396233385764\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 4.7609074288834\\
+0.457784053837662 4.74112847250108\\
+0.781435060784454 4.70208061093208\\
+1.0991097009295 4.64559165613624\\
+1.42283045721435 4.57144906349989\\
+1.75891659032773 4.47927616460061\\
+2.09566239948043 4.37423445322045\\
+2.45126006203334 4.25274519592358\\
+2.8408836901833 4.11095719445138\\
+3.26222200971167 3.95170788088451\\
+3.71167181947577 3.77948905141281\\
+4.18428850790158 3.59988757314696\\
+4.71708469091702 3.40317136463527\\
+5.31772317785097 3.19223684289429\\
+5.99484250318941 2.97087790006113\\
+6.82077673286568 2.72585419958062\\
+7.76050333513357 2.47949503869403\\
+8.9114823228402 2.2201435349723\\
+10.3279473191895 1.95491825546796\\
+12.0804213467733 1.69160934903556\\
+14.3932264471941 1.42447068049222\\
+17.3076553419573 1.17667603248786\\
+21.1995345753607 0.943491337665097\\
+26.2070669648385 0.740920673515988\\
+32.6974974451177 0.569453372601831\\
+41.1731993116168 0.427919272009563\\
+51.8459354389291 0.317863515154134\\
+65.8898955079995 0.230558428152838\\
+85.2964449974102 0.1611173349527\\
+114.566872863487 0.105607825522203\\
+228.74908173557 0.0390036255196556\\
+272.543253128103 0.0307810979565345\\
+315.863540826782 0.025500739341156\\
+359.381366380463 0.0218605610825003\\
+405.142317111465 0.0191453206052172\\
+452.538627817017 0.0171066280251345\\
+505.479682119124 0.0154393411147139\\
+559.432570616938 0.0141825204910006\\
+619.144175597784 0.0131421696026314\\
+685.229159528406 0.012282656024432\\
+758.367791499719 0.0115737646620205\\
+847.08682665574 0.0109423524789141\\
+946.1848194722 0.0104322816237634\\
+1000 0.0102154679782451\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+20 0.7\\
+50 0.7\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+50 0.1\\
+500 0.1\\
+};
+\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+500 0.01\\
+1000 0.01\\
+};
+\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.126191468896039 0.000398107170553497\\
+2 0.1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/hinf_filters_results.pdf b/matlab/figs/hinf_filters_results.pdf
new file mode 100644
index 0000000..c76e67f
Binary files /dev/null and b/matlab/figs/hinf_filters_results.pdf differ
diff --git a/matlab/figs/hinf_filters_results.png b/matlab/figs/hinf_filters_results.png
new file mode 100644
index 0000000..efd7d47
Binary files /dev/null and b/matlab/figs/hinf_filters_results.png differ
diff --git a/matlab/figs/loop_gain_compare.pdf b/matlab/figs/loop_gain_compare.pdf
new file mode 100644
index 0000000..d9e7700
Binary files /dev/null and b/matlab/figs/loop_gain_compare.pdf differ
diff --git a/matlab/figs/loop_gain_compare.png b/matlab/figs/loop_gain_compare.png
new file mode 100644
index 0000000..7ed181b
Binary files /dev/null and b/matlab/figs/loop_gain_compare.png differ
diff --git a/matlab/figs/loop_gain_robustness.pdf b/matlab/figs/loop_gain_robustness.pdf
new file mode 100644
index 0000000..a10325f
Binary files /dev/null and b/matlab/figs/loop_gain_robustness.pdf differ
diff --git a/matlab/figs/loop_gain_robustness.png b/matlab/figs/loop_gain_robustness.png
new file mode 100644
index 0000000..d9ce8d7
Binary files /dev/null and b/matlab/figs/loop_gain_robustness.png differ
diff --git a/matlab/figs/loop_gain_robustness.svg b/matlab/figs/loop_gain_robustness.svg
new file mode 100644
index 0000000..dfc4d52
--- /dev/null
+++ b/matlab/figs/loop_gain_robustness.svg
@@ -0,0 +1,557 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/loop_gain_robustness.tex b/matlab/figs/loop_gain_robustness.tex
new file mode 100644
index 0000000..0c299ef
--- /dev/null
+++ b/matlab/figs/loop_gain_robustness.tex
@@ -0,0 +1,4017 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,2.19in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={0.1,1,10,100,1000},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.001,
+ymax=1000,
+ytick={0.01, 1, 100},
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 1017.61196552463\\
+1.19420002813353 35.6407786132651\\
+1.64898694447106 19.2380003311511\\
+2.1150728248688 12.1253293863687\\
+2.61467321180109 8.29707163273341\\
+3.17322963473498 5.95098940627966\\
+3.78074666359935 4.46495773588301\\
+4.50457325175946 3.39613675858516\\
+5.31772317785097 2.65390491747638\\
+6.33580499265825 2.07104776527706\\
+7.68928372075831 1.59413673565851\\
+9.77214696972572 1.16748502973182\\
+20.6212180399914 0.446485432259996\\
+27.4434330322837 0.303588570222452\\
+52.3261423948666 0.126361312356483\\
+64.0924401935645 0.0973811892384281\\
+77.7841107128649 0.0768121774913216\\
+93.5343152029239 0.0619473678728793\\
+112.473717836475 0.0504819128118696\\
+135.248087041788 0.0415510462687211\\
+162.633950404819 0.0345350094662786\\
+195.565071586595 0.0289912264009868\\
+230.867799418717 0.024994983195402\\
+270.042071883777 0.0219204687635685\\
+312.964801067075 0.019541738214475\\
+362.710025233065 0.0175802602132589\\
+416.504424854519 0.0160563480429901\\
+482.707096560318 0.0146987713194919\\
+710.970943231243 0.0117378570017106\\
+765.391938823015 0.0111051777086159\\
+816.416760492147 0.010482316893541\\
+862.85125663669 0.00988574231580288\\
+911.92675984593 0.00922803388600686\\
+963.793479961579 0.00851403479029288\\
+1000 0.00801302909023373\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 1010.2680109356\\
+0.516074871038591 185.291054569483\\
+1.03041699495059 47.4787058088623\\
+1.48995507285286 23.3124317828806\\
+1.96468664618044 13.8770766856263\\
+2.47396410088681 9.14100353185176\\
+3.00246170908555 6.52635349789394\\
+3.61041859717334 4.80132211806491\\
+4.3016357581068 3.63676708907952\\
+5.07815211232768 2.83086787348905\\
+6.05036787939122 2.20071706916141\\
+7.27548352919623 1.70881964399268\\
+9.07732652521023 1.27670958103473\\
+21.3958887134342 0.418167626510791\\
+27.6976193503689 0.292798467439554\\
+57.9112264764176 0.104782206740072\\
+70.2824426430835 0.0814092391315525\\
+84.5136633068472 0.0647584721105707\\
+100.693863147603 0.0526749814380803\\
+119.971773543588 0.0432929814227462\\
+142.940453343176 0.0359393851872932\\
+170.306502925284 0.0301278353340686\\
+202.911801804668 0.0255080454330502\\
+239.540735872088 0.021999287684161\\
+280.18665564592 0.0193114341261991\\
+324.721849207313 0.017239254076805\\
+372.882130718283 0.0156321048353509\\
+428.185179865241 0.014293327868481\\
+496.244487762892 0.0130982517386268\\
+697.981390783066 0.0107540196195423\\
+751.408106111697 0.0101963232611723\\
+801.50069615654 0.0096507087007977\\
+847.08682665574 0.00912875880629496\\
+895.26571259964 0.00855176369845847\\
+946.1848194722 0.00792161798793763\\
+1000 0.00724785587182594\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.216938351838518 1014.02054069459\\
+1.21642429385737 33.6295970946075\\
+1.67967487209265 18.1607851266587\\
+2.15443469003188 11.4529122416422\\
+2.66333272517498 7.84213130280337\\
+3.23228397818138 5.62875109514083\\
+3.85110700232557 4.22608613175153\\
+4.58840412645476 3.2164004182189\\
+5.46685729972018 2.48103710770847\\
+6.57382014340959 1.91275766426666\\
+8.05203967082548 1.45470230757548\\
+10.7159339982267 1.00204713622698\\
+16.0770442167382 0.589865814329369\\
+20.0586777950823 0.436350719467253\\
+24.5691646298279 0.327125335022487\\
+30.6539529505653 0.235856955351638\\
+40.7953450345245 0.15244994288537\\
+61.204983724767 0.082096006067392\\
+74.9678187496688 0.0610532413280973\\
+89.3204599858097 0.0478515814591455\\
+105.444279352617 0.0384499682851255\\
+123.336349791378 0.0316325126721048\\
+144.264395121816 0.0263169133578832\\
+168.743567772738 0.0221382157992202\\
+195.565071586595 0.0190021888435283\\
+226.649807927369 0.0164691793167325\\
+262.675410372384 0.0144153872642595\\
+301.63343472592 0.0128413881334784\\
+346.369417737173 0.0115452658150398\\
+397.740302405804 0.0104769035511789\\
+456.730127016875 0.00959151093839266\\
+539.17746403875 0.00870584060813276\\
+672.709913571234 0.00765363340985318\\
+730.909932860291 0.00723149286970074\\
+779.636013040524 0.00686762499111361\\
+831.610415323096 0.00646039691621083\\
+878.909065341995 0.00607126073963784\\
+928.89787201645 0.00564459357509239\\
+981.729840618884 0.00518519053594821\\
+1000 0.00502637889930194\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.214947467343798 1011.55751380191\\
+1.22769104798836 32.3561266593238\\
+1.69523234155412 17.4799168595727\\
+2.17438947560008 11.0284410911081\\
+2.68800102153761 7.55506998383436\\
+3.26222200971167 5.42528609961824\\
+3.88677669089267 4.07497812167303\\
+4.63090280179974 3.10233481307401\\
+5.51749237612913 2.39328668836617\\
+6.63470812109235 1.84465413986398\\
+8.2018894992022 1.38462677167907\\
+11.5361810173648 0.885156270581529\\
+15.6384675830225 0.591417196531814\\
+19.3324228755505 0.441298042343615\\
+23.4622884814226 0.333694597537387\\
+28.4743916646725 0.249190493721459\\
+35.2003147279668 0.178663805500202\\
+47.2796959160039 0.110857152813133\\
+69.6374473062822 0.0593446737486652\\
+85.2964449974102 0.0433710162598532\\
+101.6265089393 0.0335146929761786\\
+118.87076977119 0.0269399600454565\\
+137.765076954905 0.0221911621871252\\
+159.662602210143 0.0184950000993149\\
+183.342548256229 0.0157601319915241\\
+210.534524276671 0.0135708487023447\\
+241.759407916913 0.01180853595413\\
+275.067600790807 0.0104694832239571\\
+312.964801067075 0.00936805796939288\\
+356.083255262928 0.00846002419996732\\
+405.142317111465 0.00770915981408621\\
+460.960448682843 0.00708375238136173\\
+539.17746403875 0.0064478835656439\\
+678.940681269611 0.00561919561175502\\
+737.679760252773 0.0053000109413558\\
+786.857150693685 0.00502482171406485\\
+839.312949816636 0.00471723925617921\\
+887.04968896544 0.00442413893300064\\
+937.501501514529 0.00410404263798332\\
+990.82280990038 0.00376112287988771\\
+1000 0.00370225961318874\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.22097561147959 1013.10358212792\\
+1.18324062745838 36.7749752086598\\
+1.63385387780986 19.8365778788021\\
+2.1150728248688 12.2847969752621\\
+2.61467321180109 8.40493775364578\\
+3.17322963473498 6.02791455851724\\
+3.78074666359935 4.52278812608755\\
+4.4632339267104 3.48926574353028\\
+5.26892142135068 2.72549058342386\\
+6.2776601058065 2.12625226008778\\
+7.618717702323 1.63626158947482\\
+9.68246611930312 1.19786626529156\\
+18.1241754737424 0.533030477401563\\
+22.822244741869 0.389729027802452\\
+29.2729483504282 0.274486966106754\\
+61.204983724767 0.0962024351562488\\
+74.2798248256492 0.0744264907192957\\
+88.5007491447344 0.059683279549326\\
+105.444279352617 0.0484074636591517\\
+125.631660247412 0.0397045278732077\\
+149.683929307726 0.0329213496718177\\
+178.341022071001 0.0275884116134645\\
+210.534524276671 0.0235679757952076\\
+246.258591635055 0.0205002034532237\\
+285.400976982924 0.0181385170676223\\
+330.764978074424 0.0161974838172152\\
+379.821530619074 0.0146952104218464\\
+436.153778920801 0.0134449755947937\\
+510.161531474983 0.0122631535338395\\
+685.229159528406 0.0103470309161318\\
+744.512291079513 0.0097607170882558\\
+794.145171902934 0.00924990778617015\\
+839.312949816636 0.00876187492263514\\
+887.04968896544 0.00822195685367133\\
+937.501501514529 0.00763081953797367\\
+990.82280990038 0.00699628969895113\\
+1000 0.00688726798421893\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.209083769055575 1014.55661163186\\
+1.27381132318648 28.6087900931733\\
+1.74277467840892 15.7547410326583\\
+2.2353696459098 9.95631576509398\\
+2.76338529005317 6.83306116794708\\
+3.32293251639897 4.99235607351294\\
+3.95911026646846 3.75424913941343\\
+4.71708469091702 2.86136852478872\\
+5.62017384808319 2.20940058840923\\
+6.75818116816111 1.70385041070757\\
+8.43190929286626 1.26315785781898\\
+17.1488196987054 0.488759308603991\\
+20.6212180399914 0.375182687383171\\
+24.5691646298279 0.288226405874671\\
+29.2729483504282 0.218529842547234\\
+34.8772747481418 0.163538071673865\\
+42.3278906557355 0.117068481806225\\
+52.8107971193433 0.0787106876699193\\
+68.9983712143002 0.0479662506283344\\
+102.567793074442 0.0226280300082805\\
+173.475935923393 0.00837301682375914\\
+224.569799553977 0.00521611440132475\\
+275.067600790807 0.00364578154806121\\
+327.729484992338 0.00271114821124931\\
+386.890073932798 0.00207577560555873\\
+452.538627817017 0.00163461223684169\\
+534.229329953835 0.00128612333941732\\
+642.403365939419 0.000993900589717283\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.214947467343798 1005.50067917725\\
+1.20526093687084 33.3177036582016\\
+1.6642601764859 17.9817848265224\\
+2.15443469003188 11.1432757086459\\
+2.66333272517498 7.62862675307782\\
+3.23228397818138 5.4740596656517\\
+3.85110700232557 4.10853700838182\\
+4.58840412645476 3.12543366600556\\
+5.46685729972018 2.40924780687494\\
+6.57382014340959 1.85556630870677\\
+8.12661920009194 1.39178994799707\\
+11.3254131515281 0.899718656308562\\
+15.4949503931463 0.593483041752484\\
+18.979216428391 0.448307754106946\\
+22.822244741869 0.343462252255545\\
+27.4434330322837 0.259994063782414\\
+33.6144900010877 0.188893287554772\\
+42.7199396630678 0.127706938065899\\
+82.9695852083491 0.0428281398905604\\
+99.769776423632 0.0321987548822745\\
+117.779870119712 0.0252344521027836\\
+136.500780654601 0.020564537844575\\
+158.19734815786 0.0169649198203339\\
+181.659978837533 0.0143292421646197\\
+208.60240892485 0.012241535502423\\
+237.342425002387 0.0106781445202606\\
+270.042071883777 0.00940806858621831\\
+307.2468842709 0.00837243044007374\\
+349.577557436328 0.00752528145710059\\
+397.740302405804 0.00682978340871836\\
+452.538627817017 0.00625474649990653\\
+524.468874949512 0.00570755452015936\\
+691.575882873852 0.00482250898467541\\
+751.408106111697 0.00453638044581993\\
+801.50069615654 0.00428843876146089\\
+847.08682665574 0.00405275777286508\\
+895.26571259964 0.00379345155705049\\
+946.1848194722 0.00351131346831125\\
+1000 0.00321051956501607\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.203380030584698 1003.34140981399\\
+1.30953502048267 25.4022444932285\\
+1.77520801171763 14.2561760876888\\
+2.25607406649686 9.17351915056167\\
+2.78898029238044 6.30183619028116\\
+3.35371015200293 4.60905046503113\\
+3.99578030189527 3.47013553626552\\
+4.76077523022637 2.64852084159762\\
+5.67222897164454 2.04837990588264\\
+6.82077673286568 1.58288388865781\\
+8.43190929286626 1.19145122775533\\
+11.8597101233767 0.765035971866667\\
+16.527920614649 0.495177987798352\\
+20.8122156998634 0.361664097738976\\
+25.9665597293487 0.264230362871262\\
+33.6144900010877 0.180834722000438\\
+60.0867589171969 0.0766583052964807\\
+72.9227205872831 0.0584856940658292\\
+86.8838263525118 0.0463291645498478\\
+102.567793074442 0.0375787761693927\\
+121.082975023204 0.0308290960959942\\
+142.940453343176 0.0255759943241771\\
+168.743567772738 0.0214505199033043\\
+197.376432630026 0.0183478255436635\\
+230.867799418717 0.015847821850562\\
+267.563844455205 0.0139356291613193\\
+310.092663593193 0.012370999358994\\
+356.083255262928 0.0111643266698004\\
+408.894822629486 0.0101647560011022\\
+469.539001068006 0.00933140893011105\\
+564.614141930367 0.00840096625729422\\
+666.536326812491 0.00762994212808182\\
+724.202233460732 0.00721786995410951\\
+779.636013040524 0.0068099568836684\\
+831.610415323096 0.00640719992446921\\
+878.909065341995 0.00602202088702229\\
+928.89787201645 0.00559944188148368\\
+981.729840618884 0.00514423073570775\\
+1000 0.00498682889540573\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 1014.56460297755\\
+1.20526093687084 34.8845570037975\\
+1.6642601764859 18.8298302625787\\
+2.13466303332425 11.8684356581192\\
+2.63889081445751 8.12176726738489\\
+3.20262069365765 5.82569490210126\\
+3.81576466127125 4.37121430124143\\
+4.5462954695324 3.32483919351733\\
+5.41668691103315 2.56337753289109\\
+6.4537154016467 2.00089448301025\\
+7.90492762269643 1.52095232368575\\
+10.3279473191895 1.07357614010296\\
+17.3076553419573 0.549141759274592\\
+21.9959306803007 0.396738002547108\\
+28.2130767593947 0.279538029419509\\
+63.5042516859596 0.0881921029043444\\
+76.3629826128224 0.0691781131094062\\
+90.9827289445556 0.0555542340327333\\
+108.401435917833 0.0451261129631943\\
+129.154966501488 0.037068739554255\\
+153.881775003835 0.030782001970643\\
+181.659978837533 0.0260676589068729\\
+214.452607597167 0.0222909940725512\\
+250.841505927754 0.0194094519982545\\
+290.712337727258 0.0171917533127744\\
+333.828586473176 0.0154733409413927\\
+383.33951017666 0.0140458416607664\\
+440.193518520887 0.0128574932504115\\
+514.886745013749 0.0117323603547629\\
+678.940681269611 0.0100097906760828\\
+737.679760252773 0.00945257104570374\\
+786.857150693685 0.00896903384471185\\
+831.610415323096 0.00850764694390381\\
+878.909065341995 0.00799685084268931\\
+928.89787201645 0.0074362391726347\\
+981.729840618884 0.00683215344830006\\
+1000 0.0066232398956367\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 1017.89705373619\\
+0.632121847581245 105.306512776954\\
+1.0991097009295 35.5140941866405\\
+1.56024641436637 18.1093075766938\\
+2.03849339825246 10.992490660833\\
+2.54334576130465 7.37767428243772\\
+3.08666494333727 5.27721739497868\\
+3.71167181947577 3.89007278836732\\
+4.4222739805059 2.95223306184261\\
+5.26892142135068 2.27110667033624\\
+6.2776601058065 1.76921386089816\\
+7.618717702323 1.35889028748028\\
+9.77214696972572 0.980255264426443\\
+17.4679621512725 0.459739490100574\\
+21.9959306803007 0.335413438330993\\
+27.6976193503689 0.241757461920878\\
+37.8947091907467 0.152799340315738\\
+54.7947233690029 0.0892816737347753\\
+67.1161176749628 0.06726141792522\\
+80.7062014114951 0.0526216439359161\\
+96.157460014321 0.0421810622245853\\
+113.5154708921 0.0345915256305001\\
+134.006889636395 0.0286724141669197\\
+158.19734815786 0.0240143379415674\\
+186.754584276108 0.0203195613270296\\
+218.443607114943 0.0175190846386461\\
+255.509709035251 0.0152505736375083\\
+296.122543798803 0.0135100413957899\\
+340.041193270371 0.0121646399540373\\
+390.473523688556 0.0110489268070518\\
+448.385594802119 0.0101206143340208\\
+524.468874949512 0.00923948252157343\\
+672.709913571234 0.00800855587703322\\
+730.909932860291 0.0075696062385947\\
+779.636013040524 0.00719049404056472\\
+831.610415323096 0.00676558683702982\\
+878.909065341995 0.00635911730651065\\
+928.89787201645 0.00591309562168646\\
+981.729840618884 0.00543256044221784\\
+1000 0.00526638881740785\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 1006.27646341099\\
+1.32166418394661 24.5976040167547\\
+1.7916503273639 13.8129923022108\\
+2.27697025538168 8.89456255113853\\
+2.78898029238044 6.21354574173612\\
+3.35371015200293 4.54527368650389\\
+3.99578030189527 3.42292159056829\\
+4.71708469091702 2.64982647968133\\
+5.62017384808319 2.04895326307404\\
+6.75818116816111 1.58347034264658\\
+8.27785696619848 1.20722188873279\\
+11.0164594963366 0.83429755385542\\
+17.1488196987054 0.470832145747326\\
+21.9959306803007 0.337028933024212\\
+28.4743916646725 0.235432370004684\\
+57.3797641421413 0.0882040701290963\\
+69.6374473062822 0.0683781533335848\\
+83.7380653526649 0.0542819291874639\\
+99.769776423632 0.0440752889867497\\
+118.87076977119 0.0361687966601839\\
+141.62866162992 0.0299852510200088\\
+168.743567772738 0.0251076447051765\\
+201.04964162605 0.0212360927309182\\
+237.342425002387 0.0182987386480921\\
+277.61532944368 0.0160500864081386\\
+321.741815067637 0.0143171819864375\\
+369.46012051993 0.012973578946373\\
+424.255643071778 0.0118549334747194\\
+491.690357762803 0.0108578526759488\\
+704.446227729904 0.00881186035464185\\
+758.367791499719 0.00834568904034682\\
+808.924348680594 0.00788825597921738\\
+854.932706626838 0.00745041777113824\\
+903.557834613893 0.00696706317805952\\
+954.948563979197 0.00644076375402582\\
+1000 0.0059756247256871\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 1007.33018296687\\
+1.20526093687084 34.656639227631\\
+1.6642601764859 18.7076077436069\\
+2.13466303332425 11.7915684476711\\
+2.63889081445751 8.06916291236369\\
+3.20262069365765 5.78788941187977\\
+3.81576466127125 4.34273887090996\\
+4.5462954695324 3.30303678302734\\
+5.41668691103315 2.54639128296071\\
+6.4537154016467 1.98742388410117\\
+7.90492762269643 1.51042715184949\\
+10.3279473191895 1.06570902664843\\
+16.9914417203463 0.557727466368786\\
+21.3958887134342 0.407889586229775\\
+26.9420371368188 0.294820846193655\\
+36.8609536217216 0.187032882584436\\
+53.793615039807 0.108237922545278\\
+65.8898955079995 0.0816939006677886\\
+79.2316862486625 0.0640053023942399\\
+94.400647894176 0.051363359890618\\
+111.441525146679 0.0421552296068759\\
+131.55856240457 0.0349602616728814\\
+155.307057393346 0.0292879460159159\\
+183.342548256229 0.0247809639672377\\
+216.438908606402 0.0211796143563329\\
+253.164847863136 0.0184377324070966\\
+293.404970921579 0.0163311770731725\\
+336.920570598027 0.0147011087512729\\
+386.890073932798 0.0133483259486389\\
+444.270674960688 0.0122225987006258\\
+519.655724382766 0.0111555768172978\\
+678.940681269611 0.00956491093523316\\
+737.679760252773 0.00903199935892566\\
+786.857150693685 0.00856968443422985\\
+831.610415323096 0.00812863031912224\\
+878.909065341995 0.00764041277610679\\
+928.89787201645 0.00710464095677492\\
+981.729840618884 0.00652737096418373\\
+1000 0.00632774049026469\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 1007.91000785727\\
+1.20526093687084 34.6509254321493\\
+1.6642601764859 18.7015363087686\\
+2.13466303332425 11.785896510223\\
+2.63889081445751 8.06392231069407\\
+3.20262069365765 5.78303944689258\\
+3.81576466127125 4.33821894361161\\
+4.5462954695324 3.29881358258289\\
+5.41668691103315 2.54242170891368\\
+6.5134909462728 1.95850615759701\\
+7.97814457207663 1.48847539821995\\
+10.5201521761616 1.03714496973112\\
+16.3762407452169 0.582069810660393\\
+20.6212180399914 0.425349766380005\\
+25.7282596744793 0.310930701137908\\
+33.3060034362459 0.212904339225168\\
+60.0867589171969 0.0890623029105335\\
+72.9227205872831 0.0679611802077141\\
+86.8838263525118 0.0538436175262353\\
+102.567793074442 0.0436800231142486\\
+121.082975023204 0.0358388968880997\\
+142.940453343176 0.029735266332327\\
+168.743567772738 0.0249410220487855\\
+197.376432630026 0.0213348188020465\\
+230.867799418717 0.018428748556362\\
+267.563844455205 0.0162057397005448\\
+310.092663593193 0.0143866423472359\\
+356.083255262928 0.0129836310986834\\
+408.894822629486 0.0118213624751421\\
+469.539001068006 0.0108523339186537\\
+564.614141930367 0.00977035663008292\\
+666.536326812491 0.00887372122975259\\
+724.202233460732 0.008394501359153\\
+779.636013040524 0.00792011000833832\\
+831.610415323096 0.00745170907950346\\
+878.909065341995 0.00700374709355809\\
+928.89787201645 0.00651228593329241\\
+981.729840618884 0.0059828708359902\\
+1000 0.00579981043730672\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.207164967560207 1016.2233837122\\
+1.32166418394661 26.2320511234548\\
+1.7916503273639 14.7274321623971\\
+2.27697025538168 9.48060133831936\\
+2.81481236050758 6.5155007807176\\
+3.38477285594598 4.76701249633808\\
+4.03278998219371 3.58997840431629\\
+4.80487043965513 2.74017793547466\\
+5.72476623970218 2.11873340002101\\
+6.94771254846024 1.61537874272775\\
+8.74866812047991 1.18479472457369\\
+16.527920614649 0.507595824509019\\
+20.0586777950823 0.385736318096972\\
+23.8989256623105 0.297287803782327\\
+28.4743916646725 0.226257072463131\\
+34.2400613797143 0.167478467764387\\
+41.9394395566719 0.11860371140951\\
+53.2999408084409 0.0777295525940253\\
+79.2316862486625 0.0379822592705756\\
+111.441525146679 0.020630572785109\\
+137.765076954905 0.0143189413909766\\
+164.140297114447 0.0107372287284458\\
+190.230118866894 0.00853335216079818\\
+218.443607114943 0.00696704728781651\\
+248.53948574298 0.00583781999230269\\
+280.18665564592 0.00501216543251377\\
+312.964801067075 0.00440028617723695\\
+349.577557436328 0.00390349357071925\\
+390.473523688556 0.00349888277055871\\
+436.153778920801 0.00316760495871322\\
+487.178021879463 0.002893633212938\\
+559.432570616938 0.00260967447747484\\
+710.970943231243 0.00218884944165815\\
+765.391938823015 0.00205482653769594\\
+816.416760492147 0.00192794635276344\\
+862.85125663669 0.00180983171844397\\
+911.92675984593 0.0016823734652615\\
+963.793479961579 0.00154635431543198\\
+1000 0.00145200181228151\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.211020342856859 1003.9955510862\\
+1.04959323055823 41.8235084007044\\
+1.50375532129974 20.9055991311259\\
+1.98288394912707 12.4460699781338\\
+2.47396410088681 8.33540154863576\\
+3.0302710828664 5.85549344558431\\
+3.64385898376354 4.30801075887992\\
+4.34147833005509 3.26256620071146\\
+5.17265738721602 2.50401969854669\\
+6.22004882563471 1.92061945755656\\
+7.618717702323 1.45308259436746\\
+10.0462042134681 1.0064130715626\\
+14.9339321612425 0.594088540085709\\
+18.2920450484629 0.44803867467919\\
+21.7940698430296 0.347117676691585\\
+25.9665597293487 0.265560905013721\\
+30.9378757173014 0.20048948612718\\
+37.2023668141307 0.147088244785372\\
+45.5678626584106 0.103102862826019\\
+57.3797641421413 0.0678279726807133\\
+76.3629826128224 0.0397366072955322\\
+127.969686821594 0.0148483216958379\\
+190.230118866894 0.00702074829732011\\
+246.258591635055 0.00437298891761087\\
+304.42722120643 0.00300557625914891\\
+369.46012051993 0.00216428343133139\\
+444.270674960688 0.00160462479632286\\
+559.432570616938 0.00112040750908842\\
+602.254120146193 0.000999579347563396\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.212974853574552 1016.50574526566\\
+1.01159111222383 46.9911790916885\\
+1.46273335620113 23.1519311520133\\
+1.94665634334226 13.573626433132\\
+2.45126006203334 8.95136888418749\\
+3.00246170908555 6.29395641113411\\
+3.61041859717334 4.63313908684307\\
+4.3016357581068 3.51021646514338\\
+5.12518692705333 2.69530413093207\\
+6.10640754223204 2.09573961974881\\
+7.41088151564157 1.60662752912642\\
+9.41833153464795 1.17055702876803\\
+17.1488196987054 0.533405791917041\\
+21.1995345753607 0.397991183849371\\
+26.2070669648385 0.293369532535535\\
+33.3060034362459 0.205137328105748\\
+67.1161176749628 0.0713895892792184\\
+80.7062014114951 0.0550657223947795\\
+95.2750047242729 0.0441008752476974\\
+112.473717836475 0.0357437245448275\\
+131.55856240457 0.0296397473087431\\
+153.881775003835 0.0248432941827399\\
+179.992850678248 0.0210435614727478\\
+210.534524276671 0.0180124180600351\\
+243.998629725955 0.0157110517618747\\
+282.781797962534 0.0138374124350826\\
+324.721849207313 0.0123975173472374\\
+372.882130718283 0.0112092294605964\\
+428.185179865241 0.0102263510948804\\
+496.244487762892 0.00935429961479744\\
+704.446227729904 0.00761185941790715\\
+758.367791499719 0.00720661492121089\\
+808.924348680594 0.00680977095431144\\
+854.932706626838 0.00643046797590552\\
+903.557834613893 0.00601217226395796\\
+954.948563979197 0.00555708537806844\\
+1000 0.00515512000018478\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 1014.09901076975\\
+1.20526093687084 29.5223897225667\\
+1.6642601764859 15.935101874094\\
+2.13466303332425 10.043900229176\\
+2.63889081445751 6.87329139022325\\
+3.20262069365765 4.93027110316712\\
+3.81576466127125 3.69944644155446\\
+4.5462954695324 2.81397826964314\\
+5.41668691103315 2.16961540977503\\
+6.4537154016467 1.69363720029824\\
+7.90492762269643 1.28751429931373\\
+10.2331657833025 0.919816503260783\\
+17.4679621512725 0.459596099476854\\
+22.1996611911995 0.332089922852266\\
+28.4743916646725 0.234100288791977\\
+61.204983724767 0.0790400335404013\\
+73.5981447526576 0.0619377495210144\\
+87.6885609458743 0.0496798752878804\\
+104.47659715608 0.0402999276741434\\
+124.478714618791 0.0330564607179392\\
+148.31025143361 0.0274078618525673\\
+176.704352608895 0.0229645944281744\\
+208.60240892485 0.0196130988681409\\
+243.998629725955 0.0170544181835671\\
+282.781797962534 0.0150836441573749\\
+327.729484992338 0.0134631331086702\\
+376.335836228653 0.0122085272100692\\
+432.151112778977 0.0111645198805656\\
+505.479682119124 0.0101789868173219\\
+691.575882873852 0.0084931007203541\\
+744.512291079513 0.00806038066028581\\
+794.145171902934 0.00763862159842848\\
+839.312949816636 0.00723564930863513\\
+887.04968896544 0.00678981941552115\\
+937.501501514529 0.00630168247819523\\
+990.82280990038 0.00577770258190367\\
+1000 0.00568767407843963\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.207164967560207 1011.50479596479\\
+1.2856096069433 27.5159925157522\\
+1.74277467840892 15.4251690286406\\
+2.2353696459098 9.74840692212505\\
+2.76338529005317 6.69062777390783\\
+3.32293251639897 4.88848968483985\\
+3.95911026646846 3.67632086297426\\
+4.71708469091702 2.80215497084877\\
+5.62017384808319 2.16387147377674\\
+6.75818116816111 1.66896308810543\\
+8.43190929286626 1.23760040432317\\
+17.4679621512725 0.467797328953888\\
+21.0049824165392 0.359190993927253\\
+25.0264009641792 0.276147308657312\\
+29.8177229001967 0.209707140040478\\
+36.1874981241128 0.152616290867114\\
+45.149677720361 0.104601989638481\\
+60.6432939540806 0.0622421536486308\\
+97.946966706954 0.0267531632499154\\
+121.082975023204 0.0187033042228841\\
+144.264395121816 0.0141097994857233\\
+167.194975973199 0.011268979364219\\
+191.992066559328 0.00923928440970348\\
+218.443607114943 0.00776727627256859\\
+246.258591635055 0.00668399416950228\\
+277.61532944368 0.00581548772886222\\
+310.092663593193 0.00516567582752593\\
+346.369417737173 0.00463282803546963\\
+386.890073932798 0.00419430336791719\\
+432.151112778977 0.00383138347359192\\
+487.178021879463 0.00350486639718656\\
+564.614141930367 0.00317060459111825\\
+691.575882873852 0.0027646204033453\\
+751.408106111697 0.00259061971847605\\
+801.50069615654 0.00244263388478439\\
+854.932706626838 0.00227942323589595\\
+903.557834613893 0.00212603526002506\\
+954.948563979197 0.00196085860361102\\
+1000 0.00181604581862586\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.214947467343798 1009.58192786932\\
+0.880937190447399 58.7706287778217\\
+1.2856096069433 28.0360202803175\\
+1.72678090388436 15.9621362853469\\
+2.19452908620331 10.2428162094991\\
+2.71289780037247 7.0172022322766\\
+3.29243733300777 5.04035066118113\\
+3.92277675892772 3.78708097106049\\
+4.67379510799246 2.88406852589492\\
+5.56859644428641 2.22535905194243\\
+6.69616005485322 1.71516636072994\\
+8.35452805838287 1.27104284313815\\
+17.6297537528721 0.467752457584128\\
+21.1995345753607 0.358601207307925\\
+25.2582002696278 0.275159134590437\\
+30.0939003444972 0.208435690310362\\
+36.1874981241128 0.153526689690178\\
+44.324785912404 0.108158903620433\\
+56.3314267060136 0.0704732556832477\\
+82.2081575524054 0.0352740745637332\\
+121.082975023204 0.0174363657181487\\
+151.070330448665 0.0118283088529805\\
+179.992850678248 0.00881754964308474\\
+210.534524276671 0.00687220631959877\\
+241.759407916913 0.00558763635365511\\
+275.067600790807 0.00466511346129345\\
+310.092663593193 0.00399346182424188\\
+346.369417737173 0.00349787875777994\\
+386.890073932798 0.00309717017077995\\
+432.151112778977 0.00277184382893455\\
+482.707096560318 0.00250553365692312\\
+544.171428686589 0.00226692192669531\\
+751.408106111697 0.00174372280596826\\
+808.924348680594 0.0016192114672135\\
+862.85125663669 0.00150126181000073\\
+911.92675984593 0.00139259477070128\\
+963.793479961579 0.00127753936805273\\
+1000 0.00119816209663574\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 1009.67735322637\\
+1.27381132318648 26.5739279781422\\
+1.74277467840892 14.6434966041737\\
+2.2353696459098 9.25859355992173\\
+2.76338529005317 6.35721066352099\\
+3.32293251639897 4.64706031482845\\
+3.95911026646846 3.49679519692054\\
+4.71708469091702 2.66741608254932\\
+5.62017384808319 2.0620609410373\\
+6.75818116816111 1.59299713740149\\
+8.35452805838287 1.19908969962896\\
+11.4303112911448 0.798757354151141\\
+16.6810053720006 0.488243903866472\\
+21.0049824165392 0.357443150077523\\
+26.4498018242772 0.258631370967365\\
+35.5263467657814 0.168707878195502\\
+53.793615039807 0.0925591555933098\\
+65.8898955079995 0.0698822939488756\\
+79.2316862486625 0.0547667866712053\\
+94.400647894176 0.0439606206725496\\
+111.441525146679 0.0360871846938901\\
+131.55856240457 0.0299332138031573\\
+155.307057393346 0.0250801688365785\\
+183.342548256229 0.0212231299875493\\
+216.438908606402 0.0181404322074594\\
+253.164847863136 0.0157930031146263\\
+293.404970921579 0.0139892554529613\\
+336.920570598027 0.0125933591457208\\
+386.890073932798 0.0114348224227696\\
+444.270674960688 0.0104706763476498\\
+519.655724382766 0.00955675670950699\\
+678.940681269611 0.00819422257864034\\
+737.679760252773 0.00773771160141285\\
+786.857150693685 0.00734166714362899\\
+831.610415323096 0.00696383002578846\\
+878.909065341995 0.00654558465842431\\
+928.89787201645 0.00608659638271535\\
+981.729840618884 0.00559205369101999\\
+1000 0.0054210311678964\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.211020342856859 1009.6931452419\\
+1.26212131452255 29.5179030134765\\
+1.72678090388436 16.2478641048117\\
+2.21485523372636 10.2621562338164\\
+2.73802517792786 7.03848060261689\\
+3.32293251639897 5.06070230378458\\
+3.95911026646846 3.80571033924721\\
+4.71708469091702 2.90064417760557\\
+5.62017384808319 2.23977552358925\\
+6.75818116816111 1.7273244353653\\
+8.43190929286626 1.28062135149887\\
+17.3076553419573 0.489343394106153\\
+20.8122156998634 0.375483653242048\\
+24.7967289250216 0.288352956767269\\
+29.5440799888038 0.218570410884891\\
+35.5263467657814 0.161031933053262\\
+43.1156199031823 0.115244729112589\\
+53.793615039807 0.0775320856924001\\
+71.5904108596489 0.0457691438481942\\
+159.662602210143 0.0103342023811624\\
+195.565071586595 0.00722798501957754\\
+233.006141069692 0.00538235898932599\\
+270.042071883777 0.00425432964915769\\
+310.092663593193 0.00345778907002733\\
+349.577557436328 0.00292340083277344\\
+394.090164040345 0.00250123755786537\\
+440.193518520887 0.00218972083966844\\
+491.690357762803 0.00193669363188193\\
+559.432570616938 0.00169696327349966\\
+772.48114514034 0.00122954705700038\\
+831.610415323096 0.00112491043087695\\
+887.04968896544 0.00102885744235005\\
+911.92675984593 0.000986297837856005\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.752in,
+height=1.562in,
+at={(0.551in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-270,
+ymax=0,
+ytick={-360, -270, -180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.621890317411\\
+0.108651577465251 -157.326423024957\\
+0.118051652856881 -158.888199922483\\
+0.128264983052803 -160.315126598232\\
+0.139361927422416 -161.614777344837\\
+0.15002933220192 -162.668983735293\\
+0.161513269350313 -163.633045782219\\
+0.173876240021625 -164.511410311947\\
+0.187185529496553 -165.308215456207\\
+0.201513573381558 -166.027284138767\\
+0.216938351838516 -166.672121403474\\
+0.231400538013072 -167.17797452903\\
+0.246826845225571 -167.631376435699\\
+0.263281546564798 -168.034081386147\\
+0.278255940220721 -168.340104241753\\
+0.294082017058709 -168.610926635701\\
+0.310808217386903 -168.84734118415\\
+0.325471160553176 -169.018577010149\\
+0.340825854742353 -169.166762153767\\
+0.356904934567525 -169.292209294772\\
+0.37031266758699 -169.376378350124\\
+0.384224084605498 -169.446287139942\\
+0.398658107358057 -169.502037145866\\
+0.409838367175735 -169.534609455845\\
+0.421332174384734 -169.559294875748\\
+0.433148322337641 -169.576117686146\\
+0.441209286319117 -169.582974422671\\
+0.44942026621191 -169.586349656708\\
+0.457784053837654 -169.586246778213\\
+0.466303492974262 -169.582668180579\\
+0.474981480322836 -169.575615268346\\
+0.48382096649261 -169.565088465168\\
+0.497389595879016 -169.542783249849\\
+0.511338753841437 -169.512654406359\\
+0.525679112201842 -169.474691207593\\
+0.545427130532976 -169.411859418611\\
+0.565917016324609 -169.335022288365\\
+0.587176639073341 -169.244115837285\\
+0.614877765381008 -169.110577595477\\
+0.643885742724037 -168.954750782807\\
+0.674262224177818 -168.776421092937\\
+0.712611543011191 -168.532375001269\\
+0.753142016597439 -168.255093637232\\
+0.795977700231485 -167.944045331647\\
+0.849041520408896 -167.537701338252\\
+0.905642837944531 -167.083612679469\\
+0.966017479952245 -166.580726862713\\
+1.03041699495061 -166.027952099725\\
+1.10928986489522 -165.333701911919\\
+1.1942000281335 -164.571220277545\\
+1.28560960694331 -163.738972241086\\
+1.39683511798871 -162.717608327457\\
+1.51768339028343 -161.60467839241\\
+1.64898694447104 -160.399237314262\\
+1.80824493487798 -158.951226060219\\
+1.98288394912704 -157.390195341644\\
+2.19452908620335 -155.546554371991\\
+2.4287643824604 -153.57799776824\\
+2.73802517792786 -151.106907495749\\
+3.14410830314732 -148.096045727998\\
+3.78074666359942 -143.912825424371\\
+4.98537346387382 -137.63633172317\\
+5.67222897164457 -134.867132422784\\
+6.33580499265845 -132.642571703793\\
+6.94771254846023 -130.919929068106\\
+7.5487992816532 -129.485567197046\\
+8.20188949920225 -128.170134371465\\
+8.8296999554939 -127.105425328375\\
+9.50556592010137 -126.141344873808\\
+10.1392540755881 -125.380502613534\\
+10.8151870255226 -124.695784148017\\
+11.5361810173649 -124.085005652213\\
+12.3052400435925 -123.544899161571\\
+13.0051125217337 -123.134952307731\\
+13.7447909267756 -122.770456679531\\
+14.5265392594678 -122.447581513268\\
+15.3527502878039 -122.162012653963\\
+16.2259528707813 -121.908995290595\\
+17.3076553419573 -121.648069441589\\
+18.4614694632451 -121.415718144246\\
+20.0586777950826 -121.144192658194\\
+24.3436887354314 -120.52306870509\\
+25.9665597293484 -120.28769711477\\
+27.6976193503698 -120.024284684373\\
+29.2729483504285 -119.770811681018\\
+30.9378757173011 -119.48775924843\\
+32.6974974451167 -119.172037238247\\
+34.8772747481423 -118.759324924444\\
+37.2023668141304 -118.296633868056\\
+39.6824610456936 -117.783097979686\\
+42.7199396630681 -117.134781623905\\
+45.9899209052235 -116.424015675966\\
+49.9687745385497 -115.556376906041\\
+54.794723369002 -114.519961404669\\
+61.7718759733854 -113.086338883628\\
+74.9678187496691 -110.6663582278\\
+90.9827289445557 -108.275223320369\\
+102.567793074445 -106.880393759269\\
+113.515470892099 -105.780359671325\\
+124.478714618793 -104.859124064924\\
+135.248087041786 -104.103965717351\\
+145.600599502069 -103.498263005754\\
+155.307057393347 -103.02355601677\\
+164.140297114445 -102.660930600283\\
+173.475935923388 -102.342053141004\\
+181.659978837536 -102.111898821061\\
+190.230118866895 -101.916120187657\\
+197.376432630023 -101.785657475142\\
+204.791209666503 -101.679723440442\\
+210.534524276677 -101.617140175914\\
+216.438908606406 -101.569661807113\\
+220.466873523944 -101.546708250617\\
+224.569799553979 -101.530940723543\\
+228.74908173557 -101.522563754184\\
+230.867799418716 -101.521213159132\\
+233.006141069691 -101.521791111528\\
+235.164288449433 -101.524325844858\\
+239.540735872084 -101.535381752793\\
+243.99862972595 -101.554619599237\\
+248.539485742973 -101.582288840726\\
+253.164847863143 -101.618650122988\\
+260.264788196906 -101.690088565421\\
+267.563844455207 -101.782670215563\\
+275.067600790807 -101.897430706878\\
+285.40097698292 -102.086864436347\\
+296.122543798796 -102.320520071858\\
+307.246884270909 -102.601465955364\\
+318.789129267769 -102.933036039324\\
+330.764978074424 -103.31884919789\\
+346.369417737168 -103.883404098812\\
+362.710025233077 -104.547258592761\\
+379.82153061908 -105.31967081207\\
+397.740302405804 -106.210842685246\\
+416.504424854512 -107.231998640391\\
+436.153778920815 -108.395466114578\\
+456.730127016882 -109.714753928551\\
+482.707096560317 -111.524454619477\\
+510.161531474972 -113.607835518629\\
+539.177464038763 -115.995564449383\\
+569.843705946916 -118.720777922798\\
+602.254120146183 -121.818469050001\\
+636.507908129576 -125.324250052804\\
+672.709913571241 -129.272180860213\\
+710.970943231237 -133.691321107189\\
+758.367791499744 -139.467140392697\\
+808.924348680602 -145.910559463178\\
+870.843149769058 -154.031624625955\\
+954.948563979212 -165.070571920746\\
+1000 -170.814457424012\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -154.983237204473\\
+0.108651577465251 -156.668159370059\\
+0.118051652856881 -158.214001908883\\
+0.128264983052803 -159.629215643877\\
+0.139361927422416 -160.92182084712\\
+0.151418932530433 -162.099307003536\\
+0.163009236097978 -163.054900459942\\
+0.175486714964814 -163.929396584023\\
+0.188919277620761 -164.726791920476\\
+0.2033800305847 -165.450670956668\\
+0.218947676285658 -166.104217157595\\
+0.235706941399678 -166.690231160309\\
+0.25142033481428 -167.149522878047\\
+0.268181260945295 -167.560407209759\\
+0.28605955351758 -167.924123677818\\
+0.302329468440578 -168.199152547814\\
+0.319524750575915 -168.440892033015\\
+0.337698031082518 -168.649837033778\\
+0.353629550135508 -168.79920886404\\
+0.37031266758699 -168.926297153917\\
+0.384224084605498 -169.012035461869\\
+0.398658107358057 -169.083686611526\\
+0.413634368406335 -169.141304864757\\
+0.425234633452872 -169.17533432365\\
+0.43716022482485 -169.201505358344\\
+0.44942026621191 -169.219825735926\\
+0.457784053837654 -169.227679761941\\
+0.466303492974262 -169.232046270227\\
+0.474981480322836 -169.232924442211\\
+0.48382096649261 -169.230312637708\\
+0.492824957004062 -169.224208399127\\
+0.501996513311016 -169.214608455898\\
+0.516074871038594 -169.193644951614\\
+0.530548052536955 -169.164789591498\\
+0.545427130532976 -169.128021189489\\
+0.565917016324609 -169.066643391287\\
+0.587176639073341 -168.991082178178\\
+0.609234915240079 -168.901254725635\\
+0.637976680860626 -168.768762926968\\
+0.668074391569548 -168.613620253318\\
+0.699592016543558 -168.435588337995\\
+0.739381991917593 -168.191361919041\\
+0.781435060784446 -167.913288797605\\
+0.825879938784402 -167.600818540229\\
+0.88093719044741 -167.192004791964\\
+0.939664831495459 -166.734569534602\\
+1.0023075482839 -166.227470425531\\
+1.06912633917349 -165.669641074013\\
+1.15096220088501 -164.968638551771\\
+1.23906215694794 -164.198452668201\\
+1.33390569003905 -163.357675192965\\
+1.44930957412626 -162.325938724454\\
+1.57469771464309 -161.20211156023\\
+1.71093390726897 -159.985640253404\\
+1.87617469143913 -158.5258128326\\
+2.05737431343286 -156.954224874874\\
+2.27697025538168 -155.101608885924\\
+2.54334576130472 -152.94340900031\\
+2.86719649749373 -150.464341481409\\
+3.32293251639897 -147.258150272486\\
+5.51749237612921 -136.083406095976\\
+6.16296625513279 -133.883395984512\\
+6.75818116816117 -132.179807032973\\
+7.34287044716661 -130.76291385684\\
+7.97814457207674 -129.466550874562\\
+8.58882855954615 -128.421177090637\\
+9.246257116406 -127.479617506943\\
+9.86265846131287 -126.741790503059\\
+10.5201521761614 -126.083775007597\\
+11.2214776820801 -125.50392828414\\
+11.8597101233768 -125.067066209286\\
+12.5342426546138 -124.683232568044\\
+13.2471398786616 -124.349458979288\\
+14.0005838246811 -124.062215839272\\
+14.6610868404698 -123.85547332448\\
+15.3527502878039 -123.675609090354\\
+16.0770442167387 -123.519776780934\\
+16.8355080296122 -123.384923909643\\
+17.629753752872 -123.267815007438\\
+18.6324631193151 -123.145921625261\\
+19.8745954958102 -123.021685286217\\
+24.3436887354314 -122.648672305336\\
+25.7282596744791 -122.523282834447\\
+26.9420371368182 -122.402817443847\\
+28.2130767593954 -122.264571366923\\
+29.544079988804 -122.105757113288\\
+30.9378757173011 -121.92388156965\\
+32.3974262952812 -121.71677963361\\
+34.240061379715 -121.43243843812\\
+36.1874981241128 -121.106785411617\\
+38.2456972246693 -120.738242618517\\
+40.4209583979642 -120.326073492257\\
+43.1156199031825 -119.790251651065\\
+45.9899209052235 -119.196776284405\\
+49.5102015955645 -118.451782685009\\
+53.7936150398065 -117.536407384202\\
+58.9889642550864 -116.437445600432\\
+65.8898955079985 -115.031547665749\\
+77.7841107128642 -112.822152232915\\
+97.0480887738009 -109.885042496611\\
+109.405470720574 -108.385160328583\\
+121.082975023208 -107.201631366353\\
+131.558562404571 -106.306063376444\\
+142.940453343172 -105.486490007322\\
+153.881775003836 -104.829430231361\\
+164.140297114445 -104.315195940866\\
+173.475935923388 -103.923287823533\\
+183.342548256232 -103.5798831396\\
+191.992066559328 -103.333294456545\\
+201.049641626046 -103.125063326588\\
+208.602408924844 -102.987735567672\\
+216.438908606406 -102.87789214272\\
+222.508879812839 -102.814436241065\\
+228.74908173557 -102.767949087256\\
+233.006141069691 -102.746737839666\\
+237.342425002384 -102.733611389985\\
+239.540735872084 -102.730152818154\\
+241.759407916908 -102.728804135565\\
+243.99862972595 -102.729596248195\\
+246.258591635048 -102.732560731687\\
+250.841505927762 -102.745136549408\\
+255.509709035257 -102.766798142603\\
+260.264788196906 -102.797823724614\\
+267.563844455207 -102.862558181477\\
+275.067600790807 -102.950051724146\\
+282.781797962532 -103.06140609315\\
+290.712337727252 -103.197794949152\\
+301.63343472593 -103.420760843227\\
+312.964801067081 -103.693650317717\\
+324.721849207315 -104.01992343564\\
+336.920570598025 -104.403333654753\\
+352.81541153808 -104.969174763736\\
+369.46012051994 -105.639366492606\\
+386.890073932801 -106.423497756422\\
+405.142317111462 -107.332130697983\\
+424.255643071768 -108.376880898485\\
+444.2706749607 -109.570498045223\\
+465.229952396024 -110.926942054095\\
+487.17802187946 -112.461446014745\\
+514.886745013736 -114.561272921578\\
+544.1714286866 -116.972426589857\\
+575.121707184161 -119.728338409111\\
+607.832312829711 -122.864142432586\\
+642.403365939436 -126.415305638661\\
+678.940681269615 -130.415267540586\\
+717.556091893683 -134.891749307882\\
+765.391938823037 -140.738018239157\\
+816.416760492152 -147.250183697873\\
+878.909065341978 -155.437675786016\\
+963.793479961591 -166.522634662159\\
+1000 -171.114165657579\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.666384360503\\
+0.108651577465251 -157.374764989481\\
+0.118051652856881 -158.940722286828\\
+0.128264983052803 -160.37219048496\\
+0.139361927422416 -161.676774965009\\
+0.151418932530433 -162.861684449677\\
+0.163009236097978 -163.819948625734\\
+0.175486714964814 -164.693442781415\\
+0.188919277620761 -165.486295732325\\
+0.2033800305847 -166.202322777588\\
+0.218947676285658 -166.845023591215\\
+0.233543813990654 -167.349747700988\\
+0.24911300260678 -167.802711716577\\
+0.265720110532445 -168.205672061881\\
+0.280833199882324 -168.512468829459\\
+0.296805860866562 -168.784581653496\\
+0.313686982456683 -169.02280847537\\
+0.331528234231953 -169.227855537594\\
+0.347168681892662 -169.373829590498\\
+0.363546996129332 -169.497501018306\\
+0.377204249341695 -169.58056135254\\
+0.391374560198028 -169.649637709775\\
+0.406077202570047 -169.704831112433\\
+0.41746552892532 -169.737166913566\\
+0.429173237842218 -169.761771018477\\
+0.441209286319117 -169.778667927817\\
+0.44942026621191 -169.785660568911\\
+0.457784053837654 -169.789241062622\\
+0.466303492974262 -169.789412956352\\
+0.474981480322836 -169.786178826284\\
+0.48382096649261 -169.779540285464\\
+0.492824957004062 -169.769497992072\\
+0.506646100892133 -169.748051629173\\
+0.520854855057768 -169.718941037329\\
+0.535462089927357 -169.682156622831\\
+0.555577622239876 -169.621148489414\\
+0.576448828292606 -169.546426120019\\
+0.598104096238105 -169.457929442539\\
+0.62632074521987 -169.327825037606\\
+0.655868565957134 -169.175909681931\\
+0.68681035889951 -169.001980144435\\
+0.725873365081736 -168.763876997633\\
+0.767158117677927 -168.493284801108\\
+0.81079098067315 -168.189699691475\\
+0.864842327573189 -167.793083236863\\
+0.922497005259214 -167.349875524099\\
+0.983995229627797 -166.859089199448\\
+1.05931476351838 -166.238625483163\\
+1.14039960197002 -165.553167040265\\
+1.22769104798839 -164.801244170243\\
+1.3216641839466 -163.98151042713\\
+1.43600898465122 -162.976845974668\\
+1.56024641436638 -161.883766514849\\
+1.69523234155408 -160.701795668595\\
+1.8589566796357 -159.284792247056\\
+2.03849339825241 -157.760847276306\\
+2.25607406649687 -155.966317798153\\
+2.52000499376417 -153.878426607042\\
+2.84088369018327 -151.483950278019\\
+3.29243733300778 -148.394492580459\\
+5.12518692705321 -139.018081728863\\
+5.72476623970219 -136.876847834698\\
+6.27766010580631 -135.218715364184\\
+6.82077673286572 -133.843429707671\\
+7.34287044716661 -132.725172705036\\
+7.90492762269657 -131.71291525268\\
+8.43190929286622 -130.918756032638\\
+8.9940221740918 -130.212977293825\\
+9.50556592010137 -129.679642481175\\
+10.0462042134681 -129.212839599516\\
+10.5201521761614 -128.87450576124\\
+11.0164594963369 -128.581752622389\\
+11.5361810173649 -128.333815560579\\
+11.9695570235905 -128.167029666366\\
+12.4192135270177 -128.02757161149\\
+12.8857621318549 -127.914640647273\\
+13.2471398786616 -127.846801844597\\
+13.6186523675611 -127.792937809968\\
+14.0005838246811 -127.752580142726\\
+14.3932264471941 -127.72522422609\\
+14.6610868404698 -127.713944842696\\
+14.9339321612423 -127.708036002608\\
+15.2118551798608 -127.707322292774\\
+15.4949503931459 -127.711621676322\\
+15.7833140565207 -127.720745633102\\
+16.0770442167387 -127.734499311862\\
+16.5279206146492 -127.763369192552\\
+16.9914417203464 -127.801498774112\\
+17.629753752872 -127.865472582195\\
+18.2920450484626 -127.942793122117\\
+19.1550055557359 -128.055329806464\\
+20.2444650997683 -128.208588782637\\
+21.9959306803003 -128.461308193686\\
+25.2582002696278 -128.883801163993\\
+26.6947849403426 -129.032296802157\\
+27.9541599906793 -129.139356583168\\
+29.0043049386403 -129.211292763242\\
+30.0939003444972 -129.26898605786\\
+30.9378757173011 -129.301820769307\\
+31.8055201533286 -129.324903569373\\
+32.3974262952812 -129.334532483018\\
+33.0003479112518 -129.339324972834\\
+33.6144900010886 -129.33909360122\\
+34.240061379715 -129.333658928737\\
+34.8772747481423 -129.322849806049\\
+35.5263467657817 -129.306503649892\\
+36.1874981241128 -129.284466701788\\
+37.2023668141304 -129.240427065172\\
+38.2456972246693 -129.182810839857\\
+39.3182875570566 -129.11121763585\\
+40.7953450345255 -128.993419514556\\
+42.327890655736 -128.849466528653\\
+43.9180089259608 -128.678833581795\\
+45.9899209052235 -128.42749388029\\
+48.159579101925 -128.133588414722\\
+50.4315948717143 -127.797195074197\\
+53.2999408084406 -127.338144142715\\
+56.3314267060121 -126.820199476334\\
+60.0867589171979 -126.144674439625\\
+64.0924401935642 -125.39719637545\\
+68.998371214298 -124.46281634986\\
+74.9678187496691 -123.322631331446\\
+82.9695852083464 -121.826177526461\\
+94.4006478941749 -119.81107138638\\
+132.777082935543 -114.432308489149\\
+146.949180062486 -112.963388965069\\
+161.141427725301 -111.729190205213\\
+173.475935923388 -110.826995144731\\
+185.040701954232 -110.109535694571\\
+197.376432630023 -109.46753032869\\
+208.602408924844 -108.983567600726\\
+218.443607114946 -108.631254861114\\
+228.74908173557 -108.328946348595\\
+237.342425002384 -108.125565998823\\
+246.258591635048 -107.958555575862\\
+253.164847863143 -107.858455988654\\
+260.264788196906 -107.780988073794\\
+265.108360190857 -107.742416112646\\
+270.042071883779 -107.71466905207\\
+275.067600790807 -107.698074026342\\
+277.615329443679 -107.694064123507\\
+280.186655645918 -107.692970543761\\
+282.781797962532 -107.694837755686\\
+285.40097698292 -107.699711075493\\
+290.712337727252 -107.718661656271\\
+296.122543798796 -107.750202497533\\
+301.63343472593 -107.794728613623\\
+310.0926635932 -107.886767436509\\
+318.789129267769 -108.010404337954\\
+327.72948499234 -108.167179849269\\
+336.920570598025 -108.358726422112\\
+349.577557436321 -108.671214796829\\
+362.710025233077 -109.052993844759\\
+376.335836228661 -109.508802762085\\
+390.473523688559 -110.043757757517\\
+408.894822629482 -110.832201067629\\
+428.18517986523 -111.764704498624\\
+448.385594802129 -112.854142092607\\
+469.539001068009 -114.114601320523\\
+491.690357762798 -115.56144413211\\
+514.886745013736 -117.211336849825\\
+539.177464038763 -119.082225155501\\
+569.843705946916 -121.645980400075\\
+602.254120146183 -124.59020355471\\
+636.507908129576 -127.95018069012\\
+672.709913571241 -131.759647963868\\
+710.970943231237 -136.047345644768\\
+751.408106111675 -140.832034469674\\
+801.500696156551 -147.044150676644\\
+862.851256636678 -154.923403235116\\
+937.50150151455 -164.59744743801\\
+1000 -172.496839645079\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.687761809685\\
+0.108651577465251 -157.397991902719\\
+0.118051652856881 -158.96595866557\\
+0.128264983052803 -160.399610171508\\
+0.139361927422416 -161.706566839455\\
+0.151418932530433 -162.894053730264\\
+0.163009236097978 -163.854795532162\\
+0.175486714964814 -164.730956945702\\
+0.188919277620761 -165.526681297617\\
+0.2033800305847 -166.24579950787\\
+0.218947676285658 -166.891828065711\\
+0.233543813990654 -167.399672216732\\
+0.24911300260678 -167.855964233162\\
+0.265720110532445 -168.262474394439\\
+0.283434330615137 -168.620795620086\\
+0.299554933435982 -168.890653580135\\
+0.316592411198347 -169.126945492134\\
+0.334598912055007 -169.330373597395\\
+0.350384224529072 -169.475237601079\\
+0.366914237840248 -169.598014907524\\
+0.380697987140222 -169.680514830484\\
+0.394999546122053 -169.74916821205\\
+0.409838367175735 -169.804076068828\\
+0.421332174384734 -169.836288013838\\
+0.433148322337641 -169.860845843829\\
+0.445295850994262 -169.877774296457\\
+0.453582882551013 -169.884831348546\\
+0.462024137175122 -169.888511085227\\
+0.470622484984116 -169.888817178986\\
+0.479380849508926 -169.885752346433\\
+0.4883022086878 -169.879318356637\\
+0.497389595879016 -169.869516039854\\
+0.511338753841437 -169.848496481334\\
+0.525679112201842 -169.819893535452\\
+0.540421642070586 -169.783698402204\\
+0.56072348828519 -169.723604506775\\
+0.58178800743451 -169.649945443698\\
+0.603643850607596 -169.562663808615\\
+0.632121847581245 -169.434296182149\\
+0.661943345877428 -169.284366015767\\
+0.693171727615563 -169.11267760161\\
+0.732596542821532 -168.877613673359\\
+0.774263682681121 -168.610458227614\\
+0.818300681586717 -168.310726485692\\
+0.872852662384851 -167.91916130819\\
+0.931041348706901 -167.48164110239\\
+0.99310918137495 -166.997224024282\\
+1.06912633917349 -166.384941597583\\
+1.15096220088501 -165.708713555909\\
+1.23906215694794 -164.967175018779\\
+1.33390569003905 -164.159100909927\\
+1.44930957412626 -163.169252968514\\
+1.57469771464309 -162.093012473238\\
+1.71093390726897 -160.930170472723\\
+1.87617469143913 -159.537482277177\\
+2.05737431343286 -158.041543180141\\
+2.27697025538168 -156.282740392822\\
+2.54334576130472 -154.240642897539\\
+2.8937530190509 -151.721043363064\\
+3.41612326858549 -148.331457162494\\
+4.71708469091704 -141.705811041362\\
+5.31772317785112 -139.408523904816\\
+5.8853157751914 -137.602179934397\\
+6.39448842855712 -136.241842288182\\
+6.88395206964551 -135.134988684808\\
+7.41088151564139 -134.134137840128\\
+7.90492762269657 -133.3513913807\\
+8.43190929286622 -132.659687043771\\
+8.91148232283998 -132.141513015678\\
+9.41833153464815 -131.693595446267\\
+9.86265846131287 -131.374437099533\\
+10.3279473191894 -131.104490024304\\
+10.7159339982264 -130.923777002835\\
+11.118496048193 -130.774086994203\\
+11.5361810173649 -130.655006448824\\
+11.8597101233768 -130.585465052159\\
+12.192312516491 -130.532569880342\\
+12.5342426546138 -130.496010180101\\
+12.7675070431924 -130.480541408549\\
+13.0051125217337 -130.472065476283\\
+13.125568357718 -130.470412479711\\
+13.2471398786616 -130.47046195141\\
+13.3698374182498 -130.472197672128\\
+13.6186523675611 -130.480660697987\\
+13.8720978054164 -130.495662638985\\
+14.1302599059955 -130.517057314723\\
+14.5265392594678 -130.560798263899\\
+14.9339321612423 -130.618028674927\\
+15.4949503931459 -130.71430769656\\
+16.0770442167387 -130.832053559939\\
+16.8355080296122 -131.007009798903\\
+17.629753752872 -131.209738223722\\
+18.6324631193151 -131.484705644458\\
+19.8745954958102 -131.841008683979\\
+21.7940698430292 -132.395632830657\\
+27.4434330322828 -133.811482510281\\
+29.544079988804 -134.209407525642\\
+31.2244282309282 -134.472575442227\\
+32.6974974451167 -134.663574771984\\
+34.240061379715 -134.825118423553\\
+35.5263467657817 -134.930961478137\\
+36.8609536217214 -135.014340673778\\
+37.8947091907461 -135.06127462248\\
+38.9574561577541 -135.094217568135\\
+39.6824610456936 -135.108151239754\\
+40.4209583979642 -135.115495226042\\
+40.7953450345255 -135.116653921069\\
+41.1731993116176 -135.116115642287\\
+41.9394395566725 -135.109887015563\\
+42.7199396630681 -135.096692402766\\
+43.5149650092505 -135.07642349757\\
+44.3247859124037 -135.048980726717\\
+45.5678626584099 -134.994169477867\\
+46.8458011587293 -134.922746218816\\
+48.159579101925 -134.834487752567\\
+49.9687745385497 -134.690321864256\\
+51.8459354389293 -134.515624195234\\
+53.7936150398065 -134.310248585646\\
+56.3314267060121 -134.010402691522\\
+58.9889642550864 -133.662955101143\\
+62.3440188862789 -133.184157689435\\
+65.8898955079985 -132.639627042243\\
+70.2824426430854 -131.924665669406\\
+74.9678187496691 -131.128853071218\\
+80.7062014114933 -130.1285114532\\
+87.6885609458755 -128.900737184652\\
+96.1574600143192 -127.430924524517\\
+108.401435917834 -125.398943338222\\
+165.660595894989 -118.083001438608\\
+181.659978837536 -116.672022462249\\
+195.565071586593 -115.63780791975\\
+208.602408924844 -114.815721157166\\
+222.508879812839 -114.082730235856\\
+235.164288449433 -113.534265796706\\
+246.258591635048 -113.139449605169\\
+257.876288759386 -112.806328268358\\
+267.563844455207 -112.587675721291\\
+277.615329443679 -112.414553965266\\
+285.40097698292 -112.316358202797\\
+293.404970921572 -112.246738376862\\
+298.86528735503 -112.216876828583\\
+304.427221206439 -112.200749468133\\
+307.246884270909 -112.197972546733\\
+310.0926635932 -112.198794746844\\
+312.964801067081 -112.203273224517\\
+315.863540826787 -112.211466118429\\
+321.74181506764 -112.23923276075\\
+327.72948499234 -112.282580314321\\
+333.828586473175 -112.342011637935\\
+343.1907197459 -112.462460165849\\
+352.81541153808 -112.622111451634\\
+362.710025233077 -112.822904734861\\
+372.882130718292 -113.066886907538\\
+386.890073932801 -113.463131714857\\
+401.424249049931 -113.945472846572\\
+416.504424854512 -114.519781517654\\
+432.151112778964 -115.192368797219\\
+452.538627817026 -116.181680918925\\
+473.887960971767 -117.349510784221\\
+496.244487762885 -118.711450308201\\
+519.655724382751 -120.284378073453\\
+544.1714286866 -122.086422264649\\
+569.843705946916 -124.136824512636\\
+602.254120146183 -126.953423517933\\
+636.507908129576 -130.191691966166\\
+672.709913571241 -133.885186461422\\
+710.970943231237 -138.062457768388\\
+751.408106111675 -142.742070331981\\
+801.500696156551 -148.838092032792\\
+854.93270662683 -155.581429298284\\
+928.897872016474 -165.042871823835\\
+1000 -173.941554924916\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.637272702533\\
+0.108651577465251 -157.343134925616\\
+0.118051652856881 -158.906355995069\\
+0.128264983052803 -160.334851315179\\
+0.139361927422416 -161.636205814788\\
+0.15002933220192 -162.692049368218\\
+0.161513269350313 -163.657873136431\\
+0.173876240021625 -164.538133293649\\
+0.187185529496553 -165.336977989427\\
+0.201513573381558 -166.058240875529\\
+0.216938351838516 -166.70543847467\\
+0.231400538013072 -167.213502797993\\
+0.246826845225571 -167.669261219078\\
+0.263281546564798 -168.074477248073\\
+0.278255940220721 -168.382782870386\\
+0.294082017058709 -168.656015229694\\
+0.310808217386903 -168.894973711403\\
+0.328485736602995 -169.100364966625\\
+0.343982648902299 -169.246329412843\\
+0.360210656235708 -169.369720724351\\
+0.373742574239103 -169.452361175029\\
+0.387782841458937 -169.520842476796\\
+0.402350554886941 -169.575264341565\\
+0.413634368406335 -169.606904740939\\
+0.425234633452872 -169.630712540891\\
+0.43716022482485 -169.646711400124\\
+0.445295850994262 -169.653048360885\\
+0.453582882551013 -169.655927245763\\
+0.462024137175122 -169.655351286888\\
+0.470622484984116 -169.651322726841\\
+0.479380849508926 -169.643842826436\\
+0.4883022086878 -169.632911872633\\
+0.501996513311016 -169.610042970358\\
+0.516074871038594 -169.579401127213\\
+0.530548052536955 -169.540975244922\\
+0.550478980785488 -169.477604240533\\
+0.571158647812626 -169.400316062385\\
+0.592615181247569 -169.309046155926\\
+0.620572880677654 -169.175176089395\\
+0.649849535446982 -169.01915299159\\
+0.680507369673503 -168.840762243574\\
+0.719211887222132 -168.596821418964\\
+0.760117761795532 -168.319840746907\\
+0.803350197712457 -168.009289987199\\
+0.856905505126854 -167.60377834134\\
+0.914031074875622 -167.150798324459\\
+0.974964918348386 -166.649304693639\\
+1.04959323055824 -166.015375746948\\
+1.12993393803321 -165.315037191941\\
+1.2164242938574 -164.546696175313\\
+1.30953502048267 -163.708867253385\\
+1.42283045721431 -162.681645710345\\
+1.54592773641949 -161.563436895114\\
+1.67967487209262 -160.353480592204\\
+1.84189668079973 -158.901644577084\\
+2.01978575681984 -157.338461456218\\
+2.23536964590981 -155.495040037354\\
+2.49687842888425 -153.346080200524\\
+2.81481236050756 -150.875140178258\\
+3.26222200971169 -147.674891025869\\
+4.30163575810668 -141.467645684954\\
+5.07815211232757 -137.835400896393\\
+5.72476623970219 -135.360439924982\\
+6.33580499265845 -133.408039774615\\
+6.94771254846023 -131.770822895108\\
+7.5487992816532 -130.424145528394\\
+8.12661920009201 -129.336095833037\\
+8.74866812047975 -128.355619435894\\
+9.33189771573347 -127.58818059227\\
+9.95400828762154 -126.905864243673\\
+10.5201521761614 -126.388359780957\\
+11.118496048193 -125.93191609858\\
+11.7508713090482 -125.534827607986\\
+12.3052400435925 -125.247594811112\\
+12.8857621318549 -124.998290205377\\
+13.4936714058834 -124.784944342001\\
+14.1302599059955 -124.605307356134\\
+14.7968806268638 -124.456860831251\\
+15.3527502878039 -124.35870571774\\
+15.9295021257217 -124.277213080517\\
+16.5279206146492 -124.21076289148\\
+17.1488196987055 -124.157652115918\\
+17.7930438991856 -124.116103083489\\
+18.4614694632451 -124.084272782002\\
+19.1550055557359 -124.060263073153\\
+19.8745954958102 -124.042131807466\\
+20.8122156998634 -124.024724704329\\
+22.8222447418683 -123.992623557213\\
+23.6796006783313 -123.975285668614\\
+24.5691646298281 -123.952446861807\\
+25.2582002696278 -123.930566515898\\
+25.9665597293484 -123.903749417285\\
+26.9420371368182 -123.859016822531\\
+27.9541599906793 -123.802464613057\\
+29.0043049386403 -123.732483282408\\
+30.0939003444972 -123.647575126453\\
+31.2244282309282 -123.546366420607\\
+32.3974262952812 -123.427618506906\\
+33.9258338274107 -123.252867331243\\
+35.5263467657817 -123.047216029286\\
+37.2023668141304 -122.809261771869\\
+38.9574561577541 -122.538010540356\\
+41.1731993116176 -122.16777343327\\
+43.5149650092505 -121.748574247593\\
+46.4158883361268 -121.198531403285\\
+49.5102015955645 -120.585173964804\\
+53.2999408084406 -119.81160973644\\
+57.9112264764194 -118.8580815608\\
+63.5042516859595 -117.711160118533\\
+70.9334120498816 -116.242752854322\\
+84.5136633068495 -113.806500652595\\
+104.476597156082 -110.876698405016\\
+117.779870119709 -109.320618291319\\
+130.351224468151 -108.098005146177\\
+141.628661629916 -107.177739611156\\
+152.469572701759 -106.429805580845\\
+162.633950404818 -105.835724998096\\
+173.475935923388 -105.303463322575\\
+183.342548256232 -104.900621121581\\
+193.770333747798 -104.550997949887\\
+202.911801804663 -104.303233711474\\
+210.534524276677 -104.135400098295\\
+218.443607114946 -103.996118135597\\
+224.569799553979 -103.911321541915\\
+230.867799418716 -103.844154921575\\
+237.342425002384 -103.795362176369\\
+241.759407916908 -103.773429912008\\
+246.258591635048 -103.760260938103\\
+248.539485742973 -103.757042607064\\
+250.841505927762 -103.756112351995\\
+253.164847863143 -103.757504020268\\
+255.509709035257 -103.76125217234\\
+260.264788196906 -103.775959828357\\
+265.108360190857 -103.800526658799\\
+270.042071883779 -103.83525642114\\
+277.615329443679 -103.90710300305\\
+285.40097698292 -104.003658152519\\
+293.404970921572 -104.12612046893\\
+301.63343472593 -104.275765197925\\
+312.964801067081 -104.519931811357\\
+324.721849207315 -104.818298179861\\
+336.920570598025 -105.174610014476\\
+349.577557436321 -105.592925944366\\
+366.069514759701 -106.209742362998\\
+383.339510176665 -106.939711914058\\
+401.424249049931 -107.793168915822\\
+420.362168384463 -108.781482878052\\
+440.193518520901 -109.917139845086\\
+460.96044868285 -111.213820380129\\
+482.707096560317 -112.686466415315\\
+505.479682119114 -114.351324173422\\
+534.229329953849 -116.627670661362\\
+564.614141930371 -119.238764355784\\
+596.727119597324 -122.219227369553\\
+630.666554056761 -125.60456520077\\
+666.5363268125 -129.42917529937\\
+704.446227729899 -133.723134753379\\
+744.512291079495 -138.507480059495\\
+794.145171902947 -144.715495832423\\
+854.93270662683 -152.594499385165\\
+928.897872016474 -162.289721566414\\
+1000 -171.381286042618\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.74666664701\\
+0.108651577465251 -157.461992515278\\
+0.118051652856874 -159.035495799664\\
+0.128264983052812 -160.475162671791\\
+0.139361927422416 -161.788654935868\\
+0.151418932530433 -162.983242606846\\
+0.163009236097967 -163.950810069746\\
+0.175486714964826 -164.834319302409\\
+0.188919277620773 -165.637953525226\\
+0.2033800305847 -166.365586587781\\
+0.218947676285658 -167.020781173279\\
+0.233543813990639 -167.537218748025\\
+0.249113002606763 -168.002676397521\\
+0.265720110532463 -168.418962411256\\
+0.283434330615137 -168.787710226205\\
+0.299554933435982 -169.067055857063\\
+0.316592411198347 -169.313374066673\\
+0.334598912054985 -169.527397565891\\
+0.350384224529049 -169.681548951458\\
+0.366914237840272 -169.814050730692\\
+0.384224084605523 -169.925189928665\\
+0.398658107358057 -169.998887553358\\
+0.413634368406335 -170.059180314819\\
+0.429173237842218 -170.106160703567\\
+0.441209286319117 -170.132706583008\\
+0.453582882551013 -170.151834576804\\
+0.462024137175122 -170.160476567728\\
+0.470622484984116 -170.165836918335\\
+0.479380849508895 -170.167920040955\\
+0.488302208687769 -170.166729431289\\
+0.497389595878983 -170.162267677645\\
+0.5066461008921 -170.154536470376\\
+0.520854855057734 -170.136810948103\\
+0.535462089927392 -170.111729767533\\
+0.550478980785524 -170.079287576666\\
+0.571158647812663 -170.024563606144\\
+0.592615181247569 -169.956701403003\\
+0.614877765381008 -169.87565374176\\
+0.643885742724037 -169.755710133777\\
+0.674262224177818 -169.614927698635\\
+0.706071771413749 -169.453136472223\\
+0.746230289139067 -169.230978343317\\
+0.788672861561456 -168.977902453822\\
+0.833529396509846 -168.693483803046\\
+0.889096598952924 -168.321431846732\\
+0.948368186628579 -167.905312264799\\
+1.01159111222379 -167.444315957872\\
+1.08902296226366 -166.861466268335\\
+1.17238180328665 -166.217758298876\\
+1.26212131452257 -165.512116128699\\
+1.3587299019027 -164.743644146011\\
+1.47628147190933 -163.803246749982\\
+1.60400310705692 -162.782232974387\\
+1.75891659032778 -161.553853656507\\
+1.92879150802077 -160.228774631894\\
+2.13466303332416 -158.664577975902\\
+2.38439047009384 -156.841270943573\\
+2.68800102153763 -154.748273345397\\
+3.14410830314712 -151.878268211775\\
+4.42227398050573 -145.577009875308\\
+4.93962174387859 -143.685401375839\\
+5.41668691103327 -142.227574176278\\
+5.8313051135262 -141.159066864834\\
+6.27766010580631 -140.192079226386\\
+6.69616005485286 -139.439017561573\\
+7.07701066118229 -138.868677334088\\
+7.4795225156221 -138.372181788336\\
+7.83238259917936 -138.017551773403\\
+8.20188949920225 -137.718684049762\\
+8.51000724712218 -137.520835618787\\
+8.8296999554939 -137.360421512719\\
+9.07732652520994 -137.265038374657\\
+9.33189771573286 -137.19125670549\\
+9.59360828709266 -137.13924907165\\
+9.77214696972517 -137.116742836342\\
+9.95400828762089 -137.104006742535\\
+10.0462042134688 -137.101310357675\\
+10.1392540755888 -137.101065040391\\
+10.233165783303 -137.103272697474\\
+10.3279473191901 -137.107934786244\\
+10.5201521761621 -137.124625834388\\
+10.7159339982272 -137.151140840524\\
+10.9153593533143 -137.187475262419\\
+11.2214776820801 -137.26036066517\\
+11.5361810173649 -137.35524177923\\
+11.8597101233768 -137.472012469468\\
+12.3052400435925 -137.661506174095\\
+12.7675070431924 -137.889221419478\\
+13.369837418249 -138.226768241844\\
+14.0005838246802 -138.621856606735\\
+14.6610868404707 -139.072907705047\\
+15.494950393147 -139.685438109852\\
+16.3762407452172 -140.372260972294\\
+17.4679621512724 -141.261934333398\\
+18.8050405512853 -142.386260187981\\
+20.4319732019515 -143.773844923492\\
+22.4052786930011 -145.446231398164\\
+24.7967289250217 -147.413706151994\\
+28.2130767593936 -150.055915899828\\
+35.5263467657817 -154.95035550005\\
+44.7353305449872 -159.788896189793\\
+52.3261423948667 -162.93218822977\\
+60.086758917194 -165.574060325971\\
+68.9983712143025 -168.087172893437\\
+79.965545258922 -170.635603827965\\
+93.5343152029291 -173.219951502749\\
+115.628013120735 -176.590366161659\\
+152.469572701759 -180.9971509546\\
+173.475935923388 -183.169079786976\\
+193.77033374781 -185.150400214147\\
+212.484535249894 -186.920951734037\\
+233.006141069691 -188.83390292066\\
+253.164847863126 -190.708129017694\\
+272.543253128086 -192.521946200021\\
+293.404970921591 -194.501532222984\\
+315.863540826787 -196.676142673798\\
+340.041193270368 -199.0791274237\\
+362.710025233053 -201.398829028979\\
+386.890073932776 -203.951153522946\\
+412.682084570317 -206.768309186962\\
+440.193518520901 -209.886337115313\\
+469.539001068009 -213.345485206276\\
+500.840798984813 -217.190513821009\\
+534.229329953814 -221.470804326564\\
+569.843705946879 -226.240031847716\\
+607.832312829751 -231.554993949569\\
+648.353428605487 -237.472956861865\\
+691.575882873852 -244.046639719156\\
+737.679760252757 -251.315872660564\\
+794.145171902895 -260.492458570856\\
+854.932706626886 -270.551478299092\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.855185331237\\
+0.108651577465251 -157.557841584096\\
+0.118051652856881 -159.118137897841\\
+0.128264983052803 -160.54415516197\\
+0.139361927422416 -161.843627064918\\
+0.151418932530433 -163.02387238987\\
+0.163009236097978 -163.978442623114\\
+0.175486714964814 -164.848725983657\\
+0.188919277620761 -165.638898218969\\
+0.2033800305847 -166.352814680888\\
+0.218947676285658 -166.99400956644\\
+0.233543813990654 -167.497935888331\\
+0.24911300260678 -167.950606641171\\
+0.265720110532445 -168.353795399855\\
+0.283434330615137 -168.709096778937\\
+0.299554933435982 -168.976606719769\\
+0.316592411198347 -169.210772365101\\
+0.334598912055007 -169.412295470718\\
+0.350384224529072 -169.555740524273\\
+0.366914237840248 -169.677251660847\\
+0.380697987140222 -169.758848373026\\
+0.394999546122053 -169.826695869702\\
+0.409838367175735 -169.880895006507\\
+0.421332174384734 -169.912639100886\\
+0.433148322337641 -169.936783631643\\
+0.445295850994262 -169.953353319244\\
+0.453582882551013 -169.960201491422\\
+0.462024137175122 -169.96369659143\\
+0.470622484984116 -169.96384230153\\
+0.479380849508926 -169.960641352571\\
+0.4883022086878 -169.954095532542\\
+0.497389595879016 -169.944205695471\\
+0.511338753841437 -169.923100502092\\
+0.525679112201842 -169.894466804141\\
+0.540421642070586 -169.858295948613\\
+0.56072348828519 -169.798320333536\\
+0.58178800743451 -169.72487819764\\
+0.603643850607596 -169.63791273582\\
+0.632121847581245 -169.510080971485\\
+0.661943345877428 -169.360844455055\\
+0.693171727615563 -169.190009363107\\
+0.732596542821532 -168.956183265523\\
+0.774263682681121 -168.690503036586\\
+0.818300681586717 -168.392488857784\\
+0.872852662384851 -168.003241352615\\
+0.931041348706901 -167.568386515422\\
+0.99310918137495 -167.086993998026\\
+1.06912633917349 -166.478624667051\\
+1.15096220088501 -165.80681742474\\
+1.23906215694794 -165.070231692223\\
+1.33390569003905 -164.267669496681\\
+1.44930957412626 -163.284728315767\\
+1.57469771464309 -162.216187876458\\
+1.71093390726897 -161.061892097595\\
+1.87617469143913 -159.679763539354\\
+2.05737431343286 -158.195590298839\\
+2.27697025538168 -156.451241719226\\
+2.54334576130472 -154.426887150379\\
+2.8937530190509 -151.930872083588\\
+3.41612326858549 -148.576775386334\\
+4.6737951079925 -142.219861891799\\
+5.26892142135084 -139.952096398609\\
+5.7777901179705 -138.327137279148\\
+6.27766010580631 -136.976014094415\\
+6.75818116816117 -135.877098685668\\
+7.2754835291961 -134.884510414733\\
+7.76050333513376 -134.109724096842\\
+8.20188949920225 -133.518837720644\\
+8.66837993001965 -132.99785558509\\
+9.1614024571388 -132.548359161257\\
+9.59360828709328 -132.229108275181\\
+10.0462042134681 -131.960427329527\\
+10.4236067397639 -131.781862433064\\
+10.8151870255226 -131.635460062408\\
+11.2214776820801 -131.52092755923\\
+11.5361810173649 -131.455697198861\\
+11.8597101233768 -131.407941291774\\
+12.0804213467733 -131.385685386364\\
+12.3052400435925 -131.37099476431\\
+12.5342426546138 -131.363775314576\\
+12.6503372039588 -131.362935797377\\
+12.7675070431924 -131.363925351895\\
+13.0051125217337 -131.371335657269\\
+13.2471398786616 -131.385889522829\\
+13.4936714058834 -131.40746280455\\
+13.8720978054164 -131.452694430058\\
+14.2611370719414 -131.512947465985\\
+14.6610868404698 -131.587710867704\\
+15.2118551798608 -131.709017031171\\
+15.7833140565207 -131.853751260507\\
+16.5279206146492 -132.065322344795\\
+17.3076553419573 -132.308003013931\\
+18.2920450484626 -132.635512123185\\
+19.5114834684666 -133.059723480896\\
+21.1995345753606 -133.655461837411\\
+24.3436887354314 -134.713153232043\\
+27.6976193503698 -135.6862262205\\
+30.0939003444972 -136.260477032396\\
+32.100108955431 -136.661415880374\\
+33.9258338274107 -136.964718914101\\
+35.5263467657817 -137.184446983082\\
+37.2023668141304 -137.370744872596\\
+38.5999361767968 -137.493735503747\\
+40.0500075787373 -137.592073790241\\
+41.1731993116176 -137.648886123798\\
+42.327890655736 -137.690631145621\\
+43.1156199031825 -137.709866672542\\
+43.9180089259608 -137.722081235079\\
+44.7353305449843 -137.727159023527\\
+45.1496777203605 -137.726987595525\\
+45.5678626584099 -137.724992129249\\
+46.4158883361268 -137.715480610771\\
+47.2796959160026 -137.698532552984\\
+48.159579101925 -137.674064119632\\
+49.5102015955645 -137.623097379562\\
+50.8987019351974 -137.554820321381\\
+52.3261423948667 -137.469053499993\\
+54.2918617761888 -137.327259562374\\
+56.3314267060121 -137.153922580642\\
+58.4476113163379 -136.948965221802\\
+61.2049837247677 -136.648399870404\\
+64.0924401935642 -136.298925028834\\
+67.7377599751758 -135.816035797344\\
+71.5904108596503 -135.26563310289\\
+76.3629826128223 -134.541551726128\\
+81.4537176628054 -133.734099073927\\
+87.6885609458755 -132.717225753353\\
+95.2750047242714 -131.466546478252\\
+104.476597156082 -129.965807809461\\
+116.698981861712 -128.049250727939\\
+142.940453343172 -124.381850906354\\
+167.194975973196 -121.603650116888\\
+185.040701954232 -119.922254141574\\
+201.049641626046 -118.654320394234\\
+216.438908606406 -117.631960701679\\
+230.867799418716 -116.834149164949\\
+243.99862972595 -116.232994321483\\
+255.509709035257 -115.797203424822\\
+267.563844455207 -115.426519900264\\
+277.615329443679 -115.180749652475\\
+288.044415339625 -114.983513218742\\
+296.122543798796 -114.869425213536\\
+304.427221206439 -114.785969505201\\
+310.0926635932 -114.748105648395\\
+315.863540826787 -114.72500934998\\
+318.789129267769 -114.71915064823\\
+321.74181506764 -114.717167686652\\
+324.721849207315 -114.719123785093\\
+327.72948499234 -114.725083283185\\
+330.764978074424 -114.73511156488\\
+336.920570598025 -114.767641385775\\
+343.1907197459 -114.817258156913\\
+349.577557436321 -114.884525116958\\
+359.381366380452 -115.019799124949\\
+369.46012051994 -115.198152176313\\
+379.82153061908 -115.421743333692\\
+390.473523688559 -115.692846550514\\
+405.142317111462 -116.132384513314\\
+420.362168384463 -116.666701195981\\
+436.153778920815 -117.302272240256\\
+452.538627817026 -118.046038389076\\
+473.887960971767 -119.139264628285\\
+496.244487762885 -120.428832272736\\
+519.655724382751 -121.931649038761\\
+544.1714286866 -123.665857256941\\
+569.843705946916 -125.650699591264\\
+596.727119597324 -127.906232195088\\
+630.666554056761 -130.998823712932\\
+666.5363268125 -134.544467907671\\
+704.446227729899 -138.572787950302\\
+744.512291079495 -143.104350155629\\
+794.145171902947 -149.033060444997\\
+847.086826655735 -155.621679159461\\
+911.92675984596 -163.845839532566\\
+1000 -174.827206000333\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.829778768684\\
+0.108651577465251 -157.551435000356\\
+0.118051652856874 -159.131858070731\\
+0.128264983052812 -160.579086787074\\
+0.139361927422416 -161.900839239188\\
+0.151418932530433 -163.104445855106\\
+0.163009236097967 -164.080719613893\\
+0.175486714964826 -164.97363508356\\
+0.188919277620773 -165.787428136247\\
+0.2033800305847 -166.526029154933\\
+0.218947676285658 -167.193061587666\\
+0.235706941399663 -167.791843348569\\
+0.251420334814296 -168.262168726231\\
+0.268181260945313 -168.684386806852\\
+0.28605955351758 -169.06016020825\\
+0.302329468440578 -169.34642323809\\
+0.319524750575915 -169.600510149046\\
+0.337698031082496 -169.823179667485\\
+0.356904934567502 -170.015105600689\\
+0.373742574239127 -170.15198783514\\
+0.391374560198054 -170.268230732842\\
+0.406077202570047 -170.346540936813\\
+0.421332174384734 -170.411925223305\\
+0.43716022482485 -170.46448438874\\
+0.44942026621191 -170.49553952532\\
+0.462024137175122 -170.519460032633\\
+0.474981480322836 -170.536272230248\\
+0.483820966492578 -170.54354227253\\
+0.49282495700403 -170.547668252511\\
+0.501996513310983 -170.548654697248\\
+0.511338753841404 -170.546505285982\\
+0.520854855057734 -170.541222860901\\
+0.53054805253699 -170.532809438269\\
+0.545427130533012 -170.514321093056\\
+0.560723488285227 -170.488791202576\\
+0.576448828292606 -170.456216481947\\
+0.598104096238105 -170.401811989547\\
+0.620572880677654 -170.334842898846\\
+0.643885742724037 -170.255270499164\\
+0.674262224177818 -170.13800505975\\
+0.706071771413749 -170.000849388238\\
+0.739381991917545 -169.843660969963\\
+0.781435060784497 -169.628360087593\\
+0.825879938784456 -169.383658405781\\
+0.872852662384851 -169.109207430861\\
+0.931041348706901 -168.750918209545\\
+0.99310918137495 -168.35101845553\\
+1.05931476351831 -167.908894740949\\
+1.14039960197009 -167.351157348076\\
+1.22769104798839 -166.736728796468\\
+1.3216641839466 -166.065007934487\\
+1.43600898465122 -165.240431605824\\
+1.56024641436628 -164.343003144248\\
+1.69523234155419 -163.373585326083\\
+1.8589566796357 -162.214346862923\\
+2.05737431343286 -160.844591455362\\
+2.298059988759 -159.247994110774\\
+2.61467321180114 -157.273724255593\\
+3.11525422355535 -154.472757537679\\
+3.92277675892774 -150.797900754665\\
+4.38168993151404 -149.148153492599\\
+4.76077523022607 -148.003175825259\\
+5.12518692705354 -147.072618174051\\
+5.46685729972028 -146.338908847406\\
+5.7777901179705 -145.778216178001\\
+6.10640754223191 -145.287220364788\\
+6.3944884285567 -144.935699374822\\
+6.69616005485286 -144.640152555641\\
+6.94771254846068 -144.446141705618\\
+7.2087150337825 -144.291496059916\\
+7.41088151564187 -144.202209745014\\
+7.61871770232323 -144.136443080744\\
+7.76050333513376 -144.10593274026\\
+7.90492762269657 -144.086268145012\\
+7.97814457207674 -144.080548856773\\
+8.05203967082557 -144.077595250831\\
+8.12661920009201 -144.07742459458\\
+8.20188949920225 -144.080053750696\\
+8.27785696619849 -144.08549918827\\
+8.43190929286622 -144.104902740263\\
+8.58882855954615 -144.135758916654\\
+8.74866812047975 -144.178184867675\\
+8.9940221740918 -144.263757270516\\
+9.24625711640539 -144.37595439102\\
+9.50556592010074 -144.515087976589\\
+9.86265846131223 -144.742975995933\\
+10.233165783303 -145.019805588288\\
+10.6175918348305 -145.346032972837\\
+11.118496048193 -145.823802029317\\
+11.6430313292089 -146.379729926192\\
+12.192312516491 -147.013990316999\\
+12.8857621318549 -147.878353627531\\
+13.6186523675602 -148.854708329194\\
+14.5265392594687 -150.133697848738\\
+15.494950393147 -151.560632516965\\
+16.6810053720008 -153.367674963204\\
+17.9578464700207 -155.355874512816\\
+19.5114834684654 -157.798452224566\\
+21.199534575362 -160.445375625677\\
+23.2469705998571 -163.606805537511\\
+25.7282596744791 -167.325044859936\\
+28.7381269185093 -171.630967097259\\
+32.6974974451189 -176.926306795728\\
+38.2456972246693 -183.653282117792\\
+47.7176094893891 -193.479876259535\\
+69.6374473062844 -210.288539548327\\
+82.2081575524031 -217.345703539905\\
+95.2750047242777 -223.323010163536\\
+108.401435917834 -228.279889215651\\
+122.204468663144 -232.635241006573\\
+137.765076954912 -236.748944743765\\
+155.307057393347 -240.631291045117\\
+176.704352608888 -244.581464696917\\
+204.791209666517 -248.865186817418\\
+321.74181506764 -261.770735884863\\
+352.81541153808 -264.715045799753\\
+383.33951017664 -267.585166106694\\
+408.894822629509 -270.005563149879\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.648753049518\\
+0.108651577465251 -157.355608264582\\
+0.118051652856881 -158.919908167911\\
+0.128264983052803 -160.349575571378\\
+0.139361927422416 -161.652203446892\\
+0.15002933220192 -162.709270968339\\
+0.161513269350313 -163.676412252975\\
+0.173876240021625 -164.558090601062\\
+0.187185529496553 -165.358461825105\\
+0.201513573381558 -166.081367815707\\
+0.216938351838516 -166.730333951765\\
+0.231400538013072 -167.240056103552\\
+0.246826845225571 -167.697582482169\\
+0.263281546564798 -168.104683856348\\
+0.278255940220721 -168.414704762131\\
+0.294082017058709 -168.689749468205\\
+0.310808217386903 -168.930622791397\\
+0.328485736602995 -169.138037107133\\
+0.343982648902299 -169.285774445951\\
+0.360210656235708 -169.41102164437\\
+0.373742574239103 -169.495209122046\\
+0.387782841458937 -169.565295041027\\
+0.402350554886941 -169.621381215378\\
+0.413634368406335 -169.654310325098\\
+0.425234633452872 -169.679442578006\\
+0.43716022482485 -169.69680260087\\
+0.445295850994262 -169.704067887863\\
+0.453582882551013 -169.707892155396\\
+0.462024137175122 -169.70827894058\\
+0.470622484984116 -169.705230795966\\
+0.479380849508926 -169.698749297368\\
+0.4883022086878 -169.688835051818\\
+0.501996513311016 -169.667526249323\\
+0.516074871038594 -169.638487547885\\
+0.530548052536955 -169.601708995318\\
+0.550478980785488 -169.540605198833\\
+0.571158647812626 -169.465667729542\\
+0.592615181247569 -169.376834976123\\
+0.620572880677654 -169.246137539886\\
+0.649849535446982 -169.093433001549\\
+0.680507369673503 -168.918513077911\\
+0.719211887222132 -168.678947476999\\
+0.760117761795532 -168.406582481994\\
+0.803350197712457 -168.100900039025\\
+0.856905505126854 -167.70140426181\\
+0.914031074875622 -167.254821918273\\
+0.974964918348386 -166.760129205958\\
+1.03996091395414 -166.216266025397\\
+1.11956431948387 -165.533125404598\\
+1.20526093687088 -164.782796159483\\
+1.29751716865759 -163.963809517126\\
+1.40977287162893 -162.958784507381\\
+1.5317404637021 -161.863816861\\
+1.66426017648587 -160.678107307879\\
+1.82499324481618 -159.254305707703\\
+2.001249798969 -157.720165587939\\
+2.21485523372639 -155.909609875645\\
+2.47396410088675 -153.797184972936\\
+2.78898029238043 -151.365952192128\\
+3.20262069365769 -148.414453526497\\
+3.99578030189527 -143.517155438594\\
+4.89428989611449 -139.076540339208\\
+5.56859644428648 -136.401960445456\\
+6.16296625513279 -134.435343304463\\
+6.75818116816117 -132.776516160888\\
+7.34287044716661 -131.403761489468\\
+7.90492762269657 -130.287708592825\\
+8.51000724712218 -129.275181439119\\
+9.07732652520994 -128.476818318457\\
+9.68246611930323 -127.761339696477\\
+10.3279473191894 -127.128638614078\\
+10.9153593533136 -126.651288478501\\
+11.5361810173649 -126.232394834697\\
+12.192312516491 -125.869889843248\\
+12.7675070431924 -125.608969671527\\
+13.3698374182498 -125.383509750578\\
+14.0005838246811 -125.191379192426\\
+14.6610868404698 -125.030182035013\\
+15.3527502878039 -124.897269597806\\
+15.9295021257217 -124.809372644909\\
+16.5279206146492 -124.73615524287\\
+17.1488196987055 -124.67595480367\\
+17.7930438991856 -124.627033793802\\
+18.4614694632451 -124.587588620781\\
+19.1550055557359 -124.555759482427\\
+20.0586777950826 -124.5237772331\\
+21.395888713434 -124.486759903224\\
+22.8222447418683 -124.449266551169\\
+23.6796006783313 -124.423591544937\\
+24.5691646298281 -124.392421469964\\
+25.4921465445141 -124.35388510541\\
+26.4498018242767 -124.306171973485\\
+27.4434330322828 -124.247546896761\\
+28.4743916646731 -124.176364150403\\
+29.544079988804 -124.0910810094\\
+30.6539529505651 -123.99027049594\\
+31.8055201533286 -123.872633141954\\
+33.3060034362469 -123.700168374039\\
+34.8772747481423 -123.497665683182\\
+36.5226736430817 -123.263565784977\\
+38.2456972246693 -122.99670959664\\
+40.4209583979642 -122.632219969236\\
+42.7199396630681 -122.219002914368\\
+45.1496777203605 -121.757407907996\\
+48.159579101925 -121.159347627905\\
+51.8459354389293 -120.401383084883\\
+55.8144624945484 -119.570612381272\\
+60.6432939540815 -118.559905177678\\
+67.1161176749614 -117.236052921655\\
+77.0702711421226 -115.325482434142\\
+108.401435917834 -110.564702140835\\
+121.082975023208 -109.140282861145\\
+132.777082935543 -108.037713009706\\
+144.264395121811 -107.124989361222\\
+155.307057393347 -106.386179081392\\
+165.660595894989 -105.801977567636\\
+176.704352608899 -105.281436562345\\
+186.754584276109 -104.89019369492\\
+195.565071586593 -104.605814723598\\
+204.791209666503 -104.361875512471\\
+212.484535249894 -104.197601801825\\
+220.466873523944 -104.062352435139\\
+226.64980792737 -103.980908141132\\
+233.006141069691 -103.917389936562\\
+239.540735872084 -103.872556479329\\
+243.99862972595 -103.853444236792\\
+248.539485742973 -103.843245463479\\
+250.841505927762 -103.841570170515\\
+253.164847863143 -103.84222247251\\
+255.509709035257 -103.845236905846\\
+260.264788196906 -103.858493968823\\
+265.108360190857 -103.881632498157\\
+270.042071883779 -103.914956045767\\
+275.067600790807 -103.958781097104\\
+282.781797962532 -104.04493457582\\
+290.712337727252 -104.156635377895\\
+298.86528735503 -104.295131950402\\
+310.0926635932 -104.523783742852\\
+321.74181506764 -104.805825899644\\
+333.828586473175 -105.144927394271\\
+346.369417737168 -105.545064606828\\
+359.381366380452 -106.010543735479\\
+376.335836228661 -106.691414032819\\
+394.090164040346 -107.491628500804\\
+412.68208457029 -108.422128993004\\
+432.151112778964 -109.494941489571\\
+452.538627817026 -110.723256153078\\
+473.887960971767 -112.121499853984\\
+496.244487762885 -113.705390616881\\
+524.468874949529 -115.875180568498\\
+554.298551568474 -118.368705758081\\
+585.82482001525 -121.220006662653\\
+619.144175597768 -124.464459812793\\
+654.358601888336 -128.137116225112\\
+691.575882873852 -132.269933813694\\
+730.909932860277 -136.887580973765\\
+779.636013040541 -142.902054124154\\
+831.610415323096 -149.574332908481\\
+895.265712599616 -157.914084105094\\
+990.822809900383 -170.253632048783\\
+1000 -171.403336432841\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.828809956318\\
+0.108651577465251 -157.551242923533\\
+0.118051652856874 -159.132468297301\\
+0.128264983052812 -160.580525487535\\
+0.139361927422416 -161.903134151512\\
+0.151418932530433 -163.107627173675\\
+0.163009236097967 -164.084716825202\\
+0.175486714964826 -164.978477416574\\
+0.188919277620773 -165.793148054079\\
+0.2033800305847 -166.532662767933\\
+0.218947676285658 -167.200649049281\\
+0.235706941399663 -167.80042924074\\
+0.251420334814296 -168.271668588124\\
+0.268181260945313 -168.694841911394\\
+0.28605955351758 -169.071615520075\\
+0.305129701718286 -169.403488365621\\
+0.322484249840837 -169.653229966714\\
+0.340825854742331 -169.871714079131\\
+0.360210656235685 -170.059603453499\\
+0.377204249341719 -170.193227933404\\
+0.394999546122078 -170.306303196268\\
+0.409838367175735 -170.38214037749\\
+0.425234633452872 -170.445102922774\\
+0.441209286319117 -170.49528895323\\
+0.453582882551013 -170.524594586832\\
+0.466303492974262 -170.546790441389\\
+0.479380849508895 -170.561901829064\\
+0.488302208687769 -170.568050763291\\
+0.497389595878983 -170.571065521946\\
+0.5066461008921 -170.570950361821\\
+0.51607487103856 -170.567708699847\\
+0.525679112201876 -170.561343124183\\
+0.535462089927392 -170.551855405522\\
+0.550478980785524 -170.531771702784\\
+0.565917016324646 -170.504665085184\\
+0.58178800743451 -170.470531554178\\
+0.603643850607596 -170.414075378792\\
+0.62632074521987 -170.345083857117\\
+0.649849535446982 -170.263517031357\\
+0.680507369673503 -170.143796354599\\
+0.712611543011144 -170.004225974367\\
+0.746230289139067 -169.844662341065\\
+0.788672861561456 -169.62656279935\\
+0.833529396509846 -169.379119385865\\
+0.88093719044741 -169.101985847538\\
+0.939664831495459 -168.740647317674\\
+1.00230754828383 -168.337794572892\\
+1.06912633917342 -167.892828813703\\
+1.15096220088509 -167.332004897013\\
+1.23906215694794 -166.714699956981\\
+1.33390569003905 -166.040363751871\\
+1.44930957412617 -165.213237943598\\
+1.57469771464299 -164.313787212874\\
+1.72678090388442 -163.230828387085\\
+1.8935521797563 -162.062757080167\\
+2.09566239948036 -160.68552466182\\
+2.34082727617843 -159.084365330522\\
+2.66333272517501 -157.111092668214\\
+3.26222200971147 -153.882955436355\\
+3.92277675892774 -150.985281838055\\
+4.38168993151404 -149.357408420251\\
+4.76077523022607 -148.230473646623\\
+5.12518692705354 -147.317236105378\\
+5.46685729972028 -146.599742313152\\
+5.7777901179705 -146.053784728754\\
+6.10640754223191 -145.578337818414\\
+6.3944884285567 -145.24042567191\\
+6.63470812109201 -145.010687228276\\
+6.88395206964506 -144.8188089604\\
+7.14255928554351 -144.666345651982\\
+7.34287044716709 -144.578750266591\\
+7.54879928165369 -144.514738222966\\
+7.68928372075853 -144.485440826443\\
+7.83238259917936 -144.467029277799\\
+7.90492762269657 -144.461953059474\\
+7.97814457207674 -144.459654353353\\
+8.05203967082557 -144.460151040608\\
+8.12661920009201 -144.463460592086\\
+8.20188949920225 -144.469600081785\\
+8.35452805838285 -144.490435188057\\
+8.51000724712218 -144.522784948165\\
+8.66837993001965 -144.566771460845\\
+8.91148232283998 -144.654821148674\\
+9.1614024571382 -144.769674229121\\
+9.41833153464754 -144.911659273909\\
+9.77214696972517 -145.14368240615\\
+10.1392540755888 -145.425064279125\\
+10.5201521761621 -145.756300545369\\
+11.0164594963369 -146.241032146634\\
+11.5361810173649 -146.804771733792\\
+12.0804213467733 -147.447765802962\\
+12.7675070431924 -148.323925259878\\
+13.4936714058825 -149.313619947567\\
+14.3932264471932 -150.610265593863\\
+15.3527502878049 -152.057252557675\\
+16.5279206146492 -153.890304556182\\
+17.7930438991856 -155.907939708315\\
+19.3324228755497 -158.387807995007\\
+21.0049824165405 -161.076411236796\\
+23.033628731422 -164.289069604688\\
+25.4921465445141 -168.069032135934\\
+28.4743916646712 -172.447434489441\\
+32.3974262952833 -177.831430828466\\
+37.8947091907461 -184.666029446036\\
+48.159579101925 -195.464170295209\\
+65.8898955080028 -209.538746387989\\
+77.7841107128642 -216.677647089494\\
+89.3204599858045 -222.350455769496\\
+101.626508939302 -227.372891683543\\
+114.566872863485 -231.780165088572\\
+129.154966501481 -235.934510603105\\
+145.600599502069 -239.843226719418\\
+164.140297114445 -243.526746491216\\
+186.754584276097 -247.280834491787\\
+218.443607114946 -251.62970816483\\
+298.865287355049 -260.26868872113\\
+330.764978074424 -263.28695360111\\
+362.710025233053 -266.24697958454\\
+394.090164040321 -269.15666401825\\
+405.142317111489 -270.190575438794\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.824254063595\\
+0.108651577465251 -157.546567964932\\
+0.118051652856874 -159.127730824708\\
+0.128264983052812 -160.57580105579\\
+0.139361927422416 -161.898521031684\\
+0.151418932530433 -163.103250317713\\
+0.163009236097967 -164.080679642896\\
+0.175486714964826 -164.974927092666\\
+0.188919277620773 -165.790258257238\\
+0.2033800305847 -166.530635554046\\
+0.218947676285658 -167.199716245218\\
+0.235706941399663 -167.800853159196\\
+0.251420334814296 -168.273518744565\\
+0.268181260945313 -168.698362268105\\
+0.28605955351758 -169.07706889331\\
+0.305129701718286 -169.411155052662\\
+0.322484249840837 -169.663028888292\\
+0.340825854742331 -169.883871615819\\
+0.360210656235685 -170.07435371791\\
+0.377204249341719 -170.210322468764\\
+0.394999546122078 -170.32591251868\\
+0.409838367175735 -170.403886232701\\
+0.425234633452872 -170.469097555197\\
+0.441209286319117 -170.52164575324\\
+0.453582882551013 -170.552798053503\\
+0.466303492974262 -170.576905352111\\
+0.479380849508895 -170.593993353571\\
+0.488302208687769 -170.601496425252\\
+0.497389595878983 -170.605894569224\\
+0.5066461008921 -170.607192156222\\
+0.51607487103856 -170.605392719015\\
+0.525679112201876 -170.600498964554\\
+0.535462089927392 -170.592512786315\\
+0.550478980785524 -170.57473739885\\
+0.565917016324646 -170.550006711208\\
+0.58178800743451 -170.518317220115\\
+0.603643850607596 -170.46522665407\\
+0.62632074521987 -170.399724217407\\
+0.649849535446982 -170.321771566684\\
+0.680507369673503 -170.20674732262\\
+0.712611543011144 -170.072075791475\\
+0.746230289139067 -169.917618145174\\
+0.788672861561456 -169.705926865649\\
+0.833529396509846 -169.465208519825\\
+0.88093719044741 -169.195129139823\\
+0.939664831495459 -168.842455062194\\
+1.00230754828383 -168.448758726812\\
+1.06912633917342 -168.013469537364\\
+1.15096220088509 -167.464381988209\\
+1.23906215694794 -166.859586233302\\
+1.33390569003905 -166.198589981525\\
+1.44930957412617 -165.387544283619\\
+1.57469771464299 -164.505405798761\\
+1.72678090388442 -163.443261582856\\
+1.8935521797563 -162.29782678126\\
+2.09566239948036 -160.947815783807\\
+2.34082727617843 -159.379429960133\\
+2.66333272517501 -157.448949231872\\
+3.35371015200313 -153.86927359382\\
+3.92277675892774 -151.487919338138\\
+4.34147833005496 -150.044973922032\\
+4.71708469091673 -148.956025092259\\
+5.0781521123279 -148.077692891107\\
+5.41668691103327 -147.391817681531\\
+5.72476623970219 -146.873913077436\\
+5.99484250318932 -146.496698336062\\
+6.27766010580631 -146.172812274386\\
+6.51349094627252 -145.954451890657\\
+6.75818116816072 -145.774165351276\\
+6.94771254846068 -145.664917840028\\
+7.14255928554351 -145.578658272775\\
+7.34287044716709 -145.516013483769\\
+7.4795225156221 -145.487666008907\\
+7.61871770232323 -145.470250002435\\
+7.68928372075853 -145.465692692379\\
+7.76050333513376 -145.463929145807\\
+7.83238259917936 -145.464978882653\\
+7.90492762269657 -145.468860999856\\
+8.05203967082557 -145.485196870383\\
+8.20188949920225 -145.513081765748\\
+8.35452805838285 -145.552654302166\\
+8.58882855954615 -145.634214748103\\
+8.8296999554939 -145.742786635658\\
+9.07732652520994 -145.878754952691\\
+9.41833153464754 -146.103264747821\\
+9.77214696972517 -146.377837481087\\
+10.1392540755888 -146.703101867175\\
+10.6175918348305 -147.18174702506\\
+11.118496048193 -147.741169067616\\
+11.6430313292089 -148.381863871298\\
+12.3052400435925 -149.258269467476\\
+13.0051125217337 -150.251868380568\\
+13.7447909267747 -151.361943163911\\
+14.6610868404707 -152.802488764802\\
+15.6384675830231 -154.39676075953\\
+16.8355080296122 -156.401758723684\\
+18.1241754737421 -158.594520350639\\
+19.6922025547908 -161.27417151977\\
+21.5940615210368 -164.497488557817\\
+23.8989256623109 -168.313897960581\\
+26.6947849403426 -172.759535137281\\
+30.372635797035 -178.252473690206\\
+35.5263467657817 -185.249402978637\\
+45.5678626584129 -196.738208179817\\
+59.535331308141 -208.991554336525\\
+69.6374473062844 -215.872651437291\\
+79.965545258922 -221.651397960092\\
+90.9827289445497 -226.749041048577\\
+102.567793074445 -231.203837348184\\
+114.566872863485 -235.071050696844\\
+127.969686821587 -238.706962034802\\
+142.940453343181 -242.124245359411\\
+161.141427725301 -245.604375843069\\
+183.34254825622 -249.137290354862\\
+214.452607597172 -253.218800747976\\
+290.712337727271 -261.076182066164\\
+321.74181506764 -263.899549667731\\
+352.81541153808 -266.668741946145\\
+383.33951017664 -269.391993943932\\
+390.473523688533 -270.03365271426\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.64149558636\\
+0.108651577465251 -157.347820065742\\
+0.118051652856881 -158.911568522788\\
+0.128264983052803 -160.340668043726\\
+0.139361927422416 -161.642717486147\\
+0.15002933220192 -162.699268239234\\
+0.161513269350313 -163.665897470162\\
+0.173876240021625 -164.547076932969\\
+0.187185529496553 -165.346972551323\\
+0.201513573381558 -166.069438068851\\
+0.216938351838516 -166.718012480045\\
+0.231400538013072 -167.227443860973\\
+0.246826845225571 -167.684739721955\\
+0.263281546564798 -168.091682814231\\
+0.278255940220721 -168.401635034709\\
+0.294082017058709 -168.676681407408\\
+0.310808217386903 -168.917634844935\\
+0.328485736602995 -169.125215681129\\
+0.343982648902299 -169.273163327872\\
+0.360210656235708 -169.39869035174\\
+0.373742574239103 -169.483154372522\\
+0.387782841458937 -169.55356566251\\
+0.402350554886941 -169.610027710026\\
+0.413634368406335 -169.643272774603\\
+0.425234633452872 -169.668750798781\\
+0.43716022482485 -169.686486910037\\
+0.445295850994262 -169.694019984015\\
+0.453582882551013 -169.69812582214\\
+0.462024137175122 -169.698808062431\\
+0.470622484984116 -169.696069345605\\
+0.479380849508926 -169.689911322987\\
+0.4883022086878 -169.680334664634\\
+0.501996513311016 -169.659558808994\\
+0.516074871038594 -169.631085036482\\
+0.530548052536955 -169.594903457073\\
+0.550478980785488 -169.534645475916\\
+0.571158647812626 -169.460610671808\\
+0.592615181247569 -169.372737164712\\
+0.620572880677654 -169.243317745092\\
+0.649849535446982 -169.091978025595\\
+0.680507369673503 -168.918508562733\\
+0.719211887222132 -168.68079478376\\
+0.760117761795532 -168.410400903308\\
+0.803350197712457 -168.106806779162\\
+0.856905505126854 -167.709893136136\\
+0.914031074875622 -167.26604796164\\
+0.974964918348386 -166.774246478931\\
+1.03996091395414 -166.233428929159\\
+1.11956431948387 -165.553960502452\\
+1.20526093687088 -164.807512842242\\
+1.29751716865759 -163.99262534\\
+1.40977287162893 -162.992485864451\\
+1.5317404637021 -161.902713575814\\
+1.66426017648587 -160.722534290244\\
+1.82499324481618 -159.305306634238\\
+2.001249798969 -157.778238471527\\
+2.21485523372639 -155.976102583681\\
+2.47396410088675 -153.873723063739\\
+2.78898029238043 -151.454522648549\\
+3.20262069365769 -148.51861446166\\
+4.03278998219369 -143.447126933749\\
+4.89428989611449 -139.243127917326\\
+5.56859644428648 -136.593034958804\\
+6.16296625513279 -134.647836339911\\
+6.75818116816117 -133.010299649181\\
+7.34287044716661 -131.658299030291\\
+7.90492762269657 -130.562041588811\\
+8.51000724712218 -129.57064819225\\
+9.07732652520994 -128.791926931017\\
+9.68246611930323 -128.09720801895\\
+10.2331657833024 -127.56857413194\\
+10.8151870255226 -127.100911178922\\
+11.430311291145 -126.692884775073\\
+11.9695570235905 -126.397030390804\\
+12.5342426546138 -126.139796828472\\
+13.125568357718 -125.919445944185\\
+13.7447909267756 -125.73395845574\\
+14.2611370719414 -125.609138876749\\
+14.7968806268638 -125.503875477402\\
+15.3527502878039 -125.416770662861\\
+15.9295021257217 -125.346328958907\\
+16.5279206146492 -125.290962917549\\
+16.9914417203464 -125.258328589276\\
+17.4679621512724 -125.232500432438\\
+17.9578464700207 -125.212721317793\\
+18.4614694632451 -125.198213811952\\
+18.9792164283904 -125.188182546992\\
+19.5114834684666 -125.181816756551\\
+20.2444650997683 -125.17760613229\\
+21.1995345753606 -125.176431290936\\
+22.6128006633721 -125.175425723866\\
+23.4622884814232 -125.171526092384\\
+24.1202820761804 -125.165501989471\\
+24.7967289250217 -125.155912000307\\
+25.4921465445141 -125.141954314273\\
+26.2070669648381 -125.122846102292\\
+26.9420371368182 -125.097826964014\\
+27.6976193503698 -125.066162313615\\
+28.4743916646731 -125.027146676767\\
+29.544079988804 -124.962532476509\\
+30.6539529505651 -124.882160559491\\
+31.8055201533286 -124.784657969188\\
+33.0003479112518 -124.668786348259\\
+34.240061379715 -124.533451662047\\
+35.8553985745983 -124.335494404086\\
+37.5469422407329 -124.104180568683\\
+39.3182875570566 -123.838428716944\\
+41.5545533471895 -123.473158501238\\
+43.9180089259608 -123.05699925594\\
+46.4158883361268 -122.590445677406\\
+49.5102015955645 -121.98424574167\\
+52.8107971193432 -121.314711313055\\
+56.8531791387359 -120.478101950744\\
+61.7718759733854 -119.456562692352\\
+68.3651600451004 -118.113710310923\\
+77.7841107128642 -116.300577623884\\
+113.515470892099 -110.916445401642\\
+126.795284678645 -109.476713107084\\
+139.041083409004 -108.367909147897\\
+151.070330448668 -107.455239682014\\
+162.633950404818 -106.721514578877\\
+173.475935923388 -106.146109562437\\
+183.342548256232 -105.706955437156\\
+193.770333747798 -105.321771403001\\
+202.911801804663 -105.045023171176\\
+212.484535249894 -104.811294778384\\
+220.466873523944 -104.657209269437\\
+228.74908173557 -104.534089016988\\
+235.164288449433 -104.463102635941\\
+241.759407916908 -104.411281694169\\
+246.258591635048 -104.387788746345\\
+250.841505927762 -104.373438878478\\
+253.164847863143 -104.369776185107\\
+255.509709035257 -104.368500953836\\
+257.876288759386 -104.36964855674\\
+260.264788196906 -104.373255101538\\
+265.108360190857 -104.387993222325\\
+270.042071883779 -104.413019504383\\
+275.067600790807 -104.448650949735\\
+282.781797962532 -104.522709232554\\
+290.712337727252 -104.622549863253\\
+298.86528735503 -104.749421693573\\
+307.246884270909 -104.904652691143\\
+318.789129267769 -105.158194225658\\
+330.764978074424 -105.468265195542\\
+343.1907197459 -105.838759772396\\
+356.083255262919 -106.273895275188\\
+372.882130718292 -106.915703767021\\
+390.473523688559 -107.675408588077\\
+408.894822629482 -108.563731621467\\
+428.18517986523 -109.592461402385\\
+448.385594802129 -110.77453406525\\
+469.539001068009 -112.124108272616\\
+491.690357762798 -113.656624578536\\
+519.655724382751 -115.760804211877\\
+549.211648388788 -118.183976279445\\
+580.448594276896 -120.959826427324\\
+613.462171799237 -124.123570027772\\
+648.353428605487 -127.710441511337\\
+685.229159528409 -131.753135479078\\
+724.20223346072 -136.277866219775\\
+772.48114514036 -142.183957390498\\
+823.978568452854 -148.753882165918\\
+887.04968896542 -156.994471416592\\
+981.72984061889 -169.250305124494\\
+1000 -171.544521175135\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.661482932254\\
+0.108651577465251 -157.369439261018\\
+0.118051652856881 -158.934935479081\\
+0.128264983052803 -160.365902617032\\
+0.139361927422416 -161.669942571563\\
+0.15002933220192 -162.728367403947\\
+0.161513269350313 -163.69696976498\\
+0.173876240021625 -164.580220865693\\
+0.187185529496553 -165.38228502703\\
+0.201513573381558 -166.107013289538\\
+0.216938351838516 -166.757940870274\\
+0.231400538013072 -167.269501746417\\
+0.246826845225571 -167.72898906867\\
+0.263281546564798 -168.138181677446\\
+0.280833199882324 -168.498679499971\\
+0.296805860866562 -168.770004590431\\
+0.313686982456683 -169.007398257101\\
+0.331528234231953 -169.211564048911\\
+0.347168681892662 -169.356764892788\\
+0.363546996129332 -169.479625954457\\
+0.377204249341695 -169.56201000149\\
+0.391374560198028 -169.630384112933\\
+0.406077202570047 -169.684848272668\\
+0.41746552892532 -169.716618774032\\
+0.429173237842218 -169.740641308684\\
+0.441209286319117 -169.756939885776\\
+0.44942026621191 -169.763524076239\\
+0.457784053837654 -169.766688289195\\
+0.466303492974262 -169.766435913667\\
+0.474981480322836 -169.76276936383\\
+0.48382096649261 -169.755690086976\\
+0.492824957004062 -169.745198571692\\
+0.506646100892133 -169.723062084217\\
+0.520854855057768 -169.693241280145\\
+0.535462089927357 -169.655725941205\\
+0.555577622239876 -169.59370990115\\
+0.576448828292606 -169.517940051152\\
+0.598104096238105 -169.428354641018\\
+0.62632074521987 -169.296828617096\\
+0.655868565957134 -169.143420788495\\
+0.68681035889951 -168.967924051249\\
+0.725873365081736 -168.727835796115\\
+0.767158117677927 -168.455137271795\\
+0.81079098067315 -168.149316333426\\
+0.864842327573189 -167.74991573017\\
+0.922497005259214 -167.303719810944\\
+0.983995229627797 -166.809724103158\\
+1.05931476351838 -166.185297405089\\
+1.14039960197002 -165.495531100222\\
+1.22769104798839 -164.73892045809\\
+1.3216641839466 -163.914079812104\\
+1.43600898465122 -162.903114257853\\
+1.56024641436638 -161.803077203781\\
+1.69523234155408 -160.613412798321\\
+1.8589566796357 -159.186888694558\\
+2.03849339825241 -157.652265671892\\
+2.25607406649687 -155.844467807278\\
+2.52000499376417 -153.740017935203\\
+2.84088369018327 -151.324769200862\\
+3.29243733300778 -148.205011105477\\
+5.26892142135084 -138.136523614044\\
+5.8853157751914 -135.986221819642\\
+6.45371540164686 -134.322925255317\\
+7.01206358900715 -132.943573451748\\
+7.5487992816532 -131.821117805078\\
+8.12661920009201 -130.803093161647\\
+8.66837993001965 -130.001770752378\\
+9.246257116406 -129.28606905946\\
+9.7721469697258 -128.741441154527\\
+10.3279473191894 -128.260237875884\\
+10.9153593533136 -127.841702735814\\
+11.430311291145 -127.539817415375\\
+11.9695570235905 -127.279375161523\\
+12.5342426546138 -127.058951010378\\
+13.0051125217337 -126.91028047876\\
+13.4936714058834 -126.785116597514\\
+14.0005838246811 -126.682332979596\\
+14.5265392594678 -126.600691352714\\
+14.9339321612423 -126.552528488425\\
+15.3527502878039 -126.514896037733\\
+15.7833140565207 -126.487155629348\\
+16.2259528707813 -126.46863851446\\
+16.5279206146492 -126.461074450879\\
+16.8355080296122 -126.457086622379\\
+17.1488196987055 -126.456456373573\\
+17.4679621512724 -126.458960150059\\
+17.7930438991856 -126.464369761969\\
+18.2920450484626 -126.477422810007\\
+18.8050405512853 -126.495688158643\\
+19.5114834684666 -126.526730689838\\
+20.4319732019529 -126.573484193624\\
+22.4052786929996 -126.678386552308\\
+23.6796006783313 -126.737815708375\\
+24.7967289250217 -126.779165025789\\
+25.4921465445141 -126.798648840737\\
+26.2070669648381 -126.81312700124\\
+26.6947849403426 -126.819599592829\\
+27.1915794303594 -126.823255921072\\
+27.6976193503698 -126.823867785818\\
+28.2130767593954 -126.82121234769\\
+28.7381269185112 -126.815072547334\\
+29.2729483504285 -126.805237514054\\
+29.8177229001969 -126.79150296372\\
+30.6539529505651 -126.763159920766\\
+31.5136348486643 -126.72496615751\\
+32.3974262952812 -126.676326933339\\
+33.3060034362469 -126.616689831083\\
+34.557199367622 -126.519194877832\\
+35.8553985745983 -126.400176992233\\
+37.2023668141304 -126.258717405298\\
+38.9574561577541 -126.049195878738\\
+40.7953450345255 -125.802323437084\\
+42.7199396630681 -125.517399975727\\
+45.1496777203605 -125.124896036862\\
+47.7176094893859 -124.677513666391\\
+50.4315948717143 -124.176391673225\\
+53.7936150398065 -123.526458593478\\
+57.9112264764194 -122.703030488323\\
+62.3440188862789 -121.801750544778\\
+68.3651600451004 -120.581389936049\\
+76.3629826128223 -119.01000605009\\
+89.3204599858103 -116.665124646738\\
+114.566872863485 -112.937953168321\\
+127.969686821595 -111.384004127594\\
+140.328908478584 -110.175178801276\\
+152.469572701759 -109.170967025628\\
+164.140297114445 -108.356072570084\\
+175.082703173578 -107.710674131088\\
+186.754584276109 -107.135105477767\\
+197.376432630023 -106.702457436309\\
+206.688024962902 -106.388193974123\\
+216.438908606406 -106.119038396103\\
+224.569799553979 -105.938260252301\\
+233.006141069691 -105.790032668086\\
+239.540735872084 -105.70132248078\\
+246.258591635048 -105.6327783153\\
+250.841505927762 -105.59871574295\\
+255.509709035257 -105.574276090204\\
+260.264788196906 -105.55974251367\\
+262.675410372388 -105.556282103134\\
+265.108360190857 -105.555409606351\\
+267.563844455207 -105.557163721369\\
+270.042071883779 -105.561583927846\\
+275.067600790807 -105.578584544888\\
+280.186655645918 -105.606743582738\\
+285.40097698292 -105.646406787985\\
+293.404970921572 -105.728263310587\\
+301.63343472593 -105.838095355025\\
+310.0926635932 -105.977260177756\\
+318.789129267769 -106.147199237862\\
+330.764978074424 -106.424314634102\\
+343.1907197459 -106.76276288728\\
+356.083255262919 -107.166755741718\\
+369.46012051994 -107.640849248975\\
+386.890073932801 -108.339585769886\\
+405.142317111462 -109.166074610284\\
+424.255643071768 -110.131857904331\\
+444.2706749607 -111.249606574926\\
+465.229952396024 -112.53319765298\\
+487.17802187946 -113.997778271907\\
+510.161531474972 -115.65980229551\\
+539.177464038763 -117.939932019488\\
+569.843705946916 -120.562911183887\\
+602.254120146183 -123.563507634334\\
+636.507908129576 -126.977111134475\\
+672.709913571241 -130.837563144611\\
+710.970943231237 -135.17370975647\\
+758.367791499744 -140.858094872203\\
+808.924348680602 -147.215582467729\\
+870.843149769058 -155.244784872607\\
+954.948563979212 -166.177782388948\\
+1000 -171.872159572377\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.636346000086\\
+0.108651577465251 -157.353782374141\\
+0.118051652856874 -158.930380254901\\
+0.128264983052812 -160.374088075329\\
+0.139361927422416 -161.692506702327\\
+0.151418932530433 -162.892827614908\\
+0.163009236097967 -163.866096336939\\
+0.175486714964826 -164.755807429003\\
+0.188919277620773 -165.566078568391\\
+0.2033800305847 -166.300721617683\\
+0.218947676285658 -166.963243159394\\
+0.233543813990639 -167.486313478286\\
+0.249113002606763 -167.958582167264\\
+0.265720110532463 -168.381835785496\\
+0.283434330615137 -168.757691497263\\
+0.299554933435982 -169.043232877465\\
+0.316592411198347 -169.295838018795\\
+0.334598912054985 -169.516238511391\\
+0.350384224529049 -169.675773809564\\
+0.366914237840272 -169.813725092079\\
+0.384224084605523 -169.930382579111\\
+0.398658107358057 -170.008547169577\\
+0.413634368406335 -170.073356225758\\
+0.429173237842218 -170.124905238792\\
+0.441209286319117 -170.154913939665\\
+0.453582882551013 -170.177537627341\\
+0.466303492974262 -170.192799925756\\
+0.474981480322836 -170.198894701304\\
+0.483820966492578 -170.201730786615\\
+0.49282495700403 -170.201311789812\\
+0.501996513310983 -170.197640435781\\
+0.511338753841404 -170.190718575428\\
+0.520854855057734 -170.18054719528\\
+0.535462089927392 -170.159197333486\\
+0.550478980785524 -170.13053304852\\
+0.565917016324646 -170.094547047518\\
+0.587176639073341 -170.035156103319\\
+0.609234915240079 -169.962690008973\\
+0.632121847581245 -169.877098480029\\
+0.661943345877428 -169.751555812735\\
+0.693171727615517 -169.605261100395\\
+0.725873365081689 -169.438042866022\\
+0.767158117677977 -169.209485562835\\
+0.810790980673203 -168.950138559838\\
+0.856905505126854 -168.659586241046\\
+0.914031074875622 -168.28057202433\\
+0.974964918348386 -167.857731345318\\
+1.03996091395407 -167.390301643975\\
+1.11956431948394 -166.800530963848\\
+1.20526093687088 -166.150476378705\\
+1.29751716865759 -165.439213143009\\
+1.40977287162893 -164.565010278418\\
+1.531740463702 -163.611932447012\\
+1.66426017648598 -162.580155578984\\
+1.82499324481618 -161.342804197858\\
+2.001249798969 -160.01287141328\\
+2.21485523372624 -158.449523509179\\
+2.47396410088691 -156.636659464015\\
+2.81481236050756 -154.406682482113\\
+3.44776405473464 -150.758778511025\\
+4.22304418720659 -147.145594379811\\
+4.71708469091673 -145.292093058868\\
+5.17265738721621 -143.857991315111\\
+5.62017384808323 -142.679001944365\\
+6.05036787939111 -141.736998076634\\
+6.45371540164644 -141.005594038878\\
+6.82077673286527 -140.454255131208\\
+7.2087150337825 -139.977703762252\\
+7.54879928165369 -139.640807355695\\
+7.83238259917936 -139.412324470108\\
+8.12661920009201 -139.221426890227\\
+8.43190929286622 -139.069028231413\\
+8.66837993001965 -138.980483389206\\
+8.91148232283998 -138.914350217939\\
+9.07732652520994 -138.882844860008\\
+9.24625711640539 -138.861488924182\\
+9.41833153464754 -138.850345478239\\
+9.50556592010074 -138.84862124575\\
+9.59360828709266 -138.849470631579\\
+9.6824661193026 -138.852899558968\\
+9.86265846131223 -138.867517551938\\
+10.0462042134688 -138.892513876371\\
+10.233165783303 -138.927920181143\\
+10.5201521761621 -139.000600367073\\
+10.8151870255233 -139.096810510537\\
+11.118496048193 -139.216568889842\\
+11.5361810173649 -139.412842801018\\
+11.9695570235905 -139.65080826067\\
+12.4192135270177 -139.930217144612\\
+13.0051125217337 -140.337202947392\\
+13.6186523675602 -140.807441768193\\
+14.3932264471932 -141.453523027118\\
+15.2118551798618 -142.186415510265\\
+16.2259528707813 -143.147096812431\\
+17.3076553419573 -144.216158900932\\
+18.6324631193151 -145.562404691526\\
+20.2444650997669 -147.222832011846\\
+22.1996611912005 -149.229528078226\\
+24.5691646298281 -151.605933815211\\
+27.4434330322828 -154.363544271873\\
+31.5136348486664 -157.993464783161\\
+37.8947091907461 -163.039456474231\\
+49.9687745385497 -170.825429608142\\
+69.6374473062844 -180.350931906816\\
+86.8838263525077 -186.886345860185\\
+103.51779556302 -192.25438806266\\
+121.0829750232 -197.260774932331\\
+140.328908478593 -202.187309781462\\
+162.633950404818 -207.351013839577\\
+188.484340903368 -212.774432780263\\
+216.438908606406 -218.113947982118\\
+248.539485742973 -223.725887343499\\
+282.78179796255 -229.248220948938\\
+318.789129267769 -234.67745848711\\
+356.083255262919 -240.016839082459\\
+394.090164040321 -245.267738325\\
+432.151112778992 -250.420265214718\\
+469.539001068009 -255.445437831995\\
+510.161531474972 -260.924667503573\\
+549.211648388752 -266.256178747426\\
+580.448594276934 -270.588851417254\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -156.914960399469\\
+0.108651577465251 -158.585210521472\\
+0.118051652856874 -160.109709009935\\
+0.128264983052812 -161.497541346413\\
+0.138082976521811 -162.623474670266\\
+0.148652484499784 -163.654077607286\\
+0.160031031373864 -164.594782203978\\
+0.172280544713129 -165.450649956575\\
+0.185467692308478 -166.226359361625\\
+0.199664245010983 -166.926202238485\\
+0.214947467343796 -167.554086582789\\
+0.229276931286557 -168.04724229123\\
+0.244561668345231 -168.490149811615\\
+0.260865361762268 -168.884736633007\\
+0.278255940220721 -169.232728793117\\
+0.294082017058709 -169.495088255111\\
+0.310808217386903 -169.725197519551\\
+0.328485736602995 -169.923812776516\\
+0.343982648902277 -170.065747237837\\
+0.360210656235685 -170.186604953588\\
+0.377204249341719 -170.286675981644\\
+0.391374560198054 -170.351934285064\\
+0.406077202570047 -170.404156289129\\
+0.41746552892532 -170.434823239381\\
+0.429173237842218 -170.458241452457\\
+0.441209286319117 -170.47443838829\\
+0.44942026621191 -170.481235833717\\
+0.457784053837654 -170.484839372956\\
+0.466303492974262 -170.485253504426\\
+0.474981480322836 -170.482481781957\\
+0.483820966492578 -170.476526825555\\
+0.49282495700403 -170.467390332146\\
+0.5066461008921 -170.447721680621\\
+0.520854855057734 -170.420894986617\\
+0.535462089927392 -170.386904637672\\
+0.555577622239913 -170.330422812678\\
+0.576448828292606 -170.261151823851\\
+0.598104096238105 -170.179043016498\\
+0.62632074521987 -170.058259184356\\
+0.655868565957134 -169.917172947092\\
+0.68681035889951 -169.755609506438\\
+0.725873365081689 -169.534418320861\\
+0.767158117677977 -169.283054862601\\
+0.810790980673203 -169.001080001849\\
+0.864842327573189 -168.632780649986\\
+0.922497005259214 -168.221352941626\\
+0.983995229627797 -167.765947040756\\
+1.05931476351831 -167.190521647113\\
+1.14039960197009 -166.555251860761\\
+1.22769104798839 -165.858944060461\\
+1.3216641839466 -165.100556084179\\
+1.43600898465122 -164.172172961163\\
+1.56024641436628 -163.163575755615\\
+1.69523234155419 -162.074866641896\\
+1.8589566796357 -160.77256084675\\
+2.05737431343286 -159.231237684569\\
+2.27697025538154 -157.583254185653\\
+2.56690271549201 -155.514004694003\\
+2.94760625512479 -152.997127949404\\
+3.85110700232562 -147.959743836876\\
+4.46323392671022 -145.25467875111\\
+4.98537346387415 -143.348174557733\\
+5.46685729972028 -141.879366311758\\
+5.8853157751914 -140.802766354058\\
+6.33580499265803 -139.828056797777\\
+6.75818116816072 -139.068333798869\\
+7.14255928554351 -138.4921968244\\
+7.54879928165369 -137.989681450862\\
+7.90492762269657 -137.629761229465\\
+8.27785696619849 -137.325262231459\\
+8.58882855954615 -137.122603104111\\
+8.91148232283998 -136.957055648299\\
+9.1614024571382 -136.857581865683\\
+9.41833153464754 -136.779480396953\\
+9.6824661193026 -136.722902890871\\
+9.86265846131223 -136.697200691079\\
+10.0462042134688 -136.681141731818\\
+10.1392540755888 -136.676734329929\\
+10.233165783303 -136.674743867667\\
+10.3279473191901 -136.675171444486\\
+10.4236067397645 -136.678017706878\\
+10.6175918348305 -136.690966608159\\
+10.8151870255233 -136.713586680587\\
+11.0164594963369 -136.745866786963\\
+11.3254131515284 -136.812357334406\\
+11.6430313292089 -136.900447413207\\
+11.9695570235905 -137.010008041522\\
+12.4192135270177 -137.189196602833\\
+12.8857621318549 -137.405765449904\\
+13.369837418249 -137.659110110252\\
+14.0005838246802 -138.026405921436\\
+14.6610868404707 -138.448399536095\\
+15.494950393147 -139.024304124572\\
+16.3762407452172 -139.672478562946\\
+17.4679621512724 -140.514347672275\\
+18.8050405512853 -141.580215867415\\
+20.4319732019515 -142.896778264731\\
+22.4052786930011 -144.483146532537\\
+25.0264009641792 -146.52082639419\\
+29.0043049386384 -149.385808187577\\
+43.1156199031796 -157.166916686307\\
+49.0558370636517 -159.536703572973\\
+55.302242561928 -161.614819726797\\
+61.7718759733813 -163.417501805198\\
+68.9983712143025 -165.105467538757\\
+76.3629826128223 -166.552952738398\\
+84.5136633068439 -167.908869783975\\
+94.400647894181 -169.290957168748\\
+105.444279352618 -170.582291541088\\
+118.870769771187 -171.894524481272\\
+135.248087041795 -173.230236437512\\
+165.660595894989 -175.243953679726\\
+195.565071586606 -176.913939410164\\
+216.438908606406 -177.998958283629\\
+237.342425002384 -179.063463637545\\
+255.509709035241 -179.991084333743\\
+275.067600790825 -181.007455187775\\
+293.404970921591 -181.987460336331\\
+312.964801067081 -183.070412207851\\
+333.828586473175 -184.276261768803\\
+356.083255262919 -185.62766474604\\
+379.821530619055 -187.150327165125\\
+401.424249049957 -188.613761153641\\
+424.255643071796 -190.244945525165\\
+448.385594802129 -192.066736216552\\
+473.887960971767 -194.104451569598\\
+500.840798984813 -196.386019660069\\
+529.326605836037 -198.942031064558\\
+559.432570616907 -201.805606780461\\
+591.250841383221 -205.011938801344\\
+624.878807200712 -208.597292613213\\
+660.419396233041 -212.597185584461\\
+704.446227729899 -217.829658465225\\
+751.408106111675 -223.704839621295\\
+801.500696156499 -230.229750069101\\
+862.851256636735 -238.432576316968\\
+946.184819472219 -249.576702192002\\
+1000 -256.550678982586\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.540843899603\\
+0.108651577465251 -157.23854950104\\
+0.118051652856881 -158.792960137556\\
+0.128264983052803 -160.211948950693\\
+0.139361927422416 -161.503058812898\\
+0.15002933220192 -162.549143299722\\
+0.161513269350313 -163.504565462503\\
+0.173876240021625 -164.373757001471\\
+0.187185529496553 -165.160845339972\\
+0.201513573381558 -165.869648621345\\
+0.214947467343796 -166.428398635694\\
+0.229276931286572 -166.932058762937\\
+0.244561668345247 -167.382607743554\\
+0.260865361762251 -167.781849778674\\
+0.275702332560967 -168.084464043558\\
+0.291383170483282 -168.351518136492\\
+0.30795587129142 -168.583856636933\\
+0.322484249840837 -168.751503935858\\
+0.337698031082518 -168.895968484668\\
+0.353629550135508 -169.017607881186\\
+0.366914237840248 -169.098701657693\\
+0.380697987140222 -169.165540029435\\
+0.394999546122053 -169.218255543932\\
+0.406077202570047 -169.248595766759\\
+0.41746552892532 -169.271103518324\\
+0.429173237842218 -169.285819273142\\
+0.43716022482485 -169.291318956597\\
+0.445295850994262 -169.293381427821\\
+0.453582882551013 -169.292015579725\\
+0.462024137175122 -169.28722950111\\
+0.470622484984116 -169.279030485318\\
+0.479380849508926 -169.267425038652\\
+0.492824957004062 -169.243642128076\\
+0.506646100892133 -169.212223537102\\
+0.520854855057768 -169.173181498826\\
+0.540421642070586 -169.109280786489\\
+0.56072348828519 -169.031851466012\\
+0.58178800743451 -168.940891467156\\
+0.609234915240079 -168.808142106264\\
+0.637976680860626 -168.65417722712\\
+0.668074391569548 -168.47891749193\\
+0.706071771413795 -168.240344407993\\
+0.746230289139115 -167.970715572217\\
+0.788672861561404 -167.669739277771\\
+0.841249704973636 -167.278515514126\\
+0.897331581458357 -166.843509996615\\
+0.95715215389917 -166.363990088983\\
+1.03041699495061 -165.760411835477\\
+1.10928986489522 -165.096305859717\\
+1.1942000281335 -164.370281236284\\
+1.29751716865759 -163.477747969421\\
+1.40977287162893 -162.503191668215\\
+1.5317404637021 -161.44501510007\\
+1.66426017648587 -160.30212453153\\
+1.82499324481618 -158.932506966014\\
+2.001249798969 -157.458941234151\\
+2.21485523372639 -155.721696266562\\
+2.47396410088675 -153.696420863247\\
+2.78898029238043 -151.367235655599\\
+3.23228397818141 -148.350423326328\\
+5.31772317785112 -138.01964136619\\
+5.8853157751914 -136.125065383003\\
+6.45371540164686 -134.528552152599\\
+7.01206358900715 -133.211411942136\\
+7.5487992816532 -132.146132195921\\
+8.12661920009201 -131.18723781493\\
+8.66837993001965 -130.439406292609\\
+9.246257116406 -129.778967319329\\
+9.7721469697258 -129.283218047929\\
+10.3279473191894 -128.85237582424\\
+10.8151870255226 -128.54245484399\\
+11.3254131515284 -128.276428407197\\
+11.8597101233768 -128.053272456334\\
+12.3052400435925 -127.904735098528\\
+12.7675070431924 -127.781979345238\\
+13.2471398786616 -127.68407114505\\
+13.6186523675611 -127.626317759302\\
+14.0005838246811 -127.581465224695\\
+14.3932264471941 -127.54899112981\\
+14.6610868404698 -127.533944770177\\
+14.9339321612423 -127.523979237312\\
+15.2118551798608 -127.518914279107\\
+15.4949503931459 -127.51856318218\\
+15.7833140565207 -127.522732932736\\
+16.0770442167387 -127.531224388927\\
+16.3762407452172 -127.543832468266\\
+16.8355080296122 -127.570000559828\\
+17.3076553419573 -127.604220793211\\
+17.9578464700207 -127.661054795871\\
+18.6324631193151 -127.728978738043\\
+19.5114834684666 -127.82652173457\\
+20.8122156998634 -127.979637203797\\
+25.0264009641792 -128.429800559969\\
+26.2070669648381 -128.52342749629\\
+27.1915794303594 -128.587308824496\\
+28.2130767593954 -128.639283119649\\
+29.0043049386403 -128.669321742801\\
+29.8177229001969 -128.690851955358\\
+30.3726357970331 -128.700118554717\\
+30.9378757173011 -128.705073201883\\
+31.5136348486643 -128.705515925369\\
+32.100108955431 -128.701254107798\\
+32.6974974451167 -128.692102816774\\
+33.3060034362469 -128.677885120691\\
+33.9258338274107 -128.658432388637\\
+34.8772747481423 -128.619089908025\\
+35.8553985745983 -128.56710800287\\
+36.8609536217214 -128.50203074313\\
+38.2456972246693 -128.394193047101\\
+39.6824610456936 -128.261527383707\\
+41.1731993116176 -128.10336724655\\
+43.1156199031825 -127.869068044686\\
+45.1496777203605 -127.593553162772\\
+47.2796959160026 -127.276624258425\\
+49.9687745385497 -126.841968031822\\
+52.8107971193432 -126.349124945174\\
+56.3314267060121 -125.703209599351\\
+60.0867589171979 -124.985091139801\\
+64.6860766154627 -124.083224670102\\
+70.2824426430854 -122.977390073899\\
+77.0702711421226 -121.655151799636\\
+86.8838263525134 -119.829995980581\\
+134.006889636394 -113.116875093235\\
+148.310251433614 -111.711985255159\\
+161.141427725301 -110.655259843029\\
+173.475935923388 -109.799292166358\\
+185.040701954232 -109.123476655717\\
+197.376432630023 -108.52372541895\\
+208.602408924844 -108.076142095294\\
+218.443607114946 -107.754077805128\\
+228.74908173557 -107.481827064325\\
+237.342425002384 -107.302283710765\\
+246.258591635048 -107.158871653106\\
+253.164847863143 -107.076288170996\\
+260.264788196906 -107.016161539702\\
+265.108360190857 -106.989045953256\\
+270.042071883779 -106.97266695291\\
+272.543253128104 -106.968604245684\\
+275.067600790807 -106.967347931439\\
+277.615329443679 -106.968940413981\\
+280.186655645918 -106.973424923363\\
+285.40097698292 -106.991247184584\\
+290.712337727252 -107.021177783866\\
+296.122543798796 -107.063594206759\\
+304.427221206439 -107.151492662279\\
+312.964801067081 -107.269762579575\\
+321.74181506764 -107.41987972552\\
+330.764978074424 -107.603409222792\\
+343.1907197459 -107.902973051234\\
+356.083255262919 -108.269112720079\\
+369.46012051994 -108.70638285083\\
+383.339510176665 -109.21970413552\\
+401.424249049931 -109.976436407588\\
+420.362168384463 -110.87163754029\\
+440.193518520901 -111.917721530354\\
+460.96044868285 -113.128289540901\\
+482.707096560317 -114.518198235203\\
+505.479682119114 -116.103604007604\\
+529.326605836072 -117.901963045713\\
+559.432570616944 -120.367472112237\\
+591.250841383182 -123.200770417662\\
+624.878807200671 -126.437157228554\\
+660.419396233041 -130.111231275888\\
+697.981390783064 -134.253906540578\\
+737.679760252757 -138.887956480694\\
+786.8571506937 -144.925778918005\\
+839.312949816634 -151.619370859271\\
+903.557834613866 -159.96998332537\\
+1000 -172.279181231225\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -156.286822670429\\
+0.108651577465251 -158.001704055979\\
+0.118051652856874 -159.572813518532\\
+0.128264983052812 -161.008526083433\\
+0.139361927422416 -162.316941007047\\
+0.151418932530433 -163.505791439683\\
+0.163009236097967 -164.468083639143\\
+0.175486714964826 -165.346487047312\\
+0.188919277620773 -166.145490838983\\
+0.2033800305847 -166.869255034152\\
+0.218947676285658 -167.521606092203\\
+0.233543813990639 -168.036586431948\\
+0.249113002606763 -168.501703617201\\
+0.265720110532463 -168.918900958666\\
+0.283434330615137 -169.289936122883\\
+0.299554933435982 -169.572424935817\\
+0.316592411198347 -169.823049868819\\
+0.334598912054985 -170.04260836109\\
+0.353629550135484 -170.231807873978\\
+0.370312667587014 -170.366733108292\\
+0.387782841458962 -170.48132136689\\
+0.402350554886941 -170.558534547139\\
+0.41746552892532 -170.623030029961\\
+0.433148322337641 -170.674914283934\\
+0.445295850994262 -170.70560676868\\
+0.457784053837654 -170.729289958996\\
+0.470622484984116 -170.745992134264\\
+0.479380849508895 -170.753260471705\\
+0.488302208687769 -170.757442683475\\
+0.497389595878983 -170.758543812202\\
+0.5066461008921 -170.75656803858\\
+0.51607487103856 -170.75151869327\\
+0.525679112201876 -170.743398269241\\
+0.540421642070621 -170.725462786387\\
+0.555577622239913 -170.700623154142\\
+0.571158647812663 -170.668877577667\\
+0.592615181247569 -170.615797163533\\
+0.614877765381008 -170.550405003159\\
+0.637976680860626 -170.472665671179\\
+0.668074391569548 -170.358056665667\\
+0.699592016543512 -170.223968865781\\
+0.732596542821484 -170.07026584973\\
+0.774263682681172 -169.859707042301\\
+0.818300681586771 -169.620367535187\\
+0.864842327573189 -169.351908818174\\
+0.922497005259214 -169.001419806481\\
+0.983995229627797 -168.61020563913\\
+1.04959323055817 -168.177666361016\\
+1.12993393803328 -167.631998416418\\
+1.2164242938574 -167.030843148086\\
+1.30953502048267 -166.373609026565\\
+1.42283045721431 -165.566784965936\\
+1.54592773641939 -164.688642856623\\
+1.67967487209273 -163.740025390173\\
+1.84189668079973 -162.605629777834\\
+2.03849339825241 -161.265219589041\\
+2.27697025538154 -159.702892456295\\
+2.59067785868806 -157.771302331538\\
+3.08666494333715 -155.032285552304\\
+3.85110700232562 -151.583763735954\\
+4.30163575810668 -149.968804890394\\
+4.6737951079922 -148.848270532941\\
+5.03154894503829 -147.938449861316\\
+5.36697694554061 -147.222331855811\\
+5.67222897164457 -146.676488677133\\
+5.99484250318932 -146.200314982777\\
+6.27766010580631 -145.861267748694\\
+6.57382014340928 -145.578439780208\\
+6.82077673286527 -145.394870980365\\
+7.07701066118229 -145.250983181021\\
+7.27548352919657 -145.170017667889\\
+7.4795225156221 -145.112824292412\\
+7.61871770232323 -145.088186115668\\
+7.76050333513376 -145.074530570436\\
+7.83238259917936 -145.071870285317\\
+7.90492762269657 -145.072013677934\\
+7.97814457207674 -145.074979280804\\
+8.05203967082557 -145.080785233164\\
+8.20188949920225 -145.100988724672\\
+8.35452805838285 -145.132761277725\\
+8.51000724712218 -145.176233572822\\
+8.74866812047975 -145.263648874072\\
+8.9940221740918 -145.378057827656\\
+9.24625711640539 -145.519818264171\\
+9.59360828709266 -145.751933896795\\
+9.95400828762089 -146.033919639466\\
+10.3279473191901 -146.366339925018\\
+10.8151870255233 -146.853471092049\\
+11.3254131515284 -147.420754178639\\
+11.8597101233768 -148.068563802971\\
+12.5342426546138 -148.952355629557\\
+13.2471398786607 -149.951898225152\\
+14.1302599059945 -151.263088420257\\
+15.0722530931083 -152.728171292464\\
+16.0770442167387 -154.343721782614\\
+17.3076553419573 -156.368596242169\\
+18.8050405512853 -158.864385384795\\
+20.4319732019515 -161.57740501643\\
+22.4052786930011 -164.827135721552\\
+24.7967289250217 -168.659373698052\\
+27.6976193503679 -173.106896916915\\
+31.5136348486664 -178.5836353331\\
+36.8609536217214 -185.539522805823\\
+47.7176094893891 -197.36017803913\\
+62.3440188862748 -209.499320421826\\
+73.5981447526585 -216.708303407458\\
+84.5136633068439 -222.418587810507\\
+96.1574600143255 -227.458081090102\\
+108.401435917834 -231.865947966913\\
+122.204468663144 -236.006579573726\\
+136.500780654609 -239.597643504684\\
+153.881775003836 -243.255707027659\\
+173.475935923388 -246.70275827735\\
+199.204570845397 -250.475594313447\\
+250.841505927746 -256.52478539551\\
+293.404970921591 -260.726959161273\\
+324.721849207315 -263.621810032618\\
+356.083255262919 -266.459881994496\\
+386.890073932776 -269.249489761929\\
+397.74030240583 -270.240780681262\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.770285092142\\
+0.108651577465251 -157.487654743851\\
+0.118051652856874 -159.063378747841\\
+0.128264983052812 -160.505458616093\\
+0.139361927422416 -161.82157282938\\
+0.151418932530433 -163.019009533464\\
+0.163009236097967 -163.989316007641\\
+0.175486714964826 -164.875774212323\\
+0.188919277620773 -165.682583512692\\
+0.2033800305847 -166.413635156275\\
+0.218947676285658 -167.072510577239\\
+0.233543813990639 -167.592399865057\\
+0.249113002606763 -168.061539995018\\
+0.265720110532463 -168.481754774445\\
+0.283434330615137 -168.854694218647\\
+0.299554933435982 -169.137855287742\\
+0.316592411198347 -169.388206917826\\
+0.334598912054985 -169.606494379798\\
+0.350384224529049 -169.764384748018\\
+0.366914237840272 -169.90080294132\\
+0.384224084605523 -170.016044493206\\
+0.398658107358057 -170.093163861695\\
+0.413634368406335 -170.157007844683\\
+0.429173237842218 -170.207673891646\\
+0.441209286319117 -170.237075331602\\
+0.453582882551013 -170.259139650049\\
+0.466303492974262 -170.273891127465\\
+0.474981480322836 -170.279672634434\\
+0.483820966492578 -170.282217479985\\
+0.49282495700403 -170.281529442253\\
+0.501996513310983 -170.277611411091\\
+0.511338753841404 -170.270465397836\\
+0.520854855057734 -170.260092545596\\
+0.535462089927392 -170.238483336469\\
+0.550478980785524 -170.209611585511\\
+0.565917016324646 -170.17347049479\\
+0.587176639073341 -170.113955081393\\
+0.609234915240079 -170.041459647027\\
+0.632121847581245 -169.955935058532\\
+0.661943345877428 -169.830613241162\\
+0.693171727615517 -169.6846939843\\
+0.725873365081689 -169.518008253654\\
+0.767158117677977 -169.290300893947\\
+0.810790980673203 -169.032038456299\\
+0.856905505126854 -168.742810478148\\
+0.914031074875622 -168.365651886062\\
+0.974964918348386 -167.945010641022\\
+1.03996091395407 -167.480135030902\\
+1.11956431948394 -166.893733043483\\
+1.20526093687088 -166.247546035797\\
+1.29751716865759 -165.540671519656\\
+1.40977287162893 -164.672059817028\\
+1.531740463702 -163.725303427843\\
+1.66426017648598 -162.700622186761\\
+1.82499324481618 -161.472122395916\\
+2.001249798969 -160.152132024517\\
+2.21485523372624 -158.601080303641\\
+2.47396410088691 -156.803396540071\\
+2.84088369018327 -154.432249523362\\
+3.54445567397058 -150.489116736054\\
+4.22304418720659 -147.41814374545\\
+4.71708469091673 -145.594928231415\\
+5.17265738721621 -144.1887881715\\
+5.56859644428648 -143.159196192728\\
+5.93982669392029 -142.340229132306\\
+6.33580499265803 -141.607357471716\\
+6.69616005485286 -141.054201042536\\
+7.07701066118229 -140.575532338023\\
+7.41088151564187 -140.236802173521\\
+7.68928372075853 -140.006904169269\\
+7.97814457207674 -139.814715535011\\
+8.27785696619849 -139.661224001078\\
+8.51000724712218 -139.572035160123\\
+8.74866812047975 -139.505444767772\\
+8.91148232283998 -139.473754690925\\
+9.07732652520994 -139.452321668332\\
+9.24625711640539 -139.441218767187\\
+9.33189771573286 -139.439562063976\\
+9.41833153464754 -139.440512173956\\
+9.50556592010074 -139.444076291229\\
+9.6824661193026 -139.459073165826\\
+9.86265846131223 -139.484601604169\\
+10.0462042134688 -139.520703586227\\
+10.3279473191901 -139.594756732242\\
+10.6175918348305 -139.692766625733\\
+10.9153593533143 -139.814787214102\\
+11.3254131515284 -140.014858983601\\
+11.7508713090482 -140.257594409112\\
+12.192312516491 -140.542832120774\\
+12.7675070431924 -140.958726207908\\
+13.369837418249 -141.43983623296\\
+14.1302599059945 -142.101796971027\\
+14.9339321612433 -142.853942182286\\
+15.9295021257217 -143.841743409485\\
+16.9914417203464 -144.94338235658\\
+18.2920450484626 -146.334115096643\\
+19.6922025547908 -147.855730550249\\
+21.3958887134354 -149.710330055455\\
+23.4622884814232 -151.928807388951\\
+25.9665597293484 -154.533914842652\\
+29.2729483504266 -157.794491500697\\
+33.9258338274107 -162.012524553028\\
+40.7953450345228 -167.502259543976\\
+51.3701354335138 -174.57931940008\\
+65.8898955080028 -182.432984374806\\
+81.4537176628054 -189.332938918411\\
+98.8541702191994 -195.860403716078\\
+118.870769771187 -202.320609044961\\
+142.940453343181 -209.035149408779\\
+173.475935923388 -216.350904943069\\
+212.484535249894 -224.288867551735\\
+255.509709035241 -231.769210910329\\
+298.865287355049 -238.407063431716\\
+340.041193270368 -244.1770781734\\
+379.821530619055 -249.45288818645\\
+416.504424854539 -254.175908701941\\
+452.538627817026 -258.761709196921\\
+491.690357762798 -263.750431399103\\
+529.326605836037 -268.601693091558\\
+544.171428686564 -270.538514436143\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -157.367027449333\\
+0.108651577465251 -159.188060775256\\
+0.118051652856874 -160.868535358701\\
+0.128264983052812 -162.415087249244\\
+0.139361927422416 -163.833776533332\\
+0.151418932530433 -165.130037870392\\
+0.164519058775359 -166.30867400489\\
+0.177112106434519 -167.26101588526\\
+0.190669084051231 -168.126352996835\\
+0.205263775270926 -168.907018713309\\
+0.218947676285658 -169.522324173778\\
+0.233543813990639 -170.075783840205\\
+0.249113002606763 -170.568707120843\\
+0.263281546564815 -170.944020550614\\
+0.278255940220721 -171.276653764598\\
+0.294082017058709 -171.567465117816\\
+0.30795587129142 -171.778498689545\\
+0.322484249840837 -171.96163113149\\
+0.337698031082496 -172.117402023326\\
+0.353629550135484 -172.246360516347\\
+0.366914237840272 -172.330595198126\\
+0.380697987140247 -172.398309843858\\
+0.391374560198054 -172.438425134784\\
+0.402350554886941 -172.469525788384\\
+0.413634368406335 -172.491728678612\\
+0.421332174384734 -172.501644217282\\
+0.429173237842218 -172.507689719109\\
+0.43716022482485 -172.509898052742\\
+0.445295850994262 -172.508301463876\\
+0.453582882551013 -172.502931513818\\
+0.462024137175122 -172.493819019718\\
+0.470622484984116 -172.480993996748\\
+0.483820966492578 -172.454859005473\\
+0.497389595878983 -172.420530728269\\
+0.511338753841404 -172.378098695166\\
+0.53054805253699 -172.309061544439\\
+0.550478980785524 -172.225950680049\\
+0.576448828292606 -172.102520526853\\
+0.603643850607596 -171.957635548211\\
+0.632121847581245 -171.791524784545\\
+0.668074391569548 -171.564421290401\\
+0.706071771413749 -171.307218481188\\
+0.746230289139067 -171.020025254533\\
+0.795977700231537 -170.647071004459\\
+0.849041520408896 -170.233168144997\\
+0.914031074875622 -169.709618821716\\
+0.983995229627797 -169.131576101766\\
+1.05931476351831 -168.498255285335\\
+1.14039960197009 -167.808782185172\\
+1.23906215694794 -166.964904038862\\
+1.3462605792989 -166.047700121531\\
+1.46273335620108 -165.056334214534\\
+1.60400310705692 -163.867457115665\\
+1.75891659032778 -162.587254989903\\
+1.94665634334225 -161.076182166904\\
+2.15443469003179 -159.462915049992\\
+2.42876438246056 -157.437485023665\\
+2.78898029238043 -154.96990080442\\
+3.41612326858571 -151.205065964031\\
+4.18428850790151 -147.47345537596\\
+4.71708469091673 -145.39821889132\\
+5.17265738721621 -143.917253702845\\
+5.62017384808323 -142.69648476113\\
+6.05036787939111 -141.717427466356\\
+6.45371540164644 -140.953506553662\\
+6.82077673286527 -140.374120684668\\
+7.2087150337825 -139.869272256109\\
+7.54879928165369 -139.508542973019\\
+7.90492762269657 -139.204659855094\\
+8.20188949920225 -139.003777168266\\
+8.51000724712218 -138.841366749523\\
+8.74866812047975 -138.745263536309\\
+8.9940221740918 -138.671504247192\\
+9.24625711640539 -138.620331315248\\
+9.41833153464754 -138.598867804651\\
+9.59360828709266 -138.587588200444\\
+9.6824661193026 -138.585781913916\\
+9.77214696972517 -138.586538187091\\
+9.86265846131223 -138.58986163575\\
+10.0462042134688 -138.604226317906\\
+10.233165783303 -138.628904095799\\
+10.4236067397645 -138.663916069477\\
+10.7159339982272 -138.735839508428\\
+11.0164594963369 -138.831062757847\\
+11.3254131515284 -138.949568161901\\
+11.7508713090482 -139.14369524653\\
+12.192312516491 -139.378891179683\\
+12.6503372039588 -139.654822100964\\
+13.2471398786607 -140.056333616069\\
+13.8720978054155 -140.51969019789\\
+14.6610868404707 -141.15542046452\\
+15.494950393147 -141.875411516542\\
+16.5279206146492 -142.817446650079\\
+17.629753752872 -143.863584160068\\
+18.9792164283904 -145.177869048604\\
+20.6212180399902 -146.794320566304\\
+22.6128006633736 -148.741354261162\\
+25.0264009641792 -151.038041789493\\
+28.2130767593936 -153.917624028739\\
+32.6974974451189 -157.634972018747\\
+41.1731993116149 -163.646004910109\\
+80.7062014114933 -181.462734558606\\
+98.8541702191994 -187.008906537295\\
+116.698981861712 -191.738229496574\\
+135.248087041795 -196.150653599372\\
+153.881775003836 -200.21513463383\\
+175.082703173566 -204.505289086446\\
+197.376432630036 -208.720517024946\\
+222.508879812839 -213.18756393858\\
+248.539485742973 -217.562203062488\\
+277.615329443697 -222.210252444864\\
+307.246884270909 -226.746610525595\\
+340.041193270368 -231.591299028231\\
+372.882130718268 -236.31233571855\\
+408.894822629509 -241.39516470012\\
+444.2706749607 -246.341037754559\\
+482.707096560317 -251.709783166392\\
+519.655724382751 -256.904344889659\\
+559.432570616907 -262.567870740541\\
+602.254120146222 -268.777555235865\\
+613.462171799277 -270.424872554193\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.785884975309\\
+0.108651577465251 -157.504817304354\\
+0.118051652856874 -159.082296868754\\
+0.128264983052812 -160.526356930331\\
+0.139361927422416 -161.84471412816\\
+0.151418932530433 -163.04470248949\\
+0.163009236097967 -164.017580566038\\
+0.175486714964826 -164.906943604011\\
+0.188919277620773 -165.717044817846\\
+0.2033800305847 -166.451838358131\\
+0.218947676285658 -167.114978795506\\
+0.235706941399663 -167.709823430396\\
+0.251420334814296 -168.176704665724\\
+0.268181260945313 -168.595519559603\\
+0.28605955351758 -168.967975157414\\
+0.302329468440578 -169.251500290698\\
+0.319524750575915 -169.502983899011\\
+0.337698031082496 -169.723222527171\\
+0.356904934567502 -169.912930267204\\
+0.373742574239127 -170.048156927728\\
+0.391374560198054 -170.162946485517\\
+0.406077202570047 -170.240256796991\\
+0.421332174384734 -170.304800084729\\
+0.43716022482485 -170.35669013726\\
+0.44942026621191 -170.387363920897\\
+0.462024137175122 -170.41101218469\\
+0.474981480322836 -170.427666342118\\
+0.483820966492578 -170.434896904107\\
+0.49282495700403 -170.439037751098\\
+0.501996513310983 -170.440094766981\\
+0.511338753841404 -170.438072937415\\
+0.520854855057734 -170.432976356765\\
+0.53054805253699 -170.424808235593\\
+0.545427130533012 -170.406801785162\\
+0.560723488285227 -170.381893649392\\
+0.576448828292606 -170.350083741563\\
+0.598104096238105 -170.296926368796\\
+0.620572880677654 -170.231469342366\\
+0.643885742724037 -170.153678318924\\
+0.674262224177818 -170.039022875518\\
+0.706071771413749 -169.904905849271\\
+0.739381991917545 -169.75118476059\\
+0.781435060784497 -169.540606218922\\
+0.825879938784456 -169.30122961569\\
+0.872852662384851 -169.032691332314\\
+0.931041348706901 -168.682017221938\\
+0.99310918137495 -168.290470821409\\
+1.05931476351831 -167.857400056158\\
+1.14039960197009 -167.310814744914\\
+1.22769104798839 -166.708343212527\\
+1.3216641839466 -166.04933272902\\
+1.43600898465122 -165.239902738304\\
+1.56024641436628 -164.35847442541\\
+1.69523234155419 -163.405884572456\\
+1.8589566796357 -162.266308831754\\
+2.05737431343286 -160.919383536655\\
+2.298059988759 -159.349212388191\\
+2.61467321180114 -157.407980851971\\
+3.14410830314712 -154.509858496788\\
+3.8867766908927 -151.194812413726\\
+4.34147833005496 -149.575459620346\\
+4.71708469091673 -148.452626370063\\
+5.0781521123279 -147.54143387605\\
+5.41668691103327 -146.824563434096\\
+5.72476623970219 -146.278340167615\\
+6.05036787939111 -145.801958848632\\
+6.33580499265803 -145.462812649902\\
+6.63470812109201 -145.179897840506\\
+6.88395206964506 -144.996230582879\\
+7.14255928554351 -144.852185571993\\
+7.34287044716709 -144.771044487862\\
+7.54879928165369 -144.713610753363\\
+7.68928372075853 -144.6887693788\\
+7.83238259917936 -144.67487131248\\
+7.90492762269657 -144.672073673207\\
+7.97814457207674 -144.672068269963\\
+8.05203967082557 -144.674873086699\\
+8.12661920009201 -144.680505718518\\
+8.27785696619849 -144.700322776507\\
+8.43190929286622 -144.731652171633\\
+8.58882855954615 -144.774620161222\\
+8.8296999554939 -144.861154661988\\
+9.07732652520994 -144.974520251574\\
+9.33189771573286 -145.115059703511\\
+9.6824661193026 -145.345245111981\\
+10.0462042134688 -145.624922678504\\
+10.4236067397645 -145.954621595262\\
+10.9153593533143 -146.437717098176\\
+11.430311291145 -147.000198028813\\
+11.9695570235905 -147.642374300087\\
+12.6503372039588 -148.518221541289\\
+13.369837418249 -149.508431694137\\
+14.2611370719404 -150.806856092002\\
+15.2118551798618 -152.257027633563\\
+16.2259528707813 -153.855415639561\\
+17.4679621512724 -155.857824362758\\
+18.9792164283904 -158.324646174581\\
+20.6212180399902 -161.004831184814\\
+22.6128006633736 -164.213776049563\\
+25.0264009641792 -167.996508201912\\
+27.9541599906775 -172.385696192116\\
+31.8055201533307 -177.791202818151\\
+37.2023668141304 -184.66151495032\\
+47.2796959160057 -195.522851758987\\
+64.0924401935684 -209.260322479074\\
+75.6621850048106 -216.438818850657\\
+86.8838263525077 -222.138960491558\\
+98.8541702191994 -227.181223927243\\
+111.441525146678 -231.601422438283\\
+125.631660247406 -235.762899486069\\
+141.628661629926 -239.672309347542\\
+159.662602210142 -243.349147534466\\
+181.659978837524 -247.086201751378\\
+210.534524276677 -251.148236736065\\
+304.427221206439 -261.185150269465\\
+336.920570598025 -264.207855741295\\
+366.069514759677 -266.879516038908\\
+394.090164040321 -269.457051178812\\
+401.424249049957 -270.137189611979\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -155.730410010604\\
+0.108651577465251 -157.444329842179\\
+0.118051652856881 -159.016305563146\\
+0.128264983052803 -160.454312864014\\
+0.139361927422416 -161.766002170186\\
+0.151418932530433 -162.958631144936\\
+0.163009236097978 -163.924315989144\\
+0.175486714964814 -164.805798805554\\
+0.188919277620761 -165.607251881691\\
+0.2033800305847 -166.332537314949\\
+0.218947676285658 -166.985205158253\\
+0.233543813990654 -167.499274260959\\
+0.24911300260678 -167.962206209181\\
+0.265720110532445 -168.375798945693\\
+0.283434330615137 -168.74167489725\\
+0.299554933435982 -169.018407931952\\
+0.316592411198347 -169.261965935831\\
+0.334598912055007 -169.473073387997\\
+0.350384224529072 -169.624669444468\\
+0.366914237840248 -169.75449639023\\
+0.384224084605498 -169.862835751751\\
+0.398658107358057 -169.934199655476\\
+0.413634368406335 -169.992071969196\\
+0.425234633452872 -170.026676678307\\
+0.43716022482485 -170.053774811373\\
+0.44942026621191 -170.073393329798\\
+0.457784053837654 -170.082328116866\\
+0.466303492974262 -170.087953921985\\
+0.474981480322836 -170.090275173747\\
+0.48382096649261 -170.089295371996\\
+0.492824957004062 -170.085017096763\\
+0.501996513311016 -170.077442017453\\
+0.511338753841437 -170.066570902318\\
+0.525679112201842 -170.044083651815\\
+0.540421642070586 -170.01417571457\\
+0.555577622239876 -169.976838587048\\
+0.576448828292606 -169.915476501316\\
+0.598104096238105 -169.840841797148\\
+0.620572880677654 -169.752879660892\\
+0.649849535446982 -169.624081686899\\
+0.680507369673503 -169.474196167453\\
+0.712611543011191 -169.303038112888\\
+0.753142016597439 -169.069270441224\\
+0.795977700231485 -168.804157497829\\
+0.841249704973636 -168.507248325863\\
+0.897331581458357 -168.120016590165\\
+0.95715215389917 -167.688024548217\\
+1.02096066230607 -167.21042358717\\
+1.0991097009295 -166.60765156004\\
+1.18324062745835 -165.942960546518\\
+1.27381132318649 -165.215223922646\\
+1.37131471775393 -164.423500101669\\
+1.48995507285289 -163.455511153306\\
+1.61885969017819 -162.405343463131\\
+1.77520801171768 -161.14269719135\\
+1.94665634334225 -159.781352889023\\
+2.15443469003193 -158.174948885455\\
+2.40647515001538 -156.302849606343\\
+2.71289780037248 -154.153801679156\\
+3.17322963473503 -151.205529431829\\
+4.54629546953248 -144.377094173206\\
+5.07815211232757 -142.4373419403\\
+5.56859644428648 -140.941375845087\\
+6.05036787939111 -139.712420666708\\
+6.51349094627294 -138.728593464402\\
+6.94771254846023 -137.960976922658\\
+7.34287044716661 -137.377693322938\\
+7.76050333513376 -136.867278165121\\
+8.12661920009201 -136.499908582137\\
+8.51000724712218 -136.186912800657\\
+8.8296999554939 -135.976532727387\\
+9.1614024571388 -135.802299878853\\
+9.50556592010137 -135.664624007383\\
+9.7721469697258 -135.585538330534\\
+10.0462042134681 -135.5272635409\\
+10.2331657833024 -135.499998082861\\
+10.4236067397639 -135.482005348751\\
+10.6175918348298 -135.47328149161\\
+10.7159339982264 -135.472392170035\\
+10.8151870255226 -135.473815278185\\
+10.9153593533136 -135.477548257956\\
+11.118496048193 -135.491931293482\\
+11.3254131515284 -135.515511589385\\
+11.5361810173649 -135.548252090693\\
+11.8597101233768 -135.614439075708\\
+12.192312516491 -135.700954071076\\
+12.5342426546138 -135.807579299964\\
+13.0051125217337 -135.980583697503\\
+13.4936714058834 -136.188179011162\\
+14.1302599059955 -136.49506046189\\
+14.7968806268638 -136.852863183877\\
+15.638467583022 -137.346459227106\\
+16.5279206146492 -137.906215148844\\
+17.629753752872 -138.636698197218\\
+18.9792164283904 -139.56365114987\\
+20.6212180399915 -140.707979086463\\
+22.6128006633721 -142.081517225486\\
+25.4921465445141 -143.980581035505\\
+38.9574561577541 -150.818491561461\\
+43.1156199031825 -152.292378930197\\
+47.2796959160026 -153.530759774255\\
+51.3701354335138 -154.550448738739\\
+55.302242561928 -155.37441864889\\
+59.5353313081449 -156.11600451482\\
+63.5042516859595 -156.694462104983\\
+67.1161176749614 -157.136456527192\\
+70.9334120498816 -157.527799364309\\
+74.9678187496691 -157.867803491394\\
+78.5045620020441 -158.11156313327\\
+82.2081575524031 -158.319136481398\\
+85.2964449974123 -158.45906406804\\
+88.5007491447353 -158.57573797581\\
+91.8254283565626 -158.669165602539\\
+94.4006478941749 -158.724001748113\\
+97.0480887738009 -158.765807723025\\
+99.7697764236289 -158.794618722137\\
+101.626508939302 -158.806628236826\\
+103.51779556302 -158.812897379575\\
+105.444279352618 -158.813443658655\\
+107.406615333344 -158.808286577014\\
+109.405470720574 -158.797447692839\\
+111.441525146678 -158.780950688716\\
+113.515470892099 -158.758821449554\\
+116.698981861712 -158.715129430179\\
+119.971773543585 -158.658934092374\\
+124.478714618793 -158.56476356672\\
+129.154966501489 -158.448895352532\\
+134.006889636394 -158.311696393338\\
+140.328908478584 -158.110846970259\\
+146.949180062486 -157.878281032746\\
+155.307057393347 -157.558920005594\\
+164.140297114445 -157.197790723965\\
+175.082703173578 -156.727362305159\\
+188.48434090338 -156.131494365148\\
+204.791209666503 -155.398634109266\\
+226.64980792737 -154.437974866883\\
+288.044415339625 -152.137238996822\\
+307.246884270909 -151.589904612471\\
+324.721849207315 -151.176005010836\\
+340.041193270368 -150.882498192212\\
+352.81541153808 -150.688877511189\\
+362.710025233077 -150.57150370737\\
+372.882130718292 -150.480909180991\\
+379.82153061908 -150.436755399541\\
+386.890073932801 -150.406593243892\\
+394.090164040346 -150.391310985555\\
+397.740302405804 -150.389535648406\\
+401.424249049931 -150.391827114438\\
+405.142317111462 -150.398305018997\\
+408.894822629482 -150.409090963391\\
+416.504424854512 -150.444083317905\\
+424.255643071768 -150.497817003391\\
+432.151112778964 -150.571337440438\\
+444.2706749607 -150.721086698389\\
+456.730127016882 -150.921572700448\\
+469.539001068009 -151.176749890355\\
+482.707096560317 -151.490746493983\\
+500.840798984813 -152.008364864025\\
+519.655724382751 -152.64888225052\\
+539.177464038763 -153.423469450032\\
+559.432570616944 -154.343745369635\\
+580.448594276896 -155.421679482729\\
+607.832312829711 -157.009344358197\\
+636.507908129576 -158.885996498353\\
+666.5363268125 -161.074189606786\\
+697.981390783064 -163.593949108199\\
+730.909932860277 -166.460804534995\\
+772.48114514036 -170.37056544538\\
+816.416760492152 -174.787371383423\\
+870.843149769058 -180.536564323253\\
+937.50150151455 -187.757089622514\\
+1000 -194.454742635627\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/nominal_performance.pdf b/matlab/figs/nominal_performance.pdf
new file mode 100644
index 0000000..17f6c90
Binary files /dev/null and b/matlab/figs/nominal_performance.pdf differ
diff --git a/matlab/figs/nominal_performance.png b/matlab/figs/nominal_performance.png
new file mode 100644
index 0000000..4d2b412
Binary files /dev/null and b/matlab/figs/nominal_performance.png differ
diff --git a/matlab/figs/nominal_performance.svg b/matlab/figs/nominal_performance.svg
new file mode 100644
index 0000000..e25da45
--- /dev/null
+++ b/matlab/figs/nominal_performance.svg
@@ -0,0 +1,312 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/nominal_performance.tex b/matlab/figs/nominal_performance.tex
new file mode 100644
index 0000000..fa7df33
--- /dev/null
+++ b/matlab/figs/nominal_performance.tex
@@ -0,0 +1,680 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.631in,
+height=1.989in,
+at={(0.325in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.0001,
+ymax=2,
+yminorticks=true,
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.858828372910427\\
+0.948368186628593 0.855430977084206\\
+1.63385387780986 0.848464554621887\\
+2.25607406649686 0.838481392630524\\
+2.84088369018331 0.825483441582937\\
+3.38477285594598 0.809870936125849\\
+3.88677669089267 0.792197453642654\\
+4.38168993151419 0.771590712956729\\
+4.84937406733523 0.749237946678904\\
+5.31772317785097 0.724207917193457\\
+5.77779011797051 0.697321954370245\\
+6.2776601058065 0.665977650728913\\
+6.82077673286569 0.630082981879797\\
+7.34287044716676 0.594526592726723\\
+7.90492762269642 0.555945039936062\\
+8.51000724712225 0.514974205730173\\
+9.24625711640575 0.467067970789047\\
+10.0462042134681 0.418556054880849\\
+11.0164594963366 0.365622540117866\\
+12.1923125164911 0.310492951621024\\
+13.6186523675608 0.255899377733727\\
+15.4949503931463 0.200983368819815\\
+18.1241754737424 0.147379659270318\\
+22.4052786930002 0.0951225182594288\\
+37.2023668141307 0.0325701746959258\\
+56.8531791387375 0.013440163702973\\
+90.1477631452492 0.00523141705716653\\
+175.082703173573 0.00137048551941469\\
+648.353428605473 9.95249271298436e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.87321875395554\\
+2.03849339825246 0.842762445741982\\
+2.66333272517498 0.83095448380834\\
+3.23228397818138 0.816593481799039\\
+3.78074666359935 0.799136525094534\\
+4.3016357581068 0.779075890891317\\
+4.80487043965513 0.756438357165488\\
+5.31772317785097 0.730208726052344\\
+5.83130511352622 0.701059030112028\\
+6.33580499265825 0.670080234481572\\
+6.8839520696455 0.634461435148052\\
+7.41088151564157 0.599039741399914\\
+7.97814457207663 0.560462190434711\\
+8.58882855954626 0.519350493050541\\
+9.33189771573324 0.471115291091679\\
+10.1392540755882 0.422121222953251\\
+11.1184960481927 0.368532160224834\\
+12.3052400435926 0.312628572767655\\
+13.7447909267754 0.257237434830239\\
+15.6384675830225 0.201559134535707\\
+18.2920450484629 0.147333545572781\\
+22.6128006633728 0.0946904792752124\\
+64.6860766154633 0.0103370628835216\\
+104.476597156081 0.0038865455515582\\
+216.438908606402 0.000896417034904274\\
+648.353428605473 9.9617308304661e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.877735575526615\\
+1.05931476351837 0.874305464006002\\
+1.80824493487795 0.867319173127808\\
+2.49687842888433 0.856934390008852\\
+3.11525422355549 0.843783688133473\\
+3.67760910160103 0.828221611966111\\
+4.22304418720667 0.809525257716722\\
+4.76077523022637 0.787445987736134\\
+5.26892142135068 0.763253855962631\\
+5.77779011797051 0.735959672900244\\
+6.2776601058065 0.706489698981801\\
+6.82077673286569 0.672032595959213\\
+7.34287044716676 0.637181230661804\\
+7.90492762269642 0.598593838268588\\
+8.51000724712225 0.556791985687341\\
+9.16140245713852 0.512573897025967\\
+9.95400828762152 0.461209927826783\\
+10.8151870255229 0.409682603934247\\
+11.8597101233767 0.354137402228663\\
+13.1255683577184 0.297163628493032\\
+14.796880626864 0.237479025385925\\
+16.9914417203463 0.180215412604209\\
+20.4319732019527 0.12243775135497\\
+28.2130767593947 0.0609205276528793\\
+43.9180089259609 0.0234968568584744\\
+62.3440188862786 0.0112633048855324\\
+94.400647894176 0.00480247284280627\\
+170.306502925285 0.00145599562188675\\
+539.17746403875 0.000144459049346785\\
+648.353428605473 9.98862381386577e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.896082079333528\\
+1.14039960197003 0.892595369112339\\
+1.94665634334226 0.885412141571421\\
+2.66333272517498 0.874984869751465\\
+3.29243733300777 0.862015507599147\\
+3.88677669089267 0.845917554994339\\
+4.4222739805059 0.827833469530255\\
+4.93962174387833 0.806921258274028\\
+5.46685729972018 0.782070276411418\\
+5.99484250318941 0.753732567749896\\
+6.51349094627281 0.722857059670923\\
+7.01206358900718 0.690802382934365\\
+7.54879928165343 0.654348247776644\\
+8.12661920009194 0.613735120078382\\
+8.74866812047991 0.569543528782212\\
+9.41833153464796 0.52268740065762\\
+10.1392540755882 0.474340182356934\\
+11.0164594963366 0.419788823634392\\
+12.0804213467733 0.36107679595968\\
+13.3698374182495 0.301130975520327\\
+15.0722530931076 0.238824727403901\\
+17.4679621512725 0.176242547825434\\
+21.3958887134342 0.113802016742005\\
+47.2796959160039 0.0202323773294007\\
+66.5001803043112 0.00989396627769575\\
+100.693863147603 0.00422254899655064\\
+185.04070195423 0.00123452981995001\\
+636.507908129558 0.000103805469863415\\
+654.358601888324 9.82167903583186e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.847031258048194\\
+0.948368186628593 0.843685172280113\\
+1.63385387780986 0.836786920156335\\
+2.25607406649686 0.826880370994841\\
+2.84088369018331 0.814018694764293\\
+3.38477285594598 0.798667227286297\\
+3.92277675892772 0.78007053898048\\
+4.4222739805059 0.759709382543977\\
+4.93962174387833 0.735560133866875\\
+5.41668691103316 0.710733735509391\\
+5.93982669392036 0.681057240738531\\
+6.4537154016467 0.649902380522548\\
+7.01206358900718 0.614482185097011\\
+7.54879928165343 0.579601263315291\\
+8.12661920009194 0.54191823475695\\
+8.8296999554941 0.496919790835138\\
+9.59360828709315 0.450230307669646\\
+10.423606739764 0.403113435244874\\
+11.4303112911448 0.35181069687634\\
+12.650337203959 0.29843277324531\\
+14.1302599059953 0.245585360896395\\
+16.0770442167383 0.192431870489834\\
+18.8050405512858 0.14060066909878\\
+23.2469705998565 0.090242180542759\\
+64.0924401935646 0.0105686061752596\\
+100.693863147603 0.00419491426583943\\
+197.376432630026 0.00107943240618828\\
+648.353428605473 9.96629312036596e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.943712666939471\\
+1.46273335620113 0.940064710402118\\
+2.42876438246045 0.932715943025661\\
+3.26222200971167 0.921877234659386\\
+3.95911026646846 0.908501415235609\\
+4.58840412645476 0.892153464267567\\
+5.17265738721602 0.872681086409987\\
+5.72476623970218 0.850039211844668\\
+6.22004882563472 0.82603533029775\\
+6.75818116816111 0.796021212571188\\
+7.27548352919623 0.763572048301402\\
+7.76050333513357 0.730387030243685\\
+8.27785696619847 0.692695442015772\\
+8.8296999554941 0.650778667210147\\
+9.41833153464796 0.605263921936974\\
+10.0462042134681 0.557106405738376\\
+10.8151870255229 0.500376947063193\\
+11.7508713090481 0.43672271602876\\
+12.8857621318552 0.369192924567868\\
+14.2611370719413 0.301812687729789\\
+16.2259528707809 0.229250923595083\\
+19.3324228755505 0.154762894968701\\
+39.3182875570577 0.030895807933336\\
+51.8459354389291 0.0169657744804147\\
+70.93341204988 0.00876555832109111\\
+104.476597156081 0.00395012636097944\\
+183.342548256229 0.0012650599903652\\
+539.17746403875 0.000145391080818849\\
+654.358601888324 9.86864520795517e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.900550303053564\\
+0.637976680860628 0.90075446069925\\
+1.53174046370208 0.89564236752042\\
+2.29805998875885 0.887190714100143\\
+3.00246170908555 0.875325333966223\\
+3.64385898376355 0.860378461196345\\
+4.22304418720667 0.842942097918905\\
+4.76077523022637 0.823062592896096\\
+5.26892142135068 0.800853019137789\\
+5.77779011797051 0.775288195691349\\
+6.2776601058065 0.747118427636217\\
+6.75818116816111 0.717506189731341\\
+7.27548352919623 0.683361646872053\\
+7.8323825991792 0.644726322597922\\
+8.43190929286625 0.601973637638334\\
+9.07732652521022 0.555842387233448\\
+9.77214696972572 0.507403274716529\\
+10.5201521761616 0.457953546991197\\
+11.4303112911448 0.402815536424865\\
+12.534242654614 0.344248072617612\\
+13.8720978054162 0.285263596855044\\
+15.6384675830225 0.224799299233558\\
+18.2920450484629 0.16166048666357\\
+23.2469705998565 0.0956443525360238\\
+40.0500075787361 0.0289525205337186\\
+54.7947233690029 0.0148513212750102\\
+78.5045620020451 0.00703450951483356\\
+125.631660247412 0.00269775525040683\\
+267.563844455205 0.000589129278630076\\
+654.358601888324 9.82753974221254e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.0079239149287\\
+2.76338529005317 1.0043467125768\\
+4.03278998219371 0.997057942982311\\
+4.89428989611453 0.986639039698765\\
+5.56859644428641 0.973227858246956\\
+6.16296625513294 0.956092202897175\\
+6.69616005485322 0.935497895589723\\
+7.20871503378214 0.910428416659188\\
+7.68928372075831 0.881990874034396\\
+8.20188949920221 0.846526222371268\\
+8.66837993001977 0.810116322166632\\
+9.16140245713852 0.768173188485402\\
+9.68246611930313 0.721167574843965\\
+10.2331657833025 0.670032919210568\\
+10.9153593533139 0.606936593266064\\
+11.6430313292088 0.542495759137355\\
+12.534242654614 0.470332050962883\\
+13.7447909267754 0.386624060439893\\
+15.4949503931463 0.293631939414985\\
+18.6324631193156 0.187981509363732\\
+28.2130767593947 0.068628915473876\\
+35.5263467657814 0.0401132588983729\\
+44.7353305449847 0.023902104392974\\
+57.9112264764176 0.0136475231648815\\
+77.784110712865 0.00732819577568961\\
+113.5154708921 0.00336499643820307\\
+197.376432630026 0.00109781270086484\\
+575.121707184161 0.000128506004461652\\
+654.358601888324 9.9248935938668e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.861392341438008\\
+1.00230754828387 0.858044591641878\\
+1.72678090388436 0.851079376809565\\
+2.38439047009372 0.840928478170401\\
+2.97490754721444 0.828214830824117\\
+3.54445567397044 0.812309730861062\\
+4.07014245321944 0.794181469808166\\
+4.58840412645476 0.772937571204895\\
+5.07815211232767 0.749808527656958\\
+5.56859644428641 0.723842721575678\\
+6.05036787939122 0.69590697109644\\
+6.57382014340959 0.663316289431152\\
+7.07701066118189 0.630378735067301\\
+7.618717702323 0.593887183408437\\
+8.20188949920221 0.554274049863962\\
+8.8296999554941 0.512224384201335\\
+9.59360828709315 0.463125573965069\\
+10.423606739764 0.41353356098784\\
+11.4303112911448 0.359629763095066\\
+12.650337203959 0.303791992480311\\
+14.1302599059953 0.248879111160407\\
+16.0770442167383 0.194114518461388\\
+18.979216428391 0.138545669656224\\
+24.1202820761801 0.0834787143759797\\
+50.8987019351968 0.0170447276976568\\
+75.6621850048106 0.00751018906991671\\
+126.795284678643 0.00263100809668359\\
+304.427221206431 0.000452780126654787\\
+648.353428605473 9.969268867102e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.01182011777746\\
+3.0302710828664 1.00802214468156\\
+4.26215882901533 1.00056820483637\\
+5.12518692705333 0.989386545398402\\
+5.77779011797051 0.975443997745688\\
+6.33580499265825 0.958401537662979\\
+6.8839520696455 0.936077684703866\\
+7.41088151564157 0.908787894902512\\
+7.90492762269642 0.877828800424826\\
+8.35452805838287 0.845329051174317\\
+8.8296999554941 0.807035294414957\\
+9.33189771573324 0.763083364954926\\
+9.86265846131283 0.714091459709612\\
+10.5201521761616 0.652051955908\\
+11.2214776820798 0.587021347156463\\
+12.0804213467733 0.512398196953101\\
+13.1255683577184 0.432269855242197\\
+14.5265392594678 0.344723775964454\\
+16.6810053720006 0.248136211842234\\
+33.3060034362459 0.0466382173536748\\
+41.9394395566719 0.0276251360101248\\
+53.2999408084409 0.0163278625052381\\
+70.2824426430835 0.00906547443511728\\
+99.7697764236321 0.00438442981232446\\
+161.141427725302 0.00165342021368984\\
+366.069514759691 0.000317688834462534\\
+654.358601888324 9.92826149093876e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.02371861794019\\
+3.746050032749 1.01934470412741\\
+4.84937406733523 1.01178654698253\\
+5.62017384808319 1.00032910713742\\
+6.22004882563472 0.985800609357652\\
+6.75818116816111 0.967268198732134\\
+7.27548352919623 0.943671235757102\\
+7.76050333513357 0.915952193304188\\
+8.20188949920221 0.885985732919552\\
+8.66837993001977 0.849733908656776\\
+9.16140245713852 0.807069876145914\\
+9.68246611930313 0.758396253768374\\
+10.2331657833025 0.704700683836606\\
+10.9153593533139 0.637730210106194\\
+11.6430313292088 0.568868087487191\\
+12.534242654614 0.49156213631773\\
+13.7447909267754 0.402051335926094\\
+15.4949503931463 0.303270272210922\\
+18.979216428391 0.183725769166291\\
+26.4498018242772 0.0810067067614476\\
+33.0003479112529 0.0479152665883068\\
+41.1731993116168 0.0288995949193585\\
+52.3261423948667 0.0170382532948012\\
+68.9983712143002 0.00944170091566636\\
+97.0480887738031 0.00464713216075714\\
+153.881775003835 0.00181685819612443\\
+330.764978074424 0.00038965550332221\\
+654.358601888324 9.93679546934658e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.867689784395908\\
+0.957152153899186 0.864139587459316\\
+1.69523234155412 0.857349040951512\\
+2.36250846547795 0.847411910348477\\
+2.97490754721444 0.834530915355492\\
+3.54445567397044 0.81885983071243\\
+4.07014245321944 0.800936950084313\\
+4.58840412645476 0.779862847296455\\
+5.07815211232767 0.756844987800625\\
+5.56859644428641 0.730926546767057\\
+6.05036787939122 0.70296422788883\\
+6.57382014340959 0.670257110663406\\
+7.07701066118189 0.637123756093821\\
+7.618717702323 0.600339810265\\
+8.20188949920221 0.560336861934412\\
+8.8296999554941 0.517809375144982\\
+9.59360828709315 0.468092346010648\\
+10.423606739764 0.417834027232253\\
+11.4303112911448 0.363184910433794\\
+12.650337203959 0.306579822355676\\
+14.1302599059953 0.250943911030778\\
+16.0770442167383 0.195515568521387\\
+18.979216428391 0.139359749311254\\
+24.1202820761801 0.0838301463577769\\
+49.5102015955635 0.0180854914349853\\
+72.9227205872831 0.00810693612063921\\
+119.971773543589 0.00294365273794219\\
+270.042071883778 0.00057591906602415\\
+648.353428605473 9.97280967374308e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.867077228000441\\
+1.03996091395412 0.86366863423264\\
+1.77520801171764 0.85675088170975\\
+2.45126006203334 0.84652464870828\\
+3.05833803237843 0.833651056205895\\
+3.64385898376355 0.817468375741696\\
+4.18428850790158 0.798944748387355\\
+4.71708469091702 0.777158210074975\\
+5.22056752784697 0.753368035383304\\
+5.72476623970218 0.726600334246797\\
+6.22004882563472 0.697758616802507\\
+6.75818116816111 0.664085653413739\\
+7.27548352919623 0.630056047649048\\
+7.8323825991792 0.592387257253674\\
+8.43190929286625 0.551566851052468\\
+9.07732652521022 0.508348646447623\\
+9.86265846131283 0.458071568854551\\
+10.7159339982267 0.407531449122945\\
+11.7508713090481 0.352913455842257\\
+13.0051125217341 0.296724388875111\\
+14.5265392594678 0.241891397606868\\
+16.6810053720006 0.184202422115739\\
+19.8745954958099 0.128083816458707\\
+26.4498018242772 0.0693581629951671\\
+44.324785912404 0.0229118948186446\\
+64.0924401935646 0.0105987720176781\\
+99.7697764236321 0.00428234303527992\\
+190.230118866895 0.00116411881176843\\
+648.353428605473 9.9792079159358e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.960831458345208\\
+2.31934505927443 0.950465364681279\\
+3.23228397818138 0.940820424133344\\
+3.99578030189527 0.92820079966161\\
+4.67379510799246 0.912314850986399\\
+5.26892142135068 0.893871304117158\\
+5.83130511352622 0.871971926620689\\
+6.33580499265825 0.848321521659158\\
+6.82077673286569 0.821939865410604\\
+7.34287044716676 0.789701391194262\\
+7.8323825991792 0.756239905796447\\
+8.35452805838287 0.717743987996805\\
+8.9114823228402 0.67444799874279\\
+9.50556592010119 0.62699996798701\\
+10.1392540755882 0.576451857732165\\
+10.9153593533139 0.516637179354627\\
+11.7508713090481 0.45678058743747\\
+12.7675070431927 0.391987439850256\\
+14.1302599059953 0.319637452722339\\
+15.9295021257212 0.24673245950103\\
+18.979216428391 0.165619597163944\\
+36.5226736430818 0.0366867693831822\\
+47.2796959160039 0.0207990013241897\\
+62.9214610961035 0.0113051406477963\\
+88.5007491447344 0.00556289974256985\\
+140.328908478587 0.00217385923477218\\
+298.865287355038 0.000474756139824551\\
+654.358601888324 9.8821722414869e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.927864570120145\\
+0.196016347431919 0.935850243104776\\
+0.492824957004051 0.93877751996797\\
+1.48995507285285 0.935765394797471\\
+2.42876438246045 0.928282107161086\\
+3.23228397818138 0.917537970595891\\
+3.92277675892772 0.904071367222256\\
+4.5462954695324 0.887704787504513\\
+5.12518692705333 0.868307904782543\\
+5.67222897164455 0.845851394453869\\
+6.22004882563472 0.819146868830294\\
+6.75818116816111 0.788858633426438\\
+7.27548352919623 0.756250679738153\\
+7.76050333513357 0.723027309498396\\
+8.27785696619847 0.685419231184212\\
+8.8296999554941 0.643726194383121\\
+9.41833153464796 0.598579801738129\\
+10.1392540755882 0.543975474155127\\
+10.9153593533139 0.487854261546295\\
+11.8597101233767 0.425245220855427\\
+13.0051125217341 0.359161762257457\\
+14.3932264471941 0.293485944965106\\
+16.3762407452169 0.222953989993791\\
+19.6922025547917 0.147519437883495\\
+38.957456157755 0.0314686038843084\\
+51.3701354335135 0.0172814156554051\\
+70.2824426430835 0.0089279308814868\\
+103.517795563018 0.00402285583958418\\
+181.659978837533 0.00128823760327083\\
+529.326605836057 0.000150805967680399\\
+654.358601888324 9.86531308388883e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.908743779297948\\
+0.492824957004051 0.904721424003228\\
+1.01159111222383 0.89604695295751\\
+1.80824493487795 0.882690619103776\\
+2.54334576130465 0.86888294568185\\
+3.17322963473498 0.853947002640217\\
+3.746050032749 0.83691699571832\\
+4.3016357581068 0.816735957356515\\
+4.80487043965513 0.795112535430054\\
+5.31772317785097 0.769777531771712\\
+5.83130511352622 0.741241594508905\\
+6.33580499265825 0.7104816988152\\
+6.82077673286569 0.678836037664578\\
+7.34287044716676 0.643129067854902\\
+7.90492762269642 0.603620149697177\\
+8.51000724712225 0.560866475569011\\
+9.16140245713852 0.515710867300886\\
+9.95400828762152 0.463366751042736\\
+10.8151870255229 0.410991340389329\\
+11.8597101233767 0.354699490868311\\
+13.1255683577184 0.297152901944693\\
+14.796880626864 0.23708638121002\\
+16.9914417203463 0.179668520743606\\
+20.4319732019527 0.121939332340237\\
+29.2729483504282 0.0559990669893968\\
+43.9180089259609 0.0234310297661219\\
+62.9214610961035 0.0110310542558349\\
+96.157460014321 0.00462134674792017\\
+178.341022071001 0.0013265387182835\\
+630.666554056741 0.000105551462984392\\
+648.353428605473 9.986903562119e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.01134543201755\\
+0.337698031082509 1.01703072148836\\
+2.49687842888433 1.01664224120452\\
+4.10784088996565 1.011006418974\\
+5.03154894503806 1.00182752594879\\
+5.72476623970218 0.98929484021516\\
+6.33580499265825 0.972396804317614\\
+6.8839520696455 0.95134642559829\\
+7.41088151564157 0.925083871971524\\
+7.90492762269642 0.894800142265139\\
+8.35452805838287 0.862601824461706\\
+8.8296999554941 0.82426432482132\\
+9.33189771573324 0.779865174072326\\
+9.86265846131283 0.730009754459522\\
+10.423606739764 0.675839622873933\\
+11.1184960481927 0.609289444815205\\
+11.9695570235904 0.532264233110358\\
+13.0051125217341 0.449025702583647\\
+14.3932264471941 0.357736432279346\\
+16.527920614649 0.25692869018044\\
+32.397426295282 0.0499043164598144\\
+40.4209583979631 0.0300737378945416\\
+51.3701354335135 0.017714152949042\\
+67.1161176749629 0.0100003931321142\\
+93.534315202924 0.00501066528238942\\
+146.949180062482 0.00199367499574087\\
+304.427221206431 0.00046003818910679\\
+654.358601888324 9.93333042170353e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.963992294478471\\
+1.6642601764859 0.960308343691362\\
+2.73802517792786 0.95285537023742\\
+3.61041859717334 0.942157274151421\\
+4.34147833005509 0.928541001240229\\
+4.98537346387389 0.91189869492794\\
+5.56859644428641 0.892243596985625\\
+6.10640754223204 0.869736418602695\\
+6.63470812109235 0.843263976114331\\
+7.14255928554313 0.813736954116429\\
+7.618717702323 0.782650498561633\\
+8.12661920009194 0.746349127248791\\
+8.66837993001977 0.704858769287859\\
+9.24625711640575 0.658621264987498\\
+9.86265846131283 0.608529800067724\\
+10.5201521761616 0.555871753711796\\
+11.3254131515281 0.494517485449588\\
+12.3052400435926 0.426771894631903\\
+13.4936714058831 0.356358881722975\\
+15.0722530931076 0.281989011723979\\
+17.4679621512725 0.202405708546289\\
+23.0336287314213 0.106139089201857\\
+32.1001089554318 0.0492262142011478\\
+41.5545533471888 0.0276233646621786\\
+54.2918617761894 0.0154753298614196\\
+73.5981447526577 0.00815342545641269\\
+108.401435917833 0.00367480479003875\\
+190.230118866895 0.00117709566550151\\
+564.614141930367 0.000132820120541505\\
+654.358601888324 9.88663254855117e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.877622707114745\\
+0.163009236097974 0.888486880362965\\
+0.280833199882317 0.908179181291219\\
+0.545427130532984 0.931723875356105\\
+0.872852662384837 0.940774951230611\\
+1.47628147190939 0.943603304042768\\
+2.38439047009372 0.93946838038887\\
+3.26222200971167 0.930166201468068\\
+3.99578030189527 0.917875430057558\\
+4.67379510799246 0.901872877801515\\
+5.26892142135068 0.883366802757606\\
+5.83130511352622 0.861493267009318\\
+6.33580499265825 0.837968377734461\\
+6.82077673286569 0.811817713531531\\
+7.34287044716676 0.779957704888835\\
+7.8323825991792 0.746969307872238\\
+8.35452805838287 0.709086517316337\\
+8.9114823228402 0.666535158547049\\
+9.50556592010119 0.619937031564368\\
+10.1392540755882 0.570302362061114\\
+10.9153593533139 0.511544832944237\\
+11.7508713090481 0.452690130274808\\
+12.7675070431927 0.388890762217512\\
+14.1302599059953 0.317512528408179\\
+15.9295021257212 0.245418162933822\\
+18.8050405512858 0.16853554447441\\
+38.5999361767977 0.0324010585266168\\
+50.4315948717136 0.0180820696227002\\
+67.7377599751776 0.00967873687667321\\
+97.9469667069541 0.00451572165901894\\
+164.140297114447 0.00158319840562663\\
+408.894822629486 0.00025322616658056\\
+654.358601888324 9.87903863063193e-05\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.02041485662273\\
+1.27381132318648 1.01592709235967\\
+3.67760910160103 1.009476155612\\
+4.71708469091702 1.00061828095282\\
+5.46685729972018 0.988448206999938\\
+6.10640754223204 0.972186615873601\\
+6.63470812109235 0.953467310571691\\
+7.14255928554313 0.930204406710297\\
+7.618717702323 0.903338944410416\\
+8.12661920009194 0.869278975243414\\
+8.58882855954626 0.833793156542751\\
+9.07732652521022 0.792381715062998\\
+9.59360828709315 0.745411912749277\\
+10.1392540755882 0.693764349603233\\
+10.8151870255229 0.629400093302232\\
+11.5361810173648 0.563103921745512\\
+12.4192135270178 0.488375963776856\\
+13.6186523675608 0.401282736818957\\
+15.211855179861 0.31103732786719\\
+18.1241754737424 0.203246330916891\\
+27.9541599906786 0.0704709195515893\\
+34.8772747481418 0.041974147194429\\
+43.9180089259609 0.0249500680554351\\
+56.3314267060136 0.0145018061238544\\
+74.9678187496688 0.00792234701090756\\
+108.401435917833 0.00370009818155797\\
+183.342548256229 0.00127448678559471\\
+482.707096560319 0.000182583482120144\\
+654.358601888324 9.93011510880771e-05\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1\\
+1000 1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/nyquist_plot_sisotool_controller.pdf b/matlab/figs/nyquist_plot_sisotool_controller.pdf
new file mode 100644
index 0000000..9522a38
Binary files /dev/null and b/matlab/figs/nyquist_plot_sisotool_controller.pdf differ
diff --git a/matlab/figs/nyquist_plot_sisotool_controller.png b/matlab/figs/nyquist_plot_sisotool_controller.png
new file mode 100644
index 0000000..70008ff
Binary files /dev/null and b/matlab/figs/nyquist_plot_sisotool_controller.png differ
diff --git a/matlab/figs/nyquist_robustness.pdf b/matlab/figs/nyquist_robustness.pdf
new file mode 100644
index 0000000..ca3dec5
Binary files /dev/null and b/matlab/figs/nyquist_robustness.pdf differ
diff --git a/matlab/figs/nyquist_robustness.png b/matlab/figs/nyquist_robustness.png
new file mode 100644
index 0000000..b36bd7d
Binary files /dev/null and b/matlab/figs/nyquist_robustness.png differ
diff --git a/matlab/figs/nyquist_robustness.svg b/matlab/figs/nyquist_robustness.svg
new file mode 100644
index 0000000..a7acbc2
--- /dev/null
+++ b/matlab/figs/nyquist_robustness.svg
@@ -0,0 +1,166 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/nyquist_robustness.tex b/matlab/figs/nyquist_robustness.tex
new file mode 100644
index 0000000..2e47f20
--- /dev/null
+++ b/matlab/figs/nyquist_robustness.tex
@@ -0,0 +1,712 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.231in,
+height=1.991in,
+at={(0.505in,0.42in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmin=-1.4,
+xmax=0.2,
+xtick={-1.4, -1.2, -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2},
+xlabel={Real Part},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-1.4,
+ymax=0.2,
+ytick={-1.4, -1.2, -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2},
+ylabel={Imaginary Part},
+axis background/.style={fill=white},
+xmajorgrids,
+ymajorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.36797893526011 -1.50001862303624\\
+-1.16498995424946 -1.35696621231185\\
+-0.99559961025809 -1.22636638984475\\
+-0.853981047113767 -1.10705800080225\\
+-0.735287602107294 -0.998016431478695\\
+-0.635489695862679 -0.898340115021801\\
+-0.551240783141879 -0.807238670583468\\
+-0.479767470373703 -0.724021826265133\\
+-0.418779528703161 -0.648088368331652\\
+-0.366395990332399 -0.578914495116748\\
+-0.321083862027054 -0.516041206974297\\
+-0.281606321007443 -0.459060726222526\\
+-0.216422889520012 -0.361318857422488\\
+-0.0929771380261113 -0.173362161727646\\
+-0.035769159430413 -0.087189343521481\\
+-0.0217254152011825 -0.0637445100449405\\
+-0.0132966735281785 -0.0474701710373959\\
+-0.00732897645877051 -0.0328869515231414\\
+-0.00480426849737592 -0.0235190250988806\\
+-0.00437071071015693 -0.0174407071898124\\
+-0.0051960505234796 -0.0141102837331601\\
+-0.0087652414789805 -0.00586854263157233\\
+-0.00814604208714309 -0.00174554484874134\\
+-0.00563245364328702 0.00109158594302494\\
+-0.00301516687412939 0.00183036879614207\\
+-0.000566779138372553 0.00101175288654698\\
+4.33619439887956e-06 4.64928740351311e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.38182288726253 -1.47720407548674\\
+-1.17870593604476 -1.33548392815947\\
+-1.00915187892965 -1.20606472916479\\
+-0.867327929571845 -1.08779627251356\\
+-0.748382296263 -0.979666505553309\\
+-0.6482811237289 -0.880787680121524\\
+-0.563674588518503 -0.790384251379557\\
+-0.491787249016289 -0.707781595808656\\
+-0.430328358296008 -0.632394720384497\\
+-0.377418281951746 -0.563716288696618\\
+-0.331527494429166 -0.501303563132216\\
+-0.291424947147702 -0.444764255017566\\
+-0.224886811689192 -0.347900707876285\\
+-0.130461816785873 -0.209758784622679\\
+-0.0836704578794285 -0.144049177057663\\
+-0.0317717903308949 -0.0719651343124343\\
+-0.0192568735770182 -0.0526247411250802\\
+-0.0101062808148391 -0.0357399886459873\\
+-0.00584629385641566 -0.0250681751717676\\
+-0.00427760097148022 -0.01821958147713\\
+-0.00452284243741552 -0.0136749557973785\\
+-0.00641101232382146 -0.00970837892099996\\
+-0.00796341091244956 -0.00525775051172261\\
+-0.00737661196267081 -0.00153941521146583\\
+-0.00508976562629626 0.00100992422232382\\
+-0.00272072529591427 0.0016654180204112\\
+-0.000312287827330282 0.000721997291961651\\
+3.9232421120694e-06 4.20209650453529e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.50535724900931\\
+-1.390562472599 -1.39960601016154\\
+-1.1914736871022 -1.26351068856521\\
+-1.02514489104354 -1.13907720422495\\
+-0.885858919182712 -1.0252185865401\\
+-0.768857657453007 -0.920980627146513\\
+-0.670182863069839 -0.825529617702031\\
+-0.586545725763649 -0.738141612238793\\
+-0.515220401554461 -0.658192268771019\\
+-0.453957319695559 -0.585146379755512\\
+-0.400912442964713 -0.518546331952047\\
+-0.354588922046141 -0.457998997818767\\
+-0.277564988204617 -0.353722680740706\\
+-0.189930939976545 -0.234891112679668\\
+-0.145100605685094 -0.177205309134045\\
+-0.10905479740875 -0.13363228930125\\
+-0.0806420898717188 -0.10134999526768\\
+-0.0423866839328368 -0.0603668217745521\\
+-0.0182877989612005 -0.0341876256850084\\
+-0.00949586865416374 -0.022925836151285\\
+-0.00479910770039127 -0.014741544921457\\
+-0.00363324610547067 -0.0100681058133638\\
+-0.00435743584879122 -0.00733261309976729\\
+-0.00563324611328664 -0.00348377749065309\\
+-0.00514088000326818 -0.000941016041339227\\
+-0.00351299106432434 0.000772349409272843\\
+-0.00127640949395635 0.00110843534418881\\
+4.5667588106646e-06 6.23927080400932e-06\\
+2.72330119810427e-06 2.90272460934382e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.43933230012855\\
+-1.39014801728604 -1.33497194103752\\
+-1.19460034247808 -1.20338328527939\\
+-1.03106667895463 -1.08298283611798\\
+-0.893937910245688 -0.972733738271957\\
+-0.778545397576963 -0.871729976747991\\
+-0.681005749260745 -0.779184580275941\\
+-0.598093858100534 -0.694419087896208\\
+-0.527139466729534 -0.616853286290956\\
+-0.465943040238388 -0.545994296038062\\
+-0.412707063151534 -0.481424259857306\\
+-0.324603371248104 -0.369768150063148\\
+-0.224594758202364 -0.24163502501623\\
+-0.173101063533159 -0.179142060617866\\
+-0.131238985926635 -0.132015245153821\\
+-0.0977965793420235 -0.0974032549294708\\
+-0.0717255509224966 -0.0724620216290568\\
+-0.0372169004653178 -0.0419171421237561\\
+-0.0113824474282764 -0.0188774918819543\\
+-0.0052993790630409 -0.0118030666465663\\
+-0.00317287741486938 -0.00732636441653822\\
+-0.00368234294209269 -0.00471381713303654\\
+-0.00414124902298907 -0.00149935199024642\\
+-0.00324506492290144 0.000141213576262844\\
+-0.00135648711214476 0.000896926935640474\\
+6.36300647149923e-06 1.34794078845424e-05\\
+2.00669003902476e-06 2.12802817678437e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.40721295054181 -1.50156739028061\\
+-1.20178524747 -1.35774138624796\\
+-1.03037255937286 -1.2262867202962\\
+-0.887048588287306 -1.10604131677438\\
+-0.766879381711734 -0.995984144172445\\
+-0.66575895496951 -0.895222532873192\\
+-0.580274762417476 -0.802980811868838\\
+-0.50759792713406 -0.718589254344256\\
+-0.445393717784121 -0.641472465991367\\
+-0.391748190748267 -0.571136560494852\\
+-0.345107264707861 -0.50715481170179\\
+-0.268117191810962 -0.396787481264092\\
+-0.158667181351622 -0.237293166895955\\
+-0.119682153071083 -0.182850248896864\\
+-0.0761947206444538 -0.124806339319024\\
+-0.0286356585068848 -0.0622326034062173\\
+-0.0147214373199167 -0.041285974693078\\
+-0.00793608763209153 -0.0283876163128598\\
+-0.00495421125148821 -0.0202118930058093\\
+-0.00418445078559193 -0.0149395097448488\\
+-0.00511916080669161 -0.0111547512214183\\
+-0.00759687328516145 -0.00495340156716906\\
+-0.00701661188024461 -0.00142938741804888\\
+-0.00483232213585594 0.000978774960654905\\
+-0.0017693372039489 0.00149795212377613\\
+9.72267318344322e-06 1.77783858734681e-05\\
+3.72888041888508e-06 3.99017586238948e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.27208837321292\\
+-1.39716627206371 -1.17630455776466\\
+-1.21038109134187 -1.05591464132848\\
+-1.05382757098056 -0.945510521341182\\
+-0.922155825698476 -0.844171632064228\\
+-0.810909594945431 -0.751102653568614\\
+-0.716380056739696 -0.665623346297092\\
+-0.635486852874352 -0.587159266774018\\
+-0.565681776172733 -0.515232257623042\\
+-0.504870987163716 -0.449449666877219\\
+-0.451351857781089 -0.389491445258653\\
+-0.322336128081188 -0.242109933357459\\
+-0.287083161402663 -0.203113883485638\\
+-0.254840816512332 -0.168826215361465\\
+-0.225317194002946 -0.138995615862977\\
+-0.198318738881838 -0.113333714587125\\
+-0.173715475938874 -0.0915149599576774\\
+-0.151411228853189 -0.0731828044827578\\
+-0.131320429905931 -0.0579606496540186\\
+-0.113352259593073 -0.0454653512431906\\
+-0.0833474532940193 -0.0271710062376214\\
+-0.060367079025099 -0.0155770447432009\\
+-0.0432123006033962 -0.00848854367024243\\
+-0.0257835325709106 -0.00291588432463863\\
+-0.0107237621048124 0.000177006883427477\\
+-0.000447154326500998 0.000815177742687245\\
+0.000199213577757984 0.000102653636737893\\
+-1.24520055377886e-07 -1.7827892340172e-07\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.41816083355792\\
+-1.39111423860558 -1.31494957176359\\
+-1.19664988050259 -1.18478191309627\\
+-1.03397797724532 -1.06564817601379\\
+-0.897521565273329 -0.956527009778565\\
+-0.782638365207144 -0.856526999363723\\
+-0.68546667675408 -0.764875118215509\\
+-0.602799409612989 -0.680906382401853\\
+-0.531981532782589 -0.604053702796353\\
+-0.470826731733197 -0.533837002298575\\
+-0.417549387966524 -0.469850839872852\\
+-0.329158213194562 -0.359233915915555\\
+-0.258578690706421 -0.269868827319196\\
+-0.20101047972631 -0.199592917607625\\
+-0.17624313989082 -0.170879496170876\\
+-0.133749916912614 -0.124634186968315\\
+-0.0997313436822493 -0.0908914511912604\\
+-0.0731701415692267 -0.0667865919211876\\
+-0.0448867741119467 -0.0432274586177561\\
+-0.00833131901533979 -0.0135195122024596\\
+-0.00369643791863172 -0.00795217538798632\\
+-0.00301366207083786 -0.00496530442593035\\
+-0.00361480198308617 -0.00123842681363939\\
+-0.00222291641242389 0.00057014286607826\\
+-0.000128435994781517 0.000322187601693003\\
+1.74001221453501e-06 1.83944701537264e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.40518166436843 -0.987606247120369\\
+-1.22887519719764 -0.880530136994483\\
+-1.08067114243838 -0.782012276291244\\
+-0.955529787416411 -0.691269592841817\\
+-0.849248915950594 -0.607637761976297\\
+-0.758328456177841 -0.530562957167996\\
+-0.679861067474466 -0.459594034455762\\
+-0.611444349026914 -0.394373906700984\\
+-0.551110646080663 -0.33462891340734\\
+-0.404329990602502 -0.186449446219706\\
+-0.363547630259094 -0.146989508935129\\
+-0.325818568875203 -0.112299857257094\\
+-0.290817052997111 -0.0822253977411547\\
+-0.258351016321737 -0.0565630203213403\\
+-0.228321307603254 -0.0350540603561207\\
+-0.200683574472227 -0.0173850475203099\\
+-0.175415482369833 -0.00319616559443103\\
+-0.152491395575903 0.00790448237466346\\
+-0.131865550816678 0.0163235138611968\\
+-0.113463492331842 0.022464641397526\\
+-0.0971804812194699 0.0267131269450156\\
+-0.0828849713753474 0.0294238198556702\\
+-0.0704251039841952 0.0309133724686981\\
+-0.0503493682620504 0.0312854352020546\\
+-0.035614703220328 0.029532475400748\\
+-0.0249764650399031 0.0267789413151296\\
+-0.0144521981416625 0.0221893779733566\\
+-0.00666226291539873 0.0167603968840835\\
+0.00368681613247634 0.00662391230888892\\
+0.00485659848845388 0.00442253886838118\\
+0.00489742117628533 0.00170268932680862\\
+0.00355533440042 -0.000316714889164293\\
+0.00136715338370563 -0.000972981216374125\\
+-6.79068082964918e-06 -1.2996820051292e-05\\
+-2.66047235131239e-06 -2.92258535661283e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.38902856229793 -1.45551287048673\\
+-1.18643209304947 -1.31531452218425\\
+-1.01725943664879 -1.18722067297964\\
+-0.875693559397491 -1.07010627842703\\
+-0.756895331014086 -0.962981561468822\\
+-0.6568411525733 -0.864978981279307\\
+-0.572189716548702 -0.775341745329267\\
+-0.500172999973672 -0.693412955796093\\
+-0.438507191713923 -0.618624560296616\\
+-0.385319673404632 -0.550485435440119\\
+-0.339088490075415 -0.488568209257773\\
+-0.262859273957515 -0.381921446496424\\
+-0.154924767715682 -0.228171081715673\\
+-0.116674089351829 -0.17578198796489\\
+-0.0741485239506783 -0.119969363206328\\
+-0.0278119388457905 -0.0598281525976005\\
+-0.0142865437579109 -0.0396945504364921\\
+-0.0076943336644939 -0.027294696288594\\
+-0.00443881916692379 -0.0179571755619099\\
+-0.00411255337252636 -0.0133789794180201\\
+-0.00539632419288449 -0.00982108596077569\\
+-0.007000799624306 -0.00633139651291259\\
+-0.0072592796844142 -0.00304390270213362\\
+-0.00581360068223735 1.24182885421487e-05\\
+-0.00348182804523778 0.00141147801668362\\
+-0.000734719352422086 0.00104161110457146\\
+3.58602963856924e-06 3.8370184329839e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.40587575072567 -0.976907284632715\\
+-1.2301620101815 -0.870585211221724\\
+-1.0824312872856 -0.772739309726946\\
+-0.957661098200763 -0.682594143776437\\
+-0.85166324906427 -0.599492680290978\\
+-0.760949092302939 -0.5228881683826\\
+-0.682620658909303 -0.45233642909619\\
+-0.614283362970828 -0.387487301851919\\
+-0.553976262058157 -0.328074038284356\\
+-0.40701722257435 -0.180721895373068\\
+-0.36610819392301 -0.141502947842202\\
+-0.328228535223561 -0.107046073237919\\
+-0.293058506240449 -0.0772003917522754\\
+-0.260412038610811 -0.0517659075396768\\
+-0.230195754192921 -0.0304859051234192\\
+-0.202370615605738 -0.0130477336346471\\
+-0.176918932070828 0.000908602166184602\\
+-0.153818883214299 0.0117759723340951\\
+-0.133027611836686 0.0199625175609592\\
+-0.114472657854412 0.0258737757987983\\
+-0.0980504350656257 0.029896914601744\\
+-0.0836298230247263 0.0323885923384957\\
+-0.071058803305682 0.0336670502896259\\
+-0.050799921198446 0.0336455533420752\\
+-0.0359275137133446 0.031542171847549\\
+-0.0251876405651612 0.0284834315375055\\
+-0.0145594537493352 0.0235176352007829\\
+-0.00668477455249028 0.0177201290161542\\
+0.00393272466969208 0.00697034786254025\\
+0.00515063275253169 0.00464501577419418\\
+0.00517908306093684 0.00177733429293658\\
+0.0037537844649238 -0.000347030607327214\\
+0.00144141669328302 -0.0010313358648959\\
+-7.18108528441341e-06 -1.37248919762634e-05\\
+-2.81157544201882e-06 -3.08613036503758e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.40673159644642 -0.94784087454129\\
+-1.23265462983521 -0.843563429933881\\
+-1.0862277609309 -0.74754597837873\\
+-0.962477288676397 -0.659033725398723\\
+-0.857255063437159 -0.577389428944067\\
+-0.767105439749221 -0.502085511291008\\
+-0.689157896099749 -0.432696518920973\\
+-0.621041052695652 -0.3688906589164\\
+-0.560814088230995 -0.310419181015246\\
+-0.413428233154021 -0.165454379407858\\
+-0.372208706051751 -0.126936883885765\\
+-0.333960860485937 -0.0931560255962878\\
+-0.29838054629576 -0.0639706097131623\\
+-0.265296785610384 -0.0391876693757613\\
+-0.234630360380498 -0.0185547934398462\\
+-0.206354992739627 -0.00176105776841129\\
+-0.180463934086854 0.0115540371351295\\
+-0.156944199426826 0.0217856027150745\\
+-0.135759538808312 0.0293451911458416\\
+-0.116841921932538 0.0346423587669693\\
+-0.100090210635686 0.038068402551785\\
+-0.0853740461368275 0.0399838329323332\\
+-0.0725408300007528 0.0407102000819863\\
+-0.0614239242483898 0.04052610497459\\
+-0.0436492884357866 0.0383258756325919\\
+-0.0307107285936277 0.0347921840905852\\
+-0.0214203471264467 0.030810286574976\\
+-0.0122512227140539 0.0250451318386817\\
+-0.0054039675571933 0.0187600534363026\\
+0.00589715862017548 0.00520814467421138\\
+0.00589362917822611 0.00196576984551977\\
+0.00425698836902333 -0.000424421882835313\\
+0.00162963893578083 -0.00117947015309894\\
+-8.17148275134016e-06 -1.55711358269528e-05\\
+-3.1948272112281e-06 -3.50084031075504e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.38527240778923 -1.44036168511157\\
+-1.18391898355899 -1.30132741205507\\
+-1.01576029347923 -1.17428301146684\\
+-0.875015613959669 -1.0581138341619\\
+-0.756875765402408 -0.951839950568483\\
+-0.657341892997603 -0.854603216042908\\
+-0.573093210213357 -0.765655862718618\\
+-0.50137883773865 -0.684349697480829\\
+-0.439929457643058 -0.610125070134445\\
+-0.38688491453924 -0.542498931333627\\
+-0.340734202578146 -0.481051583269261\\
+-0.264516987714335 -0.375243241481732\\
+-0.156242818248244 -0.222915699889985\\
+-0.117750907899316 -0.171162252040861\\
+-0.0748811585578744 -0.116225404324266\\
+-0.0237415277464481 -0.0516524339833093\\
+-0.0122424276376476 -0.0345004869190213\\
+-0.00672283005192464 -0.0238885450731749\\
+-0.00414720903395316 -0.0158829362733111\\
+-0.00416508804137727 -0.011892236950511\\
+-0.00623550411358709 -0.0073186035007069\\
+-0.00699621727921618 -0.00452688022096726\\
+-0.00645042933209972 -0.00129447240755631\\
+-0.00443734080800762 0.00090997258772596\\
+-0.00162290608352511 0.00137910227139004\\
+7.23908162103548e-06 1.13916629109756e-05\\
+3.42641988448911e-06 3.66441996058064e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.39537290958247 -1.4253046819372\\
+-1.19389431889461 -1.28715555579412\\
+-1.02558623655071 -1.16088256555741\\
+-0.884664751585721 -1.04538290949881\\
+-0.766317647137213 -0.939688205435436\\
+-0.66654332101461 -0.842951756348978\\
+-0.582018722155459 -0.754437287998176\\
+-0.509991427771299 -0.673508224051236\\
+-0.448191566029865 -0.599616637010182\\
+-0.394759686512796 -0.532291178445588\\
+-0.348186976609563 -0.471123584074999\\
+-0.27103870951176 -0.365854160448621\\
+-0.18399623609527 -0.245875923649625\\
+-0.139919015131057 -0.187460862786284\\
+-0.1047575982655 -0.143091378758093\\
+-0.0659756222856869 -0.0967138574557436\\
+-0.0206770696601692 -0.0430471849214118\\
+-0.010702488009626 -0.0288665334253553\\
+-0.00598309172153932 -0.0201007893926684\\
+-0.003912071340896 -0.0134905691425249\\
+-0.0041753490861911 -0.0100977010133725\\
+-0.00638186971003973 -0.00260736033344666\\
+-0.00509024373100142 4.97401777022066e-05\\
+-0.0030403962253609 0.0012550529227584\\
+-0.000639129921381709 0.000914572836829164\\
+3.14129265177598e-06 3.35562228448438e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.22435525007169\\
+-1.39874914125116 -1.1307443902101\\
+-1.21454497166368 -1.01355762659106\\
+-1.06004968142966 -0.906016620246952\\
+-0.929989887303873 -0.807232769352858\\
+-0.81997198055961 -0.716441444463944\\
+-0.726338613800814 -0.632992214529745\\
+-0.646052079925469 -0.556339862008072\\
+-0.576600092171053 -0.486035044608098\\
+-0.515919860944878 -0.421713519135705\\
+-0.414512402141949 -0.309907485200664\\
+-0.332215484316734 -0.219144082234972\\
+-0.296372916994237 -0.181190678323317\\
+-0.263471807948992 -0.147922782141479\\
+-0.233244458590987 -0.119100688311715\\
+-0.205520177431261 -0.0944431900498375\\
+-0.180189714408131 -0.0736276629096786\\
+-0.157174762548304 -0.0562967955929128\\
+-0.136404259143473 -0.0420703324935472\\
+-0.117798295942993 -0.0305595056421251\\
+-0.101259381554412 -0.0213817323426515\\
+-0.0738941400649999 -0.00860063745851791\\
+-0.0531798307555502 -0.00120312233445197\\
+-0.0378686571735165 0.00274275431315196\\
+-0.0224503682129129 0.00502997720458587\\
+-0.0110264535193014 0.00513021743378328\\
+-0.00303327900031825 0.00369202772669053\\
+0.00110925254230021 0.00159307610246961\\
+0.000805901815932097 -0.000113013116330718\\
+-2.48262176882896e-06 -1.03254853844881e-05\\
+-7.36051405159088e-07 -8.40046971539721e-07\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.28309367209372\\
+-1.39782750041374 -1.18754272414858\\
+-1.21024443005831 -1.06642213301021\\
+-1.05304874990978 -0.955349836564152\\
+-0.920867108643791 -0.85340316608399\\
+-0.809223967373055 -0.759783554708206\\
+-0.714394624899966 -0.673806642594159\\
+-0.633285556500677 -0.594893194187095\\
+-0.563337498043457 -0.522559752314637\\
+-0.502447132388871 -0.456408010509601\\
+-0.448903473491458 -0.396112072745973\\
+-0.284940204090695 -0.208585307622684\\
+-0.252840688476507 -0.174036692501741\\
+-0.223473399527048 -0.14394881881677\\
+-0.196638823124507 -0.118031606949101\\
+-0.172201616810439 -0.0959587902506176\\
+-0.150060988596588 -0.0773739772345052\\
+-0.130127618284743 -0.0619014105130731\\
+-0.112307843316714 -0.0491592534281047\\
+-0.0825657166683793 -0.0303881182953349\\
+-0.0597982151886585 -0.0183500195141677\\
+-0.0428086544458994 -0.0108592309324063\\
+-0.0255537551283187 -0.00477095816288253\\
+-0.0106538212685683 -0.00104565642244836\\
+2.72424064979848e-05 0.000224905855716884\\
+2.6406792530409e-08 -1.49729693088574e-08\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.50984397933501\\
+-1.36971864290584 -1.38923435087497\\
+-1.17373665572246 -1.25341483208809\\
+-1.00992931540724 -1.12937688043916\\
+-0.872686776049409 -1.01599629693569\\
+-0.757338243974422 -0.912292533612841\\
+-0.659997356987043 -0.817413818216013\\
+-0.577435306702299 -0.730624192461238\\
+-0.506977108633203 -0.651291429329776\\
+-0.446416932489898 -0.578874882741307\\
+-0.393948745379885 -0.512912498269219\\
+-0.348108772259219 -0.453006521301097\\
+-0.271881674752204 -0.349999891115709\\
+-0.185299551440737 -0.232915069684108\\
+-0.141178587639756 -0.176182569610189\\
+-0.105844716548467 -0.133336447460267\\
+-0.0667372878532349 -0.0889658599458079\\
+-0.0176507667758368 -0.0348321078408009\\
+-0.00918432557290383 -0.0234473484234141\\
+-0.00468579824135928 -0.0151169382230201\\
+-0.00362176085858157 -0.0103426519634646\\
+-0.0044155420316645 -0.0075449674596566\\
+-0.00575984274954844 -0.00359933913288191\\
+-0.00526868277975012 -0.000985590508885803\\
+-0.00360583212558518 0.000780544152410689\\
+-0.0013121313558504 0.0011338254635207\\
+5.90812741885216e-06 9.26233859299685e-06\\
+2.79279995152315e-06 2.97908470159314e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.40698158521997 -0.959462465585123\\
+-1.23214757793514 -0.854399774141202\\
+-1.08511360240876 -0.757672046103091\\
+-0.96088350494944 -0.668519506471965\\
+-0.855290732559999 -0.586299465956114\\
+-0.764864511042036 -0.510478529991121\\
+-0.686721789860718 -0.440625131936459\\
+-0.618480666080245 -0.376401137832393\\
+-0.558191278869893 -0.317551311573349\\
+-0.410912183081085 -0.171625751398576\\
+-0.36980274674813 -0.132825975602493\\
+-0.331690932501389 -0.0987731574534989\\
+-0.296265966357457 -0.0693221633395811\\
+-0.263350468774826 -0.0442771345595845\\
+-0.232859212745947 -0.0233838621082998\\
+-0.204760495003804 -0.0063306720755083\\
+-0.179042896700527 0.00724276889593645\\
+-0.155689638402433 0.0177306867431035\\
+-0.134661603409033 0.0255432585398427\\
+-0.115888803192622 0.0310884064358117\\
+-0.0992689703989384 0.0347557384607848\\
+-0.0846713248890036 0.0369041823257272\\
+-0.071943412557703 0.0378539226168821\\
+-0.0514267572303433 0.0372242231069877\\
+-0.0363609996975349 0.0345834605754656\\
+-0.0254786548033323 0.0310591960552145\\
+-0.0177035505112955 0.0273335780456547\\
+-0.0100447683204756 0.0221401149721177\\
+-0.00329115299521177 0.0155291078393873\\
+0.00559410283531725 0.00497957127422555\\
+0.00560356537286877 0.00188929311762354\\
+0.00405272118456157 -0.000392996654864364\\
+0.00155323470035995 -0.00111933437882583\\
+-7.76943753200143e-06 -1.48216794977341e-05\\
+-3.03925006761574e-06 -3.3324948527369e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.20759557793008\\
+-1.39917815147348 -1.11471749265959\\
+-1.21583384333856 -0.998673961721522\\
+-1.06202070355434 -0.892153524907759\\
+-0.932491407794455 -0.79428052964311\\
+-0.822873863858481 -0.704302443408351\\
+-0.729528591577012 -0.621580263283734\\
+-0.649432875879819 -0.545579660312908\\
+-0.580087218751991 -0.475861713656566\\
+-0.519439995358447 -0.412072148410852\\
+-0.417917959945509 -0.301202579926942\\
+-0.335325528726128 -0.211260888999372\\
+-0.299288672023714 -0.17369251101466\\
+-0.26617315299183 -0.140799252575997\\
+-0.235718999127489 -0.112344859296478\\
+-0.207762664352326 -0.0880502166022921\\
+-0.182201254732724 -0.0675935291701595\\
+-0.158961849128167 -0.0506172372294231\\
+-0.13797768071712 -0.0367400095259363\\
+-0.119172007208119 -0.0255714557823452\\
+-0.102449413936025 -0.0167270989121682\\
+-0.0876933869849614 -0.00984156876907583\\
+-0.0635251462204025 -0.00063808665811993\\
+-0.045451701629323 0.00428426218473232\\
+-0.0322214201734254 0.00656548575656002\\
+-0.019009700097697 0.00734845232470582\\
+-0.00927959588210658 0.00646134841011525\\
+-0.00239497062486627 0.00439424808273192\\
+0.00150236614150523 0.00188909073760946\\
+0.00129316730398421 3.02172194177608e-05\\
+8.82561777104662e-06 -5.97845992462709e-05\\
+-9.37750552321148e-07 -1.05827185237217e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.41069158802641 -1.14243874299565\\
+-1.2239782449029 -1.02496301526159\\
+-1.06742177870854 -0.917018178277057\\
+-0.93567208120152 -0.817761837655991\\
+-0.824272796808397 -0.726462419945519\\
+-0.729515132618797 -0.642492649638392\\
+-0.648319071522548 -0.565323023270868\\
+-0.57813738576094 -0.494514338050984\\
+-0.516878265059146 -0.429708345000812\\
+-0.414672050509194 -0.317001248560903\\
+-0.331932488146506 -0.225425915138221\\
+-0.295965223746099 -0.187096062562736\\
+-0.262987769173078 -0.153468765847322\\
+-0.23272219441812 -0.124302560528307\\
+-0.204988879944977 -0.0993148708251337\\
+-0.179670891310803 -0.0781821647452834\\
+-0.156683440557685 -0.0605466744119592\\
+-0.135950140660601 -0.0460280669772211\\
+-0.11738684653148 -0.0342377687319793\\
+-0.100892820545944 -0.0247935432676636\\
+-0.0736152426184427 -0.0115201021348732\\
+-0.0529776788513576 -0.00368598791322783\\
+-0.0377288352076024 0.000640711743487454\\
+-0.0223788253342248 0.00340008524982438\\
+-0.0110125521785207 0.00396836763452457\\
+-0.00308890413001062 0.00302051458561015\\
+0.000828843590616524 0.00138541116370572\\
+0.00066432576906772 -6.17617837885831e-05\\
+-5.92936044485626e-07 -6.85406583045278e-07\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.40427542211867 -0.969907354308587\\
+-1.22919632765388 -0.864022963843382\\
+-1.08197759827707 -0.76658570408585\\
+-0.957616640230078 -0.676819305623629\\
+-0.851941542232577 -0.594067115446948\\
+-0.761477058582718 -0.517783666403887\\
+-0.683336337961622 -0.447526722719317\\
+-0.615134118399525 -0.382948527517328\\
+-0.554917390679945 -0.323785029290952\\
+-0.4080261208966 -0.177083469974931\\
+-0.367090219292119 -0.138057433763396\\
+-0.329166941575128 -0.103785330195134\\
+-0.293940766806355 -0.0741180024682204\\
+-0.261229470104432 -0.0488567157546642\\
+-0.230943106475923 -0.0277455467526784\\
+-0.20304561812556 -0.0104721996174904\\
+-0.177521803985215 0.00332333776612548\\
+-0.154351826151339 0.0140342355567733\\
+-0.133494310638149 0.0220691187455688\\
+-0.114877814935801 0.0278340974112512\\
+-0.0983993593063619 0.0317169157826898\\
+-0.0839280864788496 0.0340747496054825\\
+-0.0713119707357364 0.0352262559077323\\
+-0.0509786257210472 0.0349725707112813\\
+-0.0360500595328743 0.0326664369615024\\
+-0.0252685860724196 0.0294335011496369\\
+-0.01459745471866 0.024255342899735\\
+-0.00820035003830211 0.0196078479908413\\
+-0.00167687341249545 0.0129776939262345\\
+0.00531391165394179 0.00476727820035538\\
+0.00533507067131156 0.00181798054013926\\
+0.00386350850104411 -0.000364179936283016\\
+0.00148241424171869 -0.00106372436853164\\
+-7.39728816356866e-06 -1.41275226703819e-05\\
+-2.89520000129606e-06 -3.17656691461998e-06\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+-1.56 -1.31536039739137\\
+-1.39519165658224 -1.21724884641018\\
+-1.20616502526331 -1.09396735605765\\
+-1.04782644978593 -0.980983055749097\\
+-0.914759853882887 -0.87734512797337\\
+-0.802454745292731 -0.78222949722568\\
+-0.707157724167183 -0.694928230836314\\
+-0.625751468555272 -0.61483992088067\\
+-0.555656599458786 -0.541459970051376\\
+-0.494752271168762 -0.474369768813685\\
+-0.441311590551505 -0.413223939395889\\
+-0.278628849762548 -0.222835428366151\\
+-0.246990641943052 -0.187634884080071\\
+-0.218110487446015 -0.156900838531868\\
+-0.191774372953314 -0.130338476024416\\
+-0.167833759969955 -0.107619637566664\\
+-0.146176460204407 -0.0883885103074074\\
+-0.126703911247927 -0.0722718490794183\\
+-0.0938998612325843 -0.0478780420020171\\
+-0.068472106140917 -0.0315777452742978\\
+-0.0492860577298948 -0.0209377505811885\\
+-0.0295942595972485 -0.0116434020632699\\
+-0.0088010693781293 -0.00372043738580019\\
+-0.00134565449189261 -0.000447481226480972\\
+-9.33014288835299e-05 0.000176897816299038\\
+4.26700953015668e-07 4.18235178711868e-07\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/plant_uncertainty_bode_plot.pdf b/matlab/figs/plant_uncertainty_bode_plot.pdf
new file mode 100644
index 0000000..fe78089
Binary files /dev/null and b/matlab/figs/plant_uncertainty_bode_plot.pdf differ
diff --git a/matlab/figs/plant_uncertainty_bode_plot.png b/matlab/figs/plant_uncertainty_bode_plot.png
new file mode 100644
index 0000000..cf55d12
Binary files /dev/null and b/matlab/figs/plant_uncertainty_bode_plot.png differ
diff --git a/matlab/figs/plant_uncertainty_bode_plot.svg b/matlab/figs/plant_uncertainty_bode_plot.svg
new file mode 100644
index 0000000..1416172
--- /dev/null
+++ b/matlab/figs/plant_uncertainty_bode_plot.svg
@@ -0,0 +1,417 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/plant_uncertainty_bode_plot.tex b/matlab/figs/plant_uncertainty_bode_plot.tex
new file mode 100644
index 0000000..803f5ea
--- /dev/null
+++ b/matlab/figs/plant_uncertainty_bode_plot.tex
@@ -0,0 +1,4351 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.749in,
+height=1.562in,
+at={(0.599in,2.19in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={0.1,1,10,100,1000},
+xticklabels={{}},
+xminorticks=true,
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=1e-10,
+ymax=0.000496547810815053,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000108498472276567\\
+0.270665207003324 0.000109034010450729\\
+0.429173237842216 0.000109985458281458\\
+0.581788007434494 0.000111335576171084\\
+0.732596542821523 0.000113117500472123\\
+0.880937190447399 0.000115343438505964\\
+1.02096066230605 0.000117920844220387\\
+1.1616226326085 0.00012103243176088\\
+1.29751716865759 0.000124603040917109\\
+1.43600898465126 0.000128898983523913\\
+1.57469771464309 0.000133976978560946\\
+1.71093390726901 0.000139860616621259\\
+1.84189668079971 0.000146518543556735\\
+1.96468664618044 0.000153836758040962\\
+2.09566239948044 0.000163042918579891\\
+2.21485523372636 0.00017296483238895\\
+2.34082727617829 0.000185448089145532\\
+2.45126006203334 0.000198501162560025\\
+2.56690271549195 0.000214835711335755\\
+2.68800102153761 0.000235655686872247\\
+2.81481236050758 0.000262714980004439\\
+2.94760625512486 0.000298488589789484\\
+3.08666494333727 0.000345938724742643\\
+3.35371015200293 0.000456376292189216\\
+3.41612326858553 0.000476469258200292\\
+3.4796979038877 0.000488410294147918\\
+3.51192753045073 0.000490210174062816\\
+3.54445567397044 0.000488828287718365\\
+3.57728509936788 0.000484170922063144\\
+3.64385898376355 0.000465620308132517\\
+3.71167181947577 0.000437330794432417\\
+3.81576466127125 0.000385674702165148\\
+4.07014245321944 0.000272397572620362\\
+4.34147833005509 0.000195101593718514\\
+4.63090280179974 0.000145215009195527\\
+4.93962174387833 0.000111808019664777\\
+5.31772317785097 8.5611175912911e-05\\
+5.72476623970218 6.72349546859854e-05\\
+6.22004882563472 5.23932469099312e-05\\
+6.82077673286569 4.0539956498055e-05\\
+7.618717702323 3.04323989190985e-05\\
+8.58882855954626 2.27296594859989e-05\\
+9.86265846131283 1.65200135345635e-05\\
+11.6430313292088 1.14702630345052e-05\\
+14.000583824681 7.77978430337356e-06\\
+17.1488196987054 5.15930823626414e-06\\
+21.0049824165392 3.47331689714748e-06\\
+25.7282596744793 2.37358492904975e-06\\
+30.9378757173014 1.70297984623345e-06\\
+36.8609536217216 1.25949617583441e-06\\
+43.5149650092505 9.59207464337296e-07\\
+50.8987019351968 7.51024175191213e-07\\
+59.5353313081437 5.9524497001661e-07\\
+70.2824426430835 4.71291240765213e-07\\
+83.7380653526649 3.73009145272298e-07\\
+101.6265089393 2.9161587452254e-07\\
+127.969686821594 2.2014551259023e-07\\
+275.067600790807 8.74425082765578e-08\\
+330.764978074424 6.88598076911643e-08\\
+390.473523688556 5.49377711954904e-08\\
+460.960448682844 4.33083483439858e-08\\
+539.17746403875 3.41862604579443e-08\\
+636.507908129558 2.62750083483756e-08\\
+758.367791499719 1.96318054677943e-08\\
+911.92675984593 1.42494432513014e-08\\
+1000 1.20843331770768e-08\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000106710688259385\\
+0.235706941399673 0.000108185122617056\\
+0.43716022482485 0.000109862859097002\\
+0.598104096238094 0.000111451698913966\\
+0.753142016597438 0.000113395687870184\\
+0.897331581458352 0.000115642318917004\\
+1.03996091395412 0.000118340674545726\\
+1.18324062745838 0.000121594304795896\\
+1.32166418394661 0.000125330580498059\\
+1.44930957412621 0.000129372223324675\\
+1.57469771464309 0.000133989243958787\\
+1.71093390726901 0.000139859665886174\\
+1.84189668079971 0.000146502290335897\\
+1.96468664618044 0.000153803749341917\\
+2.09566239948044 0.000162989195662911\\
+2.21485523372636 0.000172889306053977\\
+2.34082727617829 0.000185345825817824\\
+2.45126006203334 0.000198371611302019\\
+2.56690271549195 0.000214672724729658\\
+2.68800102153761 0.000235450850314354\\
+2.81481236050758 0.000262456447641341\\
+2.94760625512486 0.000298159363577881\\
+3.08666494333727 0.000345514720987432\\
+3.35371015200293 0.000455712137230615\\
+3.41612326858553 0.000475750866246482\\
+3.4796979038877 0.000487648033209948\\
+3.51192753045073 0.00048943203417931\\
+3.54445567397044 0.000488039249457236\\
+3.57728509936788 0.000483376376434566\\
+3.64385898376355 0.000464830987883892\\
+3.71167181947577 0.000436565541473844\\
+3.81576466127125 0.000384967903998203\\
+4.07014245321944 0.00027184465542531\\
+4.34147833005509 0.000194666003615945\\
+4.63090280179974 0.00014486048557348\\
+4.93962174387833 0.000111510986288825\\
+5.31772317785097 8.53618866248118e-05\\
+5.72476623970218 6.70212232619818e-05\\
+6.22004882563472 5.22100490297032e-05\\
+6.82077673286569 4.03827908269195e-05\\
+7.618717702323 3.02990405609141e-05\\
+8.66837993001977 2.21269690072205e-05\\
+10.0462042134681 1.57548895189945e-05\\
+11.8597101233767 1.09445464011999e-05\\
+14.3932264471941 7.2799567200331e-06\\
+17.7930438991858 4.73566003590998e-06\\
+22.1996611911996 3.07244026864782e-06\\
+27.4434330322837 2.06124343039162e-06\\
+33.3060034362459 1.45273233849936e-06\\
+39.6824610456949 1.07296741433723e-06\\
+46.8458011587306 8.15790577302932e-07\\
+55.302242561929 6.28629436960926e-07\\
+64.6860766154633 4.97602246929351e-07\\
+76.3629826128224 3.9339778327894e-07\\
+90.9827289445557 3.10833504253634e-07\\
+110.418805085416 2.42510384874621e-07\\
+140.328908478587 1.80526501108391e-07\\
+272.543253128103 8.0289853408166e-08\\
+330.764978074424 6.24230266701069e-08\\
+394.090164040345 4.91289337805476e-08\\
+465.229952396019 3.86828325688862e-08\\
+549.211648388779 3.00692763854901e-08\\
+648.353428605473 2.30715494677114e-08\\
+772.48114514034 1.72106942418308e-08\\
+937.501501514529 1.22711272275018e-08\\
+1000 1.09303865227853e-08\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000106161777540379\\
+0.273172159844137 0.000106693649435728\\
+0.433148322337639 0.000107636191903778\\
+0.587176639073326 0.000108974357051141\\
+0.739381991917587 0.000110741709261984\\
+0.889096598952917 0.00011295132060887\\
+1.03041699495059 0.000115512354927531\\
+1.1723818032866 0.000118607695657118\\
+1.30953502048267 0.000122164262945384\\
+1.44930957412621 0.00012644963236464\\
+1.57469771464309 0.000130954429466831\\
+1.71093390726902 0.00013668410289673\\
+1.84189668079971 0.000143168904073163\\
+1.96468664618045 0.000150297873888516\\
+2.09566239948043 0.000159267159528486\\
+2.21485523372636 0.000168934893316964\\
+2.34082727617829 0.000181099534710667\\
+2.45126006203334 0.000193820441356009\\
+2.56690271549195 0.000209740272544986\\
+2.68800102153761 0.000230032586388387\\
+2.81481236050758 0.000256406826555313\\
+2.94760625512486 0.000291274843672557\\
+3.08666494333727 0.000337521979774698\\
+3.35371015200293 0.000445131433358172\\
+3.41612326858553 0.000464695140833651\\
+3.47969790388769 0.000476305512218887\\
+3.51192753045073 0.000478042713610977\\
+3.54445567397044 0.000476676965625263\\
+3.57728509936788 0.000472117242644679\\
+3.64385898376354 0.000453993168246729\\
+3.71167181947577 0.000426376406113966\\
+3.81576466127124 0.000375968763213805\\
+4.07014245321944 0.000265464344047218\\
+4.3414783300551 0.000190076426508321\\
+4.63090280179974 0.000141427722414495\\
+4.93962174387833 0.000108853262836214\\
+5.31772317785097 8.33120645010099e-05\\
+5.72476623970219 6.53978278966444e-05\\
+6.22004882563472 5.09309807205617e-05\\
+6.88395206964551 3.84153689645079e-05\\
+7.68928372075831 2.88526920143443e-05\\
+8.7486681204799 2.108066473898e-05\\
+10.1392540755881 1.50060404098482e-05\\
+12.0804213467733 1.02060897535323e-05\\
+14.796880626864 6.64467499824773e-06\\
+18.8050405512858 4.06955925292407e-06\\
+24.3436887354311 2.43910830349756e-06\\
+31.2244282309286 1.51120046762387e-06\\
+39.3182875570577 9.84420485148619e-07\\
+48.1595791019236 6.84680383912247e-07\\
+57.9112264764177 4.98911174126457e-07\\
+68.9983712143002 3.74357044057778e-07\\
+81.4537176628074 2.88861153255964e-07\\
+96.1574600143211 2.25673223207324e-07\\
+114.566872863487 1.76078223599051e-07\\
+139.041083409007 1.35502314433937e-07\\
+178.341022071001 9.80060436022154e-08\\
+301.63343472592 4.96594928948551e-08\\
+366.069514759691 3.81390602315054e-08\\
+436.153778920801 2.96896162402727e-08\\
+514.886745013749 2.31401885390944e-08\\
+607.832312829724 1.78135283404822e-08\\
+724.202233460732 1.33369014678999e-08\\
+870.843149769072 9.70147234201423e-09\\
+1000 7.58020925787276e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000103988639710109\\
+0.273172159844137 0.000104509161329156\\
+0.433148322337639 0.000105431589568851\\
+0.587176639073326 0.000106741197423331\\
+0.739381991917587 0.000108470832617654\\
+0.889096598952917 0.000110633287700968\\
+1.03041699495059 0.000113139664413033\\
+1.1723818032866 0.000116168942132432\\
+1.30953502048267 0.000119649599384566\\
+1.44930957412621 0.000123843498682136\\
+1.57469771464309 0.000128252136045092\\
+1.71093390726902 0.000133859494053034\\
+1.84189668079971 0.000140205846175677\\
+1.96468664618045 0.000147182596779813\\
+2.09566239948043 0.000155960341259496\\
+2.21485523372636 0.000165421582656967\\
+2.34082727617829 0.00017732634478191\\
+2.45126006203334 0.000189775418294526\\
+2.56690271549195 0.000205354951158996\\
+2.68800102153761 0.000225213315696785\\
+2.81481236050758 0.000251023203002509\\
+2.94760625512486 0.00028514443914444\\
+3.08666494333727 0.000330399604187832\\
+3.35371015200293 0.000435688111201614\\
+3.41612326858553 0.000454823943354308\\
+3.47969790388769 0.000466174044401921\\
+3.51192753045073 0.000467867263001643\\
+3.54445567397044 0.000466523448250321\\
+3.57728509936788 0.000462053653092282\\
+3.64385898376354 0.000444301690076666\\
+3.71167181947577 0.000417260627711651\\
+3.81576466127124 0.000367911538830492\\
+4.07014245321944 0.000259740794498528\\
+4.3414783300551 0.000185950309387712\\
+4.63090280179974 0.000138334103801349\\
+4.93962174387833 0.000106451684802278\\
+5.31772317785097 8.14535467222222e-05\\
+5.72476623970219 6.3920506961436e-05\\
+6.22004882563472 4.97617742570977e-05\\
+6.88395206964551 3.7513061090711e-05\\
+7.68928372075831 2.81547253077703e-05\\
+8.7486681204799 2.05493433549124e-05\\
+10.1392540755881 1.46057791246814e-05\\
+12.0804213467733 9.91062011237865e-06\\
+14.9339321612425 6.30553694481312e-06\\
+19.3324228755504 3.6990766374185e-06\\
+25.7282596744793 2.08220842268616e-06\\
+34.2400613797143 1.18955301662162e-06\\
+44.3247859124039 7.27875725220244e-07\\
+55.8144624945496 4.76429175080073e-07\\
+68.3651600451024 3.32886092644989e-07\\
+82.2081575524054 2.43634234935184e-07\\
+97.9469667069539 1.83541363462631e-07\\
+116.698981861715 1.40097756708262e-07\\
+140.328908478588 1.06824062739334e-07\\
+171.883914281715 8.0287885138585e-08\\
+228.74908173557 5.44097079701744e-08\\
+330.764978074424 3.28768052170021e-08\\
+405.142317111466 2.4612185935356e-08\\
+482.707096560319 1.89456282523203e-08\\
+575.121707184161 1.44021840125226e-08\\
+685.229159528406 1.08068931018067e-08\\
+823.978568452851 7.88095612068824e-09\\
+1000 5.58332412998932e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000110009306716853\\
+0.273172159844137 0.000110561983769042\\
+0.43314832233764 0.000111541392297922\\
+0.587176639073325 0.000112931890812025\\
+0.739381991917586 0.000114768349490098\\
+0.889096598952917 0.000117064342959955\\
+1.03041699495059 0.000119725475642896\\
+1.1723818032866 0.000122941769482224\\
+1.30953502048267 0.000126637278416877\\
+1.44930957412621 0.000131090019000053\\
+1.57469771464309 0.000135770715558031\\
+1.71093390726901 0.000141724066114036\\
+1.84189668079971 0.000148461970751475\\
+1.96468664618044 0.00015586913967419\\
+2.09566239948044 0.000165188397054289\\
+2.21485523372636 0.000175233330760571\\
+2.34082727617829 0.000187872597987267\\
+2.45126006203334 0.000201089885400382\\
+2.56690271549195 0.000217631056602428\\
+2.68800102153761 0.000238715677369563\\
+2.81481236050758 0.000266120387140951\\
+2.94760625512486 0.000302352308926792\\
+3.08666494333727 0.000350412197770995\\
+3.35371015200293 0.000462274220585638\\
+3.41612326858553 0.000482627402419259\\
+3.4796979038877 0.000494723888464099\\
+3.51192753045073 0.000496547810815052\\
+3.54445567397044 0.000495148977691447\\
+3.57728509936788 0.000490432446714652\\
+3.64385898376355 0.000471644385058489\\
+3.71167181947577 0.000442991721165876\\
+3.81576466127125 0.000390671671417\\
+4.07014245321944 0.000275937726250845\\
+4.34147833005509 0.000197648154787981\\
+4.63090280179974 0.000147120951892833\\
+4.93962174387833 0.000113285326714223\\
+5.31772317785097 8.67523779028233e-05\\
+5.72476623970218 6.8140007752374e-05\\
+6.22004882563472 5.31067072863615e-05\\
+6.82077673286569 4.10989387248911e-05\\
+7.618717702323 3.08572500735523e-05\\
+8.66837993001977 2.25521095467056e-05\\
+10.0462042134681 1.6070381458774e-05\\
+11.8597101233767 1.11710319294893e-05\\
+14.3932264471941 7.43237462354923e-06\\
+17.957846470021 4.7434365317692e-06\\
+22.6128006633728 3.01886211452535e-06\\
+28.2130767593947 1.98634279145253e-06\\
+34.5571993676214 1.37336232246497e-06\\
+41.5545533471888 9.95821963690582e-07\\
+49.5102015955635 7.44052650872394e-07\\
+58.4476113163364 5.72161963349417e-07\\
+68.9983712143002 4.45868416409378e-07\\
+81.4537176628075 3.51908935823293e-07\\
+97.0480887738031 2.77535180455003e-07\\
+117.779870119712 2.16062023902403e-07\\
+149.683929307726 1.60362044427754e-07\\
+275.067600790807 7.56556267879538e-08\\
+333.828586473176 5.87203518313652e-08\\
+397.740302405804 4.61516573554439e-08\\
+469.539001068006 3.62956340259258e-08\\
+554.298551568467 2.81831882617426e-08\\
+654.358601888324 2.16034724160284e-08\\
+779.636013040524 1.61012653436621e-08\\
+946.184819472201 1.14708121193533e-08\\
+1000 1.03865891492337e-08\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.87412452259834e-05\\
+0.273172159844137 9.92348204562054e-05\\
+0.433148322337639 0.000100109536893874\\
+0.587176639073326 0.000101351483889747\\
+0.739381991917587 0.000102991872871532\\
+0.889096598952917 0.000105042895449894\\
+1.03041699495059 0.000107420273595178\\
+1.1723818032866 0.000110293807587899\\
+1.30953502048267 0.000113595680505916\\
+1.44930957412621 0.000117574328752515\\
+1.57469771464309 0.000121756835187419\\
+1.71093390726902 0.00012707672235125\\
+1.84189668079971 0.000133097852465556\\
+1.96468664618045 0.000139717185977309\\
+2.09566239948043 0.000148045354399659\\
+2.21485523372636 0.000157022093762486\\
+2.34082727617829 0.000168317289398057\\
+2.45126006203334 0.000180128961440802\\
+2.56690271549195 0.000194910817878608\\
+2.68800102153761 0.000213752386671599\\
+2.81481236050758 0.000238240603062112\\
+2.94760625512486 0.000270614195119691\\
+3.08666494333727 0.000313550548750636\\
+3.35371015200293 0.000413435844271566\\
+3.41612326858553 0.000431585716419708\\
+3.47969790388769 0.000442346770910132\\
+3.51192753045073 0.000443948741442839\\
+3.54445567397044 0.000442668855301515\\
+3.57728509936788 0.000438422806790848\\
+3.64385898376354 0.000421569251077331\\
+3.71167181947577 0.000395902513063581\\
+3.81576466127124 0.000349066706387915\\
+4.07014245321944 0.000246413716553531\\
+4.3414783300551 0.000176390856981814\\
+4.63090280179974 0.000131206965964441\\
+4.93962174387833 0.000100953601322724\\
+5.31772317785097 7.72330174198303e-05\\
+5.72476623970219 6.05961666712853e-05\\
+6.22004882563472 4.71612471857745e-05\\
+6.88395206964551 3.55387898129208e-05\\
+7.68928372075831 2.66589976024944e-05\\
+8.7486681204799 1.94425819537047e-05\\
+10.1392540755881 1.38030541252506e-05\\
+12.1923125164911 9.16191601220163e-06\\
+15.2118551798611 5.70087540447303e-06\\
+20.4319732019527 3.08172245447696e-06\\
+30.9378757173014 1.32018866597359e-06\\
+168.743567772738 4.19080206536653e-08\\
+226.649807927369 2.24598958216087e-08\\
+293.404970921579 1.28044837198679e-08\\
+369.460120519931 7.62650158282593e-09\\
+465.22995239602 4.46464857507697e-09\\
+596.727119597331 2.45915046112334e-09\\
+854.93270662684 1.01803254121598e-09\\
+1000 6.92454023447087e-10\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000103472815095116\\
+0.246826845225569 0.000103764712552393\\
+0.406077202570037 0.000104588188830098\\
+0.560723488285204 0.000105815954588572\\
+0.712611543011176 0.000107451063224741\\
+0.856905505126836 0.00010943080578716\\
+1.00230754828386 0.000111889341459264\\
+1.14039960197003 0.000114706267495767\\
+1.27381132318648 0.00011793280577219\\
+1.40977287162897 0.000121806165975502\\
+1.54592773641948 0.000126372389785683\\
+1.67967487209265 0.00013164642921462\\
+1.80824493487796 0.000137593130467269\\
+1.92879150802078 0.000144103709211705\\
+2.05737431343292 0.000152256210389392\\
+2.17438947560008 0.000160996972288551\\
+2.29805998875885 0.000171929929132772\\
+2.42876438246045 0.000185866770171835\\
+2.54334576130465 0.000200645245280961\\
+2.66333272517498 0.000219410866201008\\
+2.78898029238044 0.000243706173132331\\
+2.92055551218275 0.000275733401139415\\
+3.05833803237843 0.000318277974291835\\
+3.38477285594598 0.000443112526240056\\
+3.44776405473447 0.000458710983159802\\
+3.47969790388769 0.000463155276999522\\
+3.51192753045073 0.000464836331558684\\
+3.54445567397044 0.000463500004683552\\
+3.57728509936788 0.000459057949567479\\
+3.64385898376354 0.000441418654731649\\
+3.71167181947577 0.000414550697830886\\
+3.81576466127124 0.000365518842678277\\
+4.07014245321944 0.000258045688086679\\
+4.3414783300551 0.000184731982176142\\
+4.63090280179974 0.000137423709905354\\
+4.93962174387833 0.000105747581315194\\
+5.31772317785097 8.09112499600049e-05\\
+5.72476623970219 6.34917310907488e-05\\
+6.22004882563472 4.94246956258575e-05\\
+6.88395206964551 3.72553323208468e-05\\
+7.68928372075831 2.79576433169383e-05\\
+8.7486681204799 2.04015723274259e-05\\
+10.1392540755881 1.44965747128902e-05\\
+12.0804213467733 9.83192417433522e-06\\
+14.9339321612425 6.25033051493064e-06\\
+19.3324228755504 3.66095393747018e-06\\
+26.2070669648386 1.98056450736137e-06\\
+35.8553985745982 1.06794410707533e-06\\
+47.2796959160039 6.28285305604724e-07\\
+60.0867589171969 4.02440307303411e-07\\
+74.2798248256491 2.75278943599132e-07\\
+90.1477631452492 1.97385182315382e-07\\
+108.401435917833 1.45809347414625e-07\\
+129.154966501488 1.10770538168833e-07\\
+155.307057393346 8.39937467286427e-08\\
+191.992066559329 6.1888019020341e-08\\
+272.543253128103 3.79230887352158e-08\\
+362.710025233065 2.52998322991477e-08\\
+444.270674960689 1.8750331636394e-08\\
+534.229329953836 1.409916037169e-08\\
+636.507908129558 1.06192772348653e-08\\
+765.391938823016 7.77583241179766e-09\\
+928.897872016452 5.53061713477902e-09\\
+1000 4.84173808160309e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.2452141056678e-05\\
+0.270665207003324 9.2902572699138e-05\\
+0.429173237842215 9.37076581965146e-05\\
+0.581788007434494 9.48505752808492e-05\\
+0.732596542821523 9.63593590889846e-05\\
+0.880937190447399 9.82444830345435e-05\\
+1.02096066230605 0.000100427712471849\\
+1.1616226326085 0.000103063980005556\\
+1.29751716865759 0.000106089781446567\\
+1.43600898465126 0.000109730991678469\\
+1.57469771464309 0.000114035927699999\\
+1.71093390726902 0.000119024798151104\\
+1.84189668079971 0.000124671166242433\\
+1.96468664618045 0.000130878418678899\\
+2.09566239948043 0.0001386880503086\\
+2.21485523372636 0.000147105826703551\\
+2.34082727617829 0.000157697679931069\\
+2.45126006203334 0.000168773874461592\\
+2.56690271549195 0.000182635390760772\\
+2.68800102153761 0.000200304045066533\\
+2.81481236050758 0.000223268240857912\\
+2.94760625512486 0.000253627942952938\\
+3.08666494333727 0.000293895314832468\\
+3.35371015200293 0.000387589305419955\\
+3.41612326858553 0.000404622416975093\\
+3.47969790388769 0.000414730189305415\\
+3.51192753045073 0.000416241944607998\\
+3.54445567397044 0.000415051882139278\\
+3.57728509936788 0.000411080761392506\\
+3.64385898376354 0.00039529807817934\\
+3.71167181947577 0.000371250107149507\\
+3.81576466127124 0.000327357377673645\\
+4.07014245321944 0.000231136699874716\\
+4.3414783300551 0.000165494106724969\\
+4.63090280179974 0.00012313445012684\\
+4.93962174387833 9.4771206008302e-05\\
+5.31772317785097 7.25321151053357e-05\\
+5.72476623970219 5.69340732929453e-05\\
+6.22004882563472 4.43378622733967e-05\\
+6.88395206964551 3.3440824291499e-05\\
+7.68928372075831 2.51151557547182e-05\\
+8.7486681204799 1.83489605567593e-05\\
+10.1392540755881 1.30611579749234e-05\\
+12.0804213467733 8.88392820478777e-06\\
+14.796880626864 5.78600079913867e-06\\
+18.6324631193156 3.61425509403601e-06\\
+23.6796006783308 2.25060025431261e-06\\
+29.8177229001967 1.44871216932303e-06\\
+36.8609536217215 9.80219775715329e-07\\
+44.7353305449846 6.96084458792822e-07\\
+53.2999408084408 5.17661795092282e-07\\
+62.9214610961035 3.96128589026787e-07\\
+74.2798248256491 3.0711344197889e-07\\
+87.6885609458744 2.41151683364678e-07\\
+104.476597156081 1.89188985465523e-07\\
+126.795284678644 1.46477239472934e-07\\
+161.141427725302 1.08019356060074e-07\\
+290.712337727258 5.13086636943455e-08\\
+352.815411538089 3.96051765841348e-08\\
+420.362168384472 3.0966074525065e-08\\
+496.244487762891 2.42306880370753e-08\\
+585.824820015255 1.87220391744222e-08\\
+691.575882873852 1.42845534783835e-08\\
+831.610415323096 1.04310616966053e-08\\
+1000 7.5205644695094e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000108175589061139\\
+0.273172159844137 0.000108717631737448\\
+0.433148322337639 0.000109678198994709\\
+0.587176639073326 0.000111041956591593\\
+0.739381991917587 0.000112843112784143\\
+0.889096598952917 0.000115094992148983\\
+1.03041699495059 0.00011770502334882\\
+1.1723818032866 0.000120859591600932\\
+1.30953502048267 0.000124484222104863\\
+1.44930957412621 0.00012885161533867\\
+1.57469771464309 0.000133442650163434\\
+1.71093390726902 0.000139282028074319\\
+1.84189668079971 0.000145891013692493\\
+1.96468664618045 0.000153156527120334\\
+2.09566239948043 0.00016229763476774\\
+2.21485523372636 0.000172150603431445\\
+2.34082727617829 0.000184548363097198\\
+2.45126006203334 0.000197513092784684\\
+2.56690271549195 0.00021373811900616\\
+2.68800102153761 0.00023441953719015\\
+2.81481236050758 0.000261299638066115\\
+2.94760625512486 0.000296836663365176\\
+3.08666494333727 0.00034397159866747\\
+3.35371015200293 0.000453650438029749\\
+3.41612326858553 0.000473591989288121\\
+3.47969790388769 0.000485428323618564\\
+3.51192753045073 0.000487200705342862\\
+3.54445567397044 0.000485810738021894\\
+3.57728509936788 0.00048116561411477\\
+3.64385898376354 0.00046269809941973\\
+3.71167181947577 0.000434555656172021\\
+3.81576466127124 0.000383186415793097\\
+4.07014245321944 0.000270570512742257\\
+4.3414783300551 0.000193740830252931\\
+4.63090280179974 0.000144161483533765\\
+4.93962174387833 0.000110963885375962\\
+5.31772317785097 8.49342037446196e-05\\
+5.72476623970219 6.66775115766709e-05\\
+6.22004882563472 5.19343213358537e-05\\
+6.82077673286569 4.01615023511823e-05\\
+7.61871770232298 3.01243171789596e-05\\
+8.66837993001979 2.19901352665132e-05\\
+10.0462042134682 1.5647753897885e-05\\
+11.8597101233767 1.08599963053537e-05\\
+14.3932264471941 7.21282928831614e-06\\
+17.7930438991858 4.68093621627836e-06\\
+22.1996611911995 3.02626628490821e-06\\
+27.697619350369 1.98632585278993e-06\\
+33.9258338274099 1.37029241208112e-06\\
+40.7953450345245 9.9152730956326e-07\\
+48.6056423214213 7.39334590785553e-07\\
+57.3797641421414 5.67429638932955e-07\\
+67.7377599751775 4.4134897358637e-07\\
+79.9655452589236 3.477384899308e-07\\
+95.275004724273 2.7381373306541e-07\\
+115.628013120738 2.12875398800721e-07\\
+145.600599502065 1.59630959956872e-07\\
+285.400976982924 6.93989497609734e-08\\
+343.190719745904 5.44110180539588e-08\\
+408.894822629486 4.26797600482071e-08\\
+482.707096560319 3.34947962766099e-08\\
+569.843705946914 2.59517995397749e-08\\
+672.709913571235 1.98508654594979e-08\\
+801.500696156541 1.4764660699464e-08\\
+972.720319245056 1.04981075942735e-08\\
+1000 9.98841221082439e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.20962174027622e-05\\
+0.273172159844137 9.25576413882406e-05\\
+0.433148322337639 9.33753416178664e-05\\
+0.587176639073326 9.45362635364136e-05\\
+0.739381991917587 9.60695261321599e-05\\
+0.889096598952917 9.79864704309721e-05\\
+1.03041699495059 0.000100208292073947\\
+1.1723818032866 0.000102893651809519\\
+1.30953502048267 0.000105979149872248\\
+1.44930957412621 0.000109696922070168\\
+1.57469771464309 0.000113605061188373\\
+1.71093390726902 0.000118575845729276\\
+1.84189668079971 0.000124201746275036\\
+1.96468664618045 0.000130386501001377\\
+2.09566239948043 0.000138167832239846\\
+2.21485523372636 0.000146555111249559\\
+2.34082727617829 0.000157108601152317\\
+2.45126006203334 0.000168144691577906\\
+2.56690271549195 0.00018195603943737\\
+2.68800102153761 0.000199560781836507\\
+2.81481236050758 0.000222441975591147\\
+2.94760625512486 0.000252692074083188\\
+3.08666494333727 0.00029281435358518\\
+3.35371015200293 0.000386173153397827\\
+3.41612326858553 0.000403146442784107\\
+3.47969790388769 0.000413219908285318\\
+3.51192753045073 0.000414727480550579\\
+3.54445567397044 0.000413543090546108\\
+3.57728509936788 0.000409587759564042\\
+3.64385898376354 0.000393865073274406\\
+3.71167181947577 0.000369906884957868\\
+3.81576466127124 0.000326176570426218\\
+4.07014245321944 0.000230309476405544\\
+4.3414783300551 0.000164907100454684\\
+4.63090280179974 0.000122702154896715\\
+4.93962174387833 9.44423810617963e-05\\
+5.31772317785097 7.22843483270925e-05\\
+5.72476623970219 5.67431157224059e-05\\
+6.22004882563472 4.41927466563383e-05\\
+6.82077673286569 3.41708968440979e-05\\
+7.61871770232298 2.56264754326803e-05\\
+8.66837993001979 1.87019663387312e-05\\
+10.0462042134682 1.33027252913336e-05\\
+11.8597101233767 9.22687977761469e-06\\
+14.3932264471941 6.12200978285997e-06\\
+17.957846470021 3.89371102014186e-06\\
+22.6128006633728 2.46790881333655e-06\\
+28.4743916646725 1.58843973183073e-06\\
+35.2003147279668 1.07520496667804e-06\\
+42.7199396630678 7.64099121393625e-07\\
+50.8987019351967 5.68766470333244e-07\\
+60.0867589171969 4.35695062057299e-07\\
+70.9334120498799 3.38191816763607e-07\\
+83.7380653526651 2.65898277327804e-07\\
+99.7697764236321 2.08905477754571e-07\\
+121.082975023204 1.62019180022894e-07\\
+153.881775003835 1.19763852906534e-07\\
+288.04441533963 5.46886483587234e-08\\
+349.577557436328 4.22784441511828e-08\\
+416.504424854519 3.3097834558044e-08\\
+491.690357762802 2.5927369855551e-08\\
+580.448594276898 2.00532720488411e-08\\
+685.229159528406 1.5314110123483e-08\\
+816.416760492149 1.13730662646493e-08\\
+990.822809900379 8.07528181315159e-09\\
+1000 7.94216474106572e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.10260424790388e-05\\
+0.268181260945302 9.14947101093114e-05\\
+0.425234633452869 9.22972035676161e-05\\
+0.581788007434494 9.34624324109794e-05\\
+0.732596542821523 9.49582769187775e-05\\
+0.880937190447399 9.68222685820465e-05\\
+1.02096066230605 9.89784774043585e-05\\
+1.1616226326085 0.000101580602650839\\
+1.29751716865759 0.000104566280467241\\
+1.43600898465126 0.000108158561813142\\
+1.57469771464309 0.00011240518858028\\
+1.71093390726902 0.000117326159338484\\
+1.84189668079971 0.000122895452005871\\
+1.96468664618045 0.000129017819768875\\
+2.09566239948043 0.000136720530464101\\
+2.21485523372636 0.000145022979092393\\
+2.34082727617829 0.000155469664917055\\
+2.45126006203334 0.000166394035248264\\
+2.56690271549195 0.00018006556300645\\
+2.68800102153761 0.00019749211611372\\
+2.81481236050758 0.000220141823378334\\
+2.94760625512486 0.000250086155729176\\
+3.08666494333727 0.000289803533224524\\
+3.35371015200293 0.000382226118911191\\
+3.41612326858553 0.000399031976664291\\
+3.47969790388769 0.000409009055839608\\
+3.51192753045073 0.000410504574019317\\
+3.54445567397044 0.000409335601515881\\
+3.57728509936788 0.00040542389756897\\
+3.64385898376354 0.000389867731748706\\
+3.71167181947577 0.000366159198591278\\
+3.81576466127124 0.000322880926794922\\
+4.07014245321944 0.000227998664307005\\
+4.3414783300551 0.000163265655816149\\
+4.63090280179974 0.00012149190891175\\
+4.93962174387833 9.35205663694054e-05\\
+5.31772317785097 7.15885293472521e-05\\
+5.72476623970219 5.6205722320232e-05\\
+6.22004882563472 4.37832383033456e-05\\
+6.82077673286569 3.38634728291714e-05\\
+7.61871770232298 2.54060571314191e-05\\
+8.66837993001979 1.85520301271464e-05\\
+10.0462042134682 1.32077093451141e-05\\
+11.8597101233767 9.17326056300593e-06\\
+14.3932264471941 6.0997974532622e-06\\
+17.7930438991858 3.96597212325065e-06\\
+22.1996611911995 2.5711624016391e-06\\
+27.4434330322837 1.72325916689663e-06\\
+33.306003436246 1.21313312582608e-06\\
+40.0500075787362 8.81005895476345e-07\\
+47.2796959160039 6.69438404696848e-07\\
+55.8144624945496 5.15514023055974e-07\\
+65.2852114112785 4.07800269101452e-07\\
+77.0702711421232 3.22183175229125e-07\\
+91.825428356563 2.54391903579753e-07\\
+111.441525146679 1.9833724644622e-07\\
+141.62866162992 1.47527738150631e-07\\
+275.067600790807 6.54674109509825e-08\\
+333.828586473176 5.0858306071518e-08\\
+397.740302405804 3.99953666172243e-08\\
+469.539001068005 3.14664018006807e-08\\
+554.298551568467 2.44402893383927e-08\\
+654.358601888323 1.8738253301496e-08\\
+779.636013040525 1.39679604964005e-08\\
+946.184819472199 9.95219767383153e-09\\
+1000 9.011753147682e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000107390632591073\\
+0.268181260945302 0.000107926506498806\\
+0.425234633452869 0.000108865156743274\\
+0.581788007434494 0.000110237352346869\\
+0.732596542821523 0.000112001321031209\\
+0.880937190447399 0.00011419979530404\\
+1.02096066230605 0.000116742797143369\\
+1.1616226326085 0.000119811495424174\\
+1.29751716865759 0.000123332326918234\\
+1.43600898465126 0.000127568324040259\\
+1.57469771464309 0.000132575782622857\\
+1.71093390726902 0.00013837828960718\\
+1.84189668079971 0.000144945169496655\\
+1.96468664618045 0.00015216412371421\\
+2.09566239948043 0.000161246410291757\\
+2.21485523372636 0.000171035789842108\\
+2.34082727617829 0.000183353364831795\\
+2.45126006203334 0.000196234110651307\\
+2.56690271549195 0.000212353908571439\\
+2.68800102153761 0.000232901062065236\\
+2.81481236050758 0.000259606504434612\\
+2.94760625512486 0.000294912435812034\\
+3.08666494333727 0.000341740599244693\\
+3.35371015200293 0.000450704184772937\\
+3.41612326858553 0.000470515130832274\\
+3.47969790388769 0.000482273366872552\\
+3.51192753045073 0.000484033597168295\\
+3.54445567397044 0.000482652014545749\\
+3.57728509936788 0.00047803642754126\\
+3.64385898376354 0.000459687672086539\\
+3.71167181947577 0.00043172699134655\\
+3.81576466127124 0.000380690222026516\\
+4.07014245321944 0.00026880430385645\\
+4.3414783300551 0.000192473003706936\\
+4.63090280179974 0.000143215305107979\\
+4.93962174387833 0.000110233039421154\\
+5.31772317785097 8.43721324046964e-05\\
+5.72476623970219 6.62337498514756e-05\\
+6.22004882563472 5.15860336098065e-05\\
+6.82077673286569 3.98893865800089e-05\\
+7.61871770232298 2.99170750851398e-05\\
+8.66837993001979 2.18354037753285e-05\\
+10.0462042134682 1.5533918897064e-05\\
+11.8597101233767 1.0777012959626e-05\\
+14.3932264471941 7.15336596071589e-06\\
+17.957846470021 4.55276679798004e-06\\
+22.6128006633728 2.88870349086598e-06\\
+28.2130767593947 1.89453581765069e-06\\
+34.5571993676214 1.30543305078253e-06\\
+41.5545533471888 9.43250093915678e-07\\
+49.5102015955635 7.02194882621604e-07\\
+58.4476113163363 5.38002166276754e-07\\
+68.9983712143002 4.1770749826442e-07\\
+81.4537176628074 3.2852039014729e-07\\
+97.0480887738033 2.58212718148332e-07\\
+117.779870119712 2.00376646954424e-07\\
+148.31025143361 1.49962055532269e-07\\
+290.712337727258 6.48442292025334e-08\\
+349.577557436328 5.07552867388197e-08\\
+412.682084570295 4.02729910765884e-08\\
+487.178021879464 3.1576145727494e-08\\
+575.121707184161 2.44432275566547e-08\\
+678.94068126961 1.86814577776779e-08\\
+808.924348680595 1.3884166587299e-08\\
+981.729840618886 9.86503414569779e-09\\
+1000 9.54277383513251e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000107466488413449\\
+0.273172159844137 0.000108004242618153\\
+0.433148322337639 0.0001089572201943\\
+0.587176639073326 0.000110310223388938\\
+0.739381991917587 0.000112097211178584\\
+0.889096598952917 0.000114331428374092\\
+1.03041699495059 0.000116921053136757\\
+1.1723818032866 0.000120051039781421\\
+1.30953502048267 0.000123647522698753\\
+1.44930957412621 0.000127981118075214\\
+1.57469771464309 0.000132536741501309\\
+1.71093390726902 0.000138331222799268\\
+1.84189668079971 0.000144889551894075\\
+1.96468664618045 0.000152099529588977\\
+2.09566239948043 0.000161170940758366\\
+2.21485523372636 0.000170948950463659\\
+2.34082727617829 0.000183252565473102\\
+2.45126006203334 0.000196118987598988\\
+2.56690271549195 0.000212221111529804\\
+2.68800102153761 0.000232745971682976\\
+2.81481236050758 0.00025942260649348\\
+2.94760625512486 0.000294690422633091\\
+3.08666494333727 0.000341467453395572\\
+3.35371015200293 0.000450303864542952\\
+3.41612326858553 0.000470087468337347\\
+3.47969790388769 0.000481824856673884\\
+3.51192753045073 0.000483578286310881\\
+3.54445567397044 0.000482192810845442\\
+3.57728509936788 0.000477576429028972\\
+3.64385898376354 0.000459235229551363\\
+3.71167181947577 0.000431292422917819\\
+3.81576466127124 0.000380293999245722\\
+4.07014245321944 0.000268502156184911\\
+4.3414783300551 0.000192239671488608\\
+4.63090280179974 0.00014302827970214\\
+4.93962174387833 0.000110078119972138\\
+5.31772317785097 8.42432930518535e-05\\
+5.72476623970219 6.61239137738063e-05\\
+6.22004882563472 5.14921821343883e-05\\
+6.88395206964551 3.88348376444012e-05\\
+7.68928372075831 2.91648179488392e-05\\
+8.7486681204799 2.13066050341723e-05\\
+10.1392540755881 1.51658351284306e-05\\
+12.0804213467733 1.03151492329859e-05\\
+14.796880626864 6.71803478686735e-06\\
+18.6324631193156 4.19650229346574e-06\\
+23.6796006783308 2.61328679526265e-06\\
+29.8177229001967 1.68231041640621e-06\\
+36.8609536217215 1.13840111304229e-06\\
+44.7353305449846 8.0851947922694e-07\\
+53.2999408084408 6.0136121027546e-07\\
+62.9214610961035 4.60244818461644e-07\\
+74.2798248256491 3.56876060248493e-07\\
+87.6885609458744 2.80268030323166e-07\\
+104.476597156081 2.1990869702271e-07\\
+126.795284678644 1.7028541886583e-07\\
+161.141427725302 1.25593889504384e-07\\
+288.04441533963 6.03905836608658e-08\\
+349.577557436328 4.66438101566808e-08\\
+416.504424854519 3.64938343958786e-08\\
+491.690357762802 2.85761366938732e-08\\
+580.448594276898 2.20954695357596e-08\\
+685.229159528406 1.68701036071363e-08\\
+816.416760492149 1.25266230404302e-08\\
+990.822809900379 8.89325280365144e-09\\
+1000 8.74661016440386e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.69823629889104e-05\\
+0.288709091735923 9.77020511969922e-05\\
+0.449420266211913 9.86334976901544e-05\\
+0.603643850607586 9.99096638753081e-05\\
+0.753142016597436 0.000101541907237785\\
+0.897331581458354 0.000103521394126783\\
+1.03996091395412 0.000105914345305849\\
+1.18324062745838 0.000108808577094782\\
+1.3216641839466 0.000112137352594628\\
+1.44930957412621 0.000115741192228493\\
+1.57469771464309 0.000119860057255668\\
+1.71093390726902 0.00012509871870448\\
+1.84189668079971 0.000131027679836048\\
+1.96468664618045 0.000137545502362842\\
+2.09566239948043 0.000145745777093468\\
+2.21485523372636 0.000154584520085117\\
+2.34082727617829 0.000165705944971032\\
+2.45126006203334 0.000177335799431511\\
+2.56690271549195 0.000191890028731275\\
+2.68800102153761 0.000210441371553754\\
+2.81481236050758 0.000234552317814991\\
+2.94760625512486 0.000266427132387057\\
+3.08666494333727 0.000308702053685832\\
+3.35371015200293 0.000407050104340278\\
+3.41612326858553 0.000424921424882936\\
+3.47969790388769 0.000435518178182419\\
+3.51192753045073 0.000437096369114753\\
+3.54445567397044 0.00043583719573377\\
+3.57728509936788 0.0004316576347069\\
+3.64385898376354 0.000415066015369978\\
+3.71167181947577 0.000389797018940646\\
+3.81576466127124 0.000343685950724727\\
+4.07014245321944 0.000242619614360299\\
+4.3414783300551 0.000173678277757327\\
+4.63090280179974 0.000129191988832953\\
+4.93962174387833 9.94055791754563e-05\\
+5.31772317785097 7.60510283548923e-05\\
+5.72476623970219 5.96708426227613e-05\\
+6.22004882563472 4.64431458009848e-05\\
+6.88395206964551 3.49999150721356e-05\\
+7.68928372075831 2.62570242799126e-05\\
+8.7486681204799 1.9151840783586e-05\\
+10.1392540755881 1.35992205966557e-05\\
+12.1923125164911 9.02958935123225e-06\\
+15.2118551798611 5.62186182949063e-06\\
+20.244465099768 3.10130217506531e-06\\
+29.5440799888038 1.4361610228722e-06\\
+47.7176094893875 5.49760591463758e-07\\
+74.2798248256491 2.29882596168142e-07\\
+105.444279352617 1.16971864303465e-07\\
+140.328908478588 6.84103867948166e-08\\
+179.992850678248 4.34896000040672e-08\\
+230.867799418717 2.80483455426538e-08\\
+307.246884270901 1.72057682573678e-08\\
+591.250841383187 5.65290988492398e-09\\
+758.367791499719 3.63586967832353e-09\\
+972.720319245056 2.3053631334071e-09\\
+1000 2.18974291441358e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000100427594060727\\
+0.175486714964815 9.98177694832718e-05\\
+0.294082017058707 9.99305129458046e-05\\
+0.441209286319119 0.000100666190605652\\
+0.592615181247556 0.000101870938093407\\
+0.739381991917587 0.000103449729318859\\
+0.889096598952917 0.000105500386153455\\
+1.03041699495059 0.000107882962068046\\
+1.1723818032866 0.000110765703372336\\
+1.30953502048267 0.000114079777592685\\
+1.44930957412621 0.000118074134142145\\
+1.57469771464309 0.000122273707567123\\
+1.71093390726902 0.000127615694750295\\
+1.84189668079971 0.000133662097187313\\
+1.96468664618045 0.000140309369130042\\
+2.09566239948043 0.000148672800979758\\
+2.21485523372636 0.000157687617895759\\
+2.34082727617829 0.000169030771527403\\
+2.45126006203334 0.000180892619038052\\
+2.56690271549195 0.000195737282494049\\
+2.68800102153761 0.000214658915510121\\
+2.81481236050758 0.000239251193016005\\
+2.94760625512486 0.000271762353859602\\
+3.08666494333727 0.000314881163803065\\
+3.35371015200293 0.0004151910114243\\
+3.41612326858553 0.000433418085342975\\
+3.47969790388769 0.000444224978309385\\
+3.51192753045073 0.000445833825211677\\
+3.54445567397044 0.000444548577774812\\
+3.57728509936788 0.000440284570832719\\
+3.64385898376354 0.000423359581675189\\
+3.71167181947577 0.000397583964912146\\
+3.81576466127124 0.000350549396870229\\
+4.07014245321944 0.000247460613838251\\
+4.3414783300551 0.000177140400054502\\
+4.63090280179974 0.000131764589391368\\
+4.93962174387833 0.000101382693033604\\
+5.31772317785097 7.75613062714097e-05\\
+5.72476623970219 6.08537357094231e-05\\
+6.22004882563472 4.73616900525222e-05\\
+6.88395206964551 3.56897962793781e-05\\
+7.68928372075831 2.67722195237909e-05\\
+8.7486681204799 1.9525085496746e-05\\
+10.1392540755881 1.38615425807555e-05\\
+12.1923125164911 9.20063362824712e-06\\
+15.2118551798611 5.72484432196084e-06\\
+20.4319732019527 3.09452710033845e-06\\
+31.2244282309286 1.30090984938128e-06\\
+151.070330448666 5.26570869140281e-08\\
+202.911801804668 2.82463388075195e-08\\
+260.2647881969 1.6433848975365e-08\\
+321.741815067638 1.01943786017394e-08\\
+394.090164040345 6.34580916401352e-09\\
+478.277201772749 3.96419101176333e-09\\
+580.448594276898 2.43083803489514e-09\\
+710.970943231242 1.42814665907831e-09\\
+887.049688965442 7.83180980836854e-10\\
+1000 5.61288719318092e-10\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.0001025400138405\\
+0.253749037973357 0.000103074493970354\\
+0.398658107358044 0.000103996201107134\\
+0.545427130532983 0.000105337156324466\\
+0.69317172761554 0.000107103797448169\\
+0.841249704973612 0.000109311088527987\\
+0.983995229627825 0.000111885011454501\\
+1.12993393803322 0.000115019855322018\\
+1.27381132318648 0.000118677481404232\\
+1.40977287162897 0.000122732823851734\\
+1.54592773641948 0.000127477443146758\\
+1.67967487209265 0.000132926432036429\\
+1.80824493487796 0.000139044784949152\\
+1.92879150802078 0.000145723117240242\\
+2.05737431343292 0.000154066427282432\\
+2.17438947560008 0.000162996288841078\\
+2.29805998875885 0.000174151302999391\\
+2.42876438246045 0.000188356506243909\\
+2.54334576130465 0.000203408364589999\\
+2.66333272517498 0.000222511041902539\\
+2.78898029238044 0.000247232884250797\\
+2.92055551218275 0.000279813400008833\\
+3.05833803237843 0.000323086438709579\\
+3.38477285594598 0.000450089215962621\\
+3.44776405473447 0.000465983559611565\\
+3.47969790388769 0.000470523408078213\\
+3.51192753045073 0.000472256197723699\\
+3.54445567397044 0.000470923273278742\\
+3.57728509936788 0.000466434391814458\\
+3.64385898376354 0.000448557920602585\\
+3.71167181947577 0.000421298266974567\\
+3.81576466127124 0.000371524088010691\\
+4.07014245321944 0.000262374462222456\\
+4.3414783300551 0.000187892780291782\\
+4.63090280179974 0.000139820158848889\\
+4.93962174387833 0.000107626099167122\\
+5.31772317785097 8.23789209767129e-05\\
+5.72476623970219 6.46678592962701e-05\\
+6.22004882563472 5.03626806802625e-05\\
+6.88395206964551 3.79847688501789e-05\\
+7.68928372075831 2.85257319681162e-05\\
+8.7486681204799 2.08369336633699e-05\\
+10.1392540755881 1.48269846056649e-05\\
+12.0804213467733 1.00784870159338e-05\\
+14.796880626864 6.55643898563249e-06\\
+18.6324631193156 4.08722630180894e-06\\
+23.8989256623105 2.49150244705002e-06\\
+30.3726357970332 1.56967005572315e-06\\
+37.8947091907467 1.03954304058675e-06\\
+46.4158883361277 7.22923344812519e-07\\
+55.8144624945496 5.27008502803162e-07\\
+66.5001803043113 3.95773222272068e-07\\
+78.5045620020451 3.05723125353735e-07\\
+92.675933011469 2.3916139447947e-07\\
+110.418805085416 1.86891456580674e-07\\
+134.006889636395 1.440903357351e-07\\
+170.306502925284 1.05724091811657e-07\\
+301.63343472592 5.07793802470043e-08\\
+366.069514759691 3.90387220331764e-08\\
+436.153778920801 3.04099203391108e-08\\
+514.886745013749 2.37123143086041e-08\\
+607.832312829724 1.82599738432035e-08\\
+724.202233460732 1.36745769247959e-08\\
+870.843149769072 9.94895019248109e-09\\
+1000 7.77436184850145e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.21395085575642e-05\\
+0.223022329796594 9.20002605420377e-05\\
+0.370312667586993 9.25170926527379e-05\\
+0.520854855057766 9.34592504726511e-05\\
+0.674262224177835 9.48114334116223e-05\\
+0.818300681586741 9.64572187401002e-05\\
+0.966017479952265 9.85570956757338e-05\\
+1.10928986489522 0.000101037278625504\\
+1.25053858729039 0.000103966448437028\\
+1.38401609657313 0.000107240352241536\\
+1.5176833902834 0.000111089678665657\\
+1.64898694447107 0.000115521879800813\\
+1.77520801171764 0.000120501768470639\\
+1.8935521797563 0.000125932827413159\\
+2.01978575681988 0.000132703328488243\\
+2.13466303332425 0.000139926230093591\\
+2.25607406649686 0.00014891028194816\\
+2.38439047009373 0.000160286421175175\\
+2.49687842888433 0.000172263732438954\\
+2.6146732118011 0.000187360167867242\\
+2.73802517792786 0.000206753054628061\\
+2.86719649749378 0.000232147539126757\\
+3.00246170908556 0.000265858676793424\\
+3.17322963473497 0.000320331578506675\\
+3.35371015200293 0.000383925626500346\\
+3.41612326858553 0.000400803276567726\\
+3.47969790388769 0.000410821549008087\\
+3.51192753045073 0.000412322106438564\\
+3.54445567397044 0.000411146350830681\\
+3.57728509936788 0.000407215726692939\\
+3.64385898376354 0.000391587627767536\\
+3.71167181947577 0.000367771424389638\\
+3.81576466127124 0.000324298358485214\\
+4.07014245321944 0.000228992004813763\\
+4.3414783300551 0.000163970897571289\\
+4.63090280179974 0.000122011626226429\\
+4.93962174387833 9.39162238807587e-05\\
+5.31772317785097 7.18870127205623e-05\\
+5.72476623970219 5.64361088522262e-05\\
+6.22004882563472 4.39586758176784e-05\\
+6.82077673286569 3.39950665671626e-05\\
+7.61871770232298 2.55003041410726e-05\\
+8.66837993001979 1.86160467155884e-05\\
+10.0462042134682 1.32481968930358e-05\\
+11.8597101233767 9.19604334193895e-06\\
+14.3932264471941 6.10918449473466e-06\\
+17.7930438991858 3.96620710781033e-06\\
+22.1996611911995 2.56564129410818e-06\\
+27.4434330322837 1.71453659032183e-06\\
+33.6144900010876 1.1831053839728e-06\\
+40.420958397963 8.56377840855191e-07\\
+48.1595791019236 6.38821726791822e-07\\
+56.8531791387375 4.90503758284557e-07\\
+67.1161176749627 3.81695528916744e-07\\
+79.2316862486626 3.00881844204995e-07\\
+94.400647894176 2.37036066128027e-07\\
+114.566872863487 1.84380391727332e-07\\
+144.264395121816 1.38348026219572e-07\\
+282.781797962534 6.02726395110545e-08\\
+340.04119327037 4.7291337253156e-08\\
+405.142317111466 3.71243474121799e-08\\
+478.277201772749 2.9157804944723e-08\\
+564.614141930366 2.26092433458474e-08\\
+666.536326812492 1.73070424255859e-08\\
+794.145171902934 1.28818017465289e-08\\
+963.79347996158 9.16546799723591e-09\\
+1000 8.57749894484449e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.66644581622536e-05\\
+0.273172159844137 9.71480871183357e-05\\
+0.433148322337639 9.80051369246229e-05\\
+0.587176639073326 9.92219242012523e-05\\
+0.739381991917587 0.000100828968278305\\
+0.889096598952917 0.000102838154638653\\
+1.03041699495059 0.000105166885448979\\
+1.1723818032866 0.000107981453864403\\
+1.30953502048267 0.000111215406898031\\
+1.44930957412621 0.000115112045410596\\
+1.57469771464309 0.000119208197916736\\
+1.71093390726902 0.000124418100098905\\
+1.84189668079971 0.000130314608022211\\
+1.96468664618045 0.000136796820632088\\
+2.09566239948043 0.000144952351056511\\
+2.21485523372636 0.000153742909112374\\
+2.34082727617829 0.000164803743250134\\
+2.45126006203334 0.000176370265604939\\
+2.56690271549195 0.000190845263863495\\
+2.68800102153761 0.000209295643306934\\
+2.81481236050758 0.000233275398641118\\
+2.94760625512486 0.000264976813273437\\
+3.08666494333727 0.000307021804889402\\
+3.35371015200293 0.000404835197289419\\
+3.41612326858553 0.000422609458175574\\
+3.47969790388769 0.000433148758701737\\
+3.51192753045073 0.000434718471098534\\
+3.54445567397044 0.000433466258872615\\
+3.57728509936788 0.000429309548187386\\
+3.64385898376354 0.000412808412079286\\
+3.71167181947577 0.000387677087704011\\
+3.81576466127124 0.000341817126804602\\
+4.07014245321944 0.000241300981961637\\
+4.3414783300551 0.000172734897321185\\
+4.63090280179974 0.000128490752971558\\
+4.93962174387833 9.88664914249072e-05\\
+5.31772317785097 7.56391008363545e-05\\
+5.72476623970219 5.93481298537557e-05\\
+6.22004882563472 4.61925120787324e-05\\
+6.88395206964551 3.48116856894877e-05\\
+7.68928372075831 2.61165348746088e-05\\
+8.7486681204799 1.90502298660778e-05\\
+10.1392540755881 1.35280977820139e-05\\
+12.1923125164911 8.98370452879205e-06\\
+15.2118551798611 5.594983496215e-06\\
+20.0586777950824 3.14777075493876e-06\\
+28.7381269185107 1.5152343586116e-06\\
+43.5149650092505 6.62030155153696e-07\\
+63.5042516859598 3.15964735308927e-07\\
+86.0864769614925 1.76779557360561e-07\\
+110.418805085416 1.11476857517902e-07\\
+137.765076954906 7.50119077830731e-08\\
+170.306502925284 5.20241446082554e-08\\
+212.484535249889 3.60167710800623e-08\\
+275.067600790807 2.37891345660947e-08\\
+500.840798984821 9.13883882200408e-09\\
+624.878807200689 6.31064191725509e-09\\
+772.481145140342 4.36538115184424e-09\\
+963.79347996158 2.93053858328538e-09\\
+1000 2.73875241060332e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000106175700189644\\
+0.166042865718753 0.000104949539326132\\
+0.466303492974274 0.000102096224998636\\
+0.592615181247556 0.000102411830391614\\
+0.725873365081725 0.000103357430039617\\
+0.864842327573171 0.000104889354133518\\
+1.00230754828386 0.000106908622367793\\
+1.14039960197003 0.000109445466362391\\
+1.27381132318648 0.000112413482873572\\
+1.40977287162897 0.000116018865507441\\
+1.54592773641948 0.000120299350373556\\
+1.67967487209265 0.000125264772116459\\
+1.80824493487796 0.000130878581743099\\
+1.92879150802078 0.000137035190417782\\
+2.05737431343292 0.000144753476037074\\
+2.17438947560008 0.000153035350916866\\
+2.29805998875885 0.000163400113807895\\
+2.42876438246045 0.00017661816316212\\
+2.54334576130465 0.00019063841114565\\
+2.66333272517498 0.000208444656024092\\
+2.78898029238044 0.000231501089448002\\
+2.92055551218275 0.000261897992709847\\
+3.05833803237843 0.000302278816288716\\
+3.38477285594598 0.000420754781869979\\
+3.44776405473447 0.000435551124424618\\
+3.47969790388769 0.000439763473878402\\
+3.51192753045073 0.000441352075749187\\
+3.54445567397044 0.000440075764168374\\
+3.57728509936788 0.000435850802305437\\
+3.64385898376354 0.00041908908535768\\
+3.71167181947577 0.000393567048706438\\
+3.81576466127124 0.000346999683497332\\
+4.07014245321944 0.000244943148661689\\
+4.3414783300551 0.000175331416272906\\
+4.63090280179974 0.000130414842308352\\
+4.93962174387833 0.000100341681469394\\
+5.31772317785097 7.67633455868029e-05\\
+5.72476623970219 6.02269449512651e-05\\
+6.22004882563472 4.68736844832652e-05\\
+6.88395206964551 3.53223693937396e-05\\
+7.68928372075831 2.6497321643053e-05\\
+8.7486681204799 1.93256993560138e-05\\
+10.1392540755881 1.37214010190124e-05\\
+12.1923125164911 9.10942551704433e-06\\
+15.2118551798611 5.6702440333834e-06\\
+20.244465099768 3.12649627825859e-06\\
+29.8177229001967 1.41935416787749e-06\\
+50.8987019351967 4.84893027815642e-07\\
+87.6885609458744 1.65036885495163e-07\\
+131.558562404571 7.49524134072796e-08\\
+181.659978837533 4.05825536744096e-08\\
+246.258591635054 2.31000599412922e-08\\
+343.190719745904 1.26832144780961e-08\\
+691.575882873852 3.59497218524587e-09\\
+928.897872016452 2.07703908245095e-09\\
+1000 1.80693091374625e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 9.13206800570211e-05\\
+0.260865361762254 9.1788686221625e-05\\
+0.413634368406327 9.26013724817683e-05\\
+0.565917016324625 9.37633415882599e-05\\
+0.719211887222118 9.53038194745358e-05\\
+0.864842327573171 9.71424798867935e-05\\
+1.01159111222383 9.94075945043006e-05\\
+1.15096220088503 0.000101991727127265\\
+1.2856096069433 0.000104945457116358\\
+1.42283045721435 0.000108488573084897\\
+1.56024641436637 0.000112665982916449\\
+1.69523234155412 0.000117494754316289\\
+1.82499324481615 0.000122946440006913\\
+1.94665634334226 0.000128924960773186\\
+2.07643010725578 0.000136426767744559\\
+2.19452908620331 0.000144489482209096\\
+2.31934505927443 0.000154602649502722\\
+2.45126006203334 0.000167538459979964\\
+2.56690271549195 0.000181305740613614\\
+2.68800102153761 0.000198853482776595\\
+2.81481236050758 0.000221659809920371\\
+2.94760625512486 0.000251810249015256\\
+3.08666494333727 0.000291799909211046\\
+3.35371015200293 0.000384851790527633\\
+3.41612326858553 0.000401770678118351\\
+3.47969790388769 0.000411813485746344\\
+3.51192753045073 0.000413317775962694\\
+3.54445567397044 0.000412139245093367\\
+3.57728509936788 0.000408199147029361\\
+3.64385898376354 0.000392533211520595\\
+3.71167181947577 0.00036865924549152\\
+3.81576466127124 0.000325080627238099\\
+4.07014245321944 0.000229542470850784\\
+4.3414783300551 0.000164362762849176\\
+4.63090280179974 0.000122300778754238\\
+4.93962174387833 9.41363273661014e-05\\
+5.31772317785097 7.20527363079093e-05\\
+5.72476623970219 5.65635105987671e-05\\
+6.22004882563472 4.4054982759194e-05\\
+6.82077673286569 3.40664216528013e-05\\
+7.61871770232298 2.55502814645559e-05\\
+8.66837993001979 1.86486194247859e-05\\
+10.0462042134682 1.32671518627698e-05\\
+11.8597101233767 9.20470895826661e-06\\
+14.3932264471941 6.11004791700389e-06\\
+17.957846470021 3.8890652158507e-06\\
+22.6128006633728 2.46789116857386e-06\\
+28.2130767593947 1.61881610916089e-06\\
+34.5571993676214 1.11567106962653e-06\\
+41.5545533471888 8.06316891968677e-07\\
+49.5102015955635 6.00403665886793e-07\\
+58.4476113163363 4.60129149793299e-07\\
+68.9983712143002 3.57339648801369e-07\\
+81.4537176628074 2.81113414910997e-07\\
+97.0480887738033 2.21006029514516e-07\\
+117.779870119712 1.71544169702632e-07\\
+148.31025143361 1.28412365993323e-07\\
+290.712337727258 5.55453042853576e-08\\
+349.577557436328 4.34786487102678e-08\\
+412.682084570295 3.45001341666488e-08\\
+487.178021879464 2.70504733670801e-08\\
+575.121707184161 2.09401953184999e-08\\
+678.94068126961 1.60043333555654e-08\\
+808.924348680595 1.18946085373849e-08\\
+981.729840618886 8.45145785480669e-09\\
+1000 8.17537863128702e-09\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.000100077040681054\\
+0.273172159844137 0.00010057770184961\\
+0.433148322337639 0.000101464934759738\\
+0.587176639073326 0.000102724574034075\\
+0.739381991917587 0.000104388213663543\\
+0.889096598952917 0.000106468157505684\\
+1.03041699495059 0.000108878898669169\\
+1.1723818032866 0.000111792586344107\\
+1.30953502048267 0.000115140426960708\\
+1.44930957412621 0.000119174289052999\\
+1.57469771464309 0.000123414689757397\\
+1.71093390726902 0.000128808059379416\\
+1.84189668079971 0.000134912211008599\\
+1.96468664618045 0.000141622689614222\\
+2.09566239948043 0.000150065406128602\\
+2.21485523372636 0.000159165506518303\\
+2.34082727617829 0.000170615818558327\\
+2.45126006203334 0.00018258961615137\\
+2.56690271549195 0.000197574288470602\\
+2.68800102153761 0.00021667429618998\\
+2.81481236050758 0.000241498328527855\\
+2.94760625512486 0.000274315811775901\\
+3.08666494333727 0.00031784087280573\\
+3.35371015200293 0.000419096223177928\\
+3.41612326858553 0.000437495359471581\\
+3.47969790388769 0.000448404557818924\\
+3.51192753045073 0.000450028866247803\\
+3.54445567397044 0.000448731850351485\\
+3.57728509936788 0.000444428041937894\\
+3.64385898376354 0.000427344400826068\\
+3.71167181947577 0.000401326770546662\\
+3.81576466127124 0.000353850226912398\\
+4.07014245321944 0.000249792117158281\\
+4.3414783300551 0.000178810416512645\\
+4.63090280179974 0.000133007662592734\\
+4.93962174387833 0.000102339850135891\\
+5.31772317785097 7.82942509115801e-05\\
+5.72476623970219 6.14294013423265e-05\\
+6.22004882563472 4.78103288035089e-05\\
+6.88395206964551 3.60285290569932e-05\\
+7.68928372075831 2.70269697943545e-05\\
+8.7486681204799 1.97115756916243e-05\\
+10.1392540755881 1.39946816408525e-05\\
+12.1923125164911 9.28986126574979e-06\\
+15.2118551798611 5.78132213657136e-06\\
+20.244465099768 3.18620226347221e-06\\
+30.3726357970332 1.39154078755146e-06\\
+58.4476113163363 3.72091121153173e-07\\
+277.61532944368 1.64358803296982e-08\\
+1000 1.26653043529967e-09\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=3.749in,
+height=1.562in,
+at={(0.599in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-360,
+ymax=0,
+ytick={-360, -270, -180, -90, 0, 90, 180},
+ylabel={Phase [deg]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.251760027483243\\
+0.111698681846785 -0.281292259421264\\
+0.124765955263085 -0.314310760344455\\
+0.138082976521811 -0.347998287948798\\
+0.152821403602584 -0.385331110633871\\
+0.169132951702966 -0.426716028383709\\
+0.185467692308466 -0.468238088454825\\
+0.2033800305847 -0.513869508191448\\
+0.223022329796589 -0.564038990837304\\
+0.244561668345247 -0.619226913489968\\
+0.268181260945295 -0.679973667022836\\
+0.291383170483282 -0.739901610046189\\
+0.316592411198347 -0.805327923195136\\
+0.343982648902299 -0.876818457921246\\
+0.373742574239103 -0.95501428791502\\
+0.406077202570047 -1.04064605542311\\
+0.441209286319117 -1.13455199560983\\
+0.479380849508926 -1.23770076662129\\
+0.516074871038594 -1.33805585327315\\
+0.555577622239876 -1.44752412588946\\
+0.598104096238105 -1.5671764789698\\
+0.643885742724037 -1.69826705118015\\
+0.693171727615563 -1.84227656967428\\
+0.746230289139115 -2.00096838222953\\
+0.803350197712457 -2.17646157127365\\
+0.856905505126854 -2.34580838913698\\
+0.914031074875622 -2.53205957204895\\
+0.974964918348386 -2.737722189008\\
+1.03996091395414 -2.96584369800883\\
+1.10928986489522 -3.22016376063706\\
+1.18324062745835 -3.50531880134778\\
+1.25053858729041 -3.7786463943838\\
+1.3216641839466 -4.08342859533482\\
+1.39683511798871 -4.42530748176733\\
+1.47628147190943 -4.81134875294794\\
+1.56024641436638 -5.25050883680697\\
+1.64898694447104 -5.75429559197102\\
+1.7267809038843 -6.23418160819529\\
+1.80824493487798 -6.78049798842585\\
+1.8935521797563 -7.40762482268528\\
+1.98288394912704 -8.13428864346412\\
+2.07643010725571 -8.98529519806553\\
+2.17438947560012 -9.99414386504623\\
+2.25607406649687 -10.9453705108788\\
+2.34082727617828 -12.058963020253\\
+2.4287643824604 -13.3780608196445\\
+2.52000499376417 -14.9617947247486\\
+2.61467321180114 -16.8930269191982\\
+2.71289780037248 -19.2906943665843\\
+2.78898029238043 -21.4974115189547\\
+2.86719649749373 -24.1676744223864\\
+2.94760625512479 -27.445075940691\\
+3.03027108286649 -31.5277852890372\\
+3.11525422355555 -36.686496135277\\
+3.20262069365769 -43.2755432936318\\
+3.29243733300778 -51.7061661459666\\
+3.38477285594596 -62.309563171079\\
+3.51192753045066 -79.5813011686902\\
+3.74605003274907 -110.759432908038\\
+3.85110700232562 -121.258680403853\\
+3.95911026646847 -129.588385673263\\
+4.07014245321941 -136.088080302704\\
+4.18428850790151 -141.168258498163\\
+4.30163575810668 -145.179893144172\\
+4.42227398050602 -148.390349681061\\
+4.58840412645483 -151.754591018014\\
+4.76077523022638 -154.357690376931\\
+4.93962174387827 -156.411160639613\\
+5.12518692705321 -158.057030526225\\
+5.31772317785112 -159.393052174805\\
+5.51749237612921 -160.488167377056\\
+5.72476623970219 -161.392117948305\\
+5.93982669392029 -162.141541386514\\
+6.16296625513279 -162.763926732343\\
+6.39448842855712 -163.280241137957\\
+6.63470812109245 -163.706712309482\\
+6.88395206964551 -164.056063043385\\
+7.14255928554305 -164.338382578973\\
+7.41088151564139 -164.561752407387\\
+7.61871770232323 -164.694570743851\\
+7.83238259917936 -164.800222809427\\
+8.05203967082557 -164.880683576693\\
+8.27785696619849 -164.937658431806\\
+8.43190929286622 -164.963331646333\\
+8.58882855954615 -164.979615488769\\
+8.74866812047975 -164.986863834674\\
+8.8296999554939 -164.98720168093\\
+8.91148232283998 -164.985399409174\\
+9.07732652520994 -164.975516769157\\
+9.246257116406 -164.95748495523\\
+9.41833153464815 -164.931549855825\\
+9.68246611930323 -164.878315120093\\
+9.95400828762154 -164.808479296416\\
+10.2331657833024 -164.722637736499\\
+10.6175918348298 -164.584176606356\\
+11.0164594963369 -164.419242529031\\
+11.5361810173649 -164.177190134408\\
+12.0804213467733 -163.896585078746\\
+12.7675070431924 -163.510569035359\\
+13.4936714058834 -163.072240923967\\
+14.2611370719414 -162.58280920907\\
+15.2118551798608 -161.948471525206\\
+16.2259528707813 -161.247068677109\\
+17.4679621512724 -160.364655674448\\
+18.8050405512853 -159.397443688761\\
+20.4319732019529 -158.209977276688\\
+22.1996611911991 -156.920068427354\\
+24.3436887354314 -155.371319908145\\
+26.6947849403426 -153.707822659243\\
+29.544079988804 -151.756802594869\\
+33.3060034362469 -149.309736852275\\
+38.5999361767968 -146.138806015699\\
+61.7718759733854 -135.89106637495\\
+68.3651600451004 -133.884706696048\\
+74.9678187496691 -132.189016010748\\
+81.4537176628054 -130.786727551903\\
+87.6885609458755 -129.65106226003\\
+93.534315202923 -128.75033494463\\
+99.7697764236289 -127.941914783897\\
+105.444279352618 -127.325915435736\\
+111.441525146678 -126.783544664272\\
+116.698981861712 -126.389343816329\\
+122.204468663152 -126.048783584384\\
+127.969686821595 -125.762748655862\\
+132.777082935543 -125.573678444945\\
+137.765076954903 -125.420289419548\\
+141.628661629916 -125.328818770658\\
+145.600599502069 -125.257650446268\\
+149.683929307729 -125.206854668994\\
+152.469572701759 -125.18433599481\\
+155.307057393347 -125.170907656172\\
+156.74554102056 -125.167605148848\\
+158.19734815786 -125.166578164202\\
+159.662602210142 -125.167827260913\\
+161.141427725301 -125.171352796022\\
+164.140297114445 -125.185233601788\\
+167.194975973196 -125.208219405765\\
+170.30650292528 -125.240305801436\\
+175.082703173578 -125.305481383756\\
+179.992850678251 -125.39107574365\\
+185.040701954232 -125.497032617384\\
+191.992066559328 -125.669854496106\\
+199.204570845384 -125.878523009148\\
+206.688024962902 -126.12276085438\\
+216.438908606406 -126.477561339195\\
+226.64980792737 -126.886624318893\\
+239.540735872084 -127.447792621783\\
+253.164847863143 -128.08380982125\\
+270.042071883779 -128.917374343516\\
+288.044415339625 -129.845464350132\\
+310.0926635932 -131.01552099932\\
+333.828586473175 -132.294074741613\\
+362.710025233077 -133.850037794328\\
+397.740302405804 -135.706664084985\\
+444.2706749607 -138.079963937543\\
+510.161531474972 -141.205884152087\\
+854.93270662683 -153.04576102651\\
+972.720319245064 -155.755590228134\\
+1000 -156.314119687902\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.242317279423763 0.000527261530862688\\
+0.263281546564798 -0.0811456376381159\\
+0.28605955351758 -0.170387644643682\\
+0.313686982456683 -0.278299764440135\\
+0.343982648902299 -0.395428881077066\\
+0.377204249341695 -0.521969995094054\\
+0.413634368406335 -0.658359026871977\\
+0.453582882551013 -0.805311687010715\\
+0.497389595879016 -0.963862290202314\\
+0.545427130532976 -1.13540874517179\\
+0.592615181247569 -1.3024063312572\\
+0.643885742724037 -1.48306996951217\\
+0.699592016543558 -1.67946697977456\\
+0.760117761795532 -1.89415198055866\\
+0.818300681586717 -2.10288109065249\\
+0.88093719044741 -2.33129514373712\\
+0.948368186628579 -2.58276383537083\\
+1.01159111222386 -2.82497383338489\\
+1.07902879151619 -3.09147954955304\\
+1.15096220088501 -3.38654147006349\\
+1.22769104798839 -3.7154650322048\\
+1.30953502048267 -4.08493672143445\\
+1.38401609657311 -4.44030995929617\\
+1.46273335620117 -4.8385274664812\\
+1.54592773641949 -5.28820957990604\\
+1.63385387780984 -5.80039972336587\\
+1.71093390726897 -6.2852082991686\\
+1.79165032736394 -6.83401141529708\\
+1.87617469143913 -7.46048401666835\\
+1.96468664618042 -8.18237547763428\\
+2.05737431343286 -9.0231106301932\\
+2.15443469003193 -10.0141930179362\\
+2.23536964590981 -10.9438673601576\\
+2.31934505927442 -12.027053816438\\
+2.40647515001538 -13.3037572433917\\
+2.49687842888425 -14.8285255213664\\
+2.59067785868806 -16.677360489627\\
+2.68800102153763 -18.9586811413407\\
+2.76338529005317 -21.0462647093371\\
+2.84088369018327 -23.5589288805873\\
+2.92055551218269 -26.6257181424796\\
+3.00246170908546 -30.4246646517959\\
+3.08666494333735 -35.2003758304918\\
+3.17322963473503 -41.2793944044134\\
+3.26222200971169 -49.0617597915371\\
+3.35371015200292 -58.9315559937795\\
+3.47969790388763 -75.4294666133501\\
+3.78074666359942 -114.966145809056\\
+3.8867766908927 -124.731708800851\\
+3.99578030189527 -132.417689694464\\
+4.1078408899656 -138.412509288167\\
+4.22304418720659 -143.114094202387\\
+4.34147833005496 -146.845482539607\\
+4.46323392671051 -149.848170890579\\
+4.63090280179979 -153.014591479607\\
+4.80487043965512 -155.481589586115\\
+4.98537346387382 -157.440240052114\\
+5.17265738721588 -159.01963597002\\
+5.36697694554061 -160.309189985652\\
+5.56859644428648 -161.372343344463\\
+5.7777901179705 -162.25512445196\\
+5.99484250318932 -162.991607989616\\
+6.22004882563454 -163.607478144545\\
+6.45371540164686 -164.122407669142\\
+6.6961600548533 -164.551680802529\\
+6.94771254846023 -164.907322761801\\
+7.20871503378203 -165.198900497493\\
+7.47952251562161 -165.434100139904\\
+7.76050333513376 -165.619149986245\\
+7.97814457207674 -165.728121353518\\
+8.20188949920225 -165.81356372935\\
+8.43190929286622 -165.877037044957\\
+8.58882855954615 -165.90782390781\\
+8.74866812047975 -165.929809142275\\
+8.91148232283998 -165.943318339531\\
+9.07732652520994 -165.948648810199\\
+9.1614024571388 -165.948332856762\\
+9.246257116406 -165.946072229754\\
+9.41833153464815 -165.935836995792\\
+9.59360828709328 -165.918170333486\\
+9.7721469697258 -165.893280180482\\
+10.0462042134681 -165.842812843772\\
+10.3279473191894 -165.777093186334\\
+10.6175918348298 -165.696625880682\\
+11.0164594963369 -165.567151364603\\
+11.430311291145 -165.413137085991\\
+11.9695570235905 -165.18724297022\\
+12.5342426546138 -164.925370359924\\
+13.2471398786616 -164.564958504323\\
+14.0005838246811 -164.155373550861\\
+14.7968806268638 -163.697572489942\\
+15.7833140565207 -163.10348246261\\
+16.8355080296122 -162.445602424713\\
+18.1241754737421 -161.61650065425\\
+19.5114834684666 -160.705896064776\\
+21.0049824165391 -159.714809901491\\
+22.8222447418683 -158.505289296624\\
+24.7967289250217 -157.198196009748\\
+27.1915794303594 -155.635984019715\\
+30.0939003444972 -153.792320259502\\
+33.6144900010886 -151.646597444911\\
+38.2456972246693 -148.996241247607\\
+45.1496777203605 -145.431338394954\\
+61.7718759733854 -138.666105881322\\
+69.6374473062844 -136.244256979563\\
+77.0702711421226 -134.335013675431\\
+83.7380653526675 -132.892972266241\\
+90.1477631452495 -131.716144413877\\
+97.0480887738009 -130.648798907058\\
+103.51779556302 -129.811778369778\\
+109.405470720574 -129.170530377658\\
+115.628013120735 -128.602667544139\\
+122.204468663152 -128.110675591999\\
+127.969686821595 -127.760173311413\\
+134.006889636394 -127.464861195859\\
+139.041083409004 -127.268932503255\\
+144.264395121811 -127.109245017794\\
+148.310251433614 -127.013445660222\\
+152.469572701759 -126.938305129986\\
+156.74554102056 -126.88390654072\\
+159.662602210142 -126.859196252478\\
+162.633950404818 -126.843747190663\\
+164.140297114445 -126.83949894237\\
+165.660595894989 -126.837569510453\\
+167.194975973196 -126.837959567995\\
+168.743567772734 -126.840669550006\\
+171.88391428171 -126.853049837575\\
+175.082703173578 -126.874709093266\\
+178.341022071005 -126.905642225455\\
+183.342548256232 -126.969409898507\\
+188.48434090338 -127.053976565122\\
+193.770333747798 -127.159276373455\\
+201.049641626046 -127.331776774799\\
+208.602408924844 -127.540722967752\\
+216.438908606406 -127.785791674802\\
+226.64980792737 -128.142324994198\\
+237.342425002384 -128.553775612114\\
+250.841505927762 -129.11847159257\\
+265.108360190857 -129.758475096265\\
+282.781797962532 -130.59685648596\\
+301.63343472593 -131.529433748449\\
+324.721849207315 -132.703490798629\\
+352.81541153808 -134.151053763409\\
+386.890073932801 -135.899045902045\\
+428.18517986523 -137.964738439045\\
+482.707096560317 -140.554317899556\\
+575.121707184161 -144.512305746288\\
+779.636013040541 -151.40151148665\\
+895.265712599616 -154.366754430395\\
+1000 -156.613827921468\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.296254070574861\\
+0.111698681846785 -0.330989382156645\\
+0.123620954373676 -0.366415062560634\\
+0.13681576279675 -0.405656563399845\\
+0.151418932530433 -0.449133524212073\\
+0.166042865718756 -0.49272691818129\\
+0.182079168009943 -0.540599702916268\\
+0.199664245010983 -0.593187349629062\\
+0.218947676285658 -0.650974528278425\\
+0.240093487686069 -0.714502180082292\\
+0.260865361762251 -0.777084311406043\\
+0.283434330615137 -0.845299124836941\\
+0.30795587129142 -0.919696537490239\\
+0.334598912055007 -1.00089219926573\\
+0.363546996129332 -1.08957855382963\\
+0.394999546122053 -1.18653850375202\\
+0.429173237842218 -1.29266243960396\\
+0.466303492974262 -1.40896964750669\\
+0.506646100892133 -1.53663546124767\\
+0.545427130532976 -1.66075117732302\\
+0.587176639073341 -1.79603156928383\\
+0.632121847581245 -1.94376920664078\\
+0.680507369673503 -2.10547619627783\\
+0.732596542821532 -2.28293670895278\\
+0.788672861561404 -2.47827530823028\\
+0.849041520408896 -2.69404676024359\\
+0.905642837944531 -2.90203216760619\\
+0.966017479952245 -3.13054551762522\\
+1.03041699495061 -3.38262932924619\\
+1.0991097009295 -3.66199647343316\\
+1.17238180328657 -3.97322606012003\\
+1.25053858729041 -4.32203075368471\\
+1.3216641839466 -4.65633260768894\\
+1.39683511798871 -5.02921204290948\\
+1.47628147190943 -5.44779641234072\\
+1.56024641436638 -5.92110615813309\\
+1.64898694447104 -6.46071594646065\\
+1.7267809038843 -6.97178325453811\\
+1.80824493487798 -7.55053432817547\\
+1.8935521797563 -8.21139420497374\\
+1.98288394912704 -8.97313698201958\\
+2.07643010725571 -9.86061899235517\\
+2.17438947560012 -10.9073936624866\\
+2.25607406649687 -11.8900443240402\\
+2.34082727617828 -13.0360579265097\\
+2.4287643824604 -14.3886075790108\\
+2.52000499376417 -16.0068599252422\\
+2.61467321180114 -17.9737152865944\\
+2.71289780037248 -20.4081512338141\\
+2.78898029238043 -22.6432222879213\\
+2.86719649749373 -25.3425268534056\\
+2.94760625512479 -28.6496779510297\\
+3.03027108286649 -32.7628658873775\\
+3.11525422355555 -37.9528063820042\\
+3.20262069365769 -44.5738572839423\\
+3.29243733300778 -53.0372820126316\\
+3.38477285594596 -63.6743041035874\\
+3.51192753045066 -80.9922012811773\\
+3.74605003274907 -112.25494144867\\
+3.85110700232562 -122.79201741022\\
+3.95911026646847 -131.160536018368\\
+4.07014245321941 -137.700060887689\\
+4.18428850790151 -142.821119291102\\
+4.30163575810668 -146.874718209578\\
+4.42227398050602 -150.128258198065\\
+4.58840412645483 -153.551747654456\\
+4.76077523022638 -156.216237459704\\
+4.93962174387827 -158.333331904473\\
+5.12518692705321 -160.045154102998\\
+5.31772317785112 -161.449553491196\\
+5.51749237612921 -162.615571975252\\
+5.72476623970219 -163.593054208156\\
+5.93982669392029 -164.418743147921\\
+6.16296625513279 -165.120235807723\\
+6.45371540164686 -165.854090465318\\
+6.75818116816117 -166.457583799798\\
+7.07701066118183 -166.953796510688\\
+7.34287044716661 -167.285387116098\\
+7.61871770232323 -167.5665553279\\
+7.90492762269657 -167.80301611563\\
+8.20188949920225 -167.999469577901\\
+8.51000724712218 -168.159807139642\\
+8.8296999554939 -168.287269592411\\
+9.07732652520994 -168.362940970073\\
+9.33189771573347 -168.422635849528\\
+9.59360828709328 -168.467217359279\\
+9.7721469697258 -168.48892148555\\
+9.95400828762154 -168.504451287784\\
+10.1392540755881 -168.513993475747\\
+10.3279473191894 -168.517719988456\\
+10.5201521761614 -168.515789208932\\
+10.7159339982264 -168.508347060122\\
+10.9153593533136 -168.495527995295\\
+11.118496048193 -168.477455894561\\
+11.430311291145 -168.440745452482\\
+11.7508713090482 -168.392818136146\\
+12.0804213467733 -168.333980995447\\
+12.5342426546138 -168.239023657407\\
+13.0051125217337 -168.125701375412\\
+13.6186523675611 -167.95892126763\\
+14.2611370719414 -167.764901191591\\
+14.9339321612423 -167.544217239437\\
+15.7833140565207 -167.244811227165\\
+16.6810053720008 -166.908180494976\\
+17.7930438991856 -166.468850719332\\
+18.9792164283904 -165.979601485231\\
+20.2444650997683 -165.440488971102\\
+21.7940698430292 -164.763164936112\\
+23.4622884814232 -164.020271095078\\
+25.2582002696278 -163.211464169794\\
+27.4434330322828 -162.222464774697\\
+29.8177229001969 -161.149742054961\\
+32.6974974451167 -159.86046432783\\
+35.8553985745983 -158.470946312084\\
+39.6824610456936 -156.831808755217\\
+44.3247859124037 -154.921948418201\\
+49.9687745385497 -152.729699077977\\
+58.4476113163379 -149.72182476597\\
+84.5136633068495 -142.577748519695\\
+94.4006478941749 -140.603404101749\\
+103.51779556302 -139.081255801993\\
+112.473717836474 -137.830674529784\\
+121.082975023208 -136.829093246645\\
+129.154966501489 -136.047070401015\\
+136.5007806546 -135.452319527734\\
+144.264395121811 -134.931335659965\\
+151.070330448668 -134.555941631093\\
+158.19734815786 -134.235750703144\\
+164.140297114445 -134.020308371347\\
+170.30650292528 -133.841728255616\\
+176.704352608899 -133.700527856909\\
+181.659978837536 -133.619413025532\\
+186.754584276109 -133.559700623934\\
+190.230118866895 -133.531837084737\\
+193.770333747798 -133.51355835968\\
+197.376432630023 -133.504882304111\\
+199.204570845384 -133.504149148933\\
+201.049641626046 -133.50582052611\\
+202.911801804663 -133.509896910575\\
+206.688024962902 -133.525264649023\\
+210.534524276677 -133.550248355471\\
+214.452607597172 -133.584837774507\\
+220.466873523944 -133.654694807757\\
+226.64980792737 -133.746044052719\\
+233.006141069691 -133.858771839648\\
+241.759407916908 -134.042075407008\\
+250.841505927762 -134.262691619718\\
+262.675410372388 -134.590113784747\\
+275.067600790807 -134.973743415933\\
+288.044415339625 -135.412083987825\\
+304.427221206439 -136.007853216788\\
+321.74181506764 -136.67645948566\\
+343.1907197459 -137.543326952898\\
+369.46012051994 -138.639950705104\\
+397.740302405804 -139.838444967621\\
+436.153778920815 -141.460488462681\\
+482.707096560317 -143.374096144544\\
+549.211648388788 -145.949028939944\\
+710.970943231237 -151.284838931754\\
+847.086826655735 -154.828743287754\\
+963.793479961591 -157.312584906546\\
+1000 -157.996501908968\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.317631519757327\\
+0.110673601809601 -0.351603925998347\\
+0.122486461375092 -0.389227226968927\\
+0.13556017853294 -0.430899952904667\\
+0.15002933220192 -0.477066333843936\\
+0.164519058775369 -0.523351454605461\\
+0.180408192871936 -0.57417400806915\\
+0.19783188827842 -0.629993768276364\\
+0.216938351838516 -0.691321854543958\\
+0.237890104107894 -0.758727945293231\\
+0.258471350746954 -0.825114960885315\\
+0.280833199882324 -0.897457731205122\\
+0.305129701718286 -0.97633235695011\\
+0.331528234231953 -1.06238241626434\\
+0.360210656235708 -1.15633001836102\\
+0.391374560198028 -1.25898940995569\\
+0.425234633452872 -1.3712838722806\\
+0.462024137175122 -1.49426689242824\\
+0.501996513311016 -1.62914893193212\\
+0.540421642070586 -1.7601614264544\\
+0.58178800743451 -1.90281820021508\\
+0.62632074521987 -2.05843536095799\\
+0.674262224177818 -2.22854651349863\\
+0.725873365081736 -2.41495389075396\\
+0.781435060784446 -2.61979472342884\\
+0.841249704973636 -2.84562828689141\\
+0.905642837944531 -3.09555136686632\\
+0.966017479952245 -3.33695316817537\\
+1.03041699495061 -3.60278197542448\\
+1.0991097009295 -3.89680719437089\\
+1.17238180328657 -4.22366811845714\\
+1.25053858729041 -4.58914146218984\\
+1.3216641839466 -4.93860788545257\\
+1.39683511798871 -5.32750942631992\\
+1.47628147190943 -5.763021321765\\
+1.56024641436638 -6.254214462964\\
+1.64898694447104 -6.81271664812783\\
+1.74277467840897 -7.45366706583309\\
+1.82499324481618 -8.06505346859197\\
+1.91109062168914 -8.76272572691218\\
+2.001249798969 -9.56655047551524\\
+2.0956623994805 -10.5029169632758\\
+2.19452908620335 -11.6075851416977\\
+2.27697025538168 -12.6451822357611\\
+2.36250846547792 -13.8563888428803\\
+2.45126006203328 -15.2878484740136\\
+2.54334576130472 -17.0038182230007\\
+2.63889081445755 -19.0948496757672\\
+2.73802517792786 -21.6917022679413\\
+2.81481236050756 -24.0844638176878\\
+2.8937530190509 -26.9847472865425\\
+2.97490754721436 -30.5524581185502\\
+3.05833803237852 -35.0079984564125\\
+3.14410830314732 -40.6496524674011\\
+3.23228397818141 -47.8572159221851\\
+3.32293251639897 -57.0388636867383\\
+3.41612326858549 -68.4357626224876\\
+3.57728509936777 -91.1264468324353\\
+3.74605003274907 -113.049858100226\\
+3.85110700232562 -123.608890783458\\
+3.95911026646847 -131.999953743548\\
+4.07014245321941 -138.562624779342\\
+4.18428850790151 -143.707445566705\\
+4.30163575810668 -147.785437701547\\
+4.42227398050602 -151.064016558092\\
+4.58840412645483 -154.521921497778\\
+4.76077523022638 -157.222037426851\\
+4.93962174387827 -159.376005277811\\
+5.12518692705321 -161.125985295385\\
+5.31772317785112 -162.569864475321\\
+5.51749237612921 -163.776722646745\\
+5.72476623970219 -164.79644267541\\
+5.99484250318932 -165.863051392992\\
+6.27766010580631 -166.746549006487\\
+6.57382014340971 -167.484578089677\\
+6.88395206964551 -168.104755771632\\
+7.20871503378203 -168.627745969736\\
+7.5487992816532 -169.069275662905\\
+7.90492762269657 -169.441492243291\\
+8.27785696619849 -169.753898412268\\
+8.66837993001965 -170.01400948763\\
+8.9940221740918 -170.188518724901\\
+9.33189771573347 -170.335938740935\\
+9.68246611930323 -170.458394015266\\
+10.0462042134681 -170.557682780249\\
+10.4236067397639 -170.635330907399\\
+10.7159339982264 -170.680153099904\\
+11.0164594963369 -170.714010190769\\
+11.3254131515284 -170.737322307339\\
+11.5361810173649 -170.747190928568\\
+11.7508713090482 -170.752638560157\\
+11.9695570235905 -170.753756798072\\
+12.192312516491 -170.750629947285\\
+12.4192135270177 -170.743335530995\\
+12.6503372039588 -170.731944756699\\
+13.0051125217337 -170.707319296474\\
+13.3698374182498 -170.673820355954\\
+13.7447909267756 -170.631620411227\\
+14.2611370719414 -170.562074624188\\
+14.7968806268638 -170.477622617237\\
+15.3527502878039 -170.378505261951\\
+16.0770442167387 -170.234270497346\\
+16.8355080296122 -170.067688314021\\
+17.7930438991856 -169.838537505659\\
+18.8050405512853 -169.577617937721\\
+19.8745954958102 -169.284948242215\\
+21.1995345753606 -168.903239692575\\
+22.6128006633721 -168.477879443744\\
+24.1202820761804 -168.008443256465\\
+25.9665597293484 -167.417330884033\\
+27.9541599906793 -166.767205239514\\
+30.0939003444972 -166.057314911715\\
+32.6974974451167 -165.18649392015\\
+35.5263467657817 -164.238763860043\\
+38.5999361767968 -163.214224768694\\
+42.327890655736 -161.98692539646\\
+46.4158883361268 -160.66881543507\\
+51.3701354335138 -159.119945523668\\
+57.3797641421395 -157.323722912665\\
+65.2852114112777 -155.112672279683\\
+78.5045620020441 -151.820846093158\\
+98.8541702191929 -147.723970670714\\
+110.418805085416 -145.874685588759\\
+121.082975023208 -144.440728643472\\
+131.558562404571 -143.258460857124\\
+141.628661629916 -142.310171715227\\
+151.070330448668 -141.570119681085\\
+159.662602210142 -141.008607204082\\
+168.743567772734 -140.518919950151\\
+176.704352608899 -140.168488555323\\
+185.040701954232 -139.872516050021\\
+191.992066559328 -139.67605421439\\
+199.204570845384 -139.51619494317\\
+204.791209666503 -139.420672052403\\
+210.534524276677 -139.34626121346\\
+216.438908606406 -139.293118834184\\
+220.466873523944 -139.269565302444\\
+224.569799553979 -139.255541062576\\
+226.64980792737 -139.252107813324\\
+228.74908173557 -139.251062340993\\
+230.867799418716 -139.252405411479\\
+233.006141069691 -139.25613728535\\
+237.342425002384 -139.270765958944\\
+241.759407916908 -139.294940342205\\
+246.258591635048 -139.32864434127\\
+253.164847863143 -139.397013338007\\
+260.264788196906 -139.486652360942\\
+267.563844455207 -139.597405599137\\
+277.615329443679 -139.777576589455\\
+288.044415339625 -139.994357260248\\
+301.63343472593 -140.315742220165\\
+315.863540826787 -140.69160752021\\
+330.764978074424 -141.120046024408\\
+349.577557436321 -141.700486475975\\
+372.882130718292 -142.463690780635\\
+397.740302405804 -143.312323647653\\
+428.18517986523 -144.376118190834\\
+465.229952396024 -145.676614892365\\
+514.886745013736 -147.386875422818\\
+580.448594276896 -149.530769972104\\
+724.20223346072 -153.643909016701\\
+878.909065341978 -157.191277590069\\
+1000 -159.441217188806\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.267142412604528\\
+0.111698681846785 -0.298472342589378\\
+0.124765955263085 -0.333498126562802\\
+0.138082976521811 -0.369230429764286\\
+0.152821403602584 -0.408825142462717\\
+0.169132951702966 -0.45271183682334\\
+0.185467692308466 -0.496737447261637\\
+0.2033800305847 -0.545111957611397\\
+0.223022329796589 -0.598286496354007\\
+0.244561668345247 -0.656765810132015\\
+0.268181260945295 -0.721116723485494\\
+0.291383170483282 -0.784579426374279\\
+0.316592411198347 -0.853839412592208\\
+0.343982648902299 -0.929486495007126\\
+0.373742574239103 -1.01218727051059\\
+0.406077202570047 -1.10269946968569\\
+0.441209286319117 -1.20188995379797\\
+0.479380849508926 -1.31075747831028\\
+0.516074871038594 -1.41658582268857\\
+0.555577622239876 -1.53191815088371\\
+0.598104096238105 -1.65784884772788\\
+0.643885742724037 -1.79565597943906\\
+0.693171727615563 -1.9468444275474\\
+0.746230289139115 -2.11320166987875\\
+0.803350197712457 -2.29687060591942\\
+0.864842327573189 -2.50044562790384\\
+0.922497005259214 -2.69738089599934\\
+0.983995229627797 -2.91456638794642\\
+1.04959323055824 -3.15515132584085\\
+1.11956431948387 -3.42300172182914\\
+1.1942000281335 -3.72291406969086\\
+1.26212131452257 -4.01002264922883\\
+1.33390569003905 -4.32980651252259\\
+1.40977287162893 -4.68812465245205\\
+1.48995507285289 -5.09232721765423\\
+1.57469771464309 -5.55175016305458\\
+1.66426017648587 -6.0784171489162\\
+1.74277467840897 -6.57987729349185\\
+1.82499324481618 -7.15064284860426\\
+1.91109062168914 -7.80586317419701\\
+2.001249798969 -8.56533018578156\\
+2.0956623994805 -9.45535638090695\\
+2.19452908620335 -10.5116229978551\\
+2.27697025538168 -11.508960633777\\
+2.36250846547792 -12.6784949433521\\
+2.45126006203328 -14.0668266641059\\
+2.54334576130472 -15.7381694693007\\
+2.63889081445755 -17.7830309226425\\
+2.73802517792786 -20.3321258845504\\
+2.81481236050756 -22.6880002295958\\
+2.8937530190509 -25.5504589197387\\
+2.97490754721436 -29.0793880846672\\
+3.05833803237852 -33.4951704361305\\
+3.14410830314732 -39.0960706063456\\
+3.23228397818141 -46.261864738887\\
+3.32293251639897 -55.4007079919875\\
+3.41612326858549 -66.7537474491453\\
+3.57728509936777 -89.3689342489882\\
+3.74605003274907 -111.213770348625\\
+3.85110700232562 -121.724142134503\\
+3.95911026646847 -130.065382863847\\
+4.07014245321941 -136.577050247572\\
+4.18428850790151 -141.669665820122\\
+4.30163575810668 -145.694230971629\\
+4.42227398050602 -148.918140790914\\
+4.58840412645483 -152.301186346058\\
+4.76077523022638 -154.924149860196\\
+4.93962174387827 -156.998623054699\\
+5.12518692705321 -158.666716265206\\
+5.31772317785112 -160.026265679431\\
+5.51749237612921 -161.146299183951\\
+5.72476623970219 -162.076646297966\\
+5.93982669392029 -162.85403334973\\
+6.16296625513279 -163.506038809314\\
+6.39448842855712 -164.053719288017\\
+6.63470812109245 -164.513391373\\
+6.88395206964551 -164.897865522261\\
+7.14255928554305 -165.217316748025\\
+7.41088151564139 -165.479909735879\\
+7.68928372075853 -165.692254859029\\
+7.97814457207674 -165.859745741635\\
+8.20188949920225 -165.958623835178\\
+8.43190929286622 -166.036356207089\\
+8.66837993001965 -166.094313026005\\
+8.8296999554939 -166.122560124609\\
+8.9940221740918 -166.142866360149\\
+9.1614024571388 -166.155519417004\\
+9.33189771573347 -166.160782213312\\
+9.41833153464815 -166.160718204043\\
+9.50556592010137 -166.158895117355\\
+9.68246611930323 -166.150077929313\\
+9.86265846131287 -166.134531657402\\
+10.0462042134681 -166.112440113486\\
+10.3279473191894 -166.067394039532\\
+10.6175918348298 -166.008503232412\\
+10.9153593533136 -165.936210462648\\
+11.3254131515284 -165.819631827069\\
+11.7508713090482 -165.6806844634\\
+12.3052400435925 -165.476509180622\\
+12.8857621318549 -165.239376461935\\
+13.6186523675611 -164.912380497916\\
+14.3932264471941 -164.53999302007\\
+15.2118551798608 -164.122879145057\\
+16.2259528707813 -163.5802856542\\
+17.3076553419573 -162.977807603052\\
+18.6324631193151 -162.216215101277\\
+20.0586777950826 -161.376918013384\\
+21.5940615210354 -160.460207861847\\
+23.4622884814232 -159.337073704011\\
+25.4921465445141 -158.118125886212\\
+27.9541599906793 -156.654414281458\\
+30.6539529505651 -155.080816884406\\
+33.9258338274107 -153.232328019381\\
+37.8947091907461 -151.092029506981\\
+43.5149650092505 -148.272998571902\\
+54.2918617761888 -143.587579554284\\
+65.8898955079985 -139.54246850402\\
+74.2798248256497 -137.180200811847\\
+82.2081575524031 -135.320136181137\\
+89.3204599858103 -133.918138660804\\
+96.1574600143192 -132.777230253081\\
+103.51779556302 -131.746516915315\\
+110.418805085416 -130.942431187712\\
+116.698981861712 -130.330253792111\\
+123.33634979138 -129.79237426135\\
+129.154966501489 -129.402780078184\\
+135.248087041786 -129.067879055322\\
+141.628661629916 -128.788771592359\\
+146.949180062486 -128.606278611709\\
+152.469572701759 -128.460468935229\\
+156.74554102056 -128.375376190972\\
+161.141427725301 -128.311201140531\\
+164.140297114445 -128.28008077733\\
+167.194975973196 -128.258313856405\\
+170.30650292528 -128.24591521114\\
+171.88391428171 -128.243232436838\\
+173.475935923388 -128.242895322258\\
+175.082703173578 -128.244904498957\\
+176.704352608899 -128.249260327402\\
+179.992850678251 -128.265012026159\\
+183.342548256232 -128.290147880488\\
+186.754584276109 -128.324661010557\\
+191.992066559328 -128.393987338584\\
+197.376432630023 -128.484329916134\\
+202.911801804663 -128.595610177536\\
+210.534524276677 -128.776375787434\\
+218.443607114946 -128.993879678528\\
+226.64980792737 -129.247747014602\\
+237.342425002384 -129.615526398498\\
+248.539485742973 -130.038374461593\\
+262.675410372388 -130.616736984735\\
+277.615329443679 -131.27012562724\\
+296.122543798796 -132.123352008126\\
+315.863540826787 -133.069442402783\\
+340.041193270368 -134.256612420908\\
+369.46012051994 -135.714984325702\\
+405.142317111462 -137.468807083068\\
+448.385594802129 -139.531902822731\\
+510.161531474972 -142.306931698437\\
+630.666554056761 -147.045828409609\\
+786.8571506937 -151.942561709542\\
+903.557834613866 -154.853989045129\\
+1000 -156.880948306508\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.376536357081875\\
+0.110673601809593 -0.416795495228712\\
+0.1224864613751 -0.461376359550343\\
+0.134316117004605 -0.506049231003828\\
+0.147288272390749 -0.555072810388708\\
+0.161513269350303 -0.608878877640109\\
+0.177112106434519 -0.66794463453931\\
+0.194217468148908 -0.732798293239455\\
+0.211020342856859 -0.796598050426383\\
+0.229276931286557 -0.86603148626898\\
+0.249113002606763 -0.941618537851923\\
+0.270665207003335 -1.02393348402376\\
+0.294082017058709 -1.11361237682621\\
+0.319524750575915 -1.21136193175187\\
+0.347168681892639 -1.3179702569866\\
+0.377204249341719 -1.43431991893146\\
+0.409838367175735 -1.56140399918723\\
+0.445295850994262 -1.70034601284254\\
+0.483820966492578 -1.85242485250609\\
+0.525679112201876 -2.01910633109429\\
+0.565917016324646 -2.18088934771646\\
+0.609234915240079 -2.35691602202354\\
+0.655868565957134 -2.54876916884245\\
+0.706071771413749 -2.75828971473425\\
+0.760117761795582 -2.98763760340091\\
+0.818300681586771 -3.23937119069723\\
+0.88093719044741 -3.51655190739632\\
+0.948368186628579 -3.82288393028807\\
+1.01159111222379 -4.118378358332\\
+1.07902879151612 -4.44335914628931\\
+1.15096220088509 -4.80235495741039\\
+1.22769104798839 -5.20095750142752\\
+1.30953502048267 -5.6461595982405\\
+1.39683511798871 -6.14682957059313\\
+1.47628147190933 -6.62869356817492\\
+1.56024641436628 -7.16885667861089\\
+1.64898694447115 -7.7790958196174\\
+1.74277467840897 -8.47470799708856\\
+1.82499324481618 -9.13400028450394\\
+1.91109062168914 -9.88182709461984\\
+2.001249798969 -10.73816169115\\
+2.09566239948036 -11.7295050411284\\
+2.1945290862032 -12.891734125016\\
+2.27697025538154 -13.9773226291395\\
+2.36250846547808 -15.2383181750782\\
+2.45126006203344 -16.7214321295201\\
+2.54334576130472 -18.4909919742703\\
+2.63889081445755 -20.6376223024452\\
+2.73802517792786 -23.2921582662593\\
+2.81481236050756 -25.7295974216773\\
+2.8937530190509 -28.6758093243918\\
+2.97490754721436 -32.2907345510075\\
+3.05833803237832 -36.7948113424956\\
+3.14410830314712 -42.4863609552424\\
+3.2322839781812 -49.7452172657106\\
+3.32293251639919 -58.9795942888933\\
+3.41612326858571 -70.4306991057318\\
+3.57728509936801 -93.2151205652165\\
+3.74605003274907 -115.236684353826\\
+3.85110700232562 -125.856813763574\\
+3.95911026646847 -134.310683845467\\
+4.07014245321941 -140.937920078716\\
+4.18428850790151 -146.149113112781\\
+4.30163575810668 -150.295334843906\\
+4.42227398050573 -153.64405230767\\
+4.58840412645453 -157.198536872565\\
+4.76077523022607 -159.998850455403\\
+4.93962174387859 -162.256768410705\\
+5.12518692705354 -164.114590243609\\
+5.31772317785112 -165.670347211138\\
+5.56859644428648 -167.293806199882\\
+5.8313051135262 -168.646841539502\\
+6.10640754223191 -169.794629422014\\
+6.3944884285567 -170.78331668295\\
+6.75818116816072 -171.806282817327\\
+7.14255928554351 -172.690006177114\\
+7.54879928165369 -173.464736833609\\
+7.97814457207674 -174.152787075161\\
+8.51000724712218 -174.868173696334\\
+9.07732652520994 -175.508503121976\\
+9.77214696972517 -176.167739243053\\
+10.5201521761621 -176.765909284447\\
+11.430311291145 -177.382057634079\\
+12.5342426546138 -178.012755565456\\
+13.8720978054155 -178.658291696427\\
+15.6384675830231 -179.376571539044\\
+18.4614694632451 -180.326412288092\\
+25.4921465445141 -182.164861232459\\
+29.2729483504266 -182.998209569605\\
+33.000347911254 -183.762783790971\\
+36.8609536217214 -184.514028433967\\
+40.7953450345228 -185.2493144884\\
+45.1496777203634 -186.037033669925\\
+49.5102015955645 -186.805350551206\\
+54.2918617761888 -187.629919103406\\
+59.535331308141 -188.517421024406\\
+65.2852114112819 -189.474926271809\\
+71.5904108596503 -190.50991923185\\
+78.5045620020441 -191.630315975324\\
+86.0864769614886 -192.844470059216\\
+93.5343152029291 -194.024621148851\\
+101.626508939302 -195.294505024246\\
+110.418805085416 -196.661036133829\\
+119.971773543585 -198.131316876057\\
+131.558562404562 -199.895434826732\\
+144.264395121821 -201.806519747258\\
+158.19734815786 -203.874396148393\\
+173.475935923388 -206.108511786658\\
+190.230118866882 -208.517640460935\\
+208.602408924857 -211.109531759573\\
+228.74908173557 -213.890515698195\\
+253.164847863126 -217.173288715956\\
+280.186655645936 -220.693012535487\\
+310.0926635932 -224.448502602034\\
+346.369417737168 -228.80755347662\\
+390.473523688533 -233.822780602583\\
+444.2706749607 -239.534901225088\\
+510.161531474972 -245.964815468045\\
+602.254120146222 -254.014961621401\\
+751.408106111675 -265.111349225649\\
+1000 -279.593887492973\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.485055041308868\\
+0.110673601809601 -0.509752437290473\\
+0.122486461375092 -0.53800180191493\\
+0.134316117004605 -0.567294752336039\\
+0.147288272390749 -0.600517074738747\\
+0.160031031373875 -0.634173100277735\\
+0.173876240021625 -0.671758702117103\\
+0.188919277620761 -0.71364549544208\\
+0.205263775270926 -0.760224035498055\\
+0.223022329796589 -0.811910025481353\\
+0.242317279423763 -0.869151087595242\\
+0.263281546564798 -0.932434179107617\\
+0.28605955351758 -1.00229382133\\
+0.310808217386903 -1.07932139798078\\
+0.337698031082518 -1.16417587742774\\
+0.366914237840248 -1.2575964301549\\
+0.398658107358057 -1.36041756054226\\
+0.429173237842218 -1.46046964319726\\
+0.462024137175122 -1.56945239863239\\
+0.497389595879016 -1.68822235902914\\
+0.535462089927357 -1.81775630926782\\
+0.576448828292606 -1.95917547471029\\
+0.620572880677654 -2.11377598023091\\
+0.668074391569548 -2.28306755845139\\
+0.719211887222132 -2.46882320461964\\
+0.774263682681121 -2.67314350288873\\
+0.833529396509846 -2.89854083719686\\
+0.897331581458357 -3.14805089117132\\
+0.95715215389917 -3.38904734279745\\
+1.02096066230607 -3.6543557321975\\
+1.08902296226373 -3.94765210180105\\
+1.16162263260848 -4.27345209016147\\
+1.23906215694794 -4.63736668114811\\
+1.3216641839466 -5.04645590868628\\
+1.39683511798871 -5.43982010989359\\
+1.47628147190943 -5.88013746047645\\
+1.56024641436638 -6.37649353318486\\
+1.64898694447104 -6.94053187489158\\
+1.74277467840897 -7.58740853669477\\
+1.82499324481618 -8.20404442831904\\
+1.91109062168914 -8.90726064003672\\
+2.001249798969 -9.71693548862282\\
+2.0956623994805 -10.6594705360677\\
+2.19452908620335 -11.7706387020131\\
+2.27697025538168 -12.8136835621699\\
+2.36250846547792 -14.0305660823493\\
+2.45126006203328 -15.4679373833551\\
+2.54334576130472 -17.190062475886\\
+2.63889081445755 -19.2875011790775\\
+2.73802517792786 -21.8910214877199\\
+2.81481236050756 -24.2889600936312\\
+2.8937530190509 -27.1945760069151\\
+2.97490754721436 -30.7677786633013\\
+3.05833803237852 -35.2289743115696\\
+3.14410830314732 -40.8764513420002\\
+3.23228397818141 -48.0900098677775\\
+3.32293251639897 -57.2778292195139\\
+3.41612326858549 -68.681080848051\\
+3.57728509936777 -91.3827682063348\\
+3.74605003274907 -113.317721496272\\
+3.85110700232562 -123.883947861558\\
+3.95911026646847 -132.282412305859\\
+4.07014245321941 -138.852698071322\\
+4.18428850790151 -144.00535242224\\
+4.30163575810668 -148.09140269092\\
+4.42227398050602 -151.378270138821\\
+4.58840412645483 -154.847595486723\\
+4.76077523022638 -157.559567037186\\
+4.93962174387827 -159.725840982874\\
+5.12518692705321 -161.488593347212\\
+5.31772317785112 -162.945727434823\\
+5.51749237612921 -164.166339925276\\
+5.72476623970219 -165.200331087385\\
+5.99484250318932 -166.285532917061\\
+6.27766010580631 -167.188495632485\\
+6.57382014340971 -167.94689958868\\
+6.88395206964551 -168.58840114983\\
+7.20871503378203 -169.133704944078\\
+7.5487992816532 -169.598580153867\\
+7.90492762269657 -169.995217879073\\
+8.27785696619849 -170.333166037533\\
+8.66837993001965 -170.619986668445\\
+9.07732652520994 -170.861726716387\\
+9.50556592010137 -171.063260929451\\
+9.86265846131287 -171.198224376196\\
+10.2331657833024 -171.311684734916\\
+10.6175918348298 -171.405075876107\\
+11.0164594963369 -171.479621785486\\
+11.3254131515284 -171.523799155262\\
+11.6430313292089 -171.558351640346\\
+11.9695570235905 -171.583620594526\\
+12.192312516491 -171.595460185903\\
+12.4192135270177 -171.603390387184\\
+12.6503372039588 -171.607486098323\\
+12.8857621318549 -171.607816344052\\
+13.125568357718 -171.604444663429\\
+13.3698374182498 -171.597429467613\\
+13.6186523675611 -171.586824368911\\
+14.0005838246811 -171.564291935284\\
+14.3932264471941 -171.53393999776\\
+14.7968806268638 -171.495897368772\\
+15.3527502878039 -171.433400209007\\
+15.9295021257217 -171.357645511279\\
+16.5279206146492 -171.268806923732\\
+17.3076553419573 -171.139558721292\\
+18.1241754737421 -170.990253735913\\
+19.1550055557359 -170.784755374713\\
+20.2444650997683 -170.550578336606\\
+21.395888713434 -170.287662328987\\
+22.8222447418683 -169.944390570111\\
+24.3436887354314 -169.561404435132\\
+25.9665597293484 -169.138214985175\\
+27.9541599906793 -168.604620363595\\
+30.0939003444972 -168.016894116044\\
+32.3974262952812 -167.374165441391\\
+35.2003147279672 -166.584397148639\\
+38.2456972246693 -165.723245793878\\
+41.5545533471895 -164.790401508675\\
+45.5678626584099 -163.670322358875\\
+49.9687745385497 -162.46411510617\\
+55.302242561928 -161.042291593204\\
+61.7718759733854 -159.387126638918\\
+69.6374473062844 -157.48967819865\\
+81.4537176628054 -154.892763275717\\
+111.441525146678 -149.669653152266\\
+124.478714618793 -147.9615643765\\
+135.248087041786 -146.775326973605\\
+145.600599502069 -145.80768126258\\
+155.307057393347 -145.039318641965\\
+165.660595894989 -144.353093557761\\
+175.082703173578 -143.836245518518\\
+183.342548256232 -143.459252561075\\
+191.992066559328 -143.133522034252\\
+201.049641626046 -142.861033842444\\
+208.602408924844 -142.682514433074\\
+216.438908606406 -142.539860233761\\
+222.508879812839 -142.456758363961\\
+228.74908173557 -142.394350749392\\
+233.006141069691 -142.364317672908\\
+237.342425002384 -142.343582008265\\
+241.759407916908 -142.332167928098\\
+243.99862972595 -142.329961608538\\
+246.258591635048 -142.330090724829\\
+248.539485742973 -142.332555797998\\
+253.164847863143 -142.344493115905\\
+257.876288759386 -142.365766600068\\
+262.675410372388 -142.396360395659\\
+270.042071883779 -142.459670170953\\
+277.615329443679 -142.543772276664\\
+285.40097698292 -142.64850170527\\
+296.122543798796 -142.819860712104\\
+307.246884270909 -143.026900240412\\
+318.789129267769 -143.268873301134\\
+333.828586473175 -143.619118999688\\
+349.577557436321 -144.020590651647\\
+369.46012051994 -144.566768925997\\
+390.473523688559 -145.179034290873\\
+416.504424854512 -145.970329441344\\
+448.385594802129 -146.965777239462\\
+487.17802187946 -148.185575044944\\
+539.177464038763 -149.791558534057\\
+613.462171799237 -151.96282530039\\
+1000 -160.326868264223\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.459648478756321\\
+0.109657929126777 -0.503144973782298\\
+0.120248614203733 -0.550914053619124\\
+0.131862140139479 -0.603376698140551\\
+0.144597292179202 -0.660995229883099\\
+0.158562396177109 -0.724278226394631\\
+0.173876240021636 -0.793786097661609\\
+0.188919277620773 -0.862175412721399\\
+0.205263775270926 -0.936603167800115\\
+0.223022329796589 -1.01761335213064\\
+0.242317279423747 -1.10580360899553\\
+0.263281546564815 -1.20183187837159\\
+0.28605955351758 -1.30642417507573\\
+0.310808217386903 -1.42038377764976\\
+0.337698031082496 -1.54460218327125\\
+0.366914237840272 -1.68007229054189\\
+0.398658107358057 -1.82790441505841\\
+0.433148322337641 -1.98934593638643\\
+0.470622484984116 -2.16580563985946\\
+0.511338753841404 -2.35888418236397\\
+0.555577622239913 -2.57041262217342\\
+0.598104096238105 -2.77562570094852\\
+0.643885742724037 -2.99878676754349\\
+0.693171727615517 -3.24186238628522\\
+0.746230289139067 -3.50713656282727\\
+0.80335019771251 -3.79728610297911\\
+0.864842327573189 -4.11547938024404\\
+0.931041348706901 -4.46550739682027\\
+1.00230754828383 -4.85196007000684\\
+1.06912633917342 -5.22437983977784\\
+1.14039960197009 -5.63359406911741\\
+1.2164242938574 -6.08525725940586\\
+1.29751716865759 -6.58638479402975\\
+1.38401609657311 -7.14580532620124\\
+1.47628147190933 -7.77480595126173\\
+1.56024641436628 -8.38034278758101\\
+1.64898694447115 -9.05968933543954\\
+1.74277467840897 -9.82835340862044\\
+1.84189668079973 -10.7067846467187\\
+1.92879150802077 -11.5422391420188\\
+2.01978575681984 -12.4941043018188\\
+2.11507282486872 -13.5906378450657\\
+2.21485523372624 -14.8702146611273\\
+2.31934505927457 -16.3861984971204\\
+2.40647515001554 -17.8193638466306\\
+2.49687842888441 -19.5067070628701\\
+2.59067785868806 -21.5244486718942\\
+2.68800102153763 -23.9812345842948\\
+2.78898029238043 -27.0358634190416\\
+2.86719649749373 -29.8581091495051\\
+2.94760625512479 -33.2916294187571\\
+3.03027108286629 -37.5347089504187\\
+3.11525422355535 -42.858160386475\\
+3.20262069365748 -49.6164410624301\\
+3.29243733300756 -58.2209165076308\\
+3.38477285594618 -69.0029150510308\\
+3.51192753045089 -86.52040713613\\
+3.74605003274907 -118.150487885579\\
+3.85110700232562 -128.852328296997\\
+3.95911026646847 -137.390184573043\\
+4.07014245321941 -144.10374458982\\
+4.18428850790151 -149.403663043219\\
+4.30163575810668 -153.641077562187\\
+4.46323392671022 -158.089889059476\\
+4.63090280179949 -161.561048395356\\
+4.80487043965544 -164.344234643803\\
+4.98537346387415 -166.630932515336\\
+5.17265738721621 -168.550658756503\\
+5.41668691103327 -170.568535061915\\
+5.67222897164457 -172.272414070934\\
+5.93982669392029 -173.743978921778\\
+6.27766010580631 -175.282255460769\\
+6.63470812109201 -176.636218029079\\
+7.07701066118229 -178.046119603453\\
+7.61871770232323 -179.49760951316\\
+8.27785696619849 -180.991562445049\\
+9.1614024571382 -182.692329511901\\
+10.7159339982272 -185.191727448966\\
+13.6186523675602 -189.020691784304\\
+15.494950393147 -191.197782577914\\
+17.4679621512724 -193.34090181662\\
+19.5114834684654 -195.44861241079\\
+21.5940615210368 -197.507405254885\\
+23.8989256623109 -199.701380370311\\
+26.4498018242767 -202.042167815925\\
+29.2729483504266 -204.539182122851\\
+32.3974262952833 -207.199175598597\\
+36.1874981241128 -210.290972508146\\
+40.4209583979615 -213.580539180169\\
+45.5678626584129 -217.360057403727\\
+51.8459354389293 -221.663056546015\\
+59.535331308141 -226.507138801921\\
+70.2824426430854 -232.571751067054\\
+87.6885609458698 -240.929501084185\\
+233.006141069691 -278.12699104162\\
+514.886745013736 -308.037888075763\\
+607.832312829751 -313.938917994967\\
+697.981390783064 -318.612596570694\\
+786.857150693649 -322.443408543724\\
+878.909065342036 -325.776125761933\\
+981.72984061889 -328.90006776696\\
+1000 -329.399839682371\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.278622759590093\\
+0.111698681846785 -0.311295401568657\\
+0.124765955263085 -0.347820844415594\\
+0.138082976521811 -0.385081308283276\\
+0.152821403602584 -0.426367081989412\\
+0.167580786453079 -0.467767683308239\\
+0.183765620038813 -0.513237811140385\\
+0.201513573381558 -0.563193284269488\\
+0.220975611479586 -0.618097422194523\\
+0.242317279423763 -0.678468019547722\\
+0.263281546564798 -0.737953874485214\\
+0.28605955351758 -0.802810621826666\\
+0.310808217386903 -0.873567292699647\\
+0.337698031082518 -0.950817364561914\\
+0.366914237840248 -1.03522986974107\\
+0.398658107358057 -1.12756316342936\\
+0.433148322337641 -1.22868213362415\\
+0.470622484984116 -1.33957989915106\\
+0.511338753841437 -1.4614054063739\\
+0.550478980785488 -1.57994702533057\\
+0.592615181247569 -1.70927503123474\\
+0.637976680860626 -1.85066629298205\\
+0.68681035889951 -2.00561990934364\\
+0.739381991917593 -2.17591121005285\\
+0.795977700231485 -2.36366214519555\\
+0.856905505126854 -2.57143399199919\\
+0.914031074875622 -2.7720969168883\\
+0.974964918348386 -2.99301215751842\\
+1.03996091395414 -3.23726256698467\\
+1.10928986489522 -3.50862271941659\\
+1.18324062745835 -3.81176327937041\\
+1.26212131452257 -4.15253056882108\\
+1.33390569003905 -4.48012904720872\\
+1.40977287162893 -4.84665543783615\\
+1.48995507285289 -5.25947360228673\\
+1.57469771464309 -5.72793257150656\\
+1.66426017648587 -6.264068196095\\
+1.74277467840897 -6.77375733251372\\
+1.82499324481618 -7.35306557332919\\
+1.91109062168914 -8.01714699104608\\
+2.001249798969 -8.78579716677541\\
+2.0956623994805 -9.68533102999814\\
+2.19452908620335 -10.7514308121271\\
+2.27697025538168 -11.7568689501669\\
+2.36250846547792 -12.9347104793215\\
+2.45126006203328 -14.3315540638699\\
+2.54334576130472 -16.0116103502193\\
+2.63889081445755 -18.065382828487\\
+2.73802517792786 -20.6235811421745\\
+2.81481236050756 -22.9864053792737\\
+2.8937530190509 -25.8559153228605\\
+2.97490754721436 -29.3919934367388\\
+3.05833803237852 -33.8150182932467\\
+3.14410830314732 -39.423249887777\\
+3.23228397818141 -46.5964592062709\\
+3.32293251639897 -55.7427957058747\\
+3.41612326858549 -67.1034002039465\\
+3.57728509936777 -89.7313360667974\\
+3.74605003274907 -111.589065897674\\
+3.85110700232562 -122.107226790675\\
+3.95911026646847 -130.456284711646\\
+4.07014245321941 -136.97578714508\\
+4.18428850790151 -142.076244742026\\
+4.30163575810668 -146.108647354331\\
+4.42227398050602 -149.340377884695\\
+4.58840412645483 -152.73380274964\\
+4.76077523022638 -155.367060844998\\
+4.93962174387827 -157.45170996772\\
+5.12518692705321 -159.129824838789\\
+5.31772317785112 -160.499204529585\\
+5.51749237612921 -161.628838539626\\
+5.72476623970219 -162.568517004332\\
+5.93982669392029 -163.354926187977\\
+6.16296625513279 -164.015604173747\\
+6.39448842855712 -164.571567258029\\
+6.63470812109245 -165.039092212822\\
+6.88395206964551 -165.430950635161\\
+7.14255928554305 -165.757280103964\\
+7.41088151564139 -166.026209782555\\
+7.68928372075853 -166.244316916044\\
+7.97814457207674 -166.416964866419\\
+8.20188949920225 -166.51929742009\\
+8.43190929286622 -166.60011872779\\
+8.66837993001965 -166.660790218504\\
+8.91148232283998 -166.70249747186\\
+9.07732652520994 -166.72028306575\\
+9.246257116406 -166.730376175016\\
+9.33189771573347 -166.732617110054\\
+9.41833153464815 -166.733027071144\\
+9.50556592010137 -166.731634041463\\
+9.68246611930323 -166.723544957105\\
+9.86265846131287 -166.708550517051\\
+10.0462042134681 -166.686834493806\\
+10.3279473191894 -166.642021791862\\
+10.6175918348298 -166.582970544251\\
+10.9153593533136 -166.510127269427\\
+11.3254131515284 -166.392217151468\\
+11.7508713090482 -166.251270822583\\
+12.3052400435925 -166.043690252955\\
+12.8857621318549 -165.802191408247\\
+13.4936714058834 -165.527599893242\\
+14.2611370719414 -165.155301482248\\
+15.0722530931073 -164.737100670044\\
+16.0770442167387 -164.191972609918\\
+17.1488196987055 -163.585835215115\\
+18.2920450484626 -162.919146645506\\
+19.6922025547921 -162.083533980687\\
+21.1995345753606 -161.169852552865\\
+23.033628731422 -160.049563756647\\
+25.0264009641792 -158.832993561392\\
+27.4434330322828 -157.37137618153\\
+30.0939003444972 -155.799118093459\\
+33.3060034362469 -153.950795589126\\
+37.2023668141304 -151.808319433785\\
+42.327890655736 -149.174009820729\\
+50.8987019351974 -145.256009215458\\
+65.2852114112777 -139.983090957373\\
+73.5981447526585 -137.59056411399\\
+81.4537176628054 -135.70182683662\\
+88.5007491447353 -134.274473416525\\
+95.2750047242714 -133.109771483575\\
+102.567793074445 -132.054259180554\\
+109.405470720574 -131.227792276803\\
+115.628013120735 -130.596023669947\\
+122.204468663152 -130.038259697204\\
+127.969686821595 -129.631926677789\\
+134.006889636394 -129.280179877106\\
+140.328908478584 -128.98416160529\\
+145.600599502069 -128.788120390552\\
+151.070330448668 -128.628766816284\\
+155.307057393347 -128.533530720795\\
+159.662602210142 -128.459233723979\\
+164.140297114445 -128.405967001751\\
+167.194975973196 -128.382174245008\\
+170.30650292528 -128.367774234558\\
+171.88391428171 -128.364099973331\\
+173.475935923388 -128.362777510454\\
+175.082703173578 -128.363807482361\\
+176.704352608899 -128.367190253399\\
+179.992850678251 -128.381014290105\\
+183.342548256232 -128.404247094093\\
+186.754584276109 -128.436881781919\\
+191.992066559328 -128.503436542686\\
+197.376432630023 -128.591062754741\\
+202.911801804663 -128.699681661767\\
+210.534524276677 -128.876983921003\\
+218.443607114946 -129.091121023035\\
+226.64980792737 -129.341717180007\\
+237.342425002384 -129.705540332341\\
+248.539485742973 -130.124577318009\\
+262.675410372388 -130.698554200878\\
+277.615329443679 -131.347756879655\\
+296.122543798796 -132.196344326814\\
+315.863540826787 -133.138050067018\\
+340.041193270368 -134.320507442364\\
+369.46012051994 -135.773939546376\\
+405.142317111462 -137.52269693978\\
+448.385594802129 -139.580700356152\\
+510.161531474972 -142.349914365615\\
+630.666554056761 -147.080688237247\\
+786.8571506937 -151.970551172734\\
+903.557834613866 -154.878382196426\\
+1000 -156.902998696731\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.458679666390537\\
+0.109657929126777 -0.503040776849446\\
+0.120248614203733 -0.551706083238003\\
+0.131862140139479 -0.605097616813623\\
+0.144597292179202 -0.663680196416578\\
+0.158562396177109 -0.727966212712886\\
+0.173876240021636 -0.798521085517166\\
+0.188919277620773 -0.867895330552983\\
+0.205263775270926 -0.943353728842169\\
+0.223022329796589 -1.02544606045387\\
+0.242317279423747 -1.11477637594402\\
+0.263281546564815 -1.21200963400037\\
+0.28605955351758 -1.31787948690118\\
+0.310808217386903 -1.43319748812115\\
+0.337698031082496 -1.5588640765061\\
+0.366914237840272 -1.69588179811467\\
+0.398658107358057 -1.84537137002741\\
+0.433148322337641 -2.00859138430161\\
+0.470622484984116 -2.18696271522111\\
+0.511338753841404 -2.38209905888118\\
+0.555577622239913 -2.59584554520347\\
+0.598104096238105 -2.8031770046033\\
+0.643885742724037 -3.02860653324541\\
+0.693171727615517 -3.27411299757222\\
+0.746230289139067 -3.5419935933898\\
+0.80335019771251 -3.83493927455294\\
+0.864842327573189 -4.15613359566947\\
+0.931041348706901 -4.50938385389605\\
+1.00230754828383 -4.89929746211664\\
+1.06912633917342 -5.27495609046082\\
+1.14039960197009 -5.68761975126006\\
+1.2164242938574 -6.14295727580145\\
+1.29751716865759 -6.64799930680471\\
+1.38401609657311 -7.21159074781917\\
+1.47628147190933 -7.84503600082189\\
+1.56024641436628 -8.45461431617264\\
+1.64898694447115 -9.13822927043731\\
+1.74277467840897 -9.91140166510854\\
+1.84189668079973 -10.7945948474157\\
+1.92879150802077 -11.6342217823441\\
+2.01978575681984 -12.5904543350991\\
+2.11507282486872 -13.6915594216383\\
+2.21485523372624 -14.9759215486562\\
+2.31934505927457 -16.4969145190861\\
+2.40647515001554 -17.9342553779495\\
+2.49687842888441 -19.6259296710528\\
+2.59067785868806 -21.6481637273158\\
+2.68800102153763 -24.109609468308\\
+2.78898029238043 -27.16907173873\\
+2.86719649749373 -29.9950603454757\\
+2.94760625512479 -33.4324275707173\\
+3.03027108286629 -37.6794610157588\\
+3.11525422355535 -43.0069762757126\\
+3.20262069365748 -49.7694337162652\\
+3.29243733300756 -58.3782019756027\\
+3.38477285594618 -69.1646125717606\\
+3.51192753045089 -86.6881785415334\\
+3.74605003274907 -118.329436848166\\
+3.85110700232562 -129.036290370449\\
+3.95911026646847 -137.579298656608\\
+4.07014245321941 -144.298153344799\\
+4.18428850790151 -149.603512983965\\
+4.30163575810668 -153.846519148177\\
+4.46323392671022 -158.303027213509\\
+4.63090280179949 -161.782167622194\\
+4.80487043965544 -164.573629578642\\
+4.98537346387415 -166.868908224091\\
+5.17265738721621 -168.797531036198\\
+5.41668691103327 -170.826988976716\\
+5.67222897164457 -172.54298250157\\
+5.93982669392029 -174.027217645586\\
+6.27766010580631 -175.581465402578\\
+6.63470812109201 -176.952275441331\\
+7.07701066118229 -178.38299751493\\
+7.61871770232323 -179.859904893337\\
+8.27785696619849 -181.3846494474\\
+9.24625711640539 -183.280427380295\\
+11.2214776820801 -186.446260491972\\
+13.4936714058825 -189.498729626527\\
+15.3527502878049 -191.747591811549\\
+17.3076553419573 -193.961757924434\\
+19.3324228755497 -196.138817431697\\
+21.3958887134354 -198.264076071056\\
+23.6796006783313 -200.526760143678\\
+26.2070669648381 -202.937701544268\\
+29.0043049386384 -205.505208513358\\
+32.3974262952833 -208.490852502761\\
+36.1874981241128 -211.671242032728\\
+40.7953450345228 -215.332234986649\\
+45.9899209052265 -219.205061973769\\
+52.8107971193432 -223.909221910227\\
+61.7718759733813 -229.491273889667\\
+75.6621850048106 -236.98727914975\\
+241.759407916908 -280.390368793153\\
+549.211648388752 -310.770399829436\\
+642.403365939436 -316.186104312373\\
+730.909932860277 -320.418208564085\\
+823.978568452801 -324.129012914611\\
+920.373199661849 -327.347790024815\\
+1000 -329.62469536746\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.454123773666083\\
+0.109657929126777 -0.498355762456299\\
+0.120248614203733 -0.546964239628721\\
+0.131862140139479 -0.600398135755484\\
+0.144597292179202 -0.65915492289605\\
+0.158562396177109 -0.723785757687153\\
+0.172280544713129 -0.787478941703\\
+0.187185529496565 -0.856913381698178\\
+0.2033800305847 -0.932625148687237\\
+0.220975611479586 -1.01520062022041\\
+0.240093487686053 -1.10528090446132\\
+0.260865361762268 -1.20356694208965\\
+0.283434330615137 -1.31082561962802\\
+0.30795587129142 -1.42789733335184\\
+0.334598912054985 -1.55570554366807\\
+0.363546996129356 -1.69526895137517\\
+0.394999546122078 -1.84771701610333\\
+0.429173237842218 -2.01430964498491\\
+0.466303492974262 -2.19646204325784\\
+0.5066461008921 -2.39577598829146\\
+0.550478980785524 -2.61407922533914\\
+0.592615181247569 -2.8257615043637\\
+0.637976680860626 -3.05580496259978\\
+0.68681035889951 -3.30616605508624\\
+0.739381991917545 -3.5791150216553\\
+0.795977700231537 -3.87730948842193\\
+0.856905505126854 -4.20389043636004\\
+0.922497005259214 -4.56260904283124\\
+0.99310918137495 -4.95799674885814\\
+1.06912633917342 -5.39559681411299\\
+1.14039960197009 -5.81848865879226\\
+1.2164242938574 -6.28464073363222\\
+1.29751716865759 -6.80112177857262\\
+1.38401609657311 -7.37681819053813\\
+1.47628147190933 -8.02307932158334\\
+1.56024641436628 -8.64424515051292\\
+1.64898694447115 -9.34003811722914\\
+1.74277467840897 -10.1260136631755\\
+1.84189668079973 -11.0226718281028\\
+1.92879150802077 -11.8740530779784\\
+2.01978575681984 -12.8425500677046\\
+2.11507282486872 -13.9564543987908\\
+2.21485523372624 -15.2541763706427\\
+2.31934505927457 -16.7891167168992\\
+2.40647515001554 -18.2380573421917\\
+2.49687842888441 -19.9417403229408\\
+2.59067785868806 -21.9764074315337\\
+2.68800102153763 -24.4507265472432\\
+2.78898029238043 -27.5235189975187\\
+2.86719649749373 -30.3598152347521\\
+2.94760625512479 -33.8077639858326\\
+3.03027108286629 -38.0656604080431\\
+3.11525422355535 -43.404327829984\\
+3.20262069365748 -50.1782345305515\\
+3.29243733300756 -58.798757242954\\
+3.38477285594618 -69.597235764012\\
+3.51192753045089 -87.1373945798126\\
+3.74605003274907 -118.809129833006\\
+3.85110700232562 -129.529629104425\\
+3.95911026646847 -138.086647070204\\
+4.07014245321941 -144.819884907339\\
+4.18428850790151 -150.140010894866\\
+4.30163575810668 -154.398176527762\\
+4.46323392671022 -158.875526241225\\
+4.63090280179949 -162.376249662175\\
+4.80487043965544 -165.190061069193\\
+4.98537346387415 -167.508481252874\\
+5.17265738721621 -169.46106389952\\
+5.41668691103327 -171.521663160113\\
+5.67222897164457 -173.270171786095\\
+5.93982669392029 -174.788350331445\\
+6.27766010580631 -176.385293813251\\
+6.69616005485286 -178.022981214089\\
+7.14255928554351 -179.487971555461\\
+7.68928372075853 -181.015673382455\\
+8.43190929286622 -182.781030483014\\
+9.59360828709266 -185.104248173652\\
+13.6186523675602 -191.334873259259\\
+15.494950393147 -193.796888924849\\
+17.3076553419573 -196.034061780992\\
+19.3324228755497 -198.410945910763\\
+21.5940615210368 -200.945122730491\\
+24.1202820761804 -203.650373401015\\
+26.9420371368182 -206.536215182311\\
+30.0939003444953 -209.607251493824\\
+33.9258338274107 -213.141896195022\\
+38.2456972246693 -216.883217126988\\
+43.5149650092477 -221.122526513681\\
+50.4315948717143 -226.192295288676\\
+60.6432939540775 -232.773957928975\\
+89.3204599858045 -246.926949086154\\
+121.0829750232 -257.903009188175\\
+171.88391428171 -270.262998508841\\
+272.543253128086 -286.549550513123\\
+424.255643071796 -302.512855164347\\
+534.229329953814 -310.686004317838\\
+624.878807200712 -316.020626599736\\
+717.556091893683 -320.499983589231\\
+808.924348680549 -324.169959361846\\
+903.557834613925 -327.360848134152\\
+1000 -330.108677437422\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.271365296431952\\
+0.111698681846785 -0.303325507396892\\
+0.124765955263085 -0.339104110231432\\
+0.138082976521811 -0.375659914569951\\
+0.152821403602584 -0.416235594472425\\
+0.167580786453079 -0.457001219948182\\
+0.183765620038813 -0.501864638334808\\
+0.201513573381558 -0.55126353741224\\
+0.220975611479586 -0.605687395363418\\
+0.242317279423763 -0.665684286826689\\
+0.263281546564798 -0.724952832367592\\
+0.28605955351758 -0.789732426409387\\
+0.310808217386903 -0.860579346233692\\
+0.337698031082518 -0.938114009912255\\
+0.366914237840248 -1.02303085632107\\
+0.398658107358057 -1.11611087016061\\
+0.433148322337641 -1.21823768311017\\
+0.470622484984116 -1.33041844878008\\
+0.506646100892133 -1.43950709777823\\
+0.545427130532976 -1.55838699964593\\
+0.587176639073341 -1.68813454373154\\
+0.632121847581245 -1.82999962253069\\
+0.680507369673503 -1.98544682749198\\
+0.732596542821532 -2.15620848081448\\
+0.788672861561404 -2.34435347486817\\
+0.849041520408896 -2.55237753553374\\
+0.905642837944531 -2.75308097923235\\
+0.966017479952245 -2.97379755541033\\
+1.03041699495061 -3.21752483171079\\
+1.0991097009295 -3.48792908766839\\
+1.17238180328657 -3.78954110355701\\
+1.25053858729041 -4.12802331817508\\
+1.3216641839466 -4.45287667745751\\
+1.39683511798871 -4.81571699188376\\
+1.47628147190943 -5.22363587989881\\
+1.56024641436638 -5.68561649002805\\
+1.64898694447104 -6.21319447418651\\
+1.7267809038843 -6.71366906631772\\
+1.80824493487798 -7.28128632152152\\
+1.8935521797563 -7.9304454315226\\
+1.98288394912704 -8.67989348718515\\
+2.07643010725571 -9.55445856994982\\
+2.17438947560012 -10.5876645203217\\
+2.25607406649687 -11.5589701249269\\
+2.34082727617828 -12.6931851266008\\
+2.4287643824604 -14.0334653987418\\
+2.52000499376417 -15.638959655972\\
+2.61467321180114 -17.5925495607213\\
+2.71289780037248 -20.013193256733\\
+2.78898029238043 -22.2375622724293\\
+2.86719649749373 -24.9258482645058\\
+2.94760625512479 -28.2216551263031\\
+3.03027108286649 -32.3231637471664\\
+3.11525422355555 -37.5010801285256\\
+3.20262069365769 -44.109752088935\\
+3.29243733300778 -52.5604326931247\\
+3.38477285594596 -63.184334785368\\
+3.51192753045066 -80.4841348038102\\
+3.74605003274907 -111.713467281613\\
+3.85110700232562 -122.23551717879\\
+3.95911026646847 -130.588566267803\\
+4.07014245321941 -137.112164881178\\
+4.18428850790151 -142.216826564058\\
+4.30163575810668 -146.253544107738\\
+4.42227398050602 -149.489703399009\\
+4.58840412645483 -152.889215586507\\
+4.76077523022638 -155.52877605275\\
+4.93962174387827 -157.619950024475\\
+5.12518692705321 -159.304819782087\\
+5.31772317785112 -160.681192082052\\
+5.51749237612921 -161.818064230082\\
+5.72476623970219 -162.765234283527\\
+5.93982669392029 -163.559396537918\\
+6.16296625513279 -164.228097209278\\
+6.39448842855712 -164.792360819007\\
+6.63470812109245 -165.268472444908\\
+6.88395206964551 -165.669212056842\\
+7.14255928554305 -166.00472565706\\
+7.41088151564139 -166.283150863015\\
+7.68928372075853 -166.511073381416\\
+7.97814457207674 -166.693865015918\\
+8.27785696619849 -166.835937364289\\
+8.51000724712218 -166.917986271248\\
+8.74866812047975 -166.98049629049\\
+8.9940221740918 -167.0246035176\\
+9.1614024571388 -167.044279893857\\
+9.33189771573347 -167.056483452673\\
+9.50556592010137 -167.061454555449\\
+9.59360828709328 -167.061297452614\\
+9.68246611930323 -167.059413280126\\
+9.86265846131287 -167.050561198087\\
+10.0462042134681 -167.035082969126\\
+10.2331657833024 -167.013147776174\\
+10.5201521761614 -166.968473651942\\
+10.8151870255226 -166.91008638846\\
+11.118496048193 -166.838397168976\\
+11.5361810173649 -166.722734904012\\
+11.9695570235905 -166.584788889853\\
+12.5342426546138 -166.381934619316\\
+13.125568357718 -166.146163375267\\
+13.8720978054164 -165.820831620083\\
+14.6610868404698 -165.450147346013\\
+15.4949503931459 -165.034808618272\\
+16.5279206146492 -164.494447496491\\
+17.629753752872 -163.894472915139\\
+18.9792164283904 -163.136211547742\\
+20.4319732019529 -162.300889486525\\
+21.9959306803003 -161.388916132893\\
+23.8989256623109 -160.272107186861\\
+25.9665597293484 -159.060547581843\\
+28.4743916646731 -157.606172376396\\
+31.2244282309282 -156.04281351383\\
+34.557199367622 -154.206087892605\\
+38.5999361767968 -152.078315119448\\
+43.9180089259608 -149.463749063407\\
+53.2999408084406 -145.382485234299\\
+67.1161176749614 -140.546688231932\\
+75.6621850048106 -138.17261801374\\
+83.7380653526675 -136.29830457476\\
+90.9827289445557 -134.882259351332\\
+97.9469667069515 -133.727484132067\\
+105.444279352618 -132.682003275911\\
+112.473717836474 -131.864566767041\\
+118.870769771187 -131.24083343502\\
+125.631660247414 -130.691457825707\\
+131.558562404571 -130.292432917799\\
+137.765076954903 -129.948317419219\\
+144.264395121811 -129.660278684178\\
+149.683929307729 -129.470883874813\\
+155.307057393347 -129.318416184534\\
+159.662602210142 -129.228502818175\\
+164.140297114445 -129.159663641783\\
+167.194975973196 -129.125523822443\\
+170.30650292528 -129.10081113051\\
+173.475935923388 -129.08554156212\\
+175.082703173578 -129.081451682391\\
+176.704352608899 -129.079726485753\\
+178.341022071005 -129.080366671707\\
+179.992850678251 -129.083372651464\\
+183.342548256232 -129.096482196062\\
+186.754584276109 -129.119052644171\\
+190.230118866895 -129.151076905166\\
+195.565071586593 -129.216812307036\\
+201.049641626046 -129.303732252982\\
+206.688024962902 -129.41175406689\\
+214.452607597172 -129.58842090449\\
+222.508879812839 -129.802091679082\\
+230.867799418716 -130.052371213356\\
+241.759407916908 -130.415973812522\\
+253.164847863143 -130.834935883369\\
+267.563844455207 -131.408930714981\\
+282.781797962532 -132.058159625365\\
+301.63343472593 -132.90661930082\\
+321.74181506764 -133.847822910112\\
+346.369417737168 -135.028964955948\\
+376.335836228661 -136.479582435456\\
+412.68208457029 -138.223048064916\\
+456.730127016882 -140.272021269151\\
+519.655724382751 -143.024178031352\\
+654.358601888336 -148.121906782025\\
+801.500696156551 -152.542517288311\\
+920.373199661849 -155.40714885456\\
+1000 -157.044183439025\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.291352642326387\\
+0.111698681846785 -0.325514199731003\\
+0.123620954373676 -0.360355040186647\\
+0.13681576279675 -0.398949121067488\\
+0.151418932530433 -0.441709346854623\\
+0.166042865718756 -0.484584740656715\\
+0.182079168009943 -0.53166987031733\\
+0.199664245010983 -0.583393381199613\\
+0.218947676285658 -0.640232427016116\\
+0.240093487686069 -0.702719665887457\\
+0.260865361762251 -0.764278993708785\\
+0.283434330615137 -0.831381551294925\\
+0.30795587129142 -0.904569247308245\\
+0.334598912055007 -0.984448955703158\\
+0.363546996129332 -1.0717034899788\\
+0.394999546122053 -1.16710516872229\\
+0.429173237842218 -1.27153272980905\\
+0.466303492974262 -1.38599260482073\\
+0.506646100892133 -1.51164591629245\\
+0.545427130532976 -1.63382138737697\\
+0.587176639073341 -1.7670063986873\\
+0.632121847581245 -1.91248008029615\\
+0.680507369673503 -2.07173971544489\\
+0.732596542821532 -2.24655308640871\\
+0.788672861561404 -2.4390265958462\\
+0.849041520408896 -2.65169483875292\\
+0.905642837944531 -2.85675201702139\\
+0.966017479952245 -3.08212102229891\\
+1.03041699495061 -3.33082602720719\\
+1.0991097009295 -3.6065596709899\\
+1.17238180328657 -3.91387873650243\\
+1.25053858729041 -4.25847124015348\\
+1.3216641839466 -4.58890199263575\\
+1.39683511798871 -4.9576499837336\\
+1.47628147190943 -5.37182216951533\\
+1.56024641436638 -5.84041684702112\\
+1.64898694447104 -6.37498467649934\\
+1.7267809038843 -6.88158196745067\\
+1.80824493487798 -7.4556018954228\\
+1.8935521797563 -8.11145234800168\\
+1.98288394912704 -8.86788921491024\\
+2.07643010725571 -9.74974954225084\\
+2.17438947560012 -10.7905663744898\\
+2.25607406649687 -11.7681943329501\\
+2.34082727617828 -12.9089448532742\\
+2.4287643824604 -14.2559790825029\\
+2.52000499376417 -15.8684512530002\\
+2.61467321180114 -17.8292488290495\\
+2.71289780037248 -20.2573360824768\\
+2.78898029238043 -22.4874464603118\\
+2.86719649749373 -25.1816130394879\\
+2.94760625512479 -28.483442747648\\
+3.03027108286649 -32.5911196610415\\
+3.11525422355555 -37.775353131125\\
+3.20262069365769 -44.3904944998517\\
+3.29243733300778 -52.8478005385874\\
+3.38477285594596 -63.4784879908345\\
+3.51192753045066 -80.7875910462673\\
+3.74605003274907 -112.033936938947\\
+3.85110700232562 -122.56357618958\\
+3.95911026646847 -130.924400666565\\
+4.07014245321941 -137.455966067367\\
+4.18428850790151 -142.568791538053\\
+4.30163575810668 -146.613875707662\\
+4.42227398050602 -149.858610537105\\
+4.58840412645483 -153.269892687646\\
+4.76077523022638 -155.921621351942\\
+4.93962174387827 -158.025378063275\\
+5.12518692705321 -159.723262097006\\
+5.31772317785112 -161.113097861787\\
+5.51749237612921 -162.263900935841\\
+5.72476623970219 -163.225488227235\\
+5.93982669392029 -164.034573413583\\
+6.16296625513279 -164.718722573244\\
+6.39448842855712 -165.298980515193\\
+6.63470812109245 -165.791652971418\\
+6.88395206964551 -166.209540870493\\
+7.14255928554305 -166.562811412343\\
+7.41088151564139 -166.859623581907\\
+7.68928372075853 -167.106584550132\\
+7.97814457207674 -167.309087604221\\
+8.27785696619849 -167.471565762359\\
+8.58882855954615 -167.597684498649\\
+8.8296999554939 -167.670264974052\\
+9.07732652520994 -167.725211502284\\
+9.33189771573347 -167.763481572283\\
+9.50556592010137 -167.78014890649\\
+9.68246611930323 -167.790001961959\\
+9.86265846131287 -167.793244723142\\
+9.95400828762154 -167.792446311346\\
+10.1392540755881 -167.786119400561\\
+10.3279473191894 -167.773621053059\\
+10.5201521761614 -167.75510185073\\
+10.8151870255226 -167.716332737618\\
+11.118496048193 -167.664742793251\\
+11.430311291145 -167.600698471743\\
+11.8597101233768 -167.496480695299\\
+12.3052400435925 -167.371336280216\\
+12.8857621318549 -167.186289123319\\
+13.4936714058834 -166.970226276602\\
+14.1302599059955 -166.723803124833\\
+14.9339321612423 -166.388709725144\\
+15.7833140565207 -166.011221223348\\
+16.8355080296122 -165.517765137439\\
+17.9578464700207 -164.967521796803\\
+19.1550055557359 -164.360666044591\\
+20.6212180399915 -163.597875901922\\
+22.1996611911991 -162.7612869459\\
+23.8989256623109 -161.851068909811\\
+25.9665597293484 -160.739619637602\\
+28.2130767593954 -159.536815214781\\
+30.9378757173011 -158.095976265116\\
+33.9258338274107 -156.550029849679\\
+37.5469422407329 -154.736830186287\\
+42.327890655736 -152.460206287813\\
+48.6056423214227 -149.692218615608\\
+62.3440188862789 -144.532037670312\\
+73.5981447526585 -141.163255946628\\
+82.2081575524031 -139.042869411846\\
+90.1477631452495 -137.393280627283\\
+97.9469667069515 -136.023158387234\\
+105.444279352618 -134.911207147375\\
+112.473717836474 -134.029292258631\\
+119.971773543585 -133.239427695338\\
+126.795284678645 -132.640197755254\\
+134.006889636394 -132.116258129593\\
+140.328908478584 -131.739214314569\\
+146.949180062486 -131.41783916984\\
+152.469572701759 -131.201630380013\\
+158.19734815786 -131.02233279601\\
+164.140297114445 -130.880375571589\\
+168.743567772734 -130.798622574503\\
+173.475935923388 -130.738183105095\\
+176.704352608899 -130.709775345194\\
+179.992850678251 -130.690899208233\\
+183.342548256232 -130.681568934149\\
+185.040701954232 -130.680486524156\\
+186.754584276109 -130.681793564766\\
+188.48434090338 -130.685490374789\\
+191.992066559328 -130.700052956105\\
+195.565071586593 -130.724170329252\\
+199.204570845384 -130.757833361241\\
+204.791209666503 -130.826193243348\\
+210.534524276677 -130.915927034906\\
+216.438908606406 -131.026937928185\\
+224.569799553979 -131.207833085537\\
+233.006141069691 -131.425965453583\\
+241.759407916908 -131.680883685041\\
+253.164847863143 -132.050435314496\\
+265.108360190857 -132.475381047655\\
+280.186655645918 -133.056379197068\\
+296.122543798796 -133.71213575396\\
+315.863540826787 -134.567182334866\\
+336.920570598025 -135.513359058146\\
+362.710025233077 -136.69752023903\\
+394.090164040346 -138.147213052824\\
+432.151112778964 -139.883121735246\\
+482.707096560317 -142.104404663021\\
+559.432570616944 -145.223122210609\\
+847.086826655735 -154.092990063499\\
+963.793479961591 -156.664727378264\\
+1000 -157.371821836267\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.266215710157724\\
+0.108651577465251 -0.30095704398741\\
+0.118051652856874 -0.339520974255436\\
+0.128264983052812 -0.382119708850098\\
+0.139361927422416 -0.428965122614784\\
+0.152821403602584 -0.486263704299063\\
+0.167580786453068 -0.549402513004338\\
+0.183765620038826 -0.618749371541071\\
+0.201513573381558 -0.694729839316665\\
+0.220975611479586 -0.777842197009363\\
+0.242317279423747 -0.868671303167673\\
+0.263281546564815 -0.957578816206592\\
+0.28605955351758 -1.05386657120738\\
+0.310808217386903 -1.15819346454106\\
+0.337698031082496 -1.27131006453914\\
+0.366914237840272 -1.39406986138607\\
+0.398658107358057 -1.52744312242413\\
+0.433148322337641 -1.67253428153691\\
+0.470622484984116 -1.83060401325741\\
+0.511338753841404 -2.00309747180631\\
+0.555577622239913 -2.19168065802177\\
+0.603643850607596 -2.39828757942661\\
+0.649849535446982 -2.59889043830555\\
+0.699592016543512 -2.8173758951944\\
+0.75314201659739 -3.05591755041291\\
+0.810790980673203 -3.31708069746355\\
+0.872852662384851 -3.6039234428074\\
+0.939664831495459 -3.92013144886721\\
+1.01159111222379 -4.27019985918338\\
+1.07902879151612 -4.60861975933551\\
+1.15096220088509 -4.9817813655668\\
+1.22769104798839 -5.39533678361767\\
+1.30953502048267 -5.85634248764734\\
+1.39683511798871 -6.37373386325407\\
+1.47628147190933 -6.87071443271549\\
+1.56024641436628 -7.42676694954224\\
+1.64898694447115 -8.05371717821868\\
+1.74277467840897 -8.76691324972586\\
+1.82499324481618 -9.44156406332229\\
+1.91109062168914 -10.2054250019356\\
+2.001249798969 -11.0785029919259\\
+2.09566239948036 -12.0873340543343\\
+2.1945290862032 -13.2678316974479\\
+2.27697025538154 -14.368622800002\\
+2.36250846547808 -15.6453652917816\\
+2.45126006203344 -17.1447915089456\\
+2.54334576130472 -18.9312506453926\\
+2.63889081445755 -21.095389783103\\
+2.73802517792786 -23.7680673750955\\
+2.81481236050756 -26.2195425330194\\
+2.8937530190509 -29.1801704771353\\
+2.97490754721436 -32.8099025858887\\
+3.05833803237832 -37.3291882002607\\
+3.14410830314712 -43.0363599841172\\
+3.2322839781812 -50.3112635383285\\
+3.32293251639919 -59.5621249288453\\
+3.41612326858571 -71.030163623904\\
+3.57728509936801 -93.8438418729432\\
+3.74605003274907 -115.896007783548\\
+3.85110700232562 -126.535170749977\\
+3.95911026646847 -135.008596064837\\
+4.07014245321941 -141.655923963845\\
+4.18428850790151 -146.88776026687\\
+4.30163575810668 -151.055192465957\\
+4.42227398050573 -154.425703629622\\
+4.58840412645453 -158.010182264491\\
+4.76077523022607 -160.841596479171\\
+4.93962174387859 -163.13176349028\\
+5.12518692705354 -165.023026231603\\
+5.31772317785112 -166.613461012053\\
+5.56859644428648 -168.2820780248\\
+5.8313051135262 -169.682372323049\\
+6.10640754223191 -170.879619667161\\
+6.3944884285567 -171.920071106938\\
+6.75818116816072 -173.008350405717\\
+7.14255928554351 -173.961061202217\\
+7.61871770232323 -174.941383380889\\
+8.12661920009201 -175.81341836252\\
+8.74866812047975 -176.709763749452\\
+9.41833153464754 -177.525567674372\\
+10.233165783303 -178.372493823782\\
+11.3254131515284 -179.33605429166\\
+12.8857621318549 -180.491798096412\\
+20.8122156998621 -184.71143707231\\
+23.4622884814232 -185.862756427956\\
+26.2070669648381 -186.993432569533\\
+29.0043049386384 -188.099986850643\\
+32.1001089554331 -189.285431837042\\
+35.2003147279672 -190.441557061801\\
+38.5999361767968 -191.681970977323\\
+42.3278906557332 -193.016328916984\\
+46.4158883361298 -194.454688467967\\
+50.8987019351974 -196.007509416426\\
+55.8144624945484 -197.685626743612\\
+61.2049837247637 -199.50019139582\\
+67.1161176749657 -201.462572358299\\
+73.5981447526585 -203.584212696151\\
+80.7062014114933 -205.876431914452\\
+88.5007491447295 -208.35016756293\\
+97.0480887738072 -211.015650877062\\
+106.420924406474 -213.88201484908\\
+116.698981861712 -216.956838826893\\
+129.154966501481 -220.586428690776\\
+142.940453343181 -224.478556604558\\
+158.19734815786 -228.632244662603\\
+176.704352608888 -233.454169529718\\
+199.204570845397 -239.00113070176\\
+226.64980792737 -245.31347136193\\
+262.675410372371 -252.885655687385\\
+315.863540826787 -262.727995330403\\
+514.886745013736 -289.000479926592\\
+596.727119597363 -296.457758631573\\
+678.940681269615 -302.642969663024\\
+765.391938822987 -308.053990178508\\
+854.932706626886 -312.738637116499\\
+946.184819472219 -316.759134581883\\
+1000 -318.839865221135\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -1.54483010954081\\
+0.111698681846785 -1.52792736130999\\
+0.13681576279675 -1.49626153644692\\
+0.148652484499784 -1.48661094456821\\
+0.160031031373875 -1.4810832357694\\
+0.170699493403842 -1.47921528806339\\
+0.182079168009943 -1.48060168614205\\
+0.192435097523039 -1.48470478764523\\
+0.2033800305847 -1.49176471747489\\
+0.214947467343796 -1.50201942769414\\
+0.227172813302684 -1.5156956547896\\
+0.240093487686069 -1.53301155246325\\
+0.253749037973356 -1.55417944005703\\
+0.268181260945295 -1.57940861983991\\
+0.283434330615137 -1.60890823434983\\
+0.299554933435982 -1.64289015131882\\
+0.316592411198347 -1.68157187843457\\
+0.337698031082518 -1.73294286738818\\
+0.360210656235708 -1.7913985667453\\
+0.384224084605498 -1.85734688830351\\
+0.409838367175735 -1.9312314185033\\
+0.43716022482485 -2.01353933276059\\
+0.466303492974262 -2.10481019557804\\
+0.497389595879016 -2.2056459532466\\
+0.530548052536955 -2.31672250137822\\
+0.565917016324609 -2.43880330711053\\
+0.609234915240079 -2.5929169159069\\
+0.655868565957134 -2.76403537520397\\
+0.706071771413795 -2.95391293927881\\
+0.760117761795532 -3.16462460231793\\
+0.81079098067315 -3.36802213948209\\
+0.864842327573189 -3.59122930011861\\
+0.922497005259214 -3.83658229226316\\
+0.983995229627797 -4.10687380142375\\
+1.04959323055824 -4.40547252940718\\
+1.11956431948387 -4.73648225047836\\
+1.1942000281335 -5.10495636579981\\
+1.27381132318649 -5.51719172310575\\
+1.3462605792989 -5.91133655219878\\
+1.42283045721431 -6.34971704288861\\
+1.50375532129977 -6.8401877328358\\
+1.58928286562298 -7.39270179688441\\
+1.67967487209262 -8.02005694920115\\
+1.77520801171768 -8.73897989166213\\
+1.8589566796357 -9.42387866208117\\
+1.94665634334225 -10.2046793655013\\
+2.03849339825241 -11.1036802927277\\
+2.1346630333243 -12.150702913176\\
+2.23536964590981 -13.3864821268318\\
+2.31934505927442 -14.5485686190826\\
+2.40647515001538 -15.9075819807215\\
+2.49687842888425 -17.518180908073\\
+2.59067785868806 -19.4564825913698\\
+2.68800102153763 -21.8310260496097\\
+2.78898029238043 -24.8004993231116\\
+2.86719649749373 -27.55689798464\\
+2.94760625512479 -30.9228185750927\\
+3.03027108286649 -35.0964948135632\\
+3.11525422355555 -40.3486870168798\\
+3.20262069365769 -47.0337988399958\\
+3.29243733300778 -55.5631407409479\\
+3.38477285594596 -66.2679845506654\\
+3.51192753045066 -83.6793591897222\\
+3.74605003274907 -115.11441131444\\
+3.85110700232562 -125.728873744729\\
+3.95911026646847 -134.176981951782\\
+4.07014245321941 -140.798356843028\\
+4.18428850790151 -146.003584425801\\
+4.30163575810668 -150.143731880512\\
+4.42227398050602 -153.486261449709\\
+4.58840412645483 -157.032310313177\\
+4.76077523022638 -159.823965744289\\
+4.93962174387827 -162.072991026213\\
+5.12518692705321 -163.921673292868\\
+5.31772317785112 -165.468031112941\\
+5.56859644428648 -167.079356257792\\
+5.8313051135262 -168.41980556563\\
+6.10640754223191 -169.554528090325\\
+6.39448842855712 -170.529642548552\\
+6.6961600548533 -171.378638015562\\
+7.07701066118183 -172.265524441732\\
+7.47952251562161 -173.038139551192\\
+7.90492762269657 -173.719862093948\\
+8.43190929286622 -174.423497700723\\
+8.9940221740918 -175.048094785491\\
+9.59360828709328 -175.60935943497\\
+10.3279473191894 -176.188554623791\\
+11.118496048193 -176.714470150289\\
+12.0804213467733 -177.255620555994\\
+13.2471398786616 -177.807862996637\\
+14.6610868404698 -178.37011423028\\
+16.3762407452172 -178.944298636539\\
+18.8050405512853 -179.624352922525\\
+23.8989256623109 -180.761047848929\\
+29.2729483504285 -181.736455550507\\
+33.6144900010886 -182.434481718825\\
+37.8947091907461 -183.073972404066\\
+42.327890655736 -183.701336746686\\
+46.8458011587293 -184.314409170995\\
+51.8459354389293 -184.970144342516\\
+56.8531791387359 -185.60868781254\\
+62.3440188862789 -186.292846605462\\
+68.3651600451004 -187.0279053504\\
+74.9678187496691 -187.81938858495\\
+82.2081575524031 -188.673057147156\\
+90.1477631452495 -189.594890779953\\
+98.8541702191929 -190.591053322699\\
+108.401435917834 -191.667836070809\\
+118.870769771187 -192.831574142554\\
+130.351224468151 -194.088530120551\\
+142.940453343172 -195.44473902025\\
+156.74554102056 -196.905809045019\\
+171.88391428171 -198.476673966621\\
+188.48434090338 -200.161295732395\\
+208.602408924844 -202.14887848292\\
+230.867799418716 -204.278395833715\\
+255.509709035257 -206.547844528841\\
+285.40097698292 -209.176335482146\\
+321.74181506764 -212.188458156212\\
+369.46012051994 -215.843618192517\\
+440.193518520901 -220.667475666039\\
+660.419396233041 -231.917529037968\\
+758.367791499744 -235.527133830614\\
+854.93270662683 -238.481036354053\\
+954.948563979212 -241.037527140603\\
+1000 -242.050341246476\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.170713609675005\\
+0.113777413322151 -0.194645271277324\\
+0.128264983052803 -0.219980584214483\\
+0.144597292179202 -0.248776662764129\\
+0.161513269350313 -0.27889413801546\\
+0.178752552590422 -0.309925595837001\\
+0.19783188827842 -0.344706277373234\\
+0.216938351838516 -0.380037611523818\\
+0.237890104107894 -0.419405984203422\\
+0.258471350746954 -0.458762372895279\\
+0.280833199882324 -0.50234587530764\\
+0.305129701718286 -0.550732856589036\\
+0.331528234231953 -0.604599260101253\\
+0.356904934567525 -0.657719436477976\\
+0.384224084605498 -0.71644393390207\\
+0.413634368406335 -0.781522784859447\\
+0.445295850994262 -0.853821832961103\\
+0.479380849508926 -0.934339690527622\\
+0.511338753841437 -1.012434976229\\
+0.545427130532976 -1.09857920123423\\
+0.58178800743451 -1.19376422367827\\
+0.620572880677654 -1.2991094570165\\
+0.661943345877428 -1.41587824817333\\
+0.706071771413795 -1.54549765048944\\
+0.753142016597439 -1.68958308546652\\
+0.803350197712457 -1.84997004492723\\
+0.856905505126854 -2.02875586557047\\
+0.914031074875622 -2.22835578500735\\
+0.974964918348386 -2.45157908043271\\
+1.03996091395414 -2.70173329520435\\
+1.10928986489522 -2.98276770847053\\
+1.17238180328657 -3.25183489519878\\
+1.23906215694794 -3.55074476765492\\
+1.30953502048267 -3.8839260452545\\
+1.38401609657311 -4.25681716961472\\
+1.46273335620117 -4.67618771778305\\
+1.54592773641949 -5.15058366592535\\
+1.63385387780984 -5.69095463530667\\
+1.7267809038843 -6.31155489022851\\
+1.80824493487798 -6.90344977945574\\
+1.8935521797563 -7.57837606300487\\
+1.98288394912704 -8.35499936851897\\
+2.07643010725571 -9.25806704106017\\
+2.17438947560012 -10.3210246288978\\
+2.25607406649687 -11.3169807420404\\
+2.34082727617828 -12.4765622915837\\
+2.4287643824604 -13.8428919959459\\
+2.52000499376417 -15.4750882419296\\
+2.61467321180114 -17.4560054361146\\
+2.71289780037248 -19.9045777284422\\
+2.78898029238043 -22.1502752804277\\
+2.86719649749373 -24.8602089877957\\
+2.94760625512479 -28.17797646205\\
+3.03027108286649 -32.3017534358161\\
+3.11525422355555 -37.5022418787414\\
+3.20262069365769 -44.1337866968004\\
+3.29243733300778 -52.6076391507007\\
+3.38477285594596 -63.2550113743147\\
+3.51192753045066 -80.5865696772445\\
+3.74605003274907 -111.872770134501\\
+3.85110700232562 -122.41970371464\\
+3.95911026646847 -130.797950344006\\
+4.07014245321941 -137.347066334998\\
+4.18428850790151 -142.477572105666\\
+4.30163575810668 -146.540468181691\\
+4.42227398050602 -149.803149013901\\
+4.58840412645483 -153.238573116691\\
+4.76077523022638 -155.914696317111\\
+4.93962174387827 -158.043110424048\\
+5.12518692705321 -159.765926456443\\
+5.31772317785112 -161.180981936343\\
+5.51749237612921 -162.357306834761\\
+5.72476623970219 -163.344733648558\\
+5.93982669392029 -164.179992762832\\
+6.16296625513279 -164.890668009802\\
+6.45371540164686 -165.635434476747\\
+6.75818116816117 -166.249182628083\\
+7.07701066118183 -166.754960788271\\
+7.34287044716661 -167.093683506612\\
+7.61871770232323 -167.381499778996\\
+7.90492762269657 -167.624102832694\\
+8.20188949920225 -167.826169217574\\
+8.51000724712218 -167.991564910775\\
+8.8296999554939 -168.123503286987\\
+9.07732652520994 -168.202131905456\\
+9.33189771573347 -168.264426856036\\
+9.59360828709328 -168.311237463162\\
+9.86265846131287 -168.343309940425\\
+10.0462042134681 -168.356831155606\\
+10.2331657833024 -168.364269921268\\
+10.4236067397639 -168.365786537015\\
+10.6175918348298 -168.361528200666\\
+10.8151870255226 -168.351630055334\\
+11.0164594963369 -168.33621613777\\
+11.2214776820801 -168.315400238889\\
+11.5361810173649 -168.274273480771\\
+11.8597101233768 -168.221540823778\\
+12.3052400435925 -168.133649470643\\
+12.7675070431924 -168.026171801565\\
+13.2471398786616 -167.89957066881\\
+13.8720978054164 -167.714998214025\\
+14.5265392594678 -167.501719150079\\
+15.3527502878039 -167.208500669344\\
+16.2259528707813 -166.875100281619\\
+17.1488196987055 -166.501846222837\\
+18.2920450484626 -166.016234379256\\
+19.5114834684666 -165.4766819208\\
+20.8122156998634 -164.883125992995\\
+22.4052786929996 -164.138484281159\\
+24.1202820761804 -163.322963721069\\
+26.2070669648381 -162.32075509207\\
+28.4743916646731 -161.229220944454\\
+30.9378757173011 -160.049496061901\\
+33.9258338274107 -158.637893076779\\
+37.5469422407329 -156.968243951337\\
+41.9394395566725 -155.018480143932\\
+47.2796959160026 -152.776104542022\\
+54.794723369002 -149.877749115295\\
+82.9695852083464 -141.636144683258\\
+91.8254283565626 -139.795592336804\\
+100.693863147606 -138.246051340326\\
+109.405470720574 -136.974573457404\\
+117.779870119709 -135.956981387676\\
+125.631660247414 -135.162602557296\\
+132.777082935543 -134.558270498911\\
+140.328908478584 -134.028458744327\\
+146.949180062486 -133.646168276551\\
+153.881775003836 -133.319408778265\\
+159.662602210142 -133.098896687499\\
+165.660595894989 -132.915374508313\\
+171.88391428171 -132.769330826823\\
+176.704352608899 -132.684633876544\\
+181.659978837536 -132.621373455172\\
+185.040701954232 -132.591160371854\\
+188.48434090338 -132.570543072351\\
+191.992066559328 -132.559538391407\\
+193.770333747798 -132.557644436777\\
+195.565071586593 -132.558157287114\\
+197.376432630023 -132.561077394371\\
+201.049641626046 -132.574139352264\\
+204.791209666503 -132.596826585357\\
+208.602408924844 -132.629129495373\\
+214.452607597172 -132.695577799837\\
+220.466873523944 -132.783548161821\\
+226.64980792737 -132.892933770654\\
+235.164288449433 -133.071853396155\\
+243.99862972595 -133.288191753342\\
+253.164847863143 -133.541447869258\\
+265.108360190857 -133.909017394559\\
+277.615329443679 -134.33196303817\\
+293.404970921572 -134.910325884423\\
+310.0926635932 -135.562920240716\\
+330.764978074424 -136.413201864611\\
+352.81541153808 -137.352972294214\\
+379.82153061908 -138.527152663392\\
+412.68208457029 -139.961372050757\\
+452.538627817026 -141.673777207895\\
+505.479682119114 -143.856854696395\\
+591.250841383182 -147.100083437142\\
+831.610415323096 -154.202777346646\\
+954.948563979212 -156.911924344011\\
+1000 -157.778843495115\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.916692380500706\\
+0.120248614203733 -0.989487817740212\\
+0.13556017853294 -1.04082401270455\\
+0.15002933220192 -1.08864113132398\\
+0.164519058775359 -1.13687475642325\\
+0.178752552590433 -1.18511437916584\\
+0.194217468148908 -1.2387808644292\\
+0.209083769055575 -1.29170854495447\\
+0.22508800520954 -1.35016193827681\\
+0.242317279423747 -1.41473232547719\\
+0.260865361762268 -1.48602227131494\\
+0.280833199882324 -1.56465181442383\\
+0.302329468440578 -1.65126597248604\\
+0.325471160553176 -1.74654342702235\\
+0.350384224529049 -1.85120635628869\\
+0.377204249341719 -1.96603149793901\\
+0.406077202570047 -2.09186264448522\\
+0.43716022482485 -2.22962490740957\\
+0.470622484984116 -2.380341237442\\
+0.5066461008921 -2.54515187065601\\
+0.545427130533012 -2.72533759948033\\
+0.587176639073341 -2.92234806821352\\
+0.632121847581245 -3.1378366980598\\
+0.680507369673503 -3.3737044063501\\
+0.732596542821484 -3.63215507168707\\
+0.788672861561456 -3.9157668223479\\
+0.849041520408896 -4.22758486146813\\
+0.914031074875622 -4.57124396133679\\
+0.983995229627797 -4.95113239979742\\
+1.04959323055817 -5.31744193989158\\
+1.11956431948394 -5.71996231983701\\
+1.19420002813357 -6.16404355264547\\
+1.27381132318649 -6.65629612576782\\
+1.3587299019027 -7.20500142168902\\
+1.44930957412617 -7.82069359416022\\
+1.531740463702 -8.41196953442261\\
+1.61885969017829 -9.07345677661908\\
+1.71093390726908 -9.81938147502598\\
+1.80824493487798 -10.6683791683235\\
+1.8935521797563 -11.4723297995701\\
+1.98288394912704 -12.3840676417169\\
+2.07643010725571 -13.4287642983103\\
+2.17438947559998 -14.6403032484039\\
+2.27697025538154 -16.0653342994716\\
+2.36250846547808 -17.4024654957956\\
+2.45126006203344 -18.9646575302821\\
+2.54334576130472 -20.8163436112875\\
+2.63889081445755 -23.048258009976\\
+2.73802517792786 -25.7913496432951\\
+2.81481236050756 -28.2974233530564\\
+2.8937530190509 -31.3142277462908\\
+2.97490754721436 -35.0017561972218\\
+3.05833803237832 -39.5805011945831\\
+3.14410830314712 -45.3488397277047\\
+3.2322839781812 -52.6866629266328\\
+3.32293251639919 -62.0022436164365\\
+3.41612326858571 -73.5368492808387\\
+3.57728509936801 -96.4657129012481\\
+3.74605003274907 -118.638570451706\\
+3.85110700232562 -129.352893643726\\
+3.95911026646847 -137.903605255833\\
+4.07014245321941 -144.630402115282\\
+4.18428850790151 -149.943948084781\\
+4.30163575810668 -154.195390176388\\
+4.46323392671022 -158.663544037213\\
+4.63090280179949 -162.154797392148\\
+4.80487043965544 -164.958853348815\\
+4.98537346387415 -167.267221326192\\
+5.17265738721621 -169.209443444781\\
+5.41668691103327 -171.256640548382\\
+5.67222897164457 -172.991223557497\\
+5.93982669392029 -174.494929309281\\
+6.27766010580631 -176.073749287182\\
+6.63470812109201 -177.470501384155\\
+7.07701066118229 -178.933296145128\\
+7.61871770232323 -180.449352547972\\
+8.35452805838285 -182.189849378063\\
+9.41833153464754 -184.304904049557\\
+14.3932264471932 -191.663768373126\\
+16.2259528707813 -193.924625550541\\
+18.1241754737421 -196.139290823351\\
+20.2444650997669 -198.497611259805\\
+22.6128006633736 -201.01670111764\\
+25.0264009641792 -203.478780044072\\
+27.9541599906775 -206.340578336315\\
+31.2244282309302 -209.390925622275\\
+34.8772747481423 -212.629682375567\\
+39.3182875570566 -216.343694488349\\
+44.7353305449872 -220.563896776961\\
+51.8459354389293 -225.627790689067\\
+61.7718759733813 -231.894174941819\\
+80.7062014114933 -241.742522235976\\
+124.478714618785 -257.688837555523\\
+181.659978837524 -271.29341118137\\
+288.044415339644 -287.923749635948\\
+539.177464038727 -310.671180805853\\
+630.666554056761 -316.039372583377\\
+724.20223346072 -320.539068821628\\
+816.416760492099 -324.220689878951\\
+911.92675984596 -327.418260944427\\
+1000 -329.926610165139\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.400154802213933\\
+0.110673601809593 -0.442935406101412\\
+0.121362379834432 -0.485798093770768\\
+0.133083472465411 -0.532827335649927\\
+0.145936579915575 -0.584434134713263\\
+0.160031031373864 -0.641071944483883\\
+0.175486714964826 -0.703241656458715\\
+0.192435097523039 -0.771497357563248\\
+0.209083769055575 -0.838637103050644\\
+0.227172813302684 -0.911697155265585\\
+0.246826845225555 -0.991221565731564\\
+0.268181260945313 -1.07781060871685\\
+0.291383170483282 -1.17212831121481\\
+0.316592411198347 -1.27491142903176\\
+0.343982648902277 -1.38698024047181\\
+0.373742574239127 -1.50925164258149\\
+0.406077202570047 -1.64275518760473\\
+0.441209286319117 -1.78865290454377\\
+0.479380849508895 -1.94826403470097\\
+0.520854855057734 -2.12309620330802\\
+0.560723488285227 -2.29267791796241\\
+0.603643850607596 -2.47705557133418\\
+0.649849535446982 -2.67784110716207\\
+0.699592016543512 -2.89690263569588\\
+0.75314201659739 -3.13642374042081\\
+0.810790980673203 -3.39898059392817\\
+0.872852662384851 -3.68764336550521\\
+0.939664831495459 -4.0061112188688\\
+1.01159111222379 -4.35889446584503\\
+1.07902879151612 -4.70007643037735\\
+1.15096220088509 -5.07637418071056\\
+1.22769104798839 -5.4934538406041\\
+1.30953502048267 -5.95838730153815\\
+1.39683511798871 -6.48012685587332\\
+1.47628147190933 -6.98118302522983\\
+1.56024641436628 -7.54164619172667\\
+1.64898694447115 -8.17335567764468\\
+1.74277467840897 -8.89167415897788\\
+1.84189668079973 -9.71689797035663\\
+1.92879150802077 -10.5057102728827\\
+2.01978575681984 -11.4087350723631\\
+2.11507282486872 -12.4541270124811\\
+2.21485523372624 -13.68015312701\\
+2.298059988759 -14.8261323943188\\
+2.38439047009384 -16.1586477626216\\
+2.47396410088691 -17.7282267107224\\
+2.56690271549201 -19.6048258599706\\
+2.66333272517501 -21.8875803235251\\
+2.76338529005317 -24.720502231245\\
+2.84088369018327 -27.3315686434569\\
+2.92055551218269 -30.4996278376527\\
+3.00246170908546 -34.4027880996607\\
+3.08666494333715 -39.2857350995548\\
+3.17322963473482 -45.4750919805643\\
+3.26222200971147 -53.3709807982593\\
+3.35371015200313 -63.3575704640313\\
+3.47969790388786 -80.0164435352934\\
+3.78074666359942 -119.938229245907\\
+3.8867766908927 -129.839558247484\\
+3.99578030189527 -137.66516913355\\
+4.1078408899656 -143.803585911058\\
+4.22304418720659 -148.652841134355\\
+4.34147833005496 -152.536081621253\\
+4.50457325175926 -156.618806968812\\
+4.6737951079922 -159.804949817784\\
+4.84937406733553 -162.355119042744\\
+5.03154894503829 -164.44244238334\\
+5.22056752784716 -166.184714677311\\
+5.46685729972028 -168.000188751408\\
+5.72476623970219 -169.51444984778\\
+5.99484250318932 -170.803050060072\\
+6.27766010580631 -171.918932468175\\
+6.63470812109201 -173.082937490308\\
+7.01206358900761 -174.100069848404\\
+7.4795225156221 -175.145827178703\\
+7.97814457207674 -176.076286016618\\
+8.58882855954615 -177.033958794704\\
+9.33189771573286 -178.012163688329\\
+10.233165783303 -179.01198780629\\
+11.430311291145 -180.132428610497\\
+13.369837418249 -181.641458916954\\
+17.7930438991856 -184.381918843734\\
+20.2444650997669 -185.68976923361\\
+22.8222447418698 -186.976695362482\\
+25.4921465445141 -188.244664962565\\
+28.2130767593936 -189.488522576544\\
+31.2244282309302 -190.823297077798\\
+34.240061379715 -192.126440224783\\
+37.5469422407329 -193.52529527456\\
+41.1731993116149 -195.030093530434\\
+45.1496777203634 -196.651331089464\\
+49.5102015955645 -198.399715154319\\
+54.2918617761888 -200.286070348131\\
+59.535331308141 -202.321199143624\\
+65.2852114112819 -204.515690516665\\
+71.5904108596503 -206.879672001608\\
+78.5045620020441 -209.422502846338\\
+86.0864769614886 -212.152410315452\\
+94.400647894181 -215.076077602852\\
+104.476597156082 -218.52143788928\\
+115.628013120735 -222.209692098327\\
+127.969686821587 -226.139422955318\\
+142.940453343181 -230.69441116297\\
+161.141427725301 -235.927414158104\\
+183.34254825622 -241.877856662316\\
+212.484535249894 -249.018344104325\\
+253.164847863126 -257.853122690877\\
+340.041193270368 -273.160480216343\\
+440.193518520901 -286.423421183356\\
+519.655724382751 -294.611063716615\\
+596.727119597363 -301.115071918544\\
+678.940681269615 -306.862025553827\\
+765.391938822987 -311.88163376287\\
+854.932706626886 -316.223522117643\\
+946.184819472219 -319.948046909414\\
+1000 -321.875183278479\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -1.99689715940553\\
+0.114831241454345 -2.22980316961548\\
+0.138082976521811 -2.55385226468798\\
+0.177112106434519 -2.98990120689484\\
+0.199664245010983 -3.18691828183876\\
+0.220975611479586 -3.34183759033806\\
+0.242317279423747 -3.47117129895111\\
+0.263281546564815 -3.57729056875019\\
+0.28605955351758 -3.67349645956563\\
+0.310808217386903 -3.76028466602008\\
+0.337698031082496 -3.83882453911184\\
+0.370312667587014 -3.91865602965703\\
+0.441209286319117 -4.06115095722885\\
+0.488302208687769 -4.14778771539267\\
+0.525679112201876 -4.2174854180451\\
+0.560723488285227 -4.2855220458024\\
+0.598104096238105 -4.36213091969569\\
+0.632121847581245 -4.43610107707838\\
+0.668074391569548 -4.51907682337674\\
+0.706071771413749 -4.61237172369886\\
+0.746230289139067 -4.71735650686622\\
+0.788672861561456 -4.8354778942799\\
+0.833529396509846 -4.96828323351906\\
+0.88093719044741 -5.11745186273424\\
+0.931041348706901 -5.28483454252813\\
+0.983995229627797 -5.47250286243059\\
+1.03996091395407 -5.68281131975795\\
+1.09910970092957 -5.91847587384552\\
+1.16162263260855 -6.182674345132\\
+1.22769104798839 -6.47917628654619\\
+1.29751716865759 -6.81251326949439\\
+1.37131471775393 -7.1882054881259\\
+1.44930957412617 -7.61306816376401\\
+1.531740463702 -8.09563305901253\\
+1.61885969017829 -8.64673930351779\\
+1.71093390726908 -9.28037867943533\\
+1.79165032736394 -9.8845479812129\\
+1.87617469143913 -10.5725263904926\\
+1.96468664618042 -11.3622336958938\\
+2.05737431343286 -12.2772733607396\\
+2.15443469003179 -13.3493366923279\\
+2.25607406649673 -14.6219084815739\\
+2.34082727617843 -15.8246198800829\\
+2.42876438246056 -17.2375480755319\\
+2.52000499376417 -18.9199493133965\\
+2.61467321180114 -20.9548174475472\\
+2.71289780037248 -23.4612277063203\\
+2.78898029238043 -25.7529404286087\\
+2.86719649749373 -28.511216965326\\
+2.94760625512479 -31.8797164737364\\
+3.03027108286629 -36.0566769043865\\
+3.11525422355535 -41.312863169458\\
+3.20262069365748 -48.0026838998832\\
+3.29243733300756 -56.5374549263448\\
+3.38477285594618 -67.2484538645196\\
+3.51192753045089 -84.6691754791128\\
+3.74605003274907 -116.123765982498\\
+3.85110700232562 -126.747860972329\\
+3.95911026646847 -135.206369002311\\
+4.07014245321941 -141.838919874082\\
+4.18428850790151 -147.056109006717\\
+4.30163575810668 -151.209013522753\\
+4.42227398050573 -154.56510615008\\
+4.58840412645453 -158.130512029401\\
+4.76077523022607 -160.943004805507\\
+4.93962174387859 -163.214377365357\\
+5.12518692705354 -165.086948354353\\
+5.31772317785112 -166.65876981645\\
+5.56859644428648 -168.304193518106\\
+5.8313051135262 -169.681331724268\\
+6.10640754223191 -170.855412664377\\
+6.3944884285567 -171.872639682533\\
+6.75818116816072 -172.932905552386\\
+7.14255928554351 -173.857366814199\\
+7.54879928165369 -174.676398420268\\
+8.05203967082557 -175.528310466462\\
+8.58882855954615 -176.293512911541\\
+9.24625711640539 -177.086786035934\\
+10.0462042134688 -177.901346475695\\
+11.0164594963369 -178.736451357164\\
+12.3052400435925 -179.672984833809\\
+14.2611370719404 -180.858804705836\\
+20.0586777950813 -183.578886075945\\
+22.8222447418698 -184.673459580806\\
+25.4921465445141 -185.666479429714\\
+28.4743916646712 -186.724165355568\\
+31.5136348486664 -187.762081534583\\
+34.8772747481423 -188.876492808106\\
+38.2456972246693 -189.965424206331\\
+41.9394395566697 -191.135709689511\\
+45.9899209052265 -192.396634250712\\
+50.4315948717143 -193.757950876794\\
+55.302242561928 -195.229896540852\\
+60.6432939540775 -196.823187677283\\
+66.5001803043143 -198.548990340916\\
+72.9227205872842 -200.418858885763\\
+79.965545258922 -202.444635686859\\
+87.6885609458698 -204.638303302329\\
+96.1574600143255 -207.011779753847\\
+105.444279352618 -209.576647619383\\
+115.628013120735 -212.343808820508\\
+126.795284678637 -215.323059872817\\
+139.041083409014 -218.522587494362\\
+152.469572701759 -221.948392254968\\
+168.743567772734 -225.98182805765\\
+186.754584276097 -230.292184164979\\
+208.602408924857 -235.302114642983\\
+235.164288449433 -241.070855165231\\
+267.56384445519 -247.637938422911\\
+310.0926635932 -255.509578725559\\
+379.821530619055 -266.740999976362\\
+534.229329953814 -285.667245147355\\
+624.878807200712 -293.94057249895\\
+710.970943231237 -300.397953974338\\
+801.500696156499 -306.04790332076\\
+895.265712599675 -310.937379878145\\
+990.822809900383 -315.130852120994\\
+1000 -315.498164102405\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.415754685381444\\
+0.110673601809593 -0.460470394346999\\
+0.121362379834432 -0.50534957915977\\
+0.133083472465411 -0.554687555989517\\
+0.145936579915575 -0.608951617309629\\
+0.160031031373864 -0.668664282969644\\
+0.173876240021636 -0.727546709554133\\
+0.188919277620773 -0.791792094318737\\
+0.205263775270926 -0.861929768898221\\
+0.223022329796589 -0.938548777110327\\
+0.242317279423747 -1.02230522061268\\
+0.263281546564815 -1.11393031151709\\
+0.28605955351758 -1.21423912423825\\
+0.310808217386903 -1.32414005365615\\
+0.337698031082496 -1.44464504295695\\
+0.366914237840272 -1.57688076738492\\
+0.394999546122078 -1.70528226400108\\
+0.425234633452872 -1.84491550935672\\
+0.457784053837654 -1.99685303576933\\
+0.49282495700403 -2.16227792098505\\
+0.53054805253699 -2.34249949346713\\
+0.571158647812663 -2.53897395182338\\
+0.614877765381008 -2.75333171728914\\
+0.661943345877428 -2.98741381495103\\
+0.712611543011144 -3.24332019188739\\
+0.767158117677977 -3.52347373065544\\
+0.825879938784456 -3.8307049715728\\
+0.889096598952924 -4.16836447589725\\
+0.95715215389917 -4.54047274147251\\
+1.03041699495054 -4.95192224542762\\
+1.09910970092957 -5.34892634055012\\
+1.17238180328665 -5.78564246359201\\
+1.25053858729041 -6.26822539364014\\
+1.33390569003905 -6.80436976294135\\
+1.42283045721431 -7.4038368229489\\
+1.50375532129967 -7.97750727711065\\
+1.58928286562308 -8.61704838501856\\
+1.67967487209273 -9.3354839966529\\
+1.77520801171768 -10.1497822919541\\
+1.87617469143913 -11.0824711701845\\
+1.96468664618042 -11.9718730506256\\
+2.05737431343286 -12.9882692919851\\
+2.15443469003179 -14.1635208201296\\
+2.25607406649673 -15.5412906999169\\
+2.34082727617843 -16.8297329225998\\
+2.42876438246056 -18.3298971464323\\
+2.52000499376417 -20.101142536454\\
+2.61467321180114 -22.2265692823658\\
+2.71289780037248 -24.8253623730652\\
+2.81481236050756 -28.0728220556107\\
+2.8937530190509 -31.0882871506022\\
+2.97490754721436 -34.7743228156962\\
+3.05833803237832 -39.3514192759637\\
+3.14410830314712 -45.1179512381827\\
+3.2322839781812 -52.4538075251501\\
+3.32293251639919 -61.7672586244764\\
+3.41612326858571 -73.2995696470084\\
+3.57728509936801 -96.2242355088816\\
+3.74605003274907 -118.392418644802\\
+3.85110700232562 -129.103703478608\\
+3.95911026646847 -137.651198239479\\
+4.07014245321941 -144.374597056822\\
+4.18428850790151 -149.68456103159\\
+4.30163575810668 -153.932234347671\\
+4.46323392671022 -158.395067609728\\
+4.63090280179949 -161.880656091594\\
+4.80487043965544 -164.67869561112\\
+4.98537346387415 -166.980688065744\\
+5.17265738721621 -168.916167821224\\
+5.41668691103327 -170.954408912093\\
+5.67222897164457 -172.679434123047\\
+5.93982669392029 -174.172963652062\\
+6.27766010580631 -175.738731666623\\
+6.63470812109201 -177.121486052626\\
+7.07701066118229 -178.566713016306\\
+7.61871770232323 -180.060998312928\\
+8.27785696619849 -181.606386036218\\
+9.24625711640539 -183.531628855123\\
+11.3254131515284 -186.907903342361\\
+13.4936714058825 -189.869633001862\\
+15.3527502878049 -192.166728152531\\
+17.3076553419573 -194.429079800513\\
+19.3324228755497 -196.653340712456\\
+21.5940615210368 -199.027906502782\\
+23.8989256623109 -201.35051759293\\
+26.4498018242767 -203.823069625714\\
+29.5440799888021 -206.699823943008\\
+33.000347911254 -209.768536945665\\
+36.8609536217214 -213.028841939288\\
+41.5545533471868 -216.769582727708\\
+47.2796959160057 -221.022332042572\\
+54.794723369002 -226.128108919136\\
+65.2852114112819 -232.450931550827\\
+84.5136633068439 -242.055658319443\\
+140.328908478593 -260.944205190267\\
+539.177464038727 -310.338872032777\\
+630.666554056761 -315.754268092146\\
+724.20223346072 -320.290210972296\\
+816.416760492099 -323.999597144492\\
+911.92675984596 -327.220098266099\\
+1000 -329.745759958342\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 -0.360279720677909\\
+0.110673601809601 -0.398804221499574\\
+0.122486461375092 -0.441465487877139\\
+0.134316117004605 -0.484216249269792\\
+0.147288272390749 -0.531132356370762\\
+0.161513269350313 -0.582627772638773\\
+0.177112106434508 -0.639160189072726\\
+0.194217468148908 -0.701236456999254\\
+0.212974853574551 -0.76941894021104\\
+0.231400538013072 -0.836519415027112\\
+0.25142033481428 -0.909576898034658\\
+0.27317215984413 -0.989150143846047\\
+0.296805860866562 -1.07585876115439\\
+0.322484249840837 -1.17039214581544\\
+0.350384224529072 -1.27352029277685\\
+0.380697987140222 -1.386106998846\\
+0.413634368406335 -1.50912613131595\\
+0.44942026621191 -1.64368185926998\\
+0.4883022086878 -1.79103404907312\\
+0.530548052536955 -1.95263044861375\\
+0.571158647812626 -2.10957933285724\\
+0.614877765381008 -2.28046647123236\\
+0.661943345877428 -2.46686823703078\\
+0.712611543011191 -2.67062335121449\\
+0.767158117677927 -2.89389559587062\\
+0.825879938784402 -3.13925570872144\\
+0.889096598952924 -3.40978953925455\\
+0.95715215389917 -3.70924266547007\\
+1.02096066230607 -3.9985784472124\\
+1.08902296226373 -4.31733755922835\\
+1.16162263260848 -4.67014138162662\\
+1.23906215694794 -5.06271309073682\\
+1.3216641839466 -5.50223181948735\\
+1.39683511798871 -5.92318479389485\\
+1.47628147190943 -6.39257013751163\\
+1.56024641436638 -6.91956220081212\\
+1.64898694447104 -7.51589809518882\\
+1.74277467840897 -8.19683250377332\\
+1.82499324481618 -8.84326930289876\\
+1.91109062168914 -9.57764407619283\\
+2.001249798969 -10.4199011863163\\
+2.0956623994805 -11.3965112455736\\
+2.19452908620335 -12.543319371293\\
+2.27697025538168 -13.6160535792067\\
+2.36250846547792 -14.8637155002298\\
+2.45126006203328 -16.3329979582955\\
+2.54334576130472 -18.0882091887422\\
+2.63889081445755 -20.219953813452\\
+2.73802517792786 -22.8590462665674\\
+2.81481236050756 -25.2845238311503\\
+2.8937530190509 -28.2184389482673\\
+2.97490754721436 -31.8207225796624\\
+3.05833803237852 -36.3118030876589\\
+3.14410830314732 -41.9899915796018\\
+3.23228397818141 -49.2351115056359\\
+3.32293251639897 -58.4553661699928\\
+3.41612326858549 -69.8919516509496\\
+3.57728509936777 -92.651261209346\\
+3.74605003274907 -114.646524618511\\
+3.85110700232562 -125.250279839548\\
+3.95911026646847 -133.687314810928\\
+4.07014245321941 -140.297241967609\\
+4.18428850790151 -145.490638558789\\
+4.30163575810668 -149.618562714362\\
+4.42227398050602 -152.948467327068\\
+4.58840412645483 -156.477041380036\\
+4.76077523022638 -159.250466980147\\
+4.93962174387827 -161.480482626305\\
+5.12518692705321 -163.309349610502\\
+5.31772317785112 -164.835059566858\\
+5.51749237612921 -166.126800666128\\
+5.7777901179705 -167.487312532955\\
+6.05036787939111 -168.629402950382\\
+6.33580499265845 -169.602321072342\\
+6.63470812109245 -170.441636172665\\
+6.94771254846023 -171.173628970886\\
+7.34287044716661 -171.937907735413\\
+7.76050333513376 -172.601643771529\\
+8.20188949920225 -173.183961196982\\
+8.66837993001965 -173.699365585657\\
+9.246257116406 -174.23089496572\\
+9.86265846131287 -174.700194101482\\
+10.5201521761614 -175.117768789539\\
+11.2214776820801 -175.49180720678\\
+11.9695570235905 -175.82878723646\\
+12.7675070431924 -176.133903411857\\
+13.7447909267756 -176.448964301635\\
+14.7968806268638 -176.732997512212\\
+15.9295021257217 -176.990134927704\\
+17.1488196987055 -177.223761294251\\
+18.4614694632451 -177.436681504309\\
+19.8745954958102 -177.63124490227\\
+21.5940615210354 -177.83064939319\\
+23.4622884814232 -178.011723443822\\
+25.4921465445141 -178.176493226676\\
+27.6976193503698 -178.326689577425\\
+30.0939003444972 -178.463804267797\\
+32.6974974451167 -178.589133428251\\
+35.5263467657817 -178.703811403885\\
+38.5999361767968 -178.808837414841\\
+41.9394395566725 -178.905096753404\\
+45.5678626584099 -178.993377796313\\
+49.5102015955645 -179.074385784828\\
+53.7936150398065 -179.148754088302\\
+58.9889642550864 -179.22429059255\\
+64.6860766154627 -179.293037386094\\
+70.9334120498816 -179.355625763662\\
+77.7841107128642 -179.412623295819\\
+85.2964449974123 -179.464541432936\\
+93.534315202923 -179.511841947607\\
+103.51779556302 -179.55903636686\\
+114.566872863485 -179.60164894271\\
+126.795284678645 -179.640129525183\\
+140.328908478584 -179.674882483552\\
+156.74554102056 -179.708969992739\\
+175.082703173578 -179.739477039585\\
+197.376432630023 -179.768923207091\\
+222.508879812839 -179.795037372855\\
+253.164847863143 -179.819866800722\\
+290.712337727252 -179.843139603745\\
+336.920570598025 -179.864657906206\\
+394.090164040346 -179.884295033699\\
+465.229952396024 -179.901990067283\\
+559.432570616944 -179.918495365688\\
+685.229159528409 -179.933459133508\\
+854.93270662683 -179.946667955046\\
+1000 -179.954404899517\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/robust_performance.pdf b/matlab/figs/robust_performance.pdf
new file mode 100644
index 0000000..3a3428d
Binary files /dev/null and b/matlab/figs/robust_performance.pdf differ
diff --git a/matlab/figs/robust_performance.png b/matlab/figs/robust_performance.png
new file mode 100644
index 0000000..a9f1182
Binary files /dev/null and b/matlab/figs/robust_performance.png differ
diff --git a/matlab/figs/robust_performance.svg b/matlab/figs/robust_performance.svg
new file mode 100644
index 0000000..69b9079
--- /dev/null
+++ b/matlab/figs/robust_performance.svg
@@ -0,0 +1,270 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/robust_performance.tex b/matlab/figs/robust_performance.tex
new file mode 100644
index 0000000..08489ab
--- /dev/null
+++ b/matlab/figs/robust_performance.tex
@@ -0,0 +1,1134 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.631in,
+height=3.395in,
+at={(0.325in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.004713250135358,
+ymax=1.12370047521489,
+yminorticks=true,
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.958795361063258\\
+0.603643850607587 0.956312065581973\\
+1.03996091395412 0.951266404663396\\
+1.44930957412622 0.944046864860062\\
+1.84189668079971 0.93480461492508\\
+2.2353696459098 0.92319390796258\\
+2.61467321180109 0.909707231895546\\
+2.97490754721444 0.894759479608335\\
+3.32293251639897 0.878308042559017\\
+3.67760910160103 0.859505499507488\\
+4.03278998219371 0.838647587855715\\
+4.38168993151419 0.816254668652193\\
+4.71708469091702 0.793058618131101\\
+5.07815211232768 0.766425298411168\\
+5.41668691103315 0.740087892520039\\
+5.77779011797051 0.710795579809076\\
+6.16296625513294 0.678524428661746\\
+6.5134909462728 0.648564023700512\\
+6.8839520696455 0.616636214444701\\
+7.27548352919623 0.582982815167802\\
+7.68928372075831 0.547940212718821\\
+8.2018894992022 0.505874691672337\\
+8.74866812047991 0.463308228372181\\
+9.33189771573324 0.421141687112854\\
+10.0462042134681 0.374638310252924\\
+11.1184960481927 0.315959300312862\\
+12.8857621318552 0.24653772584792\\
+13.7447909267754 0.223155362056731\\
+14.5265392594678 0.206561840359648\\
+15.211855179861 0.195046960273997\\
+15.9295021257212 0.185467737137229\\
+16.6810053720006 0.177619868684411\\
+17.4679621512725 0.171270072888287\\
+18.2920450484629 0.166173538281057\\
+19.1550055557353 0.162090283374817\\
+20.244465099768 0.158217027679395\\
+21.5940615210357 0.154700108620187\\
+23.4622884814226 0.15114060539511\\
+27.4434330322837 0.145575760162817\\
+33.9258338274099 0.1381808836643\\
+61.7718759733849 0.118561461567541\\
+72.2534949178721 0.114850657789259\\
+83.7380653526649 0.11199512062595\\
+97.946966706954 0.109570397325194\\
+115.628013120738 0.107582821060992\\
+139.041083409007 0.105932391527963\\
+171.883914281715 0.104575798228211\\
+222.508879812837 0.103455080248918\\
+315.863540826782 0.102473950571646\\
+580.448594276898 0.101355019090756\\
+1000 0.100392589315325\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.973140076995027\\
+1.25053858729039 0.947666660437045\\
+1.67967487209265 0.939089536014942\\
+2.07643010725577 0.928879818481707\\
+2.47396410088681 0.916325709065329\\
+2.86719649749377 0.901528847317373\\
+3.23228397818138 0.885619203648016\\
+3.61041859717334 0.866913077242983\\
+3.95911026646846 0.847668150005689\\
+4.3016357581068 0.826948815126461\\
+4.63090280179974 0.805416163345632\\
+4.98537346387389 0.780595420480652\\
+5.31772317785097 0.755938568642431\\
+5.67222897164454 0.728373695332985\\
+6.05036787939122 0.697820262243398\\
+6.4537154016467 0.664305124310912\\
+6.82077673286568 0.633342109976124\\
+7.20871503378214 0.600522837102383\\
+7.618717702323 0.566143864627265\\
+8.12661920009194 0.524591917226355\\
+8.66837993001978 0.482222999660587\\
+9.24625711640574 0.439923211640317\\
+9.95400828762153 0.392875914707438\\
+10.9153593533139 0.338016384408331\\
+13.1255683577184 0.249457606522554\\
+14.000583824681 0.22649475849879\\
+14.796880626864 0.21016462360571\\
+15.6384675830225 0.196722753959508\\
+16.3762407452169 0.187509511364916\\
+17.1488196987054 0.179875259441973\\
+17.957846470021 0.173586493233501\\
+18.8050405512858 0.168408196548671\\
+19.8745954958098 0.163347817940895\\
+21.1995345753607 0.158608297498815\\
+22.822244741869 0.154196549157408\\
+25.4921465445142 0.148634583034605\\
+37.2023668141307 0.131533540815962\\
+52.3261423948666 0.117525121567994\\
+61.204983724767 0.112224654655237\\
+70.2824426430835 0.108260706025438\\
+80.7062014114951 0.10494924168841\\
+92.6759330114688 0.102235612307481\\
+107.406615333343 0.0999160154145658\\
+125.631660247412 0.0979943210239154\\
+149.683929307726 0.096372675135937\\
+181.659978837533 0.095066732296423\\
+230.867799418717 0.0939418290249198\\
+312.964801067075 0.0929968571482831\\
+496.244487762892 0.0920606994552468\\
+1000 0.0908842762411124\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.977705607174264\\
+0.655868565957143 0.975205036682582\\
+1.12993393803322 0.970122861022955\\
+1.57469771464309 0.962804669558412\\
+2.00124979896904 0.953370879941619\\
+2.42876438246045 0.941436901572658\\
+2.8408836901833 0.92748371231562\\
+3.23228397818138 0.91192878940832\\
+3.61041859717334 0.894722209612525\\
+3.99578030189527 0.87496840153907\\
+4.38168993151419 0.852969740337782\\
+4.76077523022637 0.829277415297202\\
+5.12518692705333 0.804678684594122\\
+5.46685729972018 0.780140681203129\\
+5.83130511352622 0.75259590928142\\
+6.22004882563471 0.721936104528688\\
+6.63470812109235 0.688163738581235\\
+7.01206358900718 0.656847775223857\\
+7.41088151564157 0.623550803730327\\
+7.8323825991792 0.588577167687172\\
+8.35452805838287 0.546209121495945\\
+8.9114823228402 0.502937725128659\\
+9.5055659201012 0.459708575470662\\
+10.2331657833025 0.411643779498942\\
+11.3254131515281 0.350415338912864\\
+13.3698374182495 0.269077421558599\\
+14.3932264471941 0.241716222182816\\
+15.211855179861 0.224669394259798\\
+16.0770442167382 0.210340897510262\\
+16.9914417203463 0.198404730757673\\
+17.957846470021 0.188488784890882\\
+18.979216428391 0.180211712081479\\
+20.244465099768 0.172148776045079\\
+21.7940698430296 0.164436300589814\\
+23.8989256623105 0.156223292969266\\
+28.4743916646725 0.142706239461601\\
+35.8553985745982 0.126471713903307\\
+58.4476113163363 0.0975368933912135\\
+67.1161176749628 0.0912823019103025\\
+75.6621850048106 0.0866067749990825\\
+85.2964449974102 0.0825913992329056\\
+96.157460014321 0.0791866532250871\\
+108.401435917833 0.0763318504162133\\
+122.204468663149 0.0739611712224831\\
+137.765076954905 0.0720083555639387\\
+156.74554102056 0.0703001011296766\\
+179.992850678248 0.0688440885326727\\
+210.534524276671 0.0675660826354085\\
+250.841505927754 0.0664941314104772\\
+307.2468842709 0.0655909924260062\\
+394.090164040345 0.0648122755883864\\
+554.298551568467 0.0640878301571828\\
+1000 0.0631816945568334\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.99605369708305\\
+0.693171727615541 0.993511073556924\\
+1.19420002813353 0.988349792480619\\
+1.6642601764859 0.980902584518247\\
+2.1150728248688 0.971276464878535\\
+2.54334576130465 0.95976092455929\\
+2.97490754721444 0.945700538445475\\
+3.38477285594598 0.929962666723555\\
+3.78074666359935 0.912479065045042\\
+4.18428850790158 0.892316356875619\\
+4.5462954695324 0.872217197835113\\
+4.93962174387832 0.848273764393009\\
+5.31772317785097 0.823293131827448\\
+5.67222897164454 0.798263616637972\\
+6.05036787939122 0.770051869692962\\
+6.4537154016467 0.738528741442659\\
+6.82077673286568 0.708864827880123\\
+7.20871503378214 0.676854080735086\\
+7.618717702323 0.642697912673235\\
+8.05203967082548 0.606717852732215\\
+8.58882855954625 0.563033146941088\\
+9.16140245713852 0.518361621393145\\
+9.77214696972572 0.473734425161481\\
+10.61759183483 0.418166557034811\\
+11.9695570235904 0.345475705288615\\
+13.6186523675608 0.281717420675462\\
+14.6610868404698 0.252828477910426\\
+15.6384675830225 0.23183945010566\\
+16.6810053720006 0.214420562351309\\
+17.6297537528721 0.201924744058797\\
+18.8050405512858 0.18967348747737\\
+20.0586777950823 0.179394461339526\\
+21.5940615210357 0.169428458703693\\
+23.6796006783308 0.158789183945136\\
+27.1915794303602 0.145044786226624\\
+38.5999361767977 0.115525437784965\\
+61.204983724767 0.0852996023371437\\
+70.93341204988 0.07796158560457\\
+80.7062014114951 0.0724603334172097\\
+90.9827289445556 0.0680750669279118\\
+101.6265089393 0.064597955145865\\
+113.5154708921 0.0616195677460934\\
+126.795284678643 0.0590889418567301\\
+141.62866162992 0.0569544583623271\\
+158.19734815786 0.0551656884710902\\
+178.341022071001 0.0535626101961694\\
+201.04964162605 0.0522532536674479\\
+228.74908173557 0.0511143639584965\\
+265.108360190854 0.0500894960416643\\
+312.964801067075 0.049209180723979\\
+376.335836228653 0.0484806969171073\\
+469.539001068006 0.0478472348420057\\
+624.878807200689 0.0472732324327319\\
+1000 0.0465996673852863\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.946999050053824\\
+0.603643850607587 0.944566208415903\\
+1.03996091395412 0.939613956569818\\
+1.44930957412622 0.932513878922046\\
+1.84189668079971 0.923412983149077\\
+2.2353696459098 0.911978790058775\\
+2.61467321180109 0.898713273847607\\
+2.97490754721444 0.884044715819326\\
+3.32293251639897 0.867950608685735\\
+3.67760910160103 0.849624424486523\\
+4.03278998219371 0.829378147004624\\
+4.38168993151419 0.807732491263185\\
+4.71708469091702 0.785398871056514\\
+5.07815211232768 0.759850920857855\\
+5.41668691103315 0.734669305854231\\
+5.77779011797051 0.706737533563643\\
+6.16296625513294 0.676030892482198\\
+6.57382014340959 0.642631534445555\\
+7.01206358900718 0.606753854078371\\
+7.47952251562182 0.568763212802399\\
+7.97814457207663 0.529182705343356\\
+8.51000724712225 0.488683470420961\\
+9.07732652521023 0.448056359706862\\
+9.77214696972572 0.402579333224483\\
+10.7159339982267 0.349071816991866\\
+13.1255683577184 0.254220031048915\\
+14.000583824681 0.232230041369448\\
+14.796880626864 0.216575782765837\\
+15.6384675830225 0.203657345041628\\
+16.3762407452169 0.194761680058412\\
+17.1488196987054 0.187338412798915\\
+17.957846470021 0.181158447093148\\
+18.979216428391 0.175063879839176\\
+20.0586777950823 0.170068046483317\\
+21.5940615210357 0.164582113493305\\
+23.8989256623105 0.158298980489182\\
+35.5263467657814 0.136727480932751\\
+54.2918617761894 0.116089892813479\\
+62.9214610961034 0.110388252489414\\
+71.5904108596489 0.106136348240059\\
+81.4537176628074 0.102546864553853\\
+92.6759330114688 0.0995649632839327\\
+105.444279352617 0.0971201213550273\\
+121.082975023204 0.095010253874579\\
+140.328908478587 0.0932402339127923\\
+165.660595894991 0.0917192513688655\\
+201.04964162605 0.0904179400685234\\
+253.164847863136 0.0893318931344836\\
+340.041193270371 0.0883975976733966\\
+524.468874949512 0.0874905844761554\\
+1000 0.0863984086586942\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.0436885975104\\
+0.818300681586739 1.04108228637746\\
+1.40977287162897 1.03578274238422\\
+1.96468664618044 1.02807284809406\\
+2.49687842888433 1.0180169623074\\
+3.00246170908555 1.00585852394126\\
+3.47969790388769 0.991858811568182\\
+3.95911026646846 0.975128606206133\\
+4.4222739805059 0.956245296316834\\
+4.84937406733524 0.936332268094356\\
+5.26892142135068 0.914358306043449\\
+5.67222897164454 0.890963755117564\\
+6.05036787939122 0.867049427197839\\
+6.4537154016467 0.839544074066735\\
+6.8839520696455 0.808156444683387\\
+7.27548352919623 0.778036359106813\\
+7.68928372075831 0.744959903622756\\
+8.12661920009194 0.709090335177418\\
+8.58882855954625 0.670764010665331\\
+9.07732652521023 0.630500151790733\\
+9.68246611930312 0.582001362290794\\
+10.3279473191895 0.533104841886621\\
+11.1184960481927 0.478509947236975\\
+12.4192135270178 0.403103508519441\\
+14.3932264471941 0.320848726583808\\
+15.6384675830225 0.284633569763344\\
+16.835508029612 0.257945810369948\\
+18.1241754737424 0.235646457276432\\
+19.5114834684662 0.216897340962149\\
+21.1995345753607 0.199072252360902\\
+23.2469705998565 0.182239011833212\\
+26.4498018242772 0.162232938405229\\
+48.6056423214213 0.0946913883446795\\
+61.7718759733849 0.0757494824627761\\
+82.2081575524054 0.0576556431162801\\
+122.204468663149 0.0392054229376747\\
+301.63343472592 0.0162468201201732\\
+394.090164040345 0.0126158406730216\\
+487.178021879463 0.0103891201081295\\
+580.448594276898 0.00890505236189785\\
+678.940681269611 0.00780735376748889\\
+779.636013040524 0.00699451175977601\\
+887.04968896544 0.006350780780998\\
+1000 0.00584036920112192\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00053189653381\\
+0.409838367175726 1.00086858525575\\
+0.931041348706908 0.997270051175661\\
+1.42283045721435 0.99111931025716\\
+1.8935521797563 0.982664594735328\\
+2.34082727617829 0.972185071362777\\
+2.78898029238044 0.959161896175641\\
+3.20262069365765 0.944784508535637\\
+3.61041859717334 0.928299729159405\\
+3.99578030189527 0.910551539818183\\
+4.38168993151419 0.890636292386331\\
+4.76077523022637 0.868999004991272\\
+5.12518692705333 0.846316773125521\\
+5.51749237612913 0.819952439416244\\
+5.88531577519145 0.793564047925824\\
+6.2776601058065 0.763873456420782\\
+6.69616005485322 0.730788207258886\\
+7.07701066118189 0.69976332096074\\
+7.47952251562182 0.666424767191149\\
+7.90492762269643 0.631036433941253\\
+8.35452805838287 0.593989561014869\\
+8.9114823228402 0.549362822128166\\
+9.5055659201012 0.504167207833541\\
+10.2331657833025 0.453225106884855\\
+11.2214776820798 0.392990109340414\\
+14.1302599059953 0.27355969553116\\
+15.211855179861 0.246458531686749\\
+16.2259528707809 0.226828386477956\\
+17.3076553419573 0.210499441113538\\
+18.4614694632455 0.196905754794486\\
+19.6922025547917 0.185479643716013\\
+21.1995345753607 0.174417629511608\\
+23.0336287314213 0.163769645765353\\
+25.9665597293487 0.150499763763807\\
+41.9394395566719 0.107970346089818\\
+63.5042516859596 0.0805596106941933\\
+74.2798248256492 0.0726146186241958\\
+84.5136633068472 0.0670263940274453\\
+95.2750047242729 0.0625591979411297\\
+106.420924406472 0.059004989811165\\
+118.87076977119 0.0559490849103473\\
+132.777082935543 0.0533421583755355\\
+148.31025143361 0.0511343948010661\\
+165.660595894991 0.0492769905882045\\
+185.04070195423 0.0477233773552009\\
+208.60240892485 0.0463328704213488\\
+235.164288449435 0.045197914910497\\
+267.563844455205 0.0442107078385596\\
+310.092663593193 0.0433216031482285\\
+366.06951475969 0.0425565001110335\\
+444.270674960688 0.041894420282234\\
+559.432570616938 0.0413279393032977\\
+758.367791499719 0.0408025489054665\\
+1000 0.0404285433339246\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.10790582399746\\
+1.10928986489522 1.10538687123369\\
+1.96468664618044 1.09985503411656\\
+2.76338529005317 1.09176125484231\\
+3.51192753045073 1.08125876183164\\
+4.18428850790158 1.06886500211812\\
+4.80487043965513 1.054240879688\\
+5.36697694554048 1.03763787220016\\
+5.88531577519145 1.01884963487438\\
+6.33580499265825 0.99934948518404\\
+6.75818116816111 0.978086448411812\\
+7.14255928554313 0.956081314115152\\
+7.54879928165344 0.930039719615069\\
+7.97814457207663 0.899524529058051\\
+8.35452805838287 0.87048305967772\\
+8.74866812047991 0.838147595909333\\
+9.16140245713852 0.802693673906413\\
+9.68246611930312 0.756576995506301\\
+10.2331657833025 0.707544193194204\\
+10.8151870255229 0.6569322908651\\
+11.5361810173648 0.59786942801615\\
+12.650337203959 0.517627799217008\\
+15.4949503931463 0.375667945110976\\
+16.835508029612 0.332879360338779\\
+18.1241754737424 0.301235055885511\\
+19.5114834684662 0.274578463978199\\
+21.1995345753607 0.249370965295851\\
+23.0336287314213 0.228114319471106\\
+25.2582002696278 0.208029007217298\\
+27.9541599906786 0.189189761993527\\
+31.5136348486648 0.17024198790348\\
+35.8553985745982 0.152925421490953\\
+40.7953450345245 0.138167122674549\\
+46.4158883361278 0.125547648705927\\
+52.3261423948666 0.115489882990649\\
+58.988964255085 0.106845061591528\\
+65.8898955079995 0.0999855919185274\\
+73.5981447526576 0.0940883490653205\\
+81.4537176628074 0.0894397088041265\\
+90.1477631452492 0.0854376665013954\\
+99.769776423632 0.0820106669503991\\
+111.441525146679 0.0788486122718759\\
+124.478714618791 0.0762086111799732\\
+139.041083409007 0.0740154851318626\\
+156.74554102056 0.0720652073653085\\
+178.341022071001 0.0703746692277135\\
+204.791209666509 0.0689438096892172\\
+239.540735872088 0.0676937235798916\\
+285.400976982924 0.0666470398546634\\
+352.815411538088 0.0657296463981683\\
+456.730127016875 0.0649491062278801\\
+654.358601888324 0.0642046977468346\\
+1000 0.0635136837491274\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.961361047152004\\
+0.632121847581245 0.958878945433373\\
+1.07902879151618 0.95397019823817\\
+1.50375532129974 0.946847805864676\\
+1.91109062168914 0.937687958621981\\
+2.31934505927443 0.926132380331292\\
+2.71289780037247 0.912662086612624\\
+3.08666494333727 0.897690600132838\\
+3.44776405473446 0.88117688854208\\
+3.81576466127125 0.862269627619576\\
+4.18428850790158 0.841264822382096\\
+4.5462954695324 0.81868759994935\\
+4.89428989611453 0.795279267057676\\
+5.26892142135068 0.768383397511556\\
+5.62017384808319 0.741774049477027\\
+5.99484250318941 0.712173457955183\\
+6.39448842855694 0.679566272815272\\
+6.75818116816111 0.649307703352128\\
+7.14255928554313 0.617088418567701\\
+7.54879928165344 0.583170844038407\\
+8.05203967082548 0.54194178339421\\
+8.58882855954625 0.499630214329803\\
+9.16140245713852 0.457105245081815\\
+9.86265846131282 0.409461057450567\\
+10.8151870255229 0.353404581213583\\
+13.3698374182495 0.250491907623723\\
+14.2611370719413 0.227993124708199\\
+15.0722530931076 0.211976509781995\\
+15.9295021257212 0.198736153606657\\
+16.6810053720006 0.189590862250532\\
+17.4679621512725 0.181929810528816\\
+18.2920450484629 0.175523142671036\\
+19.3324228755505 0.169173938065965\\
+20.4319732019527 0.163948013834697\\
+21.7940698430296 0.158863636753091\\
+23.6796006783308 0.153350481783146\\
+27.4434330322837 0.144900061049139\\
+36.5226736430818 0.129807834423469\\
+51.3701354335134 0.113715900878853\\
+60.0867589171969 0.107625549462465\\
+68.9983712143002 0.103054348404866\\
+78.5045620020451 0.0994537116108193\\
+89.3204599858097 0.0964492458124316\\
+101.6265089393 0.0939768898265121\\
+116.698981861715 0.0918369510218238\\
+135.248087041788 0.0900376355662018\\
+159.662602210143 0.0884893687257779\\
+191.992066559328 0.0872183126762245\\
+239.540735872088 0.0861358358314327\\
+315.863540826782 0.0852182141376822\\
+469.539001068006 0.0843514239736881\\
+1000 0.0831097554938821\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.11180203697399\\
+1.1723818032866 1.10910062199203\\
+2.05737431343291 1.10342751725605\\
+2.89375301905095 1.09505946036039\\
+3.64385898376354 1.08468824313543\\
+4.34147833005509 1.0719636089025\\
+4.93962174387832 1.05795939149704\\
+5.46685729972018 1.04256993565446\\
+5.93982669392036 1.02578515489346\\
+6.39448842855694 1.0065412129217\\
+6.82077673286568 0.985406031744196\\
+7.20871503378214 0.963398882478357\\
+7.618717702323 0.937217223947214\\
+8.05203967082548 0.906396335011016\\
+8.43190929286626 0.876963348155894\\
+8.82969995549409 0.844115924151444\\
+9.24625711640574 0.808047380657343\\
+9.68246611930312 0.769165471421016\\
+10.2331657833025 0.719673703051028\\
+10.8151870255229 0.668399463491648\\
+11.5361810173648 0.608384117770568\\
+12.650337203959 0.526643605785898\\
+15.4949503931463 0.381785068605205\\
+16.835508029612 0.338121244628593\\
+18.1241754737424 0.305844068364883\\
+19.5114834684662 0.278672107173839\\
+21.1995345753607 0.253002494289642\\
+23.0336287314213 0.231386463107547\\
+25.2582002696278 0.210999630443372\\
+27.9541599906786 0.191924111925931\\
+31.2244282309286 0.174158649570554\\
+35.2003147279668 0.157696690358933\\
+40.0500075787361 0.14256693231146\\
+45.5678626584106 0.129681292320172\\
+51.3701354335134 0.119445005925193\\
+57.9112264764176 0.110671510497381\\
+64.6860766154633 0.103727506014428\\
+72.2534949178721 0.0977712863313934\\
+79.9655452589235 0.0930860606845228\\
+88.5007491447344 0.0890602777745911\\
+97.946966706954 0.085619230612867\\
+109.405470720574 0.082449845267435\\
+122.204468663149 0.0798082138917153\\
+136.500780654601 0.0776170533749265\\
+153.881775003835 0.0756711627887072\\
+175.082703173572 0.0739864389690741\\
+201.04964162605 0.0725618338992251\\
+235.164288449435 0.0713178971771521\\
+282.781797962534 0.0702295708883317\\
+352.815411538088 0.0692960737962906\\
+465.229952396019 0.0684901178640444\\
+691.575882873852 0.0677022960820754\\
+1000 0.0670942102144721\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.12370047521489\\
+1.14039960197003 1.12059148334119\\
+2.13466303332425 1.11518756799958\\
+3.05833803237844 1.10725577182713\\
+3.88677669089267 1.0972607394215\\
+4.63090280179974 1.08506021710552\\
+5.26892142135068 1.07110993297807\\
+5.83130511352622 1.05514474750257\\
+6.33580499265825 1.03708618599781\\
+6.75818116816111 1.0187403645898\\
+7.20871503378214 0.995544443597399\\
+7.618717702323 0.970994506564543\\
+8.05203967082548 0.941484523787645\\
+8.43190929286626 0.912782501030636\\
+8.82969995549409 0.880245407874072\\
+9.24625711640574 0.844003347247673\\
+9.68246611930312 0.804437287906369\\
+10.2331657833025 0.753479588202582\\
+10.8151870255229 0.700148644202863\\
+11.5361810173648 0.637232000236173\\
+12.534242654614 0.559290553117768\\
+15.7833140565212 0.386776207297234\\
+17.1488196987054 0.342633835248662\\
+18.4614694632455 0.310089309980867\\
+19.8745954958098 0.282727413043066\\
+21.5940615210357 0.256899087152837\\
+23.4622884814226 0.235170785904381\\
+25.7282596744793 0.214715253389777\\
+28.4743916646725 0.195638388688078\\
+31.8055201533292 0.177962602027764\\
+35.5263467657814 0.162857190774772\\
+40.0500075787361 0.1488450596023\\
+45.149677720361 0.136883960702272\\
+50.4315948717136 0.127409999414427\\
+56.3314267060136 0.119255313839188\\
+62.9214610961034 0.112268234613881\\
+69.6374473062822 0.106773925327639\\
+77.070271142123 0.102052507868072\\
+85.2964449974102 0.0980156344053349\\
+95.2750047242729 0.0942959494542698\\
+106.420924406472 0.0911944157444499\\
+118.87076977119 0.0886211012752699\\
+134.006889636395 0.0863357902988756\\
+152.469572701757 0.084357991907656\\
+175.082703173572 0.0826873735999211\\
+204.791209666509 0.0812318346290302\\
+243.998629725955 0.0800178481361749\\
+301.63343472592 0.0789594895694509\\
+394.090164040345 0.0780385771422265\\
+569.843705946914 0.0771838238315516\\
+1000 0.0761885383479042\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.967658125333682\\
+0.592615181247555 0.965071507057786\\
+1.05931476351837 0.960052810455109\\
+1.50375532129974 0.952737406448336\\
+1.92879150802078 0.943268008639409\\
+2.34082727617829 0.931665184954772\\
+2.73802517792786 0.918127563518623\\
+3.11525422355549 0.903062675084866\\
+3.47969790388769 0.886424007893984\\
+3.85110700232557 0.867348185520041\\
+4.22304418720668 0.846128466973571\\
+4.58840412645476 0.823293111800702\\
+4.93962174387832 0.7995932092133\\
+5.31772317785097 0.772339357434781\\
+5.67222897164454 0.74535878343311\\
+6.05036787939122 0.715333391723099\\
+6.4537154016467 0.682253304297866\\
+6.82077673286568 0.651559629907107\\
+7.20871503378214 0.618889294355885\\
+7.618717702323 0.584519126567353\\
+8.12661920009194 0.542782783873999\\
+8.66837993001978 0.500013623801709\\
+9.24625711640574 0.457107559520759\\
+9.95400828762153 0.409147471290936\\
+10.9153593533139 0.352894013062723\\
+13.3698374182495 0.253717916165452\\
+14.2611370719413 0.230739113216163\\
+15.0722530931076 0.214320873264044\\
+15.9295021257212 0.200689957898802\\
+16.6810053720006 0.191229634396907\\
+17.4679621512725 0.183264990180909\\
+18.4614694632455 0.175360661899582\\
+19.5114834684662 0.168896934731817\\
+20.8122156998634 0.162712710583364\\
+22.4052786930002 0.156873714187384\\
+24.7967289250216 0.150098737297843\\
+50.8987019351968 0.111716954521928\\
+59.5353313081437 0.105312081921071\\
+68.3651600451024 0.10049281469722\\
+77.7841107128649 0.0966873813742494\\
+88.5007491447344 0.0935045893840945\\
+100.693863147603 0.0908798922374485\\
+115.628013120738 0.0886038733059986\\
+134.006889636395 0.0866873379174587\\
+156.74554102056 0.0851166646916621\\
+186.754584276108 0.0837992821399834\\
+228.74908173557 0.0826956549928206\\
+293.404970921579 0.0817564834982234\\
+408.894822629486 0.0809203234178442\\
+710.970943231243 0.0799763339176051\\
+1000 0.0794275933703686\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.967046804212669\\
+0.643885742724042 0.964580227543114\\
+1.10928986489522 0.959565907725391\\
+1.54592773641948 0.952352990654006\\
+1.96468664618044 0.943067721390806\\
+2.38439047009372 0.931341202347265\\
+2.78898029238044 0.917656037142646\\
+3.17322963473498 0.902428683370293\\
+3.54445567397044 0.885614914062009\\
+3.92277675892772 0.866344818489357\\
+4.3016357581068 0.844917383570949\\
+4.67379510799246 0.821868443499861\\
+5.03154894503806 0.79795796958826\\
+5.41668691103315 0.77047656087868\\
+5.77779011797051 0.743287197661996\\
+6.16296625513294 0.713050665707074\\
+6.57382014340959 0.679766977860645\\
+6.94771254846024 0.648915235782516\\
+7.34287044716677 0.616113794451584\\
+7.76050333513357 0.581652774584903\\
+8.27785696619848 0.539880858991486\\
+8.82969995549409 0.497174113408981\\
+9.41833153464795 0.454448358695762\\
+10.1392540755882 0.406853913532602\\
+11.2214776820798 0.346062633359404\\
+13.2471398786612 0.265026738157017\\
+14.2611370719413 0.237748223244073\\
+15.0722530931076 0.220790667966739\\
+15.9295021257212 0.206595422483226\\
+16.835508029612 0.194847640205363\\
+17.7930438991858 0.185178732092874\\
+18.8050405512858 0.177204215076499\\
+19.8745954958098 0.170556595075432\\
+21.1995345753607 0.164044732706246\\
+23.0336287314213 0.157000162097269\\
+25.9665597293487 0.148296323153577\\
+42.3278906557355 0.118135454968999\\
+52.3261423948666 0.107190242657797\\
+60.6432939540806 0.100689901956311\\
+68.9983712143002 0.0957994950519501\\
+77.7841107128649 0.091908858948105\\
+87.6885609458743 0.0886042806280464\\
+98.8541702191957 0.0858314754249817\\
+112.473717836475 0.0833692369254894\\
+127.969686821594 0.0813728509345104\\
+146.949180062482 0.0796644090443283\\
+171.883914281715 0.0781619412288977\\
+204.791209666509 0.0769029648268028\\
+250.841505927754 0.075847763013551\\
+321.741815067637 0.0749478821669671\\
+448.385594802119 0.0741445196859812\\
+772.48114514034 0.073246452538667\\
+1000 0.0728430250448702\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.06080084694604\\
+1.29751716865759 1.05272124370738\\
+1.91109062168914 1.04550090537136\\
+2.49687842888433 1.03577929577042\\
+3.0302710828664 1.02430232537149\\
+3.54445567397044 1.01063028548022\\
+4.03278998219371 0.995034151016307\\
+4.50457325175946 0.977321007225042\\
+4.93962174387832 0.958500546630364\\
+5.36697694554048 0.937554959986494\\
+5.77779011797051 0.915049248684584\\
+6.16296625513294 0.891829009753516\\
+6.57382014340959 0.864866837415649\\
+6.94771254846024 0.838492599419861\\
+7.34287044716677 0.80893047925104\\
+7.76050333513357 0.77612942941312\\
+8.2018894992022 0.740194632034058\\
+8.66837993001978 0.701425318583022\\
+9.16140245713852 0.660334311934262\\
+9.68246611930312 0.617638307517116\\
+10.3279473191895 0.56697178971867\\
+11.1184960481927 0.509806159283285\\
+12.3052400435926 0.436246188920829\\
+14.796880626864 0.328071649192354\\
+16.0770442167382 0.291346721719041\\
+17.3076553419573 0.264208077360719\\
+18.6324631193156 0.241405247778736\\
+20.0586777950823 0.222092909012939\\
+21.7940698430296 0.203589816055047\\
+24.1202820761801 0.184381220374791\\
+27.4434330322837 0.163675768153976\\
+35.5263467657814 0.130046366185541\\
+51.8459354389291 0.0926831406969791\\
+89.3204599858097 0.0568576997986941\\
+109.405470720574 0.0477356974135995\\
+129.154966501488 0.041633727124971\\
+148.31025143361 0.037364561535069\\
+168.743567772738 0.0339715893430654\\
+190.230118866894 0.0312767787147839\\
+212.484535249888 0.0291374689151996\\
+237.342425002387 0.0272969494981158\\
+262.675410372384 0.0258444048018525\\
+290.712337727258 0.0245917556029469\\
+321.741815067637 0.0235165779814841\\
+356.083255262928 0.0225978373975876\\
+397.740302405804 0.0217510387613848\\
+444.270674960688 0.0210438454330395\\
+500.840798984821 0.02041089248635\\
+564.614141930367 0.0198933264048529\\
+642.403365939419 0.0194412262536085\\
+744.512291079513 0.0190304727167993\\
+878.909065341995 0.0186703099685688\\
+1000 0.0184445219411724\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.02789163552558\\
+0.173876240021625 1.03492189348482\\
+0.337698031082509 1.03808228038908\\
+0.781435060784454 1.03720180730851\\
+1.34626057929891 1.03239789400953\\
+1.8935521797563 1.02494627586037\\
+2.42876438246045 1.01492946611475\\
+2.92055551218275 1.00318038872236\\
+3.41612326858553 0.988679520480783\\
+3.88677669089267 0.972242506901234\\
+4.34147833005509 0.953727325410226\\
+4.76077523022637 0.934240007183593\\
+5.17265738721602 0.91277288549911\\
+5.56859644428641 0.889951009421327\\
+5.93982669392036 0.866646643440708\\
+6.33580499265825 0.839859939216584\\
+6.75818116816111 0.809296595225488\\
+7.14255928554313 0.779953984063895\\
+7.54879928165344 0.747696985006135\\
+7.97814457207663 0.712654411328315\\
+8.43190929286626 0.675117561368645\\
+8.9114823228402 0.635553897970933\\
+9.5055659201012 0.587690456973455\\
+10.1392540755882 0.539170812652807\\
+10.9153593533139 0.484647077680225\\
+12.0804213467733 0.414635429008414\\
+14.5265392594678 0.311781418484981\\
+15.7833140565212 0.276995378628605\\
+16.9914417203463 0.251427348373729\\
+18.2920450484629 0.230086979735731\\
+19.6922025547917 0.21213890573504\\
+21.3958887134342 0.19504550787982\\
+23.6796006783308 0.1773567092823\\
+27.1915794303602 0.156973532955255\\
+43.1156199031823 0.105005512123919\\
+53.2999408084409 0.0865268282939697\\
+67.7377599751775 0.0690696467399128\\
+90.9827289445556 0.0519829117547004\\
+134.006889636395 0.03554536141974\\
+228.74908173557 0.020880022022477\\
+465.229952396019 0.0102320910393133\\
+1000 0.004713250135358\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00870624825717\\
+0.384224084605506 1.00570785151253\\
+0.693171727615541 0.999843820543056\\
+1.08902296226373 0.990825048507013\\
+1.54592773641948 0.979580418179586\\
+2.00124979896904 0.967136357807747\\
+2.42876438246045 0.953721368878897\\
+2.8408836901833 0.9387882612507\\
+3.23228397818138 0.92254083761697\\
+3.61041859717334 0.904790083509099\\
+3.99578030189527 0.884545545462134\\
+4.38168993151419 0.862077410011768\\
+4.76077523022637 0.837917232742815\\
+5.12518692705333 0.812846044468616\\
+5.46685729972018 0.787836998258695\\
+5.83130511352622 0.75975701710518\\
+6.22004882563471 0.728491024234152\\
+6.63470812109235 0.694039431183923\\
+7.01206358900718 0.662086188152622\\
+7.41088151564157 0.628108242314817\\
+7.8323825991792 0.592420766800458\\
+8.35452805838287 0.5491972147427\\
+8.9114823228402 0.50507008113587\\
+9.5055659201012 0.461010005062715\\
+10.2331657833025 0.412052487771611\\
+11.3254131515281 0.34972841877073\\
+13.3698374182495 0.266947446549218\\
+14.3932264471941 0.239076219390757\\
+15.3527502878042 0.219080341756512\\
+16.2259528707809 0.204900762070103\\
+17.1488196987054 0.193103791287104\\
+18.1241754737424 0.183314648407702\\
+19.1550055557353 0.175153392151518\\
+20.4319732019527 0.167217002012212\\
+21.9959306803007 0.1596475922074\\
+24.1202820761801 0.15162711493201\\
+28.2130767593947 0.139862278866711\\
+38.957456157755 0.118454443020067\\
+52.3261423948666 0.10177950126347\\
+60.6432939540806 0.0948429672390895\\
+68.9983712143002 0.0896037319072604\\
+77.7841107128649 0.0854175785353044\\
+87.6885609458743 0.0818462325526739\\
+98.8541702191957 0.0788363901153637\\
+111.441525146679 0.0763264787040401\\
+125.631660247412 0.0742521020054275\\
+142.940453343176 0.0724328811227635\\
+164.140297114447 0.0708795935055257\\
+190.230118866894 0.0695856625522474\\
+224.569799553977 0.0684767603171103\\
+272.543253128103 0.0675247221705536\\
+346.369417737173 0.0666932961101298\\
+473.887960971766 0.0659557773173536\\
+772.48114514034 0.0651697008948176\\
+1000 0.0647905823121663\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.11135112449661\\
+0.268181260945302 1.11645996443848\\
+0.856905505126835 1.11655445827398\\
+1.7916503273639 1.11226581153108\\
+2.68800102153761 1.1051118607949\\
+3.51192753045073 1.09568149283878\\
+4.26215882901533 1.08406250335813\\
+4.89428989611453 1.07120583607474\\
+5.46685729972018 1.05628592436287\\
+5.99484250318941 1.03897859063273\\
+6.4537154016467 1.02058291758075\\
+6.8839520696455 1.00009452040047\\
+7.27548352919623 0.978499280755246\\
+7.68928372075831 0.952527721312318\\
+8.12661920009194 0.921649057481769\\
+8.51000724712225 0.891925750844549\\
+8.9114823228402 0.858553036152831\\
+9.33189771573324 0.821732663210053\\
+9.77214696972572 0.781904838450293\\
+10.3279473191895 0.731098824119638\\
+10.9153593533139 0.678426570902571\\
+11.6430313292088 0.616830777147484\\
+12.7675070431927 0.53318011055682\\
+15.4949503931463 0.391360309505871\\
+16.835508029612 0.346240733101134\\
+18.1241754737424 0.312925718023178\\
+19.5114834684662 0.284919568287456\\
+21.0049824165392 0.261217471827392\\
+22.822244741869 0.238618993857681\\
+25.0264009641792 0.217411783168855\\
+27.6976193503689 0.197683611692288\\
+30.9378757173014 0.179425291471482\\
+34.8772747481418 0.162614906517367\\
+39.3182875570577 0.148276492312705\\
+44.324785912404 0.135994204579924\\
+49.9687745385488 0.125476711110326\\
+55.8144624945496 0.1171411583524\\
+62.3440188862786 0.109972823826099\\
+69.6374473062822 0.103841946530743\\
+77.070271142123 0.0990316679346553\\
+85.2964449974102 0.0949078045838821\\
+94.400647894176 0.0913903472422374\\
+105.444279352617 0.0881571321476935\\
+117.779870119712 0.0854674694461927\\
+132.777082935543 0.0830732228036602\\
+149.683929307726 0.0811301087232458\\
+171.883914281715 0.0793446320925641\\
+199.204570845387 0.077867870316256\\
+235.164288449435 0.0766090216282321\\
+285.400976982924 0.0755320273191118\\
+362.710025233065 0.0745926870810988\\
+496.244487762892 0.0737579726825855\\
+823.978568452852 0.0728267280136324\\
+1000 0.0724943842724882\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.06396996525797\\
+0.880937190447399 1.0613644743423\\
+1.53174046370208 1.05595307259512\\
+2.13466303332425 1.04816505887707\\
+2.71289780037247 1.03798755639319\\
+3.26222200971167 1.02561698959983\\
+3.78074666359935 1.01125629928463\\
+4.26215882901533 0.995333107092117\\
+4.71708469091702 0.977766369486714\\
+5.17265738721602 0.957519720231653\\
+5.62017384808319 0.934890682488563\\
+6.05036787939122 0.910499033386544\\
+6.4537154016467 0.885289485389776\\
+6.8839520696455 0.856013050505798\\
+7.27548352919623 0.827419723425527\\
+7.68928372075831 0.795476482956668\\
+8.12661920009194 0.760223768358882\\
+8.58882855954625 0.72189659977168\\
+9.07732652521023 0.680953909398293\\
+9.59360828709315 0.638079021431016\\
+10.2331657833025 0.586785011072583\\
+11.0164594963366 0.528408131511785\\
+12.0804213467733 0.459142575005418\\
+15.0722530931076 0.326127712817372\\
+16.3762407452169 0.289934792633434\\
+17.6297537528721 0.263187870989665\\
+18.979216428391 0.24067047499832\\
+20.6212180399914 0.219348112832111\\
+22.6128006633728 0.199417868493286\\
+25.2582002696278 0.179234492031249\\
+29.2729483504282 0.156602610148123\\
+40.7953450345245 0.116590657585686\\
+74.2798248256492 0.0687082278646442\\
+90.1477631452492 0.058328674713282\\
+105.444279352617 0.0513821323890238\\
+121.082975023204 0.0462065415109857\\
+137.765076954905 0.0420940280449057\\
+155.307057393346 0.0388299067198596\\
+173.475935923393 0.0362411471234604\\
+193.770333747799 0.0340165992407196\\
+214.452607597167 0.0322633071419922\\
+237.342425002387 0.0307533916469165\\
+262.675410372384 0.0294592683075374\\
+290.712337727258 0.0283550431491415\\
+324.721849207313 0.0273387794135132\\
+362.710025233065 0.0264912926547706\\
+408.894822629486 0.0257338581531637\\
+465.229952396019 0.0250728927357431\\
+534.229329953835 0.0245084805753822\\
+619.144175597784 0.024035145173333\\
+737.679760252773 0.0236026610944424\\
+903.557834613893 0.0232245508363839\\
+1000 0.0230688763376863\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.977658458906337\\
+0.151418932530435 0.986464420323345\\
+0.229276931286565 1.00031064741771\\
+0.540421642070592 1.03143594849758\\
+0.781435060784454 1.03862738599348\\
+1.14039960197003 1.04099772099815\\
+1.6188596901782 1.0384867428808\\
+2.15443469003188 1.03188519084234\\
+2.68800102153761 1.02231200887173\\
+3.20262069365765 1.01037077147038\\
+3.71167181947577 0.995829168216221\\
+4.18428850790158 0.979725057483278\\
+4.63090280179974 0.962035780135586\\
+5.07815211232768 0.941767873648629\\
+5.51749237612913 0.919265921235388\\
+5.93982669392036 0.895173499431709\\
+6.33580499265825 0.870425754649545\\
+6.75818116816111 0.841845540108769\\
+7.14255928554313 0.814062549604697\\
+7.54879928165344 0.783136535129263\\
+7.97814457207663 0.749097203545731\\
+8.43190929286626 0.712144532965388\\
+8.9114823228402 0.67267722713304\\
+9.41833153464795 0.631298326731164\\
+10.0462042134681 0.58165716000259\\
+10.7159339982267 0.531919371596868\\
+11.6430313292088 0.470188697939482\\
+15.6384675830225 0.300344795785853\\
+16.835508029612 0.271812739709943\\
+18.1241754737424 0.247856158246599\\
+19.5114834684662 0.227634771563928\\
+21.1995345753607 0.208364270708147\\
+23.2469705998565 0.19016771275966\\
+26.2070669648385 0.170053281193342\\
+32.1001089554317 0.141838101329263\\
+46.4158883361278 0.101963013504547\\
+66.5001803043112 0.0733479399250486\\
+100.693863147603 0.0502142445611599\\
+124.478714618791 0.0416383554289211\\
+148.31025143361 0.0358938088405976\\
+171.883914281715 0.0318661851853424\\
+197.376432630026 0.0286788933661098\\
+222.508879812837 0.0263246398137155\\
+250.841505927754 0.0243072196185547\\
+280.18665564592 0.0227116869710535\\
+312.964801067075 0.0213438985256031\\
+346.369417737173 0.0202680472724083\\
+383.33951017666 0.0193430831934689\\
+424.255643071778 0.0185514151067944\\
+469.539001068006 0.0178766356345899\\
+524.468874949512 0.0172560199127475\\
+585.824820015254 0.0167384735629284\\
+660.419396233031 0.0162753634405166\\
+751.408106111697 0.0158697736673792\\
+862.85125663669 0.0155204772494835\\
+1000 0.015222191765161\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.12039439417036\\
+0.609234915240071 1.11726372721698\\
+1.6642601764859 1.11056760882564\\
+2.56690271549195 1.10288380466199\\
+3.38477285594598 1.09312519806691\\
+4.10784088996565 1.08158948029744\\
+4.76077523022637 1.06801721133129\\
+5.31772317785097 1.05330045907145\\
+5.83130511352622 1.03647295774112\\
+6.2776601058065 1.01880044479633\\
+6.69616005485322 0.999295055737647\\
+7.14255928554313 0.975082715712932\\
+7.54879928165344 0.949880608625615\\
+7.97814457207663 0.920023786933664\\
+8.35452805838287 0.891331813452302\\
+8.74866812047991 0.859117091395681\\
+9.16140245713852 0.823522496906589\\
+9.59360828709315 0.784910694853998\\
+10.1392540755882 0.735430245806251\\
+10.7159339982267 0.683810824891324\\
+11.4303112911448 0.622980780082827\\
+12.4192135270178 0.547539933035553\\
+15.9295021257212 0.369227442326622\\
+17.3076553419573 0.327822951408102\\
+18.6324631193156 0.297251811150321\\
+20.0586777950823 0.271480986973466\\
+21.7940698430296 0.247059702787276\\
+23.6796006783308 0.226411109712535\\
+25.9665597293487 0.206855685578872\\
+28.7381269185107 0.188491630904338\\
+32.1001089554317 0.171347632422975\\
+36.1874981241128 0.155448568773433\\
+41.1731993116168 0.140847683665606\\
+46.4158883361278 0.129259348732141\\
+52.3261423948666 0.119312140118026\\
+58.4476113163363 0.111417043564824\\
+65.2852114112785 0.104621549183048\\
+72.9227205872831 0.0988063788148306\\
+80.7062014114951 0.0942423115051346\\
+89.3204599858097 0.0903287503838503\\
+98.8541702191957 0.0869902223841471\\
+110.418805085416 0.0839211432447957\\
+123.336349791378 0.0813677330985722\\
+139.041083409007 0.079094431674592\\
+156.74554102056 0.0772490535974057\\
+179.992850678248 0.0755527550724616\\
+208.60240892485 0.0741488792818329\\
+246.258591635055 0.0729509575379838\\
+298.865287355038 0.0719244397747057\\
+379.821530619074 0.0710269391033537\\
+519.655724382766 0.0702265959740202\\
+870.843149769072 0.0693087675838971\\
+1000 0.0690758177244967\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1\\
+1000 1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/robust_performance_compare.pdf b/matlab/figs/robust_performance_compare.pdf
new file mode 100644
index 0000000..c42d86e
Binary files /dev/null and b/matlab/figs/robust_performance_compare.pdf differ
diff --git a/matlab/figs/robust_performance_compare.png b/matlab/figs/robust_performance_compare.png
new file mode 100644
index 0000000..bd69cbd
Binary files /dev/null and b/matlab/figs/robust_performance_compare.png differ
diff --git a/matlab/figs/robust_performance_result.pdf b/matlab/figs/robust_performance_result.pdf
new file mode 100644
index 0000000..3ecbba8
Binary files /dev/null and b/matlab/figs/robust_performance_result.pdf differ
diff --git a/matlab/figs/robust_performance_result.png b/matlab/figs/robust_performance_result.png
new file mode 100644
index 0000000..8f78d4f
Binary files /dev/null and b/matlab/figs/robust_performance_result.png differ
diff --git a/matlab/figs/robust_performance_result.svg b/matlab/figs/robust_performance_result.svg
new file mode 100644
index 0000000..6b8b019
--- /dev/null
+++ b/matlab/figs/robust_performance_result.svg
@@ -0,0 +1,330 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/robust_performance_result.tex b/matlab/figs/robust_performance_result.tex
new file mode 100644
index 0000000..04ac8ad
--- /dev/null
+++ b/matlab/figs/robust_performance_result.tex
@@ -0,0 +1,1719 @@
+% This file was created by matlab2tikz.
+%
+\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
+\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=2.518in,
+height=1.989in,
+at={(0.551in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xtick={ 0.1, 1, 10, 100, 1000},
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.001,
+ymax=2,
+yminorticks=true,
+ylabel={Magnitude [m/N]},
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.0001931122177\\
+0.535462089927361 1.00573493472724\\
+0.922497005259217 1.01680236010719\\
+1.32166418394661 1.03374858384494\\
+1.74277467840892 1.05687817368458\\
+2.21485523372636 1.08784873206357\\
+2.76338529005317 1.12820099616263\\
+3.51192753045073 1.18553946072086\\
+5.22056752784697 1.28965685221731\\
+5.93982669392036 1.31022397541787\\
+6.57382014340959 1.31414440876117\\
+7.20871503378214 1.30497065729765\\
+7.8323825991792 1.28445066175576\\
+8.51000724712225 1.25141598556613\\
+9.24625711640574 1.20596156260807\\
+10.0462042134681 1.14917565028267\\
+10.9153593533139 1.08300042075559\\
+11.9695570235904 1.00151443652005\\
+13.2471398786612 0.906489000195522\\
+14.796880626864 0.801614690150466\\
+16.835508029612 0.683826841375039\\
+19.5114834684662 0.561302789116589\\
+23.6796006783308 0.42560963805056\\
+33.0003479112529 0.259341011797121\\
+45.9899209052244 0.159046987989402\\
+57.3797641421413 0.116770448003281\\
+70.2824426430835 0.0893928832098493\\
+86.0864769614925 0.0695444840114252\\
+105.444279352617 0.0549418589545345\\
+130.351224468151 0.0435976465729145\\
+161.141427725302 0.0350978183492074\\
+197.376432630026 0.028904752452537\\
+239.540735872088 0.0243262510672367\\
+288.04441533963 0.0209107964333833\\
+340.041193270371 0.0184689543209229\\
+401.424249049932 0.0165108877066972\\
+473.887960971766 0.0149335773074393\\
+737.679760252773 0.0115264177379453\\
+794.145171902934 0.0108525646870933\\
+847.08682665574 0.0101810410947052\\
+903.557834613893 0.00942356415046645\\
+963.793479961579 0.00858500367514173\\
+1000 0.00807691303004834\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 0.000983633691377331\\
+0.699592016543537 0.0099439702172477\\
+2.00124979896904 0.0799937322915588\\
+3.0302710828664 0.178577134330778\\
+3.92277675892772 0.288736055451022\\
+4.76077523022637 0.40594913859665\\
+5.51749237612913 0.51668205276236\\
+6.2776601058065 0.626407366778494\\
+7.01206358900718 0.726028543742273\\
+7.76050333513357 0.817456773337205\\
+8.51000724712225 0.896753063329142\\
+9.24625711640574 0.962143314273546\\
+10.0462042134681 1.01976109831102\\
+10.9153593533139 1.06822943498017\\
+11.8597101233767 1.10692281324805\\
+13.0051125217341 1.13857785742596\\
+14.2611370719413 1.15921603518581\\
+15.7833140565212 1.17096352472234\\
+17.7930438991858 1.17310551167201\\
+20.6212180399914 1.16352305294118\\
+25.4921465445142 1.13711774727298\\
+46.8458011587305 1.05878187635299\\
+63.5042516859596 1.03499216818096\\
+90.1477631452492 1.01881100125843\\
+141.62866162992 1.00872696029412\\
+282.781797962534 1.00420871972614\\
+697.981390783066 1.00800293184063\\
+1000 1.0079725081608\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019534374483\\
+0.535462089927361 1.00573411613921\\
+0.922497005259217 1.01679349761586\\
+1.32166418394661 1.03375140820082\\
+1.74277467840892 1.0569456920462\\
+2.21485523372636 1.08809637421514\\
+2.76338529005317 1.12886572312616\\
+3.47969790388769 1.18476567777419\\
+5.41668691103315 1.30422471017917\\
+6.10640754223204 1.32259657410345\\
+6.75818116816111 1.32537729338898\\
+7.41088151564157 1.31433015545732\\
+8.05203967082548 1.2914228770447\\
+8.74866812047991 1.25540448783636\\
+9.5055659201012 1.20651788935808\\
+10.3279473191895 1.14606178880926\\
+11.2214776820798 1.07621652251626\\
+12.3052400435926 0.990926075815642\\
+13.6186523675608 0.892323790198539\\
+15.211855179861 0.784483754484604\\
+17.3076553419573 0.664541749293765\\
+20.244465099768 0.533954346847223\\
+24.7967289250216 0.394800825271885\\
+38.24569722467 0.202102342662966\\
+49.9687745385488 0.135236791007901\\
+61.7718759733849 0.100008294279411\\
+75.6621850048106 0.0762297207642266\\
+91.8254283565628 0.059788246822666\\
+111.441525146679 0.0476109999921181\\
+136.500780654601 0.038076798066957\\
+167.194975973199 0.0308967058154004\\
+204.791209666509 0.0254302558263634\\
+246.258591635055 0.0215817268529103\\
+293.404970921579 0.0186967981945757\\
+346.369417737173 0.0165194303158824\\
+408.894822629486 0.0147771330965201\\
+482.707096560318 0.0133733476285466\\
+724.202233460732 0.0105614401119155\\
+786.857150693685 0.00989089300243232\\
+839.312949816636 0.00929380131808741\\
+895.26571259964 0.00861986625792464\\
+954.948563979197 0.00787146939222389\\
+1000 0.0073001265041731\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 0.000990788338256138\\
+0.525679112201842 0.00562855461974205\\
+2.2353696459098 0.0993877613568488\\
+3.26222200971167 0.205811685192902\\
+4.18428850790158 0.325781044532665\\
+4.98537346387389 0.441773447875627\\
+5.77779011797051 0.560216094315097\\
+6.5134909462728 0.667586663854359\\
+7.20871503378214 0.762460101298794\\
+7.90492762269643 0.848158871107208\\
+8.66837993001978 0.929550164527769\\
+9.41833153464795 0.996162933722516\\
+10.2331657833025 1.05425497906712\\
+11.1184960481927 1.10240869464133\\
+12.0804213467733 1.14003701674249\\
+13.1255683577184 1.16733268679212\\
+14.3932264471941 1.18653638203251\\
+15.9295021257212 1.19607729038231\\
+17.957846470021 1.19511565434667\\
+20.8122156998634 1.18151314959324\\
+25.9665597293487 1.1483260769365\\
+43.1156199031823 1.07292604108529\\
+56.8531791387375 1.045759167949\\
+77.7841107128649 1.02623023651786\\
+114.566872863487 1.01316773810595\\
+197.376432630026 1.00568310022139\\
+456.730127016875 1.00472176461485\\
+1000 1.0072118752458\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019743291514\\
+0.525679112201842 1.00565578770071\\
+0.905642837944528 1.01660181531655\\
+1.29751716865759 1.03344335412117\\
+1.71093390726902 1.05659863777713\\
+2.15443469003188 1.08649407923845\\
+2.66333272517498 1.12547763725157\\
+3.29243733300777 1.17729558295916\\
+4.5462954695324 1.27590540081524\\
+5.46685729972018 1.32950348700345\\
+6.16296625513294 1.35312947749374\\
+6.82077673286568 1.36012933423597\\
+7.41088151564157 1.35366007386874\\
+8.05203967082548 1.33397259012394\\
+8.66837993001978 1.30432778800347\\
+9.33189771573324 1.26308002567807\\
+10.0462042134681 1.2108899515173\\
+10.9153593533139 1.14088542292172\\
+11.8597101233767 1.06171503485177\\
+13.0051125217341 0.967058758667463\\
+14.3932264471941 0.860016541861465\\
+16.0770442167382 0.745566162789153\\
+18.2920450484629 0.621232676188219\\
+21.3958887134342 0.489226306145428\\
+26.2070669648385 0.35235978558186\\
+36.8609536217216 0.198435567238159\\
+52.8107971193433 0.10895628133552\\
+66.5001803043112 0.0756182405472248\\
+80.7062014114951 0.0566161948325665\\
+97.0480887738031 0.0437155466574612\\
+115.628013120738 0.0347485680655739\\
+137.765076954905 0.0280541194297464\\
+164.140297114447 0.0229928805845313\\
+195.565071586595 0.0191207125851768\\
+233.006141069692 0.0161298452560615\\
+275.067600790807 0.0139137690303927\\
+321.741815067637 0.012250709351361\\
+376.335836228653 0.0109189360722762\\
+440.193518520887 0.00984863022089378\\
+524.468874949512 0.00888002330062905\\
+691.575882873852 0.00755647189111879\\
+758.367791499719 0.00706718627840073\\
+816.416760492147 0.0066189759956369\\
+870.843149769072 0.00617336402736346\\
+928.89787201645 0.00567530015868301\\
+990.82280990038 0.00513198056695298\\
+1000 0.00505155141071614\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.216938351838518 0.00098712092183707\\
+0.66194334587744 0.00910519748705946\\
+2.15443469003188 0.0948661839282853\\
+3.26222200971167 0.211951776694594\\
+4.22304418720668 0.342730523927302\\
+5.07815211232768 0.473954725862985\\
+5.88531577519145 0.602749057982459\\
+6.63470812109235 0.719935245875769\\
+7.34287044716677 0.823588511504464\\
+8.05203967082548 0.91700726887862\\
+8.74866812047991 0.996689418343782\\
+9.5055659201012 1.06893037430489\\
+10.3279473191895 1.1310889258712\\
+11.1184960481927 1.1764343974798\\
+12.0804213467733 1.21561774030981\\
+13.1255683577184 1.24250335678959\\
+14.3932264471941 1.25921817044493\\
+15.9295021257212 1.264107684459\\
+17.7930438991858 1.257055660713\\
+20.4319732019527 1.23611819655803\\
+25.2582002696278 1.19163840518399\\
+38.957456157755 1.10418902227521\\
+49.9687745385488 1.06876757009708\\
+64.6860766154633 1.04350993990184\\
+87.6885609458743 1.02495147364674\\
+129.154966501488 1.01235557099846\\
+226.649807927369 1.00509755068201\\
+549.211648388779 1.00428464328525\\
+1000 1.00500808075128\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00020159359984\\
+0.520854855057766 1.00567172535509\\
+0.897331581458352 1.01666355041185\\
+1.2856096069433 1.03361489279836\\
+1.69523234155412 1.05700444913078\\
+2.13466303332425 1.08735977386374\\
+2.63889081445751 1.12724988215656\\
+3.23228397818138 1.17830385350012\\
+4.14588849683291 1.25750377202671\\
+5.46685729972018 1.35013329615573\\
+6.16296625513294 1.37917759246699\\
+6.82077673286568 1.39075341183722\\
+7.41088151564157 1.38749020528887\\
+7.97814457207663 1.37270212302108\\
+8.58882855954625 1.34537641698621\\
+9.24625711640574 1.30501926235893\\
+9.95400828762153 1.25209606492726\\
+10.7159339982267 1.18803898901496\\
+11.6430313292088 1.10545394176578\\
+12.650337203959 1.01545434612583\\
+13.8720978054162 0.911586542589518\\
+15.4949503931463 0.788089111850598\\
+17.6297537528721 0.653231805344941\\
+20.4319732019527 0.517900761749378\\
+24.7967289250216 0.374503476257587\\
+32.6974974451177 0.230699657269204\\
+60.0867589171969 0.0790657798059202\\
+75.6621850048106 0.0539127847809466\\
+91.8254283565628 0.0397818073586747\\
+110.418805085416 0.0303201374033559\\
+131.55856240457 0.0238407481400605\\
+155.307057393346 0.0192973711248455\\
+183.342548256229 0.0158702928756436\\
+214.452607597167 0.013386309476278\\
+250.841505927754 0.0114490548454772\\
+293.404970921579 0.00992882786111844\\
+340.041193270371 0.00879363285695708\\
+394.090164040345 0.00788314426845895\\
+460.960448682843 0.00710616975254985\\
+559.432570616938 0.00633355948128595\\
+685.229159528406 0.00560731267774325\\
+751.408106111697 0.00524605074668434\\
+808.924348680594 0.00491813661164044\\
+862.85125663669 0.00459344284946633\\
+920.373199661822 0.00423069501597384\\
+981.729840618884 0.00383405611635296\\
+1000 0.00371593986420837\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.214947467343798 0.000989526639691109\\
+0.637976680860628 0.00863789412735541\\
+2.27697025538168 0.108242044458094\\
+3.44776405473446 0.241904945641534\\
+4.4222739805059 0.384499699551156\\
+5.31772317785097 0.531427341739104\\
+6.10640754223204 0.665137792675513\\
+6.8839520696455 0.793319447757841\\
+7.618717702323 0.905305023353438\\
+8.35452805838287 1.00443885365664\\
+9.07732652521023 1.08696908832651\\
+9.77214696972572 1.15193917417243\\
+10.5201521761616 1.20690361495895\\
+11.3254131515281 1.25062968745523\\
+12.1923125164911 1.28275153704526\\
+13.2471398786612 1.30558371452019\\
+14.3932264471941 1.31582322748993\\
+15.7833140565212 1.31498909888806\\
+17.6297537528721 1.30127852329881\\
+20.4319732019527 1.26953866839886\\
+26.4498018242772 1.20114095072094\\
+35.8553985745982 1.12869660073072\\
+45.149677720361 1.0877066062042\\
+57.3797641421413 1.05739235794576\\
+74.9678187496688 1.03514421333952\\
+103.517795563018 1.01928776973159\\
+159.662602210143 1.0088197193203\\
+312.964801067075 1.00351469278748\\
+1000 1.00369510851451\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019048279805\\
+0.535462089927361 1.00565768883422\\
+0.922497005259217 1.01658106227662\\
+1.32166418394661 1.0333194437492\\
+1.74277467840892 1.05619097686443\\
+2.21485523372636 1.08686795193661\\
+2.76338529005317 1.12695244830046\\
+3.51192753045073 1.18426663876716\\
+5.41668691103315 1.299717825742\\
+6.10640754223204 1.31887104227412\\
+6.75818116816111 1.32329832374052\\
+7.41088151564157 1.31471709838457\\
+8.05203967082548 1.2948245968557\\
+8.74866812047991 1.26242317460152\\
+9.5055659201012 1.21745884100342\\
+10.3279473191895 1.1608327766042\\
+11.2214776820798 1.09431281344014\\
+12.3052400435926 1.01172312730851\\
+13.4936714058831 0.923584916336478\\
+14.9339321612425 0.824553951703573\\
+16.835508029612 0.710177621467782\\
+19.3324228755505 0.587898768801723\\
+22.822244741869 0.460547631227719\\
+28.7381269185107 0.321930742610885\\
+50.4315948717136 0.133427032384923\\
+62.3440188862786 0.0977786321413313\\
+75.6621850048106 0.0748413443810201\\
+91.8254283565628 0.0582525072445148\\
+111.441525146679 0.0460906485607264\\
+135.248087041788 0.0370344822838798\\
+164.140297114447 0.0301906194162913\\
+199.204570845387 0.024957929419966\\
+239.540735872088 0.0210977222142257\\
+285.400976982924 0.0182156363753302\\
+336.920570598027 0.0160459186693989\\
+397.740302405804 0.0143134771285805\\
+469.539001068006 0.0129233402889808\\
+596.727119597332 0.0113038234418744\\
+691.575882873852 0.0103561321211341\\
+758.367791499719 0.00969198057423907\\
+816.416760492147 0.00908114594313646\\
+870.843149769072 0.00847212722611604\\
+928.89787201645 0.00779002049058179\\
+990.82280990038 0.00704485794161946\\
+1000 0.00693448459259668\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.22097561147959 0.000988015563046809\\
+0.719211887222118 0.0103634741974293\\
+2.00124979896904 0.0788892828364127\\
+3.0302710828664 0.176094438347807\\
+3.95911026646846 0.289606936542707\\
+4.80487043965513 0.407181033234171\\
+5.62017384808319 0.526174296912567\\
+6.39448842855694 0.638014981788235\\
+7.14255928554313 0.740052814379102\\
+7.90492762269643 0.834342538425389\\
+8.66837993001978 0.916800347899088\\
+9.41833153464795 0.985390302168061\\
+10.2331657833025 1.04633797117934\\
+11.1184960481927 1.09798731275417\\
+12.0804213467733 1.13941031469348\\
+13.1255683577184 1.17043269203085\\
+14.3932264471941 1.19331250060507\\
+15.9295021257212 1.2059995762687\\
+17.7930438991858 1.20768374447583\\
+20.244465099768 1.19795496661256\\
+24.1202820761801 1.17282635794731\\
+50.4315948717136 1.06087193131546\\
+66.5001803043112 1.03752077346802\\
+91.8254283565628 1.02098167872263\\
+140.328908478587 1.00998963130886\\
+265.108360190854 1.00443861867521\\
+654.358601888324 1.0065798149595\\
+1000 1.00685563687749\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00021240746699\\
+0.511338753841433 1.00576491840608\\
+0.880937190447399 1.01697241444159\\
+1.25053858729039 1.03373838064559\\
+1.63385387780986 1.05650025665683\\
+2.03849339825246 1.08575254952158\\
+2.49687842888433 1.12426771790369\\
+3.00246170908555 1.17172729470902\\
+3.64385898376354 1.23634285191361\\
+4.67379510799246 1.34010933922584\\
+5.88531577519145 1.44049977790754\\
+6.57382014340959 1.47736869674208\\
+7.20871503378214 1.49437579273908\\
+7.76050333513357 1.49479344511541\\
+8.35452805838287 1.48038159962587\\
+8.9114823228402 1.45390636042689\\
+9.5055659201012 1.4137978725404\\
+10.1392540755882 1.36039272880957\\
+10.8151870255229 1.29504306137774\\
+11.6430313292088 1.20860543334188\\
+12.650337203959 1.1013895152247\\
+13.8720978054162 0.977113025339458\\
+15.3527502878042 0.842553781417945\\
+17.4679621512725 0.684690291672569\\
+20.4319732019527 0.521847020250513\\
+25.2582002696278 0.353856158340937\\
+34.2400613797143 0.198163655489002\\
+57.3797641421413 0.0723013860660759\\
+136.500780654601 0.0133140065874688\\
+193.770333747799 0.00686938997980456\\
+253.164847863136 0.00423120783088052\\
+315.863540826782 0.00289024633859841\\
+383.33951017666 0.00211008386090508\\
+460.960448682843 0.00159278526162922\\
+564.614141930367 0.00119101615000305\\
+642.403365939419 0.000994444496124888\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.209083769055575 0.000986598263337912\\
+0.581788007434494 0.00757139739726711\\
+2.81481236050758 0.174317049233237\\
+4.14588849683291 0.36890978228711\\
+5.22056752784697 0.565029207330472\\
+6.10640754223204 0.74090547828939\\
+6.8839520696455 0.895675693174564\\
+7.618717702323 1.03389137722625\\
+8.27785696619848 1.14561468988031\\
+8.99402217409204 1.24965781214134\\
+9.68246611930312 1.3306522153231\\
+10.3279473191895 1.3895982394204\\
+11.0164594963366 1.43568980092478\\
+11.7508713090481 1.4682965427414\\
+12.534242654614 1.48776566308326\\
+13.4936714058831 1.49542764876625\\
+14.6610868404698 1.48850958519231\\
+16.0770442167382 1.46634056846893\\
+18.1241754737424 1.42314250784083\\
+21.9959306803007 1.33994483208152\\
+30.3726357970331 1.21246172777406\\
+36.8609536217216 1.15411971343847\\
+44.7353305449847 1.10971634773792\\
+54.7947233690029 1.07577733447031\\
+68.9983712143002 1.04918777016186\\
+90.1477631452492 1.0295322627637\\
+126.795284678643 1.0153348485452\\
+204.791209666509 1.00616661194216\\
+482.707096560318 1.00121997764289\\
+1000 0.999812500165089\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00020286546282\\
+0.520854855057766 1.00570911633119\\
+0.897331581458352 1.01677699183254\\
+1.27381132318648 1.03325672631315\\
+1.67967487209265 1.05644931671139\\
+2.1150728248688 1.08661912895143\\
+2.59067785868801 1.12439246623547\\
+3.17322963473498 1.17496482600133\\
+3.99578030189527 1.24814506896084\\
+5.56859644428641 1.36254507009756\\
+6.2776601058065 1.39149968538336\\
+6.8839520696455 1.40175568124962\\
+7.47952251562182 1.39831761718072\\
+8.05203967082548 1.38291174749581\\
+8.66837993001978 1.35448571781747\\
+9.33189771573324 1.31255736044116\\
+10.0462042134681 1.25766954471392\\
+10.8151870255229 1.19138996904959\\
+11.7508713090481 1.10620677883826\\
+12.7675070431927 1.01373403050583\\
+14.000583824681 0.9074901149025\\
+15.6384675830225 0.781845363316426\\
+17.7930438991858 0.645490804300097\\
+20.8122156998634 0.501829114009966\\
+25.2582002696278 0.360636586537632\\
+33.6144900010877 0.216709905986814\\
+64.0924401935645 0.068200409972777\\
+80.7062014114951 0.046156564479281\\
+98.8541702191957 0.0333525736178467\\
+118.87076977119 0.0252855019649419\\
+140.328908478587 0.0200404577313662\\
+165.660595894991 0.0161510110883667\\
+193.770333747799 0.0133809893689203\\
+226.649807927369 0.0112560549963639\\
+262.675410372384 0.00969876805391976\\
+304.42722120643 0.0084693864501225\\
+352.815411538088 0.00749439089341161\\
+408.894822629486 0.00671719951478734\\
+478.277201772749 0.00605583180383909\\
+591.250841383188 0.00533494792259004\\
+691.575882873852 0.0048396004639872\\
+758.367791499719 0.00451913482873575\\
+816.416760492147 0.00422811109460214\\
+870.843149769072 0.00394048699385006\\
+928.89787201645 0.00362038110668811\\
+990.82280990038 0.00327227852073189\\
+1000 0.0032208178147386\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.214947467343798 0.000995493435519096\\
+0.655868565957143 0.00918650760608809\\
+2.31934505927443 0.113044554618168\\
+3.51192753045073 0.252655721863092\\
+4.50457325175946 0.401507908976705\\
+5.36697694554048 0.546034783995305\\
+6.16296625513294 0.68361801627651\\
+6.94771254846024 0.81536120474835\\
+7.68928372075831 0.93015204948426\\
+8.43190929286626 1.03131698924367\\
+9.16140245713852 1.11498652337075\\
+9.86265846131282 1.18027675012903\\
+10.61759183483 1.23485732816843\\
+11.4303112911448 1.27752721659609\\
+12.3052400435926 1.30802331753532\\
+13.3698374182495 1.32853238757083\\
+14.5265392594678 1.3361513932155\\
+16.0770442167382 1.33134352246048\\
+18.1241754737424 1.31134139344463\\
+21.1995345753607 1.2719159174143\\
+40.4209583979631 1.10913578182755\\
+50.4315948717136 1.0743933754553\\
+64.0924401935645 1.04819503644811\\
+85.2964449974102 1.02833913210501\\
+122.204468663149 1.0145112910283\\
+202.911801804668 1.00600046309331\\
+469.539001068006 1.00294696104001\\
+1000 1.00320765829766\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.0002270076268\\
+0.497389595879006 1.00583553817725\\
+0.849041520408875 1.01690974122798\\
+1.20526093687084 1.03374148150558\\
+1.57469771464309 1.05680763059383\\
+1.96468664618044 1.08684381862442\\
+2.38439047009372 1.12498324911001\\
+2.8408836901833 1.17233114171225\\
+3.35371015200293 1.23139979052085\\
+3.95911026646846 1.30684073065481\\
+4.76077523022637 1.41119316983258\\
+6.75818116816111 1.63888113573723\\
+7.41088151564157 1.68315941459321\\
+7.97814457207663 1.70242173637051\\
+8.51000724712225 1.70235185991864\\
+8.99402217409204 1.68678486288908\\
+9.5055659201012 1.65522796754242\\
+10.0462042134681 1.60722860901709\\
+10.61759183483 1.54366645799519\\
+11.3254131515281 1.4527956871202\\
+12.0804213467733 1.34878361073928\\
+13.0051125217341 1.22119926994747\\
+14.2611370719413 1.06012256304008\\
+16.0770442167382 0.864777725866691\\
+19.1550055557353 0.628411443123857\\
+37.8947091907467 0.178102379869795\\
+47.2796959160039 0.121559163556905\\
+57.9112264764176 0.087312441791938\\
+69.6374473062822 0.065811438111727\\
+82.9695852083491 0.0511682321380963\\
+98.8541702191957 0.0404428989538499\\
+117.779870119712 0.032474292015286\\
+141.62866162992 0.0261909545281595\\
+170.306502925284 0.0214482441382243\\
+204.791209666509 0.0178218338421672\\
+243.998629725955 0.0151477404594074\\
+290.712337727258 0.0130491323028158\\
+343.190719745904 0.0114775900892022\\
+401.424249049932 0.0102882913929889\\
+473.887960971766 0.00927079232592664\\
+737.679760252773 0.00708946157682914\\
+794.145171902934 0.00666788113216188\\
+854.932706626838 0.00618825685036627\\
+911.92675984593 0.00571530026201436\\
+972.720319245054 0.00519645428471822\\
+1000 0.00496304500510529\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.203380030584698 0.0009976366376964\\
+0.535462089927361 0.00685501870061004\\
+4.80487043965513 0.542452499067977\\
+6.05036787939122 0.839822182447969\\
+6.94771254846024 1.07151184792903\\
+7.68928372075831 1.2590185468638\\
+8.35452805838287 1.41311837101153\\
+8.99402217409204 1.54074102526148\\
+9.59360828709315 1.63766184722241\\
+10.1392540755882 1.7053296068843\\
+10.7159339982267 1.75616797175311\\
+11.3254131515281 1.78912953010938\\
+11.9695570235904 1.80461890128862\\
+12.7675070431927 1.80283337603009\\
+13.6186523675608 1.7834396893436\\
+14.796880626864 1.73977955627631\\
+16.3762407452169 1.66951307304861\\
+19.5114834684662 1.53548778015298\\
+25.0264009641792 1.36560231032803\\
+29.5440799888038 1.27657791629261\\
+34.5571993676214 1.20995176342021\\
+40.7953450345245 1.15530818275177\\
+48.6056423214213 1.11205075703598\\
+58.4476113163363 1.07891428515325\\
+72.2534949178721 1.05238374633462\\
+93.5343152029239 1.03157981046968\\
+129.154966501488 1.01659464596939\\
+202.911801804668 1.00642001270794\\
+487.178021879463 0.998734308906213\\
+1000 0.995230658440607\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019372988218\\
+0.530548052536957 1.00565098577973\\
+0.914031074875623 1.01657441511691\\
+1.30953502048267 1.03334641537903\\
+1.72678090388436 1.05633295925728\\
+2.17438947560008 1.08587355379057\\
+2.71289780037247 1.12606439473689\\
+3.41612326858553 1.18182377561663\\
+5.62017384808319 1.31851667967784\\
+6.2776601058065 1.33393554487729\\
+6.8839520696455 1.33522922014505\\
+7.47952251562182 1.32478438116366\\
+8.12661920009194 1.30159779610591\\
+8.74866812047991 1.26958686600392\\
+9.41833153464795 1.22694420378901\\
+10.2331657833025 1.16731592213256\\
+11.1184960481927 1.09740405194999\\
+12.1923125164911 1.01106219579305\\
+13.4936714058831 0.910370977650801\\
+15.0722530931076 0.799575456632487\\
+17.1488196987054 0.675900642814778\\
+19.8745954958098 0.54845806026647\\
+23.8989256623105 0.415063345020131\\
+32.1001089554317 0.260413317967457\\
+47.2796959160039 0.141700974665486\\
+58.988964255085 0.101909173911241\\
+72.2534949178721 0.076654718187481\\
+87.6885609458743 0.0594148527440465\\
+106.420924406472 0.0468226185395045\\
+129.154966501488 0.0374829167253574\\
+156.74554102056 0.0304496172280087\\
+190.230118866894 0.0250860514680367\\
+228.74908173557 0.0211347694224598\\
+272.543253128103 0.0181853625646385\\
+321.741815067637 0.0159639033099413\\
+379.821530619074 0.0141898040599508\\
+448.385594802119 0.0127701935027061\\
+544.171428686589 0.0114348358927496\\
+678.940681269611 0.01007545198537\\
+744.512291079513 0.00945294820476786\\
+801.50069615654 0.00888508444098359\\
+854.932706626838 0.0083195461197256\\
+911.92675984593 0.00768348719241727\\
+972.720319245054 0.00698272589983077\\
+1000 0.00666689697084442\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 0.000986591214990927\\
+0.686810358899531 0.00961607450665613\\
+2.07643010725577 0.0864397123269998\\
+3.14410830314726 0.193066332844884\\
+4.07014245321944 0.312234060893812\\
+4.89428989611453 0.432109454557903\\
+5.67222897164454 0.550362362826791\\
+6.39448842855694 0.658816026005437\\
+7.14255928554313 0.764692516217005\\
+7.90492762269643 0.861838142364302\\
+8.66837993001978 0.945817835423729\\
+9.41833153464795 1.01459042548427\\
+10.2331657833025 1.07448032840532\\
+11.1184960481927 1.12391158749394\\
+12.0804213467733 1.16220577084714\\
+13.1255683577184 1.18954254201485\\
+14.3932264471941 1.20812875804871\\
+15.9295021257212 1.21635071225877\\
+17.957846470021 1.21326695495313\\
+20.8122156998634 1.19669668486254\\
+25.9665597293487 1.15923284594155\\
+41.1731993116168 1.08329334675042\\
+53.793615039807 1.05320132888198\\
+71.5904108596489 1.0320381722762\\
+101.6265089393 1.01702228685995\\
+162.633950404819 1.00766460406443\\
+336.920570598027 1.00394499503993\\
+1000 1.00659149840496\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00022788340208\\
+0.497389595879006 1.00585838316961\\
+0.849041520408875 1.0169777020696\\
+1.20526093687084 1.03388257921384\\
+1.57469771464309 1.05705835537382\\
+1.96468664618044 1.08725473098291\\
+2.38439047009372 1.12562858663579\\
+2.8408836901833 1.17332141455905\\
+3.35371015200293 1.23291645731565\\
+3.95911026646846 1.30921457916537\\
+4.76077523022637 1.41518921803517\\
+6.82077673286568 1.65499003575386\\
+7.47952251562182 1.70011041399613\\
+8.05203967082548 1.71918099675407\\
+8.58882855954625 1.7180627426843\\
+9.07732652521023 1.70085448735846\\
+9.59360828709315 1.66699730247143\\
+10.1392540755882 1.61617447689633\\
+10.7159339982267 1.54949431157949\\
+11.4303112911448 1.45498008973714\\
+12.1923125164911 1.34769973246834\\
+13.2471398786612 1.20066861798284\\
+14.5265392594678 1.03788381825594\\
+16.527920614649 0.829583280200129\\
+20.244465099768 0.570442597840016\\
+33.0003479112529 0.230433317062223\\
+41.5545533471888 0.153618412942845\\
+50.8987019351968 0.109523035285756\\
+61.7718759733849 0.0808043734258892\\
+74.2798248256492 0.0616112863356516\\
+88.5007491447344 0.0484284265072419\\
+105.444279352617 0.0386752204862665\\
+126.795284678643 0.0310159759415969\\
+152.469572701757 0.0252538928995306\\
+183.342548256229 0.0208563113378881\\
+220.466873523941 0.0174639981690851\\
+262.675410372384 0.0149472628200375\\
+310.092663593193 0.0130578588174446\\
+366.06951475969 0.0115509756570184\\
+432.151112778977 0.0103465273306163\\
+519.655724382766 0.00926991152637878\\
+691.575882873852 0.00783422957859858\\
+758.367791499719 0.00732274373750306\\
+816.416760492147 0.00685663827475403\\
+870.843149769072 0.0063953905120238\\
+928.89787201645 0.00588169092617318\\
+990.82280990038 0.00532255838700279\\
+1000 0.00523984081839646\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 0.000983356747414889\\
+0.525679112201842 0.00663265676049562\\
+5.03154894503806 0.597050898258991\\
+6.22004882563471 0.890849293359434\\
+7.07701066118189 1.11632415896504\\
+7.8323825991792 1.30888350836189\\
+8.51000724712225 1.46485849412832\\
+9.16140245713852 1.5915035370475\\
+9.77214696972572 1.68519022648511\\
+10.3279473191895 1.7484145818945\\
+10.9153593533139 1.79361076852263\\
+11.5361810173648 1.82022108329581\\
+12.1923125164911 1.82918320318258\\
+13.0051125217341 1.82017614081157\\
+14.000583824681 1.78969725479838\\
+15.211855179861 1.73794080892886\\
+17.1488196987054 1.64677326476406\\
+27.4434330322837 1.31748296226789\\
+32.1001089554317 1.24193005921703\\
+37.5469422407334 1.18256983580377\\
+44.324785912404 1.13440698907649\\
+52.8107971193433 1.09659672174653\\
+64.0924401935645 1.06662142623845\\
+80.7062014114951 1.04252510591626\\
+106.420924406472 1.02461823071235\\
+153.881775003835 1.01166295207242\\
+270.042071883777 1.00308112686129\\
+1000 0.994958974748763\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00023055490082\\
+0.492824957004051 1.00581611976503\\
+0.841249704973612 1.01685911116696\\
+1.19420002813353 1.03366447524185\\
+1.56024641436637 1.05673818001975\\
+1.92879150802078 1.08534830640425\\
+2.34082727617829 1.12311320449088\\
+2.78898029238044 1.17026379561332\\
+3.29243733300777 1.22955054364906\\
+3.85110700232557 1.30139579670551\\
+4.5462954695324 1.39644048805521\\
+5.77779011797051 1.56524035954748\\
+6.75818116816111 1.6795454448748\\
+7.41088151564157 1.73385838933694\\
+7.97814457207663 1.76110589773899\\
+8.51000724712225 1.76704313958592\\
+8.99402217409204 1.75516558389328\\
+9.5055659201012 1.72538643281389\\
+10.0462042134681 1.67692234449359\\
+10.61759183483 1.61063699493652\\
+11.2214776820798 1.52902347588837\\
+11.9695570235904 1.41943015995361\\
+12.8857621318552 1.28355239164254\\
+14.1302599059953 1.11140043695707\\
+15.9295021257212 0.90333622493005\\
+19.3324228755505 0.631870785859824\\
+30.0939003444972 0.278288610386236\\
+37.5469422407334 0.18875912124164\\
+45.9899209052244 0.134797995610482\\
+55.302242561929 0.101061810147035\\
+66.5001803043112 0.0771538702632976\\
+79.2316862486625 0.0607065984057186\\
+95.2750047242729 0.0479584078499907\\
+114.566872863487 0.0384848754758716\\
+139.041083409007 0.0310126156212049\\
+168.743567772738 0.0253506528612443\\
+204.791209666509 0.0210087393881551\\
+246.258591635055 0.0177972651231806\\
+293.404970921579 0.0153942764555667\\
+346.369417737173 0.0135811751508579\\
+408.894822629486 0.0121285052187282\\
+487.178021879463 0.0108958003414909\\
+717.556091893693 0.00865563555448452\\
+779.636013040524 0.00810988856160254\\
+839.312949816636 0.00755573716191403\\
+895.26571259964 0.00700777825248481\\
+954.948563979197 0.00640236013241158\\
+1000 0.00594138705279572\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 0.00099472363035317\\
+0.525679112201842 0.00670632726603642\\
+5.72476623970218 0.780836769911304\\
+6.75818116816111 1.06067376170896\\
+7.54879928165344 1.27750815472483\\
+8.2018894992022 1.44525401505821\\
+8.82969995549409 1.58713956665277\\
+9.41833153464795 1.69687276187022\\
+9.95400828762153 1.77457223776392\\
+10.5201521761616 1.83355930441868\\
+11.1184960481927 1.87208636723445\\
+11.7508713090481 1.89026098058825\\
+12.4192135270178 1.88983883584413\\
+13.2471398786612 1.86972214913389\\
+14.2611370719413 1.82746569026238\\
+15.6384675830225 1.75691466391346\\
+18.1241754737424 1.62930802903082\\
+24.1202820761801 1.405880523387\\
+28.4743916646725 1.30628593563976\\
+33.3060034362459 1.23212168162655\\
+38.957456157755 1.17444759555503\\
+45.9899209052244 1.12800147681489\\
+54.7947233690029 1.09174562190275\\
+67.1161176749628 1.06200512106838\\
+85.2964449974102 1.03876146090514\\
+114.566872863487 1.02153700945417\\
+170.306502925284 1.00948857278961\\
+321.741815067637 1.00142205069168\\
+1000 0.994270444604027\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019513496248\\
+0.530548052536957 1.00568970807611\\
+0.914031074875623 1.01668700782915\\
+1.30953502048267 1.03357758781538\\
+1.72678090388436 1.05673898933865\\
+2.17438947560008 1.08652734929763\\
+2.68800102153761 1.12514797602198\\
+3.35371015200293 1.17848080666259\\
+5.72476623970218 1.32621381381782\\
+6.39448842855694 1.34002524226856\\
+7.01206358900718 1.3391545885544\\
+7.618717702323 1.32612486739831\\
+8.27785696619848 1.29985349292251\\
+8.9114823228402 1.2648360760854\\
+9.59360828709315 1.21912638054486\\
+10.423606739764 1.1562196947766\\
+11.3254131515281 1.08345237377689\\
+12.4192135270178 0.994646767360003\\
+13.7447909267754 0.892223337546892\\
+15.3527502878042 0.780657062635426\\
+17.4679621512725 0.657279232767804\\
+20.4319732019527 0.523962553769108\\
+24.7967289250216 0.388871126510428\\
+35.2003147279668 0.221779505225601\\
+48.6056423214213 0.133160333473648\\
+60.6432939540806 0.0955390613949424\\
+73.5981447526576 0.0726471496794468\\
+89.3204599858097 0.056188498144931\\
+107.406615333343 0.0446955162638014\\
+130.351224468151 0.0357094538655792\\
+158.19734815786 0.0289672616469181\\
+191.992066559328 0.0238425678292925\\
+230.867799418717 0.0200776978886586\\
+275.067600790807 0.0172736750849493\\
+324.721849207313 0.0151653971777367\\
+383.33951017666 0.0134838134876411\\
+452.538627817017 0.012138831759109\\
+549.211648388779 0.0108712020687637\\
+678.940681269611 0.00962511426052542\\
+744.512291079513 0.00902966157303615\\
+801.50069615654 0.0084867578052907\\
+854.932706626838 0.00794628768338953\\
+911.92675984593 0.00733860073445905\\
+972.720319245054 0.00666923865891795\\
+1000 0.0063675922255174\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 0.000993683498129834\\
+0.693171727615541 0.00986107491181145\\
+2.1150728248688 0.0902588037487937\\
+3.20262069365765 0.201505938087618\\
+4.14588849683291 0.32559584195205\\
+4.98537346387389 0.449994311544008\\
+5.77779011797051 0.572089118533177\\
+6.5134909462728 0.683327432797346\\
+7.20871503378214 0.782008012053079\\
+7.90492762269643 0.871373734370721\\
+8.66837993001978 0.956313217891875\\
+9.41833153464795 1.02571357882929\\
+10.2331657833025 1.08594457215986\\
+11.1184960481927 1.13540507672703\\
+12.0804213467733 1.17342993246118\\
+13.1255683577184 1.20024366843185\\
+14.3932264471941 1.21802850337886\\
+15.9295021257212 1.22520839978314\\
+17.957846470021 1.22081952621386\\
+20.8122156998634 1.20271075160049\\
+26.2070669648385 1.16157244183947\\
+40.0500075787361 1.08882328636126\\
+52.3261423948666 1.05684096316286\\
+69.6374473062822 1.03424408497473\\
+97.946966706954 1.01845914640602\\
+153.881775003835 1.00844443771496\\
+307.2468842709 1.00395125244648\\
+1000 1.00629794083907\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019502800461\\
+0.530548052536957 1.00568988121355\\
+0.914031074875623 1.01669481676841\\
+1.30953502048267 1.03360899347959\\
+1.72678090388436 1.05682659974006\\
+2.17438947560008 1.0867329399606\\
+2.68800102153761 1.12559832236443\\
+3.35371015200293 1.17949332784561\\
+5.83130511352622 1.33579039884428\\
+6.5134909462728 1.34934296441228\\
+7.14255928554313 1.34769324630327\\
+7.76050333513357 1.33345053631879\\
+8.43190929286626 1.30546702846209\\
+9.07732652521023 1.26854744951125\\
+9.77214696972572 1.22065903879413\\
+10.61759183483 1.15511312963574\\
+11.5361810173648 1.07968887646144\\
+12.650337203959 0.988130892832227\\
+14.000583824681 0.883145745297856\\
+15.6384675830225 0.769505378109745\\
+17.7930438991858 0.6446969352834\\
+20.8122156998634 0.510875504164063\\
+25.4921465445142 0.370874338006802\\
+37.2023668141307 0.199480501298638\\
+50.8987019351968 0.120354962448871\\
+63.5042516859596 0.0858152722872483\\
+77.070271142123 0.0649372225342789\\
+92.6759330114688 0.0506229352816457\\
+111.441525146679 0.0401109497548331\\
+134.006889636395 0.0322837595984688\\
+161.141427725302 0.0263724276350799\\
+193.770333747799 0.0218523117089745\\
+233.006141069692 0.0183648596092637\\
+277.61532944368 0.0157810182859253\\
+327.729484992338 0.0138459867298172\\
+383.33951017666 0.0123836581820187\\
+452.538627817017 0.0111397801861152\\
+549.211648388779 0.00996962615834048\\
+678.940681269611 0.00882187840099713\\
+744.512291079513 0.00827452565657016\\
+801.50069615654 0.00777604808326403\\
+854.932706626838 0.00728022082243072\\
+911.92675984593 0.00672307796487261\\
+972.720319245054 0.00610966899916823\\
+1000 0.00583330066268641\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.218947676285662 0.000993111462811602\\
+0.686810358899531 0.00968062162550128\\
+2.13466303332425 0.0919662044793055\\
+3.23228397818138 0.205392663556225\\
+4.18428850790158 0.332038924609619\\
+5.03154894503806 0.459159442126436\\
+5.83130511352622 0.584085057469465\\
+6.57382014340959 0.698014728155759\\
+7.27548352919623 0.799122248251886\\
+7.97814457207663 0.890644303969089\\
+8.74866812047991 0.97748641202933\\
+9.5055659201012 1.04820176494391\\
+10.3279473191895 1.10922961637822\\
+11.2214776820798 1.15888732185325\\
+12.1923125164911 1.19649954511023\\
+13.2471398786612 1.22234955384601\\
+14.5265392594678 1.23855086021887\\
+16.0770442167382 1.24357812752163\\
+18.1241754737424 1.23640612879901\\
+21.0049824165392 1.21494782254608\\
+26.6947849403432 1.16755630668553\\
+38.957456157755 1.09760183255867\\
+50.4315948717136 1.06347914839118\\
+65.8898955079995 1.03953022455568\\
+90.1477631452492 1.02234004816404\\
+135.248087041788 1.01081862950645\\
+246.258591635055 1.00456883525182\\
+613.462171799251 1.00529992477952\\
+1000 1.00577436551448\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00021607235956\\
+0.506646100892127 1.00575200657261\\
+0.872852662384838 1.01694381643291\\
+1.23906215694792 1.03371251052616\\
+1.6188596901782 1.0565315387764\\
+2.01978575681988 1.08595490755404\\
+2.45126006203334 1.12281253302012\\
+2.94760625512486 1.17043127985289\\
+3.54445567397044 1.2325901937055\\
+4.38168993151419 1.32266767496597\\
+6.10640754223204 1.48013005035423\\
+6.82077673286568 1.51890072699045\\
+7.41088151564157 1.53427941233886\\
+7.97814457207663 1.53363959321354\\
+8.51000724712225 1.51935240350784\\
+9.07732652521023 1.49056875317561\\
+9.68246611930312 1.4466373827049\\
+10.3279473191895 1.38809302815284\\
+11.0164594963366 1.31668595740746\\
+11.8597101233767 1.2228686981262\\
+12.8857621318552 1.10769216046452\\
+14.1302599059953 0.975958468022417\\
+15.7833140565212 0.823204307634532\\
+18.1241754737424 0.652260172082157\\
+21.7940698430296 0.468043376005329\\
+28.4743916646725 0.282814166586618\\
+49.5102015955635 0.0971226896640252\\
+80.7062014114951 0.0381315336354449\\
+108.401435917833 0.0221246554729174\\
+136.500780654601 0.0147427851340664\\
+165.660595894991 0.010679900647644\\
+197.376432630026 0.00812790588463667\\
+230.867799418717 0.00648022573022635\\
+267.563844455205 0.00532687682797522\\
+307.2468842709 0.00450574828860765\\
+349.577557436328 0.00391131189377146\\
+397.740302405804 0.00344388289171274\\
+452.538627817017 0.00307336860371955\\
+519.655724382766 0.00275550803571285\\
+765.391938823015 0.00205285601249384\\
+823.978568452852 0.00190671380900516\\
+887.04968896544 0.00174504223495197\\
+946.1848194722 0.00159044484796015\\
+1000 0.001450119779708\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.207164967560207 0.000984977952612685\\
+0.545427130532983 0.00676362065265335\\
+3.11525422355549 0.21679588554222\\
+4.4632339267104 0.434323824475532\\
+5.51749237612913 0.641928165663123\\
+6.39448842855694 0.826911840911409\\
+7.20871503378214 0.996622201468997\\
+7.90492762269643 1.13155450714358\\
+8.58882855954625 1.24877335435785\\
+9.24625711640574 1.34349988574698\\
+9.86265846131282 1.41496895316942\\
+10.5201521761616 1.47298766258374\\
+11.2214776820798 1.51598602945727\\
+11.9695570235904 1.54363990039541\\
+12.7675070431927 1.55678457483246\\
+13.7447909267754 1.55625430716884\\
+14.9339321612425 1.53980378456727\\
+16.527920614649 1.50380346206315\\
+18.979216428391 1.43962460646706\\
+32.6974974451177 1.19938088781834\\
+39.3182875570577 1.14509170434202\\
+47.2796959160039 1.1041300715203\\
+57.9112264764176 1.0714778300226\\
+72.9227205872831 1.046161493084\\
+96.157460014321 1.02709822787356\\
+136.500780654601 1.01372646760208\\
+228.74908173557 1.00499522641043\\
+648.353428605472 0.999578989448129\\
+1000 0.99870383593354\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00021071596485\\
+0.511338753841433 1.00574234908319\\
+0.880937190447399 1.01690641882821\\
+1.25053858729039 1.03360182824143\\
+1.63385387780986 1.05625718341722\\
+2.03849339825246 1.08535368388402\\
+2.49687842888433 1.12362843510873\\
+3.00246170908555 1.17072898966223\\
+3.64385898376354 1.23472119699469\\
+4.67379510799246 1.33703888339513\\
+5.83130511352622 1.43158840842782\\
+6.57382014340959 1.47050153055458\\
+7.20871503378214 1.48625703564617\\
+7.76050333513357 1.48577100278315\\
+8.35452805838287 1.47066794789268\\
+8.9114823228402 1.44385583812113\\
+9.5055659201012 1.40372489997194\\
+10.1392540755882 1.35063689870264\\
+10.8151870255229 1.28592442008821\\
+11.6430313292088 1.2005268352098\\
+12.650337203959 1.09471745436885\\
+13.8720978054162 0.97206496563296\\
+15.3527502878042 0.839126694363539\\
+17.4679621512725 0.682867640084677\\
+20.4319732019527 0.521256628951543\\
+25.0264009641792 0.360161357466413\\
+33.3060034362459 0.209412878393601\\
+52.8107971193433 0.0853223945750632\\
+153.881775003835 0.0105672898682992\\
+216.438908606402 0.00556081224213261\\
+282.781797962534 0.00343027939467486\\
+356.083255262928 0.00230668563013984\\
+444.270674960688 0.0016071495541506\\
+591.250841383188 0.00102956377512518\\
+607.832312829723 0.000986205727897114\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.211020342856859 0.00099698944666563\\
+0.922497005259217 0.0189210926724661\\
+2.76338529005317 0.167288039260035\\
+4.07014245321944 0.354116638241176\\
+5.12518692705333 0.542779850013828\\
+6.05036787939122 0.723671122634888\\
+6.82077673286568 0.875214438873428\\
+7.54879928165344 1.01104119831165\\
+8.27785696619848 1.13335454003902\\
+8.99402217409204 1.2357272421968\\
+9.68246611930312 1.31555308910115\\
+10.3279473191895 1.37383932418325\\
+11.0164594963366 1.41967106070649\\
+11.7508713090481 1.45242680686405\\
+12.650337203959 1.47428414048885\\
+13.6186523675608 1.4811503133443\\
+14.796880626864 1.47403959525975\\
+16.3762407452169 1.44955699686614\\
+18.6324631193156 1.40311682099961\\
+23.2469705998565 1.31053261746054\\
+30.6539529505653 1.20632945246234\\
+37.5469422407334 1.14738141162976\\
+45.5678626584106 1.10487194609209\\
+55.8144624945496 1.07241282961999\\
+70.2824426430835 1.04700313260738\\
+92.6759330114688 1.02773843361645\\
+131.55856240457 1.01417557010508\\
+218.443607114943 1.00546405585203\\
+554.298551568467 1.00105982307764\\
+1000 1.00008650697837\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00020420451419\\
+0.520854855057766 1.00571591593343\\
+0.905642837944528 1.01698208839834\\
+1.29751716865759 1.03403134772919\\
+1.71093390726902 1.05737606028692\\
+2.15443469003188 1.08744975356347\\
+2.66333272517498 1.12661212053633\\
+3.29243733300777 1.17859844449565\\
+4.67379510799246 1.28581543726942\\
+5.56859644428641 1.33449012408357\\
+6.2776601058065 1.35500296156782\\
+6.8839520696455 1.35842158901939\\
+7.47952251562182 1.34923612042116\\
+8.12661920009194 1.32638521304547\\
+8.74866812047991 1.29371402381126\\
+9.41833153464795 1.24943963005363\\
+10.1392540755882 1.19443799916559\\
+11.0164594963366 1.12177287525432\\
+11.9695570235904 1.04066826035085\\
+13.1255683577184 0.94482321091424\\
+14.5265392594678 0.83759794623065\\
+16.3762407452169 0.71490421690769\\
+18.8050405512858 0.585445407558462\\
+22.1996611911995 0.452653070310868\\
+27.9541599906786 0.310482434582043\\
+57.3797641421413 0.0944807417194765\\
+70.93341204988 0.0682879879792687\\
+86.0864769614925 0.051692613048903\\
+103.517795563018 0.0403447934748092\\
+123.336349791378 0.0323865175499063\\
+146.949180062482 0.0263871141261768\\
+175.082703173572 0.0218072467703292\\
+208.60240892485 0.0182729722712013\\
+248.53948574298 0.015524264486379\\
+293.404970921579 0.0134779119950247\\
+343.190719745904 0.0119375874997524\\
+401.424249049932 0.0107006963718353\\
+473.887960971766 0.00964780496994262\\
+602.254120146193 0.00842206485344181\\
+691.575882873852 0.00774812552408906\\
+758.367791499719 0.00724735502409625\\
+816.416760492147 0.00678829730653833\\
+870.843149769072 0.00633168001907941\\
+928.89787201645 0.0058211374262079\\
+990.82280990038 0.00526406287474181\\
+1000 0.00518158830426909\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.212974853574552 0.000984703605242891\\
+2.94760625512486 0.177044606863457\\
+3.95911026646846 0.308581759155715\\
+4.84937406733524 0.443356769275993\\
+5.67222897164454 0.575326883459059\\
+6.4537154016467 0.699597208130357\\
+7.20871503378214 0.812445953415892\\
+7.90492762269643 0.906252617547371\\
+8.58882855954625 0.986632068003923\\
+9.33189771573324 1.05982650392161\\
+10.1392540755882 1.12308643116154\\
+10.9153593533139 1.16944021217196\\
+11.8597101233767 1.20970018615646\\
+12.8857621318552 1.23753851634942\\
+14.000583824681 1.25395166223857\\
+15.3527502878042 1.26068377371205\\
+17.1488196987054 1.2561680739653\\
+19.6922025547917 1.23727680991666\\
+23.8989256623105 1.19824395023137\\
+39.6824610456948 1.09756656717935\\
+50.8987019351968 1.06412544855\\
+66.5001803043112 1.03980606216937\\
+90.9827289445556 1.02242577389334\\
+136.500780654601 1.01080142561579\\
+248.53948574298 1.00446219087767\\
+636.507908129557 1.00495769545405\\
+1000 1.00513437205795\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00022858659365\\
+0.492824957004051 1.00578727958155\\
+0.841249704973612 1.01677933223578\\
+1.19420002813353 1.03350297655154\\
+1.56024641436637 1.05645471714185\\
+1.94665634334226 1.0864028783824\\
+2.34082727617829 1.1224087526332\\
+2.78898029238044 1.16918918444277\\
+3.29243733300777 1.22791384367162\\
+3.85110700232557 1.29891092549611\\
+4.58840412645476 1.39825361021008\\
+7.20871503378214 1.70529560133243\\
+7.76050333513357 1.73654590633757\\
+8.27785696619848 1.74841081742161\\
+8.74866812047991 1.74345676455276\\
+9.24625711640574 1.72202222192619\\
+9.77214696972572 1.68274852409116\\
+10.3279473191895 1.62570473877806\\
+10.9153593533139 1.55254228553205\\
+11.6430313292088 1.45090405481467\\
+12.534242654614 1.3209326689805\\
+13.6186523675608 1.16839038323014\\
+15.0722530931076 0.98791097920778\\
+17.4679621512725 0.758225084840296\\
+37.8947091907467 0.183482603160954\\
+46.4158883361278 0.130569702647175\\
+56.3314267060136 0.0961629881082258\\
+67.7377599751775 0.0731974116432733\\
+80.7062014114951 0.0574384845104833\\
+97.0480887738031 0.0452626678194245\\
+116.698981861715 0.0362476777925308\\
+140.328908478587 0.0294577842184924\\
+170.306502925284 0.0240404614519806\\
+206.688024962908 0.0199023481828423\\
+248.53948574298 0.0168514292996959\\
+296.122543798803 0.0145743280652851\\
+349.577557436328 0.0128595094540004\\
+412.682084570295 0.0114873297029423\\
+491.690357762803 0.0103229516576721\\
+710.970943231243 0.00829623045433711\\
+772.48114514034 0.00778356242217467\\
+831.610415323096 0.00726429402914252\\
+887.04968896544 0.00675050128683016\\
+946.1848194722 0.00618114039187035\\
+1000 0.00565667531118576\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 0.000987044521074404\\
+0.598104096238094 0.00863299902648169\\
+5.26892142135068 0.660104504943558\\
+6.4537154016467 0.966421242610135\\
+7.34287044716677 1.20689361301378\\
+8.05203967082548 1.38912702203261\\
+8.66837993001978 1.53040268800954\\
+9.24625711640574 1.64226145765674\\
+9.86265846131282 1.73592133384525\\
+10.423606739764 1.7974602824601\\
+11.0164594963366 1.83955385295083\\
+11.6430313292088 1.8619560939015\\
+12.3052400435926 1.86602682083049\\
+13.1255683577184 1.85102265139232\\
+14.1302599059953 1.81397743145129\\
+15.4949503931463 1.74863007611775\\
+17.7930438991858 1.63419736350766\\
+25.0264009641792 1.37723711116814\\
+29.5440799888038 1.28424167611116\\
+34.5571993676214 1.21517884195361\\
+40.4209583979631 1.16156897129869\\
+47.7176094893875 1.11845984316009\\
+57.3797641421413 1.08336320878975\\
+70.93341204988 1.05529243877451\\
+90.9827289445556 1.03390892541377\\
+124.478714618791 1.01812182142005\\
+191.992066559328 1.00728209697426\\
+420.362168384471 0.999473762743937\\
+1000 0.994549834110329\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.0002170121082\\
+0.506646100892127 1.00578421595155\\
+0.872852662384838 1.01704257363672\\
+1.23906215694792 1.03391820873031\\
+1.6188596901782 1.05689749417677\\
+2.01978575681988 1.08655461445589\\
+2.45126006203334 1.1237527744692\\
+2.94760625512486 1.17190120917623\\
+3.54445567397044 1.23493327442668\\
+4.34147833005509 1.32237246305059\\
+6.22004882563471 1.49762767007992\\
+6.8839520696455 1.53373317797514\\
+7.47952251562182 1.54943586075336\\
+8.05203967082548 1.54839021523008\\
+8.58882855954625 1.53308246111554\\
+9.16140245713852 1.50261587210357\\
+9.77214696972572 1.45639644256517\\
+10.423606739764 1.39511730931319\\
+11.1184960481927 1.32076302650099\\
+11.9695570235904 1.22364878519491\\
+13.0051125217341 1.10524353822154\\
+14.2611370719413 0.970836990876706\\
+15.9295021257212 0.816231151720163\\
+18.2920450484629 0.644650699867354\\
+22.1996611911995 0.453423427371125\\
+29.8177229001967 0.259262192354296\\
+76.3629826128224 0.0431143287679629\\
+99.769776423632 0.0265791205318374\\
+124.478714618791 0.0181685863872198\\
+149.683929307726 0.0134771451887414\\
+176.704352608895 0.0104795914535714\\
+206.688024962908 0.00840589185207104\\
+239.540735872088 0.00694439797474118\\
+275.067600790807 0.00589562333705034\\
+315.863540826782 0.00508191808281756\\
+359.381366380463 0.00448504753893933\\
+408.894822629486 0.00400905545815459\\
+469.539001068006 0.00360107036003306\\
+554.298551568467 0.00320907615648738\\
+710.970943231243 0.00270519726294141\\
+779.636013040524 0.00250424123665625\\
+839.312949816636 0.00232408248247338\\
+895.26571259964 0.0021488559505733\\
+954.948563979197 0.00195753460039927\\
+1000 0.00181302873881621\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.207164967560207 0.000989577661714325\\
+0.565917016324624 0.00731958862421034\\
+3.17322963473498 0.226338841376543\\
+4.5462954695324 0.453674526410645\\
+5.62017384808319 0.670498407504386\\
+6.5134909462728 0.863047985558827\\
+7.27548352919623 1.02467014630974\\
+7.97814457207663 1.16290998131774\\
+8.66837993001978 1.28222668749995\\
+9.33189771573324 1.37772263906533\\
+9.95400828762153 1.44883456609627\\
+10.61759183483 1.5055079034635\\
+11.3254131515281 1.54628344541952\\
+12.0804213467733 1.57105401403903\\
+12.8857621318552 1.58092486787751\\
+13.8720978054162 1.57651305804747\\
+15.0722530931076 1.55588971220731\\
+16.6810053720006 1.51544669144933\\
+19.3324228755505 1.44182979870039\\
+30.3726357970331 1.22926973646728\\
+36.5226736430818 1.16768840666419\\
+43.9180089259609 1.12078677562943\\
+53.2999408084409 1.08458278396406\\
+65.8898955079995 1.05670419197755\\
+84.5136633068472 1.03516839167553\\
+115.628013120738 1.01913734088751\\
+176.704352608895 1.00834269908519\\
+356.083255262928 1.00180729032106\\
+1000 0.998338654356233\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00019997053167\\
+0.511338753841433 1.00571743705366\\
+0.872852662384838 1.01672701851584\\
+1.23906215694792 1.03340440041598\\
+1.6188596901782 1.05609876982551\\
+2.01978575681988 1.08535110680322\\
+2.45126006203334 1.12197438179983\\
+2.94760625512486 1.16925411051604\\
+3.54445567397044 1.23090413499703\\
+4.38168993151419 1.32009886536953\\
+6.10640754223204 1.47556532170834\\
+6.82077673286568 1.51376904033354\\
+7.41088151564157 1.52894755856796\\
+7.97814457207663 1.5283944707877\\
+8.51000724712225 1.5144424487903\\
+9.07732652521023 1.48625540095531\\
+9.68246611930312 1.44316204005344\\
+10.3279473191895 1.38563633853832\\
+11.0164594963366 1.31533675592855\\
+11.8597101233767 1.2227626031127\\
+12.8857621318552 1.10879997722328\\
+14.1302599059953 0.978057780723203\\
+15.7833140565212 0.825962617447402\\
+17.957846470021 0.665745982577778\\
+21.3958887134342 0.486795115680686\\
+27.4434330322837 0.305178690539769\\
+41.9394395566719 0.13448716999309\\
+88.5007491447344 0.0317813417274345\\
+121.082975023204 0.0177378028321802\\
+153.881775003835 0.0115853026518327\\
+186.754584276108 0.00836672239350672\\
+222.508879812837 0.00634982750817787\\
+260.2647881969 0.00505178292222461\\
+298.865287355038 0.00419599248049215\\
+343.190719745904 0.00354294636012853\\
+390.473523688556 0.00307229439751212\\
+444.270674960688 0.0027032416515601\\
+510.161531474983 0.00239137935770204\\
+607.832312829723 0.0020779665778434\\
+724.202233460732 0.00180197554215247\\
+794.145171902934 0.00164997290723325\\
+854.932706626838 0.0015172762201196\\
+911.92675984593 0.00139118298149873\\
+972.720319245054 0.00125654582367325\\
+1000 0.00119691993022631\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.214947467343798 0.000991474154018678\\
+1.87617469143912 0.0786051354534781\\
+3.47969790388769 0.266177275678597\\
+4.71708469091702 0.476367211090243\\
+5.72476623970218 0.676881786128738\\
+6.57382014340959 0.854133949936334\\
+7.34287044716677 1.01075925746182\\
+8.05203967082548 1.14384000084806\\
+8.74866812047991 1.25813922998681\\
+9.41833153464795 1.3493739774202\\
+10.0462042134681 1.41731957931482\\
+10.7159339982267 1.47166365243692\\
+11.4303112911448 1.51113390151674\\
+12.1923125164911 1.53566424431487\\
+13.0051125217341 1.54626354256286\\
+14.000583824681 1.54362364906843\\
+15.211855179861 1.52578235458935\\
+16.835508029612 1.48925025735678\\
+19.5114834684662 1.42125324166503\\
+31.8055201533292 1.20748056754498\\
+38.24569722467 1.15148553388737\\
+45.9899209052244 1.1089778932911\\
+56.3314267060136 1.07494597307969\\
+70.93341204988 1.04847396918585\\
+92.6759330114688 1.02900513119491\\
+130.351224468151 1.01498493137987\\
+212.484535249888 1.00580801181602\\
+524.468874949512 1.00049982099324\\
+1000 0.998963273489523\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.0002297416947\\
+0.492824957004051 1.00578773132736\\
+0.849041520408875 1.01706107469385\\
+1.20526093687084 1.03402613383994\\
+1.57469771464309 1.05728416936759\\
+1.94665634334226 1.0860723151995\\
+2.36250846547795 1.12398581027201\\
+2.81481236050758 1.17117604858452\\
+3.32293251639897 1.23026025033061\\
+3.92277675892772 1.30612085907368\\
+4.67379510799246 1.40617781439369\\
+6.94771254846024 1.67239726729273\\
+7.54879928165344 1.71170867410161\\
+8.12661920009194 1.72933730768751\\
+8.66837993001978 1.72606920770066\\
+9.16140245713852 1.70637097050349\\
+9.68246611930312 1.66955176293465\\
+10.2331657833025 1.61551432220752\\
+10.8151870255229 1.5456452587658\\
+11.5361810173648 1.44780778279753\\
+12.4192135270178 1.3216205869055\\
+13.4936714058831 1.1722032144949\\
+14.9339321612425 0.993838136479915\\
+17.1488196987054 0.777745543012107\\
+22.4052786930002 0.472371699766719\\
+31.8055201533292 0.247201866096736\\
+40.0500075787361 0.164664687999375\\
+49.0558370636505 0.117312977497726\\
+59.5353313081437 0.086489477633604\\
+71.5904108596489 0.0658987907248137\\
+85.2964449974102 0.0517610803282885\\
+101.6265089393 0.0413041693654156\\
+122.204468663149 0.0330932570651336\\
+146.949180062482 0.0269154110849164\\
+176.704352608895 0.0221983912974139\\
+212.484535249888 0.0185565439438878\\
+255.509709035251 0.015725944048536\\
+304.42722120643 0.013618399306739\\
+359.381366380463 0.0120343819503353\\
+424.255643071778 0.0107678604170973\\
+505.479682119124 0.00968999712364423\\
+697.981390783066 0.00801207543559182\\
+765.391938823015 0.00747918340606319\\
+823.978568452852 0.00699186077452934\\
+878.909065341995 0.00650955862624419\\
+937.501501514529 0.00597367066993419\\
+1000 0.00539288850252799\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.201513573381556 0.000991369565026902\\
+0.550478980785497 0.00731880118015693\\
+5.36697694554048 0.679839593590152\\
+6.4537154016467 0.958477682381947\\
+7.27548352919623 1.17696209521055\\
+7.97814457207663 1.35512984917002\\
+8.58882855954625 1.49417517168493\\
+9.16140245713852 1.60534550339679\\
+9.77214696972572 1.69980237718783\\
+10.3279473191895 1.76324688565682\\
+10.9153593533139 1.80822609146817\\
+11.5361810173648 1.83421625412845\\
+12.1923125164911 1.84223851847655\\
+13.0051125217341 1.83187655378131\\
+14.000583824681 1.79971564616347\\
+15.211855179861 1.74612573305982\\
+17.1488196987054 1.65270076885321\\
+26.9420371368188 1.32921049267154\\
+31.5136348486648 1.25102687383997\\
+36.8609536217216 1.18953287215509\\
+43.5149650092505 1.1395955040182\\
+51.8459354389291 1.10036260736914\\
+62.9214610961034 1.06923906517432\\
+78.5045620020451 1.04501166315356\\
+103.517795563018 1.02606896872531\\
+148.31025143361 1.01260150224567\\
+253.164847863136 1.0036921317713\\
+972.720319245054 0.994672345758512\\
+1000 0.994808613989335\\
+};
+\addplot [color=mycolor1, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1.00020954496384\\
+0.516074871038591 1.00579146307111\\
+0.889096598952916 1.01703959463547\\
+1.26212131452255 1.03383979653677\\
+1.64898694447106 1.05659555246692\\
+2.05737431343291 1.08574586815517\\
+2.52000499376409 1.1239507180103\\
+3.05833803237844 1.17338880266678\\
+3.74605003274899 1.24045599701126\\
+6.2776601058065 1.44057990425486\\
+6.94771254846024 1.46116763418812\\
+7.54879928165344 1.46382443377929\\
+8.12661920009194 1.45223914241432\\
+8.74866812047991 1.42539993442632\\
+9.33189771573324 1.38858554667703\\
+9.95400828762153 1.33949883455865\\
+10.7159339982267 1.26977073990895\\
+11.5361810173648 1.1882166195253\\
+12.534242654614 1.0868667534867\\
+13.7447909267754 0.968764216009991\\
+15.211855179861 0.83985245355863\\
+17.1488196987054 0.697328850279999\\
+19.8745954958098 0.544449879386969\\
+24.1202820761801 0.38544854739369\\
+31.2244282309286 0.238078940532575\\
+46.4158883361278 0.111034629018082\\
+122.204468663149 0.0171162319914057\\
+164.140297114447 0.00992430724437396\\
+206.688024962908 0.00661436956912793\\
+250.841505927754 0.00479772888002399\\
+296.122543798803 0.00371157692757879\\
+343.190719745904 0.00300548244364327\\
+394.090164040345 0.002506686745748\\
+452.538627817017 0.00212548895791761\\
+519.655724382766 0.00183068994706429\\
+613.462171799251 0.00155386932491147\\
+744.512291079513 0.00128203494651237\\
+816.416760492147 0.0011528522896618\\
+878.909065341995 0.00104395024350009\\
+911.92675984593 0.00098726789669818\\
+};
+\addplot [color=mycolor2, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.211020342856859 0.00099135526076278\\
+0.598104096238094 0.00789341869276899\\
+2.61467321180109 0.148407886961816\\
+3.92277675892772 0.325690971355827\\
+4.98537346387389 0.507889209498173\\
+5.88531577519145 0.677513921741425\\
+6.69616005485322 0.832012028793756\\
+7.41088151564157 0.961752171130274\\
+8.12661920009194 1.07959943238888\\
+8.82969995549409 1.17955171767708\\
+9.5055659201012 1.25893512355348\\
+10.2331657833025 1.32589651610798\\
+10.9153593533139 1.37244462231969\\
+11.6430313292088 1.40699290954211\\
+12.534242654614 1.4319795371025\\
+13.4936714058831 1.44276985588542\\
+14.6610868404698 1.44054164735945\\
+16.0770442167382 1.42429827881865\\
+18.1241754737424 1.38886050405382\\
+21.5940615210357 1.32360151035419\\
+32.1001089554317 1.18379119700084\\
+39.3182875570577 1.13109190534588\\
+48.1595791019235 1.09166733125577\\
+60.0867589171969 1.06111065730019\\
+77.070271142123 1.03827810402975\\
+104.47659715608 1.02145049880974\\
+156.74554102056 1.00995946517423\\
+293.404970921579 1.00332016608336\\
+1000 1.00081388192113\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+20 0.7\\
+50 0.7\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+50 0.1\\
+500 0.1\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+500 0.01\\
+1000 0.01\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.136766110409167 0.000467624223911311\\
+2 0.1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/robust_stability.pdf b/matlab/figs/robust_stability.pdf
new file mode 100644
index 0000000..2780f79
Binary files /dev/null and b/matlab/figs/robust_stability.pdf differ
diff --git a/matlab/figs/robust_stability.png b/matlab/figs/robust_stability.png
new file mode 100644
index 0000000..340dde5
Binary files /dev/null and b/matlab/figs/robust_stability.png differ
diff --git a/matlab/figs/robust_stability.svg b/matlab/figs/robust_stability.svg
new file mode 100644
index 0000000..a4772ee
--- /dev/null
+++ b/matlab/figs/robust_stability.svg
@@ -0,0 +1,249 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/robust_stability.tex b/matlab/figs/robust_stability.tex
new file mode 100644
index 0000000..c8f2861
--- /dev/null
+++ b/matlab/figs/robust_stability.tex
@@ -0,0 +1,1132 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=3.631in,
+height=1.989in,
+at={(0.325in,0.419in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmode=log,
+xmin=0.1,
+xmax=1000,
+xminorticks=true,
+xlabel={Frequency [Hz]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymode=log,
+ymin=0.02,
+ymax=2,
+yminorticks=true,
+axis background/.style={fill=white},
+xmajorgrids,
+xminorgrids,
+ymajorgrids,
+yminorgrids
+]
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039309331963\\
+0.334598912054997 0.100448499077048\\
+0.550478980785497 0.101213615752643\\
+0.760117761795533 0.10230988010538\\
+0.974964918348409 0.103789816323683\\
+1.19420002813353 0.105665295529374\\
+1.40977287162897 0.107861002060435\\
+1.63385387780986 0.110502209230813\\
+1.87617469143912 0.113755065012372\\
+2.13466303332425 0.117657972599812\\
+2.40647515001542 0.122214979737495\\
+2.68800102153761 0.127386333934347\\
+3.00246170908555 0.133650403249216\\
+3.35371015200293 0.141170922595561\\
+3.78074666359935 0.15090341759335\\
+4.3016357581068 0.163350309907326\\
+5.17265738721602 0.184483588631828\\
+6.2776601058065 0.209301921782174\\
+7.01206358900718 0.223213908942937\\
+7.68928372075831 0.233714232215048\\
+8.35452805838287 0.241757905518141\\
+8.99402217409204 0.247457216120373\\
+9.68246611930312 0.251584432955964\\
+10.423606739764 0.254035852882007\\
+11.2214776820798 0.254802487145319\\
+12.0804213467733 0.253958925122535\\
+13.0051125217341 0.251643430434739\\
+14.1302599059953 0.247502999505734\\
+15.4949503931463 0.241329252221409\\
+17.1488196987054 0.2330776648182\\
+19.1550055557353 0.222882955497879\\
+21.7940698430296 0.210124135111641\\
+25.9665597293487 0.192510191623661\\
+42.3278906557355 0.150116842029793\\
+49.5102015955635 0.139922645937256\\
+56.8531791387375 0.132380562077484\\
+65.2852114112785 0.126106640181273\\
+74.9678187496688 0.120970389824955\\
+86.0864769614925 0.116822671145113\\
+99.769776423632 0.113316512888807\\
+116.698981861715 0.110438312481853\\
+139.041083409007 0.108030274597808\\
+168.743567772738 0.106110400578584\\
+212.484535249888 0.104533661548839\\
+285.400976982924 0.103222408075678\\
+436.153778920801 0.102054407488548\\
+1000 0.100433842599204\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039532454044\\
+0.334598912054997 0.100448854583523\\
+0.550478980785497 0.101213490411252\\
+0.760117761795533 0.102309221059694\\
+0.974964918348409 0.103788893615614\\
+1.19420002813353 0.10566481639416\\
+1.40977287162897 0.107862141433199\\
+1.63385387780986 0.110506853489999\\
+1.87617469143912 0.11376635421112\\
+2.13466303332425 0.117680638225121\\
+2.40647515001542 0.122255692302471\\
+2.68800102153761 0.127453905130932\\
+3.00246170908555 0.133759950981242\\
+3.35371015200293 0.141345281042914\\
+3.74605003274899 0.150366241795426\\
+4.26215882901533 0.162845134730737\\
+5.03154894503806 0.181927425691727\\
+6.33580499265825 0.212231532887353\\
+7.01206358900718 0.225488931276784\\
+7.68928372075831 0.236503659978922\\
+8.27785696619848 0.244127293812137\\
+8.9114823228402 0.250353854860675\\
+9.59360828709315 0.254943660020929\\
+10.3279473191895 0.257753592672854\\
+11.1184960481927 0.258745594416087\\
+11.9695570235904 0.257978994699316\\
+12.8857621318552 0.255590854358017\\
+14.000583824681 0.251203265256171\\
+15.211855179861 0.245314284191756\\
+16.6810053720006 0.237398053073717\\
+18.4614694632455 0.227498735260711\\
+20.8122156998634 0.214835538352444\\
+24.1202820761801 0.19874289304181\\
+30.0939003444972 0.175417788264677\\
+40.4209583979631 0.148664951114005\\
+47.7176094893875 0.136458698980801\\
+55.302242561929 0.127371240103598\\
+63.5042516859596 0.120270475412753\\
+72.2534949178721 0.114768566077155\\
+82.2081575524054 0.110228909110254\\
+94.400647894176 0.106287256943315\\
+108.401435917833 0.103148795620553\\
+125.631660247412 0.100525351680836\\
+148.31025143361 0.0982813525088763\\
+178.341022071001 0.0964532110717337\\
+222.508879812837 0.0949158664243899\\
+293.404970921579 0.0936448943362589\\
+428.185179865241 0.0925490814032504\\
+903.557834613893 0.0911240307671813\\
+1000 0.0909255299672521\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039741453916\\
+0.331528234231942 0.100445288861589\\
+0.545427130532983 0.101205298766711\\
+0.753142016597437 0.102294965938552\\
+0.966017479952265 0.103767346662503\\
+1.18324062745838 0.105635495901382\\
+1.39683511798874 0.107825843912904\\
+1.6188596901782 0.110465282127657\\
+1.85895667963569 0.113723126946082\\
+2.09566239948043 0.117330110736577\\
+2.36250846547795 0.121844276724518\\
+2.63889081445751 0.12698976714078\\
+2.94760625512486 0.133256864816243\\
+3.29243733300777 0.14083437890197\\
+3.67760910160103 0.149906397380846\\
+4.14588849683291 0.161593526606246\\
+4.76077523022637 0.177569270186147\\
+6.75818116816111 0.226445857700697\\
+7.41088151564157 0.239060804957856\\
+8.05203967082548 0.24916268885705\\
+8.66837993001978 0.256660497293653\\
+9.24625711640574 0.261790324128794\\
+9.86265846131282 0.265405799881411\\
+10.5201521761616 0.267411767798893\\
+11.2214776820798 0.267790505538969\\
+11.9695570235904 0.266595958820007\\
+12.8857621318552 0.263450541572095\\
+13.8720978054162 0.258630464525679\\
+15.0722530931076 0.251541828990874\\
+16.3762407452169 0.243069637258493\\
+17.957846470021 0.232488062728249\\
+20.0586777950823 0.218782107545443\\
+22.822244741869 0.202207971650301\\
+26.6947849403432 0.182284329738422\\
+33.6144900010877 0.155155810866983\\
+46.4158883361278 0.123896005851482\\
+54.7947233690029 0.111182634814013\\
+63.5042516859596 0.10171677771965\\
+72.2534949178721 0.09474168965598\\
+82.2081575524054 0.0888714301279918\\
+92.6759330114688 0.0843044884347159\\
+104.47659715608 0.080487414251977\\
+118.87076977119 0.0771038044443926\\
+135.248087041788 0.0743615810956175\\
+155.307057393346 0.0720147607586568\\
+179.992850678248 0.0700580736700784\\
+210.534524276671 0.0684653743158031\\
+253.164847863136 0.067075470338047\\
+312.964801067075 0.0659384541977185\\
+408.894822629486 0.0649641583191198\\
+585.824820015254 0.0641128868088293\\
+1000 0.0632228716035705\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100040157568956\\
+0.331528234231942 0.100450072866426\\
+0.540421642070592 0.10119617692357\\
+0.746230289139111 0.102278098935548\\
+0.957152153899187 0.103740746762033\\
+1.1723818032866 0.105597778773413\\
+1.38401609657313 0.107776882571623\\
+1.60400310705682 0.110405400957745\\
+1.84189668079971 0.113653844842354\\
+2.07643010725577 0.117255848758978\\
+2.34082727617829 0.121772129125499\\
+2.61467321180109 0.126931838377873\\
+2.92055551218275 0.1332341030233\\
+3.26222200971167 0.140881823087619\\
+3.64385898376354 0.150080386521331\\
+4.07014245321944 0.161010758817714\\
+4.63090280179974 0.176090954556336\\
+5.83130511352622 0.208667043489907\\
+6.69616005485322 0.229975908991228\\
+7.34287044716677 0.243593929601519\\
+7.97814457207663 0.254578887521195\\
+8.58882855954625 0.262751974765064\\
+9.16140245713852 0.268318773985445\\
+9.77214696972572 0.272175912056834\\
+10.423606739764 0.274194764689467\\
+11.1184960481927 0.274344846628086\\
+11.8597101233767 0.272689026962925\\
+12.650337203959 0.269367243799403\\
+13.6186523675608 0.263781539195983\\
+14.6610868404698 0.256609757899286\\
+15.9295021257212 0.247076346981239\\
+17.4679621512725 0.235205618852969\\
+19.3324228755505 0.221226376742767\\
+21.7940698430296 0.204231507707659\\
+25.2582002696278 0.183585660849496\\
+30.3726357970331 0.159380246949423\\
+57.9112264764176 0.096490501995401\\
+67.7377599751775 0.086382760470516\\
+77.7841107128649 0.0789045823011848\\
+88.5007491447344 0.0730198544264904\\
+100.693863147603 0.0680776162331063\\
+113.5154708921 0.0642347559675103\\
+127.969686821594 0.0610213036987137\\
+144.264395121816 0.0583540686146761\\
+162.633950404819 0.0561550609121929\\
+185.04070195423 0.0542284695772366\\
+212.484535249888 0.0525836776283053\\
+246.258591635055 0.0512132037753561\\
+290.712337727258 0.0500390711204919\\
+349.577557436328 0.0490745100120771\\
+436.153778920801 0.0482485654674035\\
+575.121707184161 0.0475430727154661\\
+862.85125663669 0.0468518456614003\\
+1000 0.0466406891001802\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039046362111\\
+0.334598912054997 0.100445449165051\\
+0.550478980785497 0.101205413277941\\
+0.760117761795533 0.102294426064943\\
+0.974964918348409 0.10376481368121\\
+1.19420002813353 0.105628584578516\\
+1.40977287162897 0.107811138817119\\
+1.63385387780986 0.110437327722318\\
+1.87617469143912 0.113672932565486\\
+2.13466303332425 0.117557070436497\\
+2.40647515001542 0.122095084366883\\
+2.68800102153761 0.127249199256073\\
+3.00246170908555 0.133499548514065\\
+3.35371015200293 0.141016043017149\\
+3.74605003274899 0.149955276593594\\
+4.26215882901533 0.162329076104293\\
+4.98537346387389 0.180163789704007\\
+6.5134909462728 0.215500521947535\\
+7.20871503378214 0.228900987707911\\
+7.90492762269643 0.240051456404574\\
+8.58882855954625 0.248684387297625\\
+9.24625711640574 0.254880953688143\\
+9.95400828762153 0.259444541034382\\
+10.7159339982267 0.26223170714347\\
+11.5361810173648 0.263194415580188\\
+12.4192135270178 0.262375115970832\\
+13.3698374182495 0.259891819784404\\
+14.3932264471941 0.255917821073481\\
+15.6384675830225 0.249924238378106\\
+17.1488196987054 0.24174634179627\\
+18.979216428391 0.231402530087128\\
+21.1995345753607 0.219110056310037\\
+24.3436887354311 0.203133009243582\\
+29.2729483504282 0.182199638713624\\
+43.5149650092505 0.143956598290518\\
+50.8987019351968 0.132250368026605\\
+58.4476113163363 0.123552684035801\\
+66.5001803043112 0.116722893209532\\
+75.6621850048106 0.1110204649962\\
+86.0864769614925 0.10631588785321\\
+97.946966706954 0.102475013153921\\
+112.473717836475 0.0991699291250006\\
+130.351224468151 0.0964044925369112\\
+152.469572701757 0.0941511196853621\\
+181.659978837533 0.0922731447641971\\
+222.508879812837 0.0907143222461905\\
+285.400976982924 0.0894097671443501\\
+397.740302405804 0.0882879003915183\\
+666.536326812491 0.0871821350806374\\
+1000 0.0864396465626864\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100041239077541\\
+0.328485736603004 0.100454047174218\\
+0.535462089927361 0.101207213062394\\
+0.739381991917587 0.102300283771359\\
+0.948368186628592 0.103779729324222\\
+1.1616226326085 0.10566098718688\\
+1.37131471775395 0.107872731390394\\
+1.58928286562298 0.110546817335653\\
+1.80824493487795 0.113611404131746\\
+2.03849339825246 0.117234233307091\\
+2.27697025538168 0.121407778331318\\
+2.54334576130465 0.126559351449963\\
+2.81481236050758 0.13231842981246\\
+3.11525422355549 0.139257645052903\\
+3.44776405473446 0.147578162498039\\
+3.81576466127125 0.15748902446517\\
+4.26215882901533 0.170344578489015\\
+4.80487043965513 0.186880614081581\\
+5.77779011797051 0.217478427011821\\
+6.75818116816111 0.246687927425103\\
+7.41088151564157 0.26360343885422\\
+7.97814457207663 0.275954398452341\\
+8.51000724712225 0.285261083447128\\
+9.07732652521023 0.292657409917169\\
+9.59360828709315 0.297167857866312\\
+10.1392540755882 0.299803204357318\\
+10.7159339982267 0.300483815162503\\
+11.3254131515281 0.299228673909526\\
+11.9695570235904 0.29614699273252\\
+12.650337203959 0.2914193510991\\
+13.4936714058831 0.284128410696054\\
+14.5265392594678 0.273941112855678\\
+15.7833140565212 0.26080796222924\\
+17.3076553419573 0.244987281786282\\
+19.3324228755505 0.225353693022436\\
+21.9959306803007 0.202716520279011\\
+25.7282596744793 0.17678965278761\\
+31.5136348486648 0.14681894547588\\
+41.1731993116168 0.113917600793655\\
+60.6432939540806 0.0781546824763455\\
+125.631660247412 0.0380680591896684\\
+241.759407916913 0.0199931987324404\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100040284782766\\
+0.331528234231942 0.100451574749252\\
+0.540421642070592 0.1012002298691\\
+0.746230289139111 0.102285955374607\\
+0.957152153899187 0.103753943111246\\
+1.1723818032866 0.105618087620732\\
+1.38401609657313 0.107806020863473\\
+1.60400310705682 0.110445899291878\\
+1.84189668079971 0.113709481931013\\
+2.07643010725577 0.117329734934458\\
+2.34082727617829 0.121871143274436\\
+2.61467321180109 0.127062735946748\\
+2.92055551218275 0.13340873871846\\
+3.23228397818138 0.140417352084479\\
+3.61041859717334 0.149561057056254\\
+4.03278998219371 0.160455532415904\\
+4.58840412645476 0.175545007009192\\
+5.56859644428641 0.202753910172064\\
+6.57382014340959 0.228753676275444\\
+7.20871503378214 0.242908541921277\\
+7.8323825991792 0.254531928122161\\
+8.43190929286626 0.26336291187577\\
+8.99402217409204 0.269537025798332\\
+9.59360828709315 0.273990852951512\\
+10.2331657833025 0.276556937185058\\
+10.9153593533139 0.277171618540287\\
+11.6430313292088 0.275874760293767\\
+12.4192135270178 0.27279543992427\\
+13.2471398786612 0.268128409533462\\
+14.2611370719413 0.261151211808076\\
+15.4949503931463 0.251648659541833\\
+16.9914417203463 0.239628681725558\\
+18.8050405512858 0.225328505663144\\
+21.0049824165392 0.209177568004348\\
+24.1202820761801 0.189091331735278\\
+28.4743916646725 0.166168352549696\\
+36.5226736430818 0.135673596993908\\
+54.2918617761894 0.0982170122414681\\
+65.2852114112785 0.0852102774012613\\
+76.3629826128224 0.0760890767826632\\
+87.6885609458743 0.0693584231092391\\
+99.769776423632 0.0640694440464387\\
+113.5154708921 0.0596306699092731\\
+127.969686821594 0.0561799911023947\\
+144.264395121816 0.0532940580946228\\
+162.633950404819 0.0508976857860789\\
+183.342548256229 0.0489207653295616\\
+208.60240892485 0.0471873196594332\\
+239.540735872088 0.0457058553858399\\
+277.61532944368 0.0444698782512754\\
+327.729484992338 0.0434093737019623\\
+394.090164040345 0.0425367417505171\\
+491.690357762803 0.0417883213936126\\
+648.353428605472 0.0411472475322237\\
+972.720319245054 0.0405075992259774\\
+1000 0.0404694412585928\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100042699262142\\
+0.322484249840844 0.100453457281297\\
+0.525679112201842 0.101206249037776\\
+0.725873365081725 0.102299889677625\\
+0.931041348706908 0.103782237660798\\
+1.12993393803322 0.105567395502775\\
+1.33390569003906 0.107752561356851\\
+1.54592773641948 0.110402306792031\\
+1.75891659032773 0.113449814150161\\
+1.98288394912707 0.117067883130394\\
+2.21485523372636 0.121257509848885\\
+2.45126006203334 0.125984304771929\\
+2.71289780037247 0.131744786242046\\
+3.00246170908555 0.138754311834252\\
+3.29243733300777 0.146422420388229\\
+3.61041859717334 0.155548271638937\\
+3.99578030189527 0.167556850749846\\
+4.4222739805059 0.181954367116973\\
+4.93962174387832 0.200751830071589\\
+5.67222897164454 0.229135965127689\\
+7.20871503378214 0.288669155464527\\
+7.8323825991792 0.30951861416246\\
+8.35452805838287 0.324168541026719\\
+8.82969995549409 0.334830318255261\\
+9.33189771573324 0.343114646077511\\
+9.77214696972572 0.347846067861805\\
+10.2331657833025 0.350399906341752\\
+10.7159339982267 0.35070276776699\\
+11.2214776820798 0.348799398568033\\
+11.7508713090481 0.34484217642249\\
+12.4192135270178 0.337718963817898\\
+13.1255683577184 0.328483128407576\\
+14.000583824681 0.31575039233253\\
+15.0722530931076 0.299583118612878\\
+16.527920614649 0.278354704708528\\
+18.8050405512858 0.249005251861527\\
+33.0003479112529 0.1517924793109\\
+38.5999361767977 0.133870031933836\\
+44.324785912404 0.120717734350841\\
+50.4315948717136 0.110404543161352\\
+57.3797641421413 0.101747861741434\\
+64.6860766154633 0.0950068434002469\\
+72.9227205872831 0.0893547078887378\\
+82.2081575524054 0.0846476697359903\\
+92.6759330114688 0.0807538065008274\\
+104.47659715608 0.0775529861225676\\
+118.87076977119 0.0747571432690848\\
+135.248087041788 0.0725201330652954\\
+156.74554102056 0.0705155341681046\\
+183.342548256229 0.068892063905465\\
+218.443607114943 0.0675431861118353\\
+270.042071883777 0.0663801469670971\\
+349.577557436328 0.065421196530567\\
+496.244487762892 0.0645790563007188\\
+920.373199661822 0.0635984734764157\\
+1000 0.0634712490736721\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039371105839\\
+0.334598912054997 0.100449251194478\\
+0.550478980785497 0.101215829253657\\
+0.760117761795533 0.102314573383781\\
+0.974964918348409 0.103798575413549\\
+1.19420002813353 0.105680389336601\\
+1.40977287162897 0.107885192087173\\
+1.63385387780986 0.110539753654983\\
+1.87617469143912 0.113812717839519\\
+2.1150728248688 0.117431734985795\\
+2.38439047009372 0.121953753429179\\
+2.66333272517498 0.127098042716536\\
+2.97490754721444 0.13334840977954\\
+3.32293251639897 0.140882143689784\\
+3.71167181947577 0.14986581910889\\
+4.18428850790158 0.16137739772212\\
+4.84937406733524 0.178115735420223\\
+6.5134909462728 0.217510706758398\\
+7.20871503378214 0.230936559814628\\
+7.8323825991792 0.24086878250817\\
+8.43190929286626 0.248444658032485\\
+9.07732652521023 0.254503166443802\\
+9.68246611930312 0.258366994154062\\
+10.3279473191895 0.260786501418647\\
+11.0164594963366 0.261732826982501\\
+11.8597101233767 0.261056928460847\\
+12.7675070431927 0.258637581649587\\
+13.7447909267754 0.254671986679352\\
+14.9339321612425 0.248652330437637\\
+16.3762407452169 0.240434862342233\\
+18.1241754737424 0.230061857159074\\
+20.244465099768 0.217765334980846\\
+23.2469705998565 0.201810080622694\\
+27.9541599906786 0.180894926385303\\
+43.1156199031823 0.13945083612557\\
+50.4315948717136 0.128018474590898\\
+57.9112264764176 0.119519823848059\\
+65.8898955079995 0.112840991525864\\
+74.9678187496688 0.1072596468031\\
+85.2964449974102 0.10265081201239\\
+97.0480887738031 0.0988849112942828\\
+111.441525146679 0.0956418421569686\\
+129.154966501488 0.092926477236724\\
+151.070330448665 0.0907127965289954\\
+179.992850678248 0.0888674463675145\\
+220.466873523941 0.087335985192034\\
+282.781797962534 0.0860556453505565\\
+390.473523688556 0.0849820556253528\\
+642.403365939419 0.0839312640397147\\
+1000 0.083151002993036\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100042786848124\\
+0.322484249840844 0.100454411430569\\
+0.525679112201842 0.101208818267488\\
+0.725873365081725 0.102304867882633\\
+0.931041348706908 0.103790600681117\\
+1.12993393803322 0.10558001995293\\
+1.33390569003906 0.107770682054686\\
+1.54592773641948 0.110427513749487\\
+1.75891659032773 0.113483755366676\\
+1.98288394912707 0.117113026801429\\
+2.21485523372636 0.121316789260191\\
+2.45126006203334 0.126061081755551\\
+2.71289780037247 0.131845192402301\\
+3.00246170908555 0.138887034614293\\
+3.29243733300777 0.146595194960985\\
+3.61041859717334 0.155775454967936\\
+3.99578030189527 0.167867484673811\\
+4.4222739805059 0.182384080728139\\
+4.93962174387832 0.201370885402445\\
+5.62017384808319 0.228031094333402\\
+7.27548352919623 0.293221121153388\\
+7.8323825991792 0.312167917003953\\
+8.35452805838287 0.32723600981086\\
+8.82969995549409 0.338226786140439\\
+9.24625711640574 0.345548877549851\\
+9.68246611930312 0.350870992482372\\
+10.1392540755882 0.353975202771114\\
+10.61759183483 0.354758458796442\\
+11.1184960481927 0.353243087927109\\
+11.6430313292088 0.349569089518657\\
+12.1923125164911 0.343970835759296\\
+12.8857621318552 0.335132307484529\\
+13.7447909267754 0.322604533931023\\
+14.796880626864 0.306406225477851\\
+16.2259528707809 0.284883916810221\\
+18.4614694632455 0.254916094214346\\
+31.5136348486648 0.159235943252193\\
+36.8609536217216 0.140435377118528\\
+42.3278906557355 0.12666384675789\\
+48.1595791019235 0.115882725900182\\
+54.7947233690029 0.106846841821188\\
+61.7718759733849 0.0998201409604129\\
+69.6374473062822 0.0939357077793409\\
+78.5045620020451 0.0890408278577578\\
+88.5007491447344 0.0849958719765243\\
+99.769776423632 0.0816741060547768\\
+113.5154708921 0.0787753265257151\\
+130.351224468151 0.0763117986637265\\
+151.070330448665 0.0742709821688597\\
+176.704352608895 0.0726200178400009\\
+212.484535249888 0.071188730172803\\
+262.675410372384 0.0700268634147469\\
+343.190719745904 0.0690400949757076\\
+491.690357762803 0.0681857904309281\\
+1000 0.0670517693517074\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100043054027284\\
+0.322484249840844 0.100457213763969\\
+0.525679112201842 0.101216199388379\\
+0.725873365081725 0.102319012251187\\
+0.922497005259217 0.103744588000355\\
+1.12993393803322 0.105615553000465\\
+1.33390569003906 0.10782157439258\\
+1.54592773641948 0.110498202986457\\
+1.75891659032773 0.113578840728686\\
+1.98288394912707 0.117239397466427\\
+2.21485523372636 0.12148263176453\\
+2.45126006203334 0.126275777854664\\
+2.71289780037247 0.13212585527345\\
+3.00246170908555 0.13925791110596\\
+3.29243733300777 0.147077875760668\\
+3.61041859717334 0.156410024659619\\
+3.95911026646846 0.167516087527991\\
+4.38168993151419 0.182119921222322\\
+4.84937406733524 0.199589755325511\\
+5.46685729972018 0.224338313520994\\
+7.618717702323 0.312113465359168\\
+8.12661920009194 0.329094543649849\\
+8.58882855954625 0.342023211400001\\
+9.07732652521023 0.352682291446949\\
+9.5055659201012 0.359346581831862\\
+9.95400828762153 0.363672305617205\\
+10.423606739764 0.365485140986821\\
+10.9153593533139 0.364755585586495\\
+11.4303112911448 0.361598446644895\\
+11.9695570235904 0.35625069317628\\
+12.650337203959 0.347398860041981\\
+13.3698374182495 0.336489832546468\\
+14.2611370719413 0.321998155595618\\
+15.4949503931463 0.301899737428475\\
+17.3076553419573 0.274708313245248\\
+22.6128006633728 0.21611602295428\\
+27.4434330322837 0.182645770531839\\
+32.1001089554317 0.160740033271844\\
+36.8609536217216 0.144751216875113\\
+41.9394395566719 0.132273687444806\\
+47.2796959160039 0.122526883578114\\
+53.2999408084409 0.114323468209353\\
+60.0867589171969 0.107462068262017\\
+67.7377599751775 0.101759865574157\\
+76.3629826128224 0.0970511874801428\\
+86.0864769614925 0.0931866893596872\\
+97.946966706954 0.0898162729626551\\
+111.441525146679 0.0871238170505514\\
+127.969686821594 0.0848481753138231\\
+149.683929307726 0.0828701146160128\\
+178.341022071001 0.0812329342940786\\
+218.443607114943 0.0798815237957649\\
+280.18665564592 0.078755131375745\\
+390.473523688556 0.0777877663474557\\
+660.419396233031 0.0768140998779684\\
+1000 0.0761460809766107\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.10003951163013\\
+0.331528234231942 0.100442586748913\\
+0.545427130532983 0.10119775580872\\
+0.753142016597437 0.10228020379601\\
+0.966017479952265 0.10374240573103\\
+1.18324062745838 0.105596972886617\\
+1.39683511798874 0.107770446458391\\
+1.6188596901782 0.110388166195065\\
+1.85895667963569 0.113617066510716\\
+2.1150728248688 0.11749864905519\\
+2.38439047009372 0.122041336750999\\
+2.66333272517498 0.127210834578961\\
+2.97490754721444 0.1334942407969\\
+3.32293251639897 0.141071262445402\\
+3.71167181947577 0.150111375745627\\
+4.18428850790158 0.161702545468117\\
+4.84937406733524 0.178569551838688\\
+6.5134909462728 0.218298314300018\\
+7.20871503378214 0.231825890519119\\
+7.8323825991792 0.241812814614091\\
+8.43190929286626 0.249404357085939\\
+9.07732652521023 0.255439696024972\\
+9.68246611930312 0.259247988266029\\
+10.3279473191895 0.261578724345694\\
+11.0164594963366 0.262405287074325\\
+11.7508713090481 0.261766244390401\\
+12.650337203959 0.259362318261419\\
+13.6186523675608 0.255366919252849\\
+14.796880626864 0.249267225035746\\
+16.2259528707809 0.240915468406977\\
+17.957846470021 0.230355980286124\\
+20.0586777950823 0.217827519547088\\
+22.822244741869 0.202649712183313\\
+27.1915794303602 0.182299780444854\\
+45.5678626584106 0.132735224675638\\
+53.2999408084409 0.121788000064308\\
+61.204983724767 0.113694720906284\\
+69.6374473062822 0.107360339183917\\
+79.2316862486625 0.102084045090144\\
+90.1477631452492 0.0977388078595889\\
+102.567793074442 0.0941960427963462\\
+117.779870119712 0.0911505128812063\\
+136.500780654601 0.0886040047813469\\
+159.662602210143 0.0865297110435833\\
+190.230118866894 0.0848007589246697\\
+233.006141069692 0.0833644397646807\\
+298.865287355038 0.0821600296444686\\
+416.504424854519 0.0811206282065958\\
+697.981390783066 0.0800894865041406\\
+1000 0.0794688369205967\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039500934294\\
+0.331528234231942 0.100442532289924\\
+0.545427130532983 0.101197786413806\\
+0.753142016597437 0.102280542036644\\
+0.966017479952265 0.103743408415737\\
+1.18324062745838 0.10559919296313\\
+1.39683511798874 0.107774621629503\\
+1.6188596901782 0.110395468457818\\
+1.85895667963569 0.113629429133698\\
+2.09566239948043 0.117208744131435\\
+2.36250846547795 0.121686441282588\\
+2.63889081445751 0.126787828782966\\
+2.94760625512486 0.132997509396743\\
+3.29243733300777 0.140500096525155\\
+3.67760910160103 0.149474388332407\\
+4.14588849683291 0.161022626160439\\
+4.76077523022637 0.176784854333516\\
+6.75818116816111 0.224850681709372\\
+7.41088151564157 0.237227591324216\\
+8.05203967082548 0.247138642013383\\
+8.66837993001978 0.254502232241157\\
+9.24625711640574 0.259552643263041\\
+9.86265846131282 0.263131189573808\\
+10.5201521761616 0.26514658825199\\
+11.2214776820798 0.26558201521117\\
+11.9695570235904 0.264489618277746\\
+12.8857621318552 0.261511637289404\\
+13.8720978054162 0.256905788848708\\
+15.0722530931076 0.250104003923577\\
+16.527920614649 0.240984821267297\\
+18.2920450484629 0.229628468781797\\
+20.4319732019527 0.216313371252623\\
+23.4622884814226 0.199203956581248\\
+27.9541599906786 0.178049860195392\\
+46.8458011587305 0.127282348409001\\
+54.7947233690029 0.116133231942623\\
+62.9214610961034 0.107886022808255\\
+71.5904108596489 0.101422238325794\\
+81.4537176628074 0.0960282042814724\\
+92.6759330114688 0.0915765845185454\\
+105.444279352617 0.0879391293922765\\
+119.971773543588 0.0849925607552135\\
+137.765076954905 0.0824727795300428\\
+159.662602210143 0.0803741138472389\\
+188.48434090338 0.0785818545761335\\
+226.649807927369 0.0771197593991105\\
+282.781797962534 0.0758827015382458\\
+372.882130718283 0.0748458964244621\\
+549.211648388779 0.0739132524282663\\
+1000 0.072884250921578\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100041605597981\\
+0.325471160553185 0.100449547224306\\
+0.530548052536957 0.101195324158205\\
+0.732596542821523 0.102277936782731\\
+0.939664831495469 0.103743745863499\\
+1.15096220088503 0.10560854843011\\
+1.35872990190271 0.107802249616351\\
+1.57469771464309 0.110456458432118\\
+1.7916503273639 0.113500957761786\\
+2.01978575681988 0.117103880628611\\
+2.25607406649686 0.121259851890917\\
+2.52000499376409 0.126397996846531\\
+2.78898029238044 0.132153414518934\\
+3.08666494333727 0.139105051792708\\
+3.41612326858553 0.147466311410239\\
+3.78074666359935 0.157465294111395\\
+4.22304418720668 0.170505163300437\\
+4.76077523022637 0.187407728140543\\
+5.56859644428641 0.213970529677068\\
+6.75818116816111 0.251954398285663\\
+7.41088151564157 0.270174860323376\\
+7.97814457207663 0.283581148122799\\
+8.51000724712225 0.293730548064099\\
+8.99402217409204 0.300800792901185\\
+9.5055659201012 0.30603838673669\\
+10.0462042134681 0.309217594684543\\
+10.61759183483 0.31022235636608\\
+11.2214776820798 0.309056860236364\\
+11.8597101233767 0.305838285298674\\
+12.534242654614 0.300774533147646\\
+13.3698374182495 0.292893741750011\\
+14.2611370719413 0.283335681820086\\
+15.3527502878042 0.270949409030866\\
+16.835508029612 0.254158177418019\\
+18.6324631193156 0.235045913555154\\
+21.1995345753607 0.211043228073902\\
+25.0264009641792 0.182174898228149\\
+31.8055201533292 0.145943172745495\\
+54.7947233690029 0.0871980751338694\\
+76.3629826128224 0.0640226920024638\\
+96.157460014321 0.0520745578500219\\
+116.698981861715 0.0441369264146655\\
+137.765076954905 0.0386108841627922\\
+159.662602210143 0.0345470943675963\\
+183.342548256229 0.0313668632673071\\
+208.60240892485 0.02887912286949\\
+235.164288449435 0.0269331731846724\\
+265.108360190854 0.0252942604946889\\
+298.865287355038 0.0239229322490787\\
+336.920570598027 0.0227826736979913\\
+379.821530619074 0.0218399859910609\\
+432.151112778977 0.0210109736118985\\
+491.690357762803 0.0203421598714618\\
+534.229329953835 0.0199829179727495\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.10004107001011\\
+0.328485736603004 0.100453043503935\\
+0.535462089927361 0.101204738022032\\
+0.739381991917587 0.102295604324777\\
+0.948368186628592 0.103771932136271\\
+1.1616226326085 0.105649007065118\\
+1.37131471775395 0.107855525862452\\
+1.58928286562298 0.110522853201224\\
+1.80824493487795 0.11357909935091\\
+2.03849339825246 0.117191239397433\\
+2.27697025538168 0.121351335735762\\
+2.54334576130465 0.126484589659681\\
+2.81481236050758 0.132220867990112\\
+3.11525422355549 0.139129233014425\\
+3.44776405473446 0.147407679974197\\
+3.81576466127125 0.157260845495805\\
+4.26215882901533 0.170028584102792\\
+4.84937406733524 0.187802757683317\\
+6.10640754223204 0.22671515858717\\
+6.8839520696455 0.248908597409446\\
+7.47952251562182 0.263738689640295\\
+8.05203967082548 0.275683051955737\\
+8.58882855954625 0.28458062308\\
+9.07732652521023 0.290682920291453\\
+9.59360828709315 0.295122574526552\\
+10.1392540755882 0.29773302249905\\
+10.7159339982267 0.298437512105048\\
+11.3254131515281 0.297253514933396\\
+11.9695570235904 0.294284738952799\\
+12.7675070431927 0.288797848439428\\
+13.6186523675608 0.281466035795482\\
+14.6610868404698 0.271318272623939\\
+15.9295021257212 0.25830955183074\\
+17.4679621512725 0.24268636546912\\
+19.5114834684662 0.223322181892607\\
+22.1996611911995 0.200993828150228\\
+25.9665597293487 0.175393882969647\\
+31.8055201533292 0.145750994744628\\
+41.5545533471888 0.113143795368061\\
+60.0867589171969 0.0790444608535303\\
+105.444279352617 0.0453074339167997\\
+239.540735872088 0.0199479214736118\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100040418676219\\
+0.328485736603004 0.100444288093833\\
+0.540421642070592 0.101200739837534\\
+0.746230289139111 0.102282386433806\\
+0.957152153899187 0.103740492573892\\
+1.1723818032866 0.105587207605028\\
+1.39683511798874 0.107891654513665\\
+1.6188596901782 0.110542437603718\\
+1.85895667963569 0.113812118163913\\
+2.09566239948043 0.11743049629004\\
+2.36250846547795 0.1219572688534\\
+2.63889081445751 0.127115480599275\\
+2.94760625512486 0.133396050631251\\
+3.29243733300777 0.140986885414508\\
+3.67760910160103 0.150069979107214\\
+4.14588849683291 0.161761561186804\\
+4.80487043965513 0.178872995197394\\
+6.57382014340959 0.222307248082786\\
+7.20871503378214 0.23496865571991\\
+7.8323825991792 0.245244667591601\\
+8.43190929286626 0.252993072309339\\
+8.99402217409204 0.258400356711509\\
+9.59360828709315 0.26232898669235\\
+10.2331657833025 0.264664504980801\\
+10.9153593533139 0.265371351804104\\
+11.6430313292088 0.264489318118028\\
+12.4192135270178 0.262121475500356\\
+13.3698374182495 0.257788937790088\\
+14.3932264471941 0.251977343416604\\
+15.6384675830225 0.244022605232361\\
+17.1488196987054 0.233880335671112\\
+18.979216428391 0.221691007627787\\
+21.3958887134342 0.206594988415675\\
+24.7967289250216 0.187935423800146\\
+30.3726357970331 0.163618997924617\\
+45.9899209052244 0.123015331789685\\
+54.2918617761894 0.11071354948073\\
+62.3440188862786 0.102108427368374\\
+70.93341204988 0.0953212127139855\\
+80.7062014114951 0.0896209987020617\\
+90.9827289445556 0.085195398079347\\
+102.567793074442 0.0815035574594847\\
+116.698981861715 0.0782371179814413\\
+132.777082935543 0.0755945701753018\\
+152.469572701757 0.0733366544868592\\
+176.704352608895 0.0714566639268859\\
+208.60240892485 0.0698505019945468\\
+250.841505927754 0.0685383299153375\\
+312.964801067075 0.067424828560964\\
+412.682084570295 0.0664870135210629\\
+607.832312829723 0.0656368948925952\\
+1000 0.0648317835036451\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100042857220936\\
+0.322484249840844 0.100455861337435\\
+0.525679112201842 0.101212934908017\\
+0.725873365081725 0.102312970233258\\
+0.922497005259217 0.103734859157231\\
+1.12993393803322 0.105600785119898\\
+1.33390569003906 0.107800556161814\\
+1.54592773641948 0.11046913851511\\
+1.75891659032773 0.113539872299609\\
+1.98288394912707 0.117187743203658\\
+2.21485523372636 0.121414991385912\\
+2.45126006203334 0.126188375682619\\
+2.71289780037247 0.132011802054558\\
+3.00246170908555 0.139107458318458\\
+3.29243733300777 0.1468823683456\\
+3.61041859717334 0.156153380670461\\
+3.95911026646846 0.167175707694328\\
+4.38168993151419 0.181650225420117\\
+4.89428989611453 0.200656447433874\\
+5.56859644428641 0.227512232632272\\
+7.41088151564157 0.301891442486522\\
+7.97814457207663 0.321293137956411\\
+8.51000724712225 0.3364378474159\\
+8.99402217409204 0.347186806451676\\
+9.41833153464795 0.35406924337494\\
+9.86265846131282 0.358740800826563\\
+10.3279473191895 0.36101096347197\\
+10.8151870255229 0.360822641754313\\
+11.3254131515281 0.358255984813395\\
+11.8597101233767 0.353511792512443\\
+12.534242654614 0.345356179963236\\
+13.2471398786612 0.335073427793094\\
+14.1302599059953 0.321191873935213\\
+15.3527502878042 0.301671204965777\\
+17.1488196987054 0.274923834468287\\
+20.8122156998634 0.231257935608311\\
+26.6947849403432 0.185493874783785\\
+31.5136348486648 0.161489228508423\\
+36.5226736430818 0.143939761201156\\
+41.9394395566719 0.130284681290529\\
+47.7176094893875 0.119655610303488\\
+53.793615039807 0.111375772826826\\
+60.6432939540806 0.104428224490152\\
+68.3651600451024 0.0986364569608709\\
+77.070271142123 0.0938396651982683\\
+86.8838263525118 0.0898920237041262\\
+97.946966706954 0.0866623737691366\\
+111.441525146679 0.0838537487026314\\
+127.969686821594 0.0814744007898757\\
+148.31025143361 0.0795086103409853\\
+175.082703173572 0.0778413945961544\\
+212.484535249888 0.0764325612751647\\
+267.563844455205 0.0752731746478773\\
+359.381366380463 0.0742970117897779\\
+554.298551568467 0.0733891945467724\\
+1000 0.0724519338241498\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100041699595492\\
+0.325471160553185 0.100450838269719\\
+0.530548052536957 0.101198885625292\\
+0.732596542821523 0.102284887698005\\
+0.939664831495469 0.103755458440634\\
+1.15096220088503 0.105626608441622\\
+1.35872990190271 0.10782819855565\\
+1.57469771464309 0.110492574557094\\
+1.7916503273639 0.113549594632287\\
+2.01978575681988 0.117168551691856\\
+2.25607406649686 0.121344706164533\\
+2.52000499376409 0.126510390404634\\
+2.78898029238044 0.1323001828788\\
+3.08666494333727 0.139298526305381\\
+3.41612326858553 0.147723847619379\\
+3.78074666359935 0.157811365155473\\
+4.18428850790158 0.169796324734557\\
+4.67379510799246 0.185270017219279\\
+5.36697694554048 0.208296079542295\\
+6.8839520696455 0.257711790182321\\
+7.54879928165344 0.276206446731189\\
+8.12661920009194 0.28959199600217\\
+8.66837993001978 0.299501391890799\\
+9.16140245713852 0.306187262810913\\
+9.68246611930312 0.310881176654003\\
+10.2331657833025 0.313379469203164\\
+10.8151870255229 0.313602028879514\\
+11.4303112911448 0.311597585607318\\
+12.0804213467733 0.307529627027222\\
+12.7675070431927 0.301647735113336\\
+13.6186523675608 0.29289486795212\\
+14.6610868404698 0.281012663602126\\
+15.9295021257212 0.266085115736595\\
+17.4679621512725 0.248532959791036\\
+19.6922025547917 0.225511214194578\\
+22.822244741869 0.198383362166701\\
+28.2130767593947 0.163511945089236\\
+43.9180089259609 0.108022607355504\\
+61.7718759733849 0.0788125390234276\\
+77.7841107128649 0.0642156491604455\\
+93.5343152029239 0.0549376188429199\\
+110.418805085416 0.0481231087123204\\
+127.969686821594 0.0431164842617766\\
+146.949180062482 0.0392029456295828\\
+167.194975973199 0.0361456135170514\\
+188.48434090338 0.033757480273286\\
+212.484535249888 0.0317491211702224\\
+239.540735872088 0.0300712783739457\\
+270.042071883777 0.028678361549807\\
+304.42722120643 0.0275285887691837\\
+346.369417737173 0.0265190305199759\\
+397.740302405804 0.0256542651067741\\
+460.960448682843 0.0249304495020906\\
+539.17746403875 0.0243367727365609\\
+648.353428605472 0.023811531542776\\
+808.924348680594 0.023353725034572\\
+1000 0.0230267124093595\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100039995382778\\
+0.328485736603004 0.100448395603533\\
+0.535462089927361 0.10120285616225\\
+0.739381991917587 0.102301267205156\\
+0.948368186628592 0.103789538279654\\
+1.15096220088503 0.105579594321524\\
+1.35872990190271 0.107766880250426\\
+1.57469771464309 0.110413153959755\\
+1.7916503273639 0.113448213849464\\
+2.01978575681988 0.117039444031374\\
+2.25607406649686 0.121181195658855\\
+2.52000499376409 0.126300662443901\\
+2.78898029238044 0.132033720581112\\
+3.08666494333727 0.138956355135087\\
+3.41612326858553 0.147279915538287\\
+3.78074666359935 0.157229956277873\\
+4.22304418720668 0.17020015889987\\
+4.76077523022637 0.187003942246646\\
+5.56859644428641 0.213398584375782\\
+6.82077673286568 0.252995711138386\\
+7.47952251562182 0.271038318845258\\
+8.05203967082548 0.284231427561173\\
+8.58882855954625 0.294151381462537\\
+9.07732652521023 0.301004846549217\\
+9.59360828709315 0.306020531470359\\
+10.1392540755882 0.308986674990844\\
+10.7159339982267 0.309800122725064\\
+11.3254131515281 0.308474892042535\\
+11.9695570235904 0.305133673725734\\
+12.650337203959 0.299985363467045\\
+13.4936714058831 0.292050159243131\\
+14.3932264471941 0.282476954859484\\
+15.4949503931463 0.270107947657407\\
+16.9914417203463 0.253368421668156\\
+18.8050405512858 0.234326776745701\\
+21.3958887134342 0.210407267074359\\
+25.2582002696278 0.181612018081406\\
+31.8055201533292 0.146680412165576\\
+46.4158883361278 0.102317397322257\\
+81.4537176628074 0.0599246662952167\\
+106.420924406472 0.0468779003602336\\
+131.55856240457 0.0389030890462838\\
+156.74554102056 0.0336128715073769\\
+183.342548256229 0.029722377229935\\
+212.484535249888 0.026687463745536\\
+241.759407916913 0.0244660633497804\\
+275.067600790807 0.022598767956341\\
+310.092663593193 0.0211426786003403\\
+349.577557436328 0.019919959348731\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 0.100042972695903\\
+0.322484249840844 0.100456187754015\\
+0.525679112201842 0.101212849496548\\
+0.725873365081725 0.102311515801628\\
+0.931041348706908 0.103800340320318\\
+1.12993393803322 0.105593271819578\\
+1.33390569003906 0.107788203424453\\
+1.54592773641948 0.110450342050374\\
+1.75891659032773 0.113512969514476\\
+1.98288394912707 0.117150288986187\\
+2.21485523372636 0.121364062028398\\
+2.45126006203334 0.126120590458601\\
+2.71289780037247 0.13192102331674\\
+3.00246170908555 0.138984902209865\\
+3.29243733300777 0.146720014722752\\
+3.61041859717334 0.155936383941494\\
+3.95911026646846 0.166882938175738\\
+4.38168993151419 0.181238824089569\\
+4.89428989611453 0.200053446821372\\
+5.56859644428641 0.226561737367177\\
+7.34287044716677 0.296974760055533\\
+7.90492762269643 0.316002565329802\\
+8.43190929286626 0.330974270475286\\
+8.9114823228402 0.341732666850762\\
+9.33189771573324 0.348751269462931\\
+9.77214696972572 0.353677913411406\\
+10.2331657833025 0.356312215918227\\
+10.7159339982267 0.356576460434152\\
+11.2214776820798 0.354522461071471\\
+11.7508713090481 0.350319477307516\\
+12.4192135270178 0.342808909993869\\
+13.1255683577184 0.333126992138782\\
+14.000583824681 0.319854152287988\\
+15.0722530931076 0.303104012105386\\
+16.6810053720006 0.27907445547318\\
+19.3324228755505 0.245174755372418\\
+28.2130767593947 0.175347227439863\\
+33.3060034362459 0.152832595446652\\
+38.5999361767977 0.136352947201544\\
+44.324785912404 0.123515468503427\\
+50.4315948717136 0.1135135856602\\
+56.8531791387375 0.10571702351859\\
+64.0924401935645 0.0991717451626986\\
+72.2534949178721 0.0937133160607055\\
+81.4537176628074 0.0891913622368309\\
+91.8254283565628 0.0854691142108785\\
+103.517795563018 0.0824232925208976\\
+117.779870119712 0.0797739809020994\\
+135.248087041788 0.0775289445833139\\
+156.74554102056 0.0756732668416551\\
+185.04070195423 0.0740981903323757\\
+224.569799553977 0.0727652794981475\\
+282.781797962534 0.0716654373000517\\
+383.33951017666 0.0707118830532704\\
+596.727119597332 0.0698332563816705\\
+1000 0.0690333736119628\\
+};
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0.1 1\\
+1000 1\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/u_and_y_with_Kr.pdf b/matlab/figs/u_and_y_with_Kr.pdf
new file mode 100644
index 0000000..05fa3bf
Binary files /dev/null and b/matlab/figs/u_and_y_with_Kr.pdf differ
diff --git a/matlab/figs/u_and_y_with_Kr.png b/matlab/figs/u_and_y_with_Kr.png
new file mode 100644
index 0000000..5cc4965
Binary files /dev/null and b/matlab/figs/u_and_y_with_Kr.png differ
diff --git a/matlab/figs/u_and_y_with_Kr.svg b/matlab/figs/u_and_y_with_Kr.svg
new file mode 100644
index 0000000..27ab8aa
--- /dev/null
+++ b/matlab/figs/u_and_y_with_Kr.svg
@@ -0,0 +1,124 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/matlab/figs/u_and_y_with_Kr.tex b/matlab/figs/u_and_y_with_Kr.tex
new file mode 100644
index 0000000..729ea41
--- /dev/null
+++ b/matlab/figs/u_and_y_with_Kr.tex
@@ -0,0 +1,466 @@
+% This file was created by matlab2tikz.
+%
+\begin{tikzpicture}
+
+\begin{axis}[%
+width=2.709in,
+height=0.977in,
+at={(0.425in,1.498in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmin=0,
+xmax=0.025,
+xtick={0,0.005,0.01,0.015,0.02,0.025},
+xticklabels={{}},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=-200000000,
+ymax=249080300.771036,
+ylabel={Command Input},
+axis background/.style={fill=white},
+xmajorgrids,
+ymajorgrids
+]
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0 0\\
+4.00543212890625e-05 152838854.357043\\
+8.00788402557373e-05 229087311.327999\\
+0.000100106000900269 244963327.238778\\
+0.0001201331615448 249080300.771036\\
+0.000140130519866943 243504640.705787\\
+0.000180184841156006 210608588.647421\\
+0.000240236520767212 129721301.091616\\
+0.000360369682312012 -42442010.3469158\\
+0.000420421361923218 -102663701.252617\\
+0.000460445880889893 -129273582.656602\\
+0.000500500202178955 -145210697.278334\\
+0.000520527362823486 -149451932.280237\\
+0.000540554523468018 -151419648.129282\\
+0.000560551881790161 -151300588.560236\\
+0.000580579042434692 -149296621.230113\\
+0.000620633363723755 -140484547.596145\\
+0.000680685043334961 -118481803.841868\\
+0.000940948724746704 -7734355.70249945\\
+0.00100100040435791 6690641.63550088\\
+0.00106105208396912 15629149.7445768\\
+0.00110110640525818 18885448.3263874\\
+0.00114113092422485 20324213.6037057\\
+0.00116115808486938 20465784.5673147\\
+0.00118118524551392 20279089.3923545\\
+0.00120121240615845 19806611.6162299\\
+0.00124123692512512 18169299.0291621\\
+0.00130128860473633 14556401.0512774\\
+0.00148147344589233 2666887.27511838\\
+0.00154155492782593 -98372.2431023717\\
+0.00160160660743713 -1988705.97661781\\
+0.00164163112640381 -2784537.95735282\\
+0.00168168544769287 -3249824.13477308\\
+0.0017017126083374 -3373024.41545278\\
+0.00172170996665955 -3431835.44564754\\
+0.00174173712730408 -3432958.73404357\\
+0.00176176428794861 -3383163.85166374\\
+0.00180178880691528 -3157598.16888145\\
+0.00186187028884888 -2599519.87995425\\
+0.00208207964897156 -252375.361381501\\
+0.00214213132858276 147817.758812636\\
+0.00220221281051636 405308.692927778\\
+0.00224223732948303 504455.335819036\\
+0.00228229165077209 553694.066347629\\
+0.00230228900909424 562186.409437597\\
+0.00232231616973877 561388.472966969\\
+0.0023423433303833 552410.3326011\\
+0.00238236784934998 514289.413686305\\
+0.00244244933128357 422192.137045741\\
+0.00266265869140625 41773.0410014987\\
+0.00272271037101746 -22188.0260950029\\
+0.00278279185295105 -62959.8133739233\\
+0.00282281637191772 -78415.4941419363\\
+0.00286287069320679 -85834.5551544428\\
+0.00288286805152893 -86955.4772187173\\
+0.00290289521217346 -86589.501888901\\
+0.00292292237281799 -84917.5311318934\\
+0.00296297669410706 -78366.8497380316\\
+0.00302302837371826 -63034.3599178195\\
+0.00322321057319641 -5356.03306815028\\
+0.00328329205513 6199.94496458769\\
+0.00334334373474121 13930.419824481\\
+0.00338339805603027 17091.5380617678\\
+0.00342342257499695 18854.0523784161\\
+0.00344344973564148 19276.7403378487\\
+0.00346347689628601 19431.8546063006\\
+0.00348347425460815 19348.8372575641\\
+0.00350350141525269 19057.185669601\\
+0.00354355573654175 17963.6389225423\\
+0.00360360741615295 15454.5701937973\\
+0.0038037896156311 6186.86704626679\\
+0.0038638710975647 4365.25625237823\\
+0.0039239227771759 3166.92685168982\\
+0.00396397709846497 2690.90589889884\\
+0.00400400161743164 2440.53315225244\\
+0.00402402877807617 2389.09630891681\\
+0.0040440559387207 2380.57239583135\\
+0.00406405329704285 2410.15142562985\\
+0.00410410761833191 2564.4626146853\\
+0.00416415929794312 2965.13961666822\\
+0.00440439581871033 4855.63612785935\\
+0.00446447730064392 5144.33908778429\\
+0.00452452898025513 5333.21420791745\\
+0.0045645534992218 5409.42419201136\\
+0.00460460782051086 5451.99717387557\\
+0.0046246349811554 5462.55413922668\\
+0.00464463233947754 5467.00193920732\\
+0.00466465950012207 5466.12381199002\\
+0.0046846866607666 5460.68934473395\\
+0.00472471117973328 5439.10415315628\\
+0.00478479266166687 5390.04074859619\\
+0.00492492318153381 5270.01751759648\\
+0.00498497486114502 5237.1495488584\\
+0.00502502918243408 5224.30301401019\\
+0.00506505370140076 5218.80818831921\\
+0.00508508086204529 5218.7070646584\\
+0.00510510802268982 5220.26934981346\\
+0.00514513254165649 5227.98950591683\\
+0.00518518686294556 5241.07613578439\\
+0.00524523854255676 5268.58334395289\\
+0.00534534454345703 5327.18084090948\\
+0.00556555390357971 5460.95884227753\\
+0.00568568706512451 5520.74590948224\\
+0.00582581758499146 5578.9701256454\\
+0.0060860812664032 5674.71195977926\\
+0.006386399269104 5789.13635256886\\
+0.00698697566986084 6020.29790610075\\
+0.00756755471229553 6233.35721236467\\
+0.00812813639640808 6431.97298955917\\
+0.00868868827819824 6623.41019067168\\
+0.0092492401599884 6807.92509528995\\
+0.00980982184410095 6985.69013544917\\
+0.0103703737258911 7156.88736629486\\
+0.0109309256076813 7321.69295877218\\
+0.0114714801311493 7474.72120645642\\
+0.0120120048522949 7622.11897554994\\
+0.0125525593757629 7764.03523731232\\
+0.0130930840969086 7900.61605229974\\
+0.0136336386203766 8032.00462830067\\
+0.0141741633415222 8158.34137400985\\
+0.0147147178649902 8279.7639503479\\
+0.0152352452278137 8392.17086899281\\
+0.0157557427883148 8500.26424512267\\
+0.0162762701511383 8604.16002592444\\
+0.0167967975139618 8703.97195118666\\
+0.0173173248767853 8799.81158778071\\
+0.0178378522396088 8891.78836259246\\
+0.0183383524417877 8976.68463546038\\
+0.0188388526439667 9058.20230412483\\
+0.0193393528461456 9136.43321171403\\
+0.0198398530483246 9211.46747386456\\
+0.0200000107288361 9234.81779319048\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0 0\\
+2.00197100639343e-05 172003.397761576\\
+6.0059130191803e-05 1296495.19877251\\
+0.00024024024605751 8380021.47182029\\
+0.000280279666185379 9062842.64188114\\
+0.000300299376249313 9230334.00991511\\
+0.000320320948958397 9286142.61443239\\
+0.000340340659022331 9236177.70124168\\
+0.000360360369086266 9087987.31810614\\
+0.000400399789214134 8532977.56046625\\
+0.000460460782051086 7205876.15627842\\
+0.000580580905079842 3773936.12389509\\
+0.000680681318044662 1157472.26662786\\
+0.0007607601583004 -359833.152813375\\
+0.000820821151137352 -1107867.02253667\\
+0.000860860571265221 -1431168.61734521\\
+0.000900899991393089 -1630141.37480331\\
+0.000940941274166107 -1722454.71423133\\
+0.000960960984230042 -1734642.2436592\\
+0.000980980694293976 -1727484.38668413\\
+0.00100100040435791 -1703441.60345054\\
+0.00104104168713093 -1614254.67701401\\
+0.00110110081732273 -1410969.87905996\\
+0.00130130164325237 -663711.794534469\\
+0.00136136077344418 -515913.284634504\\
+0.00142142176628113 -417171.002465505\\
+0.001461461186409 -376614.217401141\\
+0.00150150060653687 -353627.095345382\\
+0.00152152217924595 -347851.322465824\\
+0.00154154188930988 -345389.349429861\\
+0.00156156159937382 -345859.639064619\\
+0.00158158130943775 -348881.969313176\\
+0.00162162072956562 -361100.84659504\\
+0.00168168172240257 -389692.009020504\\
+0.00186186097562313 -483560.526145646\\
+0.00192192196846008 -503564.418877633\\
+0.00196196138858795 -512387.883504892\\
+0.00200200267136097 -517697.935508706\\
+0.0020220223814249 -519118.547689434\\
+0.00204204209148884 -519777.22640034\\
+0.00206206180155277 -519727.33078406\\
+0.00208208151161671 -519026.516335363\\
+0.00212212279438972 -515916.182704996\\
+0.00218218192458153 -507915.778905211\\
+0.00226226262748241 -493521.449901331\\
+0.00246246159076691 -456334.05556405\\
+0.00256256200373173 -442368.651183221\\
+0.00264264270663261 -433796.083071772\\
+0.00274274311959743 -425512.067089871\\
+0.00286286324262619 -417521.969740465\\
+0.00312312319874763 -400744.623201301\\
+0.00334334373474121 -384654.938030547\\
+0.00370370410382748 -358313.648697285\\
+0.00398398377001286 -339595.934418663\\
+0.00432432442903519 -318303.17847864\\
+0.00466466508805752 -298205.408332469\\
+0.00500500574707985 -279343.328914747\\
+0.00534534454345703 -261659.112636166\\
+0.00568568520247936 -245062.641378731\\
+0.00602602586150169 -229487.550548971\\
+0.00636636652052402 -214872.376674388\\
+0.00670670717954636 -201157.181333365\\
+0.00704704783856869 -188286.091608958\\
+0.00738738663494587 -176206.908645689\\
+0.0077277272939682 -164870.594796512\\
+0.00806806795299053 -154231.147759346\\
+0.00840840861201286 -144245.432168497\\
+0.00874874927103519 -134872.989320537\\
+0.00908908993005753 -126075.870818207\\
+0.00942942872643471 -117818.484065188\\
+0.00976976938545704 -110067.445645412\\
+0.0101101100444794 -102791.443960441\\
+0.0104504507035017 -95961.1105761174\\
+0.010790791362524 -89548.8995125387\\
+0.0111311320215464 -83528.9740232658\\
+0.0114714708179235 -77877.1004176009\\
+0.0118118114769459 -72570.5484798383\\
+0.0121521521359682 -67587.9980750289\\
+0.0124924927949905 -62909.451557938\\
+0.0128328334540129 -58516.1516243964\\
+0.0131731722503901 -54390.5042668823\\
+0.0135135129094124 -50516.006517129\\
+0.0138538535684347 -46877.1786783654\\
+0.014194194227457 -43459.5007682014\\
+0.0145345348864794 -40249.3529105056\\
+0.0148748755455017 -37233.9594309423\\
+0.0152152143418789 -34401.3364259973\\
+0.0155555550009012 -31740.2425896954\\
+0.0158958956599236 -29240.1330955736\\
+0.0162362363189459 -26891.1163440645\\
+0.0165765769779682 -24683.9133972712\\
+0.0169169176369905 -22609.819934113\\
+0.0172572564333677 -20660.6705692802\\
+0.0175975970923901 -18828.8053890839\\
+0.0179379377514124 -17107.038566472\\
+0.0182782784104347 -15488.6289260145\\
+0.0186186190694571 -13967.2523377109\\
+0.0189589597284794 -12536.9758259561\\
+0.0192992985248566 -11192.2332871165\\
+0.0196396391838789 -9927.80271576345\\
+0.0199799798429012 -8738.78484580852\\
+0.0199999995529652 -8671.09141031094\\
+};
+\end{axis}
+
+\begin{axis}[%
+width=2.709in,
+height=0.977in,
+at={(0.425in,0.39in)},
+scale only axis,
+separate axis lines,
+every outer x axis line/.append style={black},
+every x tick label/.append style={font=\color{black}},
+every x tick/.append style={black},
+xmin=0,
+xmax=0.02,
+xlabel={Time [s]},
+every outer y axis line/.append style={black},
+every y tick label/.append style={font=\color{black}},
+every y tick/.append style={black},
+ymin=0,
+ymax=1.08435810777396,
+ylabel={Output},
+axis background/.style={fill=white},
+xmajorgrids,
+ymajorgrids
+]
+\addplot [color=black, dashed, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0 0\\
+2.00200200199951e-05 0.000311447447728819\\
+4.00400400399903e-05 0.00233728996160987\\
+6.00600600599854e-05 0.00739380019495184\\
+0.000100100100100198 0.0300006368171892\\
+0.000140140140140188 0.0719228780308649\\
+0.000200200200200173 0.170264701934967\\
+0.000280280280280376 0.350371214218036\\
+0.000460460460460554 0.784515145354939\\
+0.000540540540540535 0.926277790191129\\
+0.00060060060060052 1.00125782047615\\
+0.000660660660660728 1.05015066126654\\
+0.000700700700700718 1.06983262181065\\
+0.000740740740740709 1.08073415515131\\
+0.000760760760760704 1.08335934509003\\
+0.000780780780780699 1.08435810777396\\
+0.000800800800800694 1.08392324938945\\
+0.000820820820820911 1.08224433000085\\
+0.000860860860860901 1.07588329744316\\
+0.000920920920920887 1.06134261244242\\
+0.00110110110110107 1.01305972546003\\
+0.00116116116116105 1.00197717988672\\
+0.00122122122122126 0.994542413176676\\
+0.00126126126126125 0.991513501930099\\
+0.00130130130130124 0.989850186076292\\
+0.00132132132132123 0.989468841653654\\
+0.00134134134134145 0.989351411010814\\
+0.00136136136136145 0.989469627344891\\
+0.00138138138138144 0.989795012992209\\
+0.00142142142142143 0.99095499047611\\
+0.00148148148148142 0.993570327048134\\
+0.00168168168168159 1.00332594455807\\
+0.0017417417417418 1.00533032812004\\
+0.00180180180180178 1.00672010782468\\
+0.00184184184184177 1.00732604528264\\
+0.00188188188188199 1.00770659771272\\
+0.00192192192192198 1.0078958971062\\
+0.00194194194194197 1.00793039108148\\
+0.00196196196196197 1.007931072017\\
+0.00198198198198196 1.0079026020156\\
+0.00202202202202195 1.00777619913748\\
+0.00208208208208216 1.00747496303689\\
+0.00222222222222213 1.00670112661171\\
+0.00228228228228233 1.00647220153499\\
+0.00232232232232232 1.00637300671858\\
+0.00236236236236231 1.00631780307656\\
+0.0024024024024023 1.00630463318467\\
+0.00244244244244252 1.00632960778839\\
+0.00248248248248251 1.00638755193196\\
+0.00254254254254249 1.00652333578517\\
+0.00262262262262269 1.00676399969896\\
+0.00288288288288285 1.00759959219134\\
+0.00300300300300305 1.007897483421\\
+0.00312312312312302 1.00813945349469\\
+0.00332332332332341 1.00848504135361\\
+0.00366366366366377 1.00907560125699\\
+0.00412412412412411 1.00988038951865\\
+0.00446446446446447 1.01042921048388\\
+0.00486486486486482 1.01103549570503\\
+0.00524524524524517 1.01157487707859\\
+0.00562562562562552 1.01207836223171\\
+0.00600600600600609 1.01254738084573\\
+0.00638638638638644 1.01298312771307\\
+0.0067667667667668 1.01338667687462\\
+0.00714714714714715 1.01375912345842\\
+0.0075275275275275 1.01410153270994\\
+0.00788788788788786 1.01439915353386\\
+0.00824824824824821 1.01467161047029\\
+0.00860860860860857 1.01491974752501\\
+0.00898898898898892 1.01515619720666\\
+0.00936936936936927 1.01536741656137\\
+0.00974974974974985 1.01555433068972\\
+0.0101301301301302 1.01571784235905\\
+0.0105105105105106 1.01585883239171\\
+0.0108908908908909 1.01597816004301\\
+0.0112712712712713 1.01607666337506\\
+0.0116716716716716 1.01615875198765\\
+0.0120720720720722 1.01621960059377\\
+0.0124724724724725 1.01626011324892\\
+0.0128928928928929 1.0162817273782\\
+0.0133133133133134 1.01628288134169\\
+0.0137537537537538 1.01626319339467\\
+0.0141941941941941 1.01622317956186\\
+0.0146546546546547 1.01616074358811\\
+0.0151351351351352 1.01607436571646\\
+0.0156356356356357 1.01596268083495\\
+0.0161561561561561 1.01582449418956\\
+0.0166966966966966 1.01565879560522\\
+0.0172572572572574 1.01546477206972\\
+0.0178378378378379 1.01524181854969\\
+0.0184584584584584 1.01498078154179\\
+0.0190990990990991 1.0146889277091\\
+0.0197797797797798 1.01435637829801\\
+0.02 1.0142442504991\\
+};
+\addplot [color=black, line width=1.5pt, forget plot]
+ table[row sep=crcr]{%
+0 0\\
+4.00400400399903e-05 4.51861896255679e-06\\
+6.00600600600965e-05 2.17158155135788e-05\\
+8.00800800800916e-05 6.5125370185215e-05\\
+0.000100100100100087 0.000150809669017482\\
+0.000120120120120082 0.000296495880618086\\
+0.000160160160160183 0.000841398844879881\\
+0.000200200200200173 0.00184179525138484\\
+0.000240240240240275 0.00341968375407253\\
+0.000280280280280265 0.00566586374015443\\
+0.000340340340340362 0.0103975083679522\\
+0.000400400400400347 0.016780055359552\\
+0.000480480480480439 0.0276276833530709\\
+0.000580580580580525 0.0440876989591902\\
+0.00078078078078081 0.0814020996187174\\
+0.00102102102102097 0.12489911642543\\
+0.00124124124124125 0.160843294826016\\
+0.00158158158158161 0.212512061505326\\
+0.00196196196196197 0.267358048050794\\
+0.00228228228228233 0.310708674845896\\
+0.00262262262262258 0.35393993055407\\
+0.00296296296296295 0.394539794691123\\
+0.00330330330330331 0.43266850706115\\
+0.00364364364364367 0.468464854798051\\
+0.00398398398398403 0.502074240754175\\
+0.00432432432432428 0.533631567538742\\
+0.00466466466466464 0.563261909996636\\
+0.005005005005005 0.591083091974484\\
+0.00534534534534536 0.617205758987924\\
+0.00568568568568573 0.641733662696517\\
+0.00602602602602598 0.664764163207483\\
+0.00636636636636634 0.686388629850454\\
+0.0067067067067067 0.706692802652984\\
+0.00704704704704706 0.725757142412647\\
+0.00738738738738742 0.743657158631406\\
+0.00772772772772767 0.760463715860628\\
+0.00806806806806804 0.776243321305946\\
+0.0084084084084084 0.791058394666981\\
+0.00874874874874876 0.804967521173735\\
+0.00908908908908912 0.818025688912938\\
+0.00942942942942948 0.830284511427761\\
+0.00976976976976973 0.84179243649858\\
+0.0101101101101101 0.852594941963846\\
+0.0104504504504505 0.862734719386942\\
+0.0107907907907908 0.872251846323914\\
+0.0111311311311312 0.88118394790019\\
+0.0114714714714714 0.889566348360497\\
+0.0118118118118118 0.897432213214861\\
+0.0121521521521522 0.9048126825649\\
+0.0124924924924925 0.911736996158292\\
+0.0128328328328329 0.918232610685289\\
+0.0131731731731731 0.924325309799184\\
+0.0135135135135135 0.930039307312723\\
+0.0138538538538538 0.935397343994359\\
+0.0141941941941942 0.940420778361897\\
+0.0145345345345346 0.945129671846397\\
+0.0148748748748748 0.94954286867602\\
+0.0152152152152152 0.95367807080777\\
+0.0155555555555555 0.957551908214733\\
+0.0158958958958959 0.961180004817265\\
+0.0162162162162163 0.964383359753625\\
+0.0165365365365365 0.967393565371105\\
+0.0168568568568569 0.970221486787369\\
+0.0171771771771771 0.972877371980637\\
+0.0174974974974975 0.975370887486108\\
+0.0178178178178178 0.977711152008323\\
+0.0181381381381381 0.979906768071518\\
+0.0184584584584585 0.981965851822817\\
+0.0187787787787788 0.983896061096446\\
+0.0190990990990991 0.985704621840763\\
+0.0194194194194194 0.987398353003948\\
+0.0197397397397397 0.988983689968601\\
+0.02 0.990196166583419\\
+};
+\end{axis}
+\end{tikzpicture}%
\ No newline at end of file
diff --git a/matlab/figs/verification_NP.pdf b/matlab/figs/verification_NP.pdf
new file mode 100644
index 0000000..4d05c3c
Binary files /dev/null and b/matlab/figs/verification_NP.pdf differ
diff --git a/matlab/figs/verification_NP.png b/matlab/figs/verification_NP.png
new file mode 100644
index 0000000..b1ffef6
Binary files /dev/null and b/matlab/figs/verification_NP.png differ
diff --git a/matlab/figs/weights_NP_RS_RP.pdf b/matlab/figs/weights_NP_RS_RP.pdf
new file mode 100644
index 0000000..ac84737
Binary files /dev/null and b/matlab/figs/weights_NP_RS_RP.pdf differ
diff --git a/matlab/figs/weights_NP_RS_RP.png b/matlab/figs/weights_NP_RS_RP.png
new file mode 100644
index 0000000..2cb7bac
Binary files /dev/null and b/matlab/figs/weights_NP_RS_RP.png differ
diff --git a/matlab/figs/weights_wl_wh.pdf b/matlab/figs/weights_wl_wh.pdf
new file mode 100644
index 0000000..c1c4146
Binary files /dev/null and b/matlab/figs/weights_wl_wh.pdf differ
diff --git a/matlab/figs/weights_wl_wh.png b/matlab/figs/weights_wl_wh.png
new file mode 100644
index 0000000..d134aa2
Binary files /dev/null and b/matlab/figs/weights_wl_wh.png differ
diff --git a/matlab/index.html b/matlab/index.html
new file mode 100644
index 0000000..9849fda
--- /dev/null
+++ b/matlab/index.html
@@ -0,0 +1,1091 @@
+
+
+
+
+
+
+
+Sensor Fusion Paper - Computation with Matlab
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Sensor Fusion Paper - Computation with Matlab
+
+
+
+The control architecture studied here is shown on figure 1 where:
+
+
+\(G^{\prime}\) is the plant to control
+\(K = G^{-1} H_L^{-1}\) is the controller used with \(G\) a model of the plant
+\(H_L\) and \(H_H\) are complementary filters (\(H_L + H_H = 1\))
+\(K_r\) is a pre-filter that can be added
+
+
+
+
+
+
+Here is the outline of the matlab
analysis for this control architecture:
+
+
+Section 1 : the plant model \(G\) is defined
+Section 2 : the plant uncertainty set \(\Pi_I\) is defined using the multiplicative input uncertainty: \(\Pi_I: \ G^\prime = G (1 + w_I \Delta)\). Thus the weight \(w_I\) is defined such that the true system dynamics is included in the set \(\Pi_I\)
+Section 3 : From the specifications on performance that are expressed in terms of upper bounds of \(S\) and \(T\), performance weights \(w_S\) and \(w_T\) are derived such that the goal is to obtain \(|S| < \frac{1}{|w_S|}\) and \(|T| < \frac{1}{|w_T|}, \ \forall \omega\)
+Section 4 : upper bounds on the magnitude of the complementary filters \(|H_L|\) and \(|H_H|\) are defined in order to ensure Nominal Performance (NP), Robust Stability (RS) and Robust Performance (RP)
+Then, \(H_L\) and \(H_H\) are synthesize such that \(|H_L|\) and \(|H_H|\) are within the specified bounds and such that \(H_L + H_H = 1\) (complementary property). This is done using two techniques, first \(\mathcal{H}_\infty\) (section 5 ) and then analytical formulas (section 6 ). Resulting complementary filters for both methods are compared in section 7 .
+Section 8 : the obtain controller \(K = G^{-1} H_H^{-1}\) is analyzed
+Section 9 : the Nominal Stability (NS) and Nominal Performance conditions are verified
+Section 10 : robust Stability and Robust Performance conditions are studied
+Section 11 : a pre-filter that is used to limit the input usage due to the change of the reference is added
+Section 12 : a controller is designed using SISOTOOL
and then compared with the previously generated controller
+
+
+
+
+All the files (data and Matlab scripts) are accessible here .
+
+
+
+
+
+
1 Definition of the plant
+
+
+
+
+
+
+The studied system consists of a solid positioned on top of a motorized uni-axial soft suspension.
+
+
+
+The absolute position \(x\) of the solid is measured using an inertial sensor and a force \(F\) can be applied to the mass using a voice coil actuator.
+
+
+
+The model of the system is represented on figure 2 where the mass of the solid is \(m = 20\ [kg]\), the stiffness of the suspension is \(k = 10^4\ [N/m]\) and the damping of the system is \(c = 10^2\ [N/(m/s)]\).
+
+
+
+
+
+
+The plant \(G\) is defined on matlab and its bode plot is shown on figure 3 .
+
+
+
+
m = 20 ;
+k = 1e4 ;
+c = 1e2 ;
+
+G = 1 / ( m* s^ 2 + c* s + k) ;
+
+
+
+
+
+
+
+
+
+
2 Multiplicative input uncertainty
+
+
+
+We choose to use the multiplicative input uncertainty to model the plant uncertainty:
+\[ \Pi_I: \ G^\prime(s) = G(s) (1 + w_I(s) \Delta(s)),\text{ with } |\Delta(j\omega)| < 1 \ \forall \omega \]
+
+
+
+
+The uncertainty weight \(w_I\) has the following form:
+\[ w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1} \]
+where \(r_0=0.1\) is the relative uncertainty at steady-state, \(1/\tau=80\text{Hz}\) is the frequency at which the relative uncertainty reaches 100%, and \(r_\infty=10\) is the magnitude of the weight at high frequency.
+
+
+
+We defined the uncertainty weight on matlab. Its bode plot is shown on figure 4 .
+
+
+
+
r0 = 0 .1 ;
+rinf = 10 ;
+tau = 1 / 2 / pi / 80 ;
+
+wI = ( tau* s + r0) / ( ( tau/ rinf) * s+ 1 ) ;
+
+
+
+
+
+
+
+The uncertain model is created with the ultidyn
function. Elements in the uncertainty set \(\Pi_I\) are computed and their bode plot is shown on figure 5 .
+
+
+
+
Delta = ultidyn( 'Delta' , [ 1 1 ] ) ;
+
+Gd = G* ( 1 + wI* Delta) ;
+Gds = usample( Gd, 20 ) ;
+
+
+
+
+
+
+
+
+
+
3 Specifications and performance weights
+
+
+
+
+
+
+The control objective is to isolate the displacement \(x\) of the mass from the ground motion \(w\).
+
+
+
+The specifications are described below:
+
+
+at least a factor \(10\) of disturbance rejection at \(2\ \text{Hz}\) and with a slope of \(2\) below \(2\ \text{Hz}\) until a rejection of \(10^3\)
+the noise attenuation should be at least \(10\) above \(100\ \text{Hz}\) and with a slope of \(-2\) above
+
+
+
+These specifications can be represented as upper bounds on the closed loop transfer functions \(S\) and \(T\) (see figure 6 ).
+
+
+
+
+
+
+We now define two weights, \(w_S(s)\) and \(w_T(s)\) such that \(1/|w_S|\) and \(1/|w_T|\) are lower than the previously defined upper bounds.
+Then, the performance specifications are satisfied if the following condition is valid:
+\[ \big|S(j\omega)\big| < \frac{1}{|w_S(j\omega)|} ; \quad \big|T(j\omega)\big| < \frac{1}{|w_T(j\omega)|}, \quad \forall \omega \]
+
+
+
+The weights are defined as follow. They magnitude is compared with the upper bounds on \(S\) and \(T\) on figure 7 .
+
+
+
wS = 1600 / ( s+ 0 .13 ) ^ 2 ;
+wT = 1000 * ( ( s/ ( 2 * pi * 1000 ) ) ) ^ 2 ;
+
+
+
+
+
+
+
+
+
+
4 Upper bounds on the norm of the complementary filters for NP, RS and RP
+
+
+
+
+
+
+Now that we have defined \(w_I\), \(w_S\) and \(w_T\), we can derive conditions for Nominal Performance, Robust Stability and Robust Performance (\(j\omega\) is omitted here for readability):
+
+\begin{align*}
+ \text{NP} &\Leftrightarrow |H_H| < \frac{1}{|w_S|} \text{ and } |H_L| < \frac{1}{|w_T|} \quad \forall \omega \\
+ \text{RS} &\Leftrightarrow |H_L| < \frac{1}{|w_I| (2 + |w_I|)} \quad \forall \omega \\
+ \text{RP for } S &\Leftarrow |H_H| < \frac{1 + |w_I|}{|w_S| (2 + |w_I|)} \quad \forall \omega \\
+ \text{RP for } T &\Leftrightarrow |H_L| < \frac{1}{|w_T| (1 + |w_I|) + |w_I|} \quad \forall \omega
+\end{align*}
+
+
+These conditions are upper bounds on the complementary filters used for control.
+
+
+
+We plot these conditions on figure 8 .
+
+
+
+
+
+
+
+
+
5 H-Infinity synthesis of complementary filters
+
+
+
+
+
+
+We here synthesize the complementary filters using the \(\mathcal{H}_\infty\) synthesis.
+The goal is to specify upper bounds on the norms of \(H_L\) and \(H_H\) while ensuring their complementary property (\(H_L + H_H = 1\)).
+
+
+
+In order to do so, we use the generalized plant shown on figure 9 where \(w_L\) and \(w_H\) weighting transfer functions that will be used to shape \(H_L\) and \(H_H\) respectively.
+
+
+
+
+
+
+The \(\mathcal{H}_\infty\) synthesis applied on this generalized plant will give a transfer function \(H_L\) (figure 10 ) such that the \(\mathcal{H}_\infty\) norm of the transfer function from \(w\) to \([z_H,\ z_L]\) is less than one:
+\[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \]
+
+
+
+Thus, if the above condition is verified, we can define \(H_H = 1 - H_L\) and we have that:
+\[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \]
+Which is almost (with an maximum error of \(\sqrt{2}\)) equivalent to:
+
+\begin{align*}
+ |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\
+ |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega
+\end{align*}
+
+
+We then see that \(w_L\) and \(w_H\) can be used to shape both \(H_L\) and \(H_H\) while ensuring (by definition of \(H_H = 1 - H_L\)) their complementary property.
+
+
+
+
+
+
+
+Thus, if we choose \(w_L\) and \(w_H\) such that \(1/|w_L|\) and \(1/|w_H|\) lie below the upper bounds of figure 8 , we will ensure the NP, RS and RP of the controlled system.
+
+
+
+Depending if we are interested only in NP, RS or RP, we can adjust the weights \(w_L\) and \(w_H\).
+
+
+
+
omegab = 2 * pi * 9 ;
+wH = ( omegab) ^ 2 / ( s + omegab* sqrt( 1e - 5 ) ) ^ 2 ;
+omegab = 2 * pi * 28 ;
+wL = ( s + omegab/ ( 4 .5 ) ^ ( 1 / 3 ) ) ^ 3 / ( s* ( 1e - 4 ) ^ ( 1 / 3 ) + omegab) ^ 3 ;
+
+
+
+
+
+
+
+We define the generalized plant \(P\) on matlab.
+
+
+
P = [ 0 wL;
+ wH - wH;
+ 1 0 ] ;
+
+
+
+
+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn
command.
+
+
+
[ Hl_hinf, ~ , gamma, ~ ] = hinfsyn( P, 1 , 1 ,'TOLGAM', 0 .001 , 'METHOD', 'ric', 'DISPLAY', 'on') ;
+
+
+
+
+[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Test bounds: 0.0000 < gamma <= 1.7285
+
+ gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
+ 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f
+ 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
+ 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f
+ 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f
+ 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f
+ 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f
+
+ Gamma value achieved: 0.9942
+
+
+
+We then define the high pass filter \(H_H = 1 - H_L\). The bode plot of both \(H_L\) and \(H_H\) is shown on figure 12 .
+
+
+
Hh_hinf = 1 - Hl_hinf;
+
+
+
+
+
+
+
+
+
+
6 Complementary filters using analytical formula
+
+
+
+
+
+
+We here use analytical formula for the complementary filters \(H_L\) and \(H_H\).
+
+
+
+The first two formulas that are used to generate complementary filters are:
+
+\begin{align*}
+ H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\
+ H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}
+\end{align*}
+
+where:
+
+
+\(\omega_0\) is the blending frequency in rad/s.
+\(\alpha\) is used to change the shape of the filters:
+
+Small values for \(\alpha\) will produce high magnitude of the filters \(|H_L(j\omega)|\) and \(|H_H(j\omega)|\) near \(\omega_0\) but smaller value for \(|H_L(j\omega)|\) above \(\approx 1.5 \omega_0\) and for \(|H_H(j\omega)|\) below \(\approx 0.7 \omega_0\)
+A large \(\alpha\) will do the opposite
+
+
+
+
+This is illustrated on figure 13 .
+As it is usually wanted to have the \(\| S \|_\infty < 2\), \(\alpha\) between \(0.5\) and \(1\) gives a good trade-off between the performance and the robustness.
+The slope of those filters at high and low frequencies is \(-2\) and \(2\) respectively for \(H_L\) and \(H_H\).
+
+
+
+
+
+
+
+The parameters \(\alpha\) and \(\omega_0\) are chosen in order to have that the complementary filters stay below the defined upper bounds.
+
+
+
+The obtained complementary filters are shown on figure 14 .
+The Robust Performance is not fulfilled for \(T\), and we see that the RP condition as a slop of \(-3\). We thus have to use different formula for the complementary filters here.
+
+
+
+
w0 = 2 * pi * 13 ;
+alpha = 0 .8 ;
+
+Hh2_ana = ( s/ w0) ^ 2 * ( ( s/ w0) + 1 + alpha) / ( ( ( s/ w0) + 1 ) * ( ( s/ w0) ^ 2 + alpha* ( s/ w0) + 1 ) ) ;
+Hl2_ana = ( ( 1 + alpha) * ( s/ w0) + 1 ) / ( ( ( s/ w0) + 1 ) * ( ( s/ w0) ^ 2 + alpha* ( s/ w0) + 1 ) ) ;
+
+
+
+
+
+
+
+
+The following formula gives complementary filters with slopes of \(-3\) and \(3\):
+
+\begin{align*}
+ H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\
+ H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}
+\end{align*}
+
+
+The parameters are:
+
+
+\(\omega_0\) is the blending frequency in rad/s
+\(\alpha\) and \(\beta\) that are used to change the shape of the filters similarly to the parameter \(\alpha\) for the second order complementary filters
+
+
+
+The filters are defined below and the result is shown on figure 15 where we can see that the complementary filters are below the defined upper bounds.
+
+
+
+
alpha = 1 ;
+beta = 10 ;
+w0 = 2 * pi * 14 ;
+
+Hh3_ana = ( s/ w0) ^ 3 * ( ( s/ w0) ^ 2 + ( 1 + alpha+ beta) * ( s/ w0) + ( 1 + ( alpha+ 1 ) * ( beta+ 1 ) ) ) / ( ( s/ w0 + 1 ) * ( ( s/ w0) ^ 2 + alpha* ( s/ w0) + 1 ) * ( ( s/ w0) ^ 2 + beta* ( s/ w0) + 1 ) ) ;
+Hl3_ana = ( ( 1 + ( alpha+ 1 ) * ( beta+ 1 ) ) * ( s/ w0) ^ 2 + ( 1 + alpha+ beta) * ( s/ w0) + 1 ) / ( ( s/ w0 + 1 ) * ( ( s/ w0) ^ 2 + alpha* ( s/ w0) + 1 ) * ( ( s/ w0) ^ 2 + beta* ( s/ w0) + 1 ) ) ;
+
+
+
+
+
+
+
+
+
+
7 Comparison of complementary filters
+
+
+
+The generated complementary filters using \(\mathcal{H}_\infty\) and the analytical formulas are compared on figure 16 .
+
+
+
+Although they are very close to each other, there is some difference to note here:
+
+
+the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters \(\alpha\) and \(\omega_0\). However, these formula have the property that \(|H_H|\) and \(|H_L|\) are symmetrical with the frequency \(\omega_0\) which may not be desirable.
+while the \(\mathcal{H}_\infty\) synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters
+
+
+
+The complementary filters obtained with the \(\mathcal{H}_\infty\) will be used for further analysis.
+
+
+
+
+
+
+
+
+
8 Controller Analysis
+
+
+
+
+
+
+The controller \(K\) is computed from the plant model \(G\) and the low pass filter \(H_H\):
+\[ K = G^{-1} H_H^{-1} \]
+
+
+
+As this is not proper and thus realizable, a second order low pass filter is added with a crossover frequency much larger than the control bandwidth.
+
+
+
+
omega = 2 * pi * 1000 ;
+K = 1 / ( Hh_hinf* G) * 1 / ( ( 1 + s/ omega) * ( 1 + s/ omega+ ( s/ omega) ^ 2 ) ) ;
+
+
+
+
+zpk(K)
+
+ans =
+
+ 4.961e12 (s+9.915e04) (s^2 + 5s + 500) (s^2 + 284.6s + 2.135e04) (s^2 + 130.5s + 9887)
+ --------------------------------------------------------------------------------------------------
+ (s+9.914e04) (s+6283) (s^2 + 0.3576s + 0.03198) (s^2 + 413.8s + 6.398e04) (s^2 + 6283s + 3.948e07)
+
+Continuous-time zero/pole/gain model.
+
+
+
+The bode plot of the controller is shown on figure 17 :
+
+
+two integrator are present at low frequency
+the resonance of the plant at \(3.5\ \text{Hz}\) is inverted (notched)
+a lead is added at \(10\ \text{Hz}\)
+
+
+
+
+
+
+
+
+
9 Nominal Stability and Nominal Performance
+
+
+
+
+
+
+The nominal stability of the system is first checked with the allmargin
matlab command.
+
+
+
+
allmargin( K* G* Hl_hinf)
+
+
+
+
+allmargin(K*G*Hl_hinf)
+ans =
+ struct with fields:
+
+ GainMargin: 4.46426896164391
+ GMFrequency: 243.854595348016
+ PhaseMargin: 35.7045152899792
+ PMFrequency: 88.3664383511655
+ DelayMargin: 0.00705201387841809
+ DMFrequency: 88.3664383511655
+ Stable: 1
+
+
+
+The system is stable and the stability margins are good.
+
+
+
+The bode plot of the loop gain \(L = K*G*H_L\) is shown on figure 18 .
+
+
+
+
+
+
+In order to check the Nominal Performance of the system, we compute the sensibility and the complementary sensibility transfer functions.
+
+
+
+
S = 1 / ( K* G* Hl_hinf + 1 ) ;
+T = K* G* Hl_hinf/ ( K* G* Hl_hinf + 1 ) ;
+
+
+
+
+We then compare their norms with the upper bounds on the performance of the system (figure 19 ).
+As expected, we guarantee the Nominal Performance of the system.
+
+
+
+
+
+
+
+
+
10 Robust Stability and Robust Performance
+
+
+
+In order to verify the Robust stability of the system, we can use the following equivalence:
+\[ \text{RS} \Leftrightarrow \left| w_I T \right| < 1 \quad \forall \omega \]
+
+
+
+This is shown on figure 20 .
+
+
+
+
+
+
+To check Robust Stability, we can also look at the loop gain of the uncertain system (figure 21 ) or the Nyquist plot (figure 22 ).
+
+
+
+
+
+
+
+
+
+
+The Robust Performance is verified by plotting \(|S|\) and \(|T|\) for the uncertain system along side the upper bounds defined for performance.
+This is shown on figure 23 and we can indeed confirmed that the robust performance property of the system is valid.
+
+
+
+
+
+
+
+
+
11 Pre-filter
+
+
+
+
+
+
+For now, we have not specified any performance requirements on the input usage due to change of reference.
+Do limit the input usage due to change of reference, we can use a pre-filter \(K_r\) as shown on figure 1 .
+
+
+
+If we want a response time of 0.01 second, we can choose a first order low pass filter with a crossover frequency at \(1/0.01 = 100\ \text{Hz}\) as defined below.
+
+
+
+
Kr = 1 / ( 1 + s/ 2 / pi / 100 ) ;
+
+
+
+
+We then run a simulation for a step of \(1\mu m\) for the system without and with the pre-filter \(K_r\) (figure 24 ).
+This confirms that a pre-filter can be used to limit the input usage due to change of reference using this architecture.
+
+
+
+
t = linspace( 0 , 0 .02 , 1000 ) ;
+
+opts = stepDataOptions;
+opts.StepAmplitude = 1e - 6 ;
+
+u = step( ( K) / ( 1 + G* K* Hl_hinf) , t, opts) ;
+uf = step( ( Kr* K) / ( 1 + G* K* Hl_hinf) , t, opts) ;
+y = step( ( K* G) / ( 1 + G* K* Hl_hinf) , t, opts) ;
+yf = step( ( Kr* G* K) / ( 1 + G* K* Hl_hinf) , t, opts) ;
+
+
+
+
+
+
+
+
+
+
12 Controller using classical techniques
+
+
+
+A controller is designed using SISOTOOL
with a bandwidth of approximately \(20\ \text{Hz}\) and with two integrator.
+
+
+
+The obtained controller is shown below.
+
+
+
Kf = 1 .1814e12 * ( s+ 10 .15 ) * ( s+ 9 .036 ) * ( s+ 53 .8 ) / ( s^ 2 * ( s+ 216 .1 ) * ( s+ 1200 ) * ( s+ 1864 ) ) ;
+
+
+
+
+
+
+zpk(Kf)
+
+ans =
+
+ 1.1814e12 (s+10.15) (s+9.036) (s+53.8)
+ --------------------------------------
+ s^2 (s+216.1) (s+1200) (s+1864)
+
+Continuous-time zero/pole/gain model.
+
+
+
+The loop gain for both cases are compared on figure 25 .
+
+
+
+
+
+
+The Robust Stability of the system is verified using the Nyquist plot on figure 26 .
+
+
+
+
+
+
+The closed loop sensitivity and complementary sensitivity transfer functions are computed.
+And finally, the Robust Performance of both systems are compared on figure 27 .
+
+
+
+
+
+
+
+
+
Author: Thomas Dehaeze
+
Created: 2019-08-21 mer. 16:03
+
Validate
+
+
+
diff --git a/matlab/index.org b/matlab/index.org
new file mode 100644
index 0000000..c71fd75
--- /dev/null
+++ b/matlab/index.org
@@ -0,0 +1,1345 @@
+#+TITLE: Sensor Fusion Paper - Matlab Computation
+:DRAWER:
+#+HTML_LINK_HOME: ../index.html
+#+HTML_LINK_UP: ../index.html
+
+#+LATEX_CLASS: cleanreport
+#+LATEX_CLASS_OPTIONS: [tocnp, secbreak, minted]
+
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+
+#+PROPERTY: header-args:matlab :session *MATLAB*
+#+PROPERTY: header-args:matlab+ :tangle matlab/comp_filters_design.m
+#+PROPERTY: header-args:matlab+ :comments org
+#+PROPERTY: header-args:matlab+ :exports both
+#+PROPERTY: header-args:matlab+ :results none
+#+PROPERTY: header-args:matlab+ :eval no-export
+#+PROPERTY: header-args:matlab+ :noweb yes
+#+PROPERTY: header-args:matlab+ :mkdirp yes
+#+PROPERTY: header-args:matlab+ :output-dir figs
+:END:
+
+* Introduction :ignore:
+The control architecture studied here is shown on figure [[fig:sf_arch_class_prefilter]] where:
+- $G^{\prime}$ is the plant to control
+- $K = G^{-1} H_L^{-1}$ is the controller used with $G$ a model of the plant
+- $H_L$ and $H_H$ are complementary filters ($H_L + H_H = 1$)
+- $K_r$ is a pre-filter that can be added
+
+#+name: fig:sf_arch_class_prefilter
+#+caption: Control Architecture
+[[file:figs-tikz/sf_arch_class_prefilter.png]]
+
+Here is the outline of the =matlab= analysis for this control architecture:
+- Section [[sec:plant]]: the plant model $G$ is defined
+- Section [[sec:uncertainty]]: the plant uncertainty set $\Pi_I$ is defined using the multiplicative input uncertainty: $\Pi_I: \ G^\prime = G (1 + w_I \Delta)$. Thus the weight $w_I$ is defined such that the true system dynamics is included in the set $\Pi_I$
+- Section [[sec:specifications]]: From the specifications on performance that are expressed in terms of upper bounds of $S$ and $T$, performance weights $w_S$ and $w_T$ are derived such that the goal is to obtain $|S| < \frac{1}{|w_S|}$ and $|T| < \frac{1}{|w_T|}, \ \forall \omega$
+- Section [[sec:upper_bounds_filters]]: upper bounds on the magnitude of the complementary filters $|H_L|$ and $|H_H|$ are defined in order to ensure Nominal Performance (NP), Robust Stability (RS) and Robust Performance (RP)
+- Then, $H_L$ and $H_H$ are synthesize such that $|H_L|$ and $|H_H|$ are within the specified bounds and such that $H_L + H_H = 1$ (complementary property). This is done using two techniques, first $\mathcal{H}_\infty$ (section [[sec:h_infinity]]) and then analytical formulas (section [[sec:analytical_formula]]). Resulting complementary filters for both methods are compared in section [[sec:comp_filters]].
+- Section [[sec:controller_analysis]]: the obtain controller $K = G^{-1} H_H^{-1}$ is analyzed
+- Section [[sec:nominal_stability_performance]]: the Nominal Stability (NS) and Nominal Performance conditions are verified
+- Section [[sec:robustness_analysis]]: robust Stability and Robust Performance conditions are studied
+- Section [[sec:pre_filter]]: a pre-filter that is used to limit the input usage due to the change of the reference is added
+- Section [[sec:sisotool_controller]]: a controller is designed using =SISOTOOL= and then compared with the previously generated controller
+
+* ZIP file containing the data and matlab files :ignore:
+#+begin_src bash :exports none :results none
+ if [ matlab/sensor_fusion.m -nt data/sensor_fusion.zip ]; then
+ cp matlab/sensor_fusion.m sensor_fusion.m;
+ zip data/sensor_fusion \
+ sensor_fusion.m
+ rm sensor_fusion.m;
+ fi
+#+end_src
+
+#+begin_note
+ All the files (data and Matlab scripts) are accessible [[file:data/sensor_fusion.zip][here]].
+#+end_note
+
+* Matlab Init :noexport:ignore:
+#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
+ <>
+#+end_src
+
+#+begin_src matlab :exports none :results silent :noweb yes
+ <>
+#+end_src
+
+#+begin_src matlab
+ freqs = logspace(-1, 3, 1000);
+#+end_src
+
+* Definition of the plant
+ <>
+
+The studied system consists of a solid positioned on top of a motorized uni-axial soft suspension.
+
+The absolute position $x$ of the solid is measured using an inertial sensor and a force $F$ can be applied to the mass using a voice coil actuator.
+
+The model of the system is represented on figure [[fig:mech_sys_alone]] where the mass of the solid is $m = 20\ [kg]$, the stiffness of the suspension is $k = 10^4\ [N/m]$ and the damping of the system is $c = 10^2\ [N/(m/s)]$.
+
+#+name: fig:mech_sys_alone
+#+caption: One degree of freedom system
+[[file:figs-tikz/mech_sys_alone.png]]
+
+The plant $G$ is defined on matlab and its bode plot is shown on figure [[fig:bode_plot_mech_sys]].
+
+#+begin_src matlab
+ m = 20; % [kg]
+ k = 1e4; % [N/m]
+ c = 1e2; % [N/(m/s)]
+
+ G = 1/(m*s^2 + c*s + k);
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ ax1 = subaxis(2,1,1);
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-');
+ hold off;
+ xlim([0.1, 100]);
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude [m/N]');
+
+ ax2 = subaxis(2,1,2);
+ hold on;
+ plot(freqs, 180/pi*angle(squeeze(freqresp(G, freqs, 'Hz'))), 'k-');
+ hold off;
+ yticks(-180:90:180);
+ ylim([-180 180]);
+ xlim([0.1, 1000]);
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ linkaxes([ax1,ax2],'x');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/bode_plot_mech_sys.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:bode_plot_mech_sys
+#+CAPTION: Bode plot of $G$ ([[./figs/bode_plot_mech_sys.png][png]], [[./figs/bode_plot_mech_sys.pdf][pdf]])
+[[file:figs/bode_plot_mech_sys.png]]
+
+* Multiplicative input uncertainty
+ <>
+We choose to use the multiplicative input uncertainty to model the plant uncertainty:
+\[ \Pi_I: \ G^\prime(s) = G(s) (1 + w_I(s) \Delta(s)),\text{ with } |\Delta(j\omega)| < 1 \ \forall \omega \]
+
+
+The uncertainty weight $w_I$ has the following form:
+\[ w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1} \]
+where $r_0=0.1$ is the relative uncertainty at steady-state, $1/\tau=80\text{Hz}$ is the frequency at which the relative uncertainty reaches 100%, and $r_\infty=10$ is the magnitude of the weight at high frequency.
+
+We defined the uncertainty weight on matlab. Its bode plot is shown on figure [[fig:bode_wi]].
+
+#+begin_src matlab
+ r0 = 0.1;
+ rinf = 10;
+ tau = 1/2/pi/80;
+
+ wI = (tau*s + r0)/((tau/rinf)*s+1);
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(wI, freqs, 'Hz'))), 'k-');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-1, 10]);
+ xticks([0.1, 1, 10, 100, 1000])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/bode_wi.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:bode_wi
+#+CAPTION: Bode plot of $w_I$ ([[./figs/bode_wi.png][png]], [[./figs/bode_wi.pdf][pdf]])
+[[file:figs/bode_wi.png]]
+
+The uncertain model is created with the =ultidyn= function. Elements in the uncertainty set $\Pi_I$ are computed and their bode plot is shown on figure [[fig:plant_uncertainty_bode_plot]].
+
+#+begin_src matlab
+ Delta = ultidyn('Delta', [1 1]);
+
+ Gd = G*(1+wI*Delta);
+ Gds = usample(Gd, 20);
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ ax1 = subplot(2,1,1);
+ hold on;
+ for i=1:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]);
+ end
+ plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), 'k-');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude [m/N]');
+ hold off;
+ % Phase
+ ax2 = subplot(2,1,2);
+ hold on;
+ for i=1:length(Gds)
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]);
+ end
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), 'k-');
+ set(gca,'xscale','log');
+ yticks(-360:90:180);
+ ylim([-360 0]);
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ hold off;
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/plant_uncertainty_bode_plot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:plant_uncertainty_bode_plot
+#+CAPTION: Some elements in the uncertainty set $\Pi_I$ ([[./figs/plant_uncertainty_bode_plot.png][png]], [[./figs/plant_uncertainty_bode_plot.pdf][pdf]])
+[[file:figs/plant_uncertainty_bode_plot.png]]
+
+* Specifications and performance weights
+ <>
+
+The control objective is to isolate the displacement $x$ of the mass from the ground motion $w$.
+
+The specifications are described below:
+- at least a factor $10$ of disturbance rejection at $2\ \text{Hz}$ and with a slope of $2$ below $2\ \text{Hz}$ until a rejection of $10^3$
+- the noise attenuation should be at least $10$ above $100\ \text{Hz}$ and with a slope of $-2$ above
+
+These specifications can be represented as upper bounds on the closed loop transfer functions $S$ and $T$ (see figure [[fig:bode_requirements]]).
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+ set(gca,'ColorOrderIndex',2)
+ plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/bode_requirements.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:bode_requirements
+#+CAPTION: Upper bounds on $S$ and $T$ ([[./figs/bode_requirements.png][png]], [[./figs/bode_requirements.pdf][pdf]])
+[[file:figs/bode_requirements.png]]
+
+We now define two weights, $w_S(s)$ and $w_T(s)$ such that $1/|w_S|$ and $1/|w_T|$ are lower than the previously defined upper bounds.
+Then, the performance specifications are satisfied if the following condition is valid:
+\[ \big|S(j\omega)\big| < \frac{1}{|w_S(j\omega)|} ; \quad \big|T(j\omega)\big| < \frac{1}{|w_T(j\omega)|}, \quad \forall \omega \]
+
+The weights are defined as follow. They magnitude is compared with the upper bounds on $S$ and $T$ on figure [[fig:compare_weights_upper_bounds_S_T]].
+#+begin_src matlab
+ wS = 1600/(s+0.13)^2;
+ wT = 1000*((s/(2*pi*1000)))^2;
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_T|$');
+ set(gca,'ColorOrderIndex',1)
+ plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_S|$');
+ set(gca,'ColorOrderIndex',2)
+ plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-4, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/compare_weights_upper_bounds_S_T.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:compare_weights_upper_bounds_S_T
+#+CAPTION: Weights $w_S$ and $w_T$ with the upper bounds on $S$ and $T$ obtained from the specifications ([[./figs/compare_weights_upper_bounds_S_T.png][png]], [[./figs/compare_weights_upper_bounds_S_T.pdf][pdf]])
+[[file:figs/compare_weights_upper_bounds_S_T.png]]
+
+* Upper bounds on the norm of the complementary filters for NP, RS and RP
+ <>
+
+Now that we have defined $w_I$, $w_S$ and $w_T$, we can derive conditions for Nominal Performance, Robust Stability and Robust Performance ($j\omega$ is omitted here for readability):
+\begin{align*}
+ \text{NP} &\Leftrightarrow |H_H| < \frac{1}{|w_S|} \text{ and } |H_L| < \frac{1}{|w_T|} \quad \forall \omega \\
+ \text{RS} &\Leftrightarrow |H_L| < \frac{1}{|w_I| (2 + |w_I|)} \quad \forall \omega \\
+ \text{RP for } S &\Leftarrow |H_H| < \frac{1 + |w_I|}{|w_S| (2 + |w_I|)} \quad \forall \omega \\
+ \text{RP for } T &\Leftrightarrow |H_L| < \frac{1}{|w_T| (1 + |w_I|) + |w_I|} \quad \forall \omega
+\end{align*}
+
+These conditions are upper bounds on the complementary filters used for control.
+
+We plot these conditions on figure [[fig:weights_NP_RS_RP]].
+
+#+begin_src matlab :exports none
+ wT_resp = abs(squeeze(freqresp(wT, freqs, 'Hz')));
+ wI_resp = abs(squeeze(freqresp(wI, freqs, 'Hz')));
+ wS_resp = abs(squeeze(freqresp(wS, freqs, 'Hz')));
+ Hh_resp = wT_resp.*(1 + wI_resp)./(wS_resp.*(wT_resp .* (1 + wI_resp) + wI_resp));
+ Hl_resp = 1./(wT_resp .* (1 + wI_resp) + wI_resp);
+
+ figure;
+ hold on;
+ plot(freqs, wS_resp .* Hh_resp + wI_resp .* Hl_resp, '--', 'DisplayName', 'NP - $H_L$');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+begin_src matlab :exports none
+ wT_resp = abs(squeeze(freqresp(wT, freqs, 'Hz')));
+ wI_resp = abs(squeeze(freqresp(wI, freqs, 'Hz')));
+ wS_resp = abs(squeeze(freqresp(wS, freqs, 'Hz')));
+
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./wT_resp, '--', 'DisplayName', 'NP - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(wT_resp .* (1 + wI_resp) + wI_resp), ':', 'DisplayName', 'RP for T - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(wI_resp .* (2 + wI_resp)), '-.', 'DisplayName', 'RS - $H_L$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./wS_resp, '--', 'DisplayName', 'NP - $H_H$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, (1 + wI_resp)./(wS_resp .* (2 + wI_resp)), ':', 'DisplayName', 'RP for S - $H_H$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, wT_resp.*(1 + wI_resp)./(wS_resp.*(wT_resp .* (1 + wI_resp) + wI_resp)), '-', 'DisplayName', 'RP for S - $H_H$');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/weights_NP_RS_RP.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:weights_NP_RS_RP
+#+CAPTION: Upper bounds on the norm of the complementary filters for NP, RS and RP ([[./figs/weights_NP_RS_RP.png][png]], [[./figs/weights_NP_RS_RP.pdf][pdf]])
+[[file:figs/weights_NP_RS_RP.png]]
+
+* H-Infinity synthesis of complementary filters
+ <>
+
+We here synthesize the complementary filters using the $\mathcal{H}_\infty$ synthesis.
+The goal is to specify upper bounds on the norms of $H_L$ and $H_H$ while ensuring their complementary property ($H_L + H_H = 1$).
+
+In order to do so, we use the generalized plant shown on figure [[fig:sf_hinf_filters_plant_b]] where $w_L$ and $w_H$ weighting transfer functions that will be used to shape $H_L$ and $H_H$ respectively.
+
+#+name: fig:sf_hinf_filters_plant_b
+#+caption: Generalized plant used for the $\mathcal{H}_\infty$ synthesis of the complementary filters
+[[file:figs-tikz/sf_hinf_filters_plant_b.png]]
+
+The $\mathcal{H}_\infty$ synthesis applied on this generalized plant will give a transfer function $H_L$ (figure [[fig:sf_hinf_filters_b]]) such that the $\mathcal{H}_\infty$ norm of the transfer function from $w$ to $[z_H,\ z_L]$ is less than one:
+\[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \]
+
+Thus, if the above condition is verified, we can define $H_H = 1 - H_L$ and we have that:
+\[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \]
+Which is almost (with an maximum error of $\sqrt{2}$) equivalent to:
+\begin{align*}
+ |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\
+ |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega
+\end{align*}
+
+We then see that $w_L$ and $w_H$ can be used to shape both $H_L$ and $H_H$ while ensuring (by definition of $H_H = 1 - H_L$) their complementary property.
+
+#+name: fig:sf_hinf_filters_b
+#+caption: $\mathcal{H}_\infty$ synthesis of the complementary filters
+[[file:figs-tikz/sf_hinf_filters_b.png]]
+
+
+Thus, if we choose $w_L$ and $w_H$ such that $1/|w_L|$ and $1/|w_H|$ lie below the upper bounds of figure [[fig:weights_NP_RS_RP]], we will ensure the NP, RS and RP of the controlled system.
+
+Depending if we are interested only in NP, RS or RP, we can adjust the weights $w_L$ and $w_H$.
+
+#+begin_src matlab
+ omegab = 2*pi*9;
+ wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2;
+ omegab = 2*pi*28;
+ wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3;
+#+end_src
+
+#+begin_src matlab :exports none
+ wT_resp = abs(squeeze(freqresp(wT, freqs, 'Hz')));
+ wI_resp = abs(squeeze(freqresp(wI, freqs, 'Hz')));
+ wS_resp = abs(squeeze(freqresp(wS, freqs, 'Hz')));
+ Hh_resp = wT_resp.*(1 + wI_resp)./(wS_resp.*(wT_resp .* (1 + wI_resp) + wI_resp));
+ Hl_resp = 1./(wT_resp .* (1 + wI_resp) + wI_resp);
+
+ figure;
+ hold on;
+ plot(freqs, wS_resp .* Hh_resp + wI_resp .* Hl_resp, '--', 'DisplayName', 'NP - $H_L$');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+begin_src matlab :exports none
+ wH_resp = abs(squeeze(freqresp(wH, freqs, 'Hz')));
+ wL_resp = abs(squeeze(freqresp(wL, freqs, 'Hz')));
+
+ figure;
+ hold on;
+ plot(freqs, wH_resp .* Hh_resp + wL_resp.*Hl_resp, '--', 'DisplayName', 'NP - $H_L$');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '-', 'DisplayName', '$w_L$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '-', 'DisplayName', '$w_H$');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/weights_wl_wh.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:weights_wl_wh
+#+CAPTION: Weights on the complementary filters $w_L$ and $w_H$ and the associated performance weights ([[./figs/weights_wl_wh.png][png]], [[./figs/weights_wl_wh.pdf][pdf]])
+[[file:figs/weights_wl_wh.png]]
+
+We define the generalized plant $P$ on matlab.
+#+begin_src matlab
+ P = [0 wL;
+ wH -wH;
+ 1 0];
+#+end_src
+
+And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
+#+begin_src matlab :results output replace :exports both
+ [Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+#+end_src
+
+#+RESULTS:
+#+begin_example
+[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Test bounds: 0.0000 < gamma <= 1.7285
+
+ gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
+ 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f
+ 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
+ 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f
+ 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f
+ 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f
+ 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+ 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f
+
+ Gamma value achieved: 0.9942
+#+end_example
+
+We then define the high pass filter $H_H = 1 - H_L$. The bode plot of both $H_L$ and $H_H$ is shown on figure [[fig:hinf_filters_results]].
+#+begin_src matlab
+ Hh_hinf = 1 - Hl_hinf;
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/hinf_filters_results.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:hinf_filters_results
+#+CAPTION: Obtained complementary filters using $\mathcal{H}_\infty$ synthesis ([[./figs/hinf_filters_results.png][png]], [[./figs/hinf_filters_results.pdf][pdf]])
+[[file:figs/hinf_filters_results.png]]
+
+* Complementary filters using analytical formula
+ <>
+
+We here use analytical formula for the complementary filters $H_L$ and $H_H$.
+
+The first two formulas that are used to generate complementary filters are:
+\begin{align*}
+ H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\
+ H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}
+\end{align*}
+where:
+- $\omega_0$ is the blending frequency in rad/s.
+- $\alpha$ is used to change the shape of the filters:
+ - Small values for $\alpha$ will produce high magnitude of the filters $|H_L(j\omega)|$ and $|H_H(j\omega)|$ near $\omega_0$ but smaller value for $|H_L(j\omega)|$ above $\approx 1.5 \omega_0$ and for $|H_H(j\omega)|$ below $\approx 0.7 \omega_0$
+ - A large $\alpha$ will do the opposite
+
+This is illustrated on figure [[fig:comp_filters_param_alpha]].
+As it is usually wanted to have the $\| S \|_\infty < 2$, $\alpha$ between $0.5$ and $1$ gives a good trade-off between the performance and the robustness.
+The slope of those filters at high and low frequencies is $-2$ and $2$ respectively for $H_L$ and $H_H$.
+
+#+begin_src matlab :exports none
+ freqs_study = logspace(-2, 2, 10000);
+ alphas = [0.1, 1, 10];
+ w0 = 2*pi*1;
+
+ figure;
+ ax1 = subaxis(2,1,1);
+ hold on;
+ for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz'))));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz'))));
+ end
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude');
+ hold off;
+ ylim([1e-3, 20]);
+ % Phase
+ ax2 = subaxis(2,1,2);
+ hold on;
+ for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'HandleVisibility', 'off');
+ end
+ set(gca,'xscale','log');
+ yticks(-180:90:180);
+ ylim([-180 180]);
+ xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+ legend('Location', 'northeast');
+ hold off;
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs_study(1), freqs_study(end)]);
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/comp_filters_param_alpha.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:comp_filters_param_alpha
+#+CAPTION: Effect of the parameter $\alpha$ on the shape of the generated second order complementary filters ([[./figs/comp_filters_param_alpha.png][png]], [[./figs/comp_filters_param_alpha.pdf][pdf]])
+[[file:figs/comp_filters_param_alpha.png]]
+
+
+The parameters $\alpha$ and $\omega_0$ are chosen in order to have that the complementary filters stay below the defined upper bounds.
+
+The obtained complementary filters are shown on figure [[fig:complementary_filters_second_order]].
+The Robust Performance is not fulfilled for $T$, and we see that the RP condition as a slop of $-3$. We thus have to use different formula for the complementary filters here.
+
+#+begin_src matlab
+ w0 = 2*pi*13;
+ alpha = 0.8;
+
+ Hh2_ana = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2_ana = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/complementary_filters_second_order.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:complementary_filters_second_order
+#+CAPTION: Second order complementary filters using the analytical formula ([[./figs/complementary_filters_second_order.png][png]], [[./figs/complementary_filters_second_order.pdf][pdf]])
+[[file:figs/complementary_filters_second_order.png]]
+
+
+The following formula gives complementary filters with slopes of $-3$ and $3$:
+\begin{align*}
+ H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\
+ H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}
+\end{align*}
+
+The parameters are:
+- $\omega_0$ is the blending frequency in rad/s
+- $\alpha$ and $\beta$ that are used to change the shape of the filters similarly to the parameter $\alpha$ for the second order complementary filters
+
+The filters are defined below and the result is shown on figure [[fig:complementary_filters_third_order]] where we can see that the complementary filters are below the defined upper bounds.
+
+#+begin_src matlab
+ alpha = 1;
+ beta = 10;
+ w0 = 2*pi*14;
+
+ Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-3, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/complementary_filters_third_order.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:complementary_filters_third_order
+#+CAPTION: Third order complementary filters using the analytical formula ([[./figs/complementary_filters_third_order.png][png]], [[./figs/complementary_filters_third_order.pdf][pdf]])
+[[file:figs/complementary_filters_third_order.png]]
+
+* Comparison of complementary filters
+ <>
+The generated complementary filters using $\mathcal{H}_\infty$ and the analytical formulas are compared on figure [[fig:comp_hinf_analytical]].
+
+Although they are very close to each other, there is some difference to note here:
+- the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters $\alpha$ and $\omega_0$. However, these formula have the property that $|H_H|$ and $|H_L|$ are symmetrical with the frequency $\omega_0$ which may not be desirable.
+- while the $\mathcal{H}_\infty$ synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters
+
+The complementary filters obtained with the $\mathcal{H}_\infty$ will be used for further analysis.
+
+#+begin_src matlab :exports none
+ figure;
+
+ ax1 = subplot(2,1,1);
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), ':');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ ylabel('Magnitude');
+ hold off;
+ ylim([1e-4, 10]);
+
+ ax2 = subplot(2,1,2);
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 180/pi*phase(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 180/pi*phase(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 180/pi*phase(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $2$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 180/pi*phase(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $2$');
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, 180/pi*phase(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':', 'DisplayName', '$H_L$ - $3$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, 180/pi*phase(squeeze(freqresp(Hh3_ana, freqs, 'Hz')))+360, ':', 'DisplayName', '$H_H$ - $3$');
+ set(gca, 'XScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ hold off;
+ yticks([-360:90:360]);
+ legend('location', 'northeast');
+
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000]);
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/comp_hinf_analytical.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:comp_hinf_analytical
+#+CAPTION: Comparison of the complementary filters obtained with $\mathcal{H}_\infty$ synthesis and with the analytical formula ([[./figs/comp_hinf_analytical.png][png]], [[./figs/comp_hinf_analytical.pdf][pdf]])
+[[file:figs/comp_hinf_analytical.png]]
+
+* Controller Analysis
+ <>
+
+The controller $K$ is computed from the plant model $G$ and the low pass filter $H_H$:
+\[ K = G^{-1} H_H^{-1} \]
+
+As this is not proper and thus realizable, a second order low pass filter is added with a crossover frequency much larger than the control bandwidth.
+
+#+begin_src matlab
+ omega = 2*pi*1000;
+ K = 1/(Hh_hinf*G) * 1/((1+s/omega)*(1+s/omega+(s/omega)^2));
+#+end_src
+
+#+begin_src matlab :exports none
+ K = zpk(minreal(K));
+#+end_src
+
+#+begin_src matlab :results output replace :exports results :wrap example
+ zpk(K)
+#+end_src
+
+#+RESULTS:
+#+begin_example
+zpk(K)
+
+ans =
+
+ 4.961e12 (s+9.915e04) (s^2 + 5s + 500) (s^2 + 284.6s + 2.135e04) (s^2 + 130.5s + 9887)
+ --------------------------------------------------------------------------------------------------
+ (s+9.914e04) (s+6283) (s^2 + 0.3576s + 0.03198) (s^2 + 413.8s + 6.398e04) (s^2 + 6283s + 3.948e07)
+
+Continuous-time zero/pole/gain model.
+#+end_example
+
+The bode plot of the controller is shown on figure [[fig:bode_plot_controller]]:
+- two integrator are present at low frequency
+- the resonance of the plant at $3.5\ \text{Hz}$ is inverted (notched)
+- a lead is added at $10\ \text{Hz}$
+
+#+begin_src matlab :exports none
+ figure;
+ % Magnitude
+ ax1 = subplot(2,1,1);
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(K, freqs, 'Hz'))), 'k-');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude [N/m]');
+ % ylim([1e3, 1e8])
+ hold off;
+
+ % Phase
+ ax2 = subplot(2,1,2);
+ hold on;
+ plot(freqs, 180/pi*angle(squeeze(freqresp(K, freqs, 'Hz'))), 'k-');
+ set(gca,'xscale','log');
+ yticks(-180:90:180);
+ ylim([-180 180]);
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ hold off;
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/bode_plot_controller.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:bode_plot_controller
+#+CAPTION: Bode plot of the obtained controller $K$ ([[./figs/bode_plot_controller.png][png]], [[./figs/bode_plot_controller.pdf][pdf]])
+[[file:figs/bode_plot_controller.png]]
+
+* Nominal Stability and Nominal Performance
+ <>
+
+The nominal stability of the system is first checked with the =allmargin= matlab command.
+
+#+begin_src matlab :results output replace
+ allmargin(K*G*Hl_hinf)
+#+end_src
+
+#+RESULTS:
+#+begin_example
+allmargin(K*G*Hl_hinf)
+ans =
+ struct with fields:
+
+ GainMargin: 4.46426896164391
+ GMFrequency: 243.854595348016
+ PhaseMargin: 35.7045152899792
+ PMFrequency: 88.3664383511655
+ DelayMargin: 0.00705201387841809
+ DMFrequency: 88.3664383511655
+ Stable: 1
+#+end_example
+
+The system is stable and the stability margins are good.
+
+The bode plot of the loop gain $L = K*G*H_L$ is shown on figure [[fig:bode_plot_loop_gain]].
+
+#+begin_src matlab :exports none
+ figure;
+ % Magnitude
+ ax1 = subplot(2,1,1);
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k-');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude [m/N]');
+ hold off;
+
+ % Phase
+ ax2 = subplot(2,1,2);
+ hold on;
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz')))), 'k-');
+ set(gca,'xscale','log');
+ yticks(-270:90:0);
+ ylim([-270 0]);
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ hold off;
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/bode_plot_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:bode_plot_loop_gain
+#+CAPTION: Bode Plot of the Loop Gain $L = K G H_L$ ([[./figs/bode_plot_loop_gain.png][png]], [[./figs/bode_plot_loop_gain.pdf][pdf]])
+[[file:figs/bode_plot_loop_gain.png]]
+
+In order to check the Nominal Performance of the system, we compute the sensibility and the complementary sensibility transfer functions.
+
+#+begin_src matlab
+ S = 1/(K*G*Hl_hinf + 1);
+ T = K*G*Hl_hinf/(K*G*Hl_hinf + 1);
+#+end_src
+
+We then compare their norms with the upper bounds on the performance of the system (figure [[fig:verification_NP]]).
+As expected, we guarantee the Nominal Performance of the system.
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', 'Upper bound on $|T|$');
+ set(gca,'ColorOrderIndex',2)
+ plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', 'Upper bound on $|S|$');
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), '-', 'DisplayName', '$T$');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), '-', 'DisplayName', '$S$');
+
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ hold off;
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-4, 10]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeast');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/verification_NP.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:verification_NP
+#+CAPTION: Bode plot of $S$ and $T$ in order to verify the nominal performance of the system ([[./figs/verification_NP.png][png]], [[./figs/verification_NP.pdf][pdf]])
+[[file:figs/verification_NP.png]]
+
+* Robust Stability and Robust Performance
+ <>
+In order to verify the Robust stability of the system, we can use the following equivalence:
+\[ \text{RS} \Leftrightarrow \left| w_I T \right| < 1 \quad \forall \omega \]
+
+This is shown on figure [[fig:robust_stability]].
+
+#+begin_src matlab :exports none
+ Ts = Gds*K*Hl_hinf/(Gds*K*Hl_hinf + 1);
+ Ss = 1/(Gds*K*Hl_hinf + 1);
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(wI*T, freqs, 'Hz'))), 'k-');
+ plot([freqs(1) freqs(end)], [1 1], 'k--');
+ hold off;
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ xlabel('Frequency [Hz]');
+ ylim([0.02, 2])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/robust_stability.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:robust_stability
+#+CAPTION: Robust Stability Check: $|w_I T| < 1, \quad \forall \omega$ ([[./figs/robust_stability.png][png]], [[./figs/robust_stability.pdf][pdf]])
+[[file:figs-tikz/robust_stability.png]]
+
+To check Robust Stability, we can also look at the loop gain of the uncertain system (figure [[fig:loop_gain_robustness]]) or the Nyquist plot (figure [[fig:nyquist_robustness]]).
+
+#+begin_src matlab :results silent :exports none
+ figure;
+ ax2 = subplot(2,1,1);
+ hold on;
+ for i=1:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]);
+ end
+ plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz'))), 'k-');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude [m/N]');
+ ylim([1e-4 1e4]);
+ hold off;
+ % Phase
+ ax2 = subplot(2,1,2);
+ hold on;
+ for i=1:length(Gds)
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]);
+ end
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz')))), 'k-');
+ set(gca,'xscale','log');
+ yticks(-360:90:180);
+ ylim([-270 0]);
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ hold off;
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/loop_gain_robustness.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:loop_gain_robustness
+#+CAPTION: Loop Gain of the uncertain system ([[./figs/loop_gain_robustness.png][png]], [[./figs/loop_gain_robustness.pdf][pdf]])
+[[file:figs/loop_gain_robustness.png]]
+
+
+#+begin_src matlab :exports none
+ freqs_nyquist = logspace(0, 4, 100);
+
+ figure;
+ hold on;
+ for i=1:length(Gds)
+ plot(real(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]);
+ end
+ plot(real(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'k');
+ hold off;
+ xlim([-1.4, 0.2]); ylim([-1.4, 0.2]);
+ xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2);
+ xlabel('Real Part'); ylabel('Imaginary Part');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/nyquist_robustness.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:nyquist_robustness
+#+CAPTION: Nyquist plot of the uncertain system ([[./figs/nyquist_robustness.png][png]], [[./figs/nyquist_robustness.pdf][pdf]])
+[[file:figs/nyquist_robustness.png]]
+
+The Robust Performance is verified by plotting $|S|$ and $|T|$ for the uncertain system along side the upper bounds defined for performance.
+This is shown on figure [[fig:robust_performance_result]] and we can indeed confirmed that the robust performance property of the system is valid.
+
+#+begin_src matlab :exports none
+ figure;
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain');
+ plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain');
+
+ for i=2:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off');
+ plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+ end
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(1/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal');
+
+ set(gca,'ColorOrderIndex',1)
+ plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+ set(gca,'ColorOrderIndex',2)
+ plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ hold off;
+ xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
+ xlim([freqs(1), freqs(end)]);
+ ylim([1e-4, 5]);
+ xticks([0.1, 1, 10, 100, 1000]);
+ legend('location', 'northeastoutside');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/robust_performance_result.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:robust_performance_result
+#+CAPTION: Verification of the Robust Performance ([[./figs/robust_performance_result.png][png]], [[./figs/robust_performance_result.pdf][pdf]])
+[[file:figs/robust_performance_result.png]]
+
+* Pre-filter
+ <>
+
+For now, we have not specified any performance requirements on the input usage due to change of reference.
+Do limit the input usage due to change of reference, we can use a pre-filter $K_r$ as shown on figure [[fig:sf_arch_class_prefilter]].
+
+If we want a response time of 0.01 second, we can choose a first order low pass filter with a crossover frequency at $1/0.01 = 100\ \text{Hz}$ as defined below.
+
+#+begin_src matlab
+ Kr = 1/(1+s/2/pi/100);
+#+end_src
+
+We then run a simulation for a step of $1\mu m$ for the system without and with the pre-filter $K_r$ (figure [[fig:u_and_y_with_Kr]]).
+This confirms that a pre-filter can be used to limit the input usage due to change of reference using this architecture.
+
+#+begin_src matlab
+ t = linspace(0, 0.02, 1000);
+
+ opts = stepDataOptions;
+ opts.StepAmplitude = 1e-6;
+
+ u = step((K)/(1+G*K*Hl_hinf), t, opts);
+ uf = step((Kr*K)/(1+G*K*Hl_hinf), t, opts);
+ y = step((K*G)/(1+G*K*Hl_hinf), t, opts);
+ yf = step((Kr*G*K)/(1+G*K*Hl_hinf), t, opts);
+#+end_src
+
+#+begin_src matlab :exports none
+ figure;
+ ax1 = subplot(2,1,1);
+ hold on;
+ plot(t, u, 'k--', 'DisplayName', 'Without Pre-filter');
+ plot(t, uf, 'k-', 'DisplayName', 'With Pre-Filter');
+ hold off;
+ ylabel('Command Input [N]');
+ set(gca, 'XTickLabel',[]);
+ legend('location', 'northeast');
+
+ ax2 = subplot(2,1,2);
+ hold on;
+ plot(t, y, 'k--');
+ plot(t, yf, 'k-' );
+ hold off;
+ xlabel('Time [s]');
+ ylabel('Output [m]');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/u_and_y_with_Kr.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:u_and_y_with_Kr
+#+CAPTION: Input usage and response due to a step change of reference when using a pre-filter $K_r$ ([[./figs/u_and_y_with_Kr.png][png]], [[./figs/u_and_y_with_Kr.pdf][pdf]])
+[[file:figs/u_and_y_with_Kr.png]]
+
+* Controller using classical techniques
+ <>
+A controller is designed using =SISOTOOL= with a bandwidth of approximately $20\ \text{Hz}$ and with two integrator.
+
+The obtained controller is shown below.
+#+begin_src matlab
+ Kf = 1.1814e12*(s+10.15)*(s+9.036)*(s+53.8)/(s^2*(s+216.1)*(s+1200)*(s+1864));
+#+end_src
+
+#+begin_src matlab :results output :exports results replace :wrap example
+ zpk(Kf)
+#+end_src
+
+#+RESULTS:
+#+begin_example
+zpk(Kf)
+
+ans =
+
+ 1.1814e12 (s+10.15) (s+9.036) (s+53.8)
+ --------------------------------------
+ s^2 (s+216.1) (s+1200) (s+1864)
+
+Continuous-time zero/pole/gain model.
+#+end_example
+
+The loop gain for both cases are compared on figure [[fig:loop_gain_compare]].
+
+#+begin_src matlab :exports none
+ figure;
+ % Magnitude
+ ax1 = subplot(2,1,1);
+ hold on;
+ plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--');
+ plot(freqs, abs(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-');
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ set(gca, 'XTickLabel',[]);
+ ylabel('Magnitude [N/m]');
+ % ylim([1e3, 1e8])
+ hold off;
+
+ % Phase
+ ax2 = subplot(2,1,2);
+ hold on;
+ plot(freqs, 180/pi*angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--', 'DisplayName', '$K G H_L$ - $\mathcal{H}_\infty$');
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-', 'DisplayName', '$K G$ - SISOTOOL');
+ set(gca,'xscale','log');
+ yticks(-180:90:180);
+ ylim([-180 180]);
+ xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+ hold off;
+ legend('location', 'northwest');
+
+ linkaxes([ax1,ax2],'x');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000])
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/loop_gain_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:loop_gain_compare
+#+CAPTION: Comparison of the Loop Gains ([[./figs/loop_gain_compare.png][png]], [[./figs/loop_gain_compare.pdf][pdf]])
+[[file:figs/loop_gain_compare.png]]
+
+The Robust Stability of the system is verified using the Nyquist plot on figure [[fig:nyquist_plot_sisotool_controller]].
+
+#+begin_src matlab :exports none
+ freqs_nyquist = logspace(0, 4, 100);
+
+ figure;
+ hold on;
+ for i=1:length(Gds)
+ plot(real(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]);
+ end
+ plot(real(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), 'k');
+ hold off;
+ xlim([-1.4, 0.2]); ylim([-1.4, 0.2]);
+ xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2);
+ xlabel('Real Part'); ylabel('Imaginary Part');
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/nyquist_plot_sisotool_controller.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:nyquist_plot_sisotool_controller
+#+CAPTION: Nyquist Plot of the uncertain system ([[./figs/nyquist_plot_sisotool_controller.png][png]], [[./figs/nyquist_plot_sisotool_controller.pdf][pdf]])
+[[file:figs/nyquist_plot_sisotool_controller.png]]
+
+The closed loop sensitivity and complementary sensitivity transfer functions are computed.
+And finally, the Robust Performance of both systems are compared on figure [[fig:robust_performance_compare]].
+
+#+begin_src matlab :exports none
+ Sf = 1/(Kf*G + 1);
+ Tf = Kf*G/(Kf*G + 1);
+
+ Tfs = Gds*Kf/(Gds*Kf + 1);
+ Sfs = 1/(Gds*Kf + 1);
+#+end_src
+
+
+#+begin_src matlab :exports none
+ figure;
+ ax1 = subplot(1, 2, 1);
+ title('$K$ - SISOTOOL');
+ hold on;
+
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(Tf, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(Sf, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal');
+
+ plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain');
+ plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain');
+
+ for i=2:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off');
+ plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+ end
+
+ set(gca,'ColorOrderIndex',1)
+ plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+ set(gca,'ColorOrderIndex',2)
+ plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ hold off;
+ xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000]);
+
+ ax2 = subplot(1, 2, 2);
+ title('$K$ - complementary filters');
+ hold on;
+ set(gca,'ColorOrderIndex',1)
+ plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal');
+ set(gca,'ColorOrderIndex',2)
+ plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal');
+
+ plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain');
+ plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain');
+
+ for i=2:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off');
+ plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+ end
+
+ set(gca,'ColorOrderIndex',1)
+ plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+ set(gca,'ColorOrderIndex',2)
+ plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ hold off;
+ xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
+ xlim([freqs(1), freqs(end)]);
+ xticks([0.1, 1, 10, 100, 1000]);
+
+ linkaxes([ax1 ax2], 'y')
+ ylim([1e-4, 10]);
+#+end_src
+
+#+HEADER: :tangle no :exports results :results none :noweb yes
+#+begin_src matlab :var filepath="figs/robust_performance_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
+ <>
+#+end_src
+
+#+NAME: fig:robust_performance_compare
+#+CAPTION: Comparison of the Robust Performance for both controllers ([[./figs/robust_performance_compare.png][png]], [[./figs/robust_performance_compare.pdf][pdf]])
+[[file:figs/robust_performance_compare.png]]
diff --git a/matlab/matlab/complementary_filters_order.m b/matlab/matlab/complementary_filters_order.m
new file mode 100644
index 0000000..adb6cf6
--- /dev/null
+++ b/matlab/matlab/complementary_filters_order.m
@@ -0,0 +1,667 @@
+%% Clear Workspace and Close figures
+clear; close all; clc;
+
+%% Intialize Laplace variable
+s = zpk('s');
+
+freqs = logspace(-1, 3, 1000);
+
+% Generate Complementary filters with different order :noexport:
+% The weights are generated automatically base on the wanted blending frequency and the order.
+% For each weight, the synthesis of the filter is made and the result are displayed figure [[fig:order_filter]].
+
+
+n_array = 1:3;
+Hhs = {zeros(1, length(n_array))};
+gammas = zeros(1, length(n_array));
+
+for i = 1:length(n_array)
+ f0 = 10; n = n_array(i); alpha = 1;
+
+ G0 = 1e7;
+ b = 2*pi*f0/(sqrt((G0/sqrt(2))^(2/n)-1));
+ Wh = alpha*G0/(1+s/b)^n;
+ b = 2*pi*f0/2^(1/2/n)*sqrt(G0^(2/n)-2^(1/n));
+ Wl = alpha*G0*((s/b)/(s/b + 1))^n;
+ P = [0 Wh;
+ Wl -Wl;
+ 1 0];
+ [Hh, ~, gamma, ~] = hinfsyn(minreal(P), 1, 1,'TOLGAM', 0.001, 'GMAX', 10, 'GMIN', 0.01, 'METHOD', 'ric', 'DISPLAY', 'on');
+ Hhs(i) = {Hh};
+ gammas(i) = gamma;
+end
+
+figure;
+% Magnitude
+ax1 = subaxis(2,1,1);
+hold on;
+for i = 1:length(n_array)
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(Hhs{i}, freqs, 'Hz'))));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(1-Hhs{i}, freqs, 'Hz'))), '--');
+end
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+for i = 1:length(n_array)
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hhs{i}, freqs, 'Hz')))), 'DisplayName', sprintf('n = %i', n_array(i)));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(1-Hhs{i}, freqs, 'Hz')))), '--', 'HandleVisibility', 'off');
+end
+set(gca,'xscale','log');
+yticks(-270:90:270);
+ylim([-270 270]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+legend('Location', 'northeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+% Analytical formula for complementary filters of 1st, 2nd and 3rd order :noexport:
+% The approximate analytical formula for complementary filters of 1st, 2nd and 3rd orders are defined below.
+% Their bode plot are shown on figure ref:fig:comp_filters_order.
+
+
+f0 = 1; % [Hz]
+
+Hh1 = (s/2/pi/f0)/((s/2/pi/f0)+1);
+Hl1 = 1/((s/2/pi/f0)+1);
+
+Hh2 = (s/f0)^2*((s/f0)+14.3)/(((s/f0)+2*pi)*((s/f0)^2 + 8*(s/f0) + 40));
+Hl2 = 90.4*((s/f0)+2.78)/(((s/f0)+2*pi)*((s/f0)^2 + 8*(s/f0) + 40));
+
+Hh3 = (s/f0)^3*((s/f0)^2 + 20*(s/f0) + 200)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40));
+Hl3 = 2*pi*200*((s/f0)^2 + 4*(s/f0) + 8)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40));
+
+w0 = 2*pi; % [Hz]
+
+Hh1 = (s/w0)/((s/w0)+1);
+Hl1 = 1/((s/w0)+1);
+
+Hh2 = (s/w0)^2*((s/w0)+3)/(((s/w0)+1)*((s/w0)^2 + 2*(s/w0) + 1));
+Hl2 = (3*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + 2*(s/w0) + 1));
+
+Hh3 = (s/f0)^3*((s/f0)^2 + 20*(s/f0) + 200)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40));
+Hl3 = 2*pi*200*((s/f0)^2 + 4*(s/f0) + 8)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40));
+
+figure;
+% Magnitude
+ax1 = subaxis(2,1,1);
+hold on;
+set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz'))));
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz'))), 'DisplayName', '1st order');
+set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz'))), 'HandleVisibility', 'off');
+set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))), 'DisplayName', '2nd order');
+set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))), 'HandleVisibility', 'off');
+set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))), 'DisplayName', '3rd order');
+set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))), 'HandleVisibility', 'off');
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+legend('Location', 'northeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+
+
+% #+LABEL: fig:comp_filters_order
+% #+CAPTION: Bode plot of complementary filters of order 1, 2 and 3
+% #+RESULTS: fig:comp_filters_order
+% [[file:figs/comp_filters_order.png]]
+
+% For each order, we plot the low pass filter, the high pass filter and the sum of the two to check their complementary properties.
+
+freqs = logspace(-2, 2, 1000);
+
+figure;
+ax1=subaxis(1, 3, 1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hl1+Hh1, freqs, 'Hz'))), 'k--');
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ylabel('Magnitude');
+title('1st Order');
+
+ax2=subaxis(1, 3, 2);
+hold on;
+plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hl2+Hh2, freqs, 'Hz'))), 'k--');
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'YTickLabel',[]);
+xlabel('Frequency [Hz]');
+title('2nd Order');
+
+ax3=subaxis(1, 3, 3);
+hold on;
+plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hl3+Hh3, freqs, 'Hz'))), 'k--');
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+title('3rd Order');
+
+linkaxes([ax1,ax2,ax3],'x');
+linkaxes([ax1,ax2,ax3],'y');
+set(gca, 'YTickLabel',[]);
+
+
+
+% #+LABEL: fig:comp_filters_magnitude
+% #+CAPTION: Magnitude of complementary filters with order 1, 2 and 3
+% #+RESULTS: fig:comp_filters_magnitude
+% [[file:figs/comp_filters_magnitude.png]]
+
+
+
+freqs = logspace(-2, 2, 1000);
+
+figure;
+ax1=subaxis(1, 3, 1);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz'))));
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz'))));
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1+Hh1, freqs, 'Hz'))), 'k--');
+hold off;
+set(gca, 'XScale', 'log');
+yticks(-180:90:180);
+ylim([-180 180]);
+ylabel('Phase [deg]');
+title('1st Order');
+
+ax2=subaxis(1, 3, 2);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))));
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))));
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2+Hh2, freqs, 'Hz'))), 'k--');
+hold off;
+set(gca, 'XScale', 'log');
+set(gca, 'YTickLabel',[]);
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Frequency [Hz]');
+title('2nd Order');
+
+ax3=subaxis(1, 3, 3);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))));
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))));
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3+Hh3, freqs, 'Hz'))), 'k--');
+hold off;
+set(gca, 'XScale', 'log');
+set(gca, 'YTickLabel',[]);
+title('3rd Order');
+
+yticks(-180:90:180);
+ylim([-180 180]);
+
+
+
+% #+LABEL: fig:comp_filters_phase
+% #+CAPTION: Phase of complementary filters with order 1, 2 and 3
+% #+RESULTS: fig:comp_filters_phase
+% [[file:figs/comp_filters_phase.png]]
+
+% We then plot the loop gain obtained for each filter in the nominal case $K G^\prime H_L = H_H^{-1} H_L$ (figure ref:fig:comp_filters_loop_gain).
+
+
+freqs = logspace(-2, 2, 1000);
+
+figure;
+% Magnitude
+ax1 = subaxis(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))));
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+ylim([1e-5 1e5]);
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz')))), 'DisplayName', '1st order');
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz')))), 'DisplayName', '2nd order');
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))))-360, 'DisplayName', '3rd order');
+set(gca,'xscale','log');
+yticks(-270:90:90);
+ylim([-270 90]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+legend('Location', 'northeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+
+
+% #+LABEL: fig:comp_filters_loop_gain
+% #+CAPTION: Loop gain ${H_H}^{-1}H_L$ for complementary filters with order 1, 2 and 3
+% #+RESULTS: fig:comp_filters_loop_gain
+% [[file:figs/comp_filters_loop_gain.png]]
+
+% Obtained stability margins are display on table ref:tab:GM_PM_comp_filters.
+
+
+[gm1, pm1] = margin(Hl1/Hh1);
+[gm2, pm2] = margin(Hl2/Hh2);
+[gm3, pm3] = margin(Hl3/Hh3);
+data = [abs(20*log10(gm1)), pm1;
+ abs(20*log10(gm2)), pm2;
+ abs(20*log10(gm3)), pm3];
+
+data2orgtable(data, {'1', '2', '3'}, {'Order', 'GM [db]', 'PM [deg]'}, ' %.1f ');
+
+% Result
+% Their bode plot is shown Fig. ref:fig:comp_filter_1st_order.
+
+
+w0 = 2*pi; % [rad/s]
+
+Hh1 = (s/w0)/((s/w0)+1);
+Hl1 = 1/((s/w0)+1);
+
+freqs = logspace(-2, 2, 1000);
+
+figure;
+% Magnitude
+ax1 = subaxis(2,1,1);
+hold on;
+set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz'))));
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz'))));
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+
+
+% #+LABEL: fig:comp_filter_1st_order
+% #+CAPTION: Bode plot of first order complementary filter
+% #+RESULTS: fig:comp_filter_1st_order
+% [[file:figs/comp_filter_1st_order.png]]
+
+% The obtain loop gain $L = H_L{H_H}^{-1}$ is shown Fig. ref:fig:comp_filter_1st_order_loop_gain.
+
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz'))));
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz'))));
+hold off;
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+% Result
+% Bode plots of those filters for multiple values of $\alpha$ are displayed on figure ref:fig:comp_filter_2nd_order_alphas.
+
+% We also plot the loop gain obtained for different values of $\alpha$: $L = H_L{H_H}^{-1}$ (figure ref:fig:comp_filter_2nd_order_loop_gain)
+
+
+alphas = [0.1, 1, 10, 100];
+w0 = 2*pi*1;
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz'))));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz'))));
+end
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+hold off;
+ylim([1e-4, 20]);
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))), 'HandleVisibility', 'off');
+end
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+legend('Location', 'northeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+
+
+% #+LABEL: fig:comp_filter_2nd_order_alphas
+% #+CAPTION: Second order complementary filters
+% #+RESULTS: fig:comp_filter_2nd_order_alphas
+% [[file:figs/comp_filter_2nd_order_alphas.png]]
+
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))));
+end
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
+end
+hold off;
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+legend('Location', 'northeast');
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+% Parameter Study
+% We then study the effect of $\alpha$ on the obtained performance and stability margins (figure ref:fig:comp_filter_2nd_order_study_alphas).
+
+
+alphas = logspace(-1, 1, 10);
+
+Ms = zeros(1, length(alphas));
+dist_reject_w_10 = zeros(1, length(alphas));
+
+for i=1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Ms(i) = hinfnorm(Hh2);
+ dist_reject_w_10(i) = abs(freqresp(Hh2, w0/10));
+end
+
+figure;
+ax1 = subplot(1, 2, 1);
+plot(alphas, 20*log10(Ms./(Ms-1)));
+xlabel('$\alpha$'); ylabel('Guaranted GM $\frac{M_S}{M_S-1}$ [dB]');
+set(gca, 'XScale', 'log');
+ax2 = subplot(1, 2, 2);
+plot(alphas, (360/2/pi)./Ms);
+xlabel('$\alpha$'); ylabel('Guaranted PM $\frac{1}{M_S}$ [deg]');
+set(gca, 'XScale', 'log');
+
+
+
+% #+LABEL: fig:comp_filter_2nd_order_study_alphas
+% #+CAPTION: Guaranted GM and PM as a function of $\alpha$
+% #+RESULTS: fig:comp_filter_2nd_order_study_alphas
+% [[file:figs/comp_filter_2nd_order_study_alphas.png]]
+
+
+
+figure;
+plot(alphas, 20*log10(1./dist_reject_w_10));
+xlabel('$\alpha$'); ylabel('Disturbance Rejection at $\frac{\omega_0}{10} [dB]$');
+set(gca, 'XScale', 'log');
+
+% Results
+
+alpha = 1;
+beta = 10;
+w0 = 2*pi*1;
+
+Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+
+alphas = [0.1, 1, 10, 100];
+beta = 10;
+w0 = 2*pi*1;
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz'))));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz'))));
+end
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+ylim([1e-5, 20]);
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))), 'HandleVisibility', 'off');
+end
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+legend('Location', 'southeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+
+
+% #+LABEL: fig:comp_filter_3rd_order
+% #+CAPTION: Bode plot of 3rd order complementary filters, $\beta = 10$
+% #+RESULTS: fig:comp_filter_3rd_order
+% [[file:figs/comp_filter_3rd_order.png]]
+
+
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ plot(freqs, abs(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))));
+end
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
+end
+hold off;
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+legend('Location', 'northeast');
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+% Parametric Study
+
+alphas = logspace(-1, 1, 10);
+Ms = zeros(1, length(alphas));
+noise_reject_w_10 = zeros(1, length(alphas));
+
+for i=1:length(alphas)
+ alpha = alphas(i);
+ beta = 5*alphas(i);
+ Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+ Ms(i) = hinfnorm(Hh3);
+ noise_reject_w_10(i) = abs(freqresp(Hh3, w0/10));
+end
+
+figure;
+ax1 = subplot(1, 3, 1);
+plot(alphas, 20*log10(Ms./(Ms-1)));
+xlabel('$\alpha$'); ylabel('Guaranted Gain Margin $\frac{M_S}{M_S-1}$ [dB]');
+set(gca, 'XScale', 'log');
+ax2 = subplot(1, 3, 2);
+plot(alphas, (360/2/pi)./Ms);
+xlabel('$\alpha$'); ylabel('Guaranted Phase Margin $\frac{1}{M_S}$ [deg]');
+set(gca, 'XScale', 'log');
+ax3 = subplot(1, 3, 3);
+plot(alphas, 20*log10(1./noise_reject_w_10));
+xlabel('$\alpha$'); ylabel('Disturbance Rejection at $\frac{\omega_0}{10}$ [dB]');
+set(gca, 'XScale', 'log');
+
+% Compare 2nd and 3rd order filters
+% Compare performance when having similar stability margins.
+
+
+alpha = 1.7;
+beta = 5*1.7;
+Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+
+alpha = 1.4;
+Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+set(gca,'ColorOrderIndex',1);
+plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',1);
+plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',2);
+plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz'))));
+set(gca,'ColorOrderIndex',2);
+plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz'))));
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+ylim([1e-5, 20]);
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+set(gca,'ColorOrderIndex',1);
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))), 'DisplayName', '2nd order');
+set(gca,'ColorOrderIndex',1);
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))), 'HandleVisibility', 'off');
+set(gca,'ColorOrderIndex',2);
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))), 'DisplayName', '3rd order');
+set(gca,'ColorOrderIndex',2);
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))), 'HandleVisibility', 'off');
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+legend('Location', 'southeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+
+
+
+% #+LABEL: fig:filter_order_bode_plot
+% #+CAPTION: Bode Plot
+% #+RESULTS: fig:filter_order_bode_plot
+% [[file:figs/filter_order_bode_plot.png]]
+
+
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))));
+plot(freqs, abs(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))));
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+hold off;
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))), 'DisplayName', '2nd order');
+plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))), 'DisplayName', '3rd order');
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+legend('Location', 'southeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
diff --git a/matlab/matlab/sensor_fusion.m b/matlab/matlab/sensor_fusion.m
new file mode 100644
index 0000000..a25418b
--- /dev/null
+++ b/matlab/matlab/sensor_fusion.m
@@ -0,0 +1,1030 @@
+%% Clear Workspace and Close figures
+clear; close all; clc;
+
+%% Intialize Laplace variable
+s = zpk('s');
+
+freqs = logspace(-1, 3, 1000);
+
+% Definition of the plant
+% <>
+
+% The studied system consists of a solid positioned on top of a motorized uni-axial soft suspension.
+
+% The absolute position $x$ of the solid is measured using an inertial sensor and a force $F$ can be applied to the mass using a voice coil actuator.
+
+% The model of the system is represented on figure [[fig:mech_sys_alone]] where the mass of the solid is $m = 20\ [kg]$, the stiffness of the suspension is $k = 10^4\ [N/m]$ and the damping of the system is $c = 10^2\ [N/(m/s)]$.
+
+% #+name: fig:mech_sys_alone
+% #+caption: One degree of freedom system
+% [[file:figs/mech_sys_alone.png]]
+
+% The plant $G$ is defined on matlab and its bode plot is shown on figure [[fig:bode_plot_mech_sys]].
+
+
+m = 20; % [kg]
+k = 1e4; % [N/m]
+c = 1e2; % [N/(m/s)]
+
+G = 1/(m*s^2 + c*s + k);
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-');
+hold off;
+xlim([0.1, 100]);
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+
+ax2 = subaxis(2,1,2);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(G, freqs, 'Hz'))), 'k-');
+hold off;
+yticks(-180:90:180);
+ylim([-180 180]);
+xlim([0.1, 1000]);
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+linkaxes([ax1,ax2],'x');
+
+% Multiplicative input uncertainty
+% <>
+% We choose to use the multiplicative input uncertainty to model the plant uncertainty:
+% \[ \Pi_I: \ G^\prime(s) = G(s) (1 + w_I(s) \Delta(s)),\text{ with } |\Delta(j\omega)| < 1 \ \forall \omega \]
+
+
+% The uncertainty weight $w_I$ has the following form:
+% \[ w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1} \]
+% where $r_0=0.1$ is the relative uncertainty at steady-state, $1/\tau=80\text{Hz}$ is the frequency at which the relative uncertainty reaches 100%, and $r_\infty=10$ is the magnitude of the weight at high frequency.
+
+% We defined the uncertainty weight on matlab. Its bode plot is shown on figure [[fig:bode_wi]].
+
+
+r0 = 0.1;
+rinf = 10;
+tau = 1/2/pi/80;
+
+wI = (tau*s + r0)/((tau/rinf)*s+1);
+
+figure;
+hold on;
+plot(freqs, abs(squeeze(freqresp(wI, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-1, 10]);
+xticks([0.1, 1, 10, 100, 1000])
+
+
+
+% #+NAME: fig:bode_wi
+% #+CAPTION: Bode plot of $w_I$ ([[./figs/bode_wi.png][png]], [[./figs/bode_wi.pdf][pdf]])
+% [[file:figs/bode_wi.png]]
+
+% The uncertain model is created with the =ultidyn= function. Elements in the uncertainty set $\Pi_I$ are computed and their bode plot is shown on figure [[fig:plant_uncertainty_bode_plot]].
+
+
+Delta = ultidyn('Delta', [1 1]);
+
+Gd = G*(1+wI*Delta);
+Gds = usample(Gd, 20);
+
+figure;
+ax1 = subplot(2,1,1);
+hold on;
+for i=1:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]);
+end
+plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+hold off;
+% Phase
+ax2 = subplot(2,1,2);
+hold on;
+for i=1:length(Gds)
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]);
+end
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), 'k-');
+set(gca,'xscale','log');
+yticks(-360:90:180);
+ylim([-360 0]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000])
+
+% Specifications and performance weights
+% <>
+
+% The control objective is to isolate the displacement $x$ of the mass from the ground motion $w$.
+
+% The specifications are described below:
+% - at least a factor $10$ of disturbance rejection at $2\ \text{Hz}$ and with a slope of $2$ below $2\ \text{Hz}$ until a rejection of $10^3$
+% - the noise attenuation should be at least $10$ above $100\ \text{Hz}$ and with a slope of $-2$ above
+
+% These specifications can be represented as upper bounds on the closed loop transfer functions $S$ and $T$ (see figure [[fig:bode_requirements]]).
+
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+
+
+% #+NAME: fig:bode_requirements
+% #+CAPTION: Upper bounds on $S$ and $T$ ([[./figs/bode_requirements.png][png]], [[./figs/bode_requirements.pdf][pdf]])
+% [[file:figs/bode_requirements.png]]
+
+% We now define two weights, $w_S(s)$ and $w_T(s)$ such that $1/|w_S|$ and $1/|w_T|$ are lower than the previously defined upper bounds.
+% Then, the performance specifications are satisfied if the following condition is valid:
+% \[ \big|S(j\omega)\big| < \frac{1}{|w_S(j\omega)|} ; \quad \big|T(j\omega)\big| < \frac{1}{|w_T(j\omega)|}, \quad \forall \omega \]
+
+% The weights are defined as follow. They magnitude is compared with the upper bounds on $S$ and $T$ on figure [[fig:compare_weights_upper_bounds_S_T]].
+
+wS = 1600/(s+0.13)^2;
+wT = 1000*((s/(2*pi*1000)))^2;
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_T|$');
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_S|$');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-4, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+% Upper bounds on the norm of the complementary filters for NP, RS and RP
+% <>
+
+% Now that we have defined $w_I$, $w_S$ and $w_T$, we can derive conditions for Nominal Performance, Robust Stability and Robust Performance ($j\omega$ is omitted here for readability):
+% \begin{align*}
+% \text{NP} &\Leftrightarrow |H_H| < \frac{1}{|w_S|} \text{ and } |H_L| < \frac{1}{|w_T|} \quad \forall \omega \\
+% \text{RS} &\Leftrightarrow |H_L| < \frac{1}{|w_I| (2 + |w_I|)} \quad \forall \omega \\
+% \text{RP for } S &\Leftarrow |H_H| < \frac{1 + |w_I|}{|w_S| (2 + |w_I|)} \quad \forall \omega \\
+% \text{RP for } T &\Leftrightarrow |H_L| < \frac{1}{|w_T| (1 + |w_I|) + |w_I|} \quad \forall \omega
+% \end{align*}
+
+% These conditions are upper bounds on the complementary filters used for control.
+
+% We plot these conditions on figure [[fig:weights_NP_RS_RP]].
+
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+% H-Infinity synthesis of complementary filters
+% <>
+
+% We here synthesize the complementary filters using the $\mathcal{H}_\infty$ synthesis.
+% The goal is to specify upper bounds on the norms of $H_L$ and $H_H$ while ensuring their complementary property ($H_L + H_H = 1$).
+
+% In order to do so, we use the generalized plant shown on figure [[fig:sf_hinf_filters_plant_b]] where $w_L$ and $w_H$ weighting transfer functions that will be used to shape $H_L$ and $H_H$ respectively.
+
+% #+name: fig:sf_hinf_filters_plant_b
+% #+caption: Generalized plant used for the $\mathcal{H}_\infty$ synthesis of the complementary filters
+% [[file:figs/sf_hinf_filters_plant_b.png]]
+
+% The $\mathcal{H}_\infty$ synthesis applied on this generalized plant will give a transfer function $H_L$ (figure [[fig:sf_hinf_filters_b]]) such that the $\mathcal{H}_\infty$ norm of the transfer function from $w$ to $[z_H,\ z_L]$ is less than one:
+% \[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \]
+
+% Thus, if the above condition is verified, we can define $H_H = 1 - H_L$ and we have that:
+% \[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \]
+% Which is almost (with an maximum error of $\sqrt{2}$) equivalent to:
+% \begin{align*}
+% |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\
+% |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega
+% \end{align*}
+
+% We then see that $w_L$ and $w_H$ can be used to shape both $H_L$ and $H_H$ while ensuring (by definition of $H_H = 1 - H_L$) their complementary property.
+
+% #+name: fig:sf_hinf_filters_b
+% #+caption: $\mathcal{H}_\infty$ synthesis of the complementary filters
+% [[file:figs/sf_hinf_filters_b.png]]
+
+
+% Thus, if we choose $w_L$ and $w_H$ such that $1/|w_L|$ and $1/|w_H|$ lie below the upper bounds of figure [[fig:weights_NP_RS_RP]], we will ensure the NP, RS and RP of the controlled system.
+
+% Depending if we are interested only in NP, RS or RP, we can adjust the weights $w_L$ and $w_H$.
+
+
+omegab = 2*pi*9;
+wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2;
+omegab = 2*pi*28;
+wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3;
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '-', 'DisplayName', '$w_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '-', 'DisplayName', '$w_H$');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+
+
+% #+NAME: fig:weights_wl_wh
+% #+CAPTION: Weights on the complementary filters $w_L$ and $w_H$ and the associated performance weights ([[./figs/weights_wl_wh.png][png]], [[./figs/weights_wl_wh.pdf][pdf]])
+% [[file:figs/weights_wl_wh.png]]
+
+% We define the generalized plant $P$ on matlab.
+
+P = [0 wL;
+ wH -wH;
+ 1 0];
+
+
+
+% And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command.
+
+[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+
+% #+RESULTS:
+% #+begin_example
+% [Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+% Test bounds: 0.0000 < gamma <= 1.7285
+
+% gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
+% 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
+% 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f
+% 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p
+% 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+% 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f
+% 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+% 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+% 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f
+% 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f
+% 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+% 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p
+% 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f
+
+% Gamma value achieved: 0.9942
+% #+end_example
+
+% We then define the high pass filter $H_H = 1 - H_L$. The bode plot of both $H_L$ and $H_H$ is shown on figure [[fig:hinf_filters_results]].
+
+Hh_hinf = 1 - Hl_hinf;
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+% Complementary filters using analytical formula
+% <>
+
+% We here use analytical formula for the complementary filters $H_L$ and $H_H$.
+
+% The first two formulas that are used to generate complementary filters are:
+% \begin{align*}
+% H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\
+% H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}
+% \end{align*}
+% where:
+% - $\omega_0$ is the blending frequency in rad/s.
+% - $\alpha$ is used to change the shape of the filters:
+% - Small values for $\alpha$ will produce high magnitude of the filters $|H_L(j\omega)|$ and $|H_H(j\omega)|$ near $\omega_0$ but smaller value for $|H_L(j\omega)|$ above $\approx 1.5 \omega_0$ and for $|H_H(j\omega)|$ below $\approx 0.7 \omega_0$
+% - A large $\alpha$ will do the opposite
+
+% This is illustrated on figure [[fig:comp_filters_param_alpha]].
+% As it is usually wanted to have the $\| S \|_\infty < 2$, $\alpha$ between $0.5$ and $1$ gives a good trade-off between the performance and the robustness.
+% The slope of those filters at high and low frequencies is $-2$ and $2$ respectively for $H_L$ and $H_H$.
+
+
+freqs_study = logspace(-2, 2, 10000);
+alphas = [0.1, 1, 10];
+w0 = 2*pi*1;
+
+figure;
+ax1 = subaxis(2,1,1);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz'))));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz'))));
+end
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude');
+hold off;
+ylim([1e-3, 20]);
+% Phase
+ax2 = subaxis(2,1,2);
+hold on;
+for i = 1:length(alphas)
+ alpha = alphas(i);
+ Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha));
+ set(gca,'ColorOrderIndex',i);
+ plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'HandleVisibility', 'off');
+end
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]');
+legend('Location', 'northeast');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs_study(1), freqs_study(end)]);
+
+
+
+% #+NAME: fig:comp_filters_param_alpha
+% #+CAPTION: Effect of the parameter $\alpha$ on the shape of the generated second order complementary filters ([[./figs/comp_filters_param_alpha.png][png]], [[./figs/comp_filters_param_alpha.pdf][pdf]])
+% [[file:figs/comp_filters_param_alpha.png]]
+
+
+% The parameters $\alpha$ and $\omega_0$ are chosen in order to have that the complementary filters stay below the defined upper bounds.
+
+% The obtained complementary filters are shown on figure [[fig:complementary_filters_second_order]].
+% The Robust Performance is not fulfilled for $T$, and we see that the RP condition as a slop of $-3$. We thus have to use different formula for the complementary filters here.
+
+
+w0 = 2*pi*13;
+alpha = 0.8;
+
+Hh2_ana = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+Hl2_ana = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+
+
+% #+NAME: fig:complementary_filters_second_order
+% #+CAPTION: Second order complementary filters using the analytical formula ([[./figs/complementary_filters_second_order.png][png]], [[./figs/complementary_filters_second_order.pdf][pdf]])
+% [[file:figs/complementary_filters_second_order.png]]
+
+
+% The following formula gives complementary filters with slopes of $-3$ and $3$:
+% \begin{align*}
+% H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\
+% H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}
+% \end{align*}
+
+% The parameters are:
+% - $\omega_0$ is the blending frequency in rad/s
+% - $\alpha$ and $\beta$ that are used to change the shape of the filters similarly to the parameter $\alpha$ for the second order complementary filters
+
+% The filters are defined below and the result is shown on figure [[fig:complementary_filters_third_order]] where we can see that the complementary filters are below the defined upper bounds.
+
+
+alpha = 1;
+beta = 10;
+w0 = 2*pi*14;
+
+Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+% Comparison of complementary filters
+% <>
+% The generated complementary filters using $\mathcal{H}_\infty$ and the analytical formulas are compared on figure [[fig:comp_hinf_analytical]].
+
+% Although they are very close to each other, there is some difference to note here:
+% - the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters $\alpha$ and $\omega_0$. However, these formula have the property that $|H_H|$ and $|H_L|$ are symmetrical with the frequency $\omega_0$ which may not be desirable.
+% - while the $\mathcal{H}_\infty$ synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters
+
+% The complementary filters obtained with the $\mathcal{H}_\infty$ will be used for further analysis.
+
+
+figure;
+
+ax1 = subplot(2,1,1);
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), ':');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ylabel('Magnitude');
+hold off;
+ylim([1e-4, 10]);
+
+ax2 = subplot(2,1,2);
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 180/pi*phase(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 180/pi*phase(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 180/pi*phase(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $2$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 180/pi*phase(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $2$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 180/pi*phase(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':', 'DisplayName', '$H_L$ - $3$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 180/pi*phase(squeeze(freqresp(Hh3_ana, freqs, 'Hz')))+360, ':', 'DisplayName', '$H_H$ - $3$');
+set(gca, 'XScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+yticks([-360:90:360]);
+legend('location', 'northeast');
+
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000]);
+
+% Controller Analysis
+% <>
+
+% The controller $K$ is computed from the plant model $G$ and the low pass filter $H_H$:
+% \[ K = G^{-1} H_H^{-1} \]
+
+% As this is not proper and thus realizable, a second order low pass filter is added with a crossover frequency much larger than the control bandwidth.
+
+
+omega = 2*pi*1000;
+K = 1/(Hh_hinf*G) * 1/((1+s/omega)*(1+s/omega+(s/omega)^2));
+
+K = zpk(minreal(K));
+
+zpk(K)
+
+
+
+% #+RESULTS:
+% #+begin_example
+% zpk(K)
+
+% ans =
+
+% 4.961e12 (s+9.915e04) (s^2 + 5s + 500) (s^2 + 284.6s + 2.135e04) (s^2 + 130.5s + 9887)
+% --------------------------------------------------------------------------------------------------
+% (s+9.914e04) (s+6283) (s^2 + 0.3576s + 0.03198) (s^2 + 413.8s + 6.398e04) (s^2 + 6283s + 3.948e07)
+
+% Continuous-time zero/pole/gain model.
+% #+end_example
+
+% The bode plot of the controller is shown on figure [[fig:bode_plot_controller]]:
+% - two integrator are present at low frequency
+% - the resonance of the plant at $3.5\ \text{Hz}$ is inverted (notched)
+% - a lead is added at $10\ \text{Hz}$
+
+
+figure;
+% Magnitude
+ax1 = subplot(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(K, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [N/m]');
+% ylim([1e3, 1e8])
+hold off;
+
+% Phase
+ax2 = subplot(2,1,2);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(K, freqs, 'Hz'))), 'k-');
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000])
+
+% Nominal Stability and Nominal Performance
+% <>
+
+% The nominal stability of the system is first checked with the =allmargin= matlab command.
+
+
+allmargin(K*G*Hl_hinf)
+
+
+
+% #+RESULTS:
+% #+begin_example
+% allmargin(K*G*Hl_hinf)
+% ans =
+% struct with fields:
+
+% GainMargin: 4.46426896164391
+% GMFrequency: 243.854595348016
+% PhaseMargin: 35.7045152899792
+% PMFrequency: 88.3664383511655
+% DelayMargin: 0.00705201387841809
+% DMFrequency: 88.3664383511655
+% Stable: 1
+% #+end_example
+
+% The system is stable and the stability margins are good.
+
+% The bode plot of the loop gain $L = K*G*H_L$ is shown on figure [[fig:bode_plot_loop_gain]].
+
+
+figure;
+% Magnitude
+ax1 = subplot(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+hold off;
+
+% Phase
+ax2 = subplot(2,1,2);
+hold on;
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz')))), 'k-');
+set(gca,'xscale','log');
+yticks(-270:90:0);
+ylim([-270 0]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000])
+
+
+
+% #+NAME: fig:bode_plot_loop_gain
+% #+CAPTION: Bode Plot of the Loop Gain $L = K G H_L$ ([[./figs/bode_plot_loop_gain.png][png]], [[./figs/bode_plot_loop_gain.pdf][pdf]])
+% [[file:figs/bode_plot_loop_gain.png]]
+
+% In order to check the Nominal Performance of the system, we compute the sensibility and the complementary sensibility transfer functions.
+
+
+S = 1/(K*G*Hl_hinf + 1);
+T = K*G*Hl_hinf/(K*G*Hl_hinf + 1);
+
+
+
+% We then compare their norms with the upper bounds on the performance of the system (figure [[fig:verification_NP]]).
+% As expected, we guarantee the Nominal Performance of the system.
+
+
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', 'Upper bound on $|T|$');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', 'Upper bound on $|S|$');
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), '-', 'DisplayName', '$T$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), '-', 'DisplayName', '$S$');
+
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-4, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast');
+
+% Robust Stability and Robust Performance
+% <>
+% In order to verify the Robust stability of the system, we can use the following equivalence:
+% \[ \text{RS} \Leftrightarrow \left| w_I T \right| < 1 \quad \forall \omega \]
+
+% This is shown on figure [[fig:robust_stability]].
+
+
+Ts = Gds*K*Hl_hinf/(Gds*K*Hl_hinf + 1);
+Ss = 1/(Gds*K*Hl_hinf + 1);
+
+figure;
+hold on;
+plot(freqs, abs(squeeze(freqresp(wI*T, freqs, 'Hz'))), 'k-');
+plot([freqs(1) freqs(end)], [1 1], 'k--');
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]');
+ylim([0.02, 2])
+
+
+
+% #+NAME: fig:robust_stability
+% #+CAPTION: Robust Stability Check: $|w_I T| < 1, \quad \forall \omega$ ([[./figs/robust_stability.png][png]], [[./figs/robust_stability.pdf][pdf]])
+% [[file:figs/robust_stability.png]]
+
+% To check Robust Stability, we can also look at the loop gain of the uncertain system (figure [[fig:loop_gain_robustness]]) or the Nyquist plot (figure [[fig:nyquist_robustness]]).
+
+
+figure;
+ax2 = subplot(2,1,1);
+hold on;
+for i=1:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]);
+end
+plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [m/N]');
+ylim([1e-4 1e4]);
+hold off;
+% Phase
+ax2 = subplot(2,1,2);
+hold on;
+for i=1:length(Gds)
+ plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]);
+end
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz')))), 'k-');
+set(gca,'xscale','log');
+yticks(-360:90:180);
+ylim([-270 0]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000])
+
+
+
+% #+NAME: fig:loop_gain_robustness
+% #+CAPTION: Loop Gain of the uncertain system ([[./figs/loop_gain_robustness.png][png]], [[./figs/loop_gain_robustness.pdf][pdf]])
+% [[file:figs/loop_gain_robustness.png]]
+
+
+
+freqs_nyquist = logspace(0, 4, 100);
+
+figure;
+hold on;
+for i=1:length(Gds)
+ plot(real(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]);
+end
+plot(real(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'k');
+hold off;
+xlim([-1.4, 0.2]); ylim([-1.4, 0.2]);
+xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2);
+xlabel('Real Part'); ylabel('Imaginary Part');
+
+
+
+% #+NAME: fig:nyquist_robustness
+% #+CAPTION: Nyquist plot of the uncertain system ([[./figs/nyquist_robustness.png][png]], [[./figs/nyquist_robustness.pdf][pdf]])
+% [[file:figs/nyquist_robustness.png]]
+
+% The Robust Performance is verified by plotting $|S|$ and $|T|$ for the uncertain system along side the upper bounds defined for performance.
+% This is shown on figure [[fig:robust_performance_result]] and we can indeed confirmed that the robust performance property of the system is valid.
+
+
+figure;
+hold on;
+plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain');
+plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain');
+
+for i=2:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off');
+ plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+end
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(1/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal');
+
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+hold off;
+xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
+xlim([freqs(1), freqs(end)]);
+ylim([1e-4, 5]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeastoutside');
+
+% Pre-filter
+% <>
+
+% For now, we have not specified any performance requirements on the input usage due to change of reference.
+% Do limit the input usage due to change of reference, we can use a pre-filter $K_r$ as shown on figure [[fig:sf_arch_class_prefilter]].
+
+% If we want a response time of 0.01 second, we can choose a first order low pass filter with a crossover frequency at $1/0.01 = 100\ \text{Hz}$ as defined below.
+
+
+Kr = 1/(1+s/2/pi/100);
+
+
+
+% We then run a simulation for a step of $1\mu m$ for the system without and with the pre-filter $K_r$ (figure [[fig:u_and_y_with_Kr]]).
+% This confirms that a pre-filter can be used to limit the input usage due to change of reference using this architecture.
+
+
+t = linspace(0, 0.02, 1000);
+
+opts = stepDataOptions;
+opts.StepAmplitude = 1e-6;
+
+u = step((K)/(1+G*K*Hl_hinf), t, opts);
+uf = step((Kr*K)/(1+G*K*Hl_hinf), t, opts);
+y = step((K*G)/(1+G*K*Hl_hinf), t, opts);
+yf = step((Kr*G*K)/(1+G*K*Hl_hinf), t, opts);
+
+figure;
+ax1 = subplot(2,1,1);
+hold on;
+plot(t, u, 'k--', 'DisplayName', 'Without Pre-filter');
+plot(t, uf, 'k-', 'DisplayName', 'With Pre-Filter');
+hold off;
+ylabel('Command Input [N]');
+set(gca, 'XTickLabel',[]);
+legend('location', 'northeast');
+
+ax2 = subplot(2,1,2);
+hold on;
+plot(t, y, 'k--');
+plot(t, yf, 'k-' );
+hold off;
+xlabel('Time [s]');
+ylabel('Output [m]');
+
+% Controller using classical techniques
+% <>
+% A controller is designed using =SISOTOOL= with a bandwidth of approximately $20\ \text{Hz}$ and with two integrator.
+
+% The obtained controller is shown below.
+
+Kf = 1.1814e12*(s+10.15)*(s+9.036)*(s+53.8)/(s^2*(s+216.1)*(s+1200)*(s+1864));
+
+zpk(Kf)
+
+
+
+% #+RESULTS:
+% #+begin_example
+% zpk(Kf)
+
+% ans =
+
+% 1.1814e12 (s+10.15) (s+9.036) (s+53.8)
+% --------------------------------------
+% s^2 (s+216.1) (s+1200) (s+1864)
+
+% Continuous-time zero/pole/gain model.
+% #+end_example
+
+% The loop gain for both cases are compared on figure [[fig:loop_gain_compare]].
+
+
+figure;
+% Magnitude
+ax1 = subplot(2,1,1);
+hold on;
+plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--');
+plot(freqs, abs(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Magnitude [N/m]');
+% ylim([1e3, 1e8])
+hold off;
+
+% Phase
+ax2 = subplot(2,1,2);
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--', 'DisplayName', '$K G H_L$ - $\mathcal{H}_\infty$');
+plot(freqs, 180/pi*angle(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-', 'DisplayName', '$K G$ - SISOTOOL');
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+legend('location', 'northwest');
+
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000])
+
+
+
+% #+NAME: fig:loop_gain_compare
+% #+CAPTION: Comparison of the Loop Gains ([[./figs/loop_gain_compare.png][png]], [[./figs/loop_gain_compare.pdf][pdf]])
+% [[file:figs/loop_gain_compare.png]]
+
+% The Robust Stability of the system is verified using the Nyquist plot on figure [[fig:nyquist_plot_sisotool_controller]].
+
+
+freqs_nyquist = logspace(0, 4, 100);
+
+figure;
+hold on;
+for i=1:length(Gds)
+ plot(real(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]);
+end
+plot(real(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), 'k');
+hold off;
+xlim([-1.4, 0.2]); ylim([-1.4, 0.2]);
+xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2);
+xlabel('Real Part'); ylabel('Imaginary Part');
+
+
+
+% #+NAME: fig:nyquist_plot_sisotool_controller
+% #+CAPTION: Nyquist Plot of the uncertain system ([[./figs/nyquist_plot_sisotool_controller.png][png]], [[./figs/nyquist_plot_sisotool_controller.pdf][pdf]])
+% [[file:figs/nyquist_plot_sisotool_controller.png]]
+
+% The closed loop sensitivity and complementary sensitivity transfer functions are computed.
+% And finally, the Robust Performance of both systems are compared on figure [[fig:robust_performance_compare]].
+
+
+Sf = 1/(Kf*G + 1);
+Tf = Kf*G/(Kf*G + 1);
+
+Tfs = Gds*Kf/(Gds*Kf + 1);
+Sfs = 1/(Gds*Kf + 1);
+
+figure;
+ax1 = subplot(1, 2, 1);
+title('$K$ - SISOTOOL');
+hold on;
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Tf, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Sf, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal');
+
+plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain');
+plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain');
+
+for i=2:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off');
+ plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+end
+
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+hold off;
+xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000]);
+
+ax2 = subplot(1, 2, 2);
+title('$K$ - complementary filters');
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal');
+
+plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain');
+plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain');
+
+for i=2:length(Gds)
+ plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off');
+ plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+end
+
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound');
+
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+hold off;
+xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
+xlim([freqs(1), freqs(end)]);
+xticks([0.1, 1, 10, 100, 1000]);
+
+linkaxes([ax1 ax2], 'y')
+ylim([1e-4, 10]);
diff --git a/matlab/ref.bib b/matlab/ref.bib
new file mode 100644
index 0000000..7402d1b
--- /dev/null
+++ b/matlab/ref.bib
@@ -0,0 +1,67 @@
+@article{collette15_sensor_fusion_method_high_perfor,
+ author = {C. Collette and F. Matichard},
+ title = {Sensor Fusion Methods for High Performance Active Vibration Isolation Systems},
+ journal = {Journal of Sound and Vibration},
+ volume = {342},
+ number = {nil},
+ pages = {1-21},
+ year = {2015},
+ doi = {10.1016/j.jsv.2015.01.006},
+ url = {https://doi.org/10.1016/j.jsv.2015.01.006},
+ keywords = {},
+}
+
+@inproceedings{collette14_vibrat,
+ author = {Collette, C. and Matichard, F},
+ title = {Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs},
+ booktitle = {International Conference on Noise and Vibration Engineering (ISMA2014)},
+ year = {2014},
+ keywords = {},
+}
+
+@article{oomen18_advan_motion_contr_precis_mechat,
+ author = {Tom Oomen},
+ title = {Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems},
+ journal = {IEEJ Journal of Industry Applications},
+ volume = {7},
+ number = {2},
+ pages = {127-140},
+ year = {2018},
+ doi = {10.1541/ieejjia.7.127},
+ url = {https://doi.org/10.1541/ieejjia.7.127},
+}
+
+@book{skogestad07_multiv_feedb_contr,
+ author = {Skogestad, Sigurd and Postlethwaite, Ian},
+ title = {Multivariable Feedback Control: Analysis and Design},
+ year = {2007},
+ publisher = {John Wiley},
+ keywords = {favorite},
+}
+
+@phdthesis{hua05_low_ligo,
+ author = {Hua, Wensheng},
+ school = {stanford university},
+ title = {Low frequency vibration isolation and alignment system for
+ advanced LIGO},
+ year = 2005,
+}
+
+@book{lurie12_class,
+ author = {Lurie, B. J},
+ title = {Classical feedback control : with MATLAB and Simulink},
+ year = 2012,
+ publisher = {CRC Press},
+ address = {Boca Raton, FL},
+ isbn = 9781439897461,
+ keywords = {favorite},
+}
+
+@techreport{bibel92_guidel_h,
+ author = {Bibel, John E and Malyevac, D Stephen},
+ institution = {NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA},
+ title = {Guidelines for the selection of weighting functions for
+ H-infinity control},
+ year = 1992,
+ keywords = {},
+}
\ No newline at end of file