diff --git a/matlab/data/sensor_fusion.zip b/matlab/data/sensor_fusion.zip new file mode 100644 index 0000000..02f20e5 Binary files /dev/null and b/matlab/data/sensor_fusion.zip differ diff --git a/matlab/figs/Kr_bode_plot_input_usage.pdf b/matlab/figs/Kr_bode_plot_input_usage.pdf new file mode 100644 index 0000000..db96b92 Binary files /dev/null and b/matlab/figs/Kr_bode_plot_input_usage.pdf differ diff --git a/matlab/figs/Kr_bode_plot_input_usage.png b/matlab/figs/Kr_bode_plot_input_usage.png new file mode 100644 index 0000000..1f47fa1 Binary files /dev/null and b/matlab/figs/Kr_bode_plot_input_usage.png differ diff --git a/matlab/figs/Kr_bode_plot_input_usage.svg b/matlab/figs/Kr_bode_plot_input_usage.svg new file mode 100644 index 0000000..c62008b --- /dev/null +++ b/matlab/figs/Kr_bode_plot_input_usage.svg @@ -0,0 +1,344 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/Kr_bode_plot_input_usage.tex b/matlab/figs/Kr_bode_plot_input_usage.tex new file mode 100644 index 0000000..77f5201 --- /dev/null +++ b/matlab/figs/Kr_bode_plot_input_usage.tex @@ -0,0 +1,1426 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=2.593in, +height=1.991in, +at={(0.475in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1000, +ymax=100000000, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9216.51719081629\\ +0.302329468440578 9156.57439362406\\ +0.488302208687788 9048.41984903025\\ +0.668074391569561 8895.77022498476\\ +0.841249704973612 8704.2852958811\\ +1.01159111222383 8473.74281979462\\ +1.1723818032866 8218.13371547544\\ +1.33390569003906 7924.68751422842\\ +1.48995507285285 7606.83139699254\\ +1.64898694447106 7248.85813798416\\ +1.7916503273639 6899.21009678835\\ +1.94665634334226 6489.72475299129\\ +2.09566239948044 6068.27777195718\\ +2.2353696459098 5649.82351989119\\ +2.38439047009372 5180.72982150632\\ +2.52000499376409 4736.05747217165\\ +2.66333272517498 4251.74692504046\\ +2.81481236050758 3731.0688776775\\ +2.97490754721444 3185.29304754871\\ +3.17322963473498 2559.58914710908\\ +3.35371015200293 2128.23450503408\\ +3.44776405473446 2004.43346959609\\ +3.51192753045073 1975.3244412959\\ +3.54445567397044 1979.63027757491\\ +3.61041859717334 2028.83312405715\\ +3.67760910160103 2133.03277360448\\ +3.78074666359935 2386.84162097141\\ +3.99578030189527 3181.12393658679\\ +4.34147833005509 4872.36112567832\\ +4.67379510799246 6750.81743052959\\ +5.03154894503806 8951.09539018752\\ +5.46685729972018 11823.3837096566\\ +5.99484250318941 15553.5595580903\\ +6.63470812109235 20404.912648195\\ +7.47952251562183 27356.907664737\\ +8.74866812047991 39077.2058005133\\ +11.7508713090481 74241.4271266614\\ +16.2259528707809 147110.204711834\\ +19.8745954958099 220959.014725538\\ +23.6796006783308 307277.201948126\\ +27.9541599906786 411454.812225883\\ +33.0003479112529 539993.385558094\\ +38.957456157755 695271.142881128\\ +45.9899209052244 879823.151938927\\ +54.7947233690029 1109810.59305886\\ +66.5001803043112 1411776.15281457\\ +82.9695852083491 1829369.69716703\\ +107.406615333343 2437452.06267619\\ +149.683929307726 3471017.84649489\\ +237.342425002387 5584195.21939397\\ +436.153778920801 10317113.4349985\\ +559.432570616938 13116899.464662\\ +642.403365939419 14804449.7160439\\ +704.446227729904 15869977.2158384\\ +758.367791499719 16600328.7245067\\ +808.924348680594 17080530.6951292\\ +854.932706626838 17324283.7266202\\ +895.26571259964 17380491.0445164\\ +937.501501514529 17285573.6203917\\ +981.729840618884 17031385.5178213\\ +1000 16885202.0015993\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9370.94756873912\\ +0.275702332560958 9212.77441653564\\ +0.492824957004051 9055.38925709945\\ +0.680507369673521 8885.09611920841\\ +0.856905505126835 8683.46499346579\\ +1.03041699495059 8443.41314532514\\ +1.19420002813353 8178.39340833535\\ +1.35872990190271 7874.71231415556\\ +1.51768339028341 7546.07121080538\\ +1.6642601764859 7212.83856041143\\ +1.80824493487795 6857.94423395407\\ +1.94665634334226 6491.79701817757\\ +2.09566239948044 6071.33934020118\\ +2.2353696459098 5653.73980406749\\ +2.38439047009372 5185.44218775673\\ +2.52000499376409 4741.36089769826\\ +2.66333272517498 4257.5101495567\\ +2.81481236050758 3737.11210610892\\ +2.97490754721444 3191.39586816305\\ +3.17322963473498 2565.49533496467\\ +3.35371015200293 2133.95486796305\\ +3.44776405473446 2010.23688044213\\ +3.51192753045073 1981.33034239186\\ +3.54445567397044 1985.79722023813\\ +3.61041859717334 2035.46560749475\\ +3.67760910160103 2140.34725099686\\ +3.78074666359935 2395.62805649023\\ +3.99578030189527 3194.585298563\\ +4.34147833005509 4897.63044604063\\ +4.67379510799246 6792.54710370872\\ +5.03154894503806 9016.70339501755\\ +5.46685729972018 11927.6126005575\\ +5.99484250318941 15720.0683431431\\ +6.63470812109235 20670.8528347805\\ +7.47952251562183 27793.6948216338\\ +8.74866812047991 39842.8243519256\\ +11.4303112911448 71557.9374016831\\ +15.4949503931463 136555.893160995\\ +18.979216428391 205518.435626751\\ +22.6128006633728 286479.332927707\\ +26.6947849403432 384629.927737068\\ +31.5136348486648 506268.580328289\\ +37.2023668141307 653803.367209384\\ +43.9180089259609 829723.77765377\\ +52.3261423948667 1049467.91456154\\ +63.5042516859596 1338393.56128413\\ +78.5045620020451 1719837.90340695\\ +100.693863147603 2273812.08107546\\ +137.765076954906 3182836.55413446\\ +210.534524276671 4940862.21122526\\ +390.473523688556 9238211.49041574\\ +534.229329953835 12558916.2454787\\ +624.87880720069 14460306.2281801\\ +691.575882873852 15655899.6038212\\ +751.408106111698 16505425.8673027\\ +801.500696156541 17009942.5369771\\ +847.08682665574 17282075.152417\\ +895.26571259964 17366274.8407052\\ +937.501501514529 17271713.5407915\\ +981.729840618884 17018256.0017434\\ +1000 16872460.1457305\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9419.41985217608\\ +0.305129701718287 9357.62257135977\\ +0.492824957004051 9246.34730813299\\ +0.674262224177834 9089.2404802161\\ +0.849041520408875 8892.07936821042\\ +1.02096066230605 8654.58095871917\\ +1.18324062745838 8391.10881244616\\ +1.34626057929891 8088.44703168113\\ +1.50375532129974 7760.39019567864\\ +1.6642601764859 7390.66905318224\\ +1.80824493487795 7029.29511890935\\ +1.96468664618044 6605.78448704379\\ +2.11507282486879 6169.60770644421\\ +2.25607406649686 5736.28355155348\\ +2.40647515001543 5250.32596908643\\ +2.54334576130465 4789.62896992659\\ +2.68800102153761 4288.12356534321\\ +2.84088369018331 3749.94978142995\\ +3.00246170908555 3188.72802444251\\ +3.23228397818138 2474.7587255913\\ +3.38477285594598 2146.75683724799\\ +3.44776405473446 2071.91566112034\\ +3.51192753045073 2042.72909741659\\ +3.54445567397044 2047.64772903239\\ +3.61041859717334 2099.52488616601\\ +3.67760910160103 2208.43127399448\\ +3.78074666359935 2473.1093385237\\ +3.99578030189527 3301.62563314843\\ +4.34147833005509 5071.60120540775\\ +4.67379510799246 7048.01743819923\\ +5.03154894503806 9377.3820259666\\ +5.46685729972018 12441.2039615825\\ +5.99484250318941 16457.0718512568\\ +6.69616005485322 22265.0014507829\\ +7.618717702323 30713.4581066284\\ +8.9114823228402 44170.9152284185\\ +11.2214776820798 73374.5774826492\\ +14.5265392594678 126635.690663572\\ +17.7930438991858 190223.182388737\\ +21.3958887134342 269366.133109876\\ +25.4921465445143 366909.882657025\\ +30.0939003444972 482207.544535895\\ +35.5263467657814 622260.611497104\\ +42.3278906557355 799714.9520363\\ +50.8987019351968 1023068.72555491\\ +61.771875973385 1303490.22893536\\ +77.070271142123 1691770.66186027\\ +99.7697764236321 2257343.01483652\\ +137.765076954906 3187239.62458475\\ +214.452607597167 5036612.44671011\\ +401.424249049933 9490602.24546946\\ +539.17746403875 12651473.7373079\\ +624.87880720069 14435350.6202691\\ +691.575882873852 15624511.793382\\ +751.408106111698 16469024.1340506\\ +801.500696156541 16970479.0410383\\ +847.08682665574 17241065.6409248\\ +895.26571259964 17325080.7200085\\ +937.501501514529 17231556.6563807\\ +981.729840618884 16980216.481294\\ +1000 16835542.9531396\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9616.30536630901\\ +0.305129701718287 9553.61614804599\\ +0.492824957004051 9440.72443151939\\ +0.674262224177834 9281.31242199873\\ +0.849041520408875 9081.21987542988\\ +1.02096066230605 8840.13233119358\\ +1.18324062745838 8572.60296231698\\ +1.34626057929891 8265.18023115092\\ +1.50375532129974 7931.83909976776\\ +1.6642601764859 7556.00425092927\\ +1.80824493487795 7188.48850006279\\ +1.96468664618044 6757.56562032369\\ +2.11507282486879 6313.50699538744\\ +2.25607406649686 5872.09732076338\\ +2.40647515001543 5376.76249674895\\ +2.54334576130465 4906.86728383334\\ +2.68800102153761 4395.00203504893\\ +2.84088369018331 3845.30558841865\\ +3.00246170908555 3271.6275712668\\ +3.23228397818138 2541.25956543248\\ +3.38477285594598 2205.7782053734\\ +3.44776405473446 2129.43146038067\\ +3.51192753045073 2100.00088426818\\ +3.54445567397044 2105.34968048973\\ +3.61041859717334 2159.3059416424\\ +3.67760910160103 2271.98833444575\\ +3.78074666359935 2545.47384791817\\ +3.99578030189527 3401.6970867092\\ +4.38168993151419 5470.54420387912\\ +4.71708469091702 7570.39095086177\\ +5.07815211232767 10046.7192417487\\ +5.51749237612913 13313.6600261871\\ +6.05036787939122 17614.8623284272\\ +6.75818116816111 23869.0318883036\\ +7.68928372075831 33011.8585218501\\ +8.99402217409205 47591.5172173485\\ +10.9153593533139 72916.399289886\\ +13.6186523675608 116032.299241809\\ +16.6810053720006 173797.02256021\\ +20.0586777950823 245773.832669635\\ +23.8989256623105 334913.012565763\\ +28.4743916646725 447511.32504806\\ +33.9258338274099 586581.178559106\\ +40.4209583979631 755108.82044864\\ +48.6056423214214 967978.971792891\\ +58.9889642550851 1235876.47758183\\ +72.9227205872831 1590240.73174308\\ +93.534315202924 2105294.59778844\\ +126.795284678643 2921739.2959332\\ +190.230118866895 4455084.74697181\\ +346.369417737173 8184472.95617498\\ +510.161531474983 11996913.3693287\\ +607.832312829724 14084945.8748948\\ +678.940681269611 15398578.1239475\\ +737.679760252773 16275878.728381\\ +786.857150693686 16821920.787489\\ +831.610415323096 17145516.2585754\\ +878.909065341996 17295142.1060897\\ +920.373199661823 17263355.276713\\ +963.79347996158 17076552.1376937\\ +1000 16813548.5026355\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9089.91643937663\\ +0.302329468440578 9030.80996121492\\ +0.488302208687788 8924.15920917054\\ +0.668074391569561 8773.62172547116\\ +0.841249704973612 8584.77138609287\\ +1.01159111222383 8357.38258642839\\ +1.1723818032866 8105.25161542217\\ +1.33390569003906 7815.78086269197\\ +1.48995507285285 7502.21696475731\\ +1.64898694447106 7149.06866074922\\ +1.7916503273639 6804.13147386828\\ +1.94665634334226 6400.16865066277\\ +2.09566239948044 5984.4187013624\\ +2.2353696459098 5571.63959567499\\ +2.38439047009372 5108.93406889774\\ +2.52000499376409 4670.3451585195\\ +2.66333272517498 4192.69177639033\\ +2.81481236050758 3679.20612605968\\ +2.97490754721444 3141.0055564579\\ +3.17322963473498 2524.02806489971\\ +3.35371015200293 2098.72562856084\\ +3.44776405473446 1976.68693832876\\ +3.51192753045073 1948.01890723058\\ +3.54445567397044 1952.28695331419\\ +3.61041859717334 2000.86068541888\\ +3.67760910160103 2103.68585185142\\ +3.78074666359935 2354.12844588217\\ +3.99578030189527 3137.98214568412\\ +4.34147833005509 4807.94966346847\\ +4.67379510799246 6664.8026531163\\ +5.03154894503806 8843.31942821773\\ +5.46685729972018 11694.4504680539\\ +5.99484250318941 15412.0862380969\\ +6.69616005485322 20764.150865797\\ +7.618717702323 28536.7001783792\\ +9.07732652521022 42726.5677468618\\ +12.534242654614 87350.9752956814\\ +15.9295021257212 145775.423012204\\ +19.1550055557353 211514.402241897\\ +22.6128006633728 289656.225265245\\ +26.6947849403432 388537.770845469\\ +31.5136348486648 510650.653622912\\ +37.2023668141307 658390.469134735\\ +43.9180089259609 834280.208838691\\ +52.3261423948667 1053799.55452012\\ +63.5042516859596 1342331.97849842\\ +79.2316862486626 1741568.971337\\ +102.567793074442 2322940.1137012\\ +141.62866162992 3278869.70744264\\ +220.466873523941 5180675.33057214\\ +412.682084570295 9762173.34899506\\ +549.211648388779 12886122.6352524\\ +636.507908129558 14680221.5624945\\ +704.446227729904 15853801.0822057\\ +758.367791499719 16581876.9424035\\ +808.924348680594 17060540.0114785\\ +854.932706626838 17303556.0161149\\ +895.26571259964 17359693.0237795\\ +937.501501514529 17265262.9781074\\ +981.729840618884 17012117.2495914\\ +1000 16866492.5655028\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10127.4530494838\\ +0.307955871291422 10061.1108517507\\ +0.497389595879007 9941.87149230215\\ +0.680507369673521 9773.42925227259\\ +0.856905505126835 9561.89468667701\\ +1.03041699495059 9306.86665067777\\ +1.19420002813353 9023.67495690238\\ +1.35872990190271 8698.0079536562\\ +1.51768339028341 8344.59022577263\\ +1.6642601764859 7985.36976879734\\ +1.80824493487795 7601.92397268438\\ +1.96468664618044 7151.78687194795\\ +2.11507282486879 6687.30923950626\\ +2.25607406649686 6224.96420912609\\ +2.40647515001543 5705.35999361273\\ +2.54334576130465 5211.66531081788\\ +2.68800102153761 4672.99734322088\\ +2.84088369018331 4093.48639353518\\ +3.00246170908555 3487.56850836915\\ +3.23228397818138 2714.74744388388\\ +3.38477285594598 2359.94551787143\\ +3.44776405473446 2279.75242696061\\ +3.51192753045073 2249.7772564625\\ +3.54445567397044 2256.30082039709\\ +3.61041859717334 2315.80563461023\\ +3.67760910160103 2438.49903118408\\ +3.78074666359935 2735.29550509159\\ +3.99578030189527 3664.97310611985\\ +4.38168993151419 5924.34180982284\\ +4.71708469091702 8238.64520695404\\ +5.12518692705333 11373.2347971191\\ +5.62017384808319 15588.8913390872\\ +6.22004882563472 21272.376883401\\ +7.01206358900718 29710.0945994102\\ +7.97814457207663 41380.9336120262\\ +9.24625711640575 58795.9417001127\\ +10.7159339982267 81494.7371235126\\ +12.534242654614 112569.528920683\\ +14.796880626864 154989.089507954\\ +17.7930438991858 216468.143686541\\ +21.5940615210357 301336.297150614\\ +26.2070669648386 411551.498910706\\ +31.5136348486648 544145.172965931\\ +37.8947091907467 707437.269775448\\ +45.9899209052244 916166.993819528\\ +56.3314267060136 1181562.08681371\\ +70.2824426430835 1535099.62354158\\ +90.9827289445557 2050975.46906165\\ +124.478714618791 2871353.1663282\\ +190.230118866895 4457287.40760145\\ +349.577557436328 8252578.9201529\\ +510.161531474983 11970496.1618318\\ +607.832312829724 14042946.7988158\\ +678.940681269611 15344596.8064548\\ +737.679760252773 16213031.3207659\\ +786.857150693686 16753354.1238221\\ +831.610415323096 17073695.54455\\ +878.909065341996 17222257.7491221\\ +920.373199661823 17191589.5419945\\ +963.79347996158 17007812.4083152\\ +1000 16748508.4090393\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9664.25611377571\\ +0.278255940220713 9624.5001012521\\ +0.466303492974273 9519.8086211776\\ +0.649849535446989 9365.2161495529\\ +0.825879938784427 9169.18548660517\\ +0.99310918137498 8939.99952577622\\ +1.1616226326085 8667.06721502215\\ +1.32166418394661 8369.21891733422\\ +1.47628147190939 8046.15360396229\\ +1.63385387780986 7681.76349920132\\ +1.7916503273639 7282.02246962511\\ +1.94665634334226 6856.3500542836\\ +2.09566239948044 6417.4890990263\\ +2.2353696459098 5980.9795395298\\ +2.38439047009372 5490.72796312028\\ +2.52000499376409 5025.09232930708\\ +2.66333272517498 4516.93417113319\\ +2.81481236050758 3969.42942520049\\ +2.97490754721444 3394.2269562969\\ +3.17322963473498 2733.29715068375\\ +3.35371015200293 2277.39376592539\\ +3.44776405473446 2147.35153555469\\ +3.51192753045073 2117.84947939511\\ +3.54445567397044 2123.33479077303\\ +3.61041859717334 2177.94453749296\\ +3.67760910160103 2291.81055295007\\ +3.78074666359935 2568.055006641\\ +3.99578030189527 3432.96444047333\\ +4.38168993151419 5524.24539907686\\ +4.71708469091702 7649.17310016676\\ +5.07815211232767 10158.0734792489\\ +5.51749237612913 13472.7704055305\\ +6.05036787939122 17844.4703747211\\ +6.75818116816111 24213.9348922117\\ +7.68928372075831 33542.9086391927\\ +8.99402217409205 48429.1923888516\\ +10.9153593533139 74224.7613414689\\ +13.4936714058831 115696.76887084\\ +16.527920614649 172958.392362975\\ +19.8745954958099 244143.460252512\\ +23.6796006783308 332229.888353995\\ +28.2130767593947 443502.087069427\\ +33.6144900010877 580999.620290266\\ +40.0500075787361 747727.012212884\\ +48.1595791019235 958451.027081522\\ +58.4476113163364 1223775.23240777\\ +72.2534949178722 1574845.83496721\\ +92.6759330114688 2085192.138436\\ +125.631660247412 2894193.95593702\\ +188.48434090338 4413446.20628746\\ +343.190719745904 8108108.77371613\\ +510.161531474983 11993628.3938104\\ +607.832312829724 14079699.4950545\\ +678.940681269611 15391820.9040616\\ +737.679760252773 16268001.8611531\\ +786.857150693686 16813320.4808687\\ +831.610415323096 17136503.2776277\\ +878.909065341996 17285992.5728057\\ +920.373199661823 17254344.8686993\\ +963.79347996158 17067921.477673\\ +1000 16805382.9075318\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10816.5361050653\\ +0.307955871291422 10747.2680786914\\ +0.497389595879007 10622.1507329674\\ +0.680507369673521 10445.3212958068\\ +0.856905505126835 10223.1541487272\\ +1.03041699495059 9955.15704241771\\ +1.19420002813353 9657.36038540692\\ +1.35872990190271 9314.61724476488\\ +1.51768339028341 8942.31013874022\\ +1.67967487209265 8521.68908115301\\ +1.82499324481615 8109.4862837836\\ +1.96468664618044 7682.77047191838\\ +2.11507282486879 7190.97027040975\\ +2.25607406649686 6700.63747276269\\ +2.40647515001543 6148.60358421719\\ +2.54334576130465 5623.10856705686\\ +2.68800102153761 5048.614884154\\ +2.84088369018331 4429.22324552787\\ +3.00246170908555 3780.13551868606\\ +3.26222200971167 2860.36554214466\\ +3.38477285594598 2569.80880517444\\ +3.44776405473446 2484.57359915027\\ +3.51192753045073 2454.06389803552\\ +3.54445567397044 2462.30009808066\\ +3.61041859717334 2529.61820702097\\ +3.67760910160103 2666.2643822159\\ +3.78074666359935 2995.46178838406\\ +3.99578030189527 4027.48423044804\\ +4.38168993151419 6555.48091940879\\ +4.71708469091702 9177.94379591135\\ +5.12518692705333 12785.4549219623\\ +5.62017384808319 17739.3249738578\\ +6.2776601058065 25307.5151287188\\ +7.14255928554313 37010.7011753745\\ +8.20188949920221 53899.6001881437\\ +9.24625711640575 72688.7136078146\\ +10.3279473191895 93396.184443753\\ +11.5361810173648 117022.831148434\\ +13.0051125217341 145845.480184399\\ +14.9339321612425 184097.746575109\\ +18.2920450484629 253694.125935171\\ +23.8989256623105 380048.444458441\\ +30.3726357970331 537041.143110896\\ +37.8947091907467 726435.34333413\\ +46.8458011587306 954510.878489478\\ +58.4476113163364 1249086.44737472\\ +74.2798248256493 1646236.74198232\\ +98.8541702191957 2252861.0000242\\ +141.62866162992 3291615.84661235\\ +233.006141069692 5479889.51909317\\ +424.255643071778 9987485.82398813\\ +549.211648388779 12788480.2800335\\ +630.666554056741 14430612.6309219\\ +697.981390783067 15582030.2268073\\ +751.408106111698 16305879.4108013\\ +801.500696156541 16794325.0223963\\ +847.08682665574 17058496.7811599\\ +895.26571259964 17142036.987261\\ +937.501501514529 17053298.6583127\\ +981.729840618884 16811438.9207803\\ +1000 16671755.003137\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9244.03242331393\\ +0.305129701718287 9183.08163944595\\ +0.492824957004051 9073.33899623913\\ +0.674262224177834 8918.4145030986\\ +0.849041520408875 8724.02301326402\\ +1.02096066230605 8489.90711671175\\ +1.18324062745838 8230.24740706309\\ +1.34626057929891 7932.04428472707\\ +1.50375532129974 7608.91744215361\\ +1.6642601764859 7244.87588193096\\ +1.80824493487795 6889.18208123234\\ +1.94665634334226 6522.0831165126\\ +2.09566239948044 6100.40833472281\\ +2.2353696459098 5681.48921277949\\ +2.38439047009372 5211.59461919026\\ +2.52000499376409 4765.891798723\\ +2.66333272517498 4280.1599269977\\ +2.81481236050758 3757.60841103687\\ +2.97490754721444 3209.49274925777\\ +3.17322963473498 2580.68077028206\\ +3.35371015200293 2147.10771279316\\ +3.44776405473446 2022.89758425736\\ +3.51192753045073 1993.99642074199\\ +3.54445567397044 1998.58884119917\\ +3.61041859717334 2048.78249354456\\ +3.67760910160103 2154.57565056268\\ +3.78074666359935 2411.95254823397\\ +3.99578030189527 3217.52540531128\\ +4.34147833005509 4935.95059887529\\ +4.67379510799246 6850.29687718053\\ +5.03154894503806 9100.46470201066\\ +5.46685729972018 12050.6328808115\\ +5.99484250318941 15902.7283386548\\ +6.63470812109235 20944.2023389533\\ +7.47952251562183 28216.8729937055\\ +8.74866812047991 40545.0326349513\\ +11.2214776820798 70102.1210779736\\ +14.9339321612425 128728.21390961\\ +18.2920450484629 193987.838961329\\ +21.9959306803007 275488.365902382\\ +25.9665597293487 370189.894771988\\ +30.6539529505653 487816.027916435\\ +36.1874981241128 630801.797504587\\ +42.7199396630679 801627.199250957\\ +50.8987019351968 1015323.70655197\\ +61.771875973385 1296573.40979043\\ +76.3629826128224 1668052.72137695\\ +97.9469667069541 2207557.42336306\\ +132.777082935543 3062598.5985854\\ +201.04964162605 4713315.40371207\\ +369.46012051993 8738634.4001183\\ +524.468874949512 12337359.5578904\\ +619.144175597785 14341050.187681\\ +685.229159528407 15543509.1541341\\ +744.512291079514 16410244.8666811\\ +794.145171902934 16937894.2382231\\ +839.312949816637 17237319.9913847\\ +887.04968896544 17355056.7801001\\ +928.89787201645 17291822.6903254\\ +972.720319245054 17070868.3542584\\ +1000 16862067.8104336\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10858.3482129049\\ +0.310808217386906 10787.0841232564\\ +0.501996513311008 10659.2503382883\\ +0.686810358899531 10478.6126108244\\ +0.864842327573173 10251.6652403649\\ +1.03996091395412 9977.90105413914\\ +1.20526093687084 9673.69416721942\\ +1.37131471775395 9323.57242790127\\ +1.53174046370208 8943.25316603242\\ +1.67967487209265 8556.28962677602\\ +1.82499324481615 8142.77531494013\\ +1.96468664618044 7714.67141092645\\ +2.11507282486879 7221.23165955727\\ +2.25607406649686 6729.22035558609\\ +2.40647515001543 6175.24253776883\\ +2.54334576130465 5647.84204023614\\ +2.68800102153761 5071.20217419389\\ +2.84088369018331 4449.42162761367\\ +3.00246170908555 3797.74779557574\\ +3.26222200971167 2874.19750062743\\ +3.38477285594598 2582.47007379818\\ +3.44776405473446 2496.93647662925\\ +3.51192753045073 2466.40084455337\\ +3.54445567397044 2474.74388322792\\ +3.61041859717334 2542.54153576065\\ +3.67760910160103 2680.03984076676\\ +3.78074666359935 3011.21365513992\\ +3.99578030189527 4049.48911714268\\ +4.38168993151419 6594.01876179449\\ +4.71708469091702 9235.67710286973\\ +5.12518692705333 12873.1216771753\\ +5.62017384808319 17874.8082522277\\ +6.2776601058065 25530.5313262878\\ +7.14255928554313 37399.0295421677\\ +8.20188949920221 54568.7642659802\\ +9.24625711640575 73683.2217425638\\ +10.3279473191895 94706.3069899699\\ +11.4303112911448 116496.332059652\\ +12.7675070431927 142886.147314272\\ +14.6610868404699 180397.510191324\\ +17.7930438991858 244740.685205291\\ +23.4622884814226 371288.142096047\\ +30.0939003444972 531396.514945717\\ +37.5469422407334 718694.810533593\\ +46.4158883361278 944482.914103612\\ +57.9112264764176 1236297.47156853\\ +73.5981447526577 1629861.25681102\\ +97.9469667069541 2231070.4411958\\ +139.041083409007 3229422.48132891\\ +226.649807927369 5328353.49596673\\ +416.504424854519 9806750.71618978\\ +544.17142868659 12678304.5191413\\ +630.666554056741 14427351.6248775\\ +697.981390783067 15578003.483941\\ +751.408106111698 16301332.8455093\\ +801.500696156541 16789424.1757932\\ +847.08682665574 17053422.6290014\\ +895.26571259964 17136952.4874823\\ +937.501501514529 17048347.5561419\\ +981.729840618884 16806749.9963399\\ +1000 16667203.8531997\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10986.0369744309\\ +0.305129701718287 10912.5227411636\\ +0.497389595879007 10781.6864270068\\ +0.680507369673521 10601.4861378165\\ +0.856905505126835 10376.1210691559\\ +1.03041699495059 10104.7127696818\\ +1.19420002813353 9803.30997416083\\ +1.35872990190271 9456.48345503692\\ +1.51768339028341 9079.73811083332\\ +1.67967487209265 8654.05014933627\\ +1.82499324481615 8236.80135895836\\ +1.96468664618044 7804.76183778187\\ +2.11507282486879 7306.68597204428\\ +2.25607406649686 6809.93596866193\\ +2.40647515001543 6250.47482753775\\ +2.54334576130465 5717.70147088712\\ +2.68800102153761 5135.01039083687\\ +2.84088369018331 4506.49327920869\\ +3.00246170908555 3847.52478002563\\ +3.26222200971167 2913.3078358104\\ +3.38477285594598 2618.27828221585\\ +3.44776405473446 2531.90489741474\\ +3.51192753045073 2501.30014352669\\ +3.54445567397044 2509.94758620266\\ +3.61041859717334 2579.10648086896\\ +3.67760910160103 2719.02081018881\\ +3.78074666359935 3055.79622120783\\ +3.99578030189527 4111.79557857924\\ +4.38168993151419 6703.21900852344\\ +4.71708469091702 9399.37265784757\\ +5.12518692705333 13121.8759756588\\ +5.62017384808319 18259.5803158499\\ +6.2776601058065 26164.5867339475\\ +7.14255928554313 38504.1774935999\\ +8.20188949920221 56471.6400751844\\ +9.24625711640575 76497.1712187732\\ +10.2331657833025 96441.8448619095\\ +11.3254131515281 118647.078205063\\ +12.534242654614 142864.169615841\\ +14.2611370719413 177071.180782486\\ +17.1488196987054 235518.504628327\\ +23.2469705998565 369837.623087091\\ +30.3726357970331 541253.176246487\\ +38.24569722467 738905.825242307\\ +47.7176094893875 979688.530936649\\ +60.0867589171969 1292877.40593956\\ +77.070271142123 1717518.31391577\\ +103.517795563018 2368252.18446884\\ +151.070330448666 3519742.03313841\\ +257.87628875938 6071025.95528571\\ +448.385594802119 10538904.5043862\\ +564.614141930367 13105547.6062487\\ +642.403365939419 14635315.5381859\\ +704.446227729904 15665070.5666\\ +758.367791499719 16369142.3532334\\ +808.924348680594 16831953.9944558\\ +854.932706626838 17067860.8167401\\ +903.557834613894 17118350.305852\\ +946.184819472201 16999930.8079931\\ +990.822809900381 16728285.4389342\\ +1000 16655669.8376547\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9311.61344384893\\ +0.302329468440578 9249.43631286965\\ +0.488302208687788 9139.26661428575\\ +0.668074391569561 8985.19770663834\\ +0.841249704973612 8792.65062038883\\ +1.01159111222383 8561.14867311336\\ +1.1723818032866 8304.57201790881\\ +1.33390569003906 8009.98966466273\\ +1.48995507285285 7690.79915813944\\ +1.64898694447106 7331.1539743968\\ +1.7916503273639 6979.68203969534\\ +1.94665634334226 6567.81057968825\\ +2.09566239948044 6143.6208519034\\ +2.2353696459098 5722.15291223532\\ +2.38439047009372 5249.335300729\\ +2.52000499376409 4800.79486283748\\ +2.66333272517498 4311.89686511498\\ +2.81481236050758 3785.85305390354\\ +2.97490754721444 3233.98003039489\\ +3.17322963473498 2600.7502111508\\ +3.35371015200293 2164.10644196932\\ +3.44776405473446 2039.06516898515\\ +3.51192753045073 2010.03696615554\\ +3.54445567397044 2014.71961560553\\ +3.61041859717334 2065.43010305465\\ +3.67760910160103 2172.20387636725\\ +3.78074666359935 2431.89713534403\\ +3.99578030189527 3244.72903977263\\ +4.34147833005509 4979.19543125759\\ +4.67379510799246 6912.35894462029\\ +5.03154894503806 9185.81773154383\\ +5.46685729972018 12168.17237888\\ +5.99484250318941 16064.4687715031\\ +6.63470812109235 21166.0411696023\\ +7.47952251562183 28526.258367814\\ +8.74866812047991 40994.6638544781\\ +11.1184960481927 69418.4662029402\\ +14.796880626864 127290.079838544\\ +18.1241754737424 191674.469739746\\ +21.7940698430296 272116.267171922\\ +25.7282596744793 365655.04641194\\ +30.3726357970331 481932.672586341\\ +35.8553985745982 623395.483126995\\ +42.3278906557355 792522.270676419\\ +50.4315948717136 1004211.34363091\\ +61.204983724767 1282923.927811\\ +75.6621850048106 1651121.32988812\\ +97.0480887738031 2185872.73639236\\ +131.558562404571 3033302.13313415\\ +199.204570845387 4669058.03080654\\ +366.069514759691 8657442.6453166\\ +524.468874949512 12335217.5545372\\ +619.144175597785 14337742.7059558\\ +685.229159528407 15539358.8992455\\ +744.512291079514 16405426.9463977\\ +794.145171902934 16932657.4305157\\ +839.312949816637 17231858.8758781\\ +887.04968896544 17349545.8574116\\ +928.89787201645 17286426.3317381\\ +972.720319245054 17065731.3568658\\ +1000 16857150.2370287\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9305.03978070816\\ +0.305129701718287 9243.87224957238\\ +0.492824957004051 9133.73442563412\\ +0.674262224177834 8978.24122399941\\ +0.849041520408875 8783.11803129175\\ +1.02096066230605 8548.0937902465\\ +1.18324062745838 8287.39143056721\\ +1.34626057929891 7987.9443923579\\ +1.50375532129974 7663.41242266282\\ +1.6642601764859 7297.71489284178\\ +1.80824493487795 6940.32672595621\\ +1.96468664618044 6521.55469283052\\ +2.11507282486879 6090.33519122445\\ +2.25607406649686 5662.01392989878\\ +2.40647515001543 5181.76008036236\\ +2.54334576130465 4726.56164381246\\ +2.68800102153761 4231.14287363437\\ +2.84088369018331 3699.61689517262\\ +3.00246170908555 3145.45187459399\\ +3.23228397818138 2440.61556780662\\ +3.38477285594598 2116.80199664688\\ +3.44776405473446 2042.86724445668\\ +3.51192753045073 2013.94940631445\\ +3.54445567397044 2018.72659686705\\ +3.61041859717334 2069.71946852746\\ +3.67760910160103 2176.91519054292\\ +3.78074666359935 2437.5285011194\\ +3.99578030189527 3253.3021180847\\ +4.34147833005509 4995.25827632467\\ +4.67379510799246 6939.00424583452\\ +5.03154894503806 9228.08708042901\\ +5.46685729972018 12236.2791320254\\ +5.99484250318941 16175.3801196603\\ +6.69616005485322 21866.6142096809\\ +7.618717702323 30139.2049059383\\ +8.99402217409205 44226.2205224735\\ +11.4303112911448 74902.3340573893\\ +14.796880626864 129293.106402514\\ +18.1241754737424 194247.234837168\\ +21.7940698430296 275074.700619645\\ +25.7282596744793 368817.402632104\\ +30.3726357970331 485158.127435633\\ +35.8553985745982 626557.670223397\\ +42.7199396630679 805771.116453458\\ +50.8987019351968 1019107.57685395\\ +61.771875973385 1299899.12313235\\ +76.3629826128224 1670856.91884723\\ +97.9469667069541 2209770.13586357\\ +134.006889636395 3094082.3493448\\ +204.791209666509 4803868.72223544\\ +379.821530619074 8982298.45383311\\ +529.326605836057 12439579.1855894\\ +619.144175597785 14331957.2614343\\ +685.229159528407 15532049.6701916\\ +744.512291079514 16396907.2295247\\ +794.145171902934 16923373.7841515\\ +839.312949816637 17222160.1936089\\ +887.04968896544 17339743.5959907\\ +928.89787201645 17276816.9467845\\ +972.720319245054 17056574.4572028\\ +1000 16848379.4867877\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10311.163376668\\ +0.325471160553185 10216.487996523\\ +0.516074871038591 10087.3720175537\\ +0.699592016543537 9910.33027754767\\ +0.872852662384837 9694.94745101379\\ +1.03996091395412 9442.82521952757\\ +1.20526093687084 9150.73307764496\\ +1.37131471775395 8814.8518065346\\ +1.53174046370208 8450.33802570879\\ +1.67967487209265 8079.81160650145\\ +1.82499324481615 7684.26258837957\\ +1.96468664618044 7275.2021118826\\ +2.11507282486879 6804.28650323768\\ +2.25607406649686 6335.36252079114\\ +2.40647515001543 5808.1509176538\\ +2.54334576130465 5307.0100135359\\ +2.68800102153761 4759.96702824678\\ +2.84088369018331 4171.1482454209\\ +3.00246170908555 3555.1705930318\\ +3.23228397818138 2769.1086103288\\ +3.38477285594598 2408.29175135343\\ +3.44776405473446 2326.91052837103\\ +3.51192753045073 2296.78428656426\\ +3.54445567397044 2303.68722123375\\ +3.61041859717334 2364.95749953469\\ +3.67760910160103 2490.82253274364\\ +3.78074666359935 2794.9963819159\\ +3.99578030189527 3747.95033449483\\ +4.38168993151419 6068.0447472809\\ +4.71708469091702 8451.34793069686\\ +5.12518692705333 11690.5592251674\\ +5.62017384808319 16066.8169596875\\ +6.22004882563472 22000.4588464827\\ +7.01206358900718 30868.510830835\\ +7.97814457207663 43206.9249856643\\ +9.16140245713852 60336.0995145906\\ +10.5201521761616 82176.0670500975\\ +12.0804213467733 109361.752972962\\ +14.1302599059953 147717.760266929\\ +16.835508029612 202287.755277698\\ +20.4319732019527 280817.739700249\\ +25.0264009641792 388636.738463793\\ +30.3726357970331 520734.606327621\\ +36.8609536217216 685759.826406069\\ +44.7353305449847 888165.76174951\\ +54.7947233690029 1146007.80235432\\ +68.3651600451024 1489884.306859\\ +88.5007491447344 1991924.1904169\\ +121.082975023204 2790319.04835674\\ +183.342548256229 4292574.77857721\\ +333.828586473176 7877832.71632978\\ +500.840798984821 11754580.7524671\\ +596.727119597332 13809222.1674346\\ +672.709913571234 15225081.4752673\\ +730.909932860292 16106754.3239442\\ +786.857150693686 16733744.8786134\\ +831.610415323096 17053171.8433303\\ +878.909065341996 17201441.2741084\\ +920.373199661823 17171097.5491037\\ +963.79347996158 16988185.5994862\\ +1000 16729936.454596\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9957.37917778582\\ +0.194217468148902 10021.3516600313\\ +0.350384224529068 9984.06653072399\\ +0.530548052536957 9868.2616840374\\ +0.706071771413778 9701.94281007528\\ +0.880937190447399 9487.37223114705\\ +1.04959323055823 9235.24403026236\\ +1.21642429385737 8942.76141699392\\ +1.38401609657313 8606.29420047907\\ +1.54592773641948 8241.15139367657\\ +1.69523234155412 7870.07743562931\\ +1.84189668079971 7474.10017554916\\ +1.98288394912707 7064.81056283921\\ +2.13466303332425 6593.95664351869\\ +2.27697025538168 6125.51350890259\\ +2.42876438246045 5599.4706981439\\ +2.56690271549195 5100.25152282603\\ +2.71289780037246 4556.58761254494\\ +2.86719649749377 3973.7656761431\\ +3.0302710828664 3368.94210500721\\ +3.41612326858553 2301.78041180373\\ +3.4796979038877 2245.70214975254\\ +3.51192753045073 2237.55925714344\\ +3.54445567397044 2243.99044025143\\ +3.61041859717334 2303.04995246835\\ +3.67760910160103 2424.93508647994\\ +3.78074666359935 2719.84585305468\\ +3.99578030189527 3643.5813836227\\ +4.38168993151419 5887.56872022651\\ +4.71708469091702 8184.59341807439\\ +5.12518692705333 11293.3172395715\\ +5.62017384808319 15469.8844508676\\ +6.22004882563472 21093.5878914179\\ +7.01206358900718 29430.6251390608\\ +7.97814457207663 40948.6281576722\\ +9.24625711640575 58134.6837414331\\ +10.8151870255229 82178.5924536439\\ +12.650337203959 113477.071926232\\ +15.0722530931076 159048.832157163\\ +18.1241754737424 222146.778226531\\ +21.9959306803007 309232.033506235\\ +26.6947849403432 422159.024821119\\ +32.1001089554318 557754.5724819\\ +38.5999361767977 724441.831730773\\ +46.8458011587306 937198.69285213\\ +57.3797641421414 1207445.47368451\\ +71.5904108596489 1567265.63741821\\ +92.6759330114688 2092259.90899001\\ +126.795284678643 2927295.78100067\\ +193.770333747799 4542085.7840018\\ +359.381366380463 8484855.85494613\\ +514.88674501375 12077662.702895\\ +607.832312829724 14045933.0841668\\ +678.940681269611 15348423.5631026\\ +737.679760252773 16217478.7698409\\ +786.857150693686 16758201.028757\\ +831.610415323096 17078768.7966697\\ +878.909065341996 17227403.4574977\\ +920.373199661823 17196654.900924\\ +963.79347996158 17012663.5779699\\ +1000 16753098.4750923\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9752.18440979432\\ +0.283434330615131 9686.16736406714\\ +0.457784053837662 9568.14639642583\\ +0.632121847581245 9400.60291024164\\ +0.803350197712474 9191.47506282349\\ +0.97496491834841 8940.00255475104\\ +1.14039960197003 8659.20951427133\\ +1.29751716865759 8358.27194511376\\ +1.46273335620113 8006.21613780079\\ +1.6188596901782 7640.33654965894\\ +1.77520801171764 7242.07975910292\\ +1.92879150802078 6820.49679069854\\ +2.07643010725577 6387.78169121515\\ +2.21485523372636 5958.78964128524\\ +2.36250846547795 5478.16481686454\\ +2.49687842888433 5022.42878357954\\ +2.63889081445751 4525.434639058\\ +2.78898029238044 3989.59890558518\\ +2.94760625512486 3424.56226142511\\ +3.14410830314726 2766.26901734035\\ +3.35371015200293 2228.31884109343\\ +3.44776405473446 2099.79756401226\\ +3.51192753045073 2070.07669082512\\ +3.54445567397044 2074.99165871657\\ +3.61041859717334 2127.42176321815\\ +3.67760910160103 2237.63170739075\\ +3.78074666359935 2505.57493176573\\ +3.99578030189527 3344.36578828103\\ +4.34147833005509 5135.90839438911\\ +4.67379510799246 7135.66870881863\\ +5.03154894503806 9491.46685827157\\ +5.46685729972018 12588.0347561632\\ +5.99484250318941 16642.7205571525\\ +6.63470812109235 21963.2813138433\\ +7.47952251562183 29650.5295280026\\ +8.66837993001977 41784.1563638463\\ +10.7159339982267 66616.5159177579\\ +14.000583824681 117181.974463543\\ +17.3076553419573 179563.828641753\\ +20.8122156998634 254885.355835027\\ +24.7967289250216 348300.229233336\\ +29.2729483504282 459332.651548109\\ +34.5571993676214 594832.036601419\\ +41.1731993116168 767151.034759628\\ +49.0558370636506 972787.164538106\\ +59.5353313081437 1243853.19166811\\ +73.5981447526577 1602193.55613166\\ +94.400647894176 2122738.178141\\ +127.969686821594 2947527.20363833\\ +191.992066559329 4496171.7566119\\ +349.577557436328 8263243.13960532\\ +514.88674501375 12112606.4076732\\ +607.832312829724 14100288.3164304\\ +678.940681269611 15418412.2401068\\ +737.679760252773 16299047.3760968\\ +786.857150693686 16847249.6989823\\ +831.610415323096 17172084.0166271\\ +878.909065341996 17322131.2212079\\ +920.373199661823 17289945.8765034\\ +963.79347996158 17102030.5101774\\ +1000 16837658.5408236\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10853.2541123669\\ +0.25142033481428 10863.2879234464\\ +0.43314832233764 10771.5034419918\\ +0.614877765381002 10617.2656065008\\ +0.795977700231498 10407.6108601752\\ +0.97496491834841 10146.8133394088\\ +1.14039960197003 9858.84793343838\\ +1.30953502048267 9518.18124114173\\ +1.47628147190939 9136.8906256713\\ +1.63385387780986 8735.52372200865\\ +1.7916503273639 8294.14026498891\\ +1.94665634334226 7822.8546320855\\ +2.09566239948044 7335.55587583128\\ +2.2353696459098 6849.40198865474\\ +2.38439047009372 6301.59500155447\\ +2.52000499376409 5779.47826907935\\ +2.66333272517498 5207.60722141444\\ +2.81481236050758 4588.98568692311\\ +2.97490754721444 3936.3088752326\\ +3.17322963473498 3183.19541551325\\ +3.35371015200293 2663.3061393209\\ +3.44776405473446 2516.9977180315\\ +3.51192753045073 2486.43319133575\\ +3.54445567397044 2494.95645787217\\ +3.61041859717334 2563.54725490244\\ +3.67760910160103 2702.44606377045\\ +3.78074666359935 3036.86167205458\\ +3.99578030189527 4085.39738153455\\ +4.38168993151419 6657.15044169459\\ +4.71708469091702 9330.56348481239\\ +5.12518692705333 13017.7495528785\\ +5.62017384808319 18099.2631633832\\ +6.2776601058065 25901.7793652289\\ +7.14255928554313 38048.4540074493\\ +8.20188949920221 55690.2831480718\\ +9.24625711640575 75345.6158883961\\ +10.2331657833025 94973.1382936326\\ +11.3254131515281 116931.810326604\\ +12.650337203959 143315.973594327\\ +14.3932264471941 177831.503491659\\ +17.3076553419573 237104.099743949\\ +23.2469705998565 368421.626338061\\ +30.0939003444972 533187.331447547\\ +37.5469422407334 720206.905132754\\ +46.4158883361278 945750.86291386\\ +57.9112264764176 1237333.6792469\\ +74.2798248256493 1647642.43235084\\ +98.8541702191957 2253860.39966941\\ +141.62866162992 3292147.17802123\\ +233.006141069692 5479628.90054954\\ +424.255643071778 9984596.23470881\\ +549.211648388779 12782630.3707282\\ +630.666554056741 14422422.3853274\\ +697.981390783067 15571925.0857066\\ +751.408106111698 16294475.0195006\\ +801.500696156541 16782035.942852\\ +847.08682665574 17045775.9812441\\ +895.26571259964 17129292.5214509\\ +937.501501514529 17040890.0017385\\ +981.729840618884 16799688.3955073\\ +1000 16660350.0726937\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10345.083903544\\ +0.307955871291422 10277.6756526224\\ +0.497389595879007 10156.5184975607\\ +0.680507369673521 9985.36051653099\\ +0.856905505126835 9770.3992969205\\ +1.03041699495059 9511.20847646248\\ +1.19420002813353 9223.34497134186\\ +1.35872990190271 8892.23118113776\\ +1.51768339028341 8532.80217013502\\ +1.67967487209265 8127.04768472289\\ +1.82499324481615 7729.75079120276\\ +1.96468664618044 7318.82787261432\\ +2.11507282486879 6845.70036634261\\ +2.25607406649686 6374.50170250204\\ +2.40647515001543 5844.64584590671\\ +2.54334576130465 5340.90504922571\\ +2.68800102153761 4790.9265794785\\ +2.84088369018331 4198.83367149522\\ +3.00246170908555 3579.3059581499\\ +3.23228397818138 2788.55814195989\\ +3.38477285594598 2425.61385592052\\ +3.44776405473446 2343.81689692993\\ +3.51192753045073 2313.64663982645\\ +3.54445567397044 2320.6908579023\\ +3.61041859717334 2382.60559004329\\ +3.67760910160103 2509.62132044874\\ +3.78074666359935 2816.46666128389\\ +3.99578030189527 3777.85264441992\\ +4.38168993151419 6120.02284343603\\ +4.71708469091702 8528.53306444575\\ +5.12518692705333 11806.1622867958\\ +5.62017384808319 16241.742420452\\ +6.22004882563472 22268.3687059092\\ +7.01206358900718 31297.3292494519\\ +7.97814457207663 43885.944994144\\ +9.16140245713852 61367.0725416376\\ +10.5201521761616 83591.8707937305\\ +12.0804213467733 111107.158744708\\ +14.000583824681 147179.519630399\\ +16.6810053720006 201119.064448212\\ +20.4319732019527 282826.715079393\\ +25.0264009641792 390506.257622276\\ +30.6539529505653 529500.243674934\\ +37.2023668141307 696010.514781963\\ +45.149677720361 900122.211238276\\ +55.302242561929 1160058.75040428\\ +68.9983712143002 1506709.46494342\\ +89.3204599858098 2012872.14680976\\ +122.204468663149 2818035.4016418\\ +185.04070195423 4333440.06831012\\ +340.041193270371 8024039.43210632\\ +505.479682119125 11855918.8180592\\ +602.254120146193 13916151.772918\\ +672.709913571234 15220059.0824896\\ +730.909932860292 16100900.950042\\ +786.857150693686 16727277.3367886\\ +831.610415323096 17046405.9738046\\ +878.909065341996 17194581.4468572\\ +920.373199661823 17164346.1811789\\ +963.79347996158 16981720.2699338\\ +1000 16723819.0608674\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9418.20856759361\\ +0.182079168009946 9555.13101665098\\ +0.457784053837662 9793.28913219154\\ +0.609234915240071 9755.0414638178\\ +0.76715811767793 9636.63298376623\\ +0.931041348706908 9450.6341447412\\ +1.0991097009295 9204.34164459723\\ +1.26212131452255 8917.21946486895\\ +1.42283045721435 8590.57735305659\\ +1.57469771464309 8243.81561866218\\ +1.72678090388436 7860.69778048004\\ +1.87617469143912 7450.49888375898\\ +2.01978575681988 7025.63194187979\\ +2.17438947560008 6536.24902397042\\ +2.31934505927443 6049.12197602643\\ +2.45126006203334 5584.17810580832\\ +2.59067785868801 5073.5826492081\\ +2.73802517792786 4518.1178868221\\ +2.89375301905095 3924.41230294652\\ +3.05833803237843 3313.02478786063\\ +3.38477285594598 2381.93990742667\\ +3.44776405473446 2301.41165033082\\ +3.51192753045073 2271.57392839957\\ +3.54445567397044 2278.3785087865\\ +3.61041859717334 2338.92577595265\\ +3.67760910160103 2463.34792363701\\ +3.78074666359935 2764.05964958597\\ +3.99578030189527 3706.12986442406\\ +4.38168993151419 5999.20424239244\\ +4.71708469091702 8353.95162341648\\ +5.12518692705333 11553.1750969454\\ +5.62017384808319 15873.6935962713\\ +6.22004882563472 21729.8979741589\\ +7.01206358900718 30482.2333825994\\ +8.05203967082547 43666.4196779607\\ +9.24625711640575 60917.0577277734\\ +10.61759183483 82949.4622779869\\ +12.1923125164911 110437.047196342\\ +14.2611370719413 149301.056096185\\ +16.9914417203463 204654.817551538\\ +20.6212180399914 284296.355866657\\ +25.2582002696278 393527.15545301\\ +30.6539529505653 527186.345934579\\ +37.2023668141307 693973.767062988\\ +45.149677720361 898362.261871174\\ +55.302242561929 1158578.5525811\\ +68.9983712143002 1505514.81078127\\ +89.3204599858098 2011981.56108775\\ +122.204468663149 2817483.68305939\\ +185.04070195423 4333365.24333213\\ +340.041193270371 8025418.30484949\\ +505.479682119125 11860230.893485\\ +602.254120146193 13922897.5064833\\ +672.709913571234 15228690.517806\\ +730.909932860292 16110945.5576458\\ +786.857150693686 16738364.3950376\\ +831.610415323096 17057996.993807\\ +878.909065341996 17206326.931926\\ +920.373199661823 17175901.2665082\\ +963.79347996158 16992781.7520079\\ +1000 16734282.4615596\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 10950.5826632344\\ +0.29680586086656 10877.1593394172\\ +0.483820966492596 10745.7837135483\\ +0.668074391569561 10561.5422301502\\ +0.849041520408875 10328.5387953539\\ +1.02096066230605 10059.2326594521\\ +1.19420002813353 9740.32347785465\\ +1.35872990190271 9393.16478661927\\ +1.51768339028341 9016.8793803456\\ +1.67967487209265 8592.32636016772\\ +1.82499324481615 8176.5997123138\\ +1.96468664618044 7746.43429889022\\ +2.11507282486879 7250.79953973581\\ +2.25607406649686 6756.72045099439\\ +2.40647515001543 6200.50131737838\\ +2.54334576130465 5671.01596349781\\ +2.68800102153761 5092.12311622101\\ +2.84088369018331 4467.92171959746\\ +3.00246170908555 3813.70298449059\\ +3.26222200971167 2886.52480932239\\ +3.38477285594598 2593.67181736757\\ +3.44776405473446 2507.83399674314\\ +3.51192753045073 2477.23523870978\\ +3.54445567397044 2485.6517329711\\ +3.61041859717334 2553.82726640236\\ +3.67760910160103 2692.02417612041\\ +3.78074666359935 3024.83858312864\\ +3.99578030189527 4068.29787257498\\ +4.38168993151419 6626.2708269701\\ +4.71708469091702 9283.11424966445\\ +5.12518692705333 12943.5494081009\\ +5.62017384808319 17980.6896731206\\ +6.2776601058065 25698.5365855818\\ +7.14255928554313 37677.9873022362\\ +8.20188949920221 55023.3796682624\\ +9.24625711640575 74324.6970934737\\ +10.3279473191895 95509.7278279922\\ +11.4303112911448 117401.825253806\\ +12.7675070431927 143834.17816386\\ +14.6610868404699 181316.575049128\\ +17.7930438991858 245549.608141168\\ +23.6796006783308 377003.851483432\\ +30.3726357970331 538818.164852514\\ +37.8947091907467 727944.202605264\\ +46.8458011587306 955780.635279762\\ +58.4476113163364 1250126.3621426\\ +74.9678187496688 1664174.63522305\\ +99.7697764236321 2275852.52983899\\ +142.940453343176 3323546.127117\\ +237.342425002387 5582968.41998283\\ +428.185179865242 10076540.1746406\\ +549.211648388779 12784844.6300617\\ +630.666554056741 14425527.8901932\\ +697.981390783067 15575759.8401274\\ +751.408106111698 16298804.7610341\\ +801.500696156541 16786703.0526397\\ +847.08682665574 17050608.1935625\\ +895.26571259964 17134134.7628372\\ +937.501501514529 17045605.4448373\\ +981.729840618884 16804154.4623664\\ +1000 16664685.0624832\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9992.24653910644\\ +0.307955871291422 9926.48524081145\\ +0.497389595879007 9808.30433354459\\ +0.680507369673521 9641.38653932583\\ +0.856905505126835 9431.81079786886\\ +1.03041699495059 9179.20439454618\\ +1.19420002813353 8898.77280614928\\ +1.35872990190271 8576.36654052764\\ +1.51768339028341 8226.5874827484\\ +1.6642601764859 7871.16901752487\\ +1.80824493487795 7491.8949938182\\ +1.96468664618044 7046.8038201067\\ +2.11507282486879 6587.70154517666\\ +2.25607406649686 6130.87882673679\\ +2.40647515001543 5617.68775215232\\ +2.54334576130465 5130.2920358953\\ +2.68800102153761 4598.72814949946\\ +2.84088369018331 4027.13080007\\ +3.00246170908555 3429.78191990981\\ +3.23228397818138 2668.25761185212\\ +3.38477285594598 2318.59171160156\\ +3.44776405473446 2239.4128001309\\ +3.51192753045073 2209.56537708375\\ +3.54445567397044 2215.76391211362\\ +3.61041859717334 2273.75795943362\\ +3.67760910160103 2393.73841790259\\ +3.78074666359935 2684.22619479646\\ +3.99578030189527 3594.00965625692\\ +4.38168993151419 5801.55772188095\\ +4.71708469091702 8057.14498557871\\ +5.12518692705333 11103.0666000025\\ +5.62017384808319 15183.4430626466\\ +6.22004882563472 20658.0016875115\\ +7.01206358900718 28740.272381117\\ +7.97814457207663 39865.711132381\\ +9.24625711640575 56452.4764548114\\ +10.8151870255229 79763.3152637999\\ +12.7675070431927 112445.830203452\\ +15.211855179861 158138.324292126\\ +18.2920450484629 221818.736702252\\ +22.1996611911996 309980.158170707\\ +26.6947849403432 418277.15747409\\ +32.1001089554318 554117.095853266\\ +38.5999361767977 721126.218914411\\ +46.4158883361278 923166.487107398\\ +56.8531791387375 1191470.77578102\\ +70.93341204988 1548660.50642848\\ +91.8254283565628 2069642.41139594\\ +125.631660247412 2897939.75422037\\ +190.230118866895 4456800.63320218\\ +349.577557436328 8254711.27473225\\ +510.161531474983 11977366.6436388\\ +607.832312829724 14053826.6682274\\ +678.940681269611 15358555.4093068\\ +737.679760252773 16229264.958533\\ +786.857150693686 16771053.2055351\\ +831.610415323096 17092226.4937935\\ +878.909065341996 17241057.5904073\\ +920.373199661823 17210098.4421603\\ +963.79347996158 17025540.4568314\\ +1000 16765283.2050726\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9992.30205143302\\ +0.307955871291423 9927.00822496829\\ +0.497389595879006 9809.65231829421\\ +0.680507369673522 9643.86668277165\\ +0.856905505126836 9435.65760033355\\ +1.03041699495059 9184.61730110639\\ +1.19420002813353 8905.82038311717\\ +1.35872990190271 8585.15827477217\\ +1.5176833902834 8237.10787596012\\ +1.6642601764859 7883.27152678577\\ +1.80824493487796 7505.49188974699\\ +1.96468664618045 7061.89910626648\\ +2.11507282486879 6604.05363969673\\ +2.25607406649686 6148.1907055744\\ +2.40647515001542 5635.7325037445\\ +2.54334576130465 5148.69560822575\\ +2.68800102153761 4617.15092485983\\ +2.84088369018331 4045.14685830374\\ +3.00246170908556 3446.91618572105\\ +3.23228397818138 2683.70017352493\\ +3.38477285594598 2333.30247734948\\ +3.44776405473447 2254.15321651854\\ +3.51192753045073 2224.65384464753\\ +3.54445567397044 2231.17532175285\\ +3.61041859717334 2290.16471819415\\ +3.67760910160103 2411.657379447\\ +3.78074666359936 2705.45803050689\\ +3.99578030189527 3625.74889449764\\ +4.38168993151419 5863.11190412464\\ +4.71708469091702 8156.13611581372\\ +5.12518692705333 11263.9292219417\\ +5.62017384808319 15447.5841488125\\ +6.22004882563472 21097.3505873724\\ +7.01206358900718 29514.9061127292\\ +8.05203967082547 42215.1308206601\\ +9.50556592010121 63047.8725722363\\ +11.4303112911448 95939.2438627346\\ +14.2611370719413 154788.787822819\\ +19.1550055557353 285542.108154745\\ +31.5136348486648 782003.799603132\\ +134.006889636395 14196328.4340409\\ +356.083255262927 100158859.170403\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/S_T_result.pdf b/matlab/figs/S_T_result.pdf new file mode 100644 index 0000000..9d48732 Binary files /dev/null and b/matlab/figs/S_T_result.pdf differ diff --git a/matlab/figs/S_T_result.png b/matlab/figs/S_T_result.png new file mode 100644 index 0000000..2890b15 Binary files /dev/null and b/matlab/figs/S_T_result.png differ diff --git a/matlab/figs/S_T_result.svg b/matlab/figs/S_T_result.svg new file mode 100644 index 0000000..3ac10a6 --- /dev/null +++ b/matlab/figs/S_T_result.svg @@ -0,0 +1,286 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/S_T_result.tex b/matlab/figs/S_T_result.tex new file mode 100644 index 0000000..fb39773 --- /dev/null +++ b/matlab/figs/S_T_result.tex @@ -0,0 +1,168 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.219in, +height=1.989in, +at={(0.55in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.001, +ymax=2, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00020954496384\\ +0.470622484984128 1.00481874529079\\ +0.803350197712474 1.01394744788264\\ +1.14039960197003 1.02777511642482\\ +1.48995507285286 1.04662484292862\\ +1.85895667963569 1.07098030783181\\ +2.25607406649686 1.10155933897897\\ +2.68800102153761 1.13890816258292\\ +3.20262069365765 1.18724499727488\\ +3.85110700232557 1.2507769136108\\ +6.10640754223204 1.43249898597831\\ +6.69616005485322 1.45556617301175\\ +7.27548352919623 1.46450164542205\\ +7.8323825991792 1.45983077984003\\ +8.35452805838287 1.44404253069608\\ +8.9114823228402 1.41616129434941\\ +9.5055659201012 1.37578269678233\\ +10.1392540755882 1.32334765699627\\ +10.8151870255229 1.26015448352197\\ +11.5361810173648 1.1882166195253\\ +12.4192135270178 1.09846724237074\\ +13.4936714058831 0.992523905086805\\ +14.796880626864 0.874506215795286\\ +16.3762407452169 0.750452285958278\\ +18.4614694632455 0.617482258035887\\ +21.3958887134342 0.478388363187936\\ +25.9665597293487 0.336523176420069\\ +33.6144900010877 0.206887359426314\\ +50.4315948717136 0.0944973373925253\\ +111.441525146679 0.0203773154980849\\ +148.31025143361 0.0119374815717014\\ +185.04070195423 0.00801466436367219\\ +222.508879812837 0.00583855218889526\\ +262.675410372384 0.00445916480918004\\ +304.42722120643 0.00356295816675496\\ +346.369417737173 0.00296783739678319\\ +394.090164040345 0.002506686745748\\ +444.270674960688 0.00217070519810115\\ +500.840798984821 0.00190240169754667\\ +575.121707184161 0.00165401195093536\\ +758.367791499719 0.00125661813988618\\ +823.978568452852 0.0011395566240337\\ +878.909065341995 0.00104395024350009\\ +911.92675984593 0.00098726789669818\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.211020342856859 0.00099135526076278\\ +0.525679112201842 0.00610067243304447\\ +2.49687842888433 0.135548429003483\\ +3.67760910160103 0.287985763575926\\ +4.67379510799246 0.451758082992574\\ +5.51749237612913 0.607280098979099\\ +6.2776601058065 0.752699847775669\\ +6.94771254846024 0.878715367247834\\ +7.618717702323 0.997438507058426\\ +8.27785696619848 1.10252421086972\\ +8.9114823228402 1.19004648809038\\ +9.5055659201012 1.25893512355348\\ +10.1392540755882 1.31829721627157\\ +10.8151870255229 1.36652253370845\\ +11.5361810173648 1.40279571126562\\ +12.3052400435926 1.42713097980344\\ +13.1255683577184 1.44026740741525\\ +14.1302599059953 1.44320784995819\\ +15.3527502878042 1.43395003067397\\ +16.835508029612 1.41215881904675\\ +18.979216428391 1.37259299224172\\ +23.0336287314213 1.29863416860594\\ +30.9378757173014 1.19489737728979\\ +37.2023668141307 1.14407515612396\\ +44.7353305449847 1.10459603391689\\ +54.2918617761894 1.07370698023966\\ +67.1161176749628 1.04969439733019\\ +85.2964449974102 1.03157204444327\\ +114.566872863487 1.01799577717887\\ +170.306502925284 1.00853838930227\\ +312.964801067075 1.00300467532262\\ +1000 1.00081388192113\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +10.0462042134681 2.00349813925421\\ +11.8597101233767 1.72145584402149\\ +14.1302599059953 1.45115372725788\\ +17.1488196987054 1.18824449291305\\ +21.1995345753607 0.943491337665097\\ +26.4498018242772 0.733001070688183\\ +33.3060034362459 0.556823398892502\\ +42.3278906557355 0.413171875129235\\ +53.793615039807 0.302776885904966\\ +68.9983712143002 0.216462796668177\\ +90.9827289445556 0.14704550049335\\ +127.969686821594 0.0899288618742684\\ +216.438908606402 0.0421286044661777\\ +265.108360190854 0.0319262081593458\\ +312.964801067075 0.0257932599867752\\ +359.381366380463 0.0218605610825003\\ +408.894822629486 0.018959488980598\\ +460.960448682843 0.01680481268757\\ +514.886745013749 0.0151929304514569\\ +575.121707184161 0.0138789253878444\\ +642.403365939419 0.0128103940133396\\ +717.556091893693 0.0119433952692876\\ +801.50069615654 0.0112412878899585\\ +895.26571259964 0.0106736764921637\\ +1000 0.0102154679782451\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +20 0.7\\ +50 0.7\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +50 0.1\\ +500 0.1\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +500 0.01\\ +1000 0.01\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.136766110409167 0.000467624223911311\\ +2 0.1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/bode_Kfb.pdf b/matlab/figs/bode_Kfb.pdf new file mode 100644 index 0000000..2a9fcd7 Binary files /dev/null and b/matlab/figs/bode_Kfb.pdf differ diff --git a/matlab/figs/bode_Kfb.png b/matlab/figs/bode_Kfb.png new file mode 100644 index 0000000..e34aa41 Binary files /dev/null and b/matlab/figs/bode_Kfb.png differ diff --git a/matlab/figs/bode_Kfb.tex b/matlab/figs/bode_Kfb.tex new file mode 100644 index 0000000..c11f792 --- /dev/null +++ b/matlab/figs/bode_Kfb.tex @@ -0,0 +1,285 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.535in,2.189in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={0.1,1,10,100,1000}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1000, +ymax=100000000, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 43470401.5635197\\ +0.140652724210524 22406118.4606333\\ +0.225088005209546 8841324.97190729\\ +0.402350554886929 2759551.18650976\\ +0.632121847581245 1099567.22973382\\ +0.864842327573171 571911.118634823\\ +1.08902296226373 348238.834272102\\ +1.30953502048267 230413.727914817\\ +1.5176833902834 162916.926170144\\ +1.72678090388436 118180.38299581\\ +1.92879150802078 88053.4489201859\\ +2.11507282486879 67600.1593337435\\ +2.29805998875885 52196.4252310799\\ +2.47396410088682 40551.3529146903\\ +2.63889081445751 31757.3998192352\\ +2.81481236050758 24156.5912162984\\ +2.97490754721444 18564.407716775\\ +3.20262069365765 12562.3365624369\\ +3.35371015200293 9903.39866696113\\ +3.44776405473447 8860.70330148828\\ +3.51192753045073 8439.59373188045\\ +3.54445567397044 8315.55083857103\\ +3.57728509936788 8248.9891824612\\ +3.61041859717334 8238.41528485595\\ +3.64385898376354 8281.29862424784\\ +3.71167181947577 8513.11679296013\\ +3.78074666359936 8910.71745272145\\ +3.92277675892772 10060.0006461556\\ +4.3016357581068 13826.7614234338\\ +4.50457325175946 15807.7747001244\\ +4.76077523022638 18134.5901302594\\ +5.03154894503805 20378.4927614313\\ +5.31772317785097 22542.0240862418\\ +5.67222897164455 24991.3110735361\\ +6.10640754223204 27751.7418918669\\ +6.75818116816111 31647.5291959361\\ +8.35452805838285 41529.1212967548\\ +9.1614024571385 47350.5265741091\\ +10.0462042134682 54704.5281630713\\ +11.0164594963366 64124.7677611584\\ +12.0804213467733 76239.9049999386\\ +13.4936714058831 95386.2088374544\\ +15.3527502878042 126058.172628886\\ +18.292045048463 187487.904152082\\ +36.8609536217215 934555.32079059\\ +47.7176094893875 1644338.09622994\\ +62.9214610961035 2961671.49590373\\ +87.6885609458744 5900456.23627333\\ +136.500780654601 14541991.6515201\\ +275.067600790807 59592410.0067978\\ +359.381366380463 101766885.625809\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.535in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.364714507098\\ +0.108651577465251 -157.046895384675\\ +0.118051652856881 -158.584357803454\\ +0.128264983052803 -159.984829386242\\ +0.138082976521811 -161.120662469234\\ +0.148652484499784 -162.158997873773\\ +0.160031031373875 -163.104451315672\\ +0.17228054471314 -163.961327712226\\ +0.185467692308466 -164.73360707904\\ +0.19783188827842 -165.342829955295\\ +0.211020342856859 -165.892308734626\\ +0.22508800520954 -166.384071523065\\ +0.240093487686069 -166.81994455208\\ +0.253749037973356 -167.1503027674\\ +0.268181260945295 -167.4416997254\\ +0.283434330615137 -167.69493021744\\ +0.296805860866562 -167.877298293101\\ +0.310808217386903 -168.033977785229\\ +0.325471160553176 -168.165253579362\\ +0.337698031082518 -168.252140784466\\ +0.350384224529072 -168.323012215744\\ +0.363546996129332 -168.377939090849\\ +0.373742574239103 -168.408700768469\\ +0.384224084605498 -168.430533609922\\ +0.391374560198028 -168.440131065105\\ +0.398658107358057 -168.445762067993\\ +0.406077202570047 -168.447424767234\\ +0.413634368406335 -168.445115830121\\ +0.421332174384734 -168.438830428563\\ +0.429173237842218 -168.428562223998\\ +0.43716022482485 -168.414303351192\\ +0.44942026621191 -168.385411529502\\ +0.462024137175122 -168.347480797508\\ +0.474981480322836 -168.300464719448\\ +0.492824957004062 -168.223548151042\\ +0.511338753841437 -168.130228710593\\ +0.530548052536955 -168.020325903023\\ +0.555577622239876 -167.859305809794\\ +0.58178800743451 -167.671571713614\\ +0.609234915240079 -167.456573441619\\ +0.643885742724037 -167.161691937189\\ +0.680507369673503 -166.825379829582\\ +0.719211887222132 -166.446184720641\\ +0.760117761795532 -166.022438813388\\ +0.81079098067315 -165.469202597187\\ +0.864842327573189 -164.849226494558\\ +0.922497005259214 -164.158439265126\\ +0.983995229627797 -163.392091955358\\ +1.04959323055824 -162.544626583723\\ +1.11956431948387 -161.609503572351\\ +1.1942000281335 -160.578971747741\\ +1.27381132318649 -159.443756915773\\ +1.3587299019027 -158.192632667642\\ +1.44930957412626 -156.81181708356\\ +1.54592773641949 -155.284105754867\\ +1.64898694447104 -153.587594567159\\ +1.75891659032778 -151.693744713082\\ +1.87617469143913 -149.564356623681\\ +1.98288394912704 -147.512246613038\\ +2.0956623994805 -145.202606833263\\ +2.21485523372639 -142.570787084104\\ +2.31934505927442 -140.064916106496\\ +2.4287643824604 -137.191964459757\\ +2.54334576130472 -133.836807389325\\ +2.63889081445755 -130.691255387186\\ +2.73802517792786 -126.994823196645\\ +2.84088369018327 -122.552004496845\\ +2.94760625512479 -117.067590923778\\ +3.03027108286649 -112.006977633487\\ +3.11525422355555 -105.839500800734\\ +3.20262069365769 -98.2098344235929\\ +3.29243733300778 -88.7057129662501\\ +3.38477285594596 -76.9948766579058\\ +3.51192753045066 -58.191856460893\\ +3.74605003274907 -24.1759283952212\\ +3.8867766908927 -8.9549654600952\\ +3.99578030189527 0.05424674730898\\ +4.14588849683285 9.57226472391096\\ +4.30163575810668 17.0676193959614\\ +4.46323392671051 23.2117407770243\\ +4.6737951079925 29.6565710826308\\ +4.93962174387827 36.2665264048853\\ +5.26892142135084 43.0942325055928\\ +5.7777901179705 52.0572530148357\\ +8.27785696619849 86.3727118716517\\ +10.8151870255226 112.406946070662\\ +11.9695570235905 121.552177865682\\ +13.0051125217337 128.478501914037\\ +14.1302599059955 134.819669591624\\ +15.2118551798608 139.932375678172\\ +16.3762407452172 144.544746230039\\ +17.4679621512724 148.176911238822\\ +18.6324631193151 151.445726911439\\ +19.8745954958102 154.36855666213\\ +21.1995345753606 156.965517430503\\ +22.6128006633721 159.258251071286\\ +23.8989256623109 160.998181225102\\ +25.2582002696278 162.544964165632\\ +26.6947849403426 163.912362292937\\ +28.2130767593954 165.113720376764\\ +29.8177229001969 166.161840342236\\ +31.5136348486643 167.068888278142\\ +33.3060034362469 167.846326749679\\ +34.8772747481423 168.402936323835\\ +36.5226736430817 168.882777608427\\ +38.2456972246693 169.291252815606\\ +40.0500075787373 169.633378481628\\ +41.5545533471895 169.862433154403\\ +43.1156199031825 170.054192980089\\ +44.7353305449843 170.210701908133\\ +46.4158883361268 170.333854209\\ +47.7176094893859 170.40538524839\\ +49.0558370636517 170.459824579316\\ +50.4315948717143 170.497813484418\\ +51.3701354335138 170.514297645932\\ +52.3261423948667 170.523904524208\\ +53.2999408084406 170.526793188252\\ +53.7936150398065 170.525765744081\\ +54.794723369002 170.518858182568\\ +55.8144624945484 170.505596032206\\ +56.8531791387359 170.486111558014\\ +58.4476113163379 170.445489432615\\ +60.0867589171979 170.391538567918\\ +61.7718759733854 170.324616137437\\ +64.0924401935642 170.215762940957\\ +66.50018030431 170.085099181676\\ +69.6374473062844 169.891975079658\\ +72.9227205872842 169.666607449389\\ +76.3629826128223 169.409719163214\\ +80.7062014114933 169.060571856472\\ +85.2964449974123 168.66733699213\\ +90.9827289445557 168.153086563827\\ +97.0480887738009 167.578826478813\\ +103.51779556302 166.943723901156\\ +111.441525146678 166.141606661108\\ +119.971773543585 165.255344346467\\ +129.154966501489 164.281229865536\\ +139.041083409004 163.21473404092\\ +149.683929307729 162.050505533379\\ +161.141427725301 160.782352536145\\ +173.475935923388 159.403205311421\\ +186.754584276109 157.905057879654\\ +202.911801804663 156.066120624088\\ +220.466873523944 154.050554173503\\ +239.540735872084 151.841722750434\\ +260.264788196906 149.420577135854\\ +280.186655645918 147.072566796613\\ +301.63343472593 144.521878314074\\ +324.721849207315 141.74828535307\\ +349.577557436321 138.728468220433\\ +376.335836228661 135.435365683924\\ +405.142317111462 131.837387817798\\ +436.153778920815 127.897493655173\\ +469.539001068009 123.572179690684\\ +505.479682119114 118.810514287571\\ +544.1714286866 113.553525472907\\ +585.82482001525 107.734558232872\\ +630.666554056761 101.281715619792\\ +678.940681269615 94.1241711336394\\ +730.909932860277 86.2047189454912\\ +786.8571506937 77.500553662828\\ +854.93270662683 66.8230752479042\\ +946.184819472219 52.7908656572718\\ +1000 44.8958338224281\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/bode_plot_K_sisotool_comp.pdf b/matlab/figs/bode_plot_K_sisotool_comp.pdf new file mode 100644 index 0000000..7a86d5a Binary files /dev/null and b/matlab/figs/bode_plot_K_sisotool_comp.pdf differ diff --git a/matlab/figs/bode_plot_K_sisotool_comp.png b/matlab/figs/bode_plot_K_sisotool_comp.png new file mode 100644 index 0000000..3f817a3 Binary files /dev/null and b/matlab/figs/bode_plot_K_sisotool_comp.png differ diff --git a/matlab/figs/bode_plot_controller.pdf b/matlab/figs/bode_plot_controller.pdf new file mode 100644 index 0000000..a91ba4e Binary files /dev/null and b/matlab/figs/bode_plot_controller.pdf differ diff --git a/matlab/figs/bode_plot_controller.png b/matlab/figs/bode_plot_controller.png new file mode 100644 index 0000000..e774d97 Binary files /dev/null and b/matlab/figs/bode_plot_controller.png differ diff --git a/matlab/figs/bode_plot_loop_gain.pdf b/matlab/figs/bode_plot_loop_gain.pdf new file mode 100644 index 0000000..6f64dbf Binary files /dev/null and b/matlab/figs/bode_plot_loop_gain.pdf differ diff --git a/matlab/figs/bode_plot_loop_gain.png b/matlab/figs/bode_plot_loop_gain.png new file mode 100644 index 0000000..b92b960 Binary files /dev/null and b/matlab/figs/bode_plot_loop_gain.png differ diff --git a/matlab/figs/bode_plot_loop_gain.svg b/matlab/figs/bode_plot_loop_gain.svg new file mode 100644 index 0000000..3c12304 --- /dev/null +++ b/matlab/figs/bode_plot_loop_gain.svg @@ -0,0 +1,373 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/bode_plot_loop_gain.tex b/matlab/figs/bode_plot_loop_gain.tex new file mode 100644 index 0000000..af80217 --- /dev/null +++ b/matlab/figs/bode_plot_loop_gain.tex @@ -0,0 +1,283 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.535in,2.189in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={0.1,1,10,100,1000}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.000839826664244425, +ymax=100000, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 4351.30066559668\\ +0.14195547660501 2204.82467106182\\ +0.240093487686065 781.88410115415\\ +1.0991097009295 38.5863311084398\\ +1.56024641436637 19.6731219991235\\ +2.03849339825246 11.9393739233154\\ +2.54334576130465 8.01104989711584\\ +3.08666494333727 5.72825533399503\\ +3.71167181947577 4.22049551615354\\ +4.4222739805059 3.20087649062788\\ +5.26892142135068 2.46007717667909\\ +6.33580499265825 1.88932769380087\\ +7.76050333513357 1.4309193418116\\ +10.423606739764 0.967981782735701\\ +14.9339321612425 0.599939394601807\\ +18.2920450484629 0.452552135718153\\ +21.9959306803007 0.345922383404315\\ +26.2070669648385 0.264570646408659\\ +31.2244282309286 0.199717761793566\\ +37.5469422407334 0.146549459045651\\ +45.9899209052244 0.102803892538117\\ +58.4476113163363 0.0666234955958302\\ +81.4537176628074 0.0359602867197856\\ +144.264395121816 0.0124164368593772\\ +181.659978837533 0.00821726848185247\\ +218.443607114943 0.00598932500171654\\ +255.509709035251 0.00463926584634863\\ +293.404970921579 0.0037505100182471\\ +333.828586473176 0.00311412685513269\\ +376.335836228653 0.00265201416353158\\ +420.362168384471 0.00231155104488257\\ +469.539001068006 0.00203594091453817\\ +529.326605836056 0.00179358854065749\\ +613.462171799251 0.00155164432840315\\ +730.909932860291 0.00130568441470115\\ +794.145171902934 0.00119085081149171\\ +847.08682665574 0.00109793515647738\\ +903.557834613893 0.00100057295410498\\ +963.793479961579 0.000899050671300346\\ +1000 0.000839826664244425\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.535in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-270, +ymax=0, +ytick={-270, -180, -90, 0}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.730410010604\\ +0.108651577465251 -157.444329842179\\ +0.118051652856881 -159.016305563146\\ +0.128264983052803 -160.454312864014\\ +0.139361927422416 -161.766002170186\\ +0.151418932530433 -162.958631144936\\ +0.163009236097978 -163.924315989144\\ +0.175486714964814 -164.805798805554\\ +0.188919277620761 -165.607251881691\\ +0.2033800305847 -166.332537314949\\ +0.218947676285658 -166.985205158253\\ +0.233543813990654 -167.499274260959\\ +0.24911300260678 -167.962206209181\\ +0.265720110532445 -168.375798945693\\ +0.283434330615137 -168.74167489725\\ +0.299554933435982 -169.018407931952\\ +0.316592411198347 -169.261965935831\\ +0.334598912055007 -169.473073387997\\ +0.350384224529072 -169.624669444468\\ +0.366914237840248 -169.75449639023\\ +0.384224084605498 -169.862835751751\\ +0.398658107358057 -169.934199655476\\ +0.413634368406335 -169.992071969196\\ +0.425234633452872 -170.026676678307\\ +0.43716022482485 -170.053774811373\\ +0.44942026621191 -170.073393329798\\ +0.457784053837654 -170.082328116866\\ +0.466303492974262 -170.087953921985\\ +0.474981480322836 -170.090275173747\\ +0.48382096649261 -170.089295371996\\ +0.492824957004062 -170.085017096763\\ +0.501996513311016 -170.077442017453\\ +0.511338753841437 -170.066570902318\\ +0.525679112201842 -170.044083651815\\ +0.540421642070586 -170.01417571457\\ +0.555577622239876 -169.976838587048\\ +0.576448828292606 -169.915476501316\\ +0.598104096238105 -169.840841797148\\ +0.620572880677654 -169.752879660892\\ +0.649849535446982 -169.624081686899\\ +0.680507369673503 -169.474196167453\\ +0.712611543011191 -169.303038112888\\ +0.753142016597439 -169.069270441224\\ +0.795977700231485 -168.804157497829\\ +0.841249704973636 -168.507248325863\\ +0.897331581458357 -168.120016590165\\ +0.95715215389917 -167.688024548217\\ +1.02096066230607 -167.21042358717\\ +1.0991097009295 -166.60765156004\\ +1.18324062745835 -165.942960546518\\ +1.27381132318649 -165.215223922646\\ +1.38401609657311 -164.319998682273\\ +1.50375532129977 -163.342883605381\\ +1.63385387780984 -162.28359595955\\ +1.79165032736394 -161.010952285749\\ +1.96468664618042 -159.639931573803\\ +2.17438947560012 -158.02352460103\\ +2.4287643824604 -156.141688970368\\ +2.76338529005317 -153.813804956048\\ +3.26222200971169 -150.675040793428\\ +4.46323392671051 -144.712585392441\\ +4.98537346387382 -142.750788899754\\ +5.46685729972028 -141.230345647877\\ +5.93982669392029 -139.974898128475\\ +6.39448842855712 -138.964276398578\\ +6.82077673286572 -138.170971035104\\ +7.20871503378203 -137.564197358623\\ +7.61871770232323 -137.029112413269\\ +7.97814457207674 -136.640412323733\\ +8.35452805838285 -136.305498337816\\ +8.74866812047975 -136.025757499902\\ +9.07732652520994 -135.842444893024\\ +9.41833153464815 -135.695597729428\\ +9.68246611930323 -135.609591102768\\ +9.95400828762154 -135.544372724393\\ +10.1392540755881 -135.512471769439\\ +10.3279473191894 -135.489842692645\\ +10.5201521761614 -135.476485339516\\ +10.6175918348298 -135.47328149161\\ +10.7159339982264 -135.472392170035\\ +10.8151870255226 -135.473815278185\\ +10.9153593533136 -135.477548257956\\ +11.118496048193 -135.491931293482\\ +11.3254131515284 -135.515511589385\\ +11.5361810173649 -135.548252090693\\ +11.8597101233768 -135.614439075708\\ +12.192312516491 -135.700954071076\\ +12.5342426546138 -135.807579299964\\ +13.0051125217337 -135.980583697503\\ +13.4936714058834 -136.188179011162\\ +14.1302599059955 -136.49506046189\\ +14.7968806268638 -136.852863183877\\ +15.638467583022 -137.346459227106\\ +16.5279206146492 -137.906215148844\\ +17.629753752872 -138.636698197218\\ +18.9792164283904 -139.56365114987\\ +20.6212180399915 -140.707979086463\\ +22.6128006633721 -142.081517225486\\ +25.4921465445141 -143.980581035505\\ +38.9574561577541 -150.818491561461\\ +43.1156199031825 -152.292378930197\\ +47.2796959160026 -153.530759774255\\ +51.3701354335138 -154.550448738739\\ +55.302242561928 -155.37441864889\\ +59.5353313081449 -156.11600451482\\ +63.5042516859595 -156.694462104983\\ +67.7377599751758 -157.205218929792\\ +71.5904108596503 -157.588047492811\\ +75.6621850048106 -157.919442390876\\ +79.2316862486613 -158.155977357457\\ +82.9695852083464 -158.356297712351\\ +86.0864769614942 -158.490412787294\\ +89.3204599858103 -158.601273293247\\ +92.6759330114683 -158.688893907112\\ +95.2750047242714 -158.739383322341\\ +97.9469667069515 -158.776853269827\\ +99.7697764236289 -158.794618722137\\ +101.626508939302 -158.806628236826\\ +103.51779556302 -158.812897379575\\ +105.444279352618 -158.813443658655\\ +107.406615333344 -158.808286577014\\ +109.405470720574 -158.797447692839\\ +111.441525146678 -158.780950688716\\ +114.566872863485 -158.745653454244\\ +117.779870119709 -158.697781347301\\ +121.082975023208 -158.637443831784\\ +125.631660247414 -158.537817197554\\ +130.351224468151 -158.416579908374\\ +135.248087041786 -158.274111715337\\ +141.628661629916 -158.066837891998\\ +148.310251433614 -157.828056926875\\ +156.74554102056 -157.501564384406\\ +165.660595894989 -157.133726658968\\ +176.704352608899 -156.656116134062\\ +190.230118866895 -156.053077922383\\ +206.688024962902 -155.313799873592\\ +230.867799418716 -154.258437163579\\ +285.40097698292 -152.21981175333\\ +307.246884270909 -151.589904612471\\ +324.721849207315 -151.176005010836\\ +340.041193270368 -150.882498192212\\ +352.81541153808 -150.688877511189\\ +362.710025233077 -150.57150370737\\ +372.882130718292 -150.480909180991\\ +379.82153061908 -150.436755399541\\ +386.890073932801 -150.406593243892\\ +394.090164040346 -150.391310985555\\ +397.740302405804 -150.389535648406\\ +401.424249049931 -150.391827114438\\ +405.142317111462 -150.398305018997\\ +408.894822629482 -150.409090963391\\ +416.504424854512 -150.444083317905\\ +424.255643071768 -150.497817003391\\ +432.151112778964 -150.571337440438\\ +444.2706749607 -150.721086698389\\ +456.730127016882 -150.921572700448\\ +469.539001068009 -151.176749890355\\ +482.707096560317 -151.490746493983\\ +500.840798984813 -152.008364864025\\ +519.655724382751 -152.64888225052\\ +539.177464038763 -153.423469450032\\ +559.432570616944 -154.343745369635\\ +580.448594276896 -155.421679482729\\ +607.832312829711 -157.009344358197\\ +636.507908129576 -158.885996498353\\ +666.5363268125 -161.074189606786\\ +697.981390783064 -163.593949108199\\ +730.909932860277 -166.460804534995\\ +772.48114514036 -170.37056544538\\ +816.416760492152 -174.787371383423\\ +870.843149769058 -180.536564323253\\ +937.50150151455 -187.757089622514\\ +1000 -194.454742635627\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/bode_plot_mech_sys.pdf b/matlab/figs/bode_plot_mech_sys.pdf new file mode 100644 index 0000000..1e9a1ea Binary files /dev/null and b/matlab/figs/bode_plot_mech_sys.pdf differ diff --git a/matlab/figs/bode_plot_mech_sys.png b/matlab/figs/bode_plot_mech_sys.png new file mode 100644 index 0000000..fb3ca67 Binary files /dev/null and b/matlab/figs/bode_plot_mech_sys.png differ diff --git a/matlab/figs/bode_plot_mech_sys.svg b/matlab/figs/bode_plot_mech_sys.svg new file mode 100644 index 0000000..e3ffd20 --- /dev/null +++ b/matlab/figs/bode_plot_mech_sys.svg @@ -0,0 +1,384 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/bode_plot_mech_sys.tex b/matlab/figs/bode_plot_mech_sys.tex new file mode 100644 index 0000000..71dacd8 --- /dev/null +++ b/matlab/figs/bode_plot_mech_sys.tex @@ -0,0 +1,248 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,2.19in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=100, +xtick={0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1.27224178695051e-07, +ymax=0.000450028866247803, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000100077040681054\\ +0.249113002606779 0.000100479968224368\\ +0.387782841458945 0.000101170832409288\\ +0.520854855057767 0.00010213180838189\\ +0.649849535446989 0.000103357234728721\\ +0.781435060784454 0.000104926144723671\\ +0.905642837944529 0.000106727006421945\\ +1.03041699495059 0.000108878898669169\\ +1.15096220088503 0.000111318861459395\\ +1.27381132318648 0.000114213816903526\\ +1.39683511798874 0.000117580091200327\\ +1.51768339028341 0.000121407497498927\\ +1.63385387780986 0.000125647870325187\\ +1.74277467840892 0.000130202667205506\\ +1.85895667963569 0.000135783136872805\\ +1.96468664618044 0.000141622689614222\\ +2.07643010725577 0.000148731565293715\\ +2.17438947560008 0.000155905672606119\\ +2.27697025538168 0.000164549233772308\\ +2.38439047009372 0.000175098920250184\\ +2.49687842888433 0.000188169528939554\\ +2.61467321180109 0.000204643647279112\\ +2.71289780037246 0.000221118739603659\\ +2.81481236050758 0.000241498328527855\\ +2.92055551218275 0.000266981926224583\\ +3.05833803237843 0.000308168175769497\\ +3.38477285594598 0.000429008974300086\\ +3.44776405473446 0.000444104914201693\\ +3.4796979038877 0.000448404557818924\\ +3.51192753045073 0.000450028866247803\\ +3.54445567397044 0.000448731850351484\\ +3.57728509936788 0.000444428041937895\\ +3.61041859717334 0.000437211195644724\\ +3.67760910160103 0.000415223932589207\\ +3.746050032749 0.000386154947629177\\ +3.85110700232557 0.000337492807976321\\ +4.4222739805059 0.000163676758894729\\ +4.67379510799246 0.000127877923720101\\ +4.93962174387833 0.000102339850135891\\ +5.26892142135068 8.08353445953809e-05\\ +5.62017384808319 6.51412568470101e-05\\ +6.05036787939122 5.18614334423699e-05\\ +6.57382014340959 4.08624059100159e-05\\ +7.20871503378214 3.18885732879709e-05\\ +7.97814457207663 2.4650243237454e-05\\ +8.99402217409205 1.84618667690213e-05\\ +10.3279473191895 1.34221643174956e-05\\ +12.0804213467733 9.47864532120636e-06\\ +14.6610868404699 6.25073642168979e-06\\ +18.6324631193156 3.78253821122638e-06\\ +25.4921465445143 1.98666735058239e-06\\ +40.0500075787361 7.95720896664219e-07\\ +86.8838263525119 1.6805187841812e-07\\ +100.693863147603 1.25064338714231e-07\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=100, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.360279720677909\\ +0.109657929126777 -0.395137447580197\\ +0.119145069811978 -0.429395502811047\\ +0.129452997822788 -0.466637926966143\\ +0.140652724210525 -0.507128728568574\\ +0.152821403602584 -0.551156409160285\\ +0.166042865718756 -0.599036553911958\\ +0.180408192871936 -0.651114782035393\\ +0.194217468148908 -0.701236456999254\\ +0.209083769055575 -0.755264903107047\\ +0.22508800520954 -0.813516689954668\\ +0.242317279423763 -0.876337020223474\\ +0.260865361762251 -0.944103038726894\\ +0.280833199882324 -1.01722768382518\\ +0.302329468440578 -1.09616419995589\\ +0.325471160553176 -1.18141146084878\\ +0.350384224529072 -1.27352029277685\\ +0.377204249341695 -1.37310103885019\\ +0.406077202570047 -1.48083267286324\\ +0.43716022482485 -1.59747386003858\\ +0.470622484984116 -1.7238764798156\\ +0.501996513311016 -1.84323918563692\\ +0.535462089927357 -1.9715352107489\\ +0.571158647812626 -2.10957933285724\\ +0.609234915240079 -2.25829175026661\\ +0.649849535446982 -2.41871775903215\\ +0.693171727615563 -2.59205216832214\\ +0.739381991917593 -2.77966981749412\\ +0.788672861561404 -2.98316401860725\\ +0.841249704973636 -3.20439538997709\\ +0.897331581458357 -3.44555445323468\\ +0.95715215389917 -3.70924266547007\\ +1.01159111222386 -3.95553955700314\\ +1.06912633917349 -4.22300981911786\\ +1.12993393803321 -4.51443277177717\\ +1.1942000281335 -4.83313632826204\\ +1.26212131452257 -5.18314168545086\\ +1.33390569003905 -5.56935581222265\\ +1.40977287162893 -5.99783106277079\\ +1.47628147190943 -6.39257013751163\\ +1.54592773641949 -6.82726911667632\\ +1.61885969017819 -7.30855838144461\\ +1.69523234155408 -7.84466520490108\\ +1.77520801171768 -8.44592074542533\\ +1.8589566796357 -9.12547061850532\\ +1.94665634334225 -9.90028991253442\\ +2.01978575681984 -10.6034852457339\\ +2.0956623994805 -11.3965112455736\\ +2.17438947560012 -12.298204277866\\ +2.25607406649687 -13.3329959495336\\ +2.34082727617828 -14.533096929574\\ +2.4287643824604 -15.9417520223495\\ +2.49687842888425 -17.169946826887\\ +2.56690271549201 -18.5815586597051\\ +2.63889081445755 -20.219953813452\\ +2.71289780037248 -22.1424757746008\\ +2.78898029238043 -24.4260335361339\\ +2.86719649749373 -27.1751716707795\\ +2.94760625512479 -30.5335398833852\\ +3.03027108286649 -34.6993661036932\\ +3.11525422355555 -39.9434046326928\\ +3.20262069365769 -46.6200528783391\\ +3.29243733300778 -55.1406148156697\\ +3.38477285594596 -65.8363555516\\ +3.47969790388763 -78.6296109135982\\ +3.74605003274907 -114.646524618511\\ +3.85110700232562 -125.250279839548\\ +3.95911026646847 -133.687314810928\\ +4.07014245321941 -140.297241967609\\ +4.18428850790151 -145.490638558789\\ +4.30163575810668 -149.618562714362\\ +4.42227398050602 -152.948467327068\\ +4.54629546953248 -155.675990585521\\ +4.6737951079925 -157.942900643549\\ +4.80487043965512 -159.852408854026\\ +4.93962174387827 -161.480482626305\\ +5.12518692705321 -163.309349610502\\ +5.31772317785112 -164.835059566858\\ +5.51749237612921 -166.126800666128\\ +5.72476623970219 -167.234567932816\\ +5.93982669392029 -168.195258838395\\ +6.16296625513279 -169.036629080627\\ +6.39448842855712 -169.779919053979\\ +6.6961600548533 -170.595907423712\\ +7.01206358900715 -171.308982714832\\ +7.34287044716661 -171.937907735413\\ +7.68928372075853 -172.497125933675\\ +8.05203967082557 -172.997927988859\\ +8.43190929286622 -173.449262263598\\ +8.91148232283998 -173.935576788937\\ +9.41833153464815 -174.370819924864\\ +9.95400828762154 -174.762801666966\\ +10.5201521761614 -175.117768789539\\ +11.118496048193 -175.44077755107\\ +11.7508713090482 -175.735965244565\\ +12.4192135270177 -176.006751110299\\ +13.2471398786616 -176.29560546788\\ +14.1302599059955 -176.558872295477\\ +15.0722530931073 -176.799659828368\\ +16.0770442167387 -177.020561466945\\ +17.1488196987055 -177.223761294251\\ +18.2920450484626 -177.411114733914\\ +19.5114834684666 -177.584210869368\\ +20.8122156998634 -177.744421068702\\ +22.1996611911991 -177.892937268722\\ +23.8989256623109 -178.049682840758\\ +25.7282596744791 -178.193872214568\\ +27.6976193503698 -178.326689577425\\ +29.8177229001969 -178.449173503186\\ +32.100108955431 -178.562240634481\\ +34.557199367622 -178.666704669104\\ +37.2023668141304 -178.763291701594\\ +40.0500075787373 -178.852652714557\\ +43.1156199031825 -178.935373825321\\ +46.4158883361268 -179.011984753022\\ +49.9687745385497 -179.082965865836\\ +53.7936150398065 -179.148754088302\\ +57.9112264764194 -179.209747887951\\ +62.3440188862789 -179.266311513819\\ +67.7377599751758 -179.325064505592\\ +73.5981447526585 -179.379065853773\\ +79.965545258922 -179.428710154495\\ +86.8838263525134 -179.474356978471\\ +94.4006478941749 -179.516334463482\\ +100.693863147606 -179.546639658564\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/bode_plot_weights.pdf b/matlab/figs/bode_plot_weights.pdf new file mode 100644 index 0000000..3719eec Binary files /dev/null and b/matlab/figs/bode_plot_weights.pdf differ diff --git a/matlab/figs/bode_plot_weights.png b/matlab/figs/bode_plot_weights.png new file mode 100644 index 0000000..79c8baf Binary files /dev/null and b/matlab/figs/bode_plot_weights.png differ diff --git a/matlab/figs/bode_plot_weights.svg b/matlab/figs/bode_plot_weights.svg new file mode 100644 index 0000000..061f37b --- /dev/null +++ b/matlab/figs/bode_plot_weights.svg @@ -0,0 +1,315 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/bode_plot_weights.tex b/matlab/figs/bode_plot_weights.tex new file mode 100644 index 0000000..f4acfdf --- /dev/null +++ b/matlab/figs/bode_plot_weights.tex @@ -0,0 +1,162 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.632in, +height=1.991in, +at={(0.551in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.001, +ymax=10, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 4.76100991590828\\ +0.479380849508911 4.74142527327249\\ +0.818300681586739 4.70271823354146\\ +1.15096220088503 4.64622189875955\\ +1.47628147190939 4.57452203442608\\ +1.80824493487795 4.48620448383121\\ +2.15443469003188 4.37981637168679\\ +2.49687842888433 4.26245362773302\\ +2.86719649749377 4.1246194153153\\ +3.23228397818138 3.98033166957675\\ +3.61041859717334 3.82486484671119\\ +4.03278998219371 3.64713653765075\\ +4.4632339267104 3.4647619825248\\ +4.93962174387832 3.26480194796314\\ +5.46685729972018 3.04925839907739\\ +6.05036787939122 2.82113529913371\\ +6.69616005485322 2.58433297473304\\ +7.41088151564157 2.34341563310535\\ +8.2018894992022 2.10327517992625\\ +9.07732652521023 1.86874101690569\\ +10.1392540755882 1.62441576093477\\ +11.4303112911448 1.37851305256105\\ +13.0051125217341 1.14008905236091\\ +14.9339321612425 0.917854238055838\\ +17.4679621512725 0.707763275334409\\ +20.8122156998634 0.521723677525708\\ +25.7282596744793 0.355127638575637\\ +33.3060034362459 0.218852355295698\\ +47.7176094893875 0.109683242413354\\ +119.971773543588 0.0185302783860461\\ +155.307057393346 0.011476348897964\\ +190.230118866894 0.00798799480050497\\ +226.649807927369 0.00592480300553732\\ +265.108360190854 0.00460058967167214\\ +304.42722120643 0.00373107031932976\\ +346.369417737173 0.00310997571143914\\ +390.473523688556 0.00266040632221317\\ +436.153778920801 0.0023309089597649\\ +482.707096560318 0.00208663214807546\\ +534.229329953835 0.00188718187213126\\ +591.250841383188 0.00172433492968875\\ +654.358601888324 0.00159137569438841\\ +724.202233460732 0.00148282003877247\\ +801.50069615654 0.00139418971090831\\ +887.04968896544 0.0013218279786433\\ +990.82280990038 0.00125794881012626\\ +1000 0.00125323629492883\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.203380030584698 0.000989777819887578\\ +0.449420266211914 0.0047942767347441\\ +5.12518692705333 0.622210572704616\\ +20.6212180399914 10.0725642635729\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 4.7609074288834\\ +0.457784053837662 4.74112847250108\\ +0.781435060784454 4.70208061093208\\ +1.0991097009295 4.64559165613624\\ +1.42283045721435 4.57144906349989\\ +1.75891659032773 4.47927616460061\\ +2.09566239948043 4.37423445322045\\ +2.45126006203334 4.25274519592358\\ +2.8408836901833 4.11095719445138\\ +3.26222200971167 3.95170788088451\\ +3.71167181947577 3.77948905141281\\ +4.18428850790158 3.59988757314696\\ +4.71708469091702 3.40317136463527\\ +5.31772317785097 3.19223684289429\\ +5.99484250318941 2.97087790006113\\ +6.82077673286568 2.72585419958062\\ +7.76050333513357 2.47949503869403\\ +8.9114823228402 2.2201435349723\\ +10.3279473191895 1.95491825546796\\ +12.0804213467733 1.69160934903556\\ +14.3932264471941 1.42447068049222\\ +17.3076553419573 1.17667603248786\\ +21.1995345753607 0.943491337665097\\ +26.2070669648385 0.740920673515988\\ +32.6974974451177 0.569453372601831\\ +41.1731993116168 0.427919272009563\\ +51.8459354389291 0.317863515154134\\ +65.8898955079995 0.230558428152838\\ +85.2964449974102 0.1611173349527\\ +114.566872863487 0.105607825522203\\ +228.74908173557 0.0390036255196556\\ +272.543253128103 0.0307810979565345\\ +315.863540826782 0.025500739341156\\ +359.381366380463 0.0218605610825003\\ +405.142317111465 0.0191453206052172\\ +452.538627817017 0.0171066280251345\\ +505.479682119124 0.0154393411147139\\ +559.432570616938 0.0141825204910006\\ +619.144175597784 0.0131421696026314\\ +685.229159528406 0.012282656024432\\ +758.367791499719 0.0115737646620205\\ +847.08682665574 0.0109423524789141\\ +946.1848194722 0.0104322816237634\\ +1000 0.0102154679782451\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +20 0.7\\ +40 0.7\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +40 0.1\\ +500 0.1\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +500 0.01\\ +1000 0.01\\ +}; +\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.126191468896039 0.000398107170553497\\ +2 0.1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/bode_requirements.pdf b/matlab/figs/bode_requirements.pdf new file mode 100644 index 0000000..1de007b Binary files /dev/null and b/matlab/figs/bode_requirements.pdf differ diff --git a/matlab/figs/bode_requirements.png b/matlab/figs/bode_requirements.png new file mode 100644 index 0000000..e45de81 Binary files /dev/null and b/matlab/figs/bode_requirements.png differ diff --git a/matlab/figs/bode_requirements.svg b/matlab/figs/bode_requirements.svg new file mode 100644 index 0000000..550fd3f --- /dev/null +++ b/matlab/figs/bode_requirements.svg @@ -0,0 +1,313 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/bode_requirements.tex b/matlab/figs/bode_requirements.tex new file mode 100644 index 0000000..1a227cc --- /dev/null +++ b/matlab/figs/bode_requirements.tex @@ -0,0 +1,105 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.632in, +height=1.991in, +at={(0.551in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.001, +ymax=10, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 4.7609074288834\\ +0.457784053837662 4.74112847250108\\ +0.781435060784454 4.70208061093208\\ +1.0991097009295 4.64559165613624\\ +1.42283045721435 4.57144906349989\\ +1.75891659032773 4.47927616460061\\ +2.09566239948043 4.37423445322045\\ +2.45126006203334 4.25274519592358\\ +2.8408836901833 4.11095719445138\\ +3.26222200971167 3.95170788088451\\ +3.71167181947577 3.77948905141281\\ +4.18428850790158 3.59988757314696\\ +4.71708469091702 3.40317136463527\\ +5.31772317785097 3.19223684289429\\ +5.99484250318941 2.97087790006113\\ +6.82077673286568 2.72585419958062\\ +7.76050333513357 2.47949503869403\\ +8.9114823228402 2.2201435349723\\ +10.3279473191895 1.95491825546796\\ +12.0804213467733 1.69160934903556\\ +14.3932264471941 1.42447068049222\\ +17.3076553419573 1.17667603248786\\ +21.1995345753607 0.943491337665097\\ +26.2070669648385 0.740920673515988\\ +32.6974974451177 0.569453372601831\\ +41.1731993116168 0.427919272009563\\ +51.8459354389291 0.317863515154134\\ +65.8898955079995 0.230558428152838\\ +85.2964449974102 0.1611173349527\\ +114.566872863487 0.105607825522203\\ +228.74908173557 0.0390036255196556\\ +272.543253128103 0.0307810979565345\\ +315.863540826782 0.025500739341156\\ +359.381366380463 0.0218605610825003\\ +405.142317111465 0.0191453206052172\\ +452.538627817017 0.0171066280251345\\ +505.479682119124 0.0154393411147139\\ +559.432570616938 0.0141825204910006\\ +619.144175597784 0.0131421696026314\\ +685.229159528406 0.012282656024432\\ +758.367791499719 0.0115737646620205\\ +847.08682665574 0.0109423524789141\\ +946.1848194722 0.0104322816237634\\ +1000 0.0102154679782451\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +20 0.7\\ +40 0.7\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +40 0.1\\ +500 0.1\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +500 0.01\\ +1000 0.01\\ +}; +\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.126191468896039 0.000398107170553497\\ +2 0.1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/bode_wi.pdf b/matlab/figs/bode_wi.pdf new file mode 100644 index 0000000..e499caa Binary files /dev/null and b/matlab/figs/bode_wi.pdf differ diff --git a/matlab/figs/bode_wi.png b/matlab/figs/bode_wi.png new file mode 100644 index 0000000..5b56254 Binary files /dev/null and b/matlab/figs/bode_wi.png differ diff --git a/matlab/figs/bode_wi.svg b/matlab/figs/bode_wi.svg new file mode 100644 index 0000000..92d5bb6 --- /dev/null +++ b/matlab/figs/bode_wi.svg @@ -0,0 +1,243 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/bode_wi.tex b/matlab/figs/bode_wi.tex new file mode 100644 index 0000000..aeaec91 --- /dev/null +++ b/matlab/figs/bode_wi.tex @@ -0,0 +1,79 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.219in, +height=1.991in, +at={(0.55in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.1, +ymax=10, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100019996\\ +0.441209286319119 0.100388537226533\\ +0.746230289139111 0.101107472954714\\ +1.04959323055823 0.102179314797175\\ +1.35872990190271 0.103626152490691\\ +1.6642601764859 0.105393461421337\\ +1.98288394912707 0.107575784901393\\ +2.31934505927443 0.110233765846541\\ +2.66333272517498 0.113300362991026\\ +3.0302710828664 0.116929529805118\\ +3.44776405473446 0.121466576707203\\ +3.88677669089267 0.126656400703978\\ +4.38168993151419 0.132959862451461\\ +4.93962174387832 0.140563212888104\\ +5.56859644428641 0.149669395663762\\ +6.2776601058065 0.160497806614737\\ +7.14255928554313 0.174356696579744\\ +8.12661920009194 0.190806599078577\\ +9.33189771573324 0.211702891269057\\ +10.9153593533139 0.240063663088148\\ +13.0051125217341 0.278568988496604\\ +15.9295021257212 0.333746248310502\\ +20.4319732019527 0.420346478149912\\ +27.9541599906786 0.567070439640123\\ +45.5678626584106 0.913043260592671\\ +98.8541702191957 1.9420192016414\\ +135.248087041788 2.61290613637558\\ +171.883914281715 3.2523236432537\\ +210.534524276671 3.88179275803392\\ +250.841505927754 4.48505718443669\\ +290.712337727258 5.02713742628793\\ +333.828586473176 5.55332650390554\\ +379.821530619074 6.04955496400537\\ +428.185179865241 6.50497411436347\\ +482.707096560318 6.94593403636414\\ +544.171428686589 7.36391921149691\\ +613.462171799251 7.75172901027199\\ +691.575882873852 8.10406344935583\\ +779.636013040524 8.41781975602753\\ +887.04968896544 8.71154899433816\\ +1000 8.94438371269928\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_1st_order.pdf b/matlab/figs/comp_filter_1st_order.pdf new file mode 100644 index 0000000..adeb61b Binary files /dev/null and b/matlab/figs/comp_filter_1st_order.pdf differ diff --git a/matlab/figs/comp_filter_1st_order.png b/matlab/figs/comp_filter_1st_order.png new file mode 100644 index 0000000..d4118ae Binary files /dev/null and b/matlab/figs/comp_filter_1st_order.png differ diff --git a/matlab/figs/comp_filter_1st_order.svg b/matlab/figs/comp_filter_1st_order.svg new file mode 100644 index 0000000..97846d6 --- /dev/null +++ b/matlab/figs/comp_filter_1st_order.svg @@ -0,0 +1,420 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_1st_order.tex b/matlab/figs/comp_filter_1st_order.tex new file mode 100644 index 0000000..322dadf --- /dev/null +++ b/matlab/figs/comp_filter_1st_order.tex @@ -0,0 +1,345 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.551in,2.205in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.00999950003749688, +ymax=1, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00999950003749688\\ +0.0781435060784454 0.0779060051871087\\ +0.135872990190271 0.134635885624904\\ +0.192879150802078 0.189388470073189\\ +0.249687842888433 0.242250570697203\\ +0.308666494333727 0.294936078220483\\ +0.367760910160103 0.34515977418261\\ +0.430163575810679 0.395154561931371\\ +0.493962174387832 0.442877628294029\\ +0.556859644428641 0.486513323734419\\ +0.62776601058065 0.531682500309765\\ +0.701206358900718 0.574125061053536\\ +0.776050333513357 0.61308994196178\\ +0.858882855954625 0.651551970546209\\ +0.941833153464795 0.685618150124747\\ +1.03279473191895 0.718420929727937\\ +1.13254131515281 0.749608335515165\\ +1.24192135270178 0.778887675762587\\ +1.36186523675608 0.806038251038401\\ +1.50722530931076 0.833277344034096\\ +1.66810053720006 0.857688019461277\\ +1.84614694632455 0.879291221056981\\ +2.06212180399914 0.899782695587539\\ +2.32469705998565 0.918614648361775\\ +2.64498018242772 0.935380254259452\\ +3.03726357970331 0.949842198766414\\ +3.55263467657814 0.962592904642806\\ +4.27199396630678 0.973679498477765\\ +5.28107971193433 0.982540437116619\\ +6.89983712143002 0.989660118392818\\ +9.7946966706954 0.994828590250486\\ +16.4140297114447 0.998149314353036\\ +43.6153778920801 0.999737264025473\\ +100 0.999950003749688\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.999950003749688\\ +0.0668074391569562 0.997775825531856\\ +0.115096220088503 0.993441519432428\\ +0.163385387780986 0.986914027766574\\ +0.211507282486879 0.97835587911059\\ +0.259067785868801 0.968041910806357\\ +0.308666494333727 0.955516985596761\\ +0.357728509936787 0.941567123076339\\ +0.410784088996565 0.924997125494708\\ +0.463090280179974 0.907422856313341\\ +0.517265738721602 0.888208813943108\\ +0.57777901179705 0.865864610401702\\ +0.639448842855694 0.84248216033635\\ +0.707701066118189 0.816267840586774\\ +0.776050333513357 0.79001311575524\\ +0.851000724712225 0.761563109315656\\ +0.933189771573324 0.731107620984681\\ +1.02331657833024 0.698911718635762\\ +1.12214776820798 0.665305570252569\\ +1.24192135270178 0.62716344643574\\ +1.37447909267754 0.588317463152321\\ +1.5211855179861 0.549317450112417\\ +1.69914417203463 0.507209816953862\\ +1.91550055557353 0.46278730959425\\ +2.17940698430296 0.417035544136608\\ +2.50264009641792 0.371052853392094\\ +2.92729483504282 0.323270052271167\\ +3.48772747481418 0.275614496115232\\ +4.31156199031823 0.225937117607347\\ +5.58144624945496 0.176356853344754\\ +7.85045620020451 0.126360100932962\\ +12.7969686821594 0.0779060051871086\\ +31.0092663593193 0.0322316695009781\\ +100 0.00999950003749688\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.551in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 89.4270613023165\\ +0.0109657929126781 89.3717315290859\\ +0.0120248614203741 89.3110593964178\\ +0.0131862140139475 89.2445293733452\\ +0.0144597292179202 89.1715762763439\\ +0.0157107238924746 89.0999158779669\\ +0.0170699493403842 89.0220589241049\\ +0.0185467692308472 88.9374702188989\\ +0.0201513573381558 88.8455685189148\\ +0.0218947676285658 88.745722621367\\ +0.0237890104107886 88.6372471342313\\ +0.0258471350746954 88.5193979064433\\ +0.0280833199882315 88.3913670960939\\ +0.0305129701718286 88.2522778546731\\ +0.0331528234231942 88.1011786061323\\ +0.0360210656235708 87.9370369010414\\ +0.0391374560198041 87.7587328286753\\ +0.0425234633452872 87.565051973813\\ +0.0462024137175137 87.354677910809\\ +0.0501996513311016 87.1261842356453\\ +0.0545427130532976 86.8780261478907\\ +0.0592615181247549 86.6085316096622\\ +0.0643885742724037 86.3158921288756\\ +0.0699592016543535 85.9981532406606\\ +0.0760117761795532 85.6532047954402\\ +0.0825879938784429 85.2787712068662\\ +0.0897331581458357 84.8724018699676\\ +0.0974964918348418 84.4314620323563\\ +0.105931476351838 83.9531244924189\\ +0.115096220088505 83.4343626117381\\ +0.125053858729037 82.871945268422\\ +0.13587299019027 82.2624345473586\\ +0.147628147190938 81.6021871659272\\ +0.160400310705681 80.8873608712293\\ +0.174277467840892 80.1139273167059\\ +0.18935521797563 79.2776932268565\\ +0.205737431343292 78.3743319764768\\ +0.223536964590981 77.399428022839\\ +0.242876438246048 76.3485368985183\\ +0.266333272517501 75.0864181916033\\ +0.292055551218278 73.719262860514\\ +0.320262069365769 72.2417087031909\\ +0.351192753045077 70.6490947310592\\ +0.385110700232562 68.9377707352067\\ +0.426215882901536 66.9155269809215\\ +0.471708469091704 64.7463512504026\\ +0.522056752784699 62.4328857335041\\ +0.58313051135262 59.7522340757541\\ +0.657382014340949 56.6798002114858\\ +0.754879928165345 52.9515775591225\\ +0.907732652521024 47.7689484386557\\ +1.36186523675607 36.2893557362444\\ +1.57833140565212 32.3575497518978\\ +1.77930438991856 29.3367436790486\\ +1.98745954958095 26.7094783217305\\ +2.21996611911998 24.2495318606514\\ +2.45691646298281 22.1470233577592\\ +2.71915794303603 20.1915492791366\\ +2.98177229001969 18.5399600253116\\ +3.26974974451178 17.0054032260634\\ +3.58553985745983 15.5836816184612\\ +3.93182875570579 14.2697479456193\\ +4.31156199031825 13.0579901585031\\ +4.72796959160041 11.942467265621\\ +5.18459354389293 10.9170981708404\\ +5.68531791387378 9.9758082019293\\ +6.17718759733854 9.19560663953442\\ +6.71161176749636 8.47447059109713\\ +7.29227205872842 7.80835216850473\\ +7.92316862486613 7.19338767107824\\ +8.60864769614914 6.62591128804402\\ +9.3534315202923 6.10246213595279\\ +10.1626508939299 5.6197861710567\\ +11.0418805085416 5.17483424126608\\ +11.9971773543589 4.76475730086372\\ +13.0351224468151 4.38689960481101\\ +14.1628661629921 4.03879052659268\\ +15.3881775003836 3.71813550097808\\ +16.7194975973201 3.42280647704889\\ +18.165997883753 3.15083217347687\\ +19.7376432630023 2.90038835364977\\ +21.4452607597165 2.66978827952406\\ +23.3006141069691 2.45747345713322\\ +25.3164847863135 2.26200475104221\\ +27.5067600790807 2.08205391764814\\ +29.8865287355039 1.91639558639288\\ +32.4721849207315 1.76389970228814\\ +35.2815411538092 1.62352443154175\\ +38.3339510176665 1.49430952362114\\ +41.6504424854525 1.37537011708024\\ +45.2538627817011 1.26589097234756\\ +49.1690357762798 1.16512111197839\\ +53.9177464038745 1.06252978110111\\ +59.1250841383182 0.968968043775334\\ +64.8353428605466 0.883642073403919\\ +71.0970943231237 0.805827610765192\\ +77.9636013040516 0.734863920885289\\ +85.493270662683 0.670148261902611\\ +93.7501501514519 0.611130825714156\\ +100 0.572938697683483\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.572938697683483\\ +0.0109657929126781 -0.628268470914065\\ +0.0120248614203741 -0.688940603582196\\ +0.0131862140139475 -0.755470626654827\\ +0.0144597292179202 -0.828423723656115\\ +0.0157107238924746 -0.900084122033078\\ +0.0170699493403842 -0.977941075895146\\ +0.0185467692308472 -1.06252978110111\\ +0.0201513573381558 -1.15443148108517\\ +0.0218947676285658 -1.25427737863302\\ +0.0237890104107886 -1.36275286576873\\ +0.0258471350746954 -1.48060209355668\\ +0.0280833199882315 -1.60863290390606\\ +0.0305129701718286 -1.74772214532689\\ +0.0331528234231942 -1.89882139386773\\ +0.0360210656235708 -2.0629630989586\\ +0.0391374560198041 -2.24126717132472\\ +0.0425234633452872 -2.43494802618703\\ +0.0462024137175137 -2.64532208919094\\ +0.0501996513311016 -2.8738157643547\\ +0.0545427130532976 -3.12197385210929\\ +0.0592615181247549 -3.39146839033785\\ +0.0643885742724037 -3.68410787112443\\ +0.0699592016543535 -4.00184675933943\\ +0.0760117761795532 -4.34679520455984\\ +0.0825879938784429 -4.7212287931338\\ +0.0897331581458357 -5.12759813003245\\ +0.0974964918348418 -5.56853796764368\\ +0.105931476351838 -6.04687550758116\\ +0.115096220088505 -6.56563738826192\\ +0.125053858729037 -7.12805473157803\\ +0.13587299019027 -7.73756545264141\\ +0.147628147190938 -8.39781283407282\\ +0.160400310705681 -9.11263912877071\\ +0.174277467840892 -9.8860726832941\\ +0.18935521797563 -10.7223067731436\\ +0.205737431343292 -11.6256680235232\\ +0.223536964590981 -12.600571977161\\ +0.242876438246048 -13.6514631014817\\ +0.266333272517501 -14.9135818083967\\ +0.292055551218278 -16.280737139486\\ +0.320262069365769 -17.7582912968091\\ +0.351192753045077 -19.3509052689408\\ +0.385110700232562 -21.0622292647933\\ +0.426215882901536 -23.0844730190785\\ +0.471708469091704 -25.2536487495974\\ +0.522056752784699 -27.5671142664959\\ +0.58313051135262 -30.2477659242459\\ +0.657382014340949 -33.3201997885142\\ +0.754879928165345 -37.0484224408775\\ +0.907732652521024 -42.2310515613444\\ +1.36186523675607 -53.7106442637557\\ +1.57833140565212 -57.6424502481022\\ +1.77930438991856 -60.6632563209514\\ +1.98745954958095 -63.2905216782695\\ +2.21996611911998 -65.7504681393486\\ +2.45691646298281 -67.8529766422408\\ +2.71915794303603 -69.8084507208634\\ +2.98177229001969 -71.4600399746884\\ +3.26974974451178 -72.9945967739366\\ +3.58553985745983 -74.4163183815388\\ +3.93182875570579 -75.7302520543808\\ +4.31156199031825 -76.9420098414969\\ +4.72796959160041 -78.057532734379\\ +5.18459354389293 -79.0829018291596\\ +5.68531791387378 -80.0241917980707\\ +6.17718759733854 -80.8043933604656\\ +6.71161176749636 -81.5255294089029\\ +7.29227205872842 -82.1916478314953\\ +7.92316862486613 -82.8066123289218\\ +8.60864769614914 -83.374088711956\\ +9.3534315202923 -83.8975378640472\\ +10.1626508939299 -84.3802138289433\\ +11.0418805085416 -84.8251657587339\\ +11.9971773543589 -85.2352426991363\\ +13.0351224468151 -85.613100395189\\ +14.1628661629921 -85.9612094734073\\ +15.3881775003836 -86.2818644990219\\ +16.7194975973201 -86.5771935229511\\ +18.165997883753 -86.8491678265231\\ +19.7376432630023 -87.0996116463502\\ +21.4452607597165 -87.330211720476\\ +23.3006141069691 -87.5425265428668\\ +25.3164847863135 -87.7379952489578\\ +27.5067600790807 -87.9179460823519\\ +29.8865287355039 -88.0836044136071\\ +32.4721849207315 -88.2361002977119\\ +35.2815411538092 -88.3764755684582\\ +38.3339510176665 -88.5056904763789\\ +41.6504424854525 -88.6246298829198\\ +45.2538627817011 -88.7341090276524\\ +49.1690357762798 -88.8348788880216\\ +53.9177464038745 -88.9374702188989\\ +59.1250841383182 -89.0310319562247\\ +64.8353428605466 -89.1163579265961\\ +71.0970943231237 -89.1941723892348\\ +77.9636013040516 -89.2651360791147\\ +85.493270662683 -89.3298517380974\\ +93.7501501514519 -89.3888691742859\\ +100 -89.4270613023165\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.pdf b/matlab/figs/comp_filter_1st_order_loop_gain.pdf new file mode 100644 index 0000000..f1e81df Binary files /dev/null and b/matlab/figs/comp_filter_1st_order_loop_gain.pdf differ diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.png b/matlab/figs/comp_filter_1st_order_loop_gain.png new file mode 100644 index 0000000..121473c Binary files /dev/null and b/matlab/figs/comp_filter_1st_order_loop_gain.png differ diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.svg b/matlab/figs/comp_filter_1st_order_loop_gain.svg new file mode 100644 index 0000000..fc81bef --- /dev/null +++ b/matlab/figs/comp_filter_1st_order_loop_gain.svg @@ -0,0 +1,471 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_1st_order_loop_gain.tex b/matlab/figs/comp_filter_1st_order_loop_gain.tex new file mode 100644 index 0000000..6bcb76e --- /dev/null +++ b/matlab/figs/comp_filter_1st_order_loop_gain.tex @@ -0,0 +1,75 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.551in,2.205in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.01, +ymax=100, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 100\\ +100 0.01\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.551in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -90\\ +100 -90\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.pdf b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.pdf new file mode 100644 index 0000000..d9b168d Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.pdf differ diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.png b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.png new file mode 100644 index 0000000..93481a1 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.png differ diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.svg b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.svg new file mode 100644 index 0000000..563f118 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.svg @@ -0,0 +1,57 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.tex b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.tex new file mode 100644 index 0000000..9377b04 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_alpha_vs_Ms.tex @@ -0,0 +1,43 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.229in, +height=1.991in, +at={(0.419in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmin=0, +xmax=10, +xlabel={$\alpha$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=0, +ymax=15, +ylabel={$M_S$}, +axis background/.style={fill=white}, +xmajorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.0999999999999996 14.8660687473185\\ +0.166810053720006 9.21227215633969\\ +0.278255940220712 5.83254838196024\\ +0.464158883361279 3.81995380172187\\ +0.774263682681127 2.63045631106656\\ +1.29154966501488 1.93584500051015\\ +2.15443469003188 1.53597028119978\\ +3.59381366380463 1.30819135334922\\ +5.99484250318941 1.17867353218953\\ +10 1.10453610171873\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_2nd_order_alphas.pdf b/matlab/figs/comp_filter_2nd_order_alphas.pdf new file mode 100644 index 0000000..c7fbf10 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alphas.pdf differ diff --git a/matlab/figs/comp_filter_2nd_order_alphas.png b/matlab/figs/comp_filter_2nd_order_alphas.png new file mode 100644 index 0000000..13460f3 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_alphas.png differ diff --git a/matlab/figs/comp_filter_2nd_order_alphas.svg b/matlab/figs/comp_filter_2nd_order_alphas.svg new file mode 100644 index 0000000..a5eb481 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_alphas.svg @@ -0,0 +1,539 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_2nd_order_alphas.tex b/matlab/figs/comp_filter_2nd_order_alphas.tex new file mode 100644 index 0000000..32127ce --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_alphas.tex @@ -0,0 +1,1234 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.561in, +at={(0.551in,2.203in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.0001, +ymax=20, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00011000999153452\\ +0.0948368186628592 0.00997503172507125\\ +0.164898694447106 0.0306716741665862\\ +0.231934505927443 0.0622407363222623\\ +0.294760625512486 0.103883295418649\\ +0.357728509936787 0.159692614062287\\ +0.418428850790158 0.230132782973217\\ +0.476077523022637 0.316572332147375\\ +0.531772317785097 0.42416171550181\\ +0.583130511352623 0.551999278551874\\ +0.633580499265825 0.715130451386288\\ +0.682077673286569 0.922743072959983\\ +0.727548352919623 1.18526940704043\\ +0.768928372075831 1.51245017775262\\ +0.805203967082547 1.90830296813349\\ +0.843190929286625 2.50214806142132\\ +0.874866812047991 3.23350828714072\\ +0.907732652521023 4.39346332533332\\ +0.941833153464795 6.3584279243046\\ +0.977214696972572 9.33895693272526\\ +0.986265846131282 9.99890007147308\\ +0.995400828762153 10.421644699365\\ +1.00462042134681 10.5135656937003\\ +1.01392540755882 10.2658182173333\\ +1.03279473191895 9.10747255049796\\ +1.11184960481927 4.95253209414263\\ +1.15361810173648 3.9657763566303\\ +1.19695570235904 3.32609635792297\\ +1.24192135270178 2.88423447889367\\ +1.28857621318552 2.56317834756565\\ +1.34936714058831 2.26897110886958\\ +1.41302599059953 2.05185704318564\\ +1.4796880626864 1.88580201055633\\ +1.54949503931463 1.75522496626969\\ +1.63762407452169 1.63172429543273\\ +1.73076553419573 1.53429824322843\\ +1.84614694632455 1.44431745974059\\ +1.96922025547917 1.37297391535643\\ +2.11995345753607 1.30813288680465\\ +2.2822244741869 1.25652206630929\\ +2.47967289250216 1.21023169662896\\ +2.71915794303602 1.16972000632176\\ +3.00939003444972 1.13500934534776\\ +3.39258338274099 1.10372991648813\\ +3.8957456157755 1.07705722865243\\ +4.55678626584106 1.05537215724102\\ +5.47947233690029 1.03776370586108\\ +6.89983712143002 1.02354762255081\\ +9.35343152029239 1.01270288018394\\ +14.2940453343176 1.00540729711164\\ +28.804441533963 1.00132721107208\\ +100 1.00011000979108\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00011000979108\\ +0.0598104096238094 1.00394759144816\\ +0.103041699495059 1.01179102194002\\ +0.144930957412622 1.02354762255081\\ +0.185895667963569 1.03922800960517\\ +0.225607406649686 1.05867394683249\\ +0.263889081445751 1.0817373619654\\ +0.30302710828664 1.11017316412578\\ +0.341612326858553 1.14361709756659\\ +0.378074666359935 1.18085418678031\\ +0.414588849683291 1.22448280681905\\ +0.450457325175946 1.27455991007988\\ +0.484937406733523 1.33067985110484\\ +0.517265738721602 1.3917727135042\\ +0.551749237612912 1.46786175437543\\ +0.583130511352623 1.54905944332692\\ +0.616296625513294 1.65026069542283\\ +0.65134909462728 1.7790344048865\\ +0.682077673286569 1.91577909874005\\ +0.714255928554313 2.09055466867537\\ +0.747952251562182 2.32054249650641\\ +0.776050333513357 2.56317834756565\\ +0.805203967082547 2.88423447889366\\ +0.835452805838287 3.32609635792296\\ +0.866837993001977 3.9657763566303\\ +0.89114823228402 4.6605850766061\\ +0.916140245713852 5.65942751852079\\ +0.95055659201012 7.74413624785297\\ +0.977214696972572 9.75814758247962\\ +0.986265846131282 10.2658182173333\\ +0.995400828762153 10.5135656937003\\ +1.00462042134681 10.421644699365\\ +1.01392540755882 9.99890007147309\\ +1.03279473191895 8.56448066999078\\ +1.11184960481927 4.04663885599879\\ +1.15361810173648 3.02038240758742\\ +1.20804213467733 2.2326550891716\\ +1.2650337203959 1.73213799663557\\ +1.33698374182495 1.33351824980578\\ +1.41302599059953 1.06066070530867\\ +1.50722530931076 0.835860496725985\\ +1.62259528707809 0.654171723842226\\ +1.76297537528721 0.508883676890327\\ +1.93324228755505 0.393428228078886\\ +2.15940615210357 0.295147645384062\\ +2.45691646298279 0.215441770866556\\ +2.84743916646725 0.153152765429669\\ +3.42400613797143 0.101821549172881\\ +4.31156199031823 0.0622407363222622\\ +5.84476113163363 0.033084158524133\\ +9.01477631452492 0.0136890732065714\\ +18.6754584276108 0.00316215463550021\\ +100 0.00011000999153452\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000200002499984275\\ +0.254334576130465 0.130396384379877\\ +0.64537154016467 0.845298735555639\\ +0.720871503378214 1.03455438511031\\ +0.78323825991792 1.18766939310827\\ +0.835452805838287 1.30689415455522\\ +0.882969995549409 1.40396754515418\\ +0.933189771573324 1.49153384757856\\ +0.977214696972572 1.55410681973306\\ +1.02331657833024 1.60507585169601\\ +1.07159339982267 1.6432116966054\\ +1.12214776820798 1.66818082338756\\ +1.17508713090481 1.68051772481778\\ +1.23052400435926 1.68145530213416\\ +1.30051125217341 1.66991840006451\\ +1.38720978054162 1.64309691578595\\ +1.49339321612425 1.60079215794376\\ +1.66810053720006 1.52623854777293\\ +2.34622884814226 1.31009566957629\\ +2.69420371368188 1.24379072523403\\ +3.09378757173014 1.19008035470123\\ +3.55263467657814 1.14728899801843\\ +4.11731993116168 1.11162143381601\\ +4.81595791019235 1.08275967517945\\ +5.73797641421413 1.05898967011018\\ +7.02824426430835 1.03969653824807\\ +8.93204599858097 1.02476090024529\\ +12.1082975023204 1.01354959471703\\ +18.3342548256229 1.00593220623828\\ +35.9381366380463 1.00154733001747\\ +100 1.0001999800035\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.0001999800035\\ +0.0462024137175131 1.0042602463122\\ +0.0788672861561415 1.01236354570269\\ +0.110928986489522 1.0243139192752\\ +0.143600898465126 1.04042077069286\\ +0.177520801171763 1.06114056512513\\ +0.211507282486879 1.08574204351403\\ +0.247396410088681 1.11558710633772\\ +0.286719649749377 1.15242994167755\\ +0.329243733300777 1.19657090205498\\ +0.378074666359935 1.25187250280279\\ +0.434147833005509 1.31995107455361\\ +0.503154894503806 1.40731073694288\\ +0.68839520696455 1.61772792535009\\ +0.741088151564157 1.65605532050137\\ +0.790492762269643 1.67723529487113\\ +0.835452805838287 1.68217365560447\\ +0.874866812047991 1.67457557685657\\ +0.916140245713852 1.65476758816363\\ +0.959360828709314 1.62190938578185\\ +1.00462042134681 1.57597495934258\\ +1.05201521761616 1.51784259281095\\ +1.10164594963366 1.44922327520549\\ +1.16430313292088 1.35633167680745\\ +1.24192135270178 1.23915349502241\\ +1.33698374182495 1.10196786385343\\ +1.46610868404698 0.937036072039732\\ +1.6527920614649 0.746809070862658\\ +1.98745954958098 0.517922013367215\\ +22.6649807927369 0.00389425992481629\\ +100 0.000200002499984275\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00109459501424697\\ +0.0199664245010979 0.00430115733604247\\ +0.0299554933435981 0.00945910726019446\\ +0.0402350554886929 0.0165301675946335\\ +0.0506646100892127 0.0252071445623184\\ +0.062057288067765 0.036026063938788\\ +0.0746230289139111 0.0491329068813126\\ +0.0880937190447399 0.0640897791231573\\ +0.103041699495059 0.0813320067178546\\ +0.120526093687084 0.101906000032255\\ +0.140977287162897 0.126090323972934\\ +0.164898694447106 0.154163916825114\\ +0.192879150802078 0.186424004137343\\ +0.227697025538168 0.225498885284812\\ +0.271289780037246 0.272638212300862\\ +0.323228397818138 0.32617591990016\\ +0.385110700232557 0.386229704610632\\ +0.45462954695324 0.448859273477362\\ +0.531772317785097 0.512429740578937\\ +0.616296625513294 0.575126956945611\\ +0.707701066118189 0.635176738609605\\ +0.805203967082547 0.691066916069106\\ +0.916140245713852 0.745523051311799\\ +1.03279473191895 0.793722092315571\\ +1.16430313292088 0.838734666226132\\ +1.31255683577184 0.879862764245451\\ +1.49339321612425 0.91928022142434\\ +1.69914417203463 0.953386213285263\\ +1.95114834684662 0.984068321553667\\ +2.26128006633728 1.01047368303178\\ +2.64498018242772 1.03205924387224\\ +3.15136348486648 1.04933061717622\\ +3.824569722467 1.06135356501523\\ +4.77176094893875 1.06768352771173\\ +6.1204983724767 1.0673103167763\\ +8.29695852083491 1.05899335616854\\ +13.9041083409007 1.03603979631949\\ +22.874908173557 1.01736925763048\\ +36.2710025233065 1.00771932389322\\ +67.8940681269611 1.00233114028795\\ +100 1.00108813352155\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00108813352155\\ +0.0253749037973357 1.00661687106089\\ +0.0425234633452868 1.01659108018125\\ +0.0668074391569562 1.03278330043247\\ +0.156024641436637 1.06652704396054\\ +0.203849339825246 1.06799911216205\\ +0.256690271549195 1.06216085134681\\ +0.314410830314726 1.05006070637405\\ +0.378074666359935 1.03205924387224\\ +0.446323392671039 1.00900393358045\\ +0.517265738721602 0.982206398785581\\ +0.593982669392036 0.951127154684815\\ +0.675818116816111 0.916639458278087\\ +0.768928372075831 0.876849105056871\\ +0.866837993001977 0.835402512752721\\ +0.977214696972572 0.790117327490484\\ +1.10164594963366 0.741707797302705\\ +1.24192135270178 0.691066916069106\\ +1.41302599059953 0.635176738609605\\ +1.62259528707809 0.575126956945611\\ +1.86324631193156 0.516280035813484\\ +2.15940615210357 0.456133959943077\\ +2.52582002696278 0.396294893968173\\ +2.98177229001967 0.338279915746869\\ +3.55263467657814 0.283368943385507\\ +4.23278906557355 0.234906605230083\\ +4.99687745385488 0.19465725120724\\ +5.84476113163363 0.161366371750978\\ +6.83651600451024 0.132335354090866\\ +7.99655452589235 0.107261456422579\\ +9.35343152029239 0.0858626913913848\\ +10.9405470720574 0.0678623481643624\\ +12.7969686821594 0.052968280560563\\ +15.1070330448665 0.0402264899025542\\ +18.1659978837533 0.0292251438100276\\ +22.2508879812837 0.0202789457939604\\ +28.2781797962534 0.0129752865416223\\ +37.9821530619074 0.00737585961313597\\ +56.4614141930367 0.00339818308874041\\ +100 0.00109459501424697\\ +}; +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00714177854284208\\ +0.0116968270397038 0.00897940567704633\\ +0.0136815762796747 0.0111557824544801\\ +0.0161513269350309 0.0138688340306831\\ +0.0192435097523033 0.0172444920420194\\ +0.0231400538013065 0.0214499179845134\\ +0.0286059553517574 0.0272648378662239\\ +0.0366914237840249 0.0357334970261255\\ +0.0497389595879006 0.0491947457751519\\ +0.0739381991917587 0.0738095980935781\\ +0.120526093687084 0.120454816918421\\ +0.18935521797563 0.187666868580361\\ +0.263889081445751 0.25754684711699\\ +0.341612326858553 0.326395528596839\\ +0.422304418720667 0.392855746258358\\ +0.507815211232767 0.457264232776662\\ +0.593982669392036 0.51577181914434\\ +0.68839520696455 0.57269630387518\\ +0.790492762269643 0.626350164678265\\ +0.899402217409204 0.675431582854443\\ +1.02331657833024 0.722397026926264\\ +1.16430313292088 0.766237374255524\\ +1.32471398786612 0.806164124024245\\ +1.50722530931076 0.841673864359173\\ +1.73076553419573 0.874593518724949\\ +1.98745954958098 0.902305288237749\\ +2.32469705998565 0.927880019243842\\ +2.76976193503689 0.950062028652928\\ +3.36144900010876 0.968152214633505\\ +4.23278906557355 0.983019344417046\\ +5.63314267060136 0.994518730127834\\ +8.29695852083491 1.00277439573499\\ +14.9683929307726 1.00763432746443\\ +42.0362168384471 1.00830506289828\\ +100 1.00501244024626\\ +}; +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00501244024626\\ +0.0421332174384729 1.00866981635658\\ +0.104959323055823 1.00449221186842\\ +0.169523234155412 0.995856539708304\\ +0.234082727617829 0.983494129179552\\ +0.300246170908555 0.967420706310597\\ +0.367760910160103 0.948010810063962\\ +0.438168993151419 0.925170353041762\\ +0.512518692705333 0.898900451286246\\ +0.593982669392036 0.868433666321489\\ +0.682077673286569 0.834451083296424\\ +0.776050333513357 0.797967702355188\\ +0.882969995549409 0.757149657660153\\ +0.995400828762153 0.715857452984255\\ +1.13254131515281 0.668523948777075\\ +1.28857621318552 0.619230987106355\\ +1.4796880626864 0.565532206953117\\ +1.71488196987054 0.508753595603613\\ +2.00586777950823 0.450582053501637\\ +2.38989256623105 0.389787694077374\\ +2.92729483504282 0.326395528596839\\ +3.72023668141307 0.262026421175816\\ +4.99687745385488 0.19796907792997\\ +7.35981447526576 0.13562893598495\\ +11.9971773543588 0.0833064218451001\\ +18.848434090338 0.0525892644236617\\ +26.5108360190854 0.0368027768552253\\ +34.6369417737173 0.0275445800016243\\ +43.2151112778977 0.0214499179845134\\ +52.4468874949512 0.0170525834940166\\ +62.4878807200689 0.0137062878781458\\ +73.7679760252773 0.0110177769746878\\ +86.285125663669 0.0088622532037533\\ +100 0.00714177854284208\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.561in, +at={(0.551in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.699,2.8)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 179.890616186259\\ +0.0118051652856881 179.870870152282\\ +0.0138082976521811 179.848958367422\\ +0.0158562396177109 179.82655608827\\ +0.0182079168009943 179.800830792788\\ +0.0207164967560208 179.773388468632\\ +0.0233543813990654 179.744530805876\\ +0.0260865361762251 179.714640848219\\ +0.0291383170483282 179.681252794687\\ +0.0325471160553176 179.643956865912\\ +0.0360210656235708 179.605945791722\\ +0.0398658107358057 179.563874500998\\ +0.0441209286319117 179.51730849136\\ +0.048382096649261 179.470671342178\\ +0.0530548052536955 179.419523691123\\ +0.058178800743451 179.363427775434\\ +0.0637976680860626 179.301902795932\\ +0.0699592016543557 179.234420475085\\ +0.0767158117677927 179.160400069187\\ +0.0833529396509846 179.087664934189\\ +0.0905642837944531 179.008607142611\\ +0.0983995229627797 178.922669864954\\ +0.106912633917349 178.82924461827\\ +0.116162263260848 178.727665450323\\ +0.126212131452257 178.617202051044\\ +0.137131471775393 178.497051438827\\ +0.148995507285289 178.366327713044\\ +0.161885969017819 178.224049130801\\ +0.175891659032778 178.069121414555\\ +0.191109062168914 177.900315664591\\ +0.207643010725571 177.716238436402\\ +0.225607406649687 177.515290287949\\ +0.245126006203328 177.295607145322\\ +0.266333272517501 177.054975744727\\ +0.286719649749373 176.821336663173\\ +0.308666494333735 176.56671740572\\ +0.332293251639897 176.288242136401\\ +0.357728509936777 175.982250008116\\ +0.385110700232562 175.643959408457\\ +0.41078408899656 175.316470334147\\ +0.438168993151433 174.953590342049\\ +0.46737951079925 174.547476418624\\ +0.493962174387827 174.156822245438\\ +0.522056752784682 173.716989432436\\ +0.551749237612921 173.214833709043\\ +0.577779011797049 172.735511875204\\ +0.605036787939111 172.184866361391\\ +0.633580499265845 171.54148401753\\ +0.657382014340971 170.939615595619\\ +0.682077673286572 170.236209388027\\ +0.707701066118183 169.399176682674\\ +0.734287044716661 168.381536760081\\ +0.761871770232323 167.11183453999\\ +0.783238259917936 165.928079064579\\ +0.805203967082557 164.46580364877\\ +0.827785696619849 162.611123957826\\ +0.851000724712218 160.180938797392\\ +0.874866812047975 156.864030033359\\ +0.891148232283998 153.898512899943\\ +0.907732652520995 150.018885336893\\ +0.9246257116406 144.77959242105\\ +0.941833153464815 137.463345996736\\ +0.959360828709328 126.97401057248\\ +0.97721469697258 112.027985763161\\ +1.04236067397639 47.5780285296383\\ +1.06175918348298 37.0937495208465\\ +1.08151870255226 29.7843856775866\\ +1.10164594963369 24.5537900046789\\ +1.13254131515284 19.113954417124\\ +1.16430313292089 15.4147632241557\\ +1.19695570235905 12.7568801249449\\ +1.23052400435925 10.7635531355031\\ +1.26503372039588 9.21761532002122\\ +1.30051125217337 7.98628099235009\\ +1.34936714058834 6.6907092804561\\ +1.40005838246811 5.67657498367879\\ +1.45265392594678 4.86362680748721\\ +1.50722530931073 4.19952127115729\\ +1.5638467583022 3.64868446121062\\ +1.62259528707813 3.18609403408996\\ +1.69914417203464 2.70481229070225\\ +1.77930438991856 2.3078910443175\\ +1.86324631193151 1.97714078508898\\ +1.95114834684666 1.69923163591278\\ +2.04319732019529 1.46415030588136\\ +2.1395888713434 1.26421232472131\\ +2.24052786929996 1.09341003992219\\ +2.34622884814232 0.946970498075387\\ +2.45691646298281 0.821048376570019\\ +2.57282596744791 0.712508054708564\\ +2.69420371368182 0.618765868027879\\ +2.82130767593954 0.537673831422154\\ +2.9544079988804 0.467432470459926\\ +3.09378757173011 0.406524436673124\\ +3.23974262952812 0.353663201702176\\ +3.4240061379715 0.299319935435449\\ +3.61874981241128 0.253397301941078\\ +3.82456972246693 0.214565648059079\\ +4.04209583979642 0.181713753461906\\ +4.27199396630681 0.153910153948516\\ +4.51496777203605 0.130372192041392\\ +4.8159579101925 0.107429432008587\\ +5.13701354335138 0.0885292117016263\\ +5.5302242561928 0.0709681455149109\\ +5.95353313081449 0.0568919720068664\\ +6.46860766154627 0.0443650957495549\\ +7.09334120498816 0.0336534221946465\\ +7.92316862486613 0.0241549368843721\\ +9.01477631452495 0.0164044563326513\\ +10.5444279352618 0.0102537330737391\\ +12.9154966501489 0.00558135255624848\\ +17.188391428171 0.00236853618349642\\ +27.5067600790807 0.000578044547125955\\ +92.0373199661849 1.54327884160921e-05\\ +100 1.20319814698178e-05\\ +}; +\addlegendentry{$\alpha = 0.1$} + +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -1.20319814698178e-05\\ +0.0506646100892133 -0.00156435955159395\\ +0.0739381991917593 -0.00486073243558849\\ +0.0931041348706901 -0.00970221248641678\\ +0.10991097009295 -0.0159572460626407\\ +0.126212131452257 -0.0241549368843721\\ +0.140977287162893 -0.0336534221946465\\ +0.154592773641949 -0.0443650957495549\\ +0.167967487209262 -0.0568919720068664\\ +0.180824493487798 -0.0709681455148825\\ +0.194665634334225 -0.0885292117016263\\ +0.207643010725571 -0.107429432008587\\ +0.221485523372639 -0.130372192041392\\ +0.234082727617828 -0.153910153948516\\ +0.247396410088675 -0.181713753461906\\ +0.261467321180114 -0.214565648059079\\ +0.276338529005317 -0.253397301941078\\ +0.28937530190509 -0.291120322516832\\ +0.303027108286649 -0.334520694051378\\ +0.317322963473503 -0.384479591127587\\ +0.332293251639897 -0.442025996989429\\ +0.347969790388763 -0.508365885616513\\ +0.364385898376366 -0.584918817023379\\ +0.381576466127131 -0.673364399428948\\ +0.399578030189527 -0.775702070503229\\ +0.418428850790151 -0.894329125007914\\ +0.438168993151433 -1.03214413114233\\ +0.458840412645483 -1.19268626486235\\ +0.480487043965512 -1.38032637645068\\ +0.503154894503796 -1.60053403940825\\ +0.526892142135084 -1.86025864345731\\ +0.551749237612921 -2.1684858632876\\ +0.572476623970219 -2.45783044941797\\ +0.593982669392029 -2.79362847192951\\ +0.616296625513279 -3.18609403408996\\ +0.639448842855712 -3.64868446121062\\ +0.663470812109245 -4.19952127115729\\ +0.688395206964551 -4.86362680748721\\ +0.714255928554305 -5.67657498367879\\ +0.741088151564139 -6.6907092804561\\ +0.761871770232323 -7.6300617888578\\ +0.783238259917936 -8.77716895914736\\ +0.805203967082557 -10.2063642915651\\ +0.827785696619849 -12.0316496115693\\ +0.851000724712218 -14.4362319869988\\ +0.874866812047975 -17.7314229043297\\ +0.891148232283998 -20.6846598589626\\ +0.907732652520995 -24.553790004679\\ +0.9246257116406 -29.7843856775865\\ +0.941833153464815 -37.0937495208463\\ +0.959360828709328 -47.5780285296376\\ +0.97721469697258 -62.5208315624776\\ +1.04236067397639 -126.97401057248\\ +1.06175918348298 -137.463345996736\\ +1.08151870255226 -144.77959242105\\ +1.10164594963369 -150.018885336893\\ +1.13254131515284 -155.475136786748\\ +1.16430313292089 -159.194732385009\\ +1.19695570235905 -161.876933019613\\ +1.23052400435925 -163.898401681179\\ +1.26503372039588 -165.476203509588\\ +1.30051125217337 -166.743010467117\\ +1.34936714058834 -168.091275449524\\ +1.40005838246811 -169.163972937608\\ +1.45265392594678 -170.041004818518\\ +1.50722530931073 -170.77434309062\\ +1.57833140565207 -171.54148401753\\ +1.65279206146492 -172.184866361391\\ +1.73076553419573 -172.735511875204\\ +1.82920450484626 -173.303560975847\\ +1.9332422875551 -173.794211763824\\ +2.04319732019529 -174.225052674339\\ +2.17940698430292 -174.668485433235\\ +2.32469705998571 -175.061292069653\\ +2.47967289250217 -175.413364910008\\ +2.66947849403426 -175.774967425527\\ +2.87381269185112 -176.100495879283\\ +3.09378757173011 -176.395678020667\\ +3.33060034362469 -176.664826381851\\ +3.61874981241128 -176.940622965401\\ +3.93182875570566 -177.191393081447\\ +4.27199396630681 -177.420088615373\\ +4.64158883361268 -177.629114860254\\ +5.04315948717143 -177.820478679981\\ +5.4794723369002 -177.99588859785\\ +5.95353313081449 -178.156823632671\\ +6.46860766154627 -178.304581539006\\ +7.02824426430854 -178.440313301867\\ +7.63629826128223 -178.565048343193\\ +8.29695852083464 -178.679713370898\\ +9.01477631452495 -178.785146815748\\ +9.79469667069515 -178.882110158887\\ +10.7406615333344 -178.980754704548\\ +11.7779870119709 -179.070661780782\\ +12.9154966501489 -179.152614374599\\ +14.1628661629916 -179.227322714135\\ +15.5307057393347 -179.295431797835\\ +17.030650292528 -179.357527914337\\ +18.6754584276109 -179.41414435352\\ +20.4791209666503 -179.465766454201\\ +22.4569799553979 -179.512836096701\\ +24.8539485742973 -179.559833841532\\ +27.5067600790807 -179.602295119778\\ +30.4427221206439 -179.640658490246\\ +34.0041193270367 -179.678300042692\\ +37.982153061908 -179.711997472261\\ +42.4255643071768 -179.742164368861\\ +47.8277201772749 -179.771289387427\\ +54.41714286866 -179.798985939841\\ +61.9144175597768 -179.823328120186\\ +71.0970943231237 -179.846147359735\\ +82.3978568452854 -179.867248647582\\ +96.3793479961591 -179.886506923185\\ +100 -179.890616186259\\ +}; +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 179.140541819131\\ +0.0108651577465251 179.066180913746\\ +0.0118051652856881 178.985385425413\\ +0.0128264983052803 178.897598324276\\ +0.0139361927422416 178.802214293323\\ +0.0151418932530433 178.698575523814\\ +0.0164519058775369 178.585967139322\\ +0.0178752552590422 178.463612214069\\ +0.0194217468148908 178.33066634769\\ +0.0211020342856859 178.186211754458\\ +0.0229276931286557 178.029250820384\\ +0.024911300260678 177.858699076228\\ +0.0270665207003317 177.673377528297\\ +0.0294082017058709 177.472004281686\\ +0.0319524750575915 177.253185382145\\ +0.0347168681892662 177.01540479274\\ +0.0377204249341695 176.757013409527\\ +0.0409838367175735 176.476217006071\\ +0.0445295850994262 176.171062979232\\ +0.048382096649261 175.839425747327\\ +0.0525679112201842 175.478990625575\\ +0.0571158647812626 175.087235971119\\ +0.0620572880677654 174.661413349196\\ +0.0674262224177818 174.198525420591\\ +0.0732596542821532 173.69530118524\\ +0.0795977700231485 173.148168133228\\ +0.0864842327573189 172.55322074672\\ +0.0939664831495459 171.906184656432\\ +0.102096066230607 171.202375573443\\ +0.110928986489522 170.436651876487\\ +0.120526093687088 169.603359416286\\ +0.130953502048267 168.696266674078\\ +0.142283045721431 167.708487843283\\ +0.154592773641949 166.632390639035\\ +0.167967487209262 165.459484609244\\ +0.182499324481618 164.180284327355\\ +0.198288394912704 162.784139964763\\ +0.215443469003193 161.25902520788\\ +0.234082727617828 159.591269104258\\ +0.254334576130472 157.765213979058\\ +0.273802517792786 155.994605453913\\ +0.294760625512479 154.070012521692\\ +0.317322963473503 151.974508346327\\ +0.341612326858549 149.688398843799\\ +0.367760910160114 147.188598890997\\ +0.395911026646847 144.447868713858\\ +0.426215882901522 141.43390558696\\ +0.458840412645483 138.108318646075\\ +0.493962174387827 134.425585791316\\ +0.526892142135084 130.868387374552\\ +0.562017384808323 126.956012476093\\ +0.599484250318932 122.643476990318\\ +0.639448842855712 117.883742338743\\ +0.682077673286572 112.631890851862\\ +0.72754835291961 106.852448921247\\ +0.783238259917936 99.583768053304\\ +0.851000724712218 90.6087674158485\\ +0.941833153464815 78.7708783057402\\ +1.1430311291145 55.9187419707596\\ +1.24192135270177 47.0880801000996\\ +1.32471398786616 40.8912374401886\\ +1.41302599059955 35.3325151356853\\ +1.50722530931073 30.4091041821993\\ +1.59295021257217 26.6706174789304\\ +1.68355080296122 23.3449774883793\\ +1.77930438991856 20.3977730401079\\ +1.88050405512853 17.7936207145015\\ +1.98745954958102 15.4980702643012\\ +2.10049824165391 13.4786596598881\\ +2.21996611911991 11.7054117283705\\ +2.34622884814232 10.1509893653246\\ +2.47967289250217 8.79065689917491\\ +2.62070669648381 7.60214152983144\\ +2.76976193503698 6.56545117925415\\ +2.92729483504285 5.66268047001788\\ +3.09378757173011 4.87782126735144\\ +3.26974974451167 4.19658522382875\\ +3.4557199367622 3.60624078908364\\ +3.65226736430817 3.09546462758993\\ +3.85999361767968 2.65420629832997\\ +4.07953450345255 2.27356474062231\\ +4.31156199031825 1.94567518410261\\ +4.55678626584099 1.66360532736672\\ +4.8159579101925 1.4212598839477\\ +5.08987019351974 1.2132928157354\\ +5.37936150398065 1.03502674034729\\ +5.68531791387359 0.882379108899897\\ +6.00867589171979 0.751794812774932\\ +6.35042516859595 0.640184904609157\\ +6.71161176749614 0.544871122134708\\ +7.09334120498816 0.463535894124391\\ +7.49678187496691 0.394177493551723\\ +7.92316862486613 0.335069989677692\\ +8.37380653526675 0.284727641492367\\ +8.85007491447353 0.24187337143951\\ +9.3534315202923 0.205410961081128\\ +9.88541702191929 0.174400618945526\\ +10.4476597156082 0.148037584405415\\ +11.0418805085416 0.12563344898075\\ +11.7779870119709 0.103718921983869\\ +12.5631660247414 0.085607549215041\\ +13.5248087041786 0.0687310983303746\\ +14.5600599502069 0.0551690376783256\\ +15.819734815786 0.0430727965863014\\ +17.3475935923388 0.0327083725645139\\ +19.3770333747798 0.0235007069800588\\ +22.0466873523944 0.0159747533442669\\ +25.7876288759386 0.00999326540318179\\ +31.5863540826787 0.00544347880594387\\ +42.0362168384463 0.00231143679599199\\ +67.8940681269615 0.000548984449835643\\ +100 0.000171852971391218\\ +}; +\addlegendentry{$\alpha = 1$} + +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.000171852971391218\\ +0.0229276931286557 -0.00206951628675256\\ +0.0319524750575915 -0.00559593178542173\\ +0.0398658107358057 -0.0108559947941558\\ +0.0470622484984116 -0.0178380173853441\\ +0.0535462089927357 -0.0262393964248417\\ +0.0598104096238105 -0.036516493471737\\ +0.0655868565957134 -0.0480828054025153\\ +0.0712611543011191 -0.0615794597090655\\ +0.0767158117677927 -0.0767089343469536\\ +0.0818300681586717 -0.092948646376442\\ +0.0872852662384851 -0.112602540939889\\ +0.0931041348706901 -0.136379594716431\\ +0.0983995229627797 -0.160683739104343\\ +0.103996091395414 -0.189277512401475\\ +0.10991097009295 -0.222905322260715\\ +0.116162263260848 -0.262436947294901\\ +0.122769104798839 -0.308887535881297\\ +0.128560960694331 -0.353729794456513\\ +0.13462605792989 -0.404981901632993\\ +0.140977287162893 -0.463535894124391\\ +0.147628147190943 -0.530402259747262\\ +0.154592773641949 -0.606724380842252\\ +0.161885969017819 -0.693794465186755\\ +0.169523234155408 -0.793071064487521\\ +0.177520801171768 -0.906198278556502\\ +0.18589566796357 -1.03502674034732\\ +0.194665634334225 -1.18163647359813\\ +0.203849339825241 -1.3483617115879\\ +0.21346630333243 -1.53781776348328\\ +0.223536964590981 -1.75293001529448\\ +0.234082727617828 -1.99696515726978\\ +0.245126006203328 -2.27356474062231\\ +0.256690271549201 -2.5867811858829\\ +0.268800102153763 -2.94111639479911\\ +0.281481236050756 -3.34156315870447\\ +0.297490754721436 -3.89079062182367\\ +0.314410830314732 -4.52508075064765\\ +0.332293251639897 -5.25644327732672\\ +0.351192753045066 -6.09836869664178\\ +0.371167181947586 -7.06598395266519\\ +0.392277675892774 -8.17622276853098\\ +0.414588849683285 -9.4480096490496\\ +0.438168993151433 -10.9024529956355\\ +0.463090280179979 -12.5630360219451\\ +0.489428989611449 -14.4557823527101\\ +0.517265738721588 -16.6093536662103\\ +0.546685729972028 -19.0550060994948\\ +0.577779011797049 -21.826286788193\\ +0.610640754223191 -24.9582899308336\\ +0.645371540164686 -28.4862173121549\\ +0.682077673286572 -32.4429202494216\\ +0.720871503378203 -36.8550857323478\\ +0.768928372075853 -42.5975208479043\\ +0.820188949920225 -48.971272736377\\ +0.88296999554939 -56.9520182239236\\ +0.97721469697258 -68.7971139737399\\ +1.18597101233768 -91.6434780099358\\ +1.28857621318549 -100.53055754767\\ +1.38720978054164 -107.711255867259\\ +1.49339321612424 -114.184979506065\\ +1.59295021257217 -119.292018274622\\ +1.69914417203464 -123.919199052386\\ +1.82920450484626 -128.679043311146\\ +1.96922025547921 -132.941832821426\\ +2.11995345753606 -136.771839681245\\ +2.28222447418683 -140.225608052001\\ +2.45691646298281 -143.351570122283\\ +2.64498018242767 -146.19067340454\\ +2.84743916646731 -148.777379356969\\ +3.06539529505651 -151.140712524996\\ +3.30003479112518 -153.305218656845\\ +3.58553985745983 -155.528512278089\\ +3.89574561577541 -157.551788429064\\ +4.2327890655736 -159.396499306032\\ +4.59899209052235 -161.08103079855\\ +4.99687745385497 -162.621286411947\\ +5.42918617761888 -164.031139396366\\ +5.89889642550864 -165.322784381401\\ +6.40924401935642 -166.50701276971\\ +6.96374473062844 -167.593430316242\\ +7.56621850048106 -168.590630746017\\ +8.22081575524031 -169.50633577533\\ +8.93204599858103 -170.347509284417\\ +9.70480887738009 -171.120451443748\\ +10.5444279352618 -171.830877155225\\ +11.4566872863485 -172.483982103412\\ +12.4478714618793 -173.08449892198\\ +13.5248087041786 -173.636745393414\\ +14.6949180062486 -174.144666161795\\ +15.9662602210142 -174.611869109573\\ +17.3475935923388 -175.04165730116\\ +18.848434090338 -175.437057207651\\ +20.4791209666503 -175.800843782949\\ +22.2508879812839 -176.135562850686\\ +24.1759407916908 -176.443551175377\\ +26.2675410372388 -176.726954524162\\ +28.540097698292 -176.987743972711\\ +31.00926635932 -177.227730667064\\ +33.6920570598025 -177.448579219803\\ +36.6069514759701 -177.651819892065\\ +39.7740302405804 -177.838859691163\\ +43.2151112778964 -178.010992495726\\ +46.9539001068009 -178.169408305628\\ +51.0161531474972 -178.315201701751\\ +55.4298551568474 -178.449379590437\\ +60.2254120146183 -178.572868298837\\ +65.4358601888336 -178.686520080045\\ +71.0970943231237 -178.7911190806\\ +77.248114514036 -178.88738681752\\ +84.7086826655735 -178.985385425413\\ +92.8897872016474 -179.074751248027\\ +100 -179.140541819131\\ +}; +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.01 173.767987881634\\ +0.0108651577465251 173.232411722796\\ +0.0118051652856881 172.651504308286\\ +0.0128264983052803 172.021622361073\\ +0.0139361927422416 171.338883456892\\ +0.0151418932530433 170.599165489829\\ +0.0164519058775369 169.798111131377\\ +0.0178752552590422 168.931138825769\\ +0.0194217468148908 167.993462168442\\ +0.0211020342856859 166.980119832225\\ +0.0229276931286557 165.88601851242\\ +0.024911300260678 164.705991617222\\ +0.0270665207003317 163.434876573892\\ +0.0296805860866562 161.909547381834\\ +0.0325471160553176 160.258919633282\\ +0.0356904934567525 158.476989062439\\ +0.0391374560198028 156.558651485957\\ +0.0429173237842218 154.500047664193\\ +0.0474981480322836 152.070962309239\\ +0.0525679112201842 149.46933974188\\ +0.0587176639073341 146.438488228466\\ +0.0655868565957134 143.216164362615\\ +0.0739381991917593 139.527643127606\\ +0.0849041520408896 135.05194598772\\ +0.10023075482839 129.443095902018\\ +0.128560960694331 120.759236130762\\ +0.192879150802077 106.614510079601\\ +0.254334576130472 97.2457396733486\\ +0.536697694554061 72.1273787181079\\ +0.701206358900715 62.7552215007156\\ +1.13254131515284 45.8922598551574\\ +1.32471398786616 40.654018156767\\ +1.52118551798608 36.2566977649485\\ +1.71488196987055 32.651773337785\\ +1.9332422875551 29.2595031825873\\ +2.15940615210354 26.3273473708357\\ +2.38989256623109 23.8109586984392\\ +2.64498018242767 21.4580493622055\\ +2.92729483504285 19.2654975088367\\ +3.23974262952812 17.2283058929592\\ +3.58553985745983 15.3402826933505\\ +3.93182875570566 13.7476485048756\\ +4.31156199031825 12.267562242767\\ +4.72796959160025 10.8951106968915\\ +5.18459354389293 9.62579093828208\\ +5.68531791387359 8.45561551387414\\ +6.17718759733854 7.48436247831347\\ +6.71161176749614 6.58842618592649\\ +7.29227205872842 5.76584337629589\\ +7.92316862486613 5.01475562700494\\ +8.52964449974123 4.40561369177098\\ +9.18254283565626 3.8500180658541\\ +9.88541702191929 3.34632954457729\\ +10.6420924406474 2.89265820232654\\ +11.3515470892099 2.53502031490746\\ +12.1082975023208 2.21236527290836\\ +12.9154966501489 1.92287603787884\\ +13.7765076954903 1.66458592695201\\ +14.6949180062486 1.43540758694417\\ +15.674554102056 1.23316905890371\\ +16.7194975973196 1.05565385485613\\ +17.6704352608899 0.921492153641282\\ +18.6754584276109 0.802484131852594\\ +19.7376432630023 0.697286685780881\\ +20.8602408924844 0.604606538966635\\ +22.0466873523944 0.523211860530779\\ +23.3006141069691 0.451941193609173\\ +24.6258591635048 0.389709721988936\\ +26.0264788196906 0.335513037438744\\ +27.5067600790807 0.288428666113788\\ +29.0712337727252 0.247615671273934\\ +30.7246884270909 0.212312675899597\\ +32.4721849207315 0.18183464885368\\ +34.6369417737168 0.151561417271409\\ +36.946012051994 0.126166385951251\\ +39.4090164040346 0.10490567145709\\ +42.0362168384463 0.0871378854584748\\ +45.2538627817026 0.0704069182876594\\ +49.1690357762798 0.0553229721856781\\ +53.9177464038763 0.0422648705111044\\ +59.6727119597324 0.031388014920168\\ +66.65363268125 0.0226574270769788\\ +76.5391938823037 0.0150512734304868\\ +90.3557834613866 0.00919652330205167\\ +100 0.00680068670362743\\ +}; +\addlegendentry{$\alpha = 10$} + +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.00680068670362743\\ +0.0122486461375092 -0.0124296666127748\\ +0.0143270295340984 -0.0197731404117576\\ +0.0163009236097978 -0.0289353474596226\\ +0.0180408192871936 -0.038975921849385\\ +0.019783188827842 -0.051037304140209\\ +0.0214947467343796 -0.0649788816414514\\ +0.0231400538013072 -0.0804530829740315\\ +0.024911300260678 -0.0994984143854367\\ +0.0265720110532445 -0.119699899297672\\ +0.0283434330615137 -0.143842487144866\\ +0.0299554933435982 -0.168210800538134\\ +0.0316592411198347 -0.196510481441493\\ +0.0334598912055007 -0.229319982805919\\ +0.0353629550135508 -0.267287664932383\\ +0.0373742574239103 -0.311136265887171\\ +0.0394999546122053 -0.361666610193595\\ +0.041746552892532 -0.419760246562134\\ +0.0441209286319117 -0.486380678712351\\ +0.0466303492974262 -0.562572842806986\\ +0.0492824957004062 -0.64946049738694\\ +0.0520854855057768 -0.748241233595991\\ +0.0550478980785488 -0.860178890450157\\ +0.058178800743451 -0.98659327510785\\ +0.0614877765381008 -1.12884724096989\\ +0.0649849535446982 -1.28833136139451\\ +0.068681035889951 -1.46644664243232\\ +0.0732596542821532 -1.69965238071305\\ +0.0781435060784446 -1.96227416249079\\ +0.0833529396509846 -2.25638417728109\\ +0.0889096598952924 -2.58392930254652\\ +0.0948368186628579 -2.94670337469708\\ +0.101159111222386 -3.34632954457729\\ +0.108902296226373 -3.8500180658541\\ +0.117238180328657 -4.40561369177101\\ +0.126212131452257 -5.01475562700494\\ +0.13587299019027 -5.67889236758711\\ +0.147628147190943 -6.4934401074764\\ +0.160400310705681 -7.38113211946805\\ +0.174277467840897 -8.34391357476068\\ +0.18935521797563 -9.38394231629525\\ +0.207643010725571 -10.6331316057776\\ +0.227697025538168 -11.9846120710478\\ +0.249687842888425 -13.4427892795182\\ +0.273802517792786 -15.0125067544606\\ +0.300246170908546 -16.6988759468203\\ +0.329243733300778 -18.5070315681355\\ +0.364385898376366 -20.6424336116422\\ +0.403278998219369 -22.9365561876743\\ +0.446323392671051 -25.3932842927217\\ +0.493962174387827 -28.0141801801146\\ +0.551749237612921 -31.0587811721591\\ +0.622004882563454 -34.5675440439644\\ +0.707701066118183 -38.572502459645\\ +0.812661920009201 -43.0895677243135\\ +0.959360828709328 -48.7494411158829\\ +1.2192312516491 -57.1911395388745\\ +1.84614694632451 -71.8082409367754\\ +2.38989256623109 -80.6252162091673\\ +3.4557199367622 -92.9373679092422\\ +4.86056423214227 -104.406995377757\\ +6.35042516859595 -113.641037632829\\ +11.3515470892099 -133.824903006706\\ +13.2777082935543 -138.94354345483\\ +15.1070330448668 -142.939445116564\\ +17.030650292528 -146.438488228466\\ +19.0230118866895 -149.46933974188\\ +21.0534524276677 -152.070962309239\\ +23.3006141069691 -154.500047664193\\ +25.7876288759386 -156.75674497942\\ +28.2781797962532 -158.66124477687\\ +31.00926635932 -160.429797951913\\ +34.0041193270367 -162.067613569192\\ +37.2882130718292 -163.580768538239\\ +40.8894822629482 -164.975910714914\\ +44.8385594802129 -166.260010352645\\ +49.1690357762798 -167.440159251587\\ +53.9177464038763 -168.5234138619\\ +58.582482001525 -169.421208185571\\ +63.6507908129576 -170.250981052612\\ +69.1575882873853 -171.017408028452\\ +75.1408106111675 -171.724947907654\\ +81.6416760492152 -172.377828239546\\ +88.704968896542 -172.980038172175\\ +96.3793479961591 -173.535326939423\\ +100 -173.767987881634\\ +}; +\addplot [color=mycolor4, line width=1.5pt] + table[row sep=crcr]{% +0.01 134.429869219535\\ +0.0134316117004605 125.901276157632\\ +0.015710723892474 121.579497177967\\ +0.0178752552590422 118.202342230103\\ +0.0201513573381558 115.240387623513\\ +0.022508800520954 112.66673020743\\ +0.025142033481428 110.25130446357\\ +0.0280833199882324 107.992980153203\\ +0.0313686982456683 105.886489860202\\ +0.0347168681892662 104.081744239374\\ +0.0387782841458937 102.240626519257\\ +0.0433148322337641 100.520779823389\\ +0.048382096649261 98.9088401625908\\ +0.0545427130532976 97.2680987443109\\ +0.0620572880677654 95.6035097401205\\ +0.0712611543011191 93.9123996171436\\ +0.0841249704973636 91.9704895327478\\ +0.148995507285289 85.3647703105094\\ +0.171093390726897 83.6354280252806\\ +0.192879150802077 82.04998887688\\ +0.215443469003193 80.4983937897742\\ +0.240647515001538 78.8475828691373\\ +0.266333272517501 77.2353781780828\\ +0.294760625512479 75.5181257818689\\ +0.326222200971169 73.6866227134979\\ +0.361041859717323 71.7329366690178\\ +0.399578030189527 69.6508974874241\\ +0.446323392671051 67.2287596451743\\ +0.498537346387382 64.6484129003636\\ +0.562017384808323 61.6794966641921\\ +0.639448842855712 58.2955360905227\\ +0.741088151564139 54.2272084122106\\ +0.891148232283998 48.9321024282303\\ +1.33698374182498 37.2156544818656\\ +1.54949503931459 33.1979727064698\\ +1.7629753752872 29.8778246630139\\ +1.96922025547921 27.2018567777363\\ +2.19959306803003 24.6958575939076\\ +2.43436887354314 22.5535214844478\\ +2.69420371368182 20.5605295408353\\ +2.9544079988804 18.8768295647621\\ +3.23974262952812 17.3120294254147\\ +3.55263467657817 15.8618755863371\\ +3.89574561577541 14.521244866858\\ +4.27199396630681 13.2844333485099\\ +4.68458011587293 12.1453959846036\\ +5.13701354335138 11.0979389244363\\ +5.63314267060121 10.1358690778208\\ +6.17718759733854 9.25310665162323\\ +6.71161176749614 8.52155940202724\\ +7.29227205872842 7.84536354437196\\ +7.92316862486613 7.22058857654213\\ +8.60864769614942 6.64350445126479\\ +9.3534315202923 6.1105883687421\\ +10.1626508939302 5.61852651233434\\ +11.0418805085416 5.16421200356669\\ +11.9971773543585 4.74474011457508\\ +13.0351224468151 4.35740157349909\\ +14.1628661629916 3.99967462957315\\ +15.3881775003836 3.66921640646314\\ +16.7194975973196 3.36385396066478\\ +18.1659978837536 3.0815753721221\\ +19.9204570845384 2.79274938442364\\ +21.8443607114946 2.52778725711099\\ +23.9540735872084 2.28455375446623\\ +26.2675410372388 2.06110964420716\\ +28.8044415339625 1.85570189432681\\ +31.5863540826787 1.66675528908996\\ +34.6369417737168 1.49286525736275\\ +37.982153061908 1.33279150781939\\ +41.6504424854512 1.18545183327458\\ +45.6730127016882 1.04991520162051\\ +50.0840798984813 0.925393039869903\\ +54.9211648388788 0.811227515314982\\ +60.2254120146183 0.706875719962255\\ +65.4358601888336 0.620977531072015\\ +71.0970943231237 0.542385953255945\\ +77.248114514036 0.470850973838679\\ +83.9312949816634 0.406132833689327\\ +91.192675984596 0.347984602729838\\ +98.172984061889 0.301595822406654\\ +100 0.290752352319515\\ +}; +\addlegendentry{$\alpha = 100$} + +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.290752352319515\\ +0.0107654461284229 -0.335928495198914\\ +0.0115894830343983 -0.386032809404355\\ +0.0125921561369413 -0.448532721727645\\ +0.013681576279675 -0.517768771418162\\ +0.0148652484499784 -0.593981248783336\\ +0.0161513269350313 -0.677414743413465\\ +0.0175486714964814 -0.768336131680201\\ +0.0190669084051219 -0.86705210600968\\ +0.0207164967560208 -0.973925035172272\\ +0.0227172813302684 -1.10276702924216\\ +0.024911300260678 -1.24292249620893\\ +0.027317215984413 -1.39523578140782\\ +0.0299554933435982 -1.56069746865896\\ +0.0328485736602995 -1.74045223220028\\ +0.0360210656235708 -1.93580533949023\\ +0.0391374560198028 -2.12617280418837\\ +0.0425234633452872 -2.33155798721751\\ +0.0462024137175122 -2.55327202129939\\ +0.0501996513311016 -2.79274938442364\\ +0.0545427130532976 -3.05155381811124\\ +0.0592615181247569 -3.33138502549684\\ +0.0643885742724037 -3.63408610460263\\ +0.0699592016543557 -3.96165162356058\\ +0.0760117761795532 -4.31623619769741\\ +0.0825879938784402 -4.70016337841497\\ +0.0897331581458357 -5.11593460591413\\ +0.0974964918348386 -5.56623790739843\\ +0.105931476351838 -6.05395593491127\\ +0.115096220088501 -6.58217282790275\\ +0.125053858729041 -7.15417925056943\\ +0.13587299019027 -7.7734747888309\\ +0.147628147190943 -8.44376669308426\\ +0.160400310705681 -9.16896371867671\\ +0.174277467840897 -9.9531635471136\\ +0.18935521797563 -10.8006319726142\\ +0.205737431343286 -11.7157717229899\\ +0.223536964590981 -12.7030784735448\\ +0.24287643824604 -13.7670813448704\\ +0.266333272517501 -15.0447094417173\\ +0.292055551218269 -16.4284915645732\\ +0.320262069365769 -17.9239308421593\\ +0.351192753045066 -19.5358400095196\\ +0.385110700232562 -21.2680331032256\\ +0.426215882901522 -23.3152627432337\\ +0.471708469091704 -25.5118005593203\\ +0.522056752784682 -27.8552858201255\\ +0.58313051135262 -30.572081044157\\ +0.657382014340971 -33.6881695490706\\ +0.75487992816532 -37.4733823226056\\ +0.89940221740918 -42.4772708488694\\ +1.43932264471941 -56.0302535660939\\ +1.65279206146492 -59.7680405543664\\ +1.88050405512853 -63.0715742549907\\ +2.11995345753606 -65.9582317266228\\ +2.36796006783313 -68.4596549713112\\ +2.64498018242767 -70.8027585686856\\ +2.9544079988804 -72.9906961885291\\ +3.26974974451167 -74.8657928829914\\ +3.65226736430817 -76.7778605207868\\ +4.07953450345255 -78.5618232105142\\ +4.55678626584099 -80.2305283041758\\ +5.08987019351974 -81.7976791221669\\ +5.73797641421395 -83.3972737642177\\ +6.52852114112777 -85.0262212391076\\ +7.56621850048106 -86.7976115424125\\ +9.18254283565626 -89.0312450900688\\ +13.5248087041786 -93.4740925517387\\ +15.674554102056 -95.2584940087113\\ +17.8341022071005 -96.9031987522802\\ +20.1049641626046 -98.5210843063741\\ +22.4569799553979 -100.108217421366\\ +25.0841505927762 -101.79980320994\\ +27.7615329443679 -103.453777345475\\ +30.7246884270909 -105.216680406261\\ +34.0041193270367 -107.097246661348\\ +37.6335836228661 -109.102748268289\\ +41.6504424854512 -111.238470128996\\ +46.5229952396024 -113.719959520221\\ +51.9655724382751 -116.358701073143\\ +58.582482001525 -119.387291158323\\ +66.65363268125 -122.827915547209\\ +77.9636013040541 -127.209103633797\\ +97.2720319245064 -133.621537922863\\ +100 -134.429869219535\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.pdf b/matlab/figs/comp_filter_2nd_order_dist_reject.pdf new file mode 100644 index 0000000..f5c6418 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_dist_reject.pdf differ diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.png b/matlab/figs/comp_filter_2nd_order_dist_reject.png new file mode 100644 index 0000000..14e3c2f Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_dist_reject.png differ diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.svg b/matlab/figs/comp_filter_2nd_order_dist_reject.svg new file mode 100644 index 0000000..b3b0540 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_dist_reject.svg @@ -0,0 +1,141 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_2nd_order_dist_reject.tex b/matlab/figs/comp_filter_2nd_order_dist_reject.tex new file mode 100644 index 0000000..6fbdb62 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_dist_reject.tex @@ -0,0 +1,46 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.23in, +height=1.991in, +at={(0.42in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=10, +xminorticks=true, +xlabel={$\alpha$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=20, +ymax=40, +ylabel={Disturbance Rejection at $\frac{\omega_0}{10} [dB]$}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 39.0927624128451\\ +0.166810053720006 38.5853642652969\\ +0.278255940220711 37.800492132895\\ +0.464158883361275 36.633478159408\\ +0.774263682681121 34.9882633805142\\ +1.29154966501489 32.8183632679137\\ +2.1544346900319 30.1740773166798\\ +3.59381366380464 27.248002577377\\ +5.99484250318942 24.4161341645066\\ +10 22.1818723661571\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.pdf b/matlab/figs/comp_filter_2nd_order_loop_gain.pdf new file mode 100644 index 0000000..ce7f473 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_loop_gain.pdf differ diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.png b/matlab/figs/comp_filter_2nd_order_loop_gain.png new file mode 100644 index 0000000..776bdce Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_loop_gain.png differ diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.svg b/matlab/figs/comp_filter_2nd_order_loop_gain.svg new file mode 100644 index 0000000..b260c22 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_loop_gain.svg @@ -0,0 +1,413 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_2nd_order_loop_gain.tex b/matlab/figs/comp_filter_2nd_order_loop_gain.tex new file mode 100644 index 0000000..cba60cb --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_loop_gain.tex @@ -0,0 +1,626 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.535in,2.205in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-05, +ymax=100000, +yminorticks=true, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 9091.08341742991\\ +0.207643010725577 21.2526324000572\\ +0.388677669089266 6.17071225805235\\ +0.622004882563471 2.47832462496036\\ +1.12214776820798 0.802851145043177\\ +1.96922025547917 0.272762212832622\\ +3.15136348486648 0.108839931022181\\ +5.8988964255085 0.0314431204032983\\ +20.104964162605 0.0027200729129216\\ +100 0.000109997890689546\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 5000.93738869333\\ +0.0680507369673521 108.902697611881\\ +0.119420002813353 35.9823630157725\\ +0.171093390726901 17.9872437590633\\ +0.225607406649686 10.7092178810218\\ +0.28408836901833 7.05466822709913\\ +0.347969790388769 4.95651868873903\\ +0.418428850790158 3.64494456712196\\ +0.503154894503806 2.71722518182495\\ +0.605036787939122 2.05227695520967\\ +0.747952251562182 1.50631980847815\\ +1.00462042134681 0.993567075932296\\ +1.43932264471941 0.596978472492681\\ +1.76297537528721 0.442289819373678\\ +2.11995345753607 0.332581164924332\\ +2.54921465445142 0.246749981786\\ +3.06539529505653 0.180612235200713\\ +3.75469422407334 0.126316588473328\\ +4.68458011587305 0.0842926685059711\\ +6.1204983724767 0.0509178784502966\\ +8.52964449974102 0.0268096456909702\\ +13.6500780654601 0.01062768131029\\ +30.442722120643 0.0021537058223458\\ +100 0.00019996251148053\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 914.573993569895\\ +0.0190669084051225 255.501881163518\\ +0.0280833199882317 120.642742766896\\ +0.0373742574239106 70.3671700641027\\ +0.0470622484984128 46.2186430288807\\ +0.0576448828292587 32.3940633536575\\ +0.068681035889953 24.153556885544\\ +0.0810790980673169 18.5294363785798\\ +0.0957152153899187 14.4085000873703\\ +0.111956431948388 11.5052897767874\\ +0.130953502048267 9.29534203267109\\ +0.154592773641948 7.50342653576355\\ +0.184189668079971 6.05361621109962\\ +0.223536964590979 4.82833186554327\\ +0.278898029238044 3.77000043022161\\ +0.364385898376354 2.82691177323528\\ +0.512518692705333 1.97945737589136\\ +0.866837993001977 1.15635993299742\\ +2.15940615210357 0.45481952030918\\ +3.03726357970331 0.317510082089385\\ +3.93182875570577 0.239559066440656\\ +4.86056423214213 0.188217557796226\\ +5.8988964255085 0.149414919687434\\ +7.02824426430835 0.119909113220614\\ +8.29695852083491 0.0962291212108758\\ +9.70480887738031 0.0772716977842117\\ +11.35154708921 0.0613063211832702\\ +13.2777082935543 0.0480489703131676\\ +15.674554102056 0.0366483381517822\\ +18.848434090338 0.0267423043070313\\ +23.0867799418717 0.01863133656203\\ +29.0712337727258 0.012173404984012\\ +38.333951017666 0.00719522874994623\\ +55.4298551568467 0.00351170627682357\\ +95.4948563979197 0.00119831398464171\\ +100 0.00109340524334904\\ +}; +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 140.722991369362\\ +0.0116968270397038 112.009500385658\\ +0.0136815762796747 90.2223234709831\\ +0.0161513269350309 72.6218422631043\\ +0.0192435097523033 58.4403896624145\\ +0.0233543813990648 46.5074927772157\\ +0.0288709091735923 36.6171251755414\\ +0.0370312667586993 27.9527553394362\\ +0.0506646100892127 20.1109982378222\\ +0.0781435060784454 12.8992743266897\\ +0.157469771464309 6.36295771038197\\ +0.924625711640574 1.08153538605668\\ +10.5444279352617 0.0943242140652724\\ +18.504070195423 0.053157410225393\\ +26.5108360190854 0.0364845131768829\\ +34.6369417737173 0.0273096261709795\\ +43.2151112778977 0.0212744468678705\\ +52.4468874949512 0.0169214928938233\\ +62.4878807200689 0.0136090471731015\\ +73.7679760252773 0.0109470588630036\\ +86.285125663669 0.00881172207239461\\ +100 0.00710615934375111\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.535in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.672,2.817)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 -179.89062821824\\ +0.0118051652856881 -179.870889947099\\ +0.0138082976521811 -179.848990045094\\ +0.0158562396177109 -179.826604053944\\ +0.0182079168009943 -179.800903421263\\ +0.0207164967560208 -179.773495440718\\ +0.0233543813990654 -179.744684063158\\ +0.0263281546564798 -179.712217040898\\ +0.0294082017058709 -179.678606032088\\ +0.0328485736602995 -179.641084913115\\ +0.0363546996129332 -179.602873164325\\ +0.0402350554886941 -179.560617414893\\ +0.0445295850994262 -179.513898269155\\ +0.04883022086878 -179.467166998388\\ +0.0535462089927357 -179.415991048157\\ +0.0587176639073341 -179.35996285977\\ +0.0643885742724037 -179.298642341248\\ +0.0706071771413795 -179.231555850334\\ +0.0774263682681121 -179.158195727156\\ +0.0849041520408896 -179.078020619364\\ +0.0931041348706901 -178.990456917035\\ +0.102096066230607 -178.894901707353\\ +0.111956431948387 -178.790727772598\\ +0.122769104798839 -178.67729129079\\ +0.13462605792989 -178.553943056235\\ +0.147628147190943 -178.420044213\\ +0.161885969017819 -178.274987677839\\ +0.177520801171768 -178.118226600187\\ +0.194665634334225 -177.949311330601\\ +0.21346630333243 -177.767936390176\\ +0.236250846547792 -177.553917814402\\ +0.261467321180114 -177.324954193994\\ +0.292055551218269 -177.059070005904\\ +0.332293251639897 -176.73026813339\\ +0.392277675892774 -176.286590526034\\ +0.512518692705321 -175.569015639672\\ +0.567222897164457 -175.316317097488\\ +0.616296625513279 -175.126209597573\\ +0.663470812109245 -174.973864361778\\ +0.707701066118183 -174.856065470197\\ +0.747952251562161 -174.768248012158\\ +0.783238259917936 -174.705248023726\\ +0.820188949920225 -174.652155384713\\ +0.851000724712218 -174.617170784391\\ +0.88296999554939 -174.589091203872\\ +0.91614024571388 -174.568100723531\\ +0.941833153464815 -174.557095517583\\ +0.968246611930323 -174.550198473814\\ +0.995400828762154 -174.547435596827\\ +1.02331657833024 -174.548817325639\\ +1.05201521761614 -174.554338438078\\ +1.08151870255226 -174.563978098636\\ +1.1118496048193 -174.577700048945\\ +1.1430311291145 -174.595452937688\\ +1.18597101233768 -174.625277729275\\ +1.23052400435925 -174.661954816682\\ +1.28857621318549 -174.717073774523\\ +1.34936714058834 -174.78198472998\\ +1.42611370719414 -174.871922466285\\ +1.50722530931073 -174.973864361778\\ +1.60770442167387 -175.106235152464\\ +1.73076553419573 -175.272583202277\\ +1.89792164283904 -175.498306673297\\ +2.1395888713434 -175.811688743346\\ +3.36144900010886 -177.013239852119\\ +3.78947091907461 -177.303420434949\\ +4.2327890655736 -177.553917814402\\ +4.68458011587293 -177.767936390176\\ +5.18459354389293 -177.966759878272\\ +5.68531791387359 -178.134443185507\\ +6.23440188862789 -178.290011637976\\ +6.83651600451004 -178.433926542505\\ +7.49678187496691 -178.566742284265\\ +8.22081575524031 -178.689070277116\\ +9.01477631452495 -178.801551272081\\ +9.88541702191929 -178.904834561406\\ +10.8401435917834 -178.999562746311\\ +11.8870769771187 -179.086360910107\\ +13.0351224468151 -179.165829221832\\ +14.2940453343172 -179.238538169841\\ +15.674554102056 -179.305025780619\\ +17.188391428171 -179.365796311617\\ +18.848434090338 -179.42132001828\\ +20.6688024962902 -179.472033686185\\ +22.874908173557 -179.522744816343\\ +25.3164847863143 -179.568619455794\\ +28.0186655645918 -179.610109876706\\ +31.00926635932 -179.64762843086\\ +34.6369417737168 -179.684467959792\\ +38.6890073932801 -179.717467709625\\ +43.6153778920815 -179.749343718745\\ +49.1690357762798 -179.777630219317\\ +55.9432570616943 -179.804538573582\\ +64.2403365939436 -179.829770457488\\ +73.7679760252756 -179.851747985357\\ +85.493270662683 -179.872074484969\\ +100 -179.89062821824\\ +}; +\addlegendentry{$\alpha = 0.1$} + +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 -179.140713672102\\ +0.0108651577465251 -179.066401332976\\ +0.0118051652856881 -178.985668134057\\ +0.0128264983052803 -178.897960922238\\ +0.0139361927422416 -178.802679351933\\ +0.0151418932530433 -178.699171989373\\ +0.0164519058775369 -178.586732132507\\ +0.0178752552590422 -178.464593336682\\ +0.0194217468148908 -178.331924639481\\ +0.0211020342856859 -178.187825482794\\ +0.0229276931286557 -178.031320336671\\ +0.024911300260678 -177.861353038358\\ +0.0270665207003317 -177.676780871837\\ +0.0294082017058709 -177.476368428947\\ +0.0319524750575915 -177.25878131393\\ +0.0347168681892662 -177.022579780236\\ +0.0377204249341695 -176.766212423251\\ +0.0409838367175735 -176.488010097329\\ +0.0445295850994262 -176.186180282296\\ +0.048382096649261 -175.858802196334\\ +0.0525679112201842 -175.503823041914\\ +0.0571158647812626 -175.119055882815\\ +0.0620572880677654 -174.702179786913\\ +0.0674262224177818 -174.25074303503\\ +0.0732596542821532 -173.762170393854\\ +0.0795977700231485 -173.233775682443\\ +0.0864842327573189 -172.662781126378\\ +0.0939664831495459 -172.046345286011\\ +0.102096066230607 -171.381601653462\\ +0.111956431948387 -170.582888902638\\ +0.122769104798839 -169.717280200335\\ +0.13462605792989 -168.781314650408\\ +0.147628147190943 -167.772011625173\\ +0.161885969017819 -166.687104732643\\ +0.179165032736394 -165.404907234097\\ +0.198288394912704 -164.029912813447\\ +0.221485523372639 -162.427387581\\ +0.249687842888425 -160.579783541073\\ +0.286719649749373 -158.326672045838\\ +0.344776405473441 -155.192669143444\\ +0.438168993151433 -151.128061047637\\ +0.489428989611449 -149.362989711645\\ +0.536697694554061 -147.994015996808\\ +0.58313051135262 -146.865989833988\\ +0.627766010580631 -145.962635753552\\ +0.66961600548533 -145.259530635507\\ +0.707701066118183 -144.72805494589\\ +0.747952251562161 -144.267002416098\\ +0.783238259917936 -143.939418942835\\ +0.820188949920225 -143.665400762207\\ +0.851000724712218 -143.485861590985\\ +0.88296999554939 -143.342343726257\\ +0.907732652520995 -143.258681289731\\ +0.933189771573347 -143.195775133703\\ +0.950556592010137 -143.16543818997\\ +0.968246611930323 -143.144417089579\\ +0.986265846131287 -143.132732120231\\ +0.995400828762154 -143.130394562143\\ +1.00462042134681 -143.130394562143\\ +1.01392540755881 -143.132732120231\\ +1.03279473191894 -143.144417089579\\ +1.05201521761614 -143.16543818997\\ +1.07159339982264 -143.195775133703\\ +1.10164594963369 -143.258681289731\\ +1.13254131515284 -143.342343726257\\ +1.16430313292089 -143.446581224983\\ +1.20804213467733 -143.617174297524\\ +1.25342426546138 -143.823285292258\\ +1.3125568357718 -144.129658733923\\ +1.37447909267756 -144.488468571401\\ +1.45265392594678 -144.985255634364\\ +1.53527502878039 -145.550307794039\\ +1.63762407452172 -146.289528147261\\ +1.7629753752872 -147.229723113893\\ +1.91550055557359 -148.393099018839\\ +2.10049824165391 -149.79340448287\\ +2.34622884814232 -151.584894952284\\ +2.76976193503698 -154.400444167452\\ +3.61874981241128 -158.938285677829\\ +4.15545533471895 -161.159778581127\\ +4.68458011587293 -162.973078382118\\ +5.23261423948667 -164.54053672614\\ +5.79112264764194 -165.881956219645\\ +6.40924401935642 -167.130247168621\\ +7.02824426430854 -168.184697442532\\ +7.70702711421226 -169.164347712783\\ +8.45136633068495 -170.071781223378\\ +9.26759330114683 -170.910196132864\\ +10.1626508939302 -171.683190317359\\ +11.1441525146678 -172.394590003708\\ +12.2204468663152 -173.048316808337\\ +13.4006889636394 -173.648287290847\\ +14.5600599502069 -174.145473560762\\ +15.819734815786 -174.604936036591\\ +17.188391428171 -175.029275906316\\ +18.6754584276109 -175.420973130622\\ +20.2911801804663 -175.782378108704\\ +22.0466873523944 -176.115707660148\\ +23.9540735872084 -176.423044276402\\ +26.0264788196906 -176.706337800454\\ +28.2781797962532 -176.967408865866\\ +30.7246884270909 -177.207953569069\\ +33.3828586473175 -177.429548965519\\ +36.2710025233077 -177.633659074507\\ +39.4090164040346 -177.82164115293\\ +42.818517986523 -177.99475205815\\ +46.5229952396024 -178.154154567274\\ +50.5479682119114 -178.300923557011\\ +54.9211648388788 -178.436051976864\\ +59.6727119597324 -178.560456570436\\ +64.8353428605487 -178.674983316398\\ +70.4446227729899 -178.780412573347\\ +77.248114514036 -178.887759582164\\ +84.7086826655735 -178.985668134057\\ +92.8897872016474 -179.074965655215\\ +100 -179.140713672102\\ +}; +\addlegendentry{$\alpha = 1$} + +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.01 -173.774788568338\\ +0.0108651577465251 -173.241117523925\\ +0.0118051652856881 -172.662645022726\\ +0.0128264983052803 -172.035873157032\\ +0.0139361927422416 -171.357103775202\\ +0.0151418932530433 -170.622447869888\\ +0.0164519058775369 -169.827842250323\\ +0.0178752552590422 -168.969075452545\\ +0.0194217468148908 -168.041825160296\\ +0.0211020342856859 -167.041709707718\\ +0.0231400538013072 -165.839695512164\\ +0.0253749037973356 -164.536479621209\\ +0.0278255940220721 -163.126552859854\\ +0.0305129701718286 -161.604982695695\\ +0.0334598912055007 -159.967699797059\\ +0.0366914237840248 -158.211832283408\\ +0.0406077202570047 -156.141917446541\\ +0.044942026621191 -153.928033137591\\ +0.0501996513311016 -151.354162060036\\ +0.0565917016324609 -148.392143199999\\ +0.0643885742724037 -145.026415676857\\ +0.0753142016597439 -140.752022751736\\ +0.133390569003905 -124.970190995014\\ +0.151768339028343 -121.712035329542\\ +0.169523234155408 -119.085953718258\\ +0.187617469143913 -116.829422172782\\ +0.207643010725571 -114.725916834058\\ +0.227697025538168 -112.95042165589\\ +0.249687842888425 -111.306436179918\\ +0.273802517792786 -109.793283489004\\ +0.297490754721436 -108.541597582752\\ +0.323228397818141 -107.391936961811\\ +0.351192753045066 -106.341555283281\\ +0.378074666359942 -105.488763628973\\ +0.407014245321941 -104.709750164265\\ +0.438168993151433 -104.002233106655\\ +0.471708469091704 -103.363961244476\\ +0.503154894503796 -102.860565523684\\ +0.536697694554061 -102.4071380194\\ +0.572476623970219 -102.0023817884\\ +0.610640754223191 -101.645098848711\\ +0.645371540164686 -101.375813118603\\ +0.682077673286572 -101.139987845429\\ +0.720871503378203 -100.937073715689\\ +0.75487992816532 -100.792770891729\\ +0.790492762269657 -100.670749103433\\ +0.820188949920225 -100.58903552245\\ +0.851000724712218 -100.521362226817\\ +0.88296999554939 -100.467655890934\\ +0.907732652520995 -100.436506256515\\ +0.933189771573347 -100.413160768401\\ +0.959360828709328 -100.397605083772\\ +0.97721469697258 -100.391557374186\\ +0.995400828762154 -100.388965794125\\ +1.01392540755881 -100.389829634446\\ +1.03279473191894 -100.394149131537\\ +1.05201521761614 -100.401925467233\\ +1.07159339982264 -100.413160768401\\ +1.10164594963369 -100.436506256515\\ +1.13254131515284 -100.467655890934\\ +1.16430313292089 -100.506628777634\\ +1.20804213467733 -100.570804040044\\ +1.25342426546138 -100.648999863587\\ +1.30051125217337 -100.741300689837\\ +1.36186523675611 -100.876664311684\\ +1.42611370719414 -101.034448524116\\ +1.49339321612424 -101.214913760989\\ +1.57833140565207 -101.461828112581\\ +1.66810053720008 -101.742401082043\\ +1.7629753752872 -102.057270781196\\ +1.88050405512853 -102.46890426975\\ +2.00586777950826 -102.929388531421\\ +2.1395888713434 -103.440033624148\\ +2.28222447418683 -104.002233106655\\ +2.45691646298281 -104.709750164265\\ +2.64498018242767 -105.488763628973\\ +2.84743916646731 -106.341555283281\\ +3.06539529505651 -107.270379009627\\ +3.33060034362469 -108.408865974246\\ +3.61874981241128 -109.649093482434\\ +3.93182875570566 -110.993388178224\\ +4.31156199031825 -112.611101780128\\ +4.72796959160025 -114.360322503503\\ +5.18459354389293 -116.240301017883\\ +5.73797641421395 -118.455770930664\\ +6.40924401935642 -121.04021431995\\ +7.22534949178734 -124.019763979012\\ +8.22081575524031 -127.406059862663\\ +9.70480887738009 -131.957220006039\\ +15.9662602210142 -145.761219943347\\ +18.3342548256232 -149.321608647415\\ +20.6688024962902 -152.229961736558\\ +23.0867799418716 -154.749533939061\\ +25.5509709035258 -156.911395962608\\ +28.2781797962532 -158.928532441803\\ +31.2964801067081 -160.801017114723\\ +34.31907197459 -162.380001463229\\ +37.6335836228661 -163.84518001327\\ +41.268208457029 -165.201092599289\\ +45.2538627817026 -166.452992788869\\ +49.6244487762885 -167.606586124146\\ +54.41714286866 -168.667817035064\\ +59.6727119597324 -169.642700731847\\ +65.4358601888336 -170.537194697284\\ +71.0970943231237 -171.278308057139\\ +77.248114514036 -171.963091643144\\ +83.9312949816634 -172.5954547906\\ +91.192675984596 -173.179117438889\\ +99.0822809900383 -173.71760002056\\ +100 -173.774788568338\\ +}; +\addlegendentry{$\alpha = 10$} + +\addplot [color=mycolor4, line width=1.5pt] + table[row sep=crcr]{% +0.01 -134.720621571854\\ +0.0130652016212468 -127.162762935638\\ +0.0151418932530433 -123.188483573552\\ +0.017228054471314 -119.895823576509\\ +0.0194217468148908 -117.022997900084\\ +0.0216938351838516 -114.544095914055\\ +0.0240093487686069 -112.423921962271\\ +0.0265720110532445 -110.450957470892\\ +0.0291383170483282 -108.783920333702\\ +0.0319524750575915 -107.234564882802\\ +0.0350384224529072 -105.798854157874\\ +0.0384224084605498 -104.471858026018\\ +0.0421332174384734 -103.248045501123\\ +0.0462024137175122 -102.12152767536\\ +0.0506646100892133 -101.086253141056\\ +0.0555577622239876 -100.136160358257\\ +0.0603643850607596 -99.3489804810077\\ +0.0655868565957134 -98.6217565289625\\ +0.0712611543011191 -97.9504337309399\\ +0.0774263682681121 -97.3311403799273\\ +0.0841249704973636 -96.760202900847\\ +0.0914031074875622 -96.2341539962272\\ +0.099310918137495 -95.7497354572084\\ +0.107902879151619 -95.3038969470492\\ +0.117238180328657 -94.8937918174262\\ +0.127381132318649 -94.5167708061136\\ +0.138401609657311 -94.1703742867668\\ +0.150375532129977 -93.8523235945575\\ +0.163385387780984 -93.5605118316037\\ +0.177520801171768 -93.2929944596024\\ +0.192879150802077 -93.0479799101055\\ +0.20956623994805 -92.823820382074\\ +0.227697025538168 -92.6190029487679\\ +0.247396410088675 -92.4321410591314\\ +0.268800102153763 -92.2619664905094\\ +0.292055551218269 -92.107321788024\\ +0.317322963473503 -91.9671532098275\\ +0.341612326858549 -91.8539363344348\\ +0.367760910160114 -91.7507891500901\\ +0.395911026646847 -91.6571542973635\\ +0.426215882901522 -91.5725253875397\\ +0.458840412645483 -91.4964444042\\ +0.493962174387827 -91.4284993366669\\ +0.531772317785112 -91.3683220385804\\ +0.567222897164457 -91.3217814635875\\ +0.605036787939111 -91.2807445305175\\ +0.645371540164686 -91.2450408337594\\ +0.688395206964551 -91.2145220781734\\ +0.72754835291961 -91.1923932581215\\ +0.768928372075853 -91.1739127480907\\ +0.812661920009201 -91.1590241320323\\ +0.858882855954615 -91.1476819546261\\ +0.907732652520995 -91.1398515853396\\ +0.959360828709328 -91.1355091147888\\ +1.01392540755881 -91.134641283149\\ +1.07159339982264 -91.1372454404396\\ +1.13254131515284 -91.1433295385864\\ +1.19695570235905 -91.1529121552403\\ +1.26503372039588 -91.166022549413\\ +1.33698374182498 -91.1827007490638\\ +1.41302599059955 -91.2029976708537\\ +1.49339321612424 -91.2269752723557\\ +1.59295021257217 -91.2596993793799\\ +1.69914417203464 -91.2976693157392\\ +1.81241754737421 -91.3410427738754\\ +1.9332422875551 -91.3899998408709\\ +2.06212180399915 -91.4447437252492\\ +2.21996611911991 -91.5146865790831\\ +2.38989256623109 -91.5928641592475\\ +2.57282596744791 -91.6796997684186\\ +2.76976193503698 -91.7756632852815\\ +2.98177229001969 -91.8812735884256\\ +3.2100108955431 -91.9971012137578\\ +3.4557199367622 -92.1237712517941\\ +3.72023668141304 -92.2619664905094\\ +4.00500075787373 -92.412430808287\\ +4.35149650092505 -92.5973780122744\\ +4.72796959160025 -92.8001341455062\\ +5.13701354335138 -93.0220722227044\\ +5.58144624945484 -93.2646907170347\\ +6.06432939540815 -93.5296220109336\\ +6.58898955079985 -93.818641249006\\ +7.15904108596503 -94.1336755113687\\ +7.77841107128642 -94.4768131899695\\ +8.45136633068495 -94.8503134041327\\ +9.18254283565626 -95.2566152323905\\ +9.97697764236288 -95.6983464626441\\ +10.8401435917834 -96.1783314685151\\ +11.7779870119709 -96.6995977027236\\ +12.7969686821595 -97.2653801545594\\ +13.9041083409004 -97.8791229442509\\ +15.1070330448668 -98.5444770191928\\ +16.4140297114445 -99.265292674015\\ +17.8341022071005 -100.045605339698\\ +19.3770333747798 -100.889612782487\\ +21.0534524276677 -101.801641534822\\ +22.874908173557 -102.786100072425\\ +24.8539485742973 -103.847415993793\\ +27.2543253128104 -105.122101458955\\ +29.886528735503 -106.502794795633\\ +32.772948499234 -107.994760013654\\ +35.9381366380452 -109.602520255081\\ +39.4090164040346 -111.32954134885\\ +43.6153778920815 -113.369404065259\\ +48.2707096560317 -115.556185155078\\ +53.9177464038763 -118.105563266959\\ +60.2254120146183 -120.816671583798\\ +68.5229159528409 -124.163001769611\\ +79.4145171902947 -128.184488440397\\ +97.2720319245064 -133.928667052571\\ +100 -134.720621571854\\ +}; +\addlegendentry{$\alpha = 100$} + +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.pdf b/matlab/figs/comp_filter_2nd_order_study_alphas.pdf new file mode 100644 index 0000000..12fd3c6 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_study_alphas.pdf differ diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.png b/matlab/figs/comp_filter_2nd_order_study_alphas.png new file mode 100644 index 0000000..6c25080 Binary files /dev/null and b/matlab/figs/comp_filter_2nd_order_study_alphas.png differ diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.svg b/matlab/figs/comp_filter_2nd_order_study_alphas.svg new file mode 100644 index 0000000..76ca319 --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_study_alphas.svg @@ -0,0 +1,269 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_2nd_order_study_alphas.tex b/matlab/figs/comp_filter_2nd_order_study_alphas.tex new file mode 100644 index 0000000..6af42fa --- /dev/null +++ b/matlab/figs/comp_filter_2nd_order_study_alphas.tex @@ -0,0 +1,86 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=2.092in, +height=2.123in, +at={(0.441in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=10, +xminorticks=true, +xlabel={$\alpha$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=0, +ymax=25, +ylabel={Guaranted GM $\frac{M_S}{M_S-1}$ [dB]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.868279070864499\\ +0.166810053720006 1.44760531281904\\ +0.278255940220711 2.41199453173858\\ +0.464158883361279 3.92417178049961\\ +0.774263682681128 6.29619810673849\\ +1.29154966501488 9.61984426601562\\ +2.15443469003188 13.2966860920625\\ +3.59381366380464 17.3469113506894\\ +5.99484250318942 20.3663405291447\\ +10 23.8787551492833\\ +}; +\end{axis} + +\begin{axis}[% +width=2.092in, +height=2.123in, +at={(3.195in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=10, +xminorticks=true, +xlabel={$\alpha$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=0, +ymax=60, +ylabel={Guaranted PM $\frac{1}{M_S}$ [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 5.45056462682881\\ +0.166810053720006 8.79570936236155\\ +0.278255940220711 13.8924640050576\\ +0.464158883361275 20.8276034046066\\ +0.774263682681121 29.5426011321039\\ +1.29154966501489 38.3666597446777\\ +2.1544346900319 44.8995865551335\\ +3.59381366380464 49.5194068502131\\ +5.99484250318942 51.8028300175911\\ +10 53.6298435453589\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_3rd_order.pdf b/matlab/figs/comp_filter_3rd_order.pdf new file mode 100644 index 0000000..54854d1 Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order.pdf differ diff --git a/matlab/figs/comp_filter_3rd_order.png b/matlab/figs/comp_filter_3rd_order.png new file mode 100644 index 0000000..d49947d Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order.png differ diff --git a/matlab/figs/comp_filter_3rd_order.svg b/matlab/figs/comp_filter_3rd_order.svg new file mode 100644 index 0000000..94b0f48 --- /dev/null +++ b/matlab/figs/comp_filter_3rd_order.svg @@ -0,0 +1,407 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_3rd_order.tex b/matlab/figs/comp_filter_3rd_order.tex new file mode 100644 index 0000000..4dd0f26 --- /dev/null +++ b/matlab/figs/comp_filter_3rd_order.tex @@ -0,0 +1,1308 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.561in, +at={(0.535in,2.203in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-05, +ymax=20, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.30372917994101e-05\\ +0.0223022329796594 0.000141954629654633\\ +0.0343982648902292 0.000505192396763455\\ +0.0470622484984128 0.00123988847248683\\ +0.0609234915240071 0.00254398508684075\\ +0.0760117761795532 0.00461788803975752\\ +0.0939664831495469 0.00801327596139176\\ +0.115096220088503 0.0133127191942067\\ +0.142283045721435 0.0221952692242937\\ +0.17916503273639 0.0379588389121872\\ +0.245126006203334 0.0771995634341209\\ +0.361041859717334 0.185897641235229\\ +0.430163575810679 0.281784232789983\\ +0.489428989611453 0.389499660058445\\ +0.546685729972018 0.523960297782072\\ +0.599484250318941 0.684690726075178\\ +0.64537154016467 0.864820411795381\\ +0.68839520696455 1.08255428589344\\ +0.734287044716676 1.39180846844897\\ +0.776050333513357 1.77977231399786\\ +0.812661920009195 2.25349412382089\\ +0.851000724712225 2.97341335645449\\ +0.88296999554941 3.87447854340857\\ +0.916140245713852 5.32870951880466\\ +0.959360828709315 8.61806336694939\\ +0.977214696972572 10.3353500171443\\ +0.986265846131283 11.0571169386989\\ +0.995400828762152 11.5156014507724\\ +1.00462042134681 11.6080423674042\\ +1.01392540755882 11.3255442744948\\ +1.03279473191895 10.0316115682198\\ +1.11184960481927 5.41954601963318\\ +1.15361810173648 4.32527478699975\\ +1.19695570235904 3.61539444591566\\ +1.24192135270178 3.12447617002054\\ +1.28857621318552 2.76723844233463\\ +1.34936714058831 2.43920811581565\\ +1.41302599059953 2.19648640792004\\ +1.4796880626864 2.01028319539522\\ +1.56384675830224 1.83767258864406\\ +1.6527920614649 1.70369865417603\\ +1.74679621512725 1.59713530858884\\ +1.86324631193156 1.49790009659606\\ +1.98745954958099 1.41855976411536\\ +2.13958887134342 1.34585272174678\\ +2.30336287314213 1.28750704081914\\ +2.50264009641792 1.23476705958324\\ +2.74434330322837 1.18825821353078\\ +3.03726357970331 1.14813182997047\\ +3.39258338274099 1.11421197616025\\ +3.85999361767977 1.08425069752001\\ +4.47353305449847 1.05922580710622\\ +5.28107971193433 1.03941935590867\\ +6.40924401935646 1.02401781368817\\ +8.14537176628075 1.0124947874117\\ +11.2473717836475 1.00476871161683\\ +18.504070195423 1.00089381295404\\ +75.1408106111698 1.0000041422328\\ +100 1.0000013302442\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.0000013302442\\ +0.0803350197712474 1.0034508863198\\ +0.118324062745838 1.01124888476675\\ +0.154592773641948 1.02344224263379\\ +0.191109062168914 1.04033621362514\\ +0.227697025538168 1.06191819045578\\ +0.263889081445751 1.0880078684118\\ +0.300246170908555 1.11926926442123\\ +0.335371015200293 1.15470708840852\\ +0.371167181947577 1.19670264756357\\ +0.407014245321944 1.24548685078128\\ +0.44222739805059 1.30095733626888\\ +0.476077523022637 1.36251830710181\\ +0.512518692705333 1.43952826361555\\ +0.546685729972018 1.52394959251956\\ +0.583130511352622 1.63011925909583\\ +0.616296625513294 1.74485907435538\\ +0.65134909462728 1.89020094588586\\ +0.682077673286568 2.04394295584679\\ +0.714255928554312 2.23980114877677\\ +0.747952251562183 2.4967699410094\\ +0.776050333513357 2.76723844233463\\ +0.805203967082547 3.12447617002053\\ +0.835452805838287 3.61539444591565\\ +0.866837993001977 4.32527478699975\\ +0.899402217409205 5.41954601963316\\ +0.933189771573324 7.2191753896861\\ +0.977214696972572 10.756909101882\\ +0.986265846131283 11.3255442744948\\ +0.995400828762152 11.6080423674042\\ +1.00462042134681 11.5156014507724\\ +1.01392540755882 11.0571169386989\\ +1.03279473191895 9.48555512035695\\ +1.11184960481927 4.50865093721403\\ +1.15361810173648 3.37476371390535\\ +1.20804213467733 2.50305285194715\\ +1.2650337203959 1.94811167291939\\ +1.33698374182495 1.50511584268312\\ +1.41302599059953 1.20100989443977\\ +1.50722530931076 0.949612883839094\\ +1.62259528707809 0.745568688034507\\ +1.76297537528721 0.581582617159815\\ +1.95114834684662 0.439572492831897\\ +2.19959306803007 0.322971071692721\\ +2.52582002696278 0.230802732809771\\ +3.03726357970331 0.150332837569071\\ +4.19394395566719 0.0725451408993513\\ +5.95353313081437 0.032717853835944\\ +7.49678187496688 0.0190349912219486\\ +9.18254283565628 0.0116134473976016\\ +11.2473717836475 0.00695405080920123\\ +13.7765076954905 0.00408542296236347\\ +17.1883914281715 0.00224132942870532\\ +22.0466873523941 0.00111699825229259\\ +29.6122543798804 0.000478891124292071\\ +43.6153778920801 0.000154035874586985\\ +77.9636013040524 2.74269851899507e-05\\ +100 1.30372917994101e-05\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 2.28883335307516e-05\\ +0.0223022329796594 0.000249148373226688\\ +0.0343982648902292 0.000886259541182149\\ +0.0470622484984128 0.00217359592449624\\ +0.0609234915240071 0.00445515533783693\\ +0.0760117761795532 0.00807553430477928\\ +0.0931041348706907 0.013659881334838\\ +0.112993393803322 0.0221398836375915\\ +0.137131471775395 0.0352359329757082\\ +0.167967487209265 0.0563130939329024\\ +0.209566239948043 0.0922687189583984\\ +0.271289780037246 0.161250276680452\\ +0.371167181947577 0.312152543730475\\ +0.512518692705333 0.60693659762447\\ +0.616296625513294 0.875702591227312\\ +0.694771254846024 1.09585335094203\\ +0.7618717702323 1.28336527978096\\ +0.82018894992022 1.43604759483327\\ +0.874866812047991 1.56321130533495\\ +0.924625711640573 1.66104099061614\\ +0.968246611930311 1.73086171900095\\ +1.01392540755882 1.78750459728328\\ +1.061759183483 1.82944943463121\\ +1.11184960481927 1.85618799807251\\ +1.16430313292088 1.8682207478754\\ +1.21923125164911 1.86688376055284\\ +1.28857621318552 1.85032101514791\\ +1.36186523675608 1.82096982691867\\ +1.46610868404699 1.76821360558792\\ +1.60770442167383 1.69045371994042\\ +1.95114834684662 1.5221081713973\\ +2.32469705998565 1.38957849634921\\ +2.66947849403432 1.30352305749068\\ +3.03726357970331 1.23745847903284\\ +3.45571993676214 1.18364945713668\\ +3.93182875570577 1.14039596968131\\ +4.5149677720361 1.10388218602153\\ +5.23261423948667 1.07410563011519\\ +6.1204983724767 1.05071872374465\\ +7.35981447526577 1.03152533826166\\ +9.09827289445557 1.01748666130785\\ +11.7779870119712 1.00800693529655\\ +17.0306502925285 1.00234285514795\\ +34.3190719745904 1.00017567562551\\ +100 1.00000261437514\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00000261437514\\ +0.0655868565957144 1.00343044858512\\ +0.0948368186628593 1.0112862748344\\ +0.121642429385737 1.02331619434523\\ +0.148995507285285 1.04015249968475\\ +0.177520801171764 1.06216359379293\\ +0.207643010725577 1.08980667056381\\ +0.240647515001542 1.12467392642575\\ +0.276338529005317 1.16707864181028\\ +0.314410830314726 1.21692125466924\\ +0.357728509936787 1.27841929774388\\ +0.407014245321944 1.35317782392074\\ +0.467379510799246 1.44917801824601\\ +0.572476623970218 1.61704377927536\\ +0.663470812109235 1.74580170380079\\ +0.720871503378214 1.80898759323059\\ +0.768928372075831 1.84621493355107\\ +0.812661920009195 1.86517235612996\\ +0.851000724712225 1.86896840626738\\ +0.89114823228402 1.85973873182944\\ +0.933189771573324 1.83601149986839\\ +0.977214696972572 1.79710079101992\\ +1.02331657833024 1.74330678392549\\ +1.07159339982267 1.67595620004615\\ +1.12214776820798 1.59725581598496\\ +1.18597101233767 1.49178104534953\\ +1.2650337203959 1.3600492579906\\ +1.36186523675608 1.20717235112154\\ +1.49339321612425 1.02464116448177\\ +1.6835508029612 0.81503417472472\\ +2.00586777950823 0.573766704266909\\ +2.69420371368188 0.312152543730475\\ +3.75469422407334 0.15502522393656\\ +4.90558370636506 0.0868215972429831\\ +6.1204983724767 0.0528776953987631\\ +7.49678187496688 0.0330082042625187\\ +9.09827289445557 0.0206874535455754\\ +11.0418805085416 0.0127299823846923\\ +13.5248087041788 0.0075056697973338\\ +16.7194975973199 0.00423585201984218\\ +21.2484535249888 0.00217359592449624\\ +28.2781797962534 0.000960108013675621\\ +40.8894822629486 0.000327000283359231\\ +69.7981390783067 6.69699238234403e-05\\ +100 2.28883335307516e-05\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000120810041575603\\ +0.0183765620038817 0.000732723664334145\\ +0.026572011053245 0.00214005399255292\\ +0.0347168681892656 0.0045628489788087\\ +0.043314832233764 0.00836690026203811\\ +0.0520854855057766 0.0136000313193919\\ +0.0614877765381002 0.0206552230318047\\ +0.0712611543011175 0.0294044239874606\\ +0.0818300681586739 0.0402288724402295\\ +0.0931041348706907 0.0530084589213122\\ +0.105931476351837 0.0686846557917211\\ +0.119420002813353 0.086048863729901\\ +0.134626057929891 0.106267782192676\\ +0.151768339028341 0.129448407166035\\ +0.171093390726901 0.155672410466576\\ +0.194665634334226 0.187399071779651\\ +0.221485523372636 0.22282837545166\\ +0.254334576130465 0.265004225533727\\ +0.292055551218275 0.311643328588078\\ +0.338477285594598 0.366369286367668\\ +0.392277675892772 0.426153279849465\\ +0.45462954695324 0.490667559682381\\ +0.522056752784698 0.554845983667922\\ +0.599484250318941 0.621681568209721\\ +0.682077673286569 0.685354812535141\\ +0.776050333513357 0.748986557025543\\ +0.874866812047991 0.806800587783178\\ +0.986265846131282 0.862202378919257\\ +1.11184960481927 0.914112866839418\\ +1.2534242654614 0.96162241386286\\ +1.41302599059953 1.00405616883873\\ +1.59295021257212 1.0410015645299\\ +1.81241754737424 1.07447008129281\\ +2.08122156998634 1.10313888780523\\ +2.38989256623105 1.12468932794375\\ +2.76976193503689 1.14034820426186\\ +3.2397426295282 1.14936238123809\\ +3.824569722467 1.15112406317722\\ +4.59899209052244 1.14470930888895\\ +5.58144624945496 1.12994145018007\\ +7.093341204988 1.10353025818439\\ +13.4006889636395 1.03193260752924\\ +16.8743567772738 1.01702255742126\\ +22.0466873523941 1.00737689523929\\ +31.8789129267765 1.00203860093398\\ +66.6536326812491 1.00012315289902\\ +100 1.00002491158231\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00002491158231\\ +0.0366914237840249 1.00357380499278\\ +0.0520854855057766 1.01151183715088\\ +0.0674262224177834 1.02449999837145\\ +0.0849041520408875 1.04344801943156\\ +0.111956431948388 1.074680721848\\ +0.174277467840892 1.1272742312698\\ +0.213466303332424 1.14363002492736\\ +0.256690271549195 1.15086096775643\\ +0.305833803237843 1.14966297956734\\ +0.361041859717334 1.14034820426186\\ +0.422304418720667 1.12346528457448\\ +0.489428989611453 1.09973658940156\\ +0.562017384808319 1.07008994076856\\ +0.639448842855694 1.03568404801231\\ +0.720871503378214 0.997877840274319\\ +0.812661920009195 0.954629725916815\\ +0.916140245713852 0.906392786930997\\ +1.03279473191895 0.853880804116332\\ +1.16430313292088 0.79803456975982\\ +1.31255683577184 0.739951522898666\\ +1.49339321612425 0.676229575244133\\ +1.69914417203463 0.61265836095034\\ +1.95114834684662 0.546111948080342\\ +2.24052786930002 0.482363944555623\\ +2.59665597293487 0.41841188182965\\ +3.00939003444972 0.35924835982332\\ +3.45571993676214 0.308393685075095\\ +3.96824610456948 0.262054641181804\\ +4.55678626584106 0.220172910082138\\ +5.18459354389291 0.185011190860187\\ +5.8988964255085 0.153545490069556\\ +6.65001803043112 0.127558175371153\\ +7.49678187496688 0.104608499962422\\ +8.45136633068472 0.0846133984587136\\ +9.52750047242729 0.0674632980618271\\ +10.7406615333343 0.0530084589213122\\ +12.2204468663149 0.0402288724402295\\ +14.0328908478587 0.0294044239874605\\ +16.2633950404819 0.0206552230318047\\ +19.0230118866894 0.0139266565962817\\ +22.6649807927369 0.00879117541594256\\ +27.761532944368 0.00505553033954477\\ +35.2815411538088 0.00257414366543915\\ +47.8277201772749 0.00106907622465819\\ +72.4202233460732 0.000315282038524681\\ +100 0.000120810041575603\\ +}; +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000782478264187488\\ +0.0121362379834424 0.00125498192148055\\ +0.014728827239075 0.00197486193787603\\ +0.0178752552590424 0.0030531747439827\\ +0.0218947676285662 0.00473813408521687\\ +0.0270665207003324 0.00737920199285985\\ +0.0337698031082509 0.0115265247982059\\ +0.0417465528925313 0.0174042827961823\\ +0.0511338753841433 0.0254281275451852\\ +0.0614877765381002 0.0353833658394229\\ +0.0732596542821523 0.047746252180617\\ +0.0864842327573172 0.0625355656883898\\ +0.101159111222383 0.0796191684531449\\ +0.118324062745838 0.100039953284998\\ +0.138401609657313 0.1240797812722\\ +0.16188596901782 0.152018290758724\\ +0.18935521797563 0.184152114236563\\ +0.223536964590979 0.22310367977162\\ +0.263889081445751 0.267498302940898\\ +0.314410830314726 0.320616520228633\\ +0.374605003274899 0.380323068165969\\ +0.44222739805059 0.442761135800226\\ +0.517265738721602 0.506352845410017\\ +0.599484250318941 0.569321763631969\\ +0.68839520696455 0.629900181894651\\ +0.78323825991792 0.686547926164131\\ +0.89114823228402 0.742014894624105\\ +1.00462042134681 0.791353776602864\\ +1.13254131515281 0.837655370549098\\ +1.27675070431927 0.880164021344053\\ +1.45265392594678 0.921097817907267\\ +1.6527920614649 0.956677206502501\\ +1.8979216428391 0.988819628849604\\ +2.19959306803007 1.01658914708904\\ +2.57282596744793 1.03936690615779\\ +3.06539529505653 1.0576421973448\\ +3.72023668141307 1.07038129104847\\ +4.59899209052244 1.07692155514441\\ +5.84476113163363 1.07678092839139\\ +7.77841107128649 1.06867865726835\\ +11.6698981861715 1.04886735075487\\ +21.2484535249888 1.02101820644871\\ +32.4721849207313 1.00958989057012\\ +54.9211648388779 1.00303297944635\\ +100 1.0006101896723\\ +}; +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.0006101896723\\ +0.0240093487686065 1.00570214952576\\ +0.0394999546122064 1.01544514820863\\ +0.0598104096238094 1.03074131748854\\ +0.174277467840892 1.07703535108454\\ +0.223536964590979 1.07645535968445\\ +0.278898029238044 1.06849446653157\\ +0.338477285594598 1.05436862536619\\ +0.403278998219371 1.03458868714953\\ +0.471708469091702 1.01024955160307\\ +0.546685729972018 0.980842910966497\\ +0.62776601058065 0.947065430693802\\ +0.714255928554313 0.909939899900219\\ +0.812661920009195 0.867525077586536\\ +0.916140245713852 0.823781679985695\\ +1.03279473191895 0.776455790869369\\ +1.16430313292088 0.726362681755378\\ +1.32471398786612 0.670427098412389\\ +1.50722530931076 0.613676413567991\\ +1.73076553419573 0.553364272856913\\ +2.00586777950823 0.4910365234715\\ +2.34622884814226 0.428419260277995\\ +2.76976193503689 0.367209490829135\\ +3.26974974451177 0.311792073570812\\ +3.8957456157755 0.259706188549371\\ +4.59899209052244 0.216243778220223\\ +5.42918617761894 0.17816272667211\\ +6.35042516859596 0.146791883503488\\ +7.42798248256492 0.119562265540299\\ +8.60864769614924 0.0974550120064611\\ +9.9769776423632 0.0785247047844594\\ +11.6698981861715 0.0616282333871573\\ +13.6500780654601 0.047746252180617\\ +16.1141427725302 0.035958741595925\\ +19.3770333747799 0.0258604093190297\\ +23.5164288449435 0.018025961261854\\ +29.0712337727258 0.0119542289149106\\ +35.9381366380463 0.00780920921941068\\ +44.4270674960688 0.0050245680442644\\ +54.4171428686589 0.00324489792317317\\ +66.0419396233031 0.00210387737637082\\ +80.150069615654 0.00134048625606773\\ +96.3793479961579 0.00085743774493564\\ +100 0.000782478264187488\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.561in, +at={(0.535in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.672,1.056)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 -95.8559252566972\\ +0.0108651577465251 -96.3589666386454\\ +0.0118051652856881 -96.9045252593416\\ +0.0128264983052803 -97.4960011522396\\ +0.0139361927422416 -98.1370125139095\\ +0.0151418932530433 -98.8313944400424\\ +0.0164519058775369 -99.5831925172105\\ +0.0178752552590422 -100.396649715901\\ +0.0194217468148908 -101.276184725661\\ +0.0211020342856859 -102.226359554879\\ +0.0229276931286557 -103.251833910709\\ +0.024911300260678 -104.357303618958\\ +0.027317215984413 -105.685078309933\\ +0.0299554933435982 -107.123510643368\\ +0.0328485736602995 -108.67831852478\\ +0.0360210656235708 -110.354514005208\\ +0.0394999546122053 -112.156089854211\\ +0.043716022482485 -114.285710697559\\ +0.048382096649261 -116.571164477356\\ +0.0535462089927357 -119.01023318005\\ +0.0598104096238105 -121.839061629693\\ +0.0674262224177818 -125.085892792209\\ +0.0774263682681121 -129.034613430599\\ +0.0914031074875622 -133.986902751852\\ +0.166426017648587 -152.091421824674\\ +0.192879150802077 -156.229827894861\\ +0.221485523372639 -159.918484957152\\ +0.254334576130472 -163.4163394138\\ +0.292055551218269 -166.732118596957\\ +0.338477285594596 -170.092476213666\\ +0.399578030189527 -173.707117674703\\ +0.531772317785112 -179.83452353453\\ +0.536697694554061 179.960722000356\\ +0.58853157751914 177.836714732873\\ +0.633580499265845 175.975933318091\\ +0.66961600548533 174.414925137664\\ +0.701206358900715 172.941431809171\\ +0.734287044716661 171.22725748658\\ +0.761871770232323 169.595415529684\\ +0.790492762269657 167.61185849705\\ +0.812661920009201 165.782504303664\\ +0.835452805838285 163.517583187649\\ +0.858882855954615 160.600072606874\\ +0.88296999554939 156.653349098581\\ +0.89940221740918 153.127233496297\\ +0.91614024571388 148.494325128414\\ +0.933189771573347 142.188690546363\\ +0.950556592010137 133.311350417084\\ +0.968246611930323 120.601382117212\\ +0.986265846131287 103.089088653605\\ +1.03279473191894 54.4764881440879\\ +1.05201521761614 41.7872369619359\\ +1.07159339982264 32.9398001746451\\ +1.09153593533136 26.6732319291677\\ +1.1118496048193 22.0885226650838\\ +1.1430311291145 17.1880554837578\\ +1.17508713090482 13.7509370846181\\ +1.20804213467733 11.2124970234075\\ +1.24192135270177 9.2613405524032\\ +1.27675070431924 7.71416328564726\\ +1.32471398786616 6.08849900405249\\ +1.37447909267756 4.81436733770465\\ +1.42611370719414 3.79024001685875\\ +1.47968806268638 2.9512838448841\\ +1.53527502878039 2.25412553199402\\ +1.59295021257217 1.66858997942396\\ +1.65279206146492 1.17296712009789\\ +1.73076553419573 0.655760170045738\\ +1.81241754737421 0.230922835513525\\ +1.89792164283904 -0.11864230164494\\ +1.98745954958102 -0.405899738423017\\ +2.06212180399915 -0.597706992403772\\ +2.1395888713434 -0.760346918942673\\ +2.21996611911991 -0.897378039571208\\ +2.3033628731422 -1.01184651785795\\ +2.38989256623109 -1.10638595898226\\ +2.47967289250217 -1.18329272477524\\ +2.57282596744791 -1.24458356470754\\ +2.66947849403426 -1.29204032385445\\ +2.74434330322828 -1.31951269633007\\ +2.82130767593954 -1.34069981040915\\ +2.90043049386403 -1.35615592347347\\ +2.98177229001969 -1.36639130190898\\ +3.06539529505651 -1.37187631237566\\ +3.15136348486643 -1.37304499361036\\ +3.23974262952812 -1.3702981978262\\ +3.33060034362469 -1.36400637318962\\ +3.4240061379715 -1.35451204491648\\ +3.55263467657817 -1.33741542517774\\ +3.68609536217214 -1.31587232550575\\ +3.85999361767968 -1.28362768478593\\ +4.07953450345255 -1.23854145896718\\ +4.35149650092505 -1.17914411585707\\ +4.72796959160025 -1.09530314111325\\ +5.37936150398065 -0.956129863409899\\ +6.650018030431 -0.727395781439412\\ +7.42798248256497 -0.616229943379295\\ +8.22081575524031 -0.522212677890593\\ +9.01477631452495 -0.44432780954557\\ +9.79469667069515 -0.380848885044543\\ +10.6420924406474 -0.323792782463158\\ +11.4566872863485 -0.278439710331185\\ +12.3336349791381 -0.238000117000951\\ +13.2777082935543 -0.202260996570743\\ +14.2940453343172 -0.170945363441803\\ +15.3881775003836 -0.143729510445667\\ +16.5660595894989 -0.120259772775256\\ +17.9992850678251 -0.0978755896649375\\ +19.5565071586593 -0.0792420692194469\\ +21.2484535249894 -0.063852681145363\\ +23.3006141069691 -0.0499830840867332\\ +25.7876288759386 -0.0379769609545519\\ +28.8044415339625 -0.0279894139433736\\ +32.772948499234 -0.0194873745063262\\ +38.3339510176665 -0.0124668492289004\\ +46.5229952396024 -0.00712177924995672\\ +60.2254120146183 -0.003343017842667\\ +88.704968896542 -0.00106174459426711\\ +100 -0.000743082755064961\\ +}; +\addlegendentry{$\alpha = 0.1$} + +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000743082755064961\\ +0.0166042865718756 0.00334301784263857\\ +0.0218947676285658 0.00751423018320452\\ +0.0268181260945295 0.0134958869691388\\ +0.0313686982456683 0.0210697586779247\\ +0.0356904934567525 0.0302229405399999\\ +0.0398658107358057 0.0409523394486939\\ +0.0441209286319117 0.0538211531624313\\ +0.048382096649261 0.0686520706197769\\ +0.0525679112201842 0.0850683222665793\\ +0.0571158647812626 0.10489454316911\\ +0.0614877765381008 0.1257960294719\\ +0.0661943345877428 0.150168099774987\\ +0.0712611543011191 0.178376634933528\\ +0.0767158117677927 0.210769324196946\\ +0.0825879938784402 0.247659799350004\\ +0.0889096598952924 0.289310670310954\\ +0.095715215389917 0.335916270019169\\ +0.103041699495061 0.38758586010826\\ +0.111956431948387 0.451773217157438\\ +0.12164242938574 0.522212677890565\\ +0.133390569003905 0.607347450477192\\ +0.147628147190943 0.708330141271603\\ +0.167967487209262 0.845212464802842\\ +0.223536964590981 1.15196345757516\\ +0.240647515001538 1.2222272220252\\ +0.256690271549201 1.27655776447452\\ +0.268800102153763 1.30986570484754\\ +0.281481236050756 1.33741542517771\\ +0.292055551218269 1.35451204491645\\ +0.300246170908546 1.3640063731896\\ +0.308666494333735 1.37029819782617\\ +0.317322963473503 1.37304499361034\\ +0.326222200971169 1.37187631237563\\ +0.335371015200292 1.36639130190898\\ +0.344776405473441 1.35615592347344\\ +0.354445567397035 1.34069981040915\\ +0.364385898376366 1.31951269633007\\ +0.374605003274907 1.29204032385445\\ +0.385110700232562 1.25767972255204\\ +0.395911026646847 1.21577371649681\\ +0.41078408899656 1.14691140360918\\ +0.426215882901522 1.06145668963612\\ +0.442227398050602 0.957259322281146\\ +0.458840412645483 0.831862495582385\\ +0.476077523022638 0.682437080717108\\ +0.493962174387827 0.505695080486731\\ +0.512518692705321 0.297774135369338\\ +0.531772317785112 0.0540811358281985\\ +0.551749237612921 -0.230922835513553\\ +0.572476623970219 -0.564023224890946\\ +0.593982669392029 -0.953680320199879\\ +0.616296625513279 -1.4106519659868\\ +0.639448842855712 -1.94892024285227\\ +0.663470812109245 -2.5871077231435\\ +0.688395206964551 -3.3507096166779\\ +0.714255928554305 -4.27574037282241\\ +0.741088151564139 -5.41494799509641\\ +0.761871770232323 -6.45685202540011\\ +0.783238259917936 -7.71416328564726\\ +0.805203967082557 -9.26134055240317\\ +0.827785696619849 -11.2124970234075\\ +0.851000724712218 -13.7509370846181\\ +0.874866812047975 -17.1880554837577\\ +0.891148232283998 -20.240428791008\\ +0.907732652520995 -24.2123301367473\\ +0.9246257116406 -29.5493463868058\\ +0.941833153464815 -36.9687921411497\\ +0.959360828709328 -47.5668238565431\\ +0.97721469697258 -62.6270574466089\\ +1.04236067397639 -127.520255509764\\ +1.06175918348298 -138.143599917471\\ +1.08151870255226 -145.597533854627\\ +1.10164594963369 -150.978187036326\\ +1.13254131515284 -156.653349098581\\ +1.16430313292089 -160.600072606874\\ +1.19695570235905 -163.517583187648\\ +1.23052400435925 -165.782504303664\\ +1.27675070431924 -168.14937716387\\ +1.32471398786616 -170.030934745488\\ +1.37447909267756 -171.594705118938\\ +1.43932264471941 -173.252252473515\\ +1.52118551798608 -174.956029564582\\ +1.62259528707813 -176.697146943215\\ +1.74679621512724 -178.491605751788\\ +1.86324631193151 -179.960722000356\\ +1.88050405512853 179.83452353453\\ +2.17940698430292 176.650445348226\\ +2.90043049386403 170.501546284602\\ +3.36144900010886 167.161469660098\\ +3.85999361767968 163.868621343465\\ +4.39180089259608 160.633232904656\\ +5.04315948717143 156.982780843922\\ +5.79112264764194 153.144680837835\\ +6.77377599751758 148.591571151813\\ +8.22081575524031 142.746938501856\\ +12.7969686821595 129.304423967636\\ +14.8310251433614 125.085892792209\\ +16.8743567772734 121.596909064786\\ +18.848434090338 118.782280622784\\ +21.0534524276677 116.144089159216\\ +23.3006141069691 113.886905980391\\ +25.7876288759386 111.785595767982\\ +28.2781797962532 110.009354808424\\ +31.00926635932 108.357793773062\\ +34.0041193270367 106.826688766612\\ +37.2882130718292 105.410863004858\\ +40.8894822629482 104.104490786499\\ +44.8385594802129 102.901352593107\\ +49.1690357762798 101.795041990655\\ +53.9177464038763 100.779128101949\\ +59.1250841383182 99.8472790514764\\ +64.2403365939436 99.0754085913707\\ +69.7981390783064 98.3623475484874\\ +75.8367791499744 97.7039827039655\\ +82.3978568452854 97.0964077904721\\ +89.5265712599616 96.5359319460557\\ +97.2720319245064 96.0190825379419\\ +100 95.8559252566972\\ +}; +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 -96.5581620806762\\ +0.0108651577465251 -97.1219631226807\\ +0.0118051652856881 -97.7335395133065\\ +0.0128264983052803 -98.3967466027448\\ +0.0139361927422416 -99.1156974115247\\ +0.0151418932530433 -99.8947648170723\\ +0.0164519058775369 -100.738578903759\\ +0.0178752552590422 -101.652017951189\\ +0.0194217468148908 -102.640191234055\\ +0.0211020342856859 -103.708411492354\\ +0.0229276931286557 -104.86215462806\\ +0.024911300260678 -106.107003933763\\ +0.0270665207003317 -107.448576020726\\ +0.0296805860866562 -109.059402851403\\ +0.0325471160553176 -110.803841133101\\ +0.0356904934567525 -112.688715710788\\ +0.0391374560198028 -114.720036253051\\ +0.0429173237842218 -116.90266239713\\ +0.0474981480322836 -119.482247298766\\ +0.0525679112201842 -122.25071073146\\ +0.058178800743451 -125.206529429588\\ +0.0649849535446982 -128.638446258908\\ +0.0732596542821532 -132.586554614313\\ +0.0833529396509846 -137.080593837586\\ +0.0966017479952245 -142.478883400887\\ +0.114039960197002 -148.814238555847\\ +0.140977287162893 -157.190797132991\\ +0.182499324481618 -167.676472510515\\ +0.227697025538168 -176.93370259695\\ +0.24287643824604 -179.704874508684\\ +0.245126006203328 179.89578517388\\ +0.286719649749373 172.940403285066\\ +0.326222200971169 166.898672839968\\ +0.364385898376366 161.400440188365\\ +0.403278998219369 156.015598553134\\ +0.442227398050602 150.754068922601\\ +0.480487043965512 145.647463801008\\ +0.522056752784682 140.111207759837\\ +0.562017384808323 134.758294689978\\ +0.605036787939111 128.92687063289\\ +0.651349094627294 122.544431197968\\ +0.701206358900715 115.544096790666\\ +0.75487992816532 107.880550766761\\ +0.820188949920225 98.4697367432748\\ +0.89940221740918 87.1791647425513\\ +1.18597101233768 52.641129122266\\ +1.27675070431924 44.6155386066345\\ +1.36186523675611 38.2858377522511\\ +1.45265392594678 32.6276525933546\\ +1.54949503931459 27.624658085582\\ +1.63762407452172 23.8280248183814\\ +1.73076553419573 20.4513482024369\\ +1.82920450484626 17.4598558324548\\ +1.9332422875551 14.8187427575085\\ +2.04319732019529 12.494581501962\\ +2.15940615210354 10.4560423012939\\ +2.28222447418683 8.67418000166364\\ +2.41202820761804 7.1224691881238\\ +2.54921465445141 5.77670659859317\\ +2.69420371368182 4.61485396415239\\ +2.84743916646731 3.61686322289916\\ +2.98177229001969 2.89717469645541\\ +3.12244282309282 2.26893114272212\\ +3.26974974451167 1.72321766473129\\ +3.4240061379715 1.25181352237169\\ +3.58553985745983 0.847146033543851\\ +3.75469422407329 0.502248614986087\\ +3.93182875570566 0.210722182192569\\ +4.11731993116176 -0.0333007818972817\\ +4.31156199031825 -0.235190047736893\\ +4.47353305449843 -0.369675640036206\\ +4.64158883361268 -0.48265181540944\\ +4.8159579101925 -0.576259301055273\\ +4.99687745385497 -0.652479783744212\\ +5.18459354389293 -0.713144982112567\\ +5.37936150398065 -0.759945407056733\\ +5.5302242561928 -0.786888808188081\\ +5.68531791387359 -0.807522849825261\\ +5.84476113163379 -0.822420735437589\\ +6.00867589171979 -0.832119868414935\\ +6.17718759733854 -0.837123573636148\\ +6.35042516859595 -0.837902752833031\\ +6.52852114112777 -0.834897473213033\\ +6.71161176749614 -0.828518489301331\\ +6.8998371214298 -0.819148698483275\\ +7.15904108596503 -0.802615684803811\\ +7.49678187496691 -0.776534352029472\\ +7.92316862486613 -0.739058938142449\\ +8.45136633068495 -0.689346348802019\\ +9.3534315202923 -0.604182307769548\\ +11.2473717836474 -0.448522007887021\\ +12.3336349791381 -0.377454472868436\\ +13.4006889636394 -0.319482484687995\\ +14.4264395121811 -0.273209960785607\\ +15.5307057393347 -0.231999187770299\\ +16.7194975973196 -0.195745846612539\\ +17.9992850678251 -0.164199895874447\\ +19.3770333747798 -0.13701537022996\\ +20.8602408924844 -0.113791024744273\\ +22.4569799553979 -0.0941022005226557\\ +24.399862972595 -0.0756506928243823\\ +26.5108360190857 -0.0605605868344412\\ +29.0712337727252 -0.0470931542629671\\ +32.174181506764 -0.0355507351391964\\ +35.9381366380452 -0.026042143033095\\ +40.8894822629482 -0.0180242760407054\\ +47.8277201772749 -0.011464998623012\\ +58.0448594276896 -0.00651521242531317\\ +75.8367791499744 -0.00296210381745254\\ +100 -0.00130282023422978\\ +}; +\addlegendentry{$\alpha = 1$} + +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00130282023425821\\ +0.015002933220192 0.00433764319950569\\ +0.0192435097523039 0.00900531890508205\\ +0.0231400538013072 0.0153737575563468\\ +0.0268181260945295 0.0234545320376469\\ +0.0302329468440578 0.0329028334109864\\ +0.0337698031082518 0.0447609083205691\\ +0.037031266758699 0.0576093095407089\\ +0.0402350554886941 0.0720263384852444\\ +0.043716022482485 0.0896824287943616\\ +0.0470622484984116 0.108554094766276\\ +0.0506646100892133 0.130854415184018\\ +0.0545427130532976 0.157009884797816\\ +0.0587176639073341 0.187430260571375\\ +0.0632121847581245 0.222478785581416\\ +0.0680507369673503 0.262433790863241\\ +0.0732596542821532 0.307441197194549\\ +0.0788672861561404 0.35745786513516\\ +0.0856905505126854 0.419331429072088\\ +0.0948368186628579 0.501634707793187\\ +0.126212131452257 0.739058938142449\\ +0.133390569003905 0.776534352029444\\ +0.139683511798871 0.802615684803783\\ +0.144930957412626 0.819148698483275\\ +0.150375532129977 0.830995480003281\\ +0.154592773641949 0.836293786405435\\ +0.158928286562298 0.838084636101883\\ +0.163385387780984 0.835947668658605\\ +0.167967487209262 0.82943271107996\\ +0.17267809038843 0.818058233733638\\ +0.177520801171768 0.801309739451398\\ +0.182499324481618 0.778638086013984\\ +0.187617469143913 0.749457742712877\\ +0.192879150802077 0.713144982112539\\ +0.2001249798969 0.652479783744184\\ +0.207643010725571 0.576259301055245\\ +0.215443469003193 0.482651815409412\\ +0.223536964590981 0.369675640036206\\ +0.231934505927442 0.235190047736864\\ +0.240647515001538 0.0768858916779038\\ +0.249687842888425 -0.10772408443313\\ +0.261467321180114 -0.379573639252925\\ +0.273802517792786 -0.702385321034058\\ +0.286719649749373 -1.08234140469813\\ +0.300246170908546 -1.52617700560151\\ +0.314410830314732 -2.04121753611813\\ +0.329243733300778 -2.63541923117262\\ +0.344776405473441 -3.31741349476169\\ +0.361041859717323 -4.09655586366327\\ +0.378074666359942 -4.98298030229088\\ +0.395911026646847 -5.98765924740636\\ +0.418428850790151 -7.36615977977709\\ +0.442227398050602 -8.95448744045089\\ +0.46737951079925 -10.7772225580007\\ +0.493962174387827 -12.861289533937\\ +0.522056752784682 -15.2360384292312\\ +0.551749237612921 -17.9331776248118\\ +0.58313051135262 -20.9864292284839\\ +0.616296625513279 -24.4307137734902\\ +0.651349094627294 -28.3005950791861\\ +0.688395206964551 -32.6276525933547\\ +0.734287044716661 -38.2858377522511\\ +0.783238259917936 -44.6155386066345\\ +0.843190929286622 -52.641129122266\\ +0.91614024571388 -62.5304165124039\\ +1.04236067397639 -78.9459738646735\\ +1.19695570235905 -96.2736260758388\\ +1.30051125217337 -105.859676725262\\ +1.41302599059955 -114.622968424648\\ +1.52118551798608 -121.704400369838\\ +1.63762407452172 -128.160673910565\\ +1.7629753752872 -134.057016579678\\ +1.91550055557359 -140.111207759837\\ +2.08122156998634 -145.647463801008\\ +2.28222447418683 -151.298349834643\\ +2.50264009641792 -156.521155514105\\ +2.76976193503698 -161.872256830669\\ +3.09378757173011 -167.342175144698\\ +3.52003147279672 -173.359650400263\\ +4.07953450345255 -179.89578517388\\ +4.11731993116176 179.704874508684\\ +4.95102015955645 171.880401665915\\ +6.29214610961035 162.023833089837\\ +8.07062014114933 152.061137450436\\ +9.88541702191929 144.21422826764\\ +11.5628013120735 138.406009457048\\ +13.2777082935543 133.529473234496\\ +15.1070330448668 129.230719501311\\ +17.030650292528 125.484379444432\\ +19.0230118866895 122.25071073146\\ +21.0534524276677 119.482247298766\\ +23.3006141069691 116.90266239713\\ +25.7876288759386 114.510164992181\\ +28.2781797962532 112.493729491714\\ +31.00926635932 110.62318492925\\ +34.0041193270367 108.892425672803\\ +37.2882130718292 107.294562225197\\ +40.8894822629482 105.822209512427\\ +44.8385594802129 104.4677278745\\ +49.1690357762798 103.223417246708\\ +53.9177464038763 102.081668142904\\ +58.582482001525 101.135657517105\\ +63.6507908129576 100.2615154943\\ +69.1575882873853 99.4542584459638\\ +75.1408106111675 98.7091444251995\\ +81.6416760492152 98.0216855736302\\ +88.704968896542 97.3876533930898\\ +96.3793479961591 96.8030785386165\\ +100 96.5581620806762\\ +}; +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.01 -101.896635788716\\ +0.0108651577465251 -102.918703798299\\ +0.0118051652856881 -104.027188810135\\ +0.0128264983052803 -105.229010373724\\ +0.0139361927422416 -106.531534665812\\ +0.0151418932530433 -107.94257284337\\ +0.0164519058775369 -109.470369181399\\ +0.0178752552590422 -111.123575892106\\ +0.0194217468148908 -112.91121091289\\ +0.0211020342856859 -114.842594314145\\ +0.0229276931286557 -116.927258363931\\ +0.024911300260678 -119.174825775263\\ +0.027317215984413 -121.874794743836\\ +0.0299554933435982 -124.800360068183\\ +0.0328485736602995 -127.963368160339\\ +0.0360210656235708 -131.374292459552\\ +0.0394999546122053 -135.04161002204\\ +0.0433148322337641 -138.971092450688\\ +0.0479380849508926 -143.598942626162\\ +0.0530548052536955 -148.543757385885\\ +0.0592615181247569 -154.287226801382\\ +0.0668074391569548 -160.891945222355\\ +0.0760117761795532 -168.395507101966\\ +0.0889096598952924 -177.936112227571\\ +0.0914031074875622 -179.656553224198\\ +0.0922497005259214 179.768052231666\\ +0.122769104798839 161.689012170511\\ +0.156024641436638 146.707949520232\\ +0.18589566796357 136.192347468411\\ +0.217438947560012 127.198686332329\\ +0.254334576130472 118.620264397583\\ +0.297490754721436 110.435969649141\\ +0.351192753045066 102.143977088946\\ +0.422304418720659 93.2895891600464\\ +0.526892142135084 83.0230942928922\\ +0.675818116816117 71.8004326510265\\ +0.858882855954615 61.3001950784795\\ +1.04236067397639 53.1221143941752\\ +1.2192312516491 46.7824700661106\\ +1.40005838246811 41.4525743308531\\ +1.59295021257217 36.73650002854\\ +1.79578464700207 32.6014141500569\\ +2.02444650997683 28.7130813100483\\ +2.26128006633722 25.3471361882134\\ +2.52582002696278 22.1954224709978\\ +2.79541599906793 19.492166738122\\ +3.09378757173011 16.9634092636423\\ +3.4240061379715 14.6059704293788\\ +3.78947091907461 12.4174567208524\\ +4.15545533471895 10.5736421206389\\ +4.55678626584099 8.86919471944256\\ +4.95102015955645 7.45586843463971\\ +5.37936150398065 6.15904577646285\\ +5.79112264764194 5.10617831815716\\ +6.23440188862789 4.14918428385411\\ +6.71161176749614 3.28955918590322\\ +7.15904108596503 2.61793509080897\\ +7.63629826128223 2.02143002054893\\ +8.07062014114933 1.56930331624127\\ +8.52964449974123 1.17068149167821\\ +9.01477631452495 0.823958666259614\\ +9.44006478941749 0.573129207011334\\ +9.88541702191929 0.355321016870818\\ +10.351779556302 0.168761556994326\\ +10.8401435917834 0.0114656697946884\\ +11.3515470892099 -0.118728219892574\\ +11.7779870119709 -0.204908886363654\\ +12.2204468663152 -0.276428478680458\\ +12.6795284678645 -0.334523139731658\\ +13.1558562404571 -0.380431976449159\\ +13.65007806546 -0.415381458656611\\ +14.0328908478584 -0.435124324881912\\ +14.4264395121811 -0.449869549365303\\ +14.8310251433614 -0.460093127514369\\ +15.2469572701759 -0.466253034910039\\ +15.674554102056 -0.468787152925586\\ +16.1141427725301 -0.468111563456688\\ +16.5660595894989 -0.46461921383235\\ +17.188391428171 -0.456215068297894\\ +17.8341022071005 -0.444261966595604\\ +18.6754584276109 -0.42542942351082\\ +19.9204570845384 -0.393985295185644\\ +22.0466873523944 -0.338529669759595\\ +25.7876288759386 -0.253026169772312\\ +28.2781797962532 -0.208076663158238\\ +30.7246884270909 -0.172409163402534\\ +33.0764978074424 -0.144710457157771\\ +35.6083255262919 -0.120686687687879\\ +38.3339510176665 -0.100099551825963\\ +41.6504424854512 -0.0806517237785158\\ +45.2538627817026 -0.064654797168572\\ +49.6244487762885 -0.05032189147434\\ +54.9211648388788 -0.0380053005656293\\ +61.3462171799237 -0.0278431566221684\\ +69.7981390783064 -0.0192678658184207\\ +80.8924348680602 -0.0125842032753667\\ +97.2720319245064 -0.00734584902650681\\ +100 -0.00677306181484028\\ +}; +\addlegendentry{$\alpha = 10$} + +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00677306181484028\\ +0.0122486461375092 0.0122516953903755\\ +0.0143270295340984 0.0192678658184207\\ +0.0163009236097978 0.0278431566221684\\ +0.0182079168009943 0.0380053005656578\\ +0.0201513573381558 0.05032189147434\\ +0.0220975611479586 0.064654797168572\\ +0.0240093487686069 0.0806517237785158\\ +0.0260865361762251 0.100099551825991\\ +0.0280833199882324 0.120686687687879\\ +0.0302329468440578 0.144710457157771\\ +0.0325471160553176 0.172409163402534\\ +0.0350384224529072 0.203880643704139\\ +0.0380697987140222 0.243625457802779\\ +0.0421332174384734 0.297378311379106\\ +0.0520854855057768 0.412537126390703\\ +0.0550478980785488 0.437184727229607\\ +0.0576448828292606 0.453529769375393\\ +0.0598104096238105 0.462893609021904\\ +0.0614877765381008 0.467241702452668\\ +0.0632121847581245 0.468898698914131\\ +0.0649849535446982 0.467479596206744\\ +0.0668074391569548 0.462575893759634\\ +0.068681035889951 0.453756805560346\\ +0.0706071771413795 0.440570841718426\\ +0.0725873365081736 0.422547760480001\\ +0.0746230289139115 0.399200883588463\\ +0.0767158117677927 0.370029758330105\\ +0.0795977700231485 0.321190199235787\\ +0.0825879938784402 0.259855628508916\\ +0.0856905505126854 0.184786187425601\\ +0.0889096598952924 0.0947489880741728\\ +0.0922497005259214 -0.0114656697947169\\ +0.0966017479952245 -0.168761556994326\\ +0.101159111222386 -0.355321016870846\\ +0.105931476351838 -0.573129207011334\\ +0.110928986489522 -0.823958666259642\\ +0.116162263260848 -1.10934167435204\\ +0.122769104798839 -1.49918731884259\\ +0.129751716865759 -1.9423081303286\\ +0.137131471775393 -2.43986140748734\\ +0.146273335620117 -3.08998385296627\\ +0.156024641436638 -3.81535156229575\\ +0.166426017648587 -4.61559233129231\\ +0.179165032736394 -5.62073744078162\\ +0.192879150802077 -6.72087055624681\\ +0.20956623994805 -8.06977015416345\\ +0.227697025538168 -9.53415788556097\\ +0.249687842888425 -11.2945057491854\\ +0.273802517792786 -13.1938321819057\\ +0.300246170908546 -15.2320761343993\\ +0.332293251639897 -17.6359544165005\\ +0.367760910160114 -20.2119722400368\\ +0.407014245321941 -22.96338845996\\ +0.454629546953248 -26.1684758739246\\ +0.507815211232757 -29.5881396753901\\ +0.567222897164457 -33.2217238557217\\ +0.639448842855712 -37.3939434755092\\ +0.72754835291961 -42.1473683346776\\ +0.835452805838285 -47.5128825920727\\ +0.97721469697258 -53.8860647195161\\ +1.16430313292089 -61.3001950784795\\ +1.45265392594678 -70.981247178906\\ +1.86324631193151 -82.181098208399\\ +2.34622884814232 -92.8549448639857\\ +2.84743916646731 -102.143977088946\\ +3.36144900010886 -110.435969649141\\ +3.93182875570566 -118.620264397583\\ +4.55678626584099 -126.682608989793\\ +5.32999408084406 -135.651958208738\\ +6.29214610961035 -145.580343634727\\ +7.63629826128223 -157.609830756566\\ +10.8401435917834 -179.768052231666\\ +10.9405470720574 179.656553224198\\ +13.0351224468151 168.945030710174\\ +14.9683929307729 160.891945222355\\ +16.8743567772734 154.287226801381\\ +18.848434090338 148.543757385885\\ +21.0534524276677 143.165037206888\\ +23.3006141069691 138.566250493701\\ +25.7876288759386 134.287312971759\\ +28.2781797962532 130.671833161141\\ +31.00926635932 127.311243873974\\ +34.0041193270367 124.196614525443\\ +37.2882130718292 121.317150225088\\ +40.8894822629482 118.660796324159\\ +44.8385594802129 116.214745455405\\ +49.1690357762798 113.965848406929\\ +53.9177464038763 111.900936360174\\ +58.582482001525 110.189116761394\\ +63.6507908129576 108.606673588763\\ +69.1575882873853 107.144785711033\\ +75.1408106111675 105.795023519636\\ +81.6416760492152 104.549381182949\\ +88.704968896542 103.400294009574\\ +96.3793479961591 102.340644289248\\ +100 101.896635788716\\ +}; +\addplot [color=mycolor4, line width=1.5pt] + table[row sep=crcr]{% +0.01 -141.229771392824\\ +0.0127087870920203 -149.706171416515\\ +0.0207164967560208 -167.020011576302\\ +0.0299554933435982 -179.789438374345\\ +0.0302329468440578 179.891875414199\\ +0.0409838367175735 169.257988371514\\ +0.0506646100892133 161.598463204067\\ +0.0614877765381008 154.352786995255\\ +0.0760117761795532 146.140644423255\\ +0.101159111222386 134.765611440646\\ +0.146273335620117 120.12571108475\\ +0.180824493487798 111.990547215588\\ +0.221485523372639 104.472662662765\\ +0.278898029238043 96.2021889354448\\ +0.418428850790151 81.9683071592618\\ +0.577779011797049 70.5210552233361\\ +0.89940221740918 54.5043776361669\\ +1.12214776820801 46.6485386197244\\ +1.3125568357718 41.3110314263167\\ +1.50722530931073 36.8300707339825\\ +1.71488196987055 32.8813584110931\\ +1.9332422875551 29.4387873407962\\ +2.15940615210354 26.4628515681879\\ +2.41202820761804 23.6841757174869\\ +2.66947849403426 21.3093799277767\\ +2.9544079988804 19.0958287207522\\ +3.26974974451167 17.0382346905258\\ +3.61874981241128 15.1302418064619\\ +3.96824610456936 13.5197952369956\\ +4.35149650092505 12.0222844948072\\ +4.77176094893859 10.6329417664736\\ +5.23261423948667 9.34748640460771\\ +5.73797641421395 8.16221975202308\\ +6.23440188862789 7.17855749108531\\ +6.77377599751758 6.27160123226159\\ +7.35981447526585 5.43965971982655\\ +7.9965545258922 4.68113189083331\\ +8.60864769614942 4.06716936084212\\ +9.26759330114683 3.50857072261277\\ +9.97697764236288 3.00378051735393\\ +10.7406615333344 2.55094643500641\\ +11.4566872863485 2.19562390445083\\ +12.2204468663152 1.87672231866023\\ +13.0351224468151 1.59235935684561\\ +13.9041083409004 1.34047914693878\\ +14.8310251433614 1.11888523941013\\ +15.674554102056 0.951314163022232\\ +16.5660595894989 0.802828011931581\\ +17.5082703173578 0.671938467735345\\ +18.5040701954232 0.557169538696513\\ +19.5565071586593 0.457076517422479\\ +20.6688024962902 0.370262623358258\\ +21.8443607114946 0.295392886267479\\ +23.0867799418716 0.231205052164341\\ +24.399862972595 0.17651749222938\\ +25.7876288759386 0.130234256833177\\ +27.2543253128104 0.0913475360010239\\ +28.8044415339625 0.0589378648584784\\ +30.4427221206439 0.0321724520120199\\ +32.174181506764 0.0103020169562171\\ +34.0041193270367 -0.00734349307433035\\ +35.9381366380452 -0.0213599684954033\\ +38.3339510176665 -0.0338257262414743\\ +40.8894822629482 -0.0427971377129666\\ +44.0193518520901 -0.0495704071273622\\ +47.8277201772749 -0.0536865237644122\\ +52.4468874949529 -0.0549786672598032\\ +58.582482001525 -0.0533226147053085\\ +67.8940681269615 -0.0477848340073876\\ +91.192675984596 -0.0326830060770078\\ +100 -0.0280570641660063\\ +}; +\addlegendentry{$\alpha = 100$} + +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.0280570641660347\\ +0.0175486714964814 0.0539934155791002\\ +0.0196016347431923 0.054893128243549\\ +0.0214947467343796 0.0526701240125647\\ +0.0231400538013072 0.0481829428862852\\ +0.024911300260678 0.0405521089289209\\ +0.0265720110532445 0.0306505209623822\\ +0.0280833199882324 0.0192527197723962\\ +0.0296805860866562 0.00466980385812121\\ +0.0313686982456683 -0.0136365430171281\\ +0.0331528234231953 -0.0362741959297921\\ +0.0350384224529072 -0.0639260777207085\\ +0.0366914237840248 -0.0913475360010239\\ +0.0384224084605498 -0.123265409940956\\ +0.0402350554886941 -0.16020752607605\\ +0.0421332174384734 -0.202744283615516\\ +0.0441209286319117 -0.251488784912453\\ +0.0462024137175122 -0.307096251328375\\ +0.04883022086878 -0.38386694716084\\ +0.0516074871038594 -0.472799502345396\\ +0.0545427130532976 -0.575240027829835\\ +0.0576448828292606 -0.692594334480248\\ +0.0609234915240079 -0.82631356874964\\ +0.0643885742724037 -0.977877147178617\\ +0.0680507369673503 -1.14877347249191\\ +0.0719211887222133 -1.34047914693878\\ +0.0760117761795532 -1.55443761183699\\ +0.081079098067315 -1.83403063169737\\ +0.0864842327573189 -2.14787854008986\\ +0.0922497005259214 -2.49789009001361\\ +0.0983995229627797 -2.88578069061242\\ +0.104959323055824 -3.31306118172495\\ +0.112993393803321 -3.85128463979859\\ +0.12164242938574 -4.44431976834585\\ +0.130953502048267 -5.09356866039892\\ +0.140977287162893 -5.80025317075246\\ +0.15317404637021 -6.66533508105002\\ +0.166426017648587 -7.60616337538693\\ +0.180824493487798 -8.62451550239922\\ +0.198288394912704 -9.84945229520949\\ +0.217438947560012 -11.1759850873854\\ +0.238439047009369 -12.6080509917198\\ +0.261467321180114 -14.1501418153404\\ +0.286719649749373 -15.8071744503021\\ +0.314410830314732 -17.5842798284613\\ +0.347969790388763 -19.6838103358658\\ +0.385110700232562 -21.9408739071075\\ +0.426215882901522 -24.3603496205264\\ +0.471708469091704 -26.9451705912183\\ +0.526892142135084 -29.953796972858\\ +0.58853157751914 -33.155324196824\\ +0.663470812109245 -36.8300707339825\\ +0.75487992816532 -41.0050218000039\\ +0.874866812047975 -46.0086055922065\\ +1.05201521761614 -52.5161162887823\\ +1.49339321612424 -65.1999101833371\\ +2.08122156998634 -77.0942753852293\\ +3.15136348486643 -91.6552817179141\\ +4.2327890655736 -102.131489188053\\ +5.23261423948667 -109.914730098843\\ +6.40924401935642 -117.621057914162\\ +8.07062014114933 -126.662068719915\\ +15.9662602210142 -153.649602956379\\ +19.5565071586593 -161.259143250838\\ +23.9540735872084 -168.602066496202\\ +30.4427221206439 -177.017949135725\\ +33.0764978074424 -179.891875414199\\ +33.3828586473175 179.789438374345\\ +56.9843705946916 161.192512007846\\ +100 141.229771392824\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.pdf b/matlab/figs/comp_filter_3rd_order_loop_gain.pdf new file mode 100644 index 0000000..2f286a8 Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order_loop_gain.pdf differ diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.png b/matlab/figs/comp_filter_3rd_order_loop_gain.png new file mode 100644 index 0000000..1e1b2d9 Binary files /dev/null and b/matlab/figs/comp_filter_3rd_order_loop_gain.png differ diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.svg b/matlab/figs/comp_filter_3rd_order_loop_gain.svg new file mode 100644 index 0000000..687f0c1 --- /dev/null +++ b/matlab/figs/comp_filter_3rd_order_loop_gain.svg @@ -0,0 +1,430 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filter_3rd_order_loop_gain.tex b/matlab/figs/comp_filter_3rd_order_loop_gain.tex new file mode 100644 index 0000000..91c402c --- /dev/null +++ b/matlab/figs/comp_filter_3rd_order_loop_gain.tex @@ -0,0 +1,618 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +\definecolor{mycolor4}{rgb}{0.49400,0.18400,0.55600}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.535in,2.205in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-05, +ymax=100000, +yminorticks=true, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 12614.5943851416\\ +0.0121362379834424 7847.00121371501\\ +0.014728827239075 4969.76537651407\\ +0.0182079168009946 3069.59141346463\\ +0.0229276931286565 1851.2467219802\\ +0.0299554933435981 1048.07320582255\\ +0.0417465528925313 526.448381991054\\ +0.0649849535446989 213.885913238138\\ +0.125053858729039 57.4163471150871\\ +0.256690271549195 13.740413550181\\ +0.426215882901533 5.08764667562955\\ +0.65134909462728 2.25111381291762\\ +1.15361810173648 0.763637595184974\\ +1.8979216428391 0.296065637322442\\ +2.90043049386399 0.130007379271673\\ +4.86056423214214 0.0469618628043642\\ +9.88541702191957 0.011391479434645\\ +19.0230118866895 0.00304187017238188\\ +28.804441533963 0.00129820438012985\\ +39.0473523688556 0.000684891903759987\\ +50.0840798984821 0.000399612319495467\\ +62.487880720069 0.000243485627537464\\ +76.5391938823016 0.000151967701642799\\ +92.889787201645 9.51959526846281e-05\\ +100 7.92732583758601e-05\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 6966.8541345835\\ +0.0121362379834424 4334.09412415782\\ +0.014728827239075 2745.22882618454\\ +0.0182079168009946 1695.91776439478\\ +0.0229276931286565 1023.12677374785\\ +0.029680586086656 590.919941658386\\ +0.0406077202570037 308.553623396575\\ +0.0603643850607586 137.955311578277\\ +0.0948368186628592 56.008454687348\\ +0.140977287162897 25.7764137683415\\ +0.191109062168914 14.4194508335806\\ +0.245126006203334 9.09655238930423\\ +0.30302710828664 6.23138435481899\\ +0.367760910160103 4.4733125236513\\ +0.44222739805059 3.30773831525362\\ +0.531772317785097 2.47981325810869\\ +0.64537154016467 1.85770908909834\\ +0.805203967082547 1.3533301561265\\ +1.6835508029612 0.476366906670615\\ +2.0244465099768 0.359947315684773\\ +2.41202820761801 0.272439752736852\\ +2.90043049386399 0.200484009387826\\ +3.52003147279668 0.143250955020123\\ +4.35149650092505 0.0977066754998443\\ +5.58144624945496 0.0613976300811138\\ +7.49678187496688 0.0348515880585207\\ +10.8401435917833 0.0169036066787928\\ +16.8743567772738 0.00698452883981047\\ +25.5509709035251 0.0030045997004841\\ +35.2815411538088 0.00153591718805008\\ +46.0960448682843 0.000867049936097951\\ +58.0448594276898 0.000520913041803124\\ +71.0970943231243 0.000327247685425228\\ +86.285125663669 0.000206419265172534\\ +100 0.000143536807385703\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1278.7705875911\\ +0.0121362379834424 797.673032910501\\ +0.014728827239075 507.270786955154\\ +0.0178752552590424 328.478285273947\\ +0.0218947676285662 212.035084457428\\ +0.0270665207003324 136.513925586232\\ +0.0334598912054997 89.3531110478596\\ +0.0409838367175726 60.4994355912368\\ +0.0497389595879006 42.3285394561985\\ +0.0592615181247555 31.0714983777361\\ +0.0699592016543538 23.4963213303783\\ +0.0825879938784426 18.0182314802896\\ +0.0966017479952265 14.2093116099788\\ +0.112993393803322 11.3486221680649\\ +0.132166418394661 9.17322943340844\\ +0.156024641436637 7.40960921008803\\ +0.185895667963569 5.98202813368665\\ +0.225607406649686 4.7744531709082\\ +0.281481236050758 3.73022254217783\\ +0.367760910160103 2.79855205893701\\ +0.522056752784698 1.9418340431861\\ +0.899402217409204 1.1137752190663\\ +2.13958887134342 0.459286945220401\\ +3.00939003444972 0.320783280859351\\ +3.8957456157755 0.242170523072144\\ +4.86056423214213 0.188365884886592\\ +5.8988964255085 0.149557901506003\\ +7.02824426430835 0.120033296937539\\ +8.29695852083491 0.0963205769077305\\ +9.70480887738031 0.0773183444292607\\ +11.35154708921 0.061296267203471\\ +13.2777082935543 0.0479739566651277\\ +15.5307057393346 0.037073017298446\\ +18.3342548256229 0.0278479425435813\\ +21.8443607114943 0.0203100148443539\\ +26.5108360190854 0.0141181952240709\\ +32.4721849207313 0.00949959527378332\\ +40.1424249049932 0.00617824074680248\\ +49.1690357762803 0.00403009620744181\\ +59.6727119597332 0.00263882567872763\\ +72.4202233460732 0.0016987798099349\\ +87.0843149769072 0.00109769656289539\\ +100 0.000782001095195476\\ +}; +\addplot [color=mycolor4, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 197.030139248659\\ +0.0113777413322149 153.683357037076\\ +0.0128264983052806 123.83211455958\\ +0.0144597292179202 101.137909915259\\ +0.0164519058775366 82.4725843880068\\ +0.0187185529496558 68.134655266143\\ +0.0214947467343798 56.2303503604923\\ +0.0249113002606779 46.3735993979845\\ +0.0294082017058706 37.7889819031355\\ +0.0353629550135504 30.4536559694169\\ +0.043716022482485 24.0258881454982\\ +0.0565917016324624 18.200783737071\\ +0.0788672861561415 12.8754094402821\\ +0.126212131452255 7.97094394048092\\ +0.286719649749377 3.49177559967367\\ +11.35154708921 0.0870163662109368\\ +16.8743567772738 0.0576828262442257\\ +22.4569799553977 0.0424700902608626\\ +28.018665564592 0.0331842886798009\\ +34.0041193270371 0.026462739921475\\ +40.1424249049932 0.0215639935864772\\ +46.5229952396019 0.0177839902043827\\ +53.4229329953835 0.0146768189564307\\ +60.7832312829723 0.0121252414656406\\ +69.1575882873853 0.00988748927912266\\ +77.9636013040524 0.00807544960010246\\ +87.8909065341995 0.00650688545122523\\ +99.082280990038 0.00516911583380925\\ +100 0.00507536564615612\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.535in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.672,2.817)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 135.119588480617\\ +0.0131862140139471 142.98433479359\\ +0.0152821403602584 146.987377600749\\ +0.0173876240021625 150.309067205979\\ +0.0196016347431923 153.212413406738\\ +0.0218947676285658 155.722840465389\\ +0.0242317279423763 157.875016344521\\ +0.0268181260945295 159.883239760144\\ +0.0296805860866562 161.749284276937\\ +0.0325471160553176 163.325784367274\\ +0.0356904934567525 164.792650187166\\ +0.0391374560198028 166.155216846314\\ +0.0429173237842218 167.419426825071\\ +0.0470622484984116 168.591593582327\\ +0.0516074871038594 169.678212318756\\ +0.0565917016324609 170.685813201366\\ +0.0620572880677654 171.620851173078\\ +0.0680507369673503 172.48962616514\\ +0.0746230289139115 173.29822776453\\ +0.0825879938784402 174.125154862851\\ +0.0914031074875622 174.893736906462\\ +0.101159111222386 175.61096256692\\ +0.112993393803321 176.342526285274\\ +0.126212131452257 177.028735029912\\ +0.142283045721431 177.72945438292\\ +0.161885969017819 178.443932417804\\ +0.187617469143913 179.221271924269\\ +0.217438947560012 179.968124957671\\ +0.219452908620335 -179.985984461197\\ +0.268800102153763 -178.994206486432\\ +0.335371015200292 -177.945006244406\\ +0.399578030189527 -177.144116723752\\ +0.458840412645483 -176.542974305161\\ +0.512518692705321 -176.092838502769\\ +0.562017384808323 -175.746540975163\\ +0.605036787939111 -175.49319610834\\ +0.645371540164686 -175.291913839562\\ +0.688395206964551 -175.112248316102\\ +0.72754835291961 -174.977265546196\\ +0.761871770232323 -174.879268370885\\ +0.797814457207674 -174.795237273189\\ +0.827785696619849 -174.738513792646\\ +0.858882855954615 -174.691444522386\\ +0.891148232283998 -174.654276928918\\ +0.91614024571388 -174.633020550954\\ +0.941833153464815 -174.617511174259\\ +0.968246611930323 -174.607796241214\\ +0.986265846131287 -174.604554231169\\ +1.00462042134681 -174.60390560689\\ +1.02331657833024 -174.60585125741\\ +1.04236067397639 -174.610388516571\\ +1.07159339982264 -174.622039123962\\ +1.10164594963369 -174.639470296345\\ +1.13254131515284 -174.662628819938\\ +1.16430313292089 -174.691444522386\\ +1.20804213467733 -174.738513792646\\ +1.25342426546138 -174.795237273189\\ +1.3125568357718 -174.879268370885\\ +1.37447909267756 -174.977265546196\\ +1.45265392594678 -175.112248316102\\ +1.53527502878039 -175.264866969573\\ +1.63762407452172 -175.46321110661\\ +1.7629753752872 -175.713630860342\\ +1.91550055557359 -176.021242054753\\ +2.10049824165391 -176.389339283747\\ +2.34622884814232 -176.859220265941\\ +2.69420371368182 -177.477133947399\\ +3.23974262952812 -178.334452757323\\ +4.04209583979642 -179.396164691781\\ +4.55678626584099 -179.985984461197\\ +4.59899209052235 179.968124957671\\ +5.4794723369002 179.078166832191\\ +6.35042516859595 178.293861817558\\ +7.22534949178734 177.571249759605\\ +8.14537176628054 176.861022546974\\ +9.09827289445557 176.16418780863\\ +10.0693863147606 175.484076061706\\ +11.1441525146678 174.75801382446\\ +12.3336349791381 173.979355627406\\ +13.5248087041786 173.21990683133\\ +14.8310251433614 172.405555107386\\ +16.2633950404818 171.530431658536\\ +17.8341022071005 170.588423955442\\ +19.5565071586593 169.573213716733\\ +21.4452607597172 168.478334432985\\ +23.5164288449433 167.297253920118\\ +25.7876288759386 166.023487889953\\ +28.2781797962532 164.650750718759\\ +31.00926635932 163.173149217496\\ +34.0041193270367 161.585423916225\\ +37.2882130718292 159.883239760144\\ +41.268208457029 157.875016344521\\ +45.6730127016882 155.722840465389\\ +50.5479682119114 153.427974647732\\ +56.4614141930371 150.767634501129\\ +63.6507908129576 147.714822707608\\ +73.0909932860277 144.002686843109\\ +86.2851256636678 139.350315979885\\ +100 135.119588480618\\ +}; +\addlegendentry{$\alpha = 0.1$} + +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 135.866639032337\\ +0.013681576279675 145.025714456894\\ +0.0160031031373875 149.392262750818\\ +0.0183765620038813 153.04688279657\\ +0.0207164967560208 156.038671480405\\ +0.0233543813990654 158.856593757588\\ +0.0260865361762251 161.301598982582\\ +0.0291383170483282 163.600240348017\\ +0.0325471160553176 165.759969510356\\ +0.0363546996129332 167.791221079529\\ +0.0409838367175735 169.861413442143\\ +0.0462024137175122 171.81359654767\\ +0.0525679112201842 173.806035778137\\ +0.0609234915240079 175.974732061085\\ +0.0732596542821532 178.578009288717\\ +0.081079098067315 179.983110819151\\ +0.0818300681586717 -179.889521115303\\ +0.112993393803321 -175.386107453616\\ +0.133390569003905 -172.967610103772\\ +0.154592773641949 -170.716300584504\\ +0.177520801171768 -168.499979225983\\ +0.203849339825241 -166.172050429343\\ +0.236250846547792 -163.567380822012\\ +0.278898029238043 -160.509922714442\\ +0.446323392671051 -151.749542067968\\ +0.493962174387827 -150.027999693757\\ +0.541668691103327 -148.57994929659\\ +0.58313051135262 -147.520814568332\\ +0.627766010580631 -146.564575888385\\ +0.66961600548533 -145.822182108109\\ +0.707701066118183 -145.262048413698\\ +0.747952251562161 -144.776836160727\\ +0.783238259917936 -144.432472463364\\ +0.820188949920225 -144.144658927142\\ +0.851000724712218 -143.956198221135\\ +0.88296999554939 -143.805614813092\\ +0.907732652520995 -143.71786045271\\ +0.933189771573347 -143.651890526218\\ +0.950556592010137 -143.620080022034\\ +0.968246611930323 -143.598039370922\\ +0.986265846131287 -143.585788199272\\ +0.995400828762154 -143.583337419148\\ +1.00462042134681 -143.583337419148\\ +1.01392540755881 -143.585788199272\\ +1.02331657833024 -143.59068921369\\ +1.04236067397639 -143.607837034203\\ +1.06175918348298 -143.634765608906\\ +1.08151870255226 -143.671450963373\\ +1.1118496048193 -143.744699186169\\ +1.1430311291145 -143.839678179725\\ +1.17508713090482 -143.956198221135\\ +1.2192312516491 -144.144658927142\\ +1.26503372039588 -144.370330683317\\ +1.32471398786616 -144.703525575567\\ +1.38720978054164 -145.091787957086\\ +1.46610868404698 -145.627402498871\\ +1.54949503931459 -146.235115253627\\ +1.65279206146492 -147.029022690587\\ +1.77930438991856 -148.038344503072\\ +1.91550055557359 -149.143920791031\\ +2.10049824165391 -150.640224508758\\ +2.34622884814232 -152.567068928407\\ +2.69420371368182 -155.109610367003\\ +4.47353305449843 -164.558133087157\\ +5.18459354389293 -167.116803836187\\ +5.95353313081449 -169.399593301807\\ +6.83651600451004 -171.573313095923\\ +7.92316862486613 -173.785625345881\\ +9.44006478941749 -176.301648080159\\ +12.2204468663152 -179.889521115302\\ +12.3336349791381 179.983110819151\\ +15.9662602210142 176.371367395968\\ +18.6754584276109 174.082761229751\\ +21.4452607597172 171.959421974071\\ +24.1759407916908 170.01553208274\\ +27.2543253128104 167.955075351323\\ +30.4427221206439 165.933986061586\\ +34.0041193270367 163.785396828638\\ +37.982153061908 161.498663108646\\ +42.4255643071768 159.066050540548\\ +47.3887960971767 156.483651045247\\ +53.4229329953849 153.51817441204\\ +60.7832312829711 150.139403657404\\ +69.7981390783064 146.331409039535\\ +83.1610415323096 141.296697232236\\ +100 135.866639032337\\ +}; +\addlegendentry{$\alpha = 1$} + +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.01 141.25782845699\\ +0.0127087870920203 149.746596855189\\ +0.02033800305847 166.43033138603\\ +0.0280833199882324 177.579864141309\\ +0.0299554933435982 179.791331216972\\ +0.0302329468440578 -179.8928654785\\ +0.0474981480322836 -164.302302660939\\ +0.068681035889951 -151.2804106029\\ +0.0914031074875622 -141.269992519576\\ +0.107902879151619 -135.689359137369\\ +0.123906215694794 -131.263380526629\\ +0.139683511798871 -127.637362222654\\ +0.156024641436638 -124.488860782599\\ +0.17267809038843 -121.784452469303\\ +0.191109062168914 -119.262216503451\\ +0.20956623994805 -117.130935516548\\ +0.229805998875885 -115.154392230691\\ +0.252000499376417 -113.331337921629\\ +0.273802517792786 -111.819534645806\\ +0.297490754721436 -110.426946142374\\ +0.323228397818141 -109.150162474584\\ +0.351192753045066 -107.985413455279\\ +0.378074666359942 -107.040931458026\\ +0.407014245321941 -106.179013747101\\ +0.438168993151433 -105.396867092387\\ +0.471708469091704 -104.691784102583\\ +0.503154894503796 -104.136022759072\\ +0.536697694554061 -103.635663859708\\ +0.572476623970219 -103.18919576699\\ +0.610640754223191 -102.795230787728\\ +0.645371540164686 -102.498380208932\\ +0.682077673286572 -102.238471935274\\ +0.720871503378203 -102.014877225689\\ +0.75487992816532 -101.85589026076\\ +0.790492762269657 -101.72146625667\\ +0.820188949920225 -101.631454766016\\ +0.851000724712218 -101.556913790353\\ +0.88296999554939 -101.497760035695\\ +0.907732652520995 -101.463452053807\\ +0.933189771573347 -101.437740054283\\ +0.959360828709328 -101.420607765698\\ +0.97721469697258 -101.413947163492\\ +0.995400828762154 -101.41109295478\\ +1.01392540755881 -101.412044335344\\ +1.03279473191894 -101.416801573262\\ +1.05201521761614 -101.425366008841\\ +1.07159339982264 -101.437740054283\\ +1.10164594963369 -101.463452053807\\ +1.13254131515284 -101.497760035695\\ +1.16430313292089 -101.540685680796\\ +1.20804213467733 -101.611372704482\\ +1.25342426546138 -101.697507831935\\ +1.30051125217337 -101.799187037159\\ +1.36186523675611 -101.948318312399\\ +1.42611370719414 -102.122171535382\\ +1.49339321612424 -102.321043787008\\ +1.57833140565207 -102.59319235545\\ +1.66810053720008 -102.902510467599\\ +1.7629753752872 -103.249731486601\\ +1.88050405512853 -103.703810301075\\ +2.00586777950826 -104.211988531941\\ +2.1395888713434 -104.775794611939\\ +2.28222447418683 -105.396867092387\\ +2.45691646298281 -106.179013747101\\ +2.64498018242767 -107.040931458026\\ +2.84743916646731 -107.985413455279\\ +3.06539529505651 -109.015284731907\\ +3.33060034362469 -110.279429027015\\ +3.61874981241128 -111.658973787557\\ +3.93182875570566 -113.157377948217\\ +4.27199396630681 -114.777571992694\\ +4.68458011587293 -116.723262290049\\ +5.13701354335138 -118.823583526712\\ +5.63314267060121 -121.078261103554\\ +6.23440188862789 -123.733612592555\\ +6.96374473062844 -126.831586811859\\ +7.77841107128642 -130.125314588668\\ +8.85007491447353 -134.188079399986\\ +10.2567793074445 -139.0706817497\\ +12.3336349791381 -145.427947761283\\ +17.8341022071005 -158.466637122255\\ +24.8539485742973 -170.072428841069\\ +33.0764978074424 -179.8928654785\\ +33.3828586473175 179.791331216972\\ +50.5479682119114 165.463077280532\\ +68.5229159528409 154.690283085552\\ +100 141.25782845699\\ +}; +\addlegendentry{$\alpha = 10$} + +\addplot [color=mycolor4, line width=1.5pt] + table[row sep=crcr]{% +0.01 -179.43549947792\\ +0.0129452997822788 -164.759056183386\\ +0.015002933220192 -156.754934854135\\ +0.0170699493403842 -150.122479502771\\ +0.0192435097523039 -144.336094828809\\ +0.0214947467343796 -139.344072327171\\ +0.0237890104107894 -135.075458768145\\ +0.0263281546564798 -131.104227571426\\ +0.0288709091735928 -127.749603926456\\ +0.0316592411198347 -124.632508984386\\ +0.0347168681892662 -121.744675724217\\ +0.0380697987140222 -119.076043335305\\ +0.041746552892532 -116.615354645809\\ +0.0457784053837654 -114.350649565103\\ +0.0501996513311016 -112.269659727455\\ +0.0550478980785488 -110.360114476483\\ +0.0598104096238105 -108.77814758564\\ +0.0649849535446982 -107.316779432235\\ +0.0706071771413795 -105.967826925531\\ +0.0767158117677927 -104.723481815635\\ +0.0833529396509846 -103.576339779458\\ +0.0905642837944531 -102.519415728366\\ +0.0983995229627797 -101.546148538646\\ +0.106912633917349 -100.650397828515\\ +0.116162263260848 -99.8264349013712\\ +0.126212131452257 -99.0689295457683\\ +0.137131471775393 -98.3729340240504\\ +0.148995507285289 -97.7338652866608\\ +0.161885969017819 -97.1474862096559\\ +0.175891659032778 -96.6098864606348\\ +0.191109062168914 -96.1174634453691\\ +0.207643010725571 -95.6669036669255\\ +0.225607406649687 -95.2551647349894\\ +0.245126006203328 -94.8794581902949\\ +0.266333272517501 -94.5372332532935\\ +0.28937530190509 -94.22616156393\\ +0.311525422355555 -93.9740883208354\\ +0.335371015200292 -93.7435928261774\\ +0.361041859717323 -93.533430738018\\ +0.38867766908927 -93.3424663663522\\ +0.418428850790151 -93.1696668893992\\ +0.450457325175955 -93.0140970508552\\ +0.484937406733521 -92.8749143247432\\ +0.517265738721588 -92.765977015351\\ +0.551749237612921 -92.6685553243716\\ +0.58853157751914 -92.5822448176624\\ +0.627766010580631 -92.5066870832391\\ +0.663470812109245 -92.4502425655415\\ +0.701206358900715 -92.4012944989136\\ +0.741088151564139 -92.3596934725267\\ +0.776050333513376 -92.3305459834826\\ +0.812661920009201 -92.3063502265361\\ +0.851000724712218 -92.2870549012104\\ +0.891148232283998 -92.2726190946174\\ +0.9246257116406 -92.2645483882152\\ +0.959360828709328 -92.2595570343043\\ +0.995400828762154 -92.2576382592786\\ +1.03279473191894 -92.2587894592063\\ +1.07159339982264 -92.2630121963597\\ +1.1118496048193 -92.2703122012974\\ +1.1536181017365 -92.280699380499\\ +1.19695570235905 -92.2941878295618\\ +1.25342426546138 -92.3154378384214\\ +1.3125568357718 -92.3416075470941\\ +1.37447909267756 -92.3727524397406\\ +1.43932264471941 -92.4089385434855\\ +1.52118551798608 -92.4591250315\\ +1.60770442167387 -92.5168350814735\\ +1.69914417203464 -92.5822448176624\\ +1.81241754737421 -92.6685553243716\\ +1.9332422875551 -92.765977015351\\ +2.06212180399915 -92.8749143247432\\ +2.19959306803003 -92.9958193387509\\ +2.34622884814232 -93.1291936118087\\ +2.52582002696278 -93.2976017002527\\ +2.71915794303594 -93.4839319193285\\ +2.92729483504285 -93.689192220815\\ +3.15136348486643 -93.9144920544459\\ +3.39258338274108 -94.1610480301771\\ +3.65226736430817 -94.4301900706982\\ +3.93182875570566 -94.7233680649126\\ +4.2327890655736 -95.042159030283\\ +4.59899209052235 -95.4335512942533\\ +4.99687745385497 -95.8621849738352\\ +5.42918617761888 -96.3309593232963\\ +5.89889642550864 -96.8430350528091\\ +6.40924401935642 -97.4018518827295\\ +6.96374473062844 -98.0111468475\\ +7.56621850048106 -98.674973154251\\ +8.22081575524031 -99.3977193194881\\ +8.93204599858103 -100.184128202118\\ +9.70480887738009 -101.039315416956\\ +10.5444279352618 -101.968786443346\\ +11.4566872863485 -102.978451531216\\ +12.4478714618793 -104.074637243841\\ +13.5248087041786 -105.264093154328\\ +14.6949180062486 -106.553991823637\\ +15.9662602210142 -107.951919725755\\ +17.3475935923388 -109.465856248351\\ +18.848434090338 -111.104137289989\\ +20.4791209666503 -112.875399314601\\ +22.2508879812839 -114.788499045374\\ +24.1759407916908 -116.852403345014\\ +26.5108360190857 -119.333356394021\\ +29.0712337727252 -122.023417831217\\ +31.8789129267769 -124.933749094245\\ +34.9577557436321 -128.07426022057\\ +38.3339510176665 -131.453002030857\\ +42.0362168384463 -135.075458768145\\ +46.5229952396024 -139.344072327171\\ +51.4886745013736 -143.906989795268\\ +57.5121707184161 -149.207784007933\\ +64.8353428605487 -155.301546680644\\ +74.4512291079494 -162.722036664831\\ +87.8909065341978 -172.030705807668\\ +100 -179.43549947792\\ +}; +\addlegendentry{$\alpha = 100$} + +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filters_loop_gain.pdf b/matlab/figs/comp_filters_loop_gain.pdf new file mode 100644 index 0000000..2375a65 Binary files /dev/null and b/matlab/figs/comp_filters_loop_gain.pdf differ diff --git a/matlab/figs/comp_filters_loop_gain.png b/matlab/figs/comp_filters_loop_gain.png new file mode 100644 index 0000000..0522cac Binary files /dev/null and b/matlab/figs/comp_filters_loop_gain.png differ diff --git a/matlab/figs/comp_filters_loop_gain.svg b/matlab/figs/comp_filters_loop_gain.svg new file mode 100644 index 0000000..2d3e1ee --- /dev/null +++ b/matlab/figs/comp_filters_loop_gain.svg @@ -0,0 +1,418 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filters_loop_gain.tex b/matlab/figs/comp_filters_loop_gain.tex new file mode 100644 index 0000000..9313b5e --- /dev/null +++ b/matlab/figs/comp_filters_loop_gain.tex @@ -0,0 +1,398 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.535in,2.189in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-05, +ymax=100000, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 100\\ +100 0.01\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 4452.70738062487\\ +0.0603643850607586 123.255961479085\\ +0.104959323055823 41.4860876658547\\ +0.150375532129974 20.7469459594487\\ +0.196468664618044 12.5718126492539\\ +0.245126006203334 8.42095804539062\\ +0.300246170908555 5.9165140185489\\ +0.361041859717334 4.35336515292742\\ +0.430163575810679 3.29696026169505\\ +0.512518692705333 2.53006503479395\\ +0.616296625513294 1.93981910507326\\ +0.761871770232299 1.44815343138913\\ +1.0423606739764 0.953362265859272\\ +1.43932264471941 0.618081072555738\\ +1.76297537528721 0.465162228361309\\ +2.10049824165392 0.359717438792584\\ +2.50264009641792 0.274677819928194\\ +2.98177229001967 0.206968748901517\\ +3.58553985745982 0.15151896622923\\ +4.35149650092505 0.107710246650006\\ +5.42918617761894 0.0718824792826439\\ +7.093341204988 0.0434183214062307\\ +9.88541702191957 0.0228579836757209\\ +15.819734815786 0.00906007100693446\\ +35.2815411538088 0.00183588735411689\\ +100 0.000228928833851165\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.0125921561369415 101491.596159216\\ +0.172678090388436 39.7797829846157\\ +0.231934505927443 16.8033863636911\\ +0.278898029238044 10.0043490471442\\ +0.320262069365765 6.91277373483255\\ +0.361041859717334 5.11805341723831\\ +0.399578030189527 4.04178744190975\\ +0.438168993151419 3.31590059296286\\ +0.480487043965513 2.76635130573283\\ +0.526892142135068 2.34623524719731\\ +0.577779011797051 2.02030321187599\\ +0.633580499265825 1.76251082228349\\ +0.701206358900718 1.53526789548917\\ +0.790492762269642 1.3198868337325\\ +0.933189771573324 1.08431962221283\\ +1.31255683577184 0.726277026211204\\ +1.4796880626864 0.623011580023913\\ +1.63762407452169 0.541225051579819\\ +1.7957846470021 0.470686125609692\\ +1.96922025547917 0.403791844849419\\ +2.13958887134342 0.347113507663843\\ +2.32469705998565 0.294401143531218\\ +2.54921465445143 0.241298560659569\\ +2.82130767593947 0.190374762740941\\ +3.15136348486648 0.144225272295667\\ +3.58553985745982 0.102262511913719\\ +4.23278906557355 0.064285904088498\\ +5.28107971193433 0.0338426545259227\\ +7.63629826128224 0.0113342149786448\\ +20.6688024962908 0.00057371185817525\\ +80.1500696156541 9.83916882380797e-06\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.535in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-270, +ymax=90, +ytick={-270, -180, -90, 0, 90}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.562,3.158)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 -90\\ +100 -90\\ +}; +\addlegendentry{1st order} + +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 -178.957003034352\\ +0.0108651577465251 -178.866810244641\\ +0.0118051652856881 -178.768826475063\\ +0.0128264983052803 -178.662381105018\\ +0.0139361927422416 -178.546746460124\\ +0.0151418932530433 -178.421133148156\\ +0.0164519058775369 -178.284685067875\\ +0.0178752552590422 -178.136474083827\\ +0.0194217468148908 -177.975494365462\\ +0.0211020342856859 -177.800656396364\\ +0.0229276931286557 -177.610780669387\\ +0.024911300260678 -177.404591097025\\ +0.0270665207003317 -177.180708184193\\ +0.0294082017058709 -176.937642034026\\ +0.0319524750575915 -176.673785287792\\ +0.0347168681892662 -176.38740613922\\ +0.0377204249341695 -176.076641613817\\ +0.0409838367175735 -175.739491367411\\ +0.0445295850994262 -175.373812338418\\ +0.048382096649261 -174.977314688424\\ +0.0525679112201842 -174.547559589349\\ +0.0571158647812626 -174.08195956661\\ +0.0620572880677654 -173.577782289778\\ +0.0674262224177818 -173.032158918076\\ +0.0732596542821532 -172.442098358514\\ +0.0795977700231485 -171.804509077097\\ +0.0864842327573189 -171.116230410629\\ +0.0939664831495459 -170.37407564209\\ +0.103041699495061 -169.482436450549\\ +0.112993393803321 -168.516222824858\\ +0.123906215694794 -167.471591904478\\ +0.13587299019027 -166.345231365715\\ +0.148995507285289 -165.134612999381\\ +0.164898694447104 -163.703936571506\\ +0.182499324481618 -162.169716094556\\ +0.203849339825241 -160.381377716493\\ +0.229805998875885 -158.31871653437\\ +0.261467321180114 -155.972596756133\\ +0.311525422355555 -152.645144617672\\ +0.422304418720659 -146.846472539726\\ +0.471708469091704 -144.876260138199\\ +0.517265738721588 -143.347062017852\\ +0.562017384808323 -142.082929539107\\ +0.605036787939111 -141.064584651059\\ +0.645371540164686 -140.265085247662\\ +0.682077673286572 -139.653847594782\\ +0.720871503378203 -139.115467955745\\ +0.75487992816532 -138.725195702185\\ +0.790492762269657 -138.390023464222\\ +0.827785696619849 -138.111573850448\\ +0.858882855954615 -137.930569117342\\ +0.891148232283998 -137.787294464749\\ +0.91614024571388 -137.704869763854\\ +0.941833153464815 -137.644063124785\\ +0.959360828709328 -137.615589131292\\ +0.97721469697258 -137.596792889179\\ +0.995400828762154 -137.58768890975\\ +1.00462042134681 -137.586774007244\\ +1.01392540755881 -137.588284220971\\ +1.02331657833024 -137.59221925947\\ +1.04236067397639 -137.607360305118\\ +1.06175918348298 -137.632185455269\\ +1.08151870255226 -137.666675542532\\ +1.1118496048193 -137.736472130002\\ +1.1430311291145 -137.827831850675\\ +1.17508713090482 -137.9405958583\\ +1.2192312516491 -138.123899042406\\ +1.26503372039588 -138.344334104422\\ +1.32471398786616 -138.671043950268\\ +1.38720978054164 -139.053116017368\\ +1.45265392594678 -139.488700184785\\ +1.53527502878039 -140.079050862312\\ +1.63762407452172 -140.855824439885\\ +1.74679621512724 -141.720394781674\\ +1.88050405512853 -142.805569136392\\ +2.04319732019529 -144.134465562819\\ +2.24052786929996 -145.721897135137\\ +2.52582002696278 -147.915005842776\\ +3.03726357970331 -151.44285609824\\ +3.89574561577541 -156.185774414586\\ +4.47353305449843 -158.68364267057\\ +5.04315948717143 -160.724814576918\\ +5.63314267060121 -162.491221169974\\ +6.23440188862789 -164.004438070156\\ +6.8998371214298 -165.413885129215\\ +7.56621850048106 -166.605414264188\\ +8.29695852083464 -167.713170155591\\ +9.09827289445557 -168.739881732982\\ +9.97697764236288 -169.689000771499\\ +10.9405470720574 -170.564459360223\\ +11.9971773543585 -171.370474411371\\ +13.1558562404571 -172.111394308948\\ +14.4264395121811 -172.791581841864\\ +15.674554102056 -173.355373036494\\ +17.030650292528 -173.876484146789\\ +18.5040701954232 -174.357837139881\\ +20.1049641626046 -174.802222614342\\ +21.8443607114946 -175.212289168741\\ +23.7342425002384 -175.590537859071\\ +25.7876288759386 -175.939320537386\\ +28.0186655645918 -176.260841094317\\ +30.4427221206439 -176.557158824031\\ +33.0764978074424 -176.830193293882\\ +35.9381366380452 -177.081730235641\\ +39.0473523688559 -177.313428084679\\ +42.4255643071768 -177.526824881582\\ +46.0960448682849 -177.723345320863\\ +50.0840798984813 -177.904307786967\\ +54.41714286866 -178.070931261306\\ +59.1250841383182 -178.224342017946\\ +64.2403365939436 -178.365580051744\\ +69.7981390783064 -178.495605202759\\ +75.8367791499744 -178.615302955963\\ +82.3978568452854 -178.725489906648\\ +89.5265712599616 -178.826918890367\\ +98.172984061889 -178.930188150367\\ +100 -178.949725392766\\ +}; +\addlegendentry{2nd order} + +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.01 -268.559706368244\\ +0.0108651577465251 -268.435040678086\\ +0.0118051652856874 -268.299573175461\\ +0.0128264983052811 -268.152364740733\\ +0.0139361927422416 -267.992393709843\\ +0.0151418932530433 -267.818548367858\\ +0.0164519058775359 -267.629618690512\\ +0.0178752552590433 -267.424287240017\\ +0.0194217468148908 -267.201119105339\\ +0.0211020342856859 -266.958550757566\\ +0.0229276931286557 -266.694877666935\\ +0.0249113002606763 -266.408240498577\\ +0.0270665207003335 -266.09660966765\\ +0.0294082017058709 -265.757767989608\\ +0.0319524750575915 -265.389291106001\\ +0.0347168681892639 -264.988525297787\\ +0.0377204249341719 -264.552562214069\\ +0.0409838367175735 -264.0782099409\\ +0.0445295850994262 -263.561959708845\\ +0.0483820966492578 -262.999947385468\\ +0.0525679112201876 -262.38790871625\\ +0.0571158647812663 -261.72112706228\\ +0.0620572880677654 -260.994372135473\\ +0.0674262224177818 -260.201827957339\\ +0.0732596542821484 -259.337007980368\\ +0.0795977700231537 -258.392655043266\\ +0.0864842327573189 -257.360623642869\\ +0.0939664831495459 -256.231742004148\\ +0.102096066230601 -254.995651801261\\ +0.109910970092957 -253.7974554544\\ +0.118324062745842 -252.496031035399\\ +0.127381132318649 -251.080996495873\\ +0.137131471775393 -249.5407357266\\ +0.147628147190933 -247.862278435322\\ +0.158928286562308 -246.031203684947\\ +0.171093390726908 -244.031594669447\\ +0.184189668079973 -241.846087546318\\ +0.198288394912704 -239.456078013494\\ +0.213466303332416 -236.842175905452\\ +0.2298059988759 -233.985028106631\\ +0.247396410088691 -230.866656313354\\ +0.266333272517501 -227.472462792915\\ +0.28937530190509 -223.314155182831\\ +0.314410830314712 -218.79944041624\\ +0.344776405473464 -213.397604586938\\ +0.385110700232562 -206.492270612153\\ +0.517265738721622 -187.785856771055\\ +0.562017384808323 -183.077027308029\\ +0.605036787939111 -179.291104959751\\ +0.645371540164644 -176.338732370898\\ +0.682077673286527 -174.099978935363\\ +0.72087150337825 -172.144504026192\\ +0.754879928165369 -170.737644861378\\ +0.790492762269657 -169.536693767311\\ +0.820188949920225 -168.725518991483\\ +0.851000724712218 -168.047956420126\\ +0.88296999554939 -167.504328254059\\ +0.907732652520995 -167.184598441752\\ +0.933189771573286 -166.940320912698\\ +0.950556592010074 -166.819391240799\\ +0.96824661193026 -166.731999151588\\ +0.986265846131223 -166.678143777145\\ +0.995400828762089 -166.66379208272\\ +1.00462042134688 -166.657824284025\\ +1.01392540755888 -166.660240352052\\ +1.0233165783303 -166.671040298629\\ +1.03279473191901 -166.690224175228\\ +1.05201521761621 -166.753744086483\\ +1.07159339982271 -166.850800984501\\ +1.09153593533143 -166.981395630633\\ +1.12214776820801 -167.240170067956\\ +1.1536181017365 -167.574393635307\\ +1.18597101233768 -167.984035832293\\ +1.23052400435925 -168.647425125976\\ +1.27675070431924 -169.444471137042\\ +1.3369837418249 -170.627872753272\\ +1.40005838246802 -172.017388550973\\ +1.46610868404707 -173.609979297813\\ +1.54949503931469 -175.782510879849\\ +1.63762407452172 -178.228899255372\\ +1.74679621512724 -181.406338625306\\ +1.88050405512853 -185.418095065069\\ +2.04319732019515 -190.32799902709\\ +2.3033628731422 -197.903019273894\\ +2.90043049386384 -212.599410102468\\ +3.21001089554331 -218.57847227479\\ +3.52003147279672 -223.591269790894\\ +3.82456972246693 -227.72644584513\\ +4.15545533471868 -231.502543624031\\ +4.51496777203634 -234.932856984827\\ +4.86056423214227 -237.709606317426\\ +5.23261423948667 -240.249268900511\\ +5.63314267060121 -242.57132789173\\ +6.06432939540775 -244.69498973638\\ +6.52852114112819 -246.638494805646\\ +7.02824426430854 -248.418754342825\\ +7.63629826128223 -250.245576768037\\ +8.29695852083464 -251.905013728132\\ +9.01477631452437 -253.41453557213\\ +9.79469667069579 -254.789551865633\\ +10.6420924406474 -256.043636928345\\ +11.5628013120735 -257.188754452214\\ +12.5631660247406 -258.235466680925\\ +13.6500780654609 -259.193121811654\\ +14.8310251433614 -260.070017949603\\ +16.1141427725301 -260.873544447254\\ +17.5082703173566 -261.610302664265\\ +19.0230118866882 -262.286208638849\\ +20.6688024962916 -262.906580204172\\ +22.4569799553979 -263.476210915662\\ +24.399862972595 -263.999432894991\\ +26.510836019084 -264.480170409803\\ +28.8044415339644 -264.92198573034\\ +31.2964801067081 -265.328118551701\\ +34.0041193270367 -265.701520050035\\ +36.9460120519916 -266.044882453329\\ +40.1424249049957 -266.36066485035\\ +43.6153778920815 -266.651115831411\\ +47.3887960971767 -266.918293448036\\ +51.4886745013736 -267.164082891683\\ +55.9432570616907 -267.390212221046\\ +60.7832312829751 -267.598266410184\\ +66.0419396233041 -267.78969994328\\ +71.7556091893683 -267.965848144262\\ +77.963601304049 -268.127937398956\\ +84.708682665579 -268.277094402665\\ +92.0373199661849 -268.414354545784\\ +100 -268.540669533537\\ +}; +\addlegendentry{3rd order} + +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filters_magnitude.pdf b/matlab/figs/comp_filters_magnitude.pdf new file mode 100644 index 0000000..a9b1d7f Binary files /dev/null and b/matlab/figs/comp_filters_magnitude.pdf differ diff --git a/matlab/figs/comp_filters_magnitude.png b/matlab/figs/comp_filters_magnitude.png new file mode 100644 index 0000000..c0d6cc8 Binary files /dev/null and b/matlab/figs/comp_filters_magnitude.png differ diff --git a/matlab/figs/comp_filters_magnitude.svg b/matlab/figs/comp_filters_magnitude.svg new file mode 100644 index 0000000..bb121b4 --- /dev/null +++ b/matlab/figs/comp_filters_magnitude.svg @@ -0,0 +1,1080 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filters_magnitude.tex b/matlab/figs/comp_filters_magnitude.tex new file mode 100644 index 0000000..0bd5141 --- /dev/null +++ b/matlab/figs/comp_filters_magnitude.tex @@ -0,0 +1,347 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=1.094in, +height=2.082in, +at={(0.475in,0.361in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-06, +ymax=10, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +title style={font=\bfseries}, +title={1st Order}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.999950003749688\\ +0.0872852662384838 0.996212270690056\\ +0.153174046370208 0.988471330430528\\ +0.217438947560008 0.977166698892772\\ +0.28408836901833 0.961935999785096\\ +0.351192753045073 0.943506928797092\\ +0.422304418720667 0.921222425190311\\ +0.493962174387832 0.89658206894665\\ +0.572476623970218 0.867851063718372\\ +0.657382014340959 0.835613749888064\\ +0.747952251562182 0.800786420009844\\ +0.851000724712225 0.761563109315656\\ +0.968246611930312 0.718420929727937\\ +1.10164594963366 0.672121971177384\\ +1.2534242654614 0.623652758680333\\ +1.43932264471941 0.570576865353009\\ +1.6527920614649 0.517660922485174\\ +1.93324228755505 0.45943998828332\\ +2.30336287314213 0.398236356286246\\ +2.79541599906786 0.336825403943566\\ +3.52003147279668 0.273274829278965\\ +4.68458011587305 0.208762849610014\\ +6.89983712143002 0.14343238847176\\ +12.5631660247412 0.0793468039750842\\ +44.4270674960688 0.0225031006887017\\ +100 0.00999950003749688\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00999950003749688\\ +0.103041699495059 0.102498990038406\\ +0.180824493487795 0.17793881538738\\ +0.259067785868801 0.250788474460806\\ +0.338477285594598 0.320609557068459\\ +0.418428850790158 0.38600008899331\\ +0.503154894503806 0.449466781039234\\ +0.593982669392036 0.510686647281754\\ +0.68839520696455 0.567029432413203\\ +0.790492762269643 0.620136666948723\\ +0.899402217409204 0.668719136891543\\ +1.02331657833024 0.715207948469259\\ +1.16430313292088 0.758604000567722\\ +1.32471398786612 0.798126612349091\\ +1.50722530931076 0.833277344034096\\ +1.73076553419573 0.865864610401702\\ +2.00586777950823 0.894950178808985\\ +2.34622884814226 0.919927785702932\\ +2.79541599906786 0.941567123076339\\ +3.42400613797143 0.959899597972468\\ +4.35149650092505 0.974596471947885\\ +5.8988964255085 0.985933406372556\\ +8.93204599858097 0.99379118517986\\ +17.1883914281715 0.998311897747327\\ +80.150069615654 0.999922176367756\\ +100 0.999950003749688\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1\\ +100 1\\ +}; +\end{axis} + +\begin{axis}[% +width=1.094in, +height=2.082in, +at={(1.803in,0.361in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-06, +ymax=10, +ytick={1e-06,0.0001,0.01,1}, +yticklabels={{}}, +yminorticks=true, +axis background/.style={fill=white}, +title style={font=\bfseries}, +title={2nd Order}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00016377132585\\ +0.0445295850994266 1.00438648202937\\ +0.0753142016597437 1.01257579052477\\ +0.105931476351837 1.02468691048855\\ +0.137131471775394 1.04084922409924\\ +0.169523234155412 1.06136808672723\\ +0.203849339825246 1.08680814192809\\ +0.242876438246045 1.11965866545935\\ +0.28408836901833 1.15795198108141\\ +0.332293251639897 1.2060155853829\\ +0.395911026646846 1.27196415891242\\ +0.633580499265825 1.47640941055518\\ +0.68839520696455 1.49978972972523\\ +0.741088151564157 1.51013647391034\\ +0.790492762269643 1.5084552042335\\ +0.835452805838287 1.49740162706414\\ +0.882969995549409 1.47639092294907\\ +0.933189771573324 1.44482895707393\\ +0.986265846131282 1.40267598138555\\ +1.0423606739764 1.35051511435535\\ +1.10164594963366 1.28952961287854\\ +1.17508713090481 1.20946971625427\\ +1.2534242654614 1.12281491654952\\ +1.34936714058831 1.01985700974011\\ +1.46610868404698 0.904200940054408\\ +1.62259528707809 0.769699678427727\\ +1.82920450484629 0.627097871742793\\ +2.13958887134342 0.472171362546278\\ +2.64498018242772 0.316316507798087\\ +3.58553985745982 0.175098662912075\\ +6.00867589171969 0.0630624953644263\\ +18.1659978837533 0.00693468485742134\\ +100 0.000228981306820758\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000224619245288355\\ +0.192879150802078 0.0829019455276375\\ +0.326222200971167 0.233223786060789\\ +0.434147833005509 0.403474368996168\\ +0.526892142135067 0.576322717214644\\ +0.605036787939122 0.73311034738626\\ +0.675818116816111 0.876721088464686\\ +0.741088151564157 1.00442185286882\\ +0.805203967082547 1.12031631825209\\ +0.866837993001977 1.21904162195405\\ +0.924625711640574 1.29816671951776\\ +0.977214696972572 1.35810917447162\\ +1.03279473191895 1.4090527017493\\ +1.09153593533139 1.44987847781789\\ +1.15361810173648 1.48007575426307\\ +1.21923125164911 1.49975410446223\\ +1.28857621318552 1.50956613098593\\ +1.37447909267754 1.50996861241749\\ +1.4796880626864 1.4984259145893\\ +1.60770442167382 1.47404788046638\\ +1.77930438991858 1.43385598174158\\ +2.08122156998634 1.36238443581031\\ +2.82130767593947 1.23257637859913\\ +3.33060034362459 1.17672345677722\\ +3.8957456157755 1.13446631718882\\ +4.59899209052244 1.09958690954159\\ +5.47947233690029 1.07187933161953\\ +6.65001803043112 1.04973675519239\\ +8.29695852083491 1.0324209111066\\ +10.9405470720574 1.01885786790594\\ +15.674554102056 1.00926028534539\\ +26.5108360190854 1.00325321010476\\ +71.0970943231243 1.00045336891739\\ +100 1.00022921083688\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.999939189304582\\ +100 1.00000026800852\\ +}; +\end{axis} + +\begin{axis}[% +width=1.094in, +height=2.082in, +at={(3.131in,0.361in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-06, +ymax=10, +ytick={1e-06,0.0001,0.01,1}, +yticklabels={{}}, +yminorticks=true, +axis background/.style={fill=white}, +title style={font=\bfseries}, +title={3rd Order}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00000440419727\\ +0.123906215694792 1.00351590110718\\ +0.167967487209265 1.01083278879879\\ +0.201978575681988 1.02177511975267\\ +0.231934505927443 1.03689264325123\\ +0.259067785868801 1.05624593841567\\ +0.28408836901833 1.07980543901471\\ +0.308666494333727 1.10907422845028\\ +0.332293251639897 1.14357187418883\\ +0.357728509936787 1.18828317333386\\ +0.385110700232557 1.245767392777\\ +0.410784088996565 1.30886528208706\\ +0.438168993151419 1.38623463186899\\ +0.471708469091701 1.49525180666427\\ +0.507815211232767 1.62994893702938\\ +0.551749237612913 1.81714347271175\\ +0.605036787939122 2.07566726792674\\ +0.694771254846024 2.57121060181105\\ +0.776050333513357 3.04021561804489\\ +0.827785696619847 3.30899111249278\\ +0.866837993001977 3.47343298706502\\ +0.899402217409205 3.57337808342612\\ +0.924625711640573 3.62258790680529\\ +0.950556592010119 3.644936539194\\ +0.977214696972572 3.63718898228141\\ +1.00462042134681 3.59769421346398\\ +1.03279473191895 3.52674472675655\\ +1.061759183483 3.42662385177374\\ +1.10164594963366 3.2548082911528\\ +1.14303112911448 3.05063190731606\\ +1.19695570235904 2.76988900050791\\ +1.2650337203959 2.42459935558282\\ +1.36186523675608 1.99141240613546\\ +1.5211855179861 1.45035193831892\\ +1.8979216428391 0.749610199674972\\ +29.6122543798804 0.000195112092751456\\ +100 5.0660881919855e-06\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 4.93482333447769e-06\\ +0.741088151564157 1.98676638023732\\ +0.805203967082547 2.47715460604889\\ +0.858882855954626 2.88197529170197\\ +0.899402217409205 3.15706467170718\\ +0.933189771573324 3.35068067123016\\ +0.968246611930311 3.50648367705466\\ +0.995400828762152 3.59160674768559\\ +1.02331657833024 3.6458913078532\\ +1.05201521761616 3.66809434817401\\ +1.08151870255229 3.65899538338404\\ +1.11184960481927 3.62117127622932\\ +1.14303112911448 3.55851311478299\\ +1.18597101233767 3.44434217601995\\ +1.24192135270178 3.26804066825263\\ +1.31255683577184 3.0319513722648\\ +1.43932264471941 2.63586178262707\\ +1.74679621512725 1.9567674585573\\ +1.91550055557353 1.72179903658829\\ +2.08122156998634 1.5533813113718\\ +2.24052786930002 1.43315421270535\\ +2.41202820761801 1.33651803347738\\ +2.59665597293487 1.25971336116203\\ +2.79541599906785 1.19930402188214\\ +3.00939003444972 1.15223402358913\\ +3.2397426295282 1.11585572009131\\ +3.52003147279668 1.08494006400998\\ +3.85999361767977 1.06001107651414\\ +4.27199396630678 1.04089406407639\\ +4.86056423214214 1.02510937774104\\ +5.68531791387375 1.0139477710702\\ +7.093341204988 1.0061781794792\\ +10.16265089393 1.00175237604172\\ +24.853948574298 1.00012619800216\\ +100 1.00000585443872\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00000428017157\\ +0.450457325175946 0.996694666262656\\ +0.536697694554048 0.98734275360145\\ +0.605036787939122 0.974238970865239\\ +0.663470812109235 0.957787233441095\\ +0.720871503378214 0.936263139986073\\ +0.776050333513357 0.910911895252813\\ +0.866837993001977 0.865977095351657\\ +0.924625711640574 0.844499990153353\\ +0.959360828709314 0.837866259470929\\ +0.995400828762153 0.837053582267126\\ +1.03279473191895 0.842470479199627\\ +1.08151870255229 0.856866574825527\\ +1.16430313292088 0.889846951277577\\ +1.27675070431927 0.93106519695075\\ +1.36186523675608 0.953675690815719\\ +1.46610868404698 0.972478367175539\\ +1.59295021257212 0.986394776026136\\ +1.76297537528721 0.996295008207651\\ +2.04319732019527 1.00275523152596\\ +2.59665597293487 1.00486075878916\\ +100 1.00000572543161\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filters_order.pdf b/matlab/figs/comp_filters_order.pdf new file mode 100644 index 0000000..f31378d Binary files /dev/null and b/matlab/figs/comp_filters_order.pdf differ diff --git a/matlab/figs/comp_filters_order.png b/matlab/figs/comp_filters_order.png new file mode 100644 index 0000000..b594f6a Binary files /dev/null and b/matlab/figs/comp_filters_order.png differ diff --git a/matlab/figs/comp_filters_order.svg b/matlab/figs/comp_filters_order.svg new file mode 100644 index 0000000..5f4312c --- /dev/null +++ b/matlab/figs/comp_filters_order.svg @@ -0,0 +1,409 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filters_order.tex b/matlab/figs/comp_filters_order.tex new file mode 100644 index 0000000..8c77811 --- /dev/null +++ b/matlab/figs/comp_filters_order.tex @@ -0,0 +1,977 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,2.19in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=4.93482333447769e-06, +ymax=3.66537978450645, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00999950003749688\\ +0.102096066230605 0.101568085638313\\ +0.17916503273639 0.176356853344754\\ +0.256690271549195 0.248629832174517\\ +0.335371015200293 0.317965972351183\\ +0.414588849683291 0.382979317717209\\ +0.498537346387389 0.446166087292351\\ +0.588531577519145 0.507209816953862\\ +0.682077673286569 0.56348315791626\\ +0.78323825991792 0.616615588845145\\ +0.89114823228402 0.665305570252569\\ +1.01392540755882 0.711979093211986\\ +1.15361810173648 0.755625007091445\\ +1.31255683577184 0.795444370736509\\ +1.49339321612425 0.830917492023446\\ +1.69914417203463 0.861822604475904\\ +1.95114834684662 0.889926498418906\\ +2.26128006633728 0.914562501549143\\ +2.66947849403432 0.936450730716741\\ +3.2397426295282 0.955516985596761\\ +4.04209583979631 0.970734264832939\\ +5.32999408084409 0.982851268057162\\ +7.7070271142123 0.991687064322705\\ +13.2777082935543 0.997175894082823\\ +38.6890073932798 0.999666130082362\\ +100 0.999950003749688\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.999950003749688\\ +0.0864842327573172 0.996281087554613\\ +0.151768339028341 0.988678397669297\\ +0.215443469003188 0.977569937168538\\ +0.281481236050758 0.962592904642806\\ +0.347969790388769 0.94445467641036\\ +0.418428850790158 0.922498743249636\\ +0.489428989611453 0.898192859312452\\ +0.567222897164454 0.869814584067362\\ +0.65134909462728 0.837926693078512\\ +0.741088151564157 0.803423671129156\\ +0.843190929286625 0.764502100386909\\ +0.95055659201012 0.724797959265652\\ +1.08151870255229 0.678893868833002\\ +1.23052400435926 0.630668312819054\\ +1.4000583824681 0.581222144127462\\ +1.60770442167382 0.528168837545644\\ +1.86324631193156 0.472894551469131\\ +2.19959306803007 0.413866387478076\\ +2.64498018242772 0.353643577548813\\ +3.30003479112529 0.290004594975956\\ +4.31156199031823 0.225937117607347\\ +6.1204983724767 0.161247331133137\\ +10.2567793074442 0.0970363897319065\\ +26.5108360190854 0.0376936186516494\\ +100 0.00999950003749688\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000224619245288355\\ +0.191109062168914 0.0813996356372382\\ +0.323228397818138 0.229078534120534\\ +0.430163575810679 0.396528685022918\\ +0.522056752784698 0.566866311913839\\ +0.599484250318941 0.721813329551954\\ +0.669616005485322 0.864257958255737\\ +0.734287044716676 0.991491278311319\\ +0.797814457207663 1.10758224238472\\ +0.858882855954625 1.20709599519481\\ +0.916140245713852 1.28740935948856\\ +0.968246611930312 1.34870532469992\\ +1.02331657833024 1.40124170250884\\ +1.08151870255229 1.44380633906726\\ +1.14303112911448 1.47578364825597\\ +1.20804213467733 1.49718301746525\\ +1.27675070431927 1.50857497416311\\ +1.36186523675608 1.51056879970641\\ +1.45265392594678 1.50234424166125\\ +1.57833140565212 1.48029199737409\\ +1.74679621512725 1.44173894210322\\ +2.00586777950823 1.37951379237709\\ +2.90043049386399 1.22245037512628\\ +3.42400613797143 1.16854915726718\\ +4.00500075787361 1.12799136627674\\ +4.72796959160039 1.09464183904902\\ +5.63314267060136 1.06822614642457\\ +6.83651600451024 1.04716299116814\\ +8.60864769614924 1.03017242266178\\ +11.35154708921 1.01753622862039\\ +16.4140297114447 1.00845033528628\\ +28.2781797962534 1.00286019763328\\ +81.6416760492147 1.00034385121491\\ +100 1.00022921083688\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00016377132585\\ +0.0441209286319119 1.00430551279924\\ +0.0746230289139111 1.01234727004673\\ +0.104959323055823 1.02424380157456\\ +0.135872990190271 1.04012647184764\\ +0.167967487209265 1.0603014136938\\ +0.201978575681988 1.08533247964411\\ +0.238439047009372 1.11573862584329\\ +0.278898029238044 1.15296119372435\\ +0.326222200971167 1.199824170638\\ +0.385110700232557 1.260721012829\\ +0.484937406733523 1.36169351224739\\ +0.583130511352623 1.44476239847869\\ +0.64537154016467 1.48246251633602\\ +0.701206358900718 1.50343668846147\\ +0.754879928165344 1.51078373549621\\ +0.805203967082547 1.50582129500218\\ +0.851000724712225 1.4915438851559\\ +0.899402217409204 1.46705700591255\\ +0.95055659201012 1.43193896596339\\ +1.00462042134681 1.38635418651397\\ +1.061759183483 1.33109319460882\\ +1.12214776820798 1.26751763946793\\ +1.19695570235904 1.18524062421643\\ +1.27675070431927 1.09730321100964\\ +1.37447909267754 0.993962948868638\\ +1.49339321612425 0.879013387798035\\ +1.6527920614649 0.746484727904752\\ +1.86324631193156 0.606986421063823\\ +2.17940698430296 0.456286764961849\\ +2.69420371368188 0.305309700999766\\ +3.68609536217216 0.165842398322749\\ +6.23440188862786 0.0586031504987276\\ +19.9204570845387 0.00576754699084555\\ +100 0.000228981306820758\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 4.93482333447769e-06\\ +0.741088151564157 1.98676638023732\\ +0.805203967082547 2.47715460604889\\ +0.851000724712225 2.82454913250656\\ +0.89114823228402 3.10429614552555\\ +0.924625711640573 3.30531784208848\\ +0.959360828709315 3.47175260692808\\ +0.986265846131283 3.56653961996898\\ +1.01392540755882 3.63134169791789\\ +1.0423606739764 3.66425033489904\\ +1.07159339982267 3.66537978450645\\ +1.10164594963366 3.63675144790826\\ +1.13254131515281 3.5818821000916\\ +1.17508713090481 3.47563297419233\\ +1.21923125164911 3.34189031388941\\ +1.28857621318552 3.1121196259812\\ +1.38720978054162 2.79133557378838\\ +1.82920450484629 1.83255606009323\\ +1.98745954958099 1.64226846588816\\ +2.13958887134342 1.50528204317285\\ +2.30336287314213 1.39435917749967\\ +2.47967289250216 1.30558462249053\\ +2.66947849403432 1.23531138017321\\ +2.87381269185107 1.18024082272902\\ +3.09378757173014 1.13746822061218\\ +3.33060034362459 1.1045009557736\\ +3.61874981241128 1.07654926634613\\ +3.96824610456949 1.05405492649794\\ +4.4324785912404 1.03556893809753\\ +5.04315948717136 1.02185294658319\\ +5.95353313081437 1.01175037629673\\ +7.56621850048106 1.00489541751621\\ +11.4566872863487 1.0011780572749\\ +38.6890073932798 1.00004396191027\\ +100 1.00000585443872\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00000440419727\\ +0.123906215694792 1.00351590110718\\ +0.167967487209265 1.01083278879879\\ +0.201978575681988 1.02177511975267\\ +0.231934505927443 1.03689264325123\\ +0.259067785868801 1.05624593841567\\ +0.28408836901833 1.07980543901471\\ +0.308666494333727 1.10907422845028\\ +0.332293251639897 1.14357187418883\\ +0.357728509936787 1.18828317333386\\ +0.381576466127125 1.23778581639082\\ +0.407014245321944 1.29903179040831\\ +0.434147833005509 1.37421808862223\\ +0.467379510799246 1.48030151703999\\ +0.503154894503806 1.6115710813329\\ +0.546685729972018 1.79431597060294\\ +0.599484250318941 2.04725681180119\\ +0.682077673286568 2.49794906435226\\ +0.776050333513357 3.04021561804489\\ +0.82018894992022 3.27250302800675\\ +0.858882855954626 3.44348115375323\\ +0.89114823228402 3.55172520763604\\ +0.916140245713852 3.60897389739492\\ +0.941833153464796 3.64069907065137\\ +0.968246611930311 3.64325512493666\\ +0.995400828762152 3.61441056308839\\ +1.02331657833024 3.55378768533992\\ +1.05201521761616 3.46302268984096\\ +1.08151870255229 3.34558158770775\\ +1.12214776820798 3.15593192938601\\ +1.17508713090481 2.88422903927553\\ +1.24192135270178 2.53899063670831\\ +1.33698374182495 2.09502713039766\\ +1.4796880626864 1.57233067187331\\ +1.77930438991858 0.909988687504521\\ +100 5.0660881919855e-06\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.589,3.135)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 89.4270613023165\\ +0.0109657929126781 89.3717315290859\\ +0.0120248614203741 89.3110593964178\\ +0.0131862140139475 89.2445293733452\\ +0.0144597292179202 89.1715762763439\\ +0.0157107238924746 89.0999158779669\\ +0.0170699493403842 89.0220589241049\\ +0.0185467692308472 88.9374702188989\\ +0.0201513573381558 88.8455685189148\\ +0.0218947676285658 88.745722621367\\ +0.0237890104107886 88.6372471342313\\ +0.0258471350746954 88.5193979064433\\ +0.0280833199882315 88.3913670960939\\ +0.0305129701718286 88.2522778546731\\ +0.0331528234231942 88.1011786061323\\ +0.0360210656235708 87.9370369010414\\ +0.0391374560198041 87.7587328286753\\ +0.0425234633452872 87.565051973813\\ +0.0462024137175137 87.354677910809\\ +0.0501996513311016 87.1261842356453\\ +0.0545427130532976 86.8780261478907\\ +0.0592615181247549 86.6085316096622\\ +0.0643885742724037 86.3158921288756\\ +0.0699592016543535 85.9981532406606\\ +0.0760117761795532 85.6532047954402\\ +0.0825879938784429 85.2787712068662\\ +0.0897331581458357 84.8724018699676\\ +0.0974964918348418 84.4314620323563\\ +0.105931476351838 83.9531244924189\\ +0.115096220088505 83.4343626117381\\ +0.125053858729037 82.871945268422\\ +0.13587299019027 82.2624345473586\\ +0.147628147190938 81.6021871659272\\ +0.160400310705681 80.8873608712293\\ +0.174277467840892 80.1139273167059\\ +0.18935521797563 79.2776932268565\\ +0.205737431343292 78.3743319764768\\ +0.223536964590981 77.399428022839\\ +0.242876438246048 76.3485368985183\\ +0.266333272517501 75.0864181916033\\ +0.292055551218278 73.719262860514\\ +0.320262069365769 72.2417087031909\\ +0.351192753045077 70.6490947310592\\ +0.385110700232562 68.9377707352067\\ +0.426215882901536 66.9155269809215\\ +0.471708469091704 64.7463512504026\\ +0.522056752784699 62.4328857335041\\ +0.58313051135262 59.7522340757541\\ +0.657382014340949 56.6798002114858\\ +0.754879928165345 52.9515775591225\\ +0.907732652521024 47.7689484386557\\ +1.36186523675607 36.2893557362444\\ +1.57833140565212 32.3575497518978\\ +1.77930438991856 29.3367436790486\\ +1.98745954958095 26.7094783217305\\ +2.21996611911998 24.2495318606514\\ +2.45691646298281 22.1470233577592\\ +2.71915794303603 20.1915492791366\\ +2.98177229001969 18.5399600253116\\ +3.26974974451178 17.0054032260634\\ +3.58553985745983 15.5836816184612\\ +3.93182875570579 14.2697479456193\\ +4.31156199031825 13.0579901585031\\ +4.72796959160041 11.942467265621\\ +5.18459354389293 10.9170981708404\\ +5.68531791387378 9.9758082019293\\ +6.17718759733854 9.19560663953442\\ +6.71161176749636 8.47447059109713\\ +7.29227205872842 7.80835216850473\\ +7.92316862486613 7.19338767107824\\ +8.60864769614914 6.62591128804402\\ +9.3534315202923 6.10246213595279\\ +10.1626508939299 5.6197861710567\\ +11.0418805085416 5.17483424126608\\ +11.9971773543589 4.76475730086372\\ +13.0351224468151 4.38689960481101\\ +14.1628661629921 4.03879052659268\\ +15.3881775003836 3.71813550097808\\ +16.7194975973201 3.42280647704889\\ +18.165997883753 3.15083217347687\\ +19.7376432630023 2.90038835364977\\ +21.4452607597165 2.66978827952406\\ +23.3006141069691 2.45747345713322\\ +25.3164847863135 2.26200475104221\\ +27.5067600790807 2.08205391764814\\ +29.8865287355039 1.91639558639288\\ +32.4721849207315 1.76389970228814\\ +35.2815411538092 1.62352443154175\\ +38.3339510176665 1.49430952362114\\ +41.6504424854525 1.37537011708024\\ +45.2538627817011 1.26589097234756\\ +49.1690357762798 1.16512111197839\\ +53.9177464038745 1.06252978110111\\ +59.1250841383182 0.968968043775334\\ +64.8353428605466 0.883642073403919\\ +71.0970943231237 0.805827610765192\\ +77.9636013040516 0.734863920885289\\ +85.493270662683 0.670148261902611\\ +93.7501501514519 0.611130825714156\\ +100 0.572938697683483\\ +}; +\addlegendentry{1st order} + +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.572938697683483\\ +0.0109657929126781 -0.628268470914065\\ +0.0120248614203741 -0.688940603582196\\ +0.0131862140139475 -0.755470626654827\\ +0.0144597292179202 -0.828423723656115\\ +0.0157107238924746 -0.900084122033078\\ +0.0170699493403842 -0.977941075895146\\ +0.0185467692308472 -1.06252978110111\\ +0.0201513573381558 -1.15443148108517\\ +0.0218947676285658 -1.25427737863302\\ +0.0237890104107886 -1.36275286576873\\ +0.0258471350746954 -1.48060209355668\\ +0.0280833199882315 -1.60863290390606\\ +0.0305129701718286 -1.74772214532689\\ +0.0331528234231942 -1.89882139386773\\ +0.0360210656235708 -2.0629630989586\\ +0.0391374560198041 -2.24126717132472\\ +0.0425234633452872 -2.43494802618703\\ +0.0462024137175137 -2.64532208919094\\ +0.0501996513311016 -2.8738157643547\\ +0.0545427130532976 -3.12197385210929\\ +0.0592615181247549 -3.39146839033785\\ +0.0643885742724037 -3.68410787112443\\ +0.0699592016543535 -4.00184675933943\\ +0.0760117761795532 -4.34679520455984\\ +0.0825879938784429 -4.7212287931338\\ +0.0897331581458357 -5.12759813003245\\ +0.0974964918348418 -5.56853796764368\\ +0.105931476351838 -6.04687550758116\\ +0.115096220088505 -6.56563738826192\\ +0.125053858729037 -7.12805473157803\\ +0.13587299019027 -7.73756545264141\\ +0.147628147190938 -8.39781283407282\\ +0.160400310705681 -9.11263912877071\\ +0.174277467840892 -9.8860726832941\\ +0.18935521797563 -10.7223067731436\\ +0.205737431343292 -11.6256680235232\\ +0.223536964590981 -12.600571977161\\ +0.242876438246048 -13.6514631014817\\ +0.266333272517501 -14.9135818083967\\ +0.292055551218278 -16.280737139486\\ +0.320262069365769 -17.7582912968091\\ +0.351192753045077 -19.3509052689408\\ +0.385110700232562 -21.0622292647933\\ +0.426215882901536 -23.0844730190785\\ +0.471708469091704 -25.2536487495974\\ +0.522056752784699 -27.5671142664959\\ +0.58313051135262 -30.2477659242459\\ +0.657382014340949 -33.3201997885142\\ +0.754879928165345 -37.0484224408775\\ +0.907732652521024 -42.2310515613444\\ +1.36186523675607 -53.7106442637557\\ +1.57833140565212 -57.6424502481022\\ +1.77930438991856 -60.6632563209514\\ +1.98745954958095 -63.2905216782695\\ +2.21996611911998 -65.7504681393486\\ +2.45691646298281 -67.8529766422408\\ +2.71915794303603 -69.8084507208634\\ +2.98177229001969 -71.4600399746884\\ +3.26974974451178 -72.9945967739366\\ +3.58553985745983 -74.4163183815388\\ +3.93182875570579 -75.7302520543808\\ +4.31156199031825 -76.9420098414969\\ +4.72796959160041 -78.057532734379\\ +5.18459354389293 -79.0829018291596\\ +5.68531791387378 -80.0241917980707\\ +6.17718759733854 -80.8043933604656\\ +6.71161176749636 -81.5255294089029\\ +7.29227205872842 -82.1916478314953\\ +7.92316862486613 -82.8066123289218\\ +8.60864769614914 -83.374088711956\\ +9.3534315202923 -83.8975378640472\\ +10.1626508939299 -84.3802138289433\\ +11.0418805085416 -84.8251657587339\\ +11.9971773543589 -85.2352426991363\\ +13.0351224468151 -85.613100395189\\ +14.1628661629921 -85.9612094734073\\ +15.3881775003836 -86.2818644990219\\ +16.7194975973201 -86.5771935229511\\ +18.165997883753 -86.8491678265231\\ +19.7376432630023 -87.0996116463502\\ +21.4452607597165 -87.330211720476\\ +23.3006141069691 -87.5425265428668\\ +25.3164847863135 -87.7379952489578\\ +27.5067600790807 -87.9179460823519\\ +29.8865287355039 -88.0836044136071\\ +32.4721849207315 -88.2361002977119\\ +35.2815411538092 -88.3764755684582\\ +38.3339510176665 -88.5056904763789\\ +41.6504424854525 -88.6246298829198\\ +45.2538627817011 -88.7341090276524\\ +49.1690357762798 -88.8348788880216\\ +53.9177464038745 -88.9374702188989\\ +59.1250841383182 -89.0310319562247\\ +64.8353428605466 -89.1163579265961\\ +71.0970943231237 -89.1941723892348\\ +77.9636013040516 -89.2651360791147\\ +85.493270662683 -89.3298517380974\\ +93.7501501514519 -89.3888691742859\\ +100 -89.4270613023165\\ +}; +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 178.958774772763\\ +0.0108651577465251 178.868689289385\\ +0.0118051652856881 178.770809121075\\ +0.0128264983052803 178.66445965882\\ +0.0139361927422416 178.548907859801\\ +0.0151418932530433 178.423357172291\\ +0.0164519058775369 178.286942015928\\ +0.0178752552590422 178.138721777319\\ +0.0194217468148908 177.977674277012\\ +0.0211020342856859 177.802688659531\\ +0.0229276931286557 177.612557653217\\ +0.024911300260678 177.4059691411\\ +0.0270665207003317 177.181496977722\\ +0.0294082017058709 176.937590979622\\ +0.0319524750575915 176.672566008985\\ +0.0347168681892662 176.384590060387\\ +0.0377204249341695 176.071671249495\\ +0.0409838367175735 175.73164358957\\ +0.0445295850994262 175.362151426301\\ +0.048382096649261 174.96063238323\\ +0.0525679112201842 174.524298648228\\ +0.0571158647812626 174.050116405105\\ +0.0620572880677654 173.534783182467\\ +0.0674262224177818 172.974702852792\\ +0.0732596542821532 172.365957966566\\ +0.0795977700231485 171.704279046752\\ +0.0864842327573189 170.985010394715\\ +0.0939664831495459 170.203071866161\\ +0.102096066230607 169.352915959472\\ +0.110928986489522 168.428479412889\\ +0.120526093687088 167.423128323356\\ +0.130953502048267 166.32959556917\\ +0.142283045721431 165.139909029886\\ +0.154592773641949 163.845308738689\\ +0.167967487209262 162.436150664156\\ +0.182499324481618 160.901794295164\\ +0.198288394912704 159.230470604115\\ +0.215443469003193 157.409126330257\\ +0.234082727617828 155.423239960847\\ +0.254334576130472 153.25660451824\\ +0.276338529005317 150.89107273569\\ +0.300246170908546 148.306262276446\\ +0.326222200971169 145.479223873799\\ +0.354445567397035 142.384086374478\\ +0.381576466127131 139.384306959844\\ +0.41078408899656 136.126931037731\\ +0.442227398050602 132.586933798959\\ +0.476077523022638 128.737246719287\\ +0.512518692705321 124.549329966698\\ +0.551749237612921 119.994376569392\\ +0.593982669392029 115.045480291924\\ +0.645371540164686 108.98069682162\\ +0.701206358900715 102.376476115125\\ +0.768928372075853 94.4260620622819\\ +0.851000724712218 85.0385713160959\\ +0.995400828762154 69.7668947584327\\ +1.1536181017365 55.5976981647374\\ +1.26503372039588 47.366106093259\\ +1.37447909267756 40.5762683712219\\ +1.47968806268638 35.1030738566793\\ +1.59295021257217 30.1816808704777\\ +1.69914417203464 26.3242900395022\\ +1.81241754737421 22.8699980422471\\ +1.9332422875551 19.7962998011996\\ +2.06212180399915 17.0765303679044\\ +2.19959306803003 14.6820113881724\\ +2.32469705998571 12.866304154033\\ +2.45691646298281 11.2499785590229\\ +2.59665597293484 9.81549017845717\\ +2.74434330322828 8.54607521837175\\ +2.90043049386403 7.4258780446367\\ +3.06539529505651 6.44002631450027\\ +3.23974262952812 5.57466891644975\\ +3.4240061379715 4.81698719536945\\ +3.61874981241128 4.15518662173753\\ +3.82456972246693 3.57847384838379\\ +4.04209583979642 3.07702268378722\\ +4.27199396630681 2.64193163984521\\ +4.51496777203605 2.26517518472303\\ +4.77176094893859 1.93955050364187\\ +5.04315948717143 1.6586213456614\\ +5.32999408084406 1.4166603533443\\ +5.63314267060121 1.20859110258311\\ +5.95353313081449 1.02993090819214\\ +6.29214610961035 0.876735274805696\\ +6.650018030431 0.745544695899696\\ +7.02824426430854 0.633334332425193\\ +7.42798248256497 0.53746694272678\\ +7.85045620020441 0.455649292005972\\ +8.29695852083464 0.385892145764188\\ +8.76885609458755 0.326473848844699\\ +9.26759330114683 0.275907409807587\\ +9.79469667069515 0.232910948187111\\ +10.351779556302 0.196381317703299\\ +10.9405470720574 0.165370689308418\\ +11.5628013120735 0.139065861481612\\ +12.2204468663152 0.116770058934236\\ +13.0351224468151 0.0950346542594218\\ +13.9041083409004 0.077148109812299\\ +14.9683929307729 0.0605712661693474\\ +16.1141427725301 0.0473415068873067\\ +17.5082703173578 0.0356442659875142\\ +19.1992066559328 0.0257394133919604\\ +21.4452607597172 0.0170874875774985\\ +24.399862972595 0.0101949669293049\\ +28.540097698292 0.00493829942135449\\ +35.281541153808 0.00111849889387372\\ +47.8277201772749 -0.00101003996221039\\ +84.7086826655735 -0.00141452347560289\\ +100 -0.00129284154621701\\ +}; +\addlegendentry{2nd order} + +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00177173841174749\\ +0.0244561668345247 0.00148131149543929\\ +0.0325471160553176 -0.00153304606075721\\ +0.0394999546122053 -0.00646726715254431\\ +0.0457784053837654 -0.0131849779292565\\ +0.0516074871038594 -0.021643320889666\\ +0.0571158647812626 -0.031843161505094\\ +0.0620572880677654 -0.0429991073105214\\ +0.0674262224177818 -0.0574560652841569\\ +0.0725873365081736 -0.0738214455620039\\ +0.0774263682681121 -0.0915146170443961\\ +0.0825879938784402 -0.113049156511437\\ +0.0872852662384851 -0.135167134275065\\ +0.0922497005259214 -0.161289272417122\\ +0.0974964918348386 -0.192112761357635\\ +0.103041699495061 -0.228451291982736\\ +0.108902296226373 -0.271253249784223\\ +0.114039960197002 -0.312649996196171\\ +0.11942000281335 -0.36003101723341\\ +0.125053858729041 -0.414225367654439\\ +0.130953502048267 -0.476170238413204\\ +0.137131471775393 -0.546923580649434\\ +0.143600898465122 -0.627677874190596\\ +0.150375532129977 -0.719775072202594\\ +0.157469771464309 -0.82472273744375\\ +0.164898694447104 -0.944211365480868\\ +0.17267809038843 -1.08013286605419\\ +0.180824493487798 -1.23460014553291\\ +0.18935521797563 -1.40996770129448\\ +0.198288394912704 -1.60885310333947\\ +0.207643010725571 -1.83415920023259\\ +0.217438947560012 -2.08909684647483\\ +0.227697025538168 -2.37720790776899\\ +0.240647515001538 -2.77224175072539\\ +0.254334576130472 -3.22812753389167\\ +0.268800102153763 -3.75315289276941\\ +0.284088369018327 -4.35649171028166\\ +0.300246170908546 -5.04824988335605\\ +0.317322963473503 -5.83950413570608\\ +0.335371015200292 -6.74233168467933\\ +0.354445567397035 -7.7698279847549\\ +0.374605003274907 -8.93610879237855\\ +0.395911026646847 -10.2562912095619\\ +0.418428850790151 -11.746445894448\\ +0.442227398050602 -13.4235089655394\\ +0.46737951079925 -15.3051369750373\\ +0.493962174387827 -17.4094815096181\\ +0.522056752784682 -19.7548516431628\\ +0.556859644428648 -22.8196793024619\\ +0.593982669392029 -26.2636472356879\\ +0.633580499265845 -30.1093812608257\\ +0.675818116816117 -34.3726358339085\\ +0.72754835291961 -39.7623371416018\\ +0.783238259917936 -45.6879985141108\\ +0.851000724712218 -52.9337316765418\\ +0.941833153464815 -62.4414302449628\\ +1.33698374182498 -95.9753348913397\\ +1.46610868404698 -103.82487050262\\ +1.59295021257217 -110.330043988931\\ +1.73076553419573 -116.294711877071\\ +1.88050405512853 -121.736929720326\\ +2.04319732019529 -126.689990141649\\ +2.21996611911991 -131.193876634269\\ +2.41202820761804 -135.289895771935\\ +2.62070669648381 -139.017694551826\\ +2.84743916646731 -142.413841223678\\ +3.09378757173011 -145.511333671903\\ +3.36144900010886 -148.339609129863\\ +3.65226736430817 -150.924794874129\\ +3.96824610456936 -153.290052128846\\ +4.31156199031825 -155.45593525331\\ +4.68458011587293 -157.440728919146\\ +5.08987019351974 -159.260748338069\\ +5.5302242561928 -160.930599170729\\ +6.00867589171979 -162.463399243098\\ +6.52852114112777 -163.870966422653\\ +7.09334120498816 -165.163977563638\\ +7.70702711421226 -166.35210320115\\ +8.37380653526675 -167.444122125462\\ +9.09827289445557 -168.448019336994\\ +9.88541702191929 -169.371070279125\\ +10.7406615333344 -170.219913715121\\ +11.6698981861712 -171.0006151684\\ +12.6795284678645 -171.718722478456\\ +13.7765076954903 -172.379314728238\\ +14.9683929307729 -172.987045561126\\ +16.2633950404818 -173.546181716155\\ +17.6704352608899 -174.060637459255\\ +19.1992066559328 -174.534005468038\\ +20.8602408924844 -174.969584631801\\ +22.664980792737 -175.370405151563\\ +24.6258591635048 -175.739251263276\\ +26.7563844455207 -176.078681857487\\ +29.0712337727252 -176.391049228225\\ +31.5863540826787 -176.678516150848\\ +34.31907197459 -176.943071461368\\ +37.2882130718292 -177.186544287295\\ +40.5142317111462 -177.410617061244\\ +44.0193518520901 -177.616837432835\\ +47.8277201772749 -177.806629181087\\ +51.9655724382751 -177.981302218147\\ +56.4614141930371 -178.142061765505\\ +61.3462171799237 -178.290016775408\\ +66.65363268125 -178.426187662899\\ +72.420223346072 -178.55151340754\\ +78.68571506937 -178.666858078217\\ +85.493270662683 -178.773016829503\\ +92.8897872016474 -178.87072141361\\ +100 -178.951018234312\\ +}; +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.01 -91.4729819266035\\ +0.0108651577465251 -91.6004228323139\\ +0.0118051652856881 -91.7388907246842\\ +0.0128264983052803 -91.8893399902479\\ +0.0139361927422416 -92.0528076919703\\ +0.0151418932530433 -92.2304207523064\\ +0.0164519058775369 -92.4234037662641\\ +0.0178752552590422 -92.6330875013994\\ +0.0194217468148908 -92.8609181472843\\ +0.0211020342856859 -93.1084673832812\\ +0.0229276931286557 -93.3774433405441\\ +0.024911300260678 -93.6697025421953\\ +0.0270665207003317 -93.9872629147567\\ +0.0294082017058709 -94.3323179743785\\ +0.0319524750575915 -94.7072523034604\\ +0.0347168681892662 -95.1146584472465\\ +0.0377204249341695 -95.5573553763198\\ +0.0409838367175735 -96.0384086801595\\ +0.0445295850994262 -96.5611526797496\\ +0.048382096649261 -97.129214674504\\ +0.0525679112201842 -97.7465415716401\\ +0.0571158647812626 -98.4174291860372\\ +0.0620572880677654 -99.1465545474302\\ +0.0674262224177818 -99.9390116119855\\ +0.0732596542821532 -100.800350850064\\ +0.0795977700231485 -101.736623275543\\ +0.0864842327573189 -102.754429600026\\ +0.0939664831495459 -103.860975345054\\ +0.102096066230607 -105.064132937117\\ +0.110928986489522 -106.37251205732\\ +0.120526093687088 -107.795539838634\\ +0.130953502048267 -109.343552924281\\ +0.142283045721431 -111.027903956806\\ +0.154592773641949 -112.861085809444\\ +0.167967487209262 -114.85687787235\\ +0.182499324481618 -117.030520072601\\ +0.198288394912704 -119.398922197172\\ +0.215443469003193 -121.980918743226\\ +0.234082727617828 -124.79758331437\\ +0.254334576130472 -127.872622109276\\ +0.276338529005317 -131.232874274902\\ +0.300246170908546 -134.908959416608\\ +0.326222200971169 -138.936132051766\\ +0.351192753045066 -142.843603882916\\ +0.378074666359942 -147.094447530199\\ +0.407014245321941 -151.728114126567\\ +0.438168993151433 -156.791552763384\\ +0.471708469091704 -162.341597821224\\ +0.507815211232757 -168.448386897006\\ +0.546685729972028 -175.200268558338\\ +0.572476623970219 -179.796896786087\\ +0.577779011797049 179.245400184145\\ +0.616296625513279 172.146057778335\\ +0.657382014340971 164.265735191644\\ +0.701206358900715 155.456122256162\\ +0.747952251562161 145.540325118994\\ +0.790492762269657 136.017789148591\\ +0.843190929286622 123.581559710736\\ +0.89940221740918 109.709973780041\\ +0.986265846131287 88.0500713870053\\ +1.10164594963369 62.0721702550615\\ +1.17508713090482 48.5329668320409\\ +1.24192135270177 38.3474534067449\\ +1.3125568357718 29.5361264319106\\ +1.37447909267756 23.1988901191872\\ +1.43932264471941 17.7062797855079\\ +1.50722530931073 12.9846713910184\\ +1.57833140565207 8.96169352785913\\ +1.65279206146492 5.56976918294751\\ +1.73076553419573 2.74680697271432\\ +1.79578464700207 0.859494530789476\\ +1.86324631193151 -0.727877118797124\\ +1.9332422875551 -2.04157741950593\\ +2.00586777950826 -3.10691694533327\\ +2.08122156998634 -3.94842134703757\\ +2.1395888713434 -4.44701183163079\\ +2.19959306803003 -4.84289109564196\\ +2.26128006633722 -5.14559677712393\\ +2.32469705998571 -5.36438953957961\\ +2.36796006783313 -5.46806505590706\\ +2.41202820761804 -5.54099366047873\\ +2.45691646298281 -5.58566366292757\\ +2.47967289250217 -5.59815710349068\\ +2.50264009641792 -5.60448171222541\\ +2.52582002696278 -5.60492469075618\\ +2.54921465445141 -5.59976749618471\\ +2.57282596744791 -5.5892857003474\\ +2.62070669648381 -5.55342038778207\\ +2.66947849403426 -5.49941088821279\\ +2.74434330322828 -5.38868059735228\\ +2.82130767593954 -5.24780178993009\\ +2.92729483504285 -5.02284909987927\\ +3.06539529505651 -4.69862829258665\\ +3.30003479112518 -4.12531301077462\\ +3.82456972246693 -2.97186641524272\\ +4.11731993116176 -2.45498324368361\\ +4.39180089259608 -2.05088207558876\\ +4.68458011587293 -1.69432627229517\\ +4.95102015955645 -1.42596990422729\\ +5.23261423948667 -1.19025327815592\\ +5.5302242561928 -0.984845414544736\\ +5.84476113163379 -0.807090067316011\\ +6.17718759733854 -0.654218454683871\\ +6.52852114112777 -0.523493454582166\\ +6.83651600451004 -0.429583479603309\\ +7.15904108596503 -0.347817573544091\\ +7.49678187496691 -0.276877266910304\\ +7.85045620020441 -0.21554920279678\\ +8.22081575524031 -0.162726085341518\\ +8.60864769614942 -0.117404381393612\\ +9.01477631452495 -0.0786798497586574\\ +9.44006478941749 -0.0457417026358655\\ +9.88541702191929 -0.0178659925023226\\ +10.351779556302 0.00559134593345334\\ +10.9405470720574 0.0287074003430234\\ +11.5628013120735 0.0471427090313341\\ +12.2204468663152 0.0616390713599628\\ +12.9154966501489 0.0728323154096415\\ +13.7765076954903 0.0824367711224738\\ +14.6949180062486 0.0890083276923122\\ +15.819734815786 0.0935711307970735\\ +17.3475935923388 0.0959022915167225\\ +19.1992066559328 0.0953541353839\\ +21.8443607114946 0.0915789587252505\\ +26.5108360190857 0.0824710145205643\\ +55.4298551568474 0.0449473141841565\\ +75.8367791499744 0.0334104994155382\\ +100 0.02554384906\\ +}; +\addlegendentry{3rd order} + +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.0326882948475316\\ +0.013556017853294 -0.0440064712358321\\ +0.0178752552590422 -0.0573747414159413\\ +0.0231400538013072 -0.0729300432375339\\ +0.0302329468440578 -0.0922138500961012\\ +0.0545427130532976 -0.136450572067616\\ +0.0609234915240079 -0.140583876640477\\ +0.0668074391569548 -0.140997606621482\\ +0.0719211887222133 -0.13848259447218\\ +0.0767158117677927 -0.133527685217501\\ +0.0818300681586717 -0.125306907159512\\ +0.0864842327573189 -0.115053242894305\\ +0.0914031074875622 -0.101205425091393\\ +0.095715215389917 -0.086413820627314\\ +0.10023075482839 -0.0681676192842247\\ +0.104959323055824 -0.0459339059266028\\ +0.10991097009295 -0.0191103094616949\\ +0.115096220088501 0.0129819545315399\\ +0.120526093687088 0.0511051162927743\\ +0.126212131452257 0.0961117050319729\\ +0.13216641839466 0.148950858692928\\ +0.138401609657311 0.210673582371243\\ +0.144930957412626 0.282436260513265\\ +0.151768339028343 0.365501488025529\\ +0.158928286562298 0.461234981162079\\ +0.166426017648587 0.571096948938475\\ +0.174277467840897 0.696625839238038\\ +0.182499324481618 0.839411813536486\\ +0.191109062168914 1.00105665050202\\ +0.201978575681984 1.2221067989519\\ +0.21346630333243 1.47497582650823\\ +0.225607406649687 1.76154808876856\\ +0.238439047009369 2.08277985941925\\ +0.254334576130472 2.50060028589877\\ +0.273802517792786 3.02894734389398\\ +0.305833803237852 3.88490340497921\\ +0.335371015200292 4.57936491405576\\ +0.351192753045066 4.88198372067768\\ +0.364385898376366 5.08453007026736\\ +0.374605003274907 5.20518267841916\\ +0.385110700232562 5.29244522174722\\ +0.392277675892774 5.32887394105933\\ +0.395911026646847 5.33980178856444\\ +0.399578030189527 5.34551840838694\\ +0.403278998219369 5.34575102724281\\ +0.407014245321941 5.34022093551008\\ +0.41078408899656 5.32864362410362\\ +0.418428850790151 5.28618119125437\\ +0.426215882901522 5.21597739831802\\ +0.434147833005496 5.11556319568132\\ +0.442227398050602 4.98239234155872\\ +0.454629546953248 4.7154728137759\\ +0.46737951079925 4.35983821184183\\ +0.480487043965512 3.9060876231479\\ +0.493962174387827 3.34456062757346\\ +0.507815211232757 2.66536236277884\\ +0.526892142135084 1.55920343240172\\ +0.546685729972028 0.201235506853862\\ +0.567222897164457 -1.43394978058063\\ +0.58853157751914 -3.37275197431561\\ +0.610640754223191 -5.64284034764637\\ +0.639448842855712 -8.99111385347643\\ +0.66961600548533 -12.964508494436\\ +0.701206358900715 -17.6300819740982\\ +0.734287044716661 -23.0598309318798\\ +0.768928372075853 -29.3274706978384\\ +0.805203967082557 -36.5002738230011\\ +0.851000724712218 -46.3628250590261\\ +0.89940221740918 -57.5728184584075\\ +0.959360828709328 -72.0849485175713\\ +1.18597101233768 -121.243833531979\\ +1.26503372039588 -133.973565618642\\ +1.34936714058834 -145.260943247491\\ +1.43932264471941 -155.242549695583\\ +1.53527502878039 -164.105474845264\\ +1.63762407452172 -172.028173016927\\ +1.74679621512724 -179.160958908652\\ +1.7629753752872 179.877178895485\\ +1.89792164283904 172.637818729657\\ +2.04319732019529 166.117857364047\\ +2.19959306803003 160.212590270403\\ +2.36796006783313 154.839990517442\\ +2.54921465445141 149.934487767867\\ +2.74434330322828 145.442599304436\\ +2.98177229001969 140.828574383002\\ +3.23974262952812 136.629020989318\\ +3.52003147279672 132.799395744967\\ +3.82456972246693 129.301687739627\\ +4.15545533471895 126.103068383036\\ +4.51496777203605 123.174900347863\\ +4.90558370636517 120.4919934599\\ +5.32999408084406 118.032034482807\\ +5.79112264764194 115.77514209481\\ +6.29214610961035 113.703513821264\\ +6.83651600451004 111.801141734857\\ +7.42798248256497 110.053580416344\\ +8.07062014114933 108.447755211885\\ +8.76885609458755 106.97180197709\\ +9.52750047242714 105.614931728529\\ +10.351779556302 104.367315227231\\ +11.2473717836474 103.219983688395\\ +12.2204468663152 102.164742675584\\ +13.2777082935543 101.194096883036\\ +14.4264395121811 100.301183996647\\ +15.674554102056 99.4797161948239\\ +17.030650292528 98.723928134972\\ +18.5040701954232 98.0285304915103\\ +20.1049641626046 97.3886682828982\\ +21.8443607114946 96.7998833598618\\ +23.7342425002384 96.2580805335176\\ +25.7876288759386 95.7594969069084\\ +28.0186655645918 95.3006740414822\\ +30.4427221206439 94.8784326449965\\ +33.0764978074424 94.4898495120482\\ +35.9381366380452 94.1322364850893\\ +39.0473523688559 93.8031212340827\\ +42.4255643071768 93.5002296781646\\ +46.0960448682849 93.2214698938357\\ +50.0840798984813 92.9649173720824\\ +54.41714286866 92.7288015020586\\ +59.1250841383182 92.5114931720193\\ +64.2403365939436 92.3114933894821\\ +69.7981390783064 92.1274228324041\\ +75.8367791499744 91.9580122517461\\ +82.3978568452854 91.802093653352\\ +89.5265712599616 91.6585921937565\\ +97.2720319245064 91.5265187304747\\ +100 91.4848743155231\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_filters_param_alpha.pdf b/matlab/figs/comp_filters_param_alpha.pdf new file mode 100644 index 0000000..6c5dc4c Binary files /dev/null and b/matlab/figs/comp_filters_param_alpha.pdf differ diff --git a/matlab/figs/comp_filters_param_alpha.png b/matlab/figs/comp_filters_param_alpha.png new file mode 100644 index 0000000..b637f4e Binary files /dev/null and b/matlab/figs/comp_filters_param_alpha.png differ diff --git a/matlab/figs/comp_filters_phase.pdf b/matlab/figs/comp_filters_phase.pdf new file mode 100644 index 0000000..24685e7 Binary files /dev/null and b/matlab/figs/comp_filters_phase.pdf differ diff --git a/matlab/figs/comp_filters_phase.png b/matlab/figs/comp_filters_phase.png new file mode 100644 index 0000000..de99ec8 Binary files /dev/null and b/matlab/figs/comp_filters_phase.png differ diff --git a/matlab/figs/comp_filters_phase.svg b/matlab/figs/comp_filters_phase.svg new file mode 100644 index 0000000..871832c --- /dev/null +++ b/matlab/figs/comp_filters_phase.svg @@ -0,0 +1,515 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/comp_filters_phase.tex b/matlab/figs/comp_filters_phase.tex new file mode 100644 index 0000000..6259135 --- /dev/null +++ b/matlab/figs/comp_filters_phase.tex @@ -0,0 +1,944 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=1.094in, +height=2.082in, +at={(0.461in,0.361in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +title style={font=\bfseries}, +title={1st Order}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.572938697683483\\ +0.0109657929126781 -0.628268470914065\\ +0.0120248614203741 -0.688940603582196\\ +0.0131862140139475 -0.755470626654827\\ +0.0144597292179202 -0.828423723656115\\ +0.0158562396177114 -0.908419482436457\\ +0.0173876240021625 -0.996137091977161\\ +0.0188919277620767 -1.08229898060307\\ +0.0205263775270926 -1.17590967001985\\ +0.0223022329796596 -1.27761202789692\\ +0.0242317279423763 -1.38810409650254\\ +0.0263281546564806 -1.50814374103925\\ +0.028605955351757 -1.63855366488903\\ +0.0310808217386903 -1.78022681361419\\ +0.0337698031082507 -1.93413218868533\\ +0.0366914237840248 -2.10132109019342\\ +0.0398658107358044 -2.28293380496768\\ +0.0433148322337641 -2.4802067522069\\ +0.0470622484984131 -2.69448009248191\\ +0.0511338753841437 -2.92720579720063\\ +0.0555577622239895 -3.17995616361287\\ +0.0603643850607596 -3.45443274425313\\ +0.0655868565957134 -3.75247563822874\\ +0.0712611543011167 -4.07607306354578\\ +0.0774263682681121 -4.4273710929881\\ +0.0841249704973608 -4.80868338882681\\ +0.0914031074875622 -5.22250071132758\\ +0.0993109181374982 -5.6714998996999\\ +0.107902879151619 -6.15855192843563\\ +0.117238180328661 -6.68672852320007\\ +0.127381132318649 -7.25930667468168\\ +0.138401609657315 -7.87977021233783\\ +0.150375532129972 -8.55180738977413\\ +0.163385387780984 -9.27930318815474\\ +0.177520801171762 -10.0663247651335\\ +0.192879150802077 -10.9170981708404\\ +0.209566239948043 -11.8359741336331\\ +0.227697025538168 -12.8273804120148\\ +0.249687842888433 -14.0194090224949\\ +0.273802517792786 -15.3124449408146\\ +0.300246170908556 -16.7121833149952\\ +0.329243733300778 -18.2238055905532\\ +0.361041859717334 -19.8517041994425\\ +0.395911026646847 -21.5991588470565\\ +0.438168993151419 -23.6615422975312\\ +0.484937406733521 -25.8704817729604\\ +0.541668691103309 -28.4430183037575\\ +0.610640754223211 -31.409939875674\\ +0.694771254846023 -34.7904621309793\\ +0.812661920009201 -39.0994466723111\\ +1.03279473191894 -45.9242628931196\\ +1.32471398786611 -52.9515775591226\\ +1.53527502878044 -56.9218267964615\\ +1.74679621512724 -60.2098714420423\\ +1.96922025547915 -63.0778468964483\\ +2.19959306803011 -65.5520522300093\\ +2.43436887354314 -67.6679215440322\\ +2.6942037136819 -69.6367267623445\\ +2.98177229001969 -71.4600399746884\\ +3.26974974451178 -72.9945967739366\\ +3.58553985745983 -74.4163183815388\\ +3.93182875570579 -75.7302520543808\\ +4.31156199031825 -76.9420098414969\\ +4.72796959160041 -78.057532734379\\ +5.18459354389293 -79.0829018291596\\ +5.68531791387378 -80.0241917980707\\ +6.23440188862789 -80.8873608712293\\ +6.83651600451027 -81.6781712994107\\ +7.49678187496691 -82.4021345746486\\ +8.1453717662808 -83.000872418562\\ +8.85007491447353 -83.5532987322419\\ +9.61574600143223 -84.0628054508666\\ +10.4476597156079 -84.5325779454815\\ +11.3515470892099 -84.9655980195703\\ +12.3336349791376 -85.3646494493703\\ +13.4006889636394 -85.7323253123063\\ +14.5600599502065 -86.0710365103108\\ +15.819734815786 -86.3830210280839\\ +17.1883914281715 -86.6703535743942\\ +18.6754584276109 -86.9349553411703\\ +20.291180180467 -87.1786036839459\\ +22.0466873523944 -87.4029415813856\\ +23.9540735872092 -87.6094867738781\\ +26.0264788196897 -87.7996405138609\\ +28.2781797962532 -87.9746958855775\\ +30.7246884270898 -88.1358456709355\\ +33.3828586473175 -88.2841897523381\\ +36.2710025233065 -88.4207420538308\\ +39.4090164040346 -88.5464370294707\\ +43.2151112778978 -88.6744091469209\\ +47.3887960971767 -88.79112191112\\ +51.9655724382768 -88.8975641767222\\ +56.9843705946916 -88.9946383810541\\ +62.4878807200691 -89.0831679924523\\ +68.5229159528409 -89.1639043418392\\ +75.1408106111699 -89.2375328824053\\ +82.3978568452854 -89.3046789205885\\ +90.3557834613896 -89.3659128594643\\ +99.0822809900383 -89.4217549933514\\ +100 -89.4270613023165\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 89.4270613023165\\ +0.0109657929126781 89.3717315290859\\ +0.0120248614203741 89.3110593964178\\ +0.0131862140139475 89.2445293733452\\ +0.0144597292179202 89.1715762763439\\ +0.0158562396177114 89.0915805175635\\ +0.0173876240021625 89.0038629080228\\ +0.0188919277620767 88.9177010193969\\ +0.0205263775270926 88.8240903299802\\ +0.0223022329796596 88.7223879721031\\ +0.0242317279423763 88.6118959034975\\ +0.0263281546564806 88.4918562589608\\ +0.028605955351757 88.361446335111\\ +0.0310808217386903 88.2197731863858\\ +0.0337698031082507 88.0658678113147\\ +0.0366914237840248 87.8986789098066\\ +0.0398658107358044 87.7170661950323\\ +0.0433148322337641 87.5197932477931\\ +0.0470622484984131 87.3055199075181\\ +0.0511338753841437 87.0727942027994\\ +0.0555577622239895 86.8200438363871\\ +0.0603643850607596 86.5455672557469\\ +0.0655868565957134 86.2475243617713\\ +0.0712611543011167 85.9239269364542\\ +0.0774263682681121 85.5726289070119\\ +0.0841249704973608 85.1913166111732\\ +0.0914031074875622 84.7774992886724\\ +0.0993109181374982 84.3285001003001\\ +0.107902879151619 83.8414480715644\\ +0.117238180328661 83.3132714767999\\ +0.127381132318649 82.7406933253183\\ +0.138401609657315 82.1202297876622\\ +0.150375532129972 81.4481926102259\\ +0.163385387780984 80.7206968118453\\ +0.177520801171762 79.9336752348665\\ +0.192879150802077 79.0829018291596\\ +0.209566239948043 78.1640258663669\\ +0.227697025538168 77.1726195879852\\ +0.249687842888433 75.9805909775051\\ +0.273802517792786 74.6875550591854\\ +0.300246170908556 73.2878166850048\\ +0.329243733300778 71.7761944094468\\ +0.361041859717334 70.1482958005575\\ +0.395911026646847 68.4008411529435\\ +0.438168993151419 66.3384577024688\\ +0.484937406733521 64.1295182270396\\ +0.541668691103309 61.5569816962425\\ +0.610640754223211 58.590060124326\\ +0.694771254846023 55.2095378690207\\ +0.812661920009201 50.9005533276889\\ +1.03279473191894 44.0757371068804\\ +1.32471398786611 37.0484224408775\\ +1.53527502878044 33.0781732035385\\ +1.74679621512724 29.7901285579577\\ +1.96922025547915 26.9221531035517\\ +2.19959306803011 24.4479477699907\\ +2.43436887354314 22.3320784559678\\ +2.6942037136819 20.3632732376555\\ +2.98177229001969 18.5399600253116\\ +3.26974974451178 17.0054032260634\\ +3.58553985745983 15.5836816184612\\ +3.93182875570579 14.2697479456193\\ +4.31156199031825 13.0579901585031\\ +4.72796959160041 11.942467265621\\ +5.18459354389293 10.9170981708404\\ +5.68531791387378 9.9758082019293\\ +6.23440188862789 9.11263912877071\\ +6.83651600451027 8.32182870058935\\ +7.49678187496691 7.59786542535146\\ +8.1453717662808 6.99912758143803\\ +8.85007491447353 6.44670126775813\\ +9.61574600143223 5.93719454913335\\ +10.4476597156079 5.46742205451854\\ +11.3515470892099 5.03440198042969\\ +12.3336349791376 4.6353505506297\\ +13.4006889636394 4.26767468769376\\ +14.5600599502065 3.92896348968922\\ +15.819734815786 3.61697897191611\\ +17.1883914281715 3.32964642560582\\ +18.6754584276109 3.06504465882973\\ +20.291180180467 2.82139631605415\\ +22.0466873523944 2.59705841861435\\ +23.9540735872092 2.39051322612191\\ +26.0264788196897 2.20035948613913\\ +28.2781797962532 2.0253041144225\\ +30.7246884270898 1.86415432906452\\ +33.3828586473175 1.71581024766191\\ +36.2710025233065 1.57925794616921\\ +39.4090164040346 1.45356297052933\\ +43.2151112778978 1.32559085307912\\ +47.3887960971767 1.20887808888\\ +51.9655724382768 1.1024358232778\\ +56.9843705946916 1.00536161894591\\ +62.4878807200691 0.916832007547683\\ +68.5229159528409 0.836095658160787\\ +75.1408106111699 0.762467117594724\\ +82.3978568452854 0.695321079411471\\ +90.3557834613896 0.634087140535684\\ +99.0822809900383 0.578245006648629\\ +100 0.572938697683483\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0\\ +100 -0\\ +}; +\end{axis} + +\begin{axis}[% +width=1.094in, +height=2.082in, +at={(1.79in,0.361in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180,-90,0,90,180}, +yticklabels={{}}, +axis background/.style={fill=white}, +title style={font=\bfseries}, +title={2nd Order}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00177173841174749\\ +0.0246826845225571 0.00143081008724266\\ +0.0328485736602995 -0.00169821960045624\\ +0.0398658107358057 -0.0067962647631532\\ +0.0462024137175122 -0.0137247101025082\\ +0.0520854855057768 -0.0224401645442924\\ +0.0576448828292606 -0.032943805128582\\ +0.062632074521987 -0.0444273706029605\\ +0.0680507369673503 -0.0593041851469138\\ +0.0732596542821532 -0.0761403919479449\\ +0.0781435060784446 -0.0943387008234708\\ +0.0833529396509846 -0.116483881847813\\ +0.088093719044741 -0.139225253620168\\ +0.0931041348706901 -0.166079596859106\\ +0.0983995229627797 -0.197762353426356\\ +0.103996091395414 -0.235108335762561\\ +0.10991097009295 -0.27909031805666\\ +0.116162263260848 -0.330840147606267\\ +0.12164242938574 -0.380841227928642\\ +0.127381132318649 -0.438016855902077\\ +0.133390569003905 -0.503350948454283\\ +0.139683511798871 -0.5779535506679\\ +0.146273335620117 -0.663075071766769\\ +0.15317404637021 -0.760121705588688\\ +0.160400310705681 -0.870672043442738\\ +0.167967487209262 -0.996494865534146\\ +0.175891659032778 -1.13956807132763\\ +0.184189668079973 -1.30209867939166\\ +0.192879150802077 -1.48654379372365\\ +0.201978575681984 -1.69563239685539\\ +0.21346630333243 -1.98334700596078\\ +0.225607406649687 -2.31675010233937\\ +0.238439047009369 -2.70238826044135\\ +0.252000499376417 -3.14757973583454\\ +0.266333272517501 -3.66046928931476\\ +0.281481236050756 -4.25007975822527\\ +0.297490754721436 -4.92635879589423\\ +0.314410830314732 -5.7002189839184\\ +0.332293251639897 -6.58356919654028\\ +0.351192753045066 -7.58933455951598\\ +0.371167181947586 -8.73146144688135\\ +0.392277675892774 -10.0249024908483\\ +0.414588849683285 -11.4855742787637\\ +0.438168993151433 -13.1302769702281\\ +0.463090280179979 -14.9765601819204\\ +0.489428989611449 -17.0425129500251\\ +0.517265738721588 -19.3464474657689\\ +0.551749237612921 -22.3592234354949\\ +0.58853157751914 -25.7475221369438\\ +0.627766010580631 -29.5347005363872\\ +0.66961600548533 -33.7376983005682\\ +0.720871503378203 -39.0587072315874\\ +0.776050333513376 -44.9192793753528\\ +0.843190929286622 -52.101550420519\\ +0.933189771573347 -61.5548910839333\\ +1.36186523675611 -97.595233415695\\ +1.49339321612424 -105.317253243851\\ +1.62259528707813 -111.701932450038\\ +1.7629753752872 -117.548239151387\\ +1.91550055557359 -122.878533083722\\ +2.08122156998634 -127.728210575112\\ +2.26128006633722 -132.137915237445\\ +2.45691646298281 -136.14877570317\\ +2.66947849403426 -139.799836382218\\ +2.90043049386403 -143.126891607605\\ +3.15136348486643 -146.162135554792\\ +3.4240061379715 -148.934243254603\\ +3.72023668141304 -151.468651741164\\ +4.04209583979642 -153.787912286722\\ +4.39180089259608 -155.912046910476\\ +4.77176094893859 -157.858878100066\\ +5.18459354389293 -159.644320106651\\ +5.63314267060121 -161.282630067391\\ +6.12049837247677 -162.786621787828\\ +6.650018030431 -164.167846764743\\ +7.22534949178734 -165.43674735435\\ +7.85045620020441 -166.602786660272\\ +8.52964449974123 -167.6745591343\\ +9.26759330114683 -168.659885251599\\ +10.0693863147606 -169.565893032553\\ +10.9405470720574 -170.399088670915\\ +11.8870769771187 -171.165418099303\\ +12.9154966501489 -171.870320972805\\ +14.0328908478584 -172.518778268964\\ +15.2469572701759 -173.115354476383\\ +16.5660595894989 -173.664235164057\\ +17.9992850678251 -174.169260580031\\ +19.5565071586593 -174.633955813767\\ +21.2484535249894 -175.061557965274\\ +23.0867799418716 -175.455040690963\\ +25.0841505927762 -175.817136437342\\ +27.2543253128104 -176.1503566261\\ +29.6122543798796 -176.45701001543\\ +32.174181506764 -176.739219430826\\ +34.9577557436321 -176.998937032488\\ +37.982153061908 -177.237958264923\\ +41.268208457029 -177.457934616253\\ +44.8385594802129 -177.660385299592\\ +48.717802187946 -177.846707956032\\ +52.9326605836072 -178.018188467784\\ +57.5121707184161 -178.176009960643\\ +62.4878807200671 -178.321261066796\\ +67.8940681269615 -178.454943511896\\ +73.7679760252756 -178.577979084146\\ +80.8924348680602 -178.703227596348\\ +88.704968896542 -178.817443490115\\ +97.2720319245064 -178.921598824774\\ +100 -178.951018234312\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 178.958774772763\\ +0.0108651577465251 178.868689289385\\ +0.0118051652856881 178.770809121075\\ +0.0128264983052803 178.66445965882\\ +0.0139361927422416 178.548907859801\\ +0.0151418932530433 178.423357172291\\ +0.0164519058775369 178.286942015928\\ +0.0178752552590422 178.138721777319\\ +0.0194217468148908 177.977674277012\\ +0.0211020342856859 177.802688659531\\ +0.0229276931286557 177.612557653217\\ +0.024911300260678 177.4059691411\\ +0.0270665207003317 177.181496977722\\ +0.0294082017058709 176.937590979622\\ +0.0319524750575915 176.672566008985\\ +0.0347168681892662 176.384590060387\\ +0.0377204249341695 176.071671249495\\ +0.0409838367175735 175.73164358957\\ +0.0445295850994262 175.362151426301\\ +0.048382096649261 174.96063238323\\ +0.0525679112201842 174.524298648228\\ +0.0571158647812626 174.050116405105\\ +0.0620572880677654 173.534783182467\\ +0.0674262224177818 172.974702852792\\ +0.0732596542821532 172.365957966566\\ +0.0795977700231485 171.704279046752\\ +0.0864842327573189 170.985010394715\\ +0.0939664831495459 170.203071866161\\ +0.102096066230607 169.352915959472\\ +0.110928986489522 168.428479412889\\ +0.120526093687088 167.423128323356\\ +0.130953502048267 166.32959556917\\ +0.142283045721431 165.139909029886\\ +0.154592773641949 163.845308738689\\ +0.167967487209262 162.436150664156\\ +0.182499324481618 160.901794295164\\ +0.198288394912704 159.230470604115\\ +0.215443469003193 157.409126330257\\ +0.234082727617828 155.423239960847\\ +0.254334576130472 153.25660451824\\ +0.276338529005317 150.89107273569\\ +0.300246170908546 148.306262276446\\ +0.326222200971169 145.479223873799\\ +0.354445567397035 142.384086374478\\ +0.385110700232562 138.991714257204\\ +0.418428850790151 135.269452622278\\ +0.450457325175955 131.654641697475\\ +0.484937406733521 127.723109933585\\ +0.522056752784682 123.446106459316\\ +0.567222897164457 118.186023757265\\ +0.616296625513279 112.416246612501\\ +0.66961600548533 106.111999810471\\ +0.72754835291961 99.2707553039372\\ +0.797814457207674 91.081430905533\\ +0.891148232283998 80.60502400948\\ +1.20804213467733 51.4010643235916\\ +1.3125568357718 44.269339172817\\ +1.41302599059955 38.4598088822155\\ +1.52118551798608 33.1926935337196\\ +1.62259528707813 29.0373693217823\\ +1.73076553419573 25.2970966962781\\ +1.84614694632451 21.9540717621705\\ +1.96922025547921 18.9843391614605\\ +2.10049824165391 16.3604704670553\\ +2.24052786929996 14.0535124783317\\ +2.36796006783313 12.3062560563088\\ +2.50264009641792 10.752457024241\\ +2.64498018242767 9.3748129569349\\ +2.79541599906793 8.1568515734576\\ +2.9544079988804 7.08303875295971\\ +3.12244282309282 6.13883984510034\\ +3.30003479112518 5.31074773095179\\ +3.48772747481423 4.58628686313608\\ +3.68609536217214 3.95399959855237\\ +3.89574561577541 3.40341922056848\\ +4.11731993116176 2.92503283998806\\ +4.35149650092505 2.51023662695991\\ +4.59899209052235 2.15128537866812\\ +4.86056423214227 1.84123814288506\\ +5.13701354335138 1.57390141225832\\ +5.42918617761888 1.34377122937536\\ +5.73797641421395 1.14597537317917\\ +6.06432939540815 0.976216624036368\\ +6.40924401935642 0.830717927886155\\ +6.77377599751758 0.706170104260764\\ +7.15904108596503 0.599682574841808\\ +7.56621850048106 0.508737434403344\\ +7.9965545258922 0.431147048845901\\ +8.45136633068495 0.365015248125871\\ +8.93204599858103 0.30870208611978\\ +9.44006478941749 0.260792064326637\\ +9.97697764236288 0.220065660278124\\ +10.5444279352618 0.185473962425419\\ +11.1441525146678 0.156116188606887\\ +11.7779870119709 0.131219852410908\\ +12.5631660247414 0.106935667513056\\ +13.4006889636394 0.0869393102208278\\ +14.2940453343172 0.0704916230522201\\ +15.3881775003836 0.0552563153775338\\ +16.7194975973196 0.0417707815389008\\ +18.3342548256232 0.030335660425493\\ +20.2911801804663 0.0210352773104887\\ +22.874908173557 0.0132831028595319\\ +26.5108360190857 0.00707342428381708\\ +31.8789129267769 0.00259394675782687\\ +41.268208457029 -0.000298748835064089\\ +63.0666554056761 -0.00147301030571612\\ +100 -0.00129284154621701\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00200601691089553\\ +0.0280833199882317 0.00562936773200384\\ +0.0545427130532983 0.0109073128298331\\ +0.0897331581458352 0.0178452009683325\\ +0.134626057929891 0.0264744293091574\\ +0.194665634334226 0.0374185891666969\\ +0.286719649749377 0.0521606148877072\\ +0.430163575810679 0.0672471596266186\\ +0.498537346387389 0.0696303992950749\\ +0.556859644428641 0.0686214443998545\\ +0.610640754223204 0.0650189971820159\\ +0.663470812109235 0.05897611886809\\ +0.720871503378214 0.0498018695603055\\ +0.78323825991792 0.0372931366580405\\ +0.858882855954625 0.0198200501807029\\ +0.986265846131282 -0.0105108654175918\\ +1.11184960481927 -0.0357501288429378\\ +1.20804213467733 -0.0500397336837661\\ +1.30051125217341 -0.0597056543525389\\ +1.4000583824681 -0.0663889331535286\\ +1.5211855179861 -0.0706478762785947\\ +1.66810053720006 -0.0720810668031295\\ +1.86324631193156 -0.0705455442950655\\ +2.17940698430296 -0.0649241754504564\\ +4.90558370636505 -0.0311934132051426\\ +6.89983712143002 -0.0222187757869086\\ +10.3517795563018 -0.0148142021024298\\ +17.0306502925284 -0.00900410883132485\\ +32.7729484992338 -0.00467874185593953\\ +83.9312949816636 -0.00182687924260927\\ +100 -0.00153332126581152\\ +}; +\end{axis} + +\begin{axis}[% +width=1.094in, +height=2.082in, +at={(3.118in,0.361in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180,-90,0,90,180}, +yticklabels={{}}, +axis background/.style={fill=white}, +title style={font=\bfseries}, +title={3rd Order}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.0326882948475316\\ +0.013556017853294 -0.0440064712358321\\ +0.0178752552590422 -0.0573747414159413\\ +0.0231400538013072 -0.0729300432375339\\ +0.0302329468440578 -0.0922138500961012\\ +0.0545427130532976 -0.136450572067616\\ +0.0609234915240079 -0.140583876640477\\ +0.0668074391569548 -0.140997606621482\\ +0.0719211887222133 -0.13848259447218\\ +0.0767158117677927 -0.133527685217501\\ +0.0818300681586717 -0.125306907159512\\ +0.0864842327573189 -0.115053242894305\\ +0.0914031074875622 -0.101205425091393\\ +0.095715215389917 -0.086413820627314\\ +0.10023075482839 -0.0681676192842247\\ +0.104959323055824 -0.0459339059266028\\ +0.10991097009295 -0.0191103094616949\\ +0.115096220088501 0.0129819545315399\\ +0.120526093687088 0.0511051162927743\\ +0.126212131452257 0.0961117050319729\\ +0.13216641839466 0.148950858692928\\ +0.138401609657311 0.210673582371243\\ +0.144930957412626 0.282436260513265\\ +0.151768339028343 0.365501488025529\\ +0.158928286562298 0.461234981162079\\ +0.166426017648587 0.571096948938475\\ +0.174277467840897 0.696625839238038\\ +0.182499324481618 0.839411813536486\\ +0.192879150802077 1.0357872095594\\ +0.203849339825241 1.26198260328309\\ +0.215443469003193 1.52035765691022\\ +0.227697025538168 1.81267190546927\\ +0.24287643824604 2.19752886986726\\ +0.259067785868806 2.62800151458424\\ +0.278898029238043 3.16794940997818\\ +0.344776405473441 4.76644789920948\\ +0.361041859717323 5.03794223082519\\ +0.371167181947586 5.16836860045845\\ +0.381576466127131 5.26745912274549\\ +0.38867766908927 5.31300157563541\\ +0.395911026646847 5.33980178856444\\ +0.399578030189527 5.34551840838694\\ +0.403278998219369 5.34575102724281\\ +0.407014245321941 5.34022093551008\\ +0.41078408899656 5.32864362410362\\ +0.418428850790151 5.28618119125437\\ +0.426215882901522 5.21597739831802\\ +0.434147833005496 5.11556319568132\\ +0.442227398050602 4.98239234155872\\ +0.454629546953248 4.7154728137759\\ +0.46737951079925 4.35983821184183\\ +0.480487043965512 3.9060876231479\\ +0.493962174387827 3.34456062757346\\ +0.512518692705321 2.41107158750029\\ +0.531772317785112 1.24429623210909\\ +0.551749237612921 -0.180559243386966\\ +0.572476623970219 -1.88912958552825\\ +0.593982669392029 -3.90810252244336\\ +0.616296625513279 -6.26551674723629\\ +0.645371540164686 -9.73371775907859\\ +0.675818116816117 -13.8400061895493\\ +0.707701066118183 -18.652530083911\\ +0.741088151564139 -24.2440081680086\\ +0.776050333513376 -30.6877260942437\\ +0.812661920009201 -38.0480585553191\\ +0.858882855954615 -48.1402390475074\\ +0.907732652520995 -59.5617869069918\\ +0.97721469697258 -76.4328244235946\\ +1.16430313292089 -117.33969048171\\ +1.24192135270177 -130.486719295838\\ +1.32471398786616 -142.176910161281\\ +1.41302599059955 -152.513137765819\\ +1.50722530931073 -161.676495232519\\ +1.60770442167387 -169.851141346151\\ +1.71488196987055 -177.196069154062\\ +1.74679621512724 -179.160958908652\\ +1.7629753752872 179.877178895485\\ +1.89792164283904 172.637818729657\\ +2.04319732019529 166.117857364047\\ +2.19959306803003 160.212590270403\\ +2.36796006783313 154.839990517442\\ +2.54921465445141 149.934487767867\\ +2.76976193503698 144.907899822659\\ +3.00939003444972 140.342368968256\\ +3.26974974451167 136.185984957574\\ +3.55263467657817 132.395011599766\\ +3.85999361767968 128.932072673796\\ +4.19394395566725 125.764848917254\\ +4.55678626584099 122.865119063465\\ +4.95102015955645 120.208038114972\\ +5.37936150398065 117.771583099852\\ +5.84476113163379 115.536119685827\\ +6.35042516859595 113.484057753085\\ +6.8998371214298 111.599573618193\\ +7.49678187496691 109.868382995444\\ +8.14537176628054 108.27755314031\\ +8.85007491447353 106.815345651986\\ +9.61574600143192 105.471083560688\\ +10.4476597156082 104.235037872819\\ +11.3515470892099 103.098329877464\\ +12.3336349791381 102.052846353676\\ +13.4006889636394 101.091165443236\\ +14.5600599502069 100.206491425699\\ +15.819734815786 99.3925969923573\\ +17.188391428171 98.6437718921867\\ +18.6754584276109 97.9547770368818\\ +20.2911801804663 97.3208033190766\\ +22.0466873523944 96.7374345290289\\ +23.9540735872084 96.2006138588601\\ +26.0264788196906 95.7066135661743\\ +28.2781797962532 95.2520074352805\\ +30.7246884270909 94.8336457279298\\ +33.3828586473175 94.4486323592037\\ +36.2710025233077 94.0943040700673\\ +39.4090164040346 93.7682113977746\\ +42.818517986523 93.4681012700258\\ +46.5229952396024 93.191901069535\\ +50.5479682119114 92.9377040332231\\ +54.9211648388788 92.7037558652157\\ +59.6727119597324 92.4884424556744\\ +64.8353428605487 92.2902786085932\\ +70.4446227729899 92.10789769136\\ +76.5391938823037 91.9400421273414\\ +83.1610415323096 91.7855546602019\\ +90.3557834613866 91.6433703252644\\ +98.172984061889 91.5125090690879\\ +100 91.4848743155231\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -91.4729819266035\\ +0.0108651577465251 -91.6004228323139\\ +0.0118051652856881 -91.7388907246842\\ +0.0128264983052803 -91.8893399902479\\ +0.0139361927422416 -92.0528076919703\\ +0.0151418932530433 -92.2304207523064\\ +0.0164519058775369 -92.4234037662641\\ +0.0178752552590422 -92.6330875013994\\ +0.0194217468148908 -92.8609181472843\\ +0.0211020342856859 -93.1084673832812\\ +0.0229276931286557 -93.3774433405441\\ +0.024911300260678 -93.6697025421953\\ +0.0270665207003317 -93.9872629147567\\ +0.0294082017058709 -94.3323179743785\\ +0.0319524750575915 -94.7072523034604\\ +0.0347168681892662 -95.1146584472465\\ +0.0377204249341695 -95.5573553763198\\ +0.0409838367175735 -96.0384086801595\\ +0.0445295850994262 -96.5611526797496\\ +0.048382096649261 -97.129214674504\\ +0.0525679112201842 -97.7465415716401\\ +0.0571158647812626 -98.4174291860372\\ +0.0620572880677654 -99.1465545474302\\ +0.0674262224177818 -99.9390116119855\\ +0.0732596542821532 -100.800350850064\\ +0.0795977700231485 -101.736623275543\\ +0.0864842327573189 -102.754429600026\\ +0.0939664831495459 -103.860975345054\\ +0.102096066230607 -105.064132937117\\ +0.110928986489522 -106.37251205732\\ +0.120526093687088 -107.795539838634\\ +0.130953502048267 -109.343552924281\\ +0.142283045721431 -111.027903956806\\ +0.154592773641949 -112.861085809444\\ +0.167967487209262 -114.85687787235\\ +0.182499324481618 -117.030520072601\\ +0.198288394912704 -119.398922197172\\ +0.215443469003193 -121.980918743226\\ +0.234082727617828 -124.79758331437\\ +0.254334576130472 -127.872622109276\\ +0.276338529005317 -131.232874274902\\ +0.300246170908546 -134.908959416608\\ +0.326222200971169 -138.936132051766\\ +0.354445567397035 -143.355433792926\\ +0.381576466127131 -147.651837627392\\ +0.41078408899656 -152.336481876386\\ +0.442227398050602 -157.457403298648\\ +0.476077523022638 -163.07288663769\\ +0.512518692705321 -169.255041106911\\ +0.551749237612921 -176.094932035442\\ +0.572476623970219 -179.796896786087\\ +0.577779011797049 179.245400184145\\ +0.616296625513279 172.146057778335\\ +0.657382014340971 164.265735191644\\ +0.701206358900715 155.456122256162\\ +0.747952251562161 145.540325118994\\ +0.797814457207674 134.330756185917\\ +0.851000724712218 121.6851313611\\ +0.907732652520995 107.62281153476\\ +1.00462042134681 83.6105600376169\\ +1.1118496048193 60.0397100296699\\ +1.18597101233768 46.7402023003137\\ +1.25342426546138 36.7841591340694\\ +1.32471398786616 28.1977191856582\\ +1.38720978054164 22.0351214668527\\ +1.45265392594678 16.7026459608527\\ +1.52118551798608 12.1264271232473\\ +1.59295021257217 8.23488867848013\\ +1.66810053720008 4.96155490617863\\ +1.74679621512724 2.24537971665308\\ +1.81241754737421 0.435576911129942\\ +1.88050405512853 -1.08095548501097\\ +1.95114834684666 -2.33022560336721\\ +2.02444650997683 -3.33733531527614\\ +2.10049824165391 -4.12662969589277\\ +2.15940615210354 -4.58990762202677\\ +2.21996611911991 -4.95368225679462\\ +2.28222447418683 -5.22740271324949\\ +2.34622884814232 -5.42022921972935\\ +2.38989256623109 -5.50821535324386\\ +2.43436887354314 -5.56670859366685\\ +2.47967289250217 -5.59815710349068\\ +2.50264009641792 -5.60448171222541\\ +2.52582002696278 -5.60492469075618\\ +2.54921465445141 -5.59976749618471\\ +2.57282596744791 -5.5892857003474\\ +2.62070669648381 -5.55342038778207\\ +2.66947849403426 -5.49941088821279\\ +2.74434330322828 -5.38868059735228\\ +2.82130767593954 -5.24780178993009\\ +2.92729483504285 -5.02284909987927\\ +3.09378757173011 -4.62967992220246\\ +3.39258338274108 -3.90373969244311\\ +3.82456972246693 -2.97186641524272\\ +4.11731993116176 -2.45498324368361\\ +4.39180089259608 -2.05088207558876\\ +4.68458011587293 -1.69432627229517\\ +4.95102015955645 -1.42596990422729\\ +5.23261423948667 -1.19025327815592\\ +5.5302242561928 -0.984845414544736\\ +5.84476113163379 -0.807090067316011\\ +6.17718759733854 -0.654218454683871\\ +6.52852114112777 -0.523493454582166\\ +6.8998371214298 -0.412302448716105\\ +7.22534949178734 -0.332803822940377\\ +7.56621850048106 -0.263879628822792\\ +7.92316862486613 -0.204337767671973\\ +8.29695852083464 -0.153091963123103\\ +8.68838263525133 -0.109158951936536\\ +9.09827289445557 -0.0716536828458914\\ +9.52750047242714 -0.039783281484091\\ +9.97697764236288 -0.012840338418215\\ +10.5444279352618 0.0138673731424035\\ +11.1441525146678 0.0353336153015391\\ +11.7779870119709 0.0523790474221641\\ +12.4478714618793 0.0657085513799132\\ +13.2777082935543 0.0773633590250711\\ +14.1628661629916 0.0855868389065222\\ +15.2469572701759 0.0916377055854696\\ +16.5660595894989 0.0951394230837366\\ +18.3342548256232 0.0959344560744171\\ +20.6688024962902 0.0935209846257408\\ +24.399862972595 0.086693551438799\\ +33.6920570598025 0.0693553630796941\\ +49.1690357762798 0.0501704007647845\\ +67.2709913571241 0.0374692115946686\\ +93.750150151455 0.0272056615622205\\ +100 0.02554384906\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.0329709488572609\\ +0.0134316117004602 -0.0442995035265241\\ +0.0172280544713139 -0.0568471244511874\\ +0.0214947467343798 -0.0709725602577356\\ +0.0263281546564802 -0.0870117975526092\\ +0.0316592411198352 -0.104759144441628\\ +0.0373742574239106 -0.123863699288104\\ +0.043716022482485 -0.145176605580429\\ +0.0501996513311008 -0.167109560555827\\ +0.0571158647812643 -0.190689438164912\\ +0.0643885742724041 -0.215716905906586\\ +0.0725873365081725 -0.244253427477892\\ +0.0810790980673168 -0.274213729978673\\ +0.0897331581458352 -0.305217976108595\\ +0.099310918137498 -0.340145904881193\\ +0.108902296226373 -0.375835477506926\\ +0.119420002813353 -0.415870193058013\\ +0.129751716865759 -0.456193816802721\\ +0.140977287162897 -0.501221985876413\\ +0.153174046370208 -0.551698963024884\\ +0.164898694447106 -0.601865501394538\\ +0.177520801171764 -0.657805335373176\\ +0.191109062168914 -0.720423819635529\\ +0.203849339825246 -0.781539106349433\\ +0.217438947560008 -0.849449783746755\\ +0.231934505927443 -0.92515901794161\\ +0.247396410088681 -1.0098409399264\\ +0.263889081445751 -1.10486821147227\\ +0.281481236050758 -1.21184198244521\\ +0.300246170908555 -1.33262303129188\\ +0.320262069365765 -1.46936167957507\\ +0.338477285594598 -1.60112621799482\\ +0.357728509936787 -1.74816157197039\\ +0.378074666359935 -1.91237943887293\\ +0.399578030189527 -2.09583737558633\\ +0.422304418720667 -2.30068450364074\\ +0.44632339267104 -2.52905738248729\\ +0.476077523022637 -2.82778757006738\\ +0.507815211232767 -3.1632716324823\\ +0.541668691103315 -3.53539933228937\\ +0.588531577519145 -4.05940551008649\\ +0.669616005485322 -4.88439050043578\\ +0.694771254846024 -5.07848920283678\\ +0.714255928554312 -5.19303347680563\\ +0.727548352919623 -5.24860926294422\\ +0.741088151564157 -5.28297096069873\\ +0.747952251562183 -5.29078832089644\\ +0.754879928165343 -5.29153743390858\\ +0.7618717702323 -5.28455194043129\\ +0.768928372075831 -5.26912883380961\\ +0.776050333513357 -5.24453011817798\\ +0.790492762269642 -5.1646958752653\\ +0.805203967082547 -5.03857587206912\\ +0.82018894992022 -4.85944260435586\\ +0.835452805838287 -4.62061791865164\\ +0.858882855954626 -4.13718558497643\\ +0.88296999554941 -3.49010161025628\\ +0.907732652521022 -2.67471248792292\\ +0.941833153464796 -1.34973094266931\\ +1.00462042134681 1.33703125013178\\ +1.05201521761616 3.15821555026413\\ +1.09153593533139 4.34023789382966\\ +1.12214776820798 5.01561993178652\\ +1.15361810173648 5.50441559064801\\ +1.17508713090481 5.73273147331334\\ +1.19695570235904 5.89052590764791\\ +1.21923125164911 5.98559159797505\\ +1.23052400435926 6.01216995239798\\ +1.24192135270178 6.02615394547515\\ +1.2534242654614 6.02855481418119\\ +1.2650337203959 6.02035540948022\\ +1.27675070431927 6.002502595581\\ +1.30051125217341 5.94141185421494\\ +1.32471398786612 5.85196177823951\\ +1.36186523675608 5.67728696501606\\ +1.41302599059953 5.39362424877099\\ +1.5211855179861 4.75190106999753\\ +1.66810053720006 3.96249738105201\\ +1.77930438991858 3.46860529079711\\ +1.88050405512858 3.0923582155922\\ +1.98745954958099 2.75909117695907\\ +2.10049824165392 2.46587702697837\\ +2.21996611911996 2.20883100029776\\ +2.34622884814226 1.98383175253663\\ +2.47967289250216 1.78689468048721\\ +2.62070669648386 1.61435028326874\\ +2.76976193503689 1.4629144463227\\ +2.92729483504282 1.32970014089076\\ +3.09378757173014 1.21219876541527\\ +3.26974974451177 1.10824717570462\\ +3.48772747481418 1.00163498656921\\ +3.72023668141307 0.908459959130635\\ +3.96824610456949 0.826651468318584\\ +4.23278906557355 0.754489377924091\\ +4.5149677720361 0.690544296878844\\ +4.81595791019235 0.633627072489432\\ +5.18459354389291 0.575920705874706\\ +5.58144624945497 0.524882676892678\\ +6.00867589171969 0.479514549676417\\ +6.52852114112785 0.434238414896067\\ +7.093341204988 0.394153841408204\\ +7.7070271142123 0.358490376596905\\ +8.45136633068472 0.323289636547949\\ +9.26759330114688 0.292073822408409\\ +10.2567793074442 0.261664698497865\\ +11.4566872863487 0.232492696454519\\ +12.7969686821594 0.206877600378867\\ +14.4264395121816 0.182546532303766\\ +16.4140297114447 0.159731072041973\\ +18.848434090338 0.138593562130166\\ +21.8443607114943 0.119235096995142\\ +25.787628875938 0.100758286952988\\ +31.0092663593193 0.0836326264090825\\ +37.9821530619074 0.0681820567957105\\ +47.3887960971766 0.0545924042884183\\ +60.7832312829724 0.0425316947679395\\ +80.8924348680594 0.031943192761438\\ +100 0.025834018724245\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/comp_hinf_analytical.pdf b/matlab/figs/comp_hinf_analytical.pdf new file mode 100644 index 0000000..24f8070 Binary files /dev/null and b/matlab/figs/comp_hinf_analytical.pdf differ diff --git a/matlab/figs/comp_hinf_analytical.png b/matlab/figs/comp_hinf_analytical.png new file mode 100644 index 0000000..5ca712a Binary files /dev/null and b/matlab/figs/comp_hinf_analytical.png differ diff --git a/matlab/figs/compare_weights_upper_bounds_S_T.pdf b/matlab/figs/compare_weights_upper_bounds_S_T.pdf new file mode 100644 index 0000000..dfe10db Binary files /dev/null and b/matlab/figs/compare_weights_upper_bounds_S_T.pdf differ diff --git a/matlab/figs/compare_weights_upper_bounds_S_T.png b/matlab/figs/compare_weights_upper_bounds_S_T.png new file mode 100644 index 0000000..0305dc7 Binary files /dev/null and b/matlab/figs/compare_weights_upper_bounds_S_T.png differ diff --git a/matlab/figs/complementary_filters_second_order.pdf b/matlab/figs/complementary_filters_second_order.pdf new file mode 100644 index 0000000..090a8d5 Binary files /dev/null and b/matlab/figs/complementary_filters_second_order.pdf differ diff --git a/matlab/figs/complementary_filters_second_order.png b/matlab/figs/complementary_filters_second_order.png new file mode 100644 index 0000000..fa71777 Binary files /dev/null and b/matlab/figs/complementary_filters_second_order.png differ diff --git a/matlab/figs/complementary_filters_third_order.pdf b/matlab/figs/complementary_filters_third_order.pdf new file mode 100644 index 0000000..1401431 Binary files /dev/null and b/matlab/figs/complementary_filters_third_order.pdf differ diff --git a/matlab/figs/complementary_filters_third_order.png b/matlab/figs/complementary_filters_third_order.png new file mode 100644 index 0000000..12c867a Binary files /dev/null and b/matlab/figs/complementary_filters_third_order.png differ diff --git a/matlab/figs/filter_order_bode_plot.pdf b/matlab/figs/filter_order_bode_plot.pdf new file mode 100644 index 0000000..b1836ff Binary files /dev/null and b/matlab/figs/filter_order_bode_plot.pdf differ diff --git a/matlab/figs/filter_order_bode_plot.png b/matlab/figs/filter_order_bode_plot.png new file mode 100644 index 0000000..13d9f79 Binary files /dev/null and b/matlab/figs/filter_order_bode_plot.png differ diff --git a/matlab/figs/filter_order_bode_plot.svg b/matlab/figs/filter_order_bode_plot.svg new file mode 100644 index 0000000..3a2e987 --- /dev/null +++ b/matlab/figs/filter_order_bode_plot.svg @@ -0,0 +1,396 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/filter_order_bode_plot.tex b/matlab/figs/filter_order_bode_plot.tex new file mode 100644 index 0000000..3881ffd --- /dev/null +++ b/matlab/figs/filter_order_bode_plot.tex @@ -0,0 +1,688 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.561in, +at={(0.535in,2.203in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-05, +ymax=20, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.000239990562901708\\ +0.142283045721435 0.048196349957875\\ +0.245126006203334 0.140705435813733\\ +0.338477285594598 0.261906774974733\\ +0.422304418720667 0.395508581425881\\ +0.498537346387389 0.531625588339423\\ +0.572476623970218 0.670842699257944\\ +0.639448842855694 0.797569775779907\\ +0.701206358900718 0.910540287721556\\ +0.761871770232299 1.01434346427032\\ +0.82018894992022 1.10486965985512\\ +0.882969995549409 1.19024364311825\\ +0.941833153464795 1.25800147217012\\ +1.00462042134681 1.31709442414582\\ +1.07159339982267 1.36592649714493\\ +1.14303112911448 1.40355609102866\\ +1.21923125164911 1.42976625635778\\ +1.30051125217341 1.44501899013449\\ +1.38720978054162 1.45031772363591\\ +1.49339321612425 1.44593859120674\\ +1.62259528707809 1.43044590635232\\ +1.7957846470021 1.40082752078125\\ +2.04319732019527 1.35362036175419\\ +3.48772747481418 1.16485079759162\\ +4.11731993116168 1.12415798861893\\ +4.90558370636505 1.09079386912484\\ +5.8988964255085 1.06458391602289\\ +7.22534949178721 1.04398243369497\\ +9.18254283565628 1.02768819830159\\ +12.3336349791378 1.0155361351838\\ +18.3342548256229 1.00709000201383\\ +33.6920570598027 1.00210986288269\\ +100 1.00023994337346\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00023994337346\\ +0.0429173237842216 1.0044014200165\\ +0.0725873365081725 1.01249010306924\\ +0.102096066230605 1.02441595695104\\ +0.133390569003906 1.04098147582399\\ +0.16642601764859 1.06238976059097\\ +0.201978575681988 1.08928232042815\\ +0.240647515001542 1.12216819734946\\ +0.28408836901833 1.16233996504902\\ +0.338477285594598 1.21518217086752\\ +0.422304418720667 1.29576168856765\\ +0.541668691103315 1.39135177557127\\ +0.605036787939122 1.42579657374727\\ +0.663470812109235 1.44471510705481\\ +0.714255928554313 1.45033847757317\\ +0.761871770232299 1.44635661872273\\ +0.812661920009195 1.43259773894975\\ +0.866837993001977 1.40799565181008\\ +0.916140245713852 1.37784402838761\\ +0.968246611930312 1.33935013319552\\ +1.02331657833024 1.29294570980569\\ +1.09153593533139 1.22991092340698\\ +1.16430313292088 1.15905477983677\\ +1.24192135270178 1.08258453669297\\ +1.33698374182495 0.991310628508709\\ +1.45265392594678 0.88760296512871\\ +1.59295021257212 0.775651517941682\\ +1.77930438991858 0.650962981857989\\ +2.0244465099768 0.523178075225787\\ +2.36796006783308 0.395508581425881\\ +2.90043049386399 0.271210002966324\\ +3.824569722467 0.15952460257937\\ +5.68531791387375 0.073334710901727\\ +11.1441525146679 0.0192634860180548\\ +61.9144175597784 0.000626012643354404\\ +100 0.000239990562901708\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 2.65545074120215e-05\\ +0.024231727942376 0.00037140258628664\\ +0.0380697987140228 0.00139901221859594\\ +0.0525679112201842 0.00353394052760504\\ +0.0680507369673521 0.00726495213246285\\ +0.0849041520408874 0.0132039504613998\\ +0.103996091395412 0.022377085246567\\ +0.125053858729039 0.0354747583272142\\ +0.150375532129974 0.0551905562927319\\ +0.180824493487795 0.0842594253784922\\ +0.215443469003188 0.123816106181075\\ +0.256690271549195 0.179011857686184\\ +0.305833803237843 0.254602099652161\\ +0.357728509936787 0.343788949402809\\ +0.414588849683291 0.449533755823001\\ +0.471708469091701 0.560821253311769\\ +0.531772317785097 0.67956844500004\\ +0.593982669392035 0.800566442446507\\ +0.657382014340959 0.918189828297773\\ +0.720871503378214 1.02730134077546\\ +0.783238259917919 1.1240293556758\\ +0.843190929286625 1.20618130583567\\ +0.907732652521022 1.2823373132786\\ +0.977214696972572 1.3503381849764\\ +1.0423606739764 1.40170255576517\\ +1.11184960481927 1.44450424498237\\ +1.18597101233767 1.47818146741657\\ +1.2650337203959 1.50254702322984\\ +1.36186523675608 1.51923005339568\\ +1.46610868404699 1.52475095850917\\ +1.59295021257212 1.51909476944275\\ +1.73076553419572 1.50287191195891\\ +1.91550055557353 1.47196706579764\\ +2.15940615210357 1.42487018301208\\ +2.54921465445143 1.35082288286245\\ +3.75469422407334 1.18941132094598\\ +4.4324785912404 1.13648385179978\\ +5.18459354389291 1.09689686232593\\ +6.06432939540806 1.06663736303525\\ +7.15904108596489 1.04330929537848\\ +8.60864769614924 1.02575813756251\\ +10.6420924406472 1.01347432048707\\ +13.9041083409007 1.00556061264036\\ +21.0534524276671 1.00125534169887\\ +59.1250841383188 1.00002303075705\\ +100 1.0000028521488\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 1.00000285214879\\ +0.0626320745219869 1.00343093972918\\ +0.0889096598952915 1.01128532186658\\ +0.112993393803322 1.02374105185298\\ +0.137131471775395 1.04119509140565\\ +0.16188596901782 1.06363313770823\\ +0.18935521797563 1.09287471979718\\ +0.221485523372636 1.13131019333771\\ +0.259067785868801 1.17979754964229\\ +0.308666494333727 1.24572357199348\\ +0.507815211232767 1.4619154844749\\ +0.567222897164455 1.49805688323417\\ +0.622004882563472 1.51777369640101\\ +0.675818116816111 1.52471125751858\\ +0.727548352919623 1.52050988400498\\ +0.783238259917919 1.50527361043554\\ +0.835452805838287 1.48223206905353\\ +0.89114823228402 1.4498823561324\\ +0.950556592010119 1.40835842829937\\ +1.01392540755882 1.35816909466915\\ +1.08151870255229 1.30018052519061\\ +1.16430313292088 1.22587067300532\\ +1.2534242654614 1.14500431431229\\ +1.34936714058831 1.05986300883665\\ +1.46610868404699 0.961796684296777\\ +1.60770442167383 0.853454906027826\\ +1.77930438991858 0.738876047257277\\ +1.98745954958099 0.623005686914239\\ +2.24052786930002 0.510959085096822\\ +2.54921465445143 0.407250016761977\\ +2.95440799888038 0.309738554121075\\ +3.45571993676214 0.228213997889654\\ +4.07953450345245 0.162716148043293\\ +4.86056423214214 0.112066583676384\\ +5.79112264764176 0.0759344636148444\\ +6.89983712143002 0.0505981655845309\\ +8.22081575524054 0.0331450022119096\\ +9.88541702191957 0.0208496990808223\\ +11.9971773543589 0.0125730602386382\\ +14.8310251433611 0.0070832042056604\\ +18.848434090338 0.00362739834095076\\ +25.3164847863136 0.00155702609379137\\ +36.946012051993 0.000515006239601614\\ +64.8353428605473 9.69550538174257e-05\\ +100 2.65545074120217e-05\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.561in, +at={(0.535in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.562,1.056)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 178.863623616218\\ +0.0108651577465251 178.765307154159\\ +0.0118051652856881 178.658484207923\\ +0.0128264983052803 178.542418674377\\ +0.0139361927422416 178.416310721186\\ +0.0151418932530433 178.279291260619\\ +0.0164519058775369 178.130415941673\\ +0.0178752552590422 177.968658617868\\ +0.0194217468148908 177.792904244025\\ +0.0211020342856859 177.601941151011\\ +0.0229276931286557 177.39445264248\\ +0.024911300260678 177.169007852265\\ +0.0270665207003317 176.924051794965\\ +0.0294082017058709 176.657894535475\\ +0.0319524750575915 176.368699395532\\ +0.0347168681892662 176.054470106654\\ +0.0377204249341695 175.713036809\\ +0.0409838367175735 175.342040784319\\ +0.0445295850994262 174.938917798231\\ +0.048382096649261 174.500879911995\\ +0.0525679112201842 174.024895606465\\ +0.0571158647812626 173.507668040468\\ +0.0620572880677654 172.945611241809\\ +0.0674262224177818 172.33482400069\\ +0.0732596542821532 171.671061201683\\ +0.0795977700231485 170.949702290309\\ +0.0864842327573189 170.165716522657\\ +0.0939664831495459 169.313624589708\\ +0.102096066230607 168.387456140844\\ +0.110928986489522 167.38070265187\\ +0.120526093687088 166.286264991125\\ +0.130953502048267 165.096394933056\\ +0.142283045721431 163.802629755121\\ +0.154592773641949 162.39571893867\\ +0.167967487209262 160.865541894398\\ +0.182499324481618 159.201015580647\\ +0.198288394912704 157.389990938927\\ +0.215443469003193 155.41913734388\\ +0.234082727617828 153.273814943688\\ +0.254334576130472 150.937936174528\\ +0.276338529005317 148.393820408353\\ +0.300246170908546 145.622050516878\\ +0.326222200971169 142.601348497571\\ +0.354445567397035 139.308501319999\\ +0.385110700232562 135.71839081168\\ +0.418428850790151 131.804216520061\\ +0.454629546953248 127.538051841529\\ +0.493962174387827 122.891942422227\\ +0.536697694554061 117.83983422892\\ +0.58313051135262 112.36067867715\\ +0.633580499265845 106.443038680383\\ +0.694771254846023 99.3596814111201\\ +0.768928372075853 90.9989413015776\\ +0.866837993001965 80.5153338101079\\ +1.19695570235905 51.9055936398149\\ +1.3125568357718 44.5049227945011\\ +1.42611370719414 38.3830462194279\\ +1.53527502878039 33.4178187376651\\ +1.65279206146492 28.9181840190651\\ +1.7629753752872 25.3619664020259\\ +1.88050405512853 22.1515819005542\\ +2.00586777950826 19.2718741737416\\ +2.1395888713434 16.7038791407503\\ +2.28222447418683 14.42627386531\\ +2.43436887354314 12.4164975776052\\ +2.59665597293484 10.6515947404326\\ +2.74434330322828 9.31647514152058\\ +2.90043049386403 8.13062092372084\\ +3.06539529505651 7.08062026725631\\ +3.23974262952812 6.15369172556549\\ +3.4240061379715 5.33776219835298\\ +3.61874981241128 4.62151840616434\\ +3.82456972246693 3.99443653115341\\ +4.04209583979642 3.44679371373951\\ +4.27199396630681 2.96966445971302\\ +4.51496777203605 2.55490460551451\\ +4.77176094893859 2.19512521833869\\ +5.04315948717143 1.88365860382868\\ +5.32999408084406 1.61451841228302\\ +5.63314267060121 1.38235564922095\\ +5.95353313081449 1.18241219763252\\ +6.29214610961035 1.01047324722097\\ +6.650018030431 0.862819806223172\\ +7.02824426430854 0.736182252238137\\ +7.42798248256497 0.627695668302437\\ +7.85045620020441 0.534857516301543\\ +8.29695852083464 0.455488026784849\\ +8.76885609458755 0.387693535288236\\ +9.26759330114683 0.329832871346639\\ +9.79469667069515 0.280486806891986\\ +10.351779556302 0.238430493933834\\ +10.9405470720574 0.202608764839226\\ +11.5628013120735 0.172114129318999\\ +12.2204468663152 0.146167277470539\\ +13.0351224468151 0.120757686422706\\ +13.9041083409004 0.0997341473184861\\ +14.8310251433614 0.0823480014385325\\ +15.9662602210142 0.0661376528165647\\ +17.3475935923388 0.0516655527610794\\ +19.0230118866895 0.0392541662689894\\ +21.0534524276677 0.0290058187458726\\ +23.7342425002384 0.0202779461433806\\ +27.2543253128104 0.0134111209164303\\ +32.4721849207315 0.00793988652637267\\ +40.8894822629482 0.00398128462191494\\ +57.5121707184161 0.00143221908558644\\ +100 0.000272636311223096\\ +}; +\addlegendentry{2nd order} + +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 -0.000272636311223096\\ +0.0205263775270926 -0.00235533302242175\\ +0.0280833199882324 -0.00602457260959\\ +0.0347168681892662 -0.0113657345407319\\ +0.0406077202570047 -0.0181617881785883\\ +0.0462024137175122 -0.026706957672701\\ +0.0516074871038594 -0.0371540244928497\\ +0.0565917016324609 -0.0489046237613877\\ +0.0614877765381008 -0.0626077738535855\\ +0.0661943345877428 -0.0779586338937577\\ +0.0706071771413795 -0.0944249300297031\\ +0.0753142016597439 -0.114338726877719\\ +0.0803350197712457 -0.138410535985486\\ +0.0849041520408896 -0.162995003214576\\ +0.0897331581458357 -0.19189293443273\\ +0.0948368186628579 -0.225844841490243\\ +0.10023075482839 -0.265713439510762\\ +0.105931476351838 -0.312502353415653\\ +0.111956431948387 -0.367377263540362\\ +0.117238180328657 -0.420252024401776\\ +0.122769104798839 -0.480570403069805\\ +0.128560960694331 -0.549340080962367\\ +0.13462605792989 -0.627695668302408\\ +0.140977287162893 -0.716912520647099\\ +0.147628147190943 -0.818421577000294\\ +0.154592773641949 -0.933825187872515\\ +0.161885969017819 -1.06491387284797\\ +0.169523234155408 -1.21368391352533\\ +0.177520801171768 -1.38235564922095\\ +0.18589566796357 -1.57339229991544\\ +0.194665634334225 -1.78951909423515\\ +0.203849339825241 -2.03374243072494\\ +0.215443469003193 -2.36857554516999\\ +0.227697025538168 -2.7549675017936\\ +0.240647515001538 -3.19994195174823\\ +0.254334576130472 -3.71126163868755\\ +0.268800102153763 -4.29745870496325\\ +0.284088369018327 -4.96785604233435\\ +0.300246170908546 -5.73257741753997\\ +0.317322963473503 -6.60254387265681\\ +0.335371015200292 -7.58945357131526\\ +0.354445567397035 -8.70574175382038\\ +0.374605003274907 -9.9645166738822\\ +0.395911026646847 -11.3794662005277\\ +0.418428850790151 -12.9647280713868\\ +0.442227398050602 -14.7347145129413\\ +0.46737951079925 -16.7038791407502\\ +0.498537346387382 -19.2718741737415\\ +0.531772317785112 -22.1515819005542\\ +0.567222897164457 -25.3619664020259\\ +0.605036787939111 -28.9181840190651\\ +0.645371540164686 -32.8297859719302\\ +0.694771254846023 -37.7372802470706\\ +0.747952251562161 -43.0976083242855\\ +0.812661920009201 -49.6255533135195\\ +0.89940221740918 -58.1964927554504\\ +1.04236067397639 -71.3693008505441\\ +1.27675070431924 -89.4226573506414\\ +1.42611370719414 -98.6230729440817\\ +1.5638467583022 -105.758450779\\ +1.71488196987055 -112.36067867715\\ +1.86324631193151 -117.83983422892\\ +2.02444650997683 -122.891942422227\\ +2.19959306803003 -127.538051841529\\ +2.38989256623109 -131.804216520061\\ +2.59665597293484 -135.71839081168\\ +2.82130767593954 -139.308501319999\\ +3.06539529505651 -142.601348497571\\ +3.33060034362469 -145.622050516878\\ +3.61874981241128 -148.393820408353\\ +3.93182875570566 -150.937936174528\\ +4.27199396630681 -153.273814943688\\ +4.64158883361268 -155.41913734388\\ +5.04315948717143 -157.389990938927\\ +5.4794723369002 -159.201015580647\\ +5.95353313081449 -160.865541894398\\ +6.46860766154627 -162.39571893867\\ +7.02824426430854 -163.802629755121\\ +7.63629826128223 -165.096394933056\\ +8.29695852083464 -166.286264991125\\ +9.01477631452495 -167.38070265187\\ +9.79469667069515 -168.387456140844\\ +10.6420924406474 -169.313624589708\\ +11.5628013120735 -170.165716522657\\ +12.5631660247414 -170.949702290309\\ +13.65007806546 -171.671061201683\\ +14.8310251433614 -172.33482400069\\ +16.1141427725301 -172.945611241809\\ +17.5082703173578 -173.507668040468\\ +19.0230118866895 -174.024895606465\\ +20.6688024962902 -174.500879911995\\ +22.4569799553979 -174.938917798231\\ +24.399862972595 -175.342040784319\\ +26.5108360190857 -175.713036809\\ +28.8044415339625 -176.054470106654\\ +31.2964801067081 -176.368699395532\\ +34.0041193270367 -176.657894535475\\ +36.946012051994 -176.924051794965\\ +40.1424249049931 -177.169007852265\\ +43.6153778920815 -177.39445264248\\ +47.3887960971767 -177.601941151011\\ +51.4886745013736 -177.792904244025\\ +55.9432570616943 -177.968658617868\\ +60.7832312829711 -178.130415941673\\ +66.0419396233041 -178.279291260619\\ +71.7556091893683 -178.416310721186\\ +77.9636013040541 -178.542418674377\\ +84.7086826655735 -178.658484207923\\ +92.0373199661849 -178.765307154159\\ +100 -178.863623616218\\ +}; +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 -96.1651247510944\\ +0.0108651577465251 -96.6963175241823\\ +0.0118051652856881 -97.2728530866312\\ +0.0128264983052803 -97.8984831715272\\ +0.0139361927422416 -98.5772369146544\\ +0.0151418932530433 -99.3134321165136\\ +0.0164519058775369 -100.111684175552\\ +0.0178752552590422 -100.976911702396\\ +0.0194217468148908 -101.914337584839\\ +0.0211020342856859 -102.929483999749\\ +0.0229276931286557 -104.028159567193\\ +0.024911300260678 -105.216436527586\\ +0.0270665207003317 -106.500615519397\\ +0.0294082017058709 -107.887175282736\\ +0.0319524750575915 -109.382704473146\\ +0.0350384224529072 -111.180244200545\\ +0.0384224084605498 -113.129396751144\\ +0.0421332174384734 -115.238713270539\\ +0.0462024137175122 -117.516091451038\\ +0.0506646100892133 -119.968454246808\\ +0.0555577622239876 -122.601399568008\\ +0.0614877765381008 -125.710826308131\\ +0.0680507369673503 -129.045825853701\\ +0.0753142016597439 -132.605403791301\\ +0.0841249704973636 -136.739246999108\\ +0.0948368186628579 -141.50054453827\\ +0.106912633917349 -146.537607144296\\ +0.12164242938574 -152.244841000659\\ +0.140977287162893 -159.091146852716\\ +0.164898694447104 -166.707832999839\\ +0.192879150802077 -174.659368817141\\ +0.21346630333243 -179.987494059157\\ +0.215443469003193 179.520605483702\\ +0.252000499376417 170.949154451959\\ +0.28937530190509 163.016120547222\\ +0.329243733300778 155.238117431243\\ +0.374605003274907 147.035585330711\\ +0.422304418720659 138.983712593159\\ +0.476077523022638 130.46752663069\\ +0.536697694554061 121.458550261378\\ +0.610640754223191 111.204504917535\\ +0.701206358900715 99.6417075961787\\ +0.843190929286622 83.5773088036379\\ +1.10164594963369 60.293412520198\\ +1.24192135270177 50.4789107974606\\ +1.37447909267756 42.720979405281\\ +1.50722530931073 36.1987620593357\\ +1.63762407452172 30.8088866649691\\ +1.77930438991856 25.8996144956904\\ +1.91550055557359 21.9480932662289\\ +2.06212180399915 18.3840974346638\\ +2.19959306803003 15.5779895291538\\ +2.34622884814232 13.0549536902761\\ +2.50264009641792 10.8041750556057\\ +2.66947849403426 8.81273085204094\\ +2.82130767593954 7.30117047107925\\ +2.98177229001969 5.9595169751899\\ +3.15136348486643 4.77733515494876\\ +3.33060034362469 3.74384452176264\\ +3.52003147279672 2.84806591646915\\ +3.72023668141304 2.07895694996537\\ +3.89574561577541 1.52686751439728\\ +4.07953450345255 1.04884750695544\\ +4.27199396630681 0.638756146861084\\ +4.47353305449843 0.290616007522118\\ +4.68458011587293 -0.00135368801647928\\ +4.90558370636517 -0.242707988153541\\ +5.08987019351974 -0.402921939955348\\ +5.28107971193432 -0.536733936643856\\ +5.4794723369002 -0.646619155167258\\ +5.68531791387359 -0.734931751087231\\ +5.89889642550864 -0.803901507549142\\ +6.06432939540815 -0.844205024241091\\ +6.23440188862789 -0.87565378620701\\ +6.40924401935642 -0.899047100674466\\ +6.58898955079985 -0.915143622291339\\ +6.77377599751758 -0.924661528863254\\ +6.8998371214298 -0.927688478057973\\ +7.02824426430854 -0.928284826375659\\ +7.15904108596503 -0.92663387144151\\ +7.35981447526585 -0.920325816752865\\ +7.56621850048106 -0.909915449725929\\ +7.85045620020441 -0.890552523390653\\ +8.14537176628054 -0.86596155514988\\ +8.52964449974123 -0.829426042988985\\ +9.09827289445557 -0.770566955448231\\ +9.97697764236288 -0.677997134688411\\ +11.8870769771187 -0.501221539324433\\ +12.9154966501489 -0.42509003823838\\ +13.9041083409004 -0.363670218288235\\ +14.9683929307729 -0.308660528901271\\ +16.1141427725301 -0.260135266757914\\ +17.188391428171 -0.222830398863522\\ +18.3342548256232 -0.190060777035768\\ +19.5565071586593 -0.16148974368619\\ +20.8602408924844 -0.136743055266635\\ +22.4569799553979 -0.112646962041055\\ +24.1759407916908 -0.0924698990138211\\ +26.0264788196906 -0.0756720809959859\\ +28.2781797962532 -0.0601985900821376\\ +31.00926635932 -0.0465265368921166\\ +34.31907197459 -0.0349212361818445\\ +38.3339510176665 -0.0254465853474528\\ +43.6153778920815 -0.0175242667228588\\ +51.0161531474972 -0.0110946364618769\\ +62.4878807200671 -0.00610968249554844\\ +82.3978568452854 -0.00269196658322812\\ +100 -0.00151265754368524\\ +}; +\addlegendentry{3rd order} + +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 0.00151265754371366\\ +0.0147288272390749 0.00478074918021321\\ +0.0187185529496553 0.00969205561673903\\ +0.0223022329796589 0.0161709946132476\\ +0.0256099310025844 0.0241316075721727\\ +0.0288709091735928 0.0340166099495889\\ +0.0319524750575915 0.0453351258907446\\ +0.0350384224529072 0.0586765696345708\\ +0.0380697987140222 0.0737847304536388\\ +0.0409838367175735 0.0901959984207679\\ +0.0441209286319117 0.109921940494985\\ +0.0474981480322836 0.133497421701463\\ +0.0506646100892133 0.157729349129397\\ +0.0540421642070586 0.185730594977173\\ +0.0576448828292606 0.217878621230653\\ +0.0614877765381008 0.254517226043106\\ +0.0655868565957134 0.295925622438432\\ +0.0699592016543557 0.342278769247542\\ +0.0753142016597439 0.40132678367047\\ +0.0818300681586717 0.475087702371525\\ +0.0897331581458357 0.564650002575604\\ +0.116162263260848 0.821490899902273\\ +0.122769104798839 0.865961555150108\\ +0.127381132318649 0.89055252339088\\ +0.13216641839466 0.909915449726157\\ +0.13587299019027 0.920325816753092\\ +0.139683511798871 0.926633871441737\\ +0.142283045721431 0.928284826375858\\ +0.144930957412626 0.927688478058229\\ +0.147628147190943 0.924661528863481\\ +0.150375532129977 0.91901291008972\\ +0.15317404637021 0.9105437079306\\ +0.157469771464309 0.892096713204495\\ +0.161885969017819 0.866104549862285\\ +0.166426017648587 0.83179502465245\\ +0.171093390726897 0.788355266191644\\ +0.175891659032778 0.73493175108743\\ +0.182499324481618 0.646619155167457\\ +0.18935521797563 0.536733936644055\\ +0.196468664618042 0.402921939955547\\ +0.203849339825241 0.24270798815374\\ +0.211507282486886 0.0535002848547492\\ +0.219452908620335 -0.167404101768739\\ +0.229805998875885 -0.492394405576817\\ +0.240647515001538 -0.876998297693405\\ +0.252000499376417 -1.32711830602517\\ +0.263889081445755 -1.84883413118706\\ +0.276338529005317 -2.4483668678223\\ +0.28937530190509 -3.1320391895251\\ +0.303027108286649 -3.90623163885718\\ +0.320262069365769 -4.96374532508241\\ +0.338477285594596 -6.17176456144486\\ +0.357728509936777 -7.5410227809011\\ +0.378074666359942 -9.0818825717698\\ +0.399578030189527 -10.8041750556055\\ +0.426215882901522 -13.0549536902759\\ +0.454629546953248 -15.5779895291536\\ +0.484937406733521 -18.3840974346636\\ +0.517265738721588 -21.4814906064621\\ +0.556859644428648 -25.3843888821954\\ +0.599484250318932 -29.6758260813824\\ +0.651349094627294 -34.9604992919035\\ +0.707701066118183 -40.7080531331827\\ +0.776050333513376 -47.592778191968\\ +0.858882855954615 -55.6885887636402\\ +0.97721469697258 -66.5913457523266\\ +1.23052400435925 -86.8253315656705\\ +1.49339321612424 -103.555026566453\\ +1.71488196987055 -114.930586406056\\ +1.95114834684666 -124.982701726327\\ +2.19959306803003 -133.800207337064\\ +2.47967289250217 -142.13337120621\\ +2.82130767593954 -150.607056866625\\ +3.2100108955431 -158.619799343353\\ +3.68609536217214 -166.765596459029\\ +4.27199396630681 -175.033642897372\\ +4.64158883361268 -179.520605483702\\ +4.68458011587293 179.987494059158\\ +5.4794723369002 171.814639651708\\ +6.46860766154627 163.530568325641\\ +7.56621850048106 156.055670564056\\ +8.76885609458755 149.356305996668\\ +9.97697764236288 143.792381909225\\ +11.2473717836474 138.90118558388\\ +12.6795284678645 134.296530390215\\ +14.1628661629916 130.314396402387\\ +15.674554102056 126.897430655102\\ +17.3475935923388 123.706082237428\\ +19.1992066559328 120.739162866272\\ +21.0534524276677 118.233143373549\\ +23.0867799418716 115.903943375106\\ +25.3164847863143 113.744999800615\\ +27.7615329443679 111.748672010859\\ +30.4427221206439 109.906573466698\\ +33.3828586473175 108.20986490503\\ +36.6069514759701 106.649502032637\\ +40.1424249049931 105.216436527587\\ +44.0193518520901 103.901772930032\\ +47.8277201772749 102.812673676138\\ +51.9655724382751 101.806444639073\\ +56.4614141930371 100.877308101087\\ +61.3462171799237 100.019774666158\\ +66.65363268125 99.2286551339033\\ +72.420223346072 98.4990647316711\\ +78.68571506937 97.8264214750919\\ +85.493270662683 97.2064401290062\\ +92.8897872016474 96.6351229706328\\ +100 96.1651247510944\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/filter_order_loop_gain.pdf b/matlab/figs/filter_order_loop_gain.pdf new file mode 100644 index 0000000..fe4af22 Binary files /dev/null and b/matlab/figs/filter_order_loop_gain.pdf differ diff --git a/matlab/figs/filter_order_loop_gain.png b/matlab/figs/filter_order_loop_gain.png new file mode 100644 index 0000000..4dfa5ac Binary files /dev/null and b/matlab/figs/filter_order_loop_gain.png differ diff --git a/matlab/figs/filter_order_loop_gain.svg b/matlab/figs/filter_order_loop_gain.svg new file mode 100644 index 0000000..8ceedcd --- /dev/null +++ b/matlab/figs/filter_order_loop_gain.svg @@ -0,0 +1,415 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/filter_order_loop_gain.tex b/matlab/figs/filter_order_loop_gain.tex new file mode 100644 index 0000000..d1ec2c9 --- /dev/null +++ b/matlab/figs/filter_order_loop_gain.tex @@ -0,0 +1,383 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.551in,2.205in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xtick={0.01,0.1,1,10,100}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-05, +ymax=100000, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 4167.83031499084\\ +0.0571158647812643 128.882727474017\\ +0.0983995229627823 44.1797163360685\\ +0.140977287162897 22.0941948352123\\ +0.184189668079971 13.3888092756032\\ +0.229805998875885 8.9692194180794\\ +0.278898029238044 6.40287237314112\\ +0.335371015200293 4.70974142072698\\ +0.399578030189527 3.56664669856831\\ +0.476077523022637 2.7380132984489\\ +0.567222897164454 2.12886004430877\\ +0.68839520696455 1.63220853655452\\ +0.874866812047991 1.18948113400539\\ +1.5211855179861 0.575697142382613\\ +1.84614694632455 0.440139324158912\\ +2.19959306803007 0.341120696395563\\ +2.59665597293487 0.264738239870324\\ +3.09378757173014 0.199908614643401\\ +3.68609536217216 0.148967495371519\\ +4.47353305449847 0.106134845315272\\ +5.58144624945496 0.070971552342041\\ +7.22534949178721 0.043700646597467\\ +9.9769776423632 0.0234626082806174\\ +15.5307057393346 0.00983695087146654\\ +32.4721849207313 0.00227007919185389\\ +100 0.000239932992570067\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.01 37658.4975436629\\ +0.024231727942376 2692.75184743704\\ +0.0380697987140228 715.18019785956\\ +0.0520854855057765 290.972976436668\\ +0.0668074391569562 145.429843325373\\ +0.0825879938784427 82.2336800387916\\ +0.099310918137498 51.0945660472151\\ +0.11723818032866 33.9270425378139\\ +0.137131471775395 23.4752364028676\\ +0.158928286562298 16.8952112668581\\ +0.182499324481615 12.6159560759637\\ +0.209566239948043 9.57310338111182\\ +0.240647515001542 7.38130837218514\\ +0.276338529005317 5.78070526405181\\ +0.317322963473497 4.5947623751088\\ +0.364385898376354 3.70259206183731\\ +0.422304418720667 2.98121752025748\\ +0.493962174387832 2.39963042868381\\ +0.583130511352622 1.93023087824691\\ +0.707701066118189 1.51499468206959\\ +0.924625711640573 1.09773501747064\\ +1.46610868404699 0.630789361980254\\ +1.77930438991858 0.494065212832848\\ +2.10049824165392 0.396421038774207\\ +2.43436887354311 0.322394550628276\\ +2.79541599906785 0.262613592171841\\ +3.21001089554318 0.211250301723534\\ +3.65226736430818 0.170273472754588\\ +4.15545533471888 0.135477336750797\\ +4.72796959160039 0.106338415915071\\ +5.42918617761894 0.0807771512507995\\ +6.23440188862786 0.0603820640833641\\ +7.15904108596489 0.0444285744279711\\ +8.29695852083491 0.0314966982589575\\ +9.70480887738031 0.0214710009406213\\ +11.5628013120738 0.0137227122618482\\ +14.0328908478587 0.00819779974952794\\ +17.5082703173573 0.0044547385113859\\ +22.6649807927369 0.00214105374641159\\ +31.5863540826782 0.000816426173116526\\ +50.5479682119125 0.000203481922291505\\ +100 2.65544316748313e-05\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.563in, +at={(0.551in,0.433in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.01, +xmax=100, +xminorticks=true, +xlabel={Relative Frequency $\frac{\omega}{\omega_0}$}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.589,1.064)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.01 -178.86389625253\\ +0.0108651577465251 -178.765656829879\\ +0.0118051652856881 -178.658932687332\\ +0.0128264983052803 -178.542993867828\\ +0.0139361927422416 -178.417048419416\\ +0.0151418932530433 -178.280237357785\\ +0.0164519058775369 -178.1316292845\\ +0.0178752552590422 -177.970214656726\\ +0.0194217468148908 -177.794899710882\\ +0.0211020342856859 -177.604500051876\\ +0.0229276931286557 -177.39773393194\\ +0.024911300260678 -177.17321525959\\ +0.0270665207003317 -176.929446400906\\ +0.0294082017058709 -176.664810863656\\ +0.0319524750575915 -176.377565991347\\ +0.0347168681892662 -176.065835841195\\ +0.0377204249341695 -175.72760447973\\ +0.0409838367175735 -175.360710005082\\ +0.0445295850994262 -174.96283969933\\ +0.048382096649261 -174.531526831195\\ +0.0525679112201842 -174.064149772734\\ +0.0571158647812626 -173.557934267192\\ +0.0620572880677654 -173.009959891961\\ +0.0674262224177818 -172.417172002129\\ +0.0732596542821532 -171.776400715216\\ +0.0795977700231485 -171.084388800348\\ +0.0864842327573189 -170.337830651976\\ +0.0939664831495459 -169.533424835215\\ +0.103041699495061 -168.567872755043\\ +0.112993393803321 -167.52273530089\\ +0.123906215694794 -166.394261620209\\ +0.13587299019027 -165.179372206502\\ +0.148995507285289 -163.875944202022\\ +0.164898694447104 -162.338966539622\\ +0.182499324481618 -160.695141108603\\ +0.203849339825241 -158.785235672343\\ +0.229805998875885 -156.59129214136\\ +0.263889081445755 -153.927219750964\\ +0.326222200971169 -149.681968764827\\ +0.403278998219369 -145.473884038646\\ +0.454629546953248 -143.231554220289\\ +0.498537346387382 -141.622962721924\\ +0.541668691103327 -140.2867838758\\ +0.58313051135262 -139.203683958513\\ +0.622004882563454 -138.34680791396\\ +0.663470812109245 -137.582510862134\\ +0.701206358900715 -137.00611916351\\ +0.741088151564139 -136.50626914252\\ +0.776050333513376 -136.150488677998\\ +0.812661920009201 -135.851616023186\\ +0.843190929286622 -135.654373771699\\ +0.874866812047975 -135.494936871635\\ +0.89940221740918 -135.400438462815\\ +0.9246257116406 -135.327602884186\\ +0.950556592010137 -135.276543193256\\ +0.968246611930323 -135.254641610843\\ +0.986265846131287 -135.242469175405\\ +0.995400828762154 -135.240034269182\\ +1.00462042134681 -135.240034269182\\ +1.01392540755881 -135.242469175405\\ +1.02331657833024 -135.247338568712\\ +1.04236067397639 -135.26437704447\\ +1.06175918348298 -135.291137961948\\ +1.08151870255226 -135.327602884186\\ +1.1118496048193 -135.400438462815\\ +1.1430311291145 -135.494936871635\\ +1.17508713090482 -135.610951237688\\ +1.2192312516491 -135.798789337931\\ +1.26503372039588 -136.024032155882\\ +1.32471398786616 -136.357221814983\\ +1.38720978054164 -136.746417332851\\ +1.45265392594678 -137.189915456654\\ +1.53527502878039 -137.791033215479\\ +1.62259528707813 -138.463715324247\\ +1.73076553419573 -139.333229186973\\ +1.86324631193151 -140.429394661033\\ +2.02444650997683 -141.778353381596\\ +2.21996611911991 -143.398591451948\\ +2.47967289250217 -145.473884038646\\ +2.87381269185112 -148.383495618817\\ +4.15545533471895 -155.717142496745\\ +4.72796959160025 -158.123207246533\\ +5.32999408084406 -160.228769519762\\ +5.95353313081449 -162.04795409203\\ +6.58898955079985 -163.604533934094\\ +7.29227205872842 -165.053038665896\\ +7.9965545258922 -166.276704936754\\ +8.76885609458755 -167.413694995299\\ +9.61574600143192 -168.467006354219\\ +10.5444279352618 -169.440334136039\\ +11.5628013120735 -170.337830651976\\ +12.6795284678645 -171.163912013074\\ +13.9041083409004 -171.923106788381\\ +15.2469572701759 -172.619940808897\\ +16.5660595894989 -173.197443862416\\ +17.9992850678251 -173.731165521983\\ +19.5565071586593 -174.224117418108\\ +21.2484535249894 -174.679172278531\\ +23.0867799418716 -175.099053970693\\ +25.0841505927762 -175.48633256734\\ +27.2543253128104 -175.843423234125\\ +29.6122543798796 -176.17258796804\\ +32.174181506764 -176.47593941091\\ +34.9577557436321 -176.755446125261\\ +37.982153061908 -177.012938853996\\ +41.268208457029 -177.250117394261\\ +44.8385594802129 -177.468557803506\\ +48.717802187946 -177.669719725526\\ +52.9326605836072 -177.854953679405\\ +57.5121707184161 -178.025508197518\\ +62.4878807200671 -178.18253673233\\ +67.8940681269615 -178.327104277686\\ +73.7679760252756 -178.460193670091\\ +80.1500696156551 -178.582711550473\\ +87.0843149769058 -178.695493978192\\ +94.6184819472219 -178.799311697296\\ +100 -178.86389625253\\ +}; +\addlegendentry{2nd order} + +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.01 96.1666374086381\\ +0.0108651577465251 96.6982544551025\\ +0.0118051652856881 97.275332538795\\ +0.0128264983052803 97.901655965562\\ +0.0139361927422416 98.5812952215261\\ +0.0151418932530433 99.3186205015811\\ +0.0164519058775369 100.118313444126\\ +0.0178752552590422 100.985376182329\\ +0.0194217468148908 101.925136587154\\ +0.0211020342856859 102.943248300086\\ +0.0229276931286557 104.045683833916\\ +0.024911300260678 105.238718662684\\ +0.0270665207003317 106.528903838895\\ +0.0294082017058709 107.923024290398\\ +0.0319524750575915 109.428039599036\\ +0.0347168681892662 111.051003806532\\ +0.0380697987140222 113.00119581342\\ +0.041746552892532 115.115139174183\\ +0.0457784053837654 117.401777938796\\ +0.0501996513311016 119.869217990201\\ +0.0550478980785488 122.524329170688\\ +0.0603643850607596 125.372297491323\\ +0.0668074391569548 128.731342377322\\ +0.0739381991917593 132.327628995556\\ +0.0825879938784402 136.516209042549\\ +0.0922497005259214 140.969197544659\\ +0.103996091395414 146.067585255783\\ +0.11942000281335 152.257337531121\\ +0.140977287162893 160.018875959741\\ +0.18589566796357 173.352700326605\\ +0.21346630333243 179.988847747174\\ +0.215443469003193 -179.573422204816\\ +0.254334576130472 -171.857350885965\\ +0.28937530190509 -166.148159736747\\ +0.326222200971169 -161.156167576587\\ +0.361041859717323 -157.211869149794\\ +0.395911026646847 -153.8786046677\\ +0.430163575810668 -151.103135502122\\ +0.46737951079925 -148.554720391206\\ +0.503154894503796 -146.489605303328\\ +0.541668691103327 -144.620068670202\\ +0.577779011797049 -143.149151149649\\ +0.616296625513279 -141.835446440461\\ +0.651349094627294 -140.836472862808\\ +0.688395206964551 -139.956157100848\\ +0.72754835291961 -139.195543358914\\ +0.761871770232323 -138.653742562989\\ +0.797814457207674 -138.19602973303\\ +0.827785696619849 -137.8906089012\\ +0.858882855954615 -137.639322679173\\ +0.891148232283998 -137.442268390534\\ +0.91614024571388 -137.330112642386\\ +0.941833153464815 -137.248527427559\\ +0.959360828709328 -137.21112934281\\ +0.97721469697258 -137.187328977744\\ +0.986265846131287 -137.180528647657\\ +0.995400828762154 -137.177128445023\\ +1.00462042134681 -137.177128445023\\ +1.01392540755881 -137.180528647657\\ +1.02331657833024 -137.187328977744\\ +1.04236067397639 -137.21112934281\\ +1.06175918348298 -137.248527427559\\ +1.08151870255226 -137.299519896141\\ +1.1118496048193 -137.401487702182\\ +1.1430311291145 -137.534011399697\\ +1.17508713090482 -137.697063376306\\ +1.2192312516491 -137.961893336282\\ +1.26503372039588 -138.280829661339\\ +1.3125568357718 -138.653742562989\\ +1.37447909267756 -139.195543358914\\ +1.43932264471941 -139.82105059125\\ +1.52118551798608 -140.681482383955\\ +1.60770442167387 -141.660762166523\\ +1.69914417203464 -142.757643955745\\ +1.81241754737421 -144.183934120536\\ +1.9332422875551 -145.765279444896\\ +2.08122156998634 -147.757792418098\\ +2.24052786929996 -149.941729660967\\ +2.43436887354314 -152.617868082378\\ +2.64498018242767 -155.513637572909\\ +2.90043049386403 -158.970458577235\\ +3.2100108955431 -163.036655817639\\ +3.58553985745983 -167.747446172715\\ +4.07953450345255 -173.540814825183\\ +4.64158883361268 -179.573422204816\\ +4.68458011587293 179.988847747174\\ +6.06432939540815 167.552038024081\\ +7.77841107128642 155.669570282615\\ +9.09827289445557 148.507404164454\\ +10.4476597156082 142.50895890127\\ +11.7779870119709 137.605334585589\\ +13.1558562404571 133.349160582031\\ +14.6949180062486 129.3676279675\\ +16.2633950404818 125.965343534174\\ +17.9992850678251 122.800378996945\\ +19.7376432630023 120.126183595938\\ +21.6438908606406 117.640261442729\\ +23.7342425002384 115.335890221154\\ +26.0264788196906 113.205068832141\\ +28.540097698292 111.23892077018\\ +31.2964801067081 109.428039599036\\ +34.31907197459 107.762774167361\\ +37.6335836228661 106.233456052327\\ +40.8894822629482 104.965438753738\\ +44.42706749607 103.79309408254\\ +48.2707096560317 102.709929173911\\ +52.4468874949529 101.709733957971\\ +56.9843705946916 100.786605760339\\ +61.9144175597768 99.9349630107506\\ +67.2709913571241 99.1495504352761\\ +73.0909932860277 98.4254377288612\\ +79.4145171902947 97.7580133552951\\ +86.2851256636678 97.1429748113412\\ +93.750150151455 96.5763164239792\\ +100 96.1666374086381\\ +}; +\addlegendentry{3rd order} + +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/hinf-filter-order.pdf b/matlab/figs/hinf-filter-order.pdf new file mode 100644 index 0000000..55f9a82 Binary files /dev/null and b/matlab/figs/hinf-filter-order.pdf differ diff --git a/matlab/figs/hinf-filter-order.png b/matlab/figs/hinf-filter-order.png new file mode 100644 index 0000000..5628006 Binary files /dev/null and b/matlab/figs/hinf-filter-order.png differ diff --git a/matlab/figs/hinf-filter-order.svg b/matlab/figs/hinf-filter-order.svg new file mode 100644 index 0000000..e24b05f --- /dev/null +++ b/matlab/figs/hinf-filter-order.svg @@ -0,0 +1,393 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/hinf-filter-order.tex b/matlab/figs/hinf-filter-order.tex new file mode 100644 index 0000000..a7bcc70 --- /dev/null +++ b/matlab/figs/hinf-filter-order.tex @@ -0,0 +1,1036 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +\definecolor{mycolor3}{rgb}{0.92900,0.69400,0.12500}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,2.19in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={0.1,1,10,100,1000}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=7.35816570791648e-06, +ymax=3.6909895197137, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.0100610509182665\\ +1.02096066230605 0.102193353033543\\ +1.7916503273639 0.177442798067662\\ +2.56690271549195 0.250161365488649\\ +3.35371015200293 0.319925518933163\\ +4.14588849683291 0.385340796626081\\ +4.98537346387389 0.448918881894676\\ +5.88531577519145 0.51034139151094\\ +6.82077673286568 0.566964637895895\\ +7.8323825991792 0.62042815330859\\ +8.9114823228402 0.669422195628778\\ +10.1392540755882 0.716387821829617\\ +11.5361810173648 0.76030748584311\\ +13.1255683577184 0.800377121708942\\ +14.9339321612425 0.836073625662994\\ +16.9914417203463 0.867173676708\\ +19.5114834684662 0.895455075866722\\ +22.6128006633728 0.920246813992533\\ +26.6947849403432 0.94227340740986\\ +32.397426295282 0.961459959036311\\ +40.4209583979631 0.976772601098163\\ +53.2999408084409 0.988963826117125\\ +77.070271142123 0.997848462637035\\ +132.777082935543 1.00334436805967\\ +372.882130718283 1.00554913459476\\ +1000 1.00444137484913\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.999949866793236\\ +0.864842327573173 0.996281338893946\\ +1.51768339028341 0.988679433353032\\ +2.15443469003188 0.977572069935144\\ +2.81481236050758 0.962596425247675\\ +3.47969790388769 0.944459738745286\\ +4.18428850790158 0.922505470417609\\ +4.89428989611453 0.898201175646561\\ +5.67222897164454 0.869824423222101\\ +6.5134909462728 0.837937822445794\\ +7.41088151564157 0.803435702538861\\ +8.43190929286626 0.764514541910122\\ +9.5055659201012 0.724810162897247\\ +10.8151870255229 0.678904975484428\\ +12.3052400435926 0.630677312055845\\ +14.000583824681 0.581227942507024\\ +16.0770442167382 0.528169969124625\\ +18.6324631193156 0.472889332538526\\ +21.9959306803007 0.413852427618899\\ +26.4498018242772 0.353618041608761\\ +33.0003479112529 0.289962623228855\\ +43.1156199031823 0.225871248131669\\ +61.204983724767 0.161141688775833\\ +98.8541702191957 0.100462458354192\\ +183.342548256229 0.0541140412590764\\ +301.63343472592 0.0325673066595738\\ +424.255643071778 0.0227838851728939\\ +554.298551568467 0.0170516523447337\\ +691.575882873852 0.0132797679754393\\ +839.312949816636 0.0105588888779105\\ +1000 0.00848847234576089\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000210908676770225\\ +5.26892142135068 0.574724053348516\\ +6.16296625513294 0.770330820203487\\ +6.8839520696455 0.935048445045635\\ +7.54879928165344 1.08401236672988\\ +8.12661920009194 1.20484352626503\\ +8.66837993001978 1.30633958752512\\ +9.16140245713852 1.38618413655614\\ +9.68246611930312 1.45611645104344\\ +10.2331657833025 1.51353494795101\\ +10.7159339982267 1.55057933283328\\ +11.2214776820798 1.57737957140134\\ +11.7508713090481 1.59412509755522\\ +12.4192135270178 1.60191736195988\\ +13.1255683577184 1.59801617271945\\ +14.000583824681 1.58159510601789\\ +15.0722530931076 1.55147958034872\\ +16.527920614649 1.50356500281873\\ +19.3324228755505 1.41327197185789\\ +24.5691646298279 1.28679144240635\\ +28.4743916646725 1.22387558446665\\ +33.0003479112529 1.17277557174094\\ +38.24569722467 1.13220601947628\\ +44.7353305449847 1.09878153900146\\ +52.8107971193433 1.07211711738466\\ +63.5042516859596 1.0505687010645\\ +79.2316862486625 1.0328539933318\\ +103.517795563018 1.01941098866853\\ +146.949180062482 1.00969123097697\\ +243.998629725955 1.00352777301748\\ +613.462171799251 1.0005577424931\\ +1000 1.00020893012145\\ +}; +\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00021002696669\\ +0.453582882551019 1.00431568988372\\ +0.76715811767793 1.01228408451326\\ +1.07902879151618 1.02412092539841\\ +1.39683511798874 1.04001658901187\\ +1.72678090388436 1.06036521875437\\ +2.07643010725577 1.08586575250644\\ +2.45126006203334 1.11724005903282\\ +2.8408836901833 1.15369595700743\\ +3.29243733300777 1.19997128074072\\ +3.81576466127125 1.25758628008144\\ +4.4632339267104 1.33203490088021\\ +6.69616005485322 1.55538616469364\\ +7.20871503378214 1.58414659145146\\ +7.68928372075831 1.59883006035894\\ +8.12661920009194 1.60081407225073\\ +8.58882855954625 1.59075159490495\\ +8.99402217409204 1.57191806750589\\ +9.41833153464795 1.54294970216059\\ +9.86265846131282 1.50377213614064\\ +10.3279473191895 1.45487455257225\\ +10.9153593533139 1.38485738205147\\ +11.5361810173648 1.30496655172508\\ +12.3052400435926 1.20346715268893\\ +13.2471398786612 1.08269079064104\\ +14.3932264471941 0.948383145639889\\ +15.9295021257212 0.795342165549446\\ +18.2920450484629 0.615765406709386\\ +22.4052786930002 0.415922424972552\\ +32.6974974451177 0.196561785804128\\ +149.683929307726 0.00939011961621383\\ +1000 0.000209052714458813\\ +}; +\addplot [color=mycolor3, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 7.36557215977501e-06\\ +0.114831241454351 1.03010761293241e-05\\ +0.134316117004602 1.53621455523103e-05\\ +0.16003103137387 2.44906108707516e-05\\ +0.197831888278416 4.39877285922066e-05\\ +0.256099310025846 9.17068864383122e-05\\ +0.360210656235707 0.000247694124607272\\ +0.592615181247555 0.00108166373944068\\ +1.46273335620113 0.0161094417711988\\ +6.94771254846024 1.6991333564711\\ +7.76050333513357 2.30673017688029\\ +8.27785696619847 2.70925874308317\\ +8.74866812047991 3.05348859534254\\ +9.16140245713852 3.31247153941154\\ +9.50556592010119 3.48299827511015\\ +9.77214696972572 3.58128196835467\\ +10.0462042134681 3.64976130025327\\ +10.3279473191895 3.68632945277003\\ +10.61759183483 3.69090840385623\\ +10.9153593533139 3.66536352296655\\ +11.2214776820798 3.61311028670598\\ +11.6430313292088 3.50955497404138\\ +12.0804213467733 3.37763022597776\\ +12.650337203959 3.18877480771608\\ +13.4936714058831 2.90818729927586\\ +15.4949503931463 2.34823012580118\\ +17.4679621512725 1.96103674552618\\ +19.1550055557353 1.727623407639\\ +20.8122156998634 1.5598149872487\\ +22.4052786930002 1.43963169425086\\ +24.1202820761801 1.34270560220409\\ +25.9665597293487 1.26539806199172\\ +27.9541599906786 1.20437350898583\\ +30.0939003444972 1.15665227291926\\ +32.397426295282 1.11963924386927\\ +35.2003147279668 1.08806856015941\\ +38.5999361767977 1.06250976312386\\ +42.7199396630679 1.04282548794006\\ +48.1595791019235 1.02741298372253\\ +56.3314267060136 1.01537710025649\\ +69.6374473062822 1.0071545794124\\ +97.0480887738031 1.00229450473326\\ +202.911801804668 1.00026292128729\\ +1000 1.00000726491069\\ +}; +\addplot [color=mycolor3, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00000732601488\\ +1.1616226326085 1.00346049766053\\ +1.60400310705682 1.01069830254505\\ +1.94665634334226 1.02167714565443\\ +2.2353696459098 1.03618064658438\\ +2.49687842888433 1.05461810131051\\ +2.73802517792786 1.07695779875005\\ +2.97490754721444 1.10461925777523\\ +3.20262069365765 1.13714499807218\\ +3.44776405473446 1.17922805960809\\ +3.71167181947577 1.23326793809153\\ +3.95911026646846 1.29254540941189\\ +4.22304418720667 1.36521386131018\\ +4.5462954695324 1.46762694700062\\ +4.89428989611453 1.59425597457456\\ +5.31772317785097 1.77051027195887\\ +5.83130511352622 2.01472639711805\\ +6.57382014340959 2.41724380299339\\ +7.68928372075831 3.07030107482984\\ +8.20188949920221 3.34259690377259\\ +8.58882855954626 3.51050189601167\\ +8.9114823228402 3.61379887888406\\ +9.16140245713852 3.66577843234685\\ +9.41833153464796 3.6909895197137\\ +9.68246611930313 3.68603481557758\\ +9.95400828762152 3.64907546161316\\ +10.2331657833025 3.58022026829525\\ +10.5201521761616 3.48160542653704\\ +10.9153593533139 3.31074421671199\\ +11.3254131515281 3.10631813717482\\ +11.8597101233767 2.82382986931968\\ +12.534242654614 2.47501673372142\\ +13.4936714058831 2.03603678207077\\ +15.0722530931076 1.48622455606771\\ +18.8050405512858 0.7715648085314\\ +67.7377599751776 0.016556859906172\\ +204.791209666509 0.000608262889139883\\ +330.764978074424 0.000148300341078653\\ +456.730127016875 5.85481822765703e-05\\ +580.448594276898 2.99428386438527e-05\\ +710.970943231244 1.73270996545922e-05\\ +839.312949816637 1.1289176469156e-05\\ +972.720319245054 7.85780793117409e-06\\ +1000 7.35816570791648e-06\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-180, +ymax=180, +ytick={-180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +legend style={at={(3.842,3.135)}, anchor=south west, legend cell align=left, align=left, draw=black} +] +\addplot [color=mycolor1, line width=1.5pt] + table[row sep=crcr]{% +0.1 89.4262705732967\\ +0.109657929126781 89.3710140522104\\ +0.120248614203741 89.3104090684166\\ +0.131862140139475 89.243940662\\ +0.144597292179202 89.1710441733917\\ +0.157107238924746 89.0994308391177\\ +0.170699493403842 89.0216176070453\\ +0.185467692308472 88.9370695822599\\ +0.201513573381558 88.8452058012513\\ +0.218947676285666 88.7453953220397\\ +0.237890104107886 88.6369529960668\\ +0.258471350746954 88.5191349000302\\ +0.280833199882315 88.3911334056125\\ +0.305129701718286 88.2520718651374\\ +0.331528234231942 88.1009988919511\\ +0.360210656235708 87.9368822157895\\ +0.391374560198041 87.7586020959901\\ +0.425234633452872 87.5649442793139\\ +0.462024137175137 87.3545924949488\\ +0.501996513311016 87.1261204873898\\ +0.545427130532976 86.877983599117\\ +0.592615181247549 86.6085099301547\\ +0.643885742724037 86.3158911217779\\ +0.699592016543535 85.9981728382163\\ +0.760117761795532 85.653245054824\\ +0.825879938784429 85.2788323058566\\ +0.897331581458357 84.8724841021642\\ +0.974964918348418 84.4315658015638\\ +1.05931476351838 83.9532503057334\\ +1.15096220088505 83.4345110707583\\ +1.25053858729037 82.8721170578671\\ +1.3587299019027 82.2626304202141\\ +1.47628147190938 81.6024079240348\\ +1.60400310705681 80.887607340016\\ +1.74277467840892 80.1142003124824\\ +1.8935521797563 79.2779935148408\\ +2.05737431343292 78.3746602174065\\ +2.23536964590981 77.399784705768\\ +2.42876438246048 76.3489222571808\\ +2.66333272517501 75.0868352467094\\ +2.92055551218278 73.719710782076\\ +3.20262069365769 72.2421857571518\\ +3.51192753045077 70.6495980057148\\ +3.85110700232562 68.9382958255359\\ +4.26215882901536 66.9160687669657\\ +4.71708469091704 64.7468991779115\\ +5.22056752784699 62.4334257099173\\ +5.8313051135262 59.7527445386411\\ +6.57382014340949 56.6802476137435\\ +7.54879928165345 52.9519021992764\\ +9.07732652521024 47.7690072756729\\ +13.6186523675607 36.2883287905546\\ +15.7833140565212 32.3559416093383\\ +17.7930438991856 29.3345882591436\\ +19.8745954958095 26.7067571440997\\ +22.1996611911998 24.2461851897481\\ +24.5691646298281 22.1430485874388\\ +27.1915794303603 20.1868909565131\\ +29.8177229001969 18.5346287768486\\ +32.6974974451178 16.9993460671487\\ +35.8553985745983 15.5768410065701\\ +39.3182875570579 14.2620610309128\\ +43.1156199031825 13.0493880284571\\ +47.2796959160041 11.9328741800874\\ +51.8459354389293 10.906430781555\\ +56.8531791387378 9.96397474939047\\ +61.7718759733854 9.18263765318851\\ +67.1161176749635 8.46027692964573\\ +72.9227205872842 7.79283675672205\\ +79.2316862486613 7.1764448792589\\ +86.0864769614914 6.60742628472329\\ +93.534315202923 6.08231021477869\\ +101.626508939299 5.59783205456711\\ +110.418805085416 5.15093136667606\\ +119.971773543589 4.73874709592667\\ +130.351224468151 4.35861076553988\\ +141.628661629921 4.00803831330614\\ +153.881775003836 3.68472107499508\\ +167.194975973201 3.38651630764964\\ +181.65997883753 3.11143755376182\\ +197.376432630023 2.85764507495502\\ +214.452607597165 2.62343652737546\\ +233.006141069691 2.4072380075705\\ +253.164847863135 2.2075955646239\\ +277.615329443679 2.00355964284756\\ +304.427221206429 1.81661927601931\\ +333.828586473175 1.64523280397366\\ +366.069514759689 1.48799663377777\\ +401.424249049931 1.34363637304966\\ +440.193518520886 1.21099919602182\\ +482.707096560317 1.08904737649006\\ +529.326605836054 0.976852851378197\\ +580.448594276896 0.873592582691614\\ +636.507908129555 0.778544363332912\\ +697.981390783064 0.691082571187138\\ +765.391938823012 0.61067323674834\\ +839.312949816634 0.536867689936429\\ +920.373199661819 0.469294045673394\\ +1000 0.413551697568764\\ +}; +\addlegendentry{n = 1} + +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.576465480133137\\ +0.109657929126781 -0.632135868436649\\ +0.120248614203741 -0.693181512834229\\ +0.131862140139475 -0.760121121522317\\ +0.144597292179202 -0.833523362138948\\ +0.157107238924746 -0.905624962155301\\ +0.170699493403842 -0.983961289255035\\ +0.185467692308472 -1.06907084193907\\ +0.201513573381558 -1.16153845206999\\ +0.218947676285666 -1.26199922138872\\ +0.237890104107886 -1.37114277828697\\ +0.258471350746954 -1.48971787682643\\ +0.280833199882315 -1.61853736029542\\ +0.305129701718286 -1.75848351147347\\ +0.331528234231942 -1.91051381107485\\ +0.360210656235708 -2.07566712435739\\ +0.391374560198041 -2.2550703333483\\ +0.425234633452872 -2.44994542821517\\ +0.462024137175137 -2.66161706556413\\ +0.501996513311016 -2.89152059332859\\ +0.545427130532976 -3.14121053072699\\ +0.592615181247549 -3.41236947664169\\ +0.643885742724037 -3.70681739961576\\ +0.699592016543535 -4.02652123612806\\ +0.760117761795532 -4.37360468922954\\ +0.825879938784429 -4.75035807499277\\ +0.897331581458357 -5.15924800712357\\ +0.974964918348418 -5.60292663766678\\ +1.05931476351838 -6.08424008073546\\ +1.15096220088505 -6.60623553296024\\ +1.25053858729037 -7.17216646502474\\ +1.3587299019027 -7.78549508941225\\ +1.47628147190938 -8.44989110709625\\ +1.60400310705681 -9.16922549849484\\ +1.74277467840892 -9.94755785233744\\ +1.8935521797563 -10.7891154253712\\ +2.05737431343292 -11.6982618082595\\ +2.23536964590981 -12.6794527611292\\ +2.42876438246048 -13.737176513019\\ +2.66333272517501 -15.0075850276678\\ +2.92055551218278 -16.383834134299\\ +3.20262069365769 -17.8713645518459\\ +3.51192753045077 -19.4749235504497\\ +3.85110700232562 -21.1982561510822\\ +4.26215882901536 -23.2350624344552\\ +4.71708469091704 -25.4203669415388\\ +5.22056752784699 -27.7516971009108\\ +5.8313051135262 -30.4540384639267\\ +6.57382014340949 -33.5528686632726\\ +7.54879928165345 -37.3157910649799\\ +8.99402217409209 -42.2871548965864\\ +14.1302599059955 -55.2151676824147\\ +16.2259528707807 -58.9317432208417\\ +18.4614694632457 -62.2139924252508\\ +20.8122156998634 -65.0773196476246\\ +23.2469705998564 -67.5523672749941\\ +25.7282596744791 -69.6766166309946\\ +28.4743916646721 -71.6637739683089\\ +31.5136348486643 -73.5177676565948\\ +34.8772747481423 -75.244633448863\\ +38.5999361767981 -76.8519591761566\\ +42.7199396630681 -78.3484102842777\\ +47.2796959160041 -79.7433435697918\\ +52.3261423948667 -81.0465064977074\\ +58.447611316336 -82.3751261503121\\ +65.2852114112777 -83.6192092338815\\ +73.5981447526585 -84.8863378554329\\ +83.7380653526647 -86.17492497243\\ +97.0480887738041 -87.5753656518136\\ +117.779870119713 -89.342012482149\\ +170.306502925286 -92.6939641678016\\ +197.376432630023 -94.107473884784\\ +224.569799553979 -95.4120991024695\\ +253.164847863135 -96.6980621095647\\ +282.781797962532 -97.9629717016249\\ +312.964801067071 -99.1993653982879\\ +346.369417737179 -100.519540535705\\ +383.339510176665 -101.933393267335\\ +424.255643071782 -103.450614711336\\ +469.539001068009 -105.080453283809\\ +519.655724382768 -106.831397934218\\ +575.121707184161 -108.710774721884\\ +636.507908129555 -110.724255694316\\ +704.446227729899 -112.875289916241\\ +786.857150693675 -115.379372645545\\ +878.909065342007 -118.043846879999\\ +990.822809900383 -121.099911264823\\ +1000 -121.341774609449\\ +}; +\addplot [color=mycolor2, line width=1.5pt] + table[row sep=crcr]{% +0.1 174.758561997669\\ +0.106666495827951 174.965254793286\\ +0.113777413322151 175.151025531792\\ +0.121362379834424 175.316638224316\\ +0.129452997822788 175.462774580674\\ +0.13681576279675 175.572991132119\\ +0.144597292179202 175.66967568372\\ +0.152821403602584 175.753120962585\\ +0.160031031373875 175.812728800767\\ +0.167580786453079 175.863444078125\\ +0.175486714964814 175.905373282359\\ +0.182079168009943 175.932650376586\\ +0.188919277620761 175.954397538857\\ +0.196016347431923 175.970643806867\\ +0.201513573381558 175.97923180583\\ +0.207164967560208 175.984744198095\\ +0.212974853574551 175.987184990654\\ +0.218947676285658 175.986555842459\\ +0.22508800520954 175.982856064239\\ +0.231400538013072 175.976082616559\\ +0.237890104107894 175.966230106036\\ +0.246826845225571 175.948290031192\\ +0.256099310025844 175.924837084091\\ +0.265720110532445 175.89583881581\\ +0.275702332560967 175.861255204721\\ +0.288709091735928 175.810097969117\\ +0.302329468440578 175.750028574473\\ +0.316592411198347 175.680917909991\\ +0.334598912055007 175.585840178724\\ +0.353629550135508 175.477233995279\\ +0.373742574239103 175.354763305367\\ +0.394999546122053 175.218049028106\\ +0.421332174384734 175.039979357531\\ +0.44942026621191 174.841193205631\\ +0.479380849508926 174.62085110625\\ +0.511338753841437 174.378021430733\\ +0.550478980785488 174.071642424504\\ +0.592615181247569 173.732847866203\\ +0.637976680860626 173.359756139473\\ +0.68681035889951 172.950289576657\\ +0.739381991917593 172.50216077598\\ +0.795977700231485 172.012857173252\\ +0.856905505126854 171.479623626618\\ +0.922497005259214 170.899442719851\\ +0.99310918137495 170.26901242345\\ +1.07902879151619 169.495204191122\\ +1.17238180328657 168.647559004786\\ +1.27381132318649 167.719813555667\\ +1.38401609657311 166.705028749186\\ +1.50375532129977 165.595504851126\\ +1.63385387780984 164.382680000263\\ +1.77520801171768 163.057007781683\\ +1.92879150802077 161.607808263024\\ +2.0956623994805 160.023085231896\\ +2.27697025538168 158.289300272093\\ +2.47396410088675 156.391091756209\\ +2.68800102153763 154.310923904981\\ +2.8937530190509 152.292909261294\\ +3.11525422355555 150.099025232095\\ +3.35371015200292 147.710711090459\\ +3.61041859717323 145.106631521551\\ +3.8867766908927 142.262175209741\\ +4.18428850790151 139.148909093268\\ +4.50457325175956 135.734043708944\\ +4.84937406733521 131.980028956515\\ +5.22056752784682 127.844509657473\\ +5.62017384808323 123.281046151788\\ +6.05036787939111 118.241256831985\\ +6.51349094627294 112.679332132633\\ +7.01206358900715 106.560049608415\\ +7.5487992816532 99.8711110256614\\ +8.20188949920225 91.7004290703118\\ +9.07732652520994 80.9699780475939\\ +11.7508713090482 53.1664738755912\\ +12.7675070431924 45.1915761601225\\ +13.7447909267756 38.7899796296613\\ +14.6610868404698 33.7582489757467\\ +15.638467583022 29.2571745319086\\ +16.6810053720008 25.2648603423178\\ +17.7930438991856 21.7473922312487\\ +18.8050405512853 19.0801783919889\\ +19.8745954958102 16.7061866569749\\ +21.0049824165391 14.5992889438156\\ +22.1996611911991 12.7343286656402\\ +23.4622884814232 11.0875440623085\\ +24.7967289250217 9.63677807532372\\ +26.2070669648381 8.36155371615911\\ +27.6976193503698 7.24306861354458\\ +29.2729483504285 6.26414348911877\\ +30.9378757173011 5.40914606040104\\ +32.6974974451167 4.66390308724999\\ +34.557199367622 4.01560773737319\\ +36.5226736430817 3.45272612682072\\ +38.5999361767968 2.96490501873723\\ +40.7953450345255 2.54288168611816\\ +43.1156199031825 2.17839648686137\\ +45.5678626584099 1.86410851894041\\ +48.159579101925 1.59351467059221\\ +50.8987019351974 1.36087236971514\\ +53.7936150398065 1.16112632482015\\ +56.8531791387359 0.989839519377341\\ +60.0867589171979 0.843128669641999\\ +63.5042516859595 0.717604287829715\\ +67.1161176749614 0.610315415373236\\ +70.9334120498816 0.518699012525474\\ +74.9678187496691 0.440533917017206\\ +79.2316862486613 0.373899220200599\\ +83.7380653526675 0.317136856645533\\ +88.5007491447353 0.268818163460878\\ +93.534315202923 0.227714138413035\\ +98.8541702191929 0.192769110162459\\ +104.476597156082 0.163077528066054\\ +110.418805085416 0.137863581258927\\ +117.779870119709 0.113226312006361\\ +125.631660247414 0.0928934241926811\\ +134.006889636394 0.0761242471191963\\ +144.264395121811 0.0605387439296692\\ +156.74554102056 0.0466801828255825\\ +171.88391428171 0.0348556886864628\\ +190.230118866895 0.0251565950279371\\ +214.452607597172 0.0169718409561312\\ +248.539485742973 0.0102844825882471\\ +298.86528735503 0.00528670247405216\\ +383.339510176665 0.0018787969852383\\ +564.614141930371 3.56267034362645e-06\\ +1000 -0.000410099606767744\\ +}; +\addlegendentry{n = 2} + +\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.00110369171810021\\ +0.209083769055575 -0.00369059462710197\\ +0.294082017058709 -0.00765395942377722\\ +0.366914237840248 -0.0130014149223427\\ +0.433148322337641 -0.0198234299723765\\ +0.497389595879016 -0.0285454282850139\\ +0.555577622239876 -0.0384859575872269\\ +0.609234915240079 -0.0495660373505302\\ +0.661943345877428 -0.0624053071161086\\ +0.712611543011191 -0.0767213134298288\\ +0.767158117677927 -0.094455161272748\\ +0.818300681586717 -0.113415375815066\\ +0.872852662384851 -0.136285047418795\\ +0.922497005259214 -0.159604280230184\\ +0.974964918348386 -0.186983038851878\\ +1.03041699495061 -0.219121999774529\\ +1.08902296226373 -0.256839400175124\\ +1.15096220088501 -0.301089680589115\\ +1.2164242938574 -0.352984768403275\\ +1.27381132318649 -0.402997665833482\\ +1.33390569003905 -0.460072348037187\\ +1.39683511798871 -0.525180118168095\\ +1.46273335620117 -0.59941891345116\\ +1.5317404637021 -0.684028200152198\\ +1.60400310705681 -0.780405270974683\\ +1.67967487209262 -0.890123006120973\\ +1.75891659032778 -1.01494914815282\\ +1.84189668079973 -1.15686712726327\\ +1.92879150802077 -1.31809845787433\\ +2.01978575681984 -1.50112671008625\\ +2.11507282486886 -1.7087230412061\\ +2.21485523372639 -1.94397325431635\\ +2.31934505927442 -2.21030633388577\\ +2.4287643824604 -2.51152439398643\\ +2.54334576130472 -2.85183396391778\\ +2.68800102153763 -3.31837701548287\\ +2.84088369018327 -3.85684849318571\\ +3.00246170908546 -4.4772365484867\\ +3.17322963473503 -5.19068200856614\\ +3.35371015200292 -6.00957049641238\\ +3.54445567397035 -6.94762612973824\\ +3.74605003274907 -8.02000518552103\\ +3.95911026646847 -9.24338657701986\\ +4.18428850790151 -10.6360532028701\\ +4.42227398050602 -12.2179534948224\\ +4.6737951079925 -14.0107248703259\\ +4.93962174387827 -16.0376491159762\\ +5.22056752784682 -18.3234927278403\\ +5.51749237612921 -20.8941619935802\\ +5.8313051135262 -23.7760735148582\\ +6.16296625513279 -26.9951095470208\\ +6.57382014340971 -31.2081806111606\\ +7.01206358900715 -35.9417811175174\\ +7.47952251562161 -41.2101549780822\\ +8.05203967082557 -47.8722557559392\\ +8.74866812047975 -56.0997275773775\\ +9.68246611930323 -66.9228160481401\\ +12.192312516491 -91.8336019612403\\ +13.3698374182498 -100.872153032005\\ +14.5265392594678 -108.278980736452\\ +15.638467583022 -114.258880964268\\ +16.8355080296122 -119.689862881078\\ +18.1241754737421 -124.610924010669\\ +19.5114834684666 -129.069167560424\\ +21.0049824165391 -133.112806362749\\ +22.6128006633721 -136.787374107378\\ +24.3436887354314 -140.134034113966\\ +26.2070669648381 -143.189110771288\\ +28.2130767593954 -145.98425899128\\ +30.6539529505651 -148.852125558421\\ +33.3060034362469 -151.459220732293\\ +36.1874981241128 -153.834202992095\\ +39.3182875570566 -156.001668480274\\ +42.7199396630681 -157.98286771412\\ +46.4158883361268 -159.796291251214\\ +50.4315948717143 -161.458141531457\\ +54.794723369002 -162.9827108729\\ +59.5353313081449 -164.382684248649\\ +64.6860766154627 -165.669382687797\\ +70.2824426430854 -166.852960149623\\ +76.3629826128223 -167.942564019396\\ +82.9695852083464 -168.946467122822\\ +90.1477631452495 -169.872177356753\\ +97.9469667069515 -170.726529630342\\ +106.420924406474 -171.515763731062\\ +116.698981861712 -172.323247579082\\ +127.969686821595 -173.064534534816\\ +140.328908478584 -173.746146689352\\ +153.881775003836 -174.374044780823\\ +168.743567772734 -174.95369191245\\ +185.040701954232 -175.490109729401\\ +202.911801804663 -175.987928341834\\ +224.569799553979 -176.496049460393\\ +248.539485742973 -176.967916954766\\ +275.067600790807 -177.408415466183\\ +307.246884270909 -177.858518148626\\ +346.369417737168 -178.316487418248\\ +394.090164040346 -178.782525472997\\ +460.96044868285 -179.321364807133\\ +564.614141930371 -179.994587626434\\ +569.843705946916 179.97506842925\\ +758.367791499744 179.023587445261\\ +887.04968896542 178.47688578349\\ +1000 178.037502138887\\ +}; +\addplot [color=mycolor3, line width=1.5pt] + table[row sep=crcr]{% +0.1 -174.059216072178\\ +0.111698681846785 -166.693805151502\\ +0.123620954373676 -160.413690699931\\ +0.13556017853294 -155.103743634088\\ +0.148652484499784 -150.173980355743\\ +0.163009236097978 -145.619115088595\\ +0.178752552590422 -141.429953217908\\ +0.194217468148908 -137.962485926509\\ +0.211020342856859 -134.771413987415\\ +0.229276931286572 -131.845869200527\\ +0.24911300260678 -129.174619091049\\ +0.270665207003317 -126.746392963978\\ +0.291383170483282 -124.783050382977\\ +0.313686982456683 -122.995511949919\\ +0.337698031082518 -121.376656005879\\ +0.363546996129332 -119.91978929088\\ +0.387782841458937 -118.773017413936\\ +0.413634368406335 -117.741671993433\\ +0.441209286319117 -116.822242570006\\ +0.470622484984116 -116.011554041649\\ +0.497389595879016 -115.401072188849\\ +0.525679112201842 -114.866820009559\\ +0.555577622239876 -114.407413935687\\ +0.58178800743451 -114.080886464485\\ +0.609234915240079 -113.804923786279\\ +0.632121847581245 -113.620229791275\\ +0.655868565957134 -113.467378970247\\ +0.680507369673503 -113.346206492838\\ +0.699592016543558 -113.276039566437\\ +0.719211887222132 -113.223583161975\\ +0.732596542821532 -113.19843866443\\ +0.746230289139115 -113.18115013678\\ +0.760117761795532 -113.171716036564\\ +0.767158117677927 -113.169944622708\\ +0.774263682681121 -113.170137411906\\ +0.781435060784446 -113.172294941899\\ +0.795977700231485 -113.182507195076\\ +0.81079098067315 -113.20058896597\\ +0.825879938784402 -113.22655047861\\ +0.849041520408896 -113.280296168737\\ +0.872852662384851 -113.351855649581\\ +0.897331581458357 -113.441297355526\\ +0.931041348706901 -113.588513930337\\ +0.966017479952245 -113.767902657383\\ +1.0023075482839 -113.979742144634\\ +1.04959323055824 -114.29067391383\\ +1.0991097009295 -114.653556363617\\ +1.15096220088501 -115.069242586397\\ +1.2164242938574 -115.639146357004\\ +1.28560960694331 -116.288415004552\\ +1.3587299019027 -117.01923634283\\ +1.43600898465122 -117.834079519558\\ +1.5317404637021 -118.894630144243\\ +1.63385387780984 -120.078251058422\\ +1.74277467840897 -121.390494423914\\ +1.8589566796357 -122.837583078115\\ +1.98288394912704 -124.426469149559\\ +2.1346630333243 -126.425951305041\\ +2.29805998875885 -128.633784446299\\ +2.47396410088675 -131.064667879495\\ +2.66333272517501 -133.735257032395\\ +2.86719649749373 -136.664480104225\\ +3.08666494333735 -139.873945570377\\ +3.32293251639897 -143.38847535228\\ +3.57728509936777 -147.236815208557\\ +3.85110700232562 -151.452599792651\\ +4.14588849683285 -156.075689834485\\ +4.46323392671051 -161.15405992819\\ +4.80487043965512 -166.74650511151\\ +5.17265738721588 -172.926555154473\\ +5.51749237612921 -178.88929662283\\ +5.56859644428648 -179.788112671068\\ +5.62017384808323 179.300562934893\\ +5.99484250318932 172.546653095587\\ +6.39448842855712 165.055191418352\\ +6.82077673286572 156.688162176223\\ +7.2754835291961 147.276788055827\\ +7.68928372075853 138.235142304052\\ +8.12661920009201 128.176288482043\\ +8.66837993001965 115.0821976115\\ +9.33189771573347 98.5026920813232\\ +11.3254131515284 53.7867359360936\\ +11.9695570235905 42.9297637213374\\ +12.6503372039588 33.4278814087536\\ +13.3698374182498 25.2694226252475\\ +14.0005838246811 19.4294165329545\\ +14.6610868404698 14.3847102236577\\ +15.3527502878039 10.0618434088759\\ +16.0770442167387 6.39143445354128\\ +16.8355080296122 3.30988009787043\\ +17.629753752872 0.759125609282052\\ +18.2920450484626 -0.93538263998073\\ +18.9792164283904 -2.35026600483926\\ +19.6922025547921 -3.51023050863515\\ +20.4319732019529 -4.43914810857495\\ +21.1995345753606 -5.16019703965142\\ +21.7940698430292 -5.57814825915997\\ +22.4052786929996 -5.90111643974026\\ +23.033628731422 -6.13811859524904\\ +23.4622884814232 -6.25269229942126\\ +23.8989256623109 -6.33546882065008\\ +24.3436887354314 -6.38889826255922\\ +24.5691646298281 -6.40535396245554\\ +24.7967289250217 -6.41535878798746\\ +25.0264009641792 -6.41919789138825\\ +25.2582002696278 -6.417151273868\\ +25.4921465445141 -6.40949363527818\\ +25.9665597293484 -6.37841673754158\\ +26.4498018242767 -6.3280535441711\\ +27.1915794303594 -6.22068099651415\\ +27.9541599906793 -6.08069505346455\\ +29.0043049386403 -5.85329039646246\\ +30.3726357970331 -5.52063019781414\\ +32.6974974451167 -4.92326940771869\\ +38.9574561577541 -3.47900993959522\\ +41.9394395566725 -2.93871834762297\\ +44.7353305449843 -2.51528238509877\\ +47.7176094893859 -2.1398890906292\\ +50.4315948717143 -1.85556813899242\\ +53.2999408084406 -1.60397504983897\\ +56.3314267060121 -1.38276593910058\\ +59.5353313081449 -1.18930782380653\\ +62.9214610961035 -1.02087510400864\\ +66.50018030431 -0.874782668933534\\ +70.2824426430854 -0.748471482004589\\ +74.2798248256497 -0.639559466483774\\ +78.5045620020441 -0.545867718923688\\ +82.9695852083464 -0.465429684450527\\ +87.6885609458755 -0.396488974644313\\ +92.6759330114683 -0.337489968300332\\ +97.9469667069515 -0.28706415160957\\ +103.51779556302 -0.244014263478419\\ +109.405470720574 -0.207297653127256\\ +115.628013120735 -0.176009778006147\\ +122.204468663152 -0.149368426961587\\ +129.154966501489 -0.126699011902758\\ +137.765076954903 -0.104501756577378\\ +146.949180062486 -0.0861418682643205\\ +158.19734815786 -0.0690249104772533\\ +170.30650292528 -0.0552666763642264\\ +185.040701954232 -0.0429973382201467\\ +202.911801804663 -0.0324909951176551\\ +226.64980792737 -0.0231692379513788\\ +257.876288759386 -0.0155680763134001\\ +301.63343472593 -0.00955208549873987\\ +369.46012051994 -0.00501185465233789\\ +491.690357762798 -0.00193892953816999\\ +794.145171902947 -0.000293345943504164\\ +1000 -6.6907766353097e-05\\ +}; +\addlegendentry{n = 3} + +\addplot [color=mycolor3, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 4.36785903161763e-05\\ +0.205263775270926 0.00194882169219568\\ +0.280833199882324 0.00556685934674306\\ +0.347168681892662 0.0109365892261053\\ +0.406077202570047 0.0178281399620346\\ +0.462024137175122 0.026534098640326\\ +0.511338753841437 0.0361776859013503\\ +0.56072348828519 0.0478787831997067\\ +0.609234915240079 0.0615405654625931\\ +0.655868565957134 0.0768565856827195\\ +0.699592016543558 0.0932922700907284\\ +0.746230289139115 0.113172224259529\\ +0.795977700231485 0.137201360357579\\ +0.841249704973636 0.161735005388948\\ +0.889096598952924 0.190558764807236\\ +0.939664831495459 0.224398165464436\\ +0.99310918137495 0.264093367807021\\ +1.04959323055824 0.310614405465145\\ +1.10928986489522 0.365077341483328\\ +1.16162263260848 0.41744710646816\\ +1.2164242938574 0.477051165822218\\ +1.27381132318649 0.544816236680589\\ +1.33390569003905 0.621766677055831\\ +1.39683511798871 0.709028123662591\\ +1.46273335620117 0.807828742013612\\ +1.54592773641949 0.94349831969808\\ +1.63385387780984 1.10017215215868\\ +1.7267809038843 1.28047462879027\\ +1.82499324481618 1.48711774217767\\ +1.92879150802077 1.72279354971718\\ +2.03849339825241 1.9900116344086\\ +2.15443469003193 2.29086424024769\\ +2.27697025538168 2.62669917061027\\ +2.4287643824604 3.06284613006164\\ +2.61467321180114 3.61590117497835\\ +2.86719649749373 4.36967466608249\\ +3.29243733300778 5.50923949180401\\ +3.47969790388763 5.90116129628754\\ +3.61041859717323 6.11692896957871\\ +3.71167181947586 6.24600493829587\\ +3.81576466127131 6.34041202918283\\ +3.8867766908927 6.38090963507082\\ +3.92277675892774 6.39367030807222\\ +3.95911026646847 6.40108936270451\\ +3.99578030189527 6.40289763668278\\ +4.03278998219369 6.39882051590808\\ +4.07014245321941 6.38857807655847\\ +4.1078408899656 6.37188523440108\\ +4.18428850790151 6.31798314173409\\ +4.26215882901522 6.23473639278976\\ +4.34147833005496 6.11969498551412\\ +4.42227398050602 5.97034218362595\\ +4.54629546953248 5.67632400314983\\ +4.6737951079925 5.29035789850064\\ +4.80487043965512 4.80325976062227\\ +4.93962174387827 4.20562124876392\\ +5.12518692705321 3.22016673960474\\ +5.31772317785112 1.99770294458855\\ +5.51749237612921 0.514128816586293\\ +5.72476623970219 -1.25555043119519\\ +5.93982669392029 -3.33748330883233\\ +6.16296625513279 -5.75931101611343\\ +6.45371540164686 -9.30974435179806\\ +6.75818116816117 -13.5001415197901\\ +7.07701066118183 -18.3989423141205\\ +7.41088151564139 -24.0792110769124\\ +7.76050333513376 -30.6140162217016\\ +8.12661920009201 -38.0658938644382\\ +8.58882855954615 -48.2612991592695\\ +9.07732652520994 -59.762400145209\\ +9.7721469697258 -76.6592771079781\\ +11.430311291145 -113.171519752366\\ +12.192312516491 -126.463175658825\\ +13.0051125217337 -138.295497767507\\ +13.8720978054164 -148.747379547193\\ +14.7968806268638 -157.995187115592\\ +15.7833140565207 -166.226487743425\\ +16.8355080296122 -173.605484364774\\ +17.7930438991856 -179.353797307211\\ +17.9578464700207 179.734539785979\\ +19.332422875551 172.869612093132\\ +20.8122156998634 166.685224710358\\ +22.4052786929996 161.087693578806\\ +24.1202820761804 156.003627794417\\ +25.9665597293484 151.374312649284\\ +27.9541599906793 147.15181194068\\ +30.0939003444972 143.296273676163\\ +32.3974262952812 139.774051065175\\ +34.8772747481423 136.55637144474\\ +37.5469422407329 133.618375360917\\ +40.4209583979642 130.938408898283\\ +43.5149650092505 128.497492224417\\ +46.8458011587293 126.278913093678\\ +50.4315948717143 124.267910715877\\ +54.2918617761888 122.451426244071\\ +58.4476113163379 120.817903289616\\ +62.3440188862789 119.530595473656\\ +66.50018030431 118.369449247042\\ +70.9334120498816 117.329037832953\\ +75.6621850048106 116.404539505049\\ +79.965545258922 115.701128306567\\ +84.5136633068495 115.077372214647\\ +89.3204599858103 114.531174398602\\ +94.4006478941749 114.060698608381\\ +98.8541702191929 113.725327080416\\ +103.51779556302 113.440644975531\\ +107.406615333344 113.248937294689\\ +111.441525146678 113.088940210763\\ +115.628013120735 112.960402499887\\ +118.870769771187 112.884517870741\\ +122.204468663152 112.826139650718\\ +125.631660247414 112.78520946154\\ +127.969686821595 112.76759319793\\ +130.351224468151 112.757701172927\\ +131.558562404571 112.755649292706\\ +132.777082935543 112.755525844379\\ +134.006889636394 112.757330285458\\ +136.5007806546 112.766721461666\\ +139.041083409004 112.783821658468\\ +141.628661629916 112.80863224035\\ +145.600599502069 112.86031425464\\ +149.683929307729 112.929377582757\\ +153.881775003836 113.015858435252\\ +159.662602210142 113.158346132638\\ +165.660595894989 113.332036064851\\ +171.88391428171 113.537116873938\\ +179.992850678251 113.837961145057\\ +188.48434090338 114.188739428655\\ +197.376432630023 114.590072191307\\ +208.602408924844 115.13941239483\\ +220.466873523944 115.763983548507\\ +233.006141069691 116.465372763894\\ +248.539485742973 117.383118724273\\ +265.108360190857 118.410948533366\\ +282.781797962532 119.5522900556\\ +301.63343472593 120.810872402662\\ +324.721849207315 122.397970276468\\ +349.577557436321 124.149844449953\\ +376.335836228661 126.073272148903\\ +405.142317111462 128.175333175053\\ +436.153778920815 130.463312137883\\ +473.887960971767 133.268690224951\\ +514.886745013736 136.329063885986\\ +559.432570616944 139.654360655079\\ +607.832312829711 143.253659948226\\ +660.419396233041 147.134710886131\\ +724.20223346072 151.784483774916\\ +794.145171902947 156.793599012344\\ +878.909065341978 162.717662559472\\ +972.720319245064 169.065838910473\\ +1000 170.868328357576\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/hinf_filters_result.pdf b/matlab/figs/hinf_filters_result.pdf new file mode 100644 index 0000000..2bbfed9 Binary files /dev/null and b/matlab/figs/hinf_filters_result.pdf differ diff --git a/matlab/figs/hinf_filters_result.png b/matlab/figs/hinf_filters_result.png new file mode 100644 index 0000000..b422805 Binary files /dev/null and b/matlab/figs/hinf_filters_result.png differ diff --git a/matlab/figs/hinf_filters_result.svg b/matlab/figs/hinf_filters_result.svg new file mode 100644 index 0000000..2c42d8d --- /dev/null +++ b/matlab/figs/hinf_filters_result.svg @@ -0,0 +1,315 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/hinf_filters_result.tex b/matlab/figs/hinf_filters_result.tex new file mode 100644 index 0000000..ea2732d --- /dev/null +++ b/matlab/figs/hinf_filters_result.tex @@ -0,0 +1,194 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.632in, +height=1.991in, +at={(0.551in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.001, +ymax=10, +yminorticks=true, +ylabel={Magnitude}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00020952606124\\ +0.449420266211914 1.00439444056532\\ +0.76715811767793 1.01272784524132\\ +1.07902879151618 1.02491454851703\\ +1.39683511798874 1.04114413762629\\ +1.74277467840892 1.06277127886704\\ +2.1150728248688 1.09005589290585\\ +2.52000499376409 1.12358430111627\\ +2.97490754721444 1.1647515613402\\ +3.54445567397044 1.21915995877579\\ +4.4222739805059 1.30220386269588\\ +5.51749237612913 1.38869606135927\\ +6.16296625513294 1.42329223210868\\ +6.69616005485322 1.44002371458486\\ +7.20871503378214 1.4451033802025\\ +7.68928372075831 1.43993984995528\\ +8.2018894992022 1.42428828042971\\ +8.66837993001978 1.40175058285261\\ +9.16140245713852 1.37050262756076\\ +9.68246611930312 1.33069793321537\\ +10.3279473191895 1.27424467776163\\ +11.0164594963366 1.20854214707295\\ +11.7508713090481 1.13570495506675\\ +12.650337203959 1.04677883765563\\ +13.7447909267754 0.943679050123237\\ +15.0722530931076 0.830394240297457\\ +16.6810053720006 0.712414936441653\\ +18.8050405512858 0.586622272210216\\ +21.7940698430296 0.455264142531017\\ +26.2070669648385 0.326579283518924\\ +33.3060034362459 0.208672671063449\\ +46.8458011587305 0.108471783502643\\ +124.478714618791 0.0164997756678873\\ +159.662602210143 0.0104152887225431\\ +195.565071586595 0.0072640647690405\\ +233.006141069692 0.00540031929981286\\ +270.042071883777 0.00426457540484721\\ +310.092663593193 0.00346444056474815\\ +349.577557436328 0.0029289521926441\\ +394.090164040345 0.00250741699876454\\ +440.193518520887 0.00219836200013106\\ +487.178021879463 0.00196912938874112\\ +539.17746403875 0.00178183136845956\\ +596.727119597332 0.00162874587725399\\ +660.419396233031 0.00150356016008975\\ +730.909932860291 0.00140111130596261\\ +808.924348680594 0.00131717393449145\\ +895.26571259964 0.00124828640279652\\ +1000 0.00118697716847575\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.211020342856859 0.000991355164946403\\ +0.492824957004051 0.00536343282029864\\ +2.42876438246045 0.128327524780232\\ +3.54445567397044 0.267992154829373\\ +4.4632339267104 0.413805848676621\\ +5.26892142135068 0.557587736797486\\ +5.99484250318941 0.693160496305138\\ +6.63470812109235 0.81193792953703\\ +7.27548352919623 0.925424392834698\\ +7.90492762269643 1.02770565894096\\ +8.51000724712225 1.11478829979149\\ +9.07732652521023 1.18510732855918\\ +9.68246611930312 1.24761337860369\\ +10.3279473191895 1.30053311262914\\ +11.0164594963366 1.34273501848344\\ +11.7508713090481 1.37382109949711\\ +12.534242654614 1.39409360664554\\ +13.3698374182495 1.4044213762404\\ +14.3932264471941 1.40566001105301\\ +15.6384675830225 1.39616695613207\\ +17.1488196987054 1.37570643727067\\ +19.3324228755505 1.33943394453979\\ +23.6796006783308 1.26895368211008\\ +31.2244282309286 1.18029446890997\\ +37.5469422407334 1.13328156575089\\ +44.7353305449847 1.09818850827496\\ +53.793615039807 1.07013138018377\\ +65.8898955079995 1.04777741305257\\ +82.9695852083491 1.03046080493667\\ +110.418805085416 1.01711094138512\\ +159.662602210143 1.00783805748313\\ +275.067600790807 1.00210387254234\\ +794.145171902934 0.999522245381891\\ +1000 0.999396233385764\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 4.7609074288834\\ +0.457784053837662 4.74112847250108\\ +0.781435060784454 4.70208061093208\\ +1.0991097009295 4.64559165613624\\ +1.42283045721435 4.57144906349989\\ +1.75891659032773 4.47927616460061\\ +2.09566239948043 4.37423445322045\\ +2.45126006203334 4.25274519592358\\ +2.8408836901833 4.11095719445138\\ +3.26222200971167 3.95170788088451\\ +3.71167181947577 3.77948905141281\\ +4.18428850790158 3.59988757314696\\ +4.71708469091702 3.40317136463527\\ +5.31772317785097 3.19223684289429\\ +5.99484250318941 2.97087790006113\\ +6.82077673286568 2.72585419958062\\ +7.76050333513357 2.47949503869403\\ +8.9114823228402 2.2201435349723\\ +10.3279473191895 1.95491825546796\\ +12.0804213467733 1.69160934903556\\ +14.3932264471941 1.42447068049222\\ +17.3076553419573 1.17667603248786\\ +21.1995345753607 0.943491337665097\\ +26.2070669648385 0.740920673515988\\ +32.6974974451177 0.569453372601831\\ +41.1731993116168 0.427919272009563\\ +51.8459354389291 0.317863515154134\\ +65.8898955079995 0.230558428152838\\ +85.2964449974102 0.1611173349527\\ +114.566872863487 0.105607825522203\\ +228.74908173557 0.0390036255196556\\ +272.543253128103 0.0307810979565345\\ +315.863540826782 0.025500739341156\\ +359.381366380463 0.0218605610825003\\ +405.142317111465 0.0191453206052172\\ +452.538627817017 0.0171066280251345\\ +505.479682119124 0.0154393411147139\\ +559.432570616938 0.0141825204910006\\ +619.144175597784 0.0131421696026314\\ +685.229159528406 0.012282656024432\\ +758.367791499719 0.0115737646620205\\ +847.08682665574 0.0109423524789141\\ +946.1848194722 0.0104322816237634\\ +1000 0.0102154679782451\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +20 0.7\\ +50 0.7\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +50 0.1\\ +500 0.1\\ +}; +\addplot [color=mycolor1, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +500 0.01\\ +1000 0.01\\ +}; +\addplot [color=mycolor2, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.126191468896039 0.000398107170553497\\ +2 0.1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/hinf_filters_results.pdf b/matlab/figs/hinf_filters_results.pdf new file mode 100644 index 0000000..c76e67f Binary files /dev/null and b/matlab/figs/hinf_filters_results.pdf differ diff --git a/matlab/figs/hinf_filters_results.png b/matlab/figs/hinf_filters_results.png new file mode 100644 index 0000000..efd7d47 Binary files /dev/null and b/matlab/figs/hinf_filters_results.png differ diff --git a/matlab/figs/loop_gain_compare.pdf b/matlab/figs/loop_gain_compare.pdf new file mode 100644 index 0000000..d9e7700 Binary files /dev/null and b/matlab/figs/loop_gain_compare.pdf differ diff --git a/matlab/figs/loop_gain_compare.png b/matlab/figs/loop_gain_compare.png new file mode 100644 index 0000000..7ed181b Binary files /dev/null and b/matlab/figs/loop_gain_compare.png differ diff --git a/matlab/figs/loop_gain_robustness.pdf b/matlab/figs/loop_gain_robustness.pdf new file mode 100644 index 0000000..a10325f Binary files /dev/null and b/matlab/figs/loop_gain_robustness.pdf differ diff --git a/matlab/figs/loop_gain_robustness.png b/matlab/figs/loop_gain_robustness.png new file mode 100644 index 0000000..d9ce8d7 Binary files /dev/null and b/matlab/figs/loop_gain_robustness.png differ diff --git a/matlab/figs/loop_gain_robustness.svg b/matlab/figs/loop_gain_robustness.svg new file mode 100644 index 0000000..dfc4d52 --- /dev/null +++ b/matlab/figs/loop_gain_robustness.svg @@ -0,0 +1,557 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/loop_gain_robustness.tex b/matlab/figs/loop_gain_robustness.tex new file mode 100644 index 0000000..0c299ef --- /dev/null +++ b/matlab/figs/loop_gain_robustness.tex @@ -0,0 +1,4017 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,2.19in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={0.1,1,10,100,1000}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.001, +ymax=1000, +ytick={0.01, 1, 100}, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 1017.61196552463\\ +1.19420002813353 35.6407786132651\\ +1.64898694447106 19.2380003311511\\ +2.1150728248688 12.1253293863687\\ +2.61467321180109 8.29707163273341\\ +3.17322963473498 5.95098940627966\\ +3.78074666359935 4.46495773588301\\ +4.50457325175946 3.39613675858516\\ +5.31772317785097 2.65390491747638\\ +6.33580499265825 2.07104776527706\\ +7.68928372075831 1.59413673565851\\ +9.77214696972572 1.16748502973182\\ +20.6212180399914 0.446485432259996\\ +27.4434330322837 0.303588570222452\\ +52.3261423948666 0.126361312356483\\ +64.0924401935645 0.0973811892384281\\ +77.7841107128649 0.0768121774913216\\ +93.5343152029239 0.0619473678728793\\ +112.473717836475 0.0504819128118696\\ +135.248087041788 0.0415510462687211\\ +162.633950404819 0.0345350094662786\\ +195.565071586595 0.0289912264009868\\ +230.867799418717 0.024994983195402\\ +270.042071883777 0.0219204687635685\\ +312.964801067075 0.019541738214475\\ +362.710025233065 0.0175802602132589\\ +416.504424854519 0.0160563480429901\\ +482.707096560318 0.0146987713194919\\ +710.970943231243 0.0117378570017106\\ +765.391938823015 0.0111051777086159\\ +816.416760492147 0.010482316893541\\ +862.85125663669 0.00988574231580288\\ +911.92675984593 0.00922803388600686\\ +963.793479961579 0.00851403479029288\\ +1000 0.00801302909023373\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 1010.2680109356\\ +0.516074871038591 185.291054569483\\ +1.03041699495059 47.4787058088623\\ +1.48995507285286 23.3124317828806\\ +1.96468664618044 13.8770766856263\\ +2.47396410088681 9.14100353185176\\ +3.00246170908555 6.52635349789394\\ +3.61041859717334 4.80132211806491\\ +4.3016357581068 3.63676708907952\\ +5.07815211232768 2.83086787348905\\ +6.05036787939122 2.20071706916141\\ +7.27548352919623 1.70881964399268\\ +9.07732652521023 1.27670958103473\\ +21.3958887134342 0.418167626510791\\ +27.6976193503689 0.292798467439554\\ +57.9112264764176 0.104782206740072\\ +70.2824426430835 0.0814092391315525\\ +84.5136633068472 0.0647584721105707\\ +100.693863147603 0.0526749814380803\\ +119.971773543588 0.0432929814227462\\ +142.940453343176 0.0359393851872932\\ +170.306502925284 0.0301278353340686\\ +202.911801804668 0.0255080454330502\\ +239.540735872088 0.021999287684161\\ +280.18665564592 0.0193114341261991\\ +324.721849207313 0.017239254076805\\ +372.882130718283 0.0156321048353509\\ +428.185179865241 0.014293327868481\\ +496.244487762892 0.0130982517386268\\ +697.981390783066 0.0107540196195423\\ +751.408106111697 0.0101963232611723\\ +801.50069615654 0.0096507087007977\\ +847.08682665574 0.00912875880629496\\ +895.26571259964 0.00855176369845847\\ +946.1848194722 0.00792161798793763\\ +1000 0.00724785587182594\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.216938351838518 1014.02054069459\\ +1.21642429385737 33.6295970946075\\ +1.67967487209265 18.1607851266587\\ +2.15443469003188 11.4529122416422\\ +2.66333272517498 7.84213130280337\\ +3.23228397818138 5.62875109514083\\ +3.85110700232557 4.22608613175153\\ +4.58840412645476 3.2164004182189\\ +5.46685729972018 2.48103710770847\\ +6.57382014340959 1.91275766426666\\ +8.05203967082548 1.45470230757548\\ +10.7159339982267 1.00204713622698\\ +16.0770442167382 0.589865814329369\\ +20.0586777950823 0.436350719467253\\ +24.5691646298279 0.327125335022487\\ +30.6539529505653 0.235856955351638\\ +40.7953450345245 0.15244994288537\\ +61.204983724767 0.082096006067392\\ +74.9678187496688 0.0610532413280973\\ +89.3204599858097 0.0478515814591455\\ +105.444279352617 0.0384499682851255\\ +123.336349791378 0.0316325126721048\\ +144.264395121816 0.0263169133578832\\ +168.743567772738 0.0221382157992202\\ +195.565071586595 0.0190021888435283\\ +226.649807927369 0.0164691793167325\\ +262.675410372384 0.0144153872642595\\ +301.63343472592 0.0128413881334784\\ +346.369417737173 0.0115452658150398\\ +397.740302405804 0.0104769035511789\\ +456.730127016875 0.00959151093839266\\ +539.17746403875 0.00870584060813276\\ +672.709913571234 0.00765363340985318\\ +730.909932860291 0.00723149286970074\\ +779.636013040524 0.00686762499111361\\ +831.610415323096 0.00646039691621083\\ +878.909065341995 0.00607126073963784\\ +928.89787201645 0.00564459357509239\\ +981.729840618884 0.00518519053594821\\ +1000 0.00502637889930194\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.214947467343798 1011.55751380191\\ +1.22769104798836 32.3561266593238\\ +1.69523234155412 17.4799168595727\\ +2.17438947560008 11.0284410911081\\ +2.68800102153761 7.55506998383436\\ +3.26222200971167 5.42528609961824\\ +3.88677669089267 4.07497812167303\\ +4.63090280179974 3.10233481307401\\ +5.51749237612913 2.39328668836617\\ +6.63470812109235 1.84465413986398\\ +8.2018894992022 1.38462677167907\\ +11.5361810173648 0.885156270581529\\ +15.6384675830225 0.591417196531814\\ +19.3324228755505 0.441298042343615\\ +23.4622884814226 0.333694597537387\\ +28.4743916646725 0.249190493721459\\ +35.2003147279668 0.178663805500202\\ +47.2796959160039 0.110857152813133\\ +69.6374473062822 0.0593446737486652\\ +85.2964449974102 0.0433710162598532\\ +101.6265089393 0.0335146929761786\\ +118.87076977119 0.0269399600454565\\ +137.765076954905 0.0221911621871252\\ +159.662602210143 0.0184950000993149\\ +183.342548256229 0.0157601319915241\\ +210.534524276671 0.0135708487023447\\ +241.759407916913 0.01180853595413\\ +275.067600790807 0.0104694832239571\\ +312.964801067075 0.00936805796939288\\ +356.083255262928 0.00846002419996732\\ +405.142317111465 0.00770915981408621\\ +460.960448682843 0.00708375238136173\\ +539.17746403875 0.0064478835656439\\ +678.940681269611 0.00561919561175502\\ +737.679760252773 0.0053000109413558\\ +786.857150693685 0.00502482171406485\\ +839.312949816636 0.00471723925617921\\ +887.04968896544 0.00442413893300064\\ +937.501501514529 0.00410404263798332\\ +990.82280990038 0.00376112287988771\\ +1000 0.00370225961318874\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.22097561147959 1013.10358212792\\ +1.18324062745838 36.7749752086598\\ +1.63385387780986 19.8365778788021\\ +2.1150728248688 12.2847969752621\\ +2.61467321180109 8.40493775364578\\ +3.17322963473498 6.02791455851724\\ +3.78074666359935 4.52278812608755\\ +4.4632339267104 3.48926574353028\\ +5.26892142135068 2.72549058342386\\ +6.2776601058065 2.12625226008778\\ +7.618717702323 1.63626158947482\\ +9.68246611930312 1.19786626529156\\ +18.1241754737424 0.533030477401563\\ +22.822244741869 0.389729027802452\\ +29.2729483504282 0.274486966106754\\ +61.204983724767 0.0962024351562488\\ +74.2798248256492 0.0744264907192957\\ +88.5007491447344 0.059683279549326\\ +105.444279352617 0.0484074636591517\\ +125.631660247412 0.0397045278732077\\ +149.683929307726 0.0329213496718177\\ +178.341022071001 0.0275884116134645\\ +210.534524276671 0.0235679757952076\\ +246.258591635055 0.0205002034532237\\ +285.400976982924 0.0181385170676223\\ +330.764978074424 0.0161974838172152\\ +379.821530619074 0.0146952104218464\\ +436.153778920801 0.0134449755947937\\ +510.161531474983 0.0122631535338395\\ +685.229159528406 0.0103470309161318\\ +744.512291079513 0.0097607170882558\\ +794.145171902934 0.00924990778617015\\ +839.312949816636 0.00876187492263514\\ +887.04968896544 0.00822195685367133\\ +937.501501514529 0.00763081953797367\\ +990.82280990038 0.00699628969895113\\ +1000 0.00688726798421893\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.209083769055575 1014.55661163186\\ +1.27381132318648 28.6087900931733\\ +1.74277467840892 15.7547410326583\\ +2.2353696459098 9.95631576509398\\ +2.76338529005317 6.83306116794708\\ +3.32293251639897 4.99235607351294\\ +3.95911026646846 3.75424913941343\\ +4.71708469091702 2.86136852478872\\ +5.62017384808319 2.20940058840923\\ +6.75818116816111 1.70385041070757\\ +8.43190929286626 1.26315785781898\\ +17.1488196987054 0.488759308603991\\ +20.6212180399914 0.375182687383171\\ +24.5691646298279 0.288226405874671\\ +29.2729483504282 0.218529842547234\\ +34.8772747481418 0.163538071673865\\ +42.3278906557355 0.117068481806225\\ +52.8107971193433 0.0787106876699193\\ +68.9983712143002 0.0479662506283344\\ +102.567793074442 0.0226280300082805\\ +173.475935923393 0.00837301682375914\\ +224.569799553977 0.00521611440132475\\ +275.067600790807 0.00364578154806121\\ +327.729484992338 0.00271114821124931\\ +386.890073932798 0.00207577560555873\\ +452.538627817017 0.00163461223684169\\ +534.229329953835 0.00128612333941732\\ +642.403365939419 0.000993900589717283\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.214947467343798 1005.50067917725\\ +1.20526093687084 33.3177036582016\\ +1.6642601764859 17.9817848265224\\ +2.15443469003188 11.1432757086459\\ +2.66333272517498 7.62862675307782\\ +3.23228397818138 5.4740596656517\\ +3.85110700232557 4.10853700838182\\ +4.58840412645476 3.12543366600556\\ +5.46685729972018 2.40924780687494\\ +6.57382014340959 1.85556630870677\\ +8.12661920009194 1.39178994799707\\ +11.3254131515281 0.899718656308562\\ +15.4949503931463 0.593483041752484\\ +18.979216428391 0.448307754106946\\ +22.822244741869 0.343462252255545\\ +27.4434330322837 0.259994063782414\\ +33.6144900010877 0.188893287554772\\ +42.7199396630678 0.127706938065899\\ +82.9695852083491 0.0428281398905604\\ +99.769776423632 0.0321987548822745\\ +117.779870119712 0.0252344521027836\\ +136.500780654601 0.020564537844575\\ +158.19734815786 0.0169649198203339\\ +181.659978837533 0.0143292421646197\\ +208.60240892485 0.012241535502423\\ +237.342425002387 0.0106781445202606\\ +270.042071883777 0.00940806858621831\\ +307.2468842709 0.00837243044007374\\ +349.577557436328 0.00752528145710059\\ +397.740302405804 0.00682978340871836\\ +452.538627817017 0.00625474649990653\\ +524.468874949512 0.00570755452015936\\ +691.575882873852 0.00482250898467541\\ +751.408106111697 0.00453638044581993\\ +801.50069615654 0.00428843876146089\\ +847.08682665574 0.00405275777286508\\ +895.26571259964 0.00379345155705049\\ +946.1848194722 0.00351131346831125\\ +1000 0.00321051956501607\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.203380030584698 1003.34140981399\\ +1.30953502048267 25.4022444932285\\ +1.77520801171763 14.2561760876888\\ +2.25607406649686 9.17351915056167\\ +2.78898029238044 6.30183619028116\\ +3.35371015200293 4.60905046503113\\ +3.99578030189527 3.47013553626552\\ +4.76077523022637 2.64852084159762\\ +5.67222897164454 2.04837990588264\\ +6.82077673286568 1.58288388865781\\ +8.43190929286626 1.19145122775533\\ +11.8597101233767 0.765035971866667\\ +16.527920614649 0.495177987798352\\ +20.8122156998634 0.361664097738976\\ +25.9665597293487 0.264230362871262\\ +33.6144900010877 0.180834722000438\\ +60.0867589171969 0.0766583052964807\\ +72.9227205872831 0.0584856940658292\\ +86.8838263525118 0.0463291645498478\\ +102.567793074442 0.0375787761693927\\ +121.082975023204 0.0308290960959942\\ +142.940453343176 0.0255759943241771\\ +168.743567772738 0.0214505199033043\\ +197.376432630026 0.0183478255436635\\ +230.867799418717 0.015847821850562\\ +267.563844455205 0.0139356291613193\\ +310.092663593193 0.012370999358994\\ +356.083255262928 0.0111643266698004\\ +408.894822629486 0.0101647560011022\\ +469.539001068006 0.00933140893011105\\ +564.614141930367 0.00840096625729422\\ +666.536326812491 0.00762994212808182\\ +724.202233460732 0.00721786995410951\\ +779.636013040524 0.0068099568836684\\ +831.610415323096 0.00640719992446921\\ +878.909065341995 0.00602202088702229\\ +928.89787201645 0.00559944188148368\\ +981.729840618884 0.00514423073570775\\ +1000 0.00498682889540573\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 1014.56460297755\\ +1.20526093687084 34.8845570037975\\ +1.6642601764859 18.8298302625787\\ +2.13466303332425 11.8684356581192\\ +2.63889081445751 8.12176726738489\\ +3.20262069365765 5.82569490210126\\ +3.81576466127125 4.37121430124143\\ +4.5462954695324 3.32483919351733\\ +5.41668691103315 2.56337753289109\\ +6.4537154016467 2.00089448301025\\ +7.90492762269643 1.52095232368575\\ +10.3279473191895 1.07357614010296\\ +17.3076553419573 0.549141759274592\\ +21.9959306803007 0.396738002547108\\ +28.2130767593947 0.279538029419509\\ +63.5042516859596 0.0881921029043444\\ +76.3629826128224 0.0691781131094062\\ +90.9827289445556 0.0555542340327333\\ +108.401435917833 0.0451261129631943\\ +129.154966501488 0.037068739554255\\ +153.881775003835 0.030782001970643\\ +181.659978837533 0.0260676589068729\\ +214.452607597167 0.0222909940725512\\ +250.841505927754 0.0194094519982545\\ +290.712337727258 0.0171917533127744\\ +333.828586473176 0.0154733409413927\\ +383.33951017666 0.0140458416607664\\ +440.193518520887 0.0128574932504115\\ +514.886745013749 0.0117323603547629\\ +678.940681269611 0.0100097906760828\\ +737.679760252773 0.00945257104570374\\ +786.857150693685 0.00896903384471185\\ +831.610415323096 0.00850764694390381\\ +878.909065341995 0.00799685084268931\\ +928.89787201645 0.0074362391726347\\ +981.729840618884 0.00683215344830006\\ +1000 0.0066232398956367\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 1017.89705373619\\ +0.632121847581245 105.306512776954\\ +1.0991097009295 35.5140941866405\\ +1.56024641436637 18.1093075766938\\ +2.03849339825246 10.992490660833\\ +2.54334576130465 7.37767428243772\\ +3.08666494333727 5.27721739497868\\ +3.71167181947577 3.89007278836732\\ +4.4222739805059 2.95223306184261\\ +5.26892142135068 2.27110667033624\\ +6.2776601058065 1.76921386089816\\ +7.618717702323 1.35889028748028\\ +9.77214696972572 0.980255264426443\\ +17.4679621512725 0.459739490100574\\ +21.9959306803007 0.335413438330993\\ +27.6976193503689 0.241757461920878\\ +37.8947091907467 0.152799340315738\\ +54.7947233690029 0.0892816737347753\\ +67.1161176749628 0.06726141792522\\ +80.7062014114951 0.0526216439359161\\ +96.157460014321 0.0421810622245853\\ +113.5154708921 0.0345915256305001\\ +134.006889636395 0.0286724141669197\\ +158.19734815786 0.0240143379415674\\ +186.754584276108 0.0203195613270296\\ +218.443607114943 0.0175190846386461\\ +255.509709035251 0.0152505736375083\\ +296.122543798803 0.0135100413957899\\ +340.041193270371 0.0121646399540373\\ +390.473523688556 0.0110489268070518\\ +448.385594802119 0.0101206143340208\\ +524.468874949512 0.00923948252157343\\ +672.709913571234 0.00800855587703322\\ +730.909932860291 0.0075696062385947\\ +779.636013040524 0.00719049404056472\\ +831.610415323096 0.00676558683702982\\ +878.909065341995 0.00635911730651065\\ +928.89787201645 0.00591309562168646\\ +981.729840618884 0.00543256044221784\\ +1000 0.00526638881740785\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 1006.27646341099\\ +1.32166418394661 24.5976040167547\\ +1.7916503273639 13.8129923022108\\ +2.27697025538168 8.89456255113853\\ +2.78898029238044 6.21354574173612\\ +3.35371015200293 4.54527368650389\\ +3.99578030189527 3.42292159056829\\ +4.71708469091702 2.64982647968133\\ +5.62017384808319 2.04895326307404\\ +6.75818116816111 1.58347034264658\\ +8.27785696619848 1.20722188873279\\ +11.0164594963366 0.83429755385542\\ +17.1488196987054 0.470832145747326\\ +21.9959306803007 0.337028933024212\\ +28.4743916646725 0.235432370004684\\ +57.3797641421413 0.0882040701290963\\ +69.6374473062822 0.0683781533335848\\ +83.7380653526649 0.0542819291874639\\ +99.769776423632 0.0440752889867497\\ +118.87076977119 0.0361687966601839\\ +141.62866162992 0.0299852510200088\\ +168.743567772738 0.0251076447051765\\ +201.04964162605 0.0212360927309182\\ +237.342425002387 0.0182987386480921\\ +277.61532944368 0.0160500864081386\\ +321.741815067637 0.0143171819864375\\ +369.46012051993 0.012973578946373\\ +424.255643071778 0.0118549334747194\\ +491.690357762803 0.0108578526759488\\ +704.446227729904 0.00881186035464185\\ +758.367791499719 0.00834568904034682\\ +808.924348680594 0.00788825597921738\\ +854.932706626838 0.00745041777113824\\ +903.557834613893 0.00696706317805952\\ +954.948563979197 0.00644076375402582\\ +1000 0.0059756247256871\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 1007.33018296687\\ +1.20526093687084 34.656639227631\\ +1.6642601764859 18.7076077436069\\ +2.13466303332425 11.7915684476711\\ +2.63889081445751 8.06916291236369\\ +3.20262069365765 5.78788941187977\\ +3.81576466127125 4.34273887090996\\ +4.5462954695324 3.30303678302734\\ +5.41668691103315 2.54639128296071\\ +6.4537154016467 1.98742388410117\\ +7.90492762269643 1.51042715184949\\ +10.3279473191895 1.06570902664843\\ +16.9914417203463 0.557727466368786\\ +21.3958887134342 0.407889586229775\\ +26.9420371368188 0.294820846193655\\ +36.8609536217216 0.187032882584436\\ +53.793615039807 0.108237922545278\\ +65.8898955079995 0.0816939006677886\\ +79.2316862486625 0.0640053023942399\\ +94.400647894176 0.051363359890618\\ +111.441525146679 0.0421552296068759\\ +131.55856240457 0.0349602616728814\\ +155.307057393346 0.0292879460159159\\ +183.342548256229 0.0247809639672377\\ +216.438908606402 0.0211796143563329\\ +253.164847863136 0.0184377324070966\\ +293.404970921579 0.0163311770731725\\ +336.920570598027 0.0147011087512729\\ +386.890073932798 0.0133483259486389\\ +444.270674960688 0.0122225987006258\\ +519.655724382766 0.0111555768172978\\ +678.940681269611 0.00956491093523316\\ +737.679760252773 0.00903199935892566\\ +786.857150693685 0.00856968443422985\\ +831.610415323096 0.00812863031912224\\ +878.909065341995 0.00764041277610679\\ +928.89787201645 0.00710464095677492\\ +981.729840618884 0.00652737096418373\\ +1000 0.00632774049026469\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 1007.91000785727\\ +1.20526093687084 34.6509254321493\\ +1.6642601764859 18.7015363087686\\ +2.13466303332425 11.785896510223\\ +2.63889081445751 8.06392231069407\\ +3.20262069365765 5.78303944689258\\ +3.81576466127125 4.33821894361161\\ +4.5462954695324 3.29881358258289\\ +5.41668691103315 2.54242170891368\\ +6.5134909462728 1.95850615759701\\ +7.97814457207663 1.48847539821995\\ +10.5201521761616 1.03714496973112\\ +16.3762407452169 0.582069810660393\\ +20.6212180399914 0.425349766380005\\ +25.7282596744793 0.310930701137908\\ +33.3060034362459 0.212904339225168\\ +60.0867589171969 0.0890623029105335\\ +72.9227205872831 0.0679611802077141\\ +86.8838263525118 0.0538436175262353\\ +102.567793074442 0.0436800231142486\\ +121.082975023204 0.0358388968880997\\ +142.940453343176 0.029735266332327\\ +168.743567772738 0.0249410220487855\\ +197.376432630026 0.0213348188020465\\ +230.867799418717 0.018428748556362\\ +267.563844455205 0.0162057397005448\\ +310.092663593193 0.0143866423472359\\ +356.083255262928 0.0129836310986834\\ +408.894822629486 0.0118213624751421\\ +469.539001068006 0.0108523339186537\\ +564.614141930367 0.00977035663008292\\ +666.536326812491 0.00887372122975259\\ +724.202233460732 0.008394501359153\\ +779.636013040524 0.00792011000833832\\ +831.610415323096 0.00745170907950346\\ +878.909065341995 0.00700374709355809\\ +928.89787201645 0.00651228593329241\\ +981.729840618884 0.0059828708359902\\ +1000 0.00579981043730672\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.207164967560207 1016.2233837122\\ +1.32166418394661 26.2320511234548\\ +1.7916503273639 14.7274321623971\\ +2.27697025538168 9.48060133831936\\ +2.81481236050758 6.5155007807176\\ +3.38477285594598 4.76701249633808\\ +4.03278998219371 3.58997840431629\\ +4.80487043965513 2.74017793547466\\ +5.72476623970218 2.11873340002101\\ +6.94771254846024 1.61537874272775\\ +8.74866812047991 1.18479472457369\\ +16.527920614649 0.507595824509019\\ +20.0586777950823 0.385736318096972\\ +23.8989256623105 0.297287803782327\\ +28.4743916646725 0.226257072463131\\ +34.2400613797143 0.167478467764387\\ +41.9394395566719 0.11860371140951\\ +53.2999408084409 0.0777295525940253\\ +79.2316862486625 0.0379822592705756\\ +111.441525146679 0.020630572785109\\ +137.765076954905 0.0143189413909766\\ +164.140297114447 0.0107372287284458\\ +190.230118866894 0.00853335216079818\\ +218.443607114943 0.00696704728781651\\ +248.53948574298 0.00583781999230269\\ +280.18665564592 0.00501216543251377\\ +312.964801067075 0.00440028617723695\\ +349.577557436328 0.00390349357071925\\ +390.473523688556 0.00349888277055871\\ +436.153778920801 0.00316760495871322\\ +487.178021879463 0.002893633212938\\ +559.432570616938 0.00260967447747484\\ +710.970943231243 0.00218884944165815\\ +765.391938823015 0.00205482653769594\\ +816.416760492147 0.00192794635276344\\ +862.85125663669 0.00180983171844397\\ +911.92675984593 0.0016823734652615\\ +963.793479961579 0.00154635431543198\\ +1000 0.00145200181228151\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.211020342856859 1003.9955510862\\ +1.04959323055823 41.8235084007044\\ +1.50375532129974 20.9055991311259\\ +1.98288394912707 12.4460699781338\\ +2.47396410088681 8.33540154863576\\ +3.0302710828664 5.85549344558431\\ +3.64385898376354 4.30801075887992\\ +4.34147833005509 3.26256620071146\\ +5.17265738721602 2.50401969854669\\ +6.22004882563471 1.92061945755656\\ +7.618717702323 1.45308259436746\\ +10.0462042134681 1.0064130715626\\ +14.9339321612425 0.594088540085709\\ +18.2920450484629 0.44803867467919\\ +21.7940698430296 0.347117676691585\\ +25.9665597293487 0.265560905013721\\ +30.9378757173014 0.20048948612718\\ +37.2023668141307 0.147088244785372\\ +45.5678626584106 0.103102862826019\\ +57.3797641421413 0.0678279726807133\\ +76.3629826128224 0.0397366072955322\\ +127.969686821594 0.0148483216958379\\ +190.230118866894 0.00702074829732011\\ +246.258591635055 0.00437298891761087\\ +304.42722120643 0.00300557625914891\\ +369.46012051993 0.00216428343133139\\ +444.270674960688 0.00160462479632286\\ +559.432570616938 0.00112040750908842\\ +602.254120146193 0.000999579347563396\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.212974853574552 1016.50574526566\\ +1.01159111222383 46.9911790916885\\ +1.46273335620113 23.1519311520133\\ +1.94665634334226 13.573626433132\\ +2.45126006203334 8.95136888418749\\ +3.00246170908555 6.29395641113411\\ +3.61041859717334 4.63313908684307\\ +4.3016357581068 3.51021646514338\\ +5.12518692705333 2.69530413093207\\ +6.10640754223204 2.09573961974881\\ +7.41088151564157 1.60662752912642\\ +9.41833153464795 1.17055702876803\\ +17.1488196987054 0.533405791917041\\ +21.1995345753607 0.397991183849371\\ +26.2070669648385 0.293369532535535\\ +33.3060034362459 0.205137328105748\\ +67.1161176749628 0.0713895892792184\\ +80.7062014114951 0.0550657223947795\\ +95.2750047242729 0.0441008752476974\\ +112.473717836475 0.0357437245448275\\ +131.55856240457 0.0296397473087431\\ +153.881775003835 0.0248432941827399\\ +179.992850678248 0.0210435614727478\\ +210.534524276671 0.0180124180600351\\ +243.998629725955 0.0157110517618747\\ +282.781797962534 0.0138374124350826\\ +324.721849207313 0.0123975173472374\\ +372.882130718283 0.0112092294605964\\ +428.185179865241 0.0102263510948804\\ +496.244487762892 0.00935429961479744\\ +704.446227729904 0.00761185941790715\\ +758.367791499719 0.00720661492121089\\ +808.924348680594 0.00680977095431144\\ +854.932706626838 0.00643046797590552\\ +903.557834613893 0.00601217226395796\\ +954.948563979197 0.00555708537806844\\ +1000 0.00515512000018478\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 1014.09901076975\\ +1.20526093687084 29.5223897225667\\ +1.6642601764859 15.935101874094\\ +2.13466303332425 10.043900229176\\ +2.63889081445751 6.87329139022325\\ +3.20262069365765 4.93027110316712\\ +3.81576466127125 3.69944644155446\\ +4.5462954695324 2.81397826964314\\ +5.41668691103315 2.16961540977503\\ +6.4537154016467 1.69363720029824\\ +7.90492762269643 1.28751429931373\\ +10.2331657833025 0.919816503260783\\ +17.4679621512725 0.459596099476854\\ +22.1996611911995 0.332089922852266\\ +28.4743916646725 0.234100288791977\\ +61.204983724767 0.0790400335404013\\ +73.5981447526576 0.0619377495210144\\ +87.6885609458743 0.0496798752878804\\ +104.47659715608 0.0402999276741434\\ +124.478714618791 0.0330564607179392\\ +148.31025143361 0.0274078618525673\\ +176.704352608895 0.0229645944281744\\ +208.60240892485 0.0196130988681409\\ +243.998629725955 0.0170544181835671\\ +282.781797962534 0.0150836441573749\\ +327.729484992338 0.0134631331086702\\ +376.335836228653 0.0122085272100692\\ +432.151112778977 0.0111645198805656\\ +505.479682119124 0.0101789868173219\\ +691.575882873852 0.0084931007203541\\ +744.512291079513 0.00806038066028581\\ +794.145171902934 0.00763862159842848\\ +839.312949816636 0.00723564930863513\\ +887.04968896544 0.00678981941552115\\ +937.501501514529 0.00630168247819523\\ +990.82280990038 0.00577770258190367\\ +1000 0.00568767407843963\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.207164967560207 1011.50479596479\\ +1.2856096069433 27.5159925157522\\ +1.74277467840892 15.4251690286406\\ +2.2353696459098 9.74840692212505\\ +2.76338529005317 6.69062777390783\\ +3.32293251639897 4.88848968483985\\ +3.95911026646846 3.67632086297426\\ +4.71708469091702 2.80215497084877\\ +5.62017384808319 2.16387147377674\\ +6.75818116816111 1.66896308810543\\ +8.43190929286626 1.23760040432317\\ +17.4679621512725 0.467797328953888\\ +21.0049824165392 0.359190993927253\\ +25.0264009641792 0.276147308657312\\ +29.8177229001967 0.209707140040478\\ +36.1874981241128 0.152616290867114\\ +45.149677720361 0.104601989638481\\ +60.6432939540806 0.0622421536486308\\ +97.946966706954 0.0267531632499154\\ +121.082975023204 0.0187033042228841\\ +144.264395121816 0.0141097994857233\\ +167.194975973199 0.011268979364219\\ +191.992066559328 0.00923928440970348\\ +218.443607114943 0.00776727627256859\\ +246.258591635055 0.00668399416950228\\ +277.61532944368 0.00581548772886222\\ +310.092663593193 0.00516567582752593\\ +346.369417737173 0.00463282803546963\\ +386.890073932798 0.00419430336791719\\ +432.151112778977 0.00383138347359192\\ +487.178021879463 0.00350486639718656\\ +564.614141930367 0.00317060459111825\\ +691.575882873852 0.0027646204033453\\ +751.408106111697 0.00259061971847605\\ +801.50069615654 0.00244263388478439\\ +854.932706626838 0.00227942323589595\\ +903.557834613893 0.00212603526002506\\ +954.948563979197 0.00196085860361102\\ +1000 0.00181604581862586\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.214947467343798 1009.58192786932\\ +0.880937190447399 58.7706287778217\\ +1.2856096069433 28.0360202803175\\ +1.72678090388436 15.9621362853469\\ +2.19452908620331 10.2428162094991\\ +2.71289780037247 7.0172022322766\\ +3.29243733300777 5.04035066118113\\ +3.92277675892772 3.78708097106049\\ +4.67379510799246 2.88406852589492\\ +5.56859644428641 2.22535905194243\\ +6.69616005485322 1.71516636072994\\ +8.35452805838287 1.27104284313815\\ +17.6297537528721 0.467752457584128\\ +21.1995345753607 0.358601207307925\\ +25.2582002696278 0.275159134590437\\ +30.0939003444972 0.208435690310362\\ +36.1874981241128 0.153526689690178\\ +44.324785912404 0.108158903620433\\ +56.3314267060136 0.0704732556832477\\ +82.2081575524054 0.0352740745637332\\ +121.082975023204 0.0174363657181487\\ +151.070330448665 0.0118283088529805\\ +179.992850678248 0.00881754964308474\\ +210.534524276671 0.00687220631959877\\ +241.759407916913 0.00558763635365511\\ +275.067600790807 0.00466511346129345\\ +310.092663593193 0.00399346182424188\\ +346.369417737173 0.00349787875777994\\ +386.890073932798 0.00309717017077995\\ +432.151112778977 0.00277184382893455\\ +482.707096560318 0.00250553365692312\\ +544.171428686589 0.00226692192669531\\ +751.408106111697 0.00174372280596826\\ +808.924348680594 0.0016192114672135\\ +862.85125663669 0.00150126181000073\\ +911.92675984593 0.00139259477070128\\ +963.793479961579 0.00127753936805273\\ +1000 0.00119816209663574\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 1009.67735322637\\ +1.27381132318648 26.5739279781422\\ +1.74277467840892 14.6434966041737\\ +2.2353696459098 9.25859355992173\\ +2.76338529005317 6.35721066352099\\ +3.32293251639897 4.64706031482845\\ +3.95911026646846 3.49679519692054\\ +4.71708469091702 2.66741608254932\\ +5.62017384808319 2.0620609410373\\ +6.75818116816111 1.59299713740149\\ +8.35452805838287 1.19908969962896\\ +11.4303112911448 0.798757354151141\\ +16.6810053720006 0.488243903866472\\ +21.0049824165392 0.357443150077523\\ +26.4498018242772 0.258631370967365\\ +35.5263467657814 0.168707878195502\\ +53.793615039807 0.0925591555933098\\ +65.8898955079995 0.0698822939488756\\ +79.2316862486625 0.0547667866712053\\ +94.400647894176 0.0439606206725496\\ +111.441525146679 0.0360871846938901\\ +131.55856240457 0.0299332138031573\\ +155.307057393346 0.0250801688365785\\ +183.342548256229 0.0212231299875493\\ +216.438908606402 0.0181404322074594\\ +253.164847863136 0.0157930031146263\\ +293.404970921579 0.0139892554529613\\ +336.920570598027 0.0125933591457208\\ +386.890073932798 0.0114348224227696\\ +444.270674960688 0.0104706763476498\\ +519.655724382766 0.00955675670950699\\ +678.940681269611 0.00819422257864034\\ +737.679760252773 0.00773771160141285\\ +786.857150693685 0.00734166714362899\\ +831.610415323096 0.00696383002578846\\ +878.909065341995 0.00654558465842431\\ +928.89787201645 0.00608659638271535\\ +981.729840618884 0.00559205369101999\\ +1000 0.0054210311678964\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.211020342856859 1009.6931452419\\ +1.26212131452255 29.5179030134765\\ +1.72678090388436 16.2478641048117\\ +2.21485523372636 10.2621562338164\\ +2.73802517792786 7.03848060261689\\ +3.32293251639897 5.06070230378458\\ +3.95911026646846 3.80571033924721\\ +4.71708469091702 2.90064417760557\\ +5.62017384808319 2.23977552358925\\ +6.75818116816111 1.7273244353653\\ +8.43190929286626 1.28062135149887\\ +17.3076553419573 0.489343394106153\\ +20.8122156998634 0.375483653242048\\ +24.7967289250216 0.288352956767269\\ +29.5440799888038 0.218570410884891\\ +35.5263467657814 0.161031933053262\\ +43.1156199031823 0.115244729112589\\ +53.793615039807 0.0775320856924001\\ +71.5904108596489 0.0457691438481942\\ +159.662602210143 0.0103342023811624\\ +195.565071586595 0.00722798501957754\\ +233.006141069692 0.00538235898932599\\ +270.042071883777 0.00425432964915769\\ +310.092663593193 0.00345778907002733\\ +349.577557436328 0.00292340083277344\\ +394.090164040345 0.00250123755786537\\ +440.193518520887 0.00218972083966844\\ +491.690357762803 0.00193669363188193\\ +559.432570616938 0.00169696327349966\\ +772.48114514034 0.00122954705700038\\ +831.610415323096 0.00112491043087695\\ +887.04968896544 0.00102885744235005\\ +911.92675984593 0.000986297837856005\\ +}; +\end{axis} + +\begin{axis}[% +width=3.752in, +height=1.562in, +at={(0.551in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-270, +ymax=0, +ytick={-360, -270, -180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.621890317411\\ +0.108651577465251 -157.326423024957\\ +0.118051652856881 -158.888199922483\\ +0.128264983052803 -160.315126598232\\ +0.139361927422416 -161.614777344837\\ +0.15002933220192 -162.668983735293\\ +0.161513269350313 -163.633045782219\\ +0.173876240021625 -164.511410311947\\ +0.187185529496553 -165.308215456207\\ +0.201513573381558 -166.027284138767\\ +0.216938351838516 -166.672121403474\\ +0.231400538013072 -167.17797452903\\ +0.246826845225571 -167.631376435699\\ +0.263281546564798 -168.034081386147\\ +0.278255940220721 -168.340104241753\\ +0.294082017058709 -168.610926635701\\ +0.310808217386903 -168.84734118415\\ +0.325471160553176 -169.018577010149\\ +0.340825854742353 -169.166762153767\\ +0.356904934567525 -169.292209294772\\ +0.37031266758699 -169.376378350124\\ +0.384224084605498 -169.446287139942\\ +0.398658107358057 -169.502037145866\\ +0.409838367175735 -169.534609455845\\ +0.421332174384734 -169.559294875748\\ +0.433148322337641 -169.576117686146\\ +0.441209286319117 -169.582974422671\\ +0.44942026621191 -169.586349656708\\ +0.457784053837654 -169.586246778213\\ +0.466303492974262 -169.582668180579\\ +0.474981480322836 -169.575615268346\\ +0.48382096649261 -169.565088465168\\ +0.497389595879016 -169.542783249849\\ +0.511338753841437 -169.512654406359\\ +0.525679112201842 -169.474691207593\\ +0.545427130532976 -169.411859418611\\ +0.565917016324609 -169.335022288365\\ +0.587176639073341 -169.244115837285\\ +0.614877765381008 -169.110577595477\\ +0.643885742724037 -168.954750782807\\ +0.674262224177818 -168.776421092937\\ +0.712611543011191 -168.532375001269\\ +0.753142016597439 -168.255093637232\\ +0.795977700231485 -167.944045331647\\ +0.849041520408896 -167.537701338252\\ +0.905642837944531 -167.083612679469\\ +0.966017479952245 -166.580726862713\\ +1.03041699495061 -166.027952099725\\ +1.10928986489522 -165.333701911919\\ +1.1942000281335 -164.571220277545\\ +1.28560960694331 -163.738972241086\\ +1.39683511798871 -162.717608327457\\ +1.51768339028343 -161.60467839241\\ +1.64898694447104 -160.399237314262\\ +1.80824493487798 -158.951226060219\\ +1.98288394912704 -157.390195341644\\ +2.19452908620335 -155.546554371991\\ +2.4287643824604 -153.57799776824\\ +2.73802517792786 -151.106907495749\\ +3.14410830314732 -148.096045727998\\ +3.78074666359942 -143.912825424371\\ +4.98537346387382 -137.63633172317\\ +5.67222897164457 -134.867132422784\\ +6.33580499265845 -132.642571703793\\ +6.94771254846023 -130.919929068106\\ +7.5487992816532 -129.485567197046\\ +8.20188949920225 -128.170134371465\\ +8.8296999554939 -127.105425328375\\ +9.50556592010137 -126.141344873808\\ +10.1392540755881 -125.380502613534\\ +10.8151870255226 -124.695784148017\\ +11.5361810173649 -124.085005652213\\ +12.3052400435925 -123.544899161571\\ +13.0051125217337 -123.134952307731\\ +13.7447909267756 -122.770456679531\\ +14.5265392594678 -122.447581513268\\ +15.3527502878039 -122.162012653963\\ +16.2259528707813 -121.908995290595\\ +17.3076553419573 -121.648069441589\\ +18.4614694632451 -121.415718144246\\ +20.0586777950826 -121.144192658194\\ +24.3436887354314 -120.52306870509\\ +25.9665597293484 -120.28769711477\\ +27.6976193503698 -120.024284684373\\ +29.2729483504285 -119.770811681018\\ +30.9378757173011 -119.48775924843\\ +32.6974974451167 -119.172037238247\\ +34.8772747481423 -118.759324924444\\ +37.2023668141304 -118.296633868056\\ +39.6824610456936 -117.783097979686\\ +42.7199396630681 -117.134781623905\\ +45.9899209052235 -116.424015675966\\ +49.9687745385497 -115.556376906041\\ +54.794723369002 -114.519961404669\\ +61.7718759733854 -113.086338883628\\ +74.9678187496691 -110.6663582278\\ +90.9827289445557 -108.275223320369\\ +102.567793074445 -106.880393759269\\ +113.515470892099 -105.780359671325\\ +124.478714618793 -104.859124064924\\ +135.248087041786 -104.103965717351\\ +145.600599502069 -103.498263005754\\ +155.307057393347 -103.02355601677\\ +164.140297114445 -102.660930600283\\ +173.475935923388 -102.342053141004\\ +181.659978837536 -102.111898821061\\ +190.230118866895 -101.916120187657\\ +197.376432630023 -101.785657475142\\ +204.791209666503 -101.679723440442\\ +210.534524276677 -101.617140175914\\ +216.438908606406 -101.569661807113\\ +220.466873523944 -101.546708250617\\ +224.569799553979 -101.530940723543\\ +228.74908173557 -101.522563754184\\ +230.867799418716 -101.521213159132\\ +233.006141069691 -101.521791111528\\ +235.164288449433 -101.524325844858\\ +239.540735872084 -101.535381752793\\ +243.99862972595 -101.554619599237\\ +248.539485742973 -101.582288840726\\ +253.164847863143 -101.618650122988\\ +260.264788196906 -101.690088565421\\ +267.563844455207 -101.782670215563\\ +275.067600790807 -101.897430706878\\ +285.40097698292 -102.086864436347\\ +296.122543798796 -102.320520071858\\ +307.246884270909 -102.601465955364\\ +318.789129267769 -102.933036039324\\ +330.764978074424 -103.31884919789\\ +346.369417737168 -103.883404098812\\ +362.710025233077 -104.547258592761\\ +379.82153061908 -105.31967081207\\ +397.740302405804 -106.210842685246\\ +416.504424854512 -107.231998640391\\ +436.153778920815 -108.395466114578\\ +456.730127016882 -109.714753928551\\ +482.707096560317 -111.524454619477\\ +510.161531474972 -113.607835518629\\ +539.177464038763 -115.995564449383\\ +569.843705946916 -118.720777922798\\ +602.254120146183 -121.818469050001\\ +636.507908129576 -125.324250052804\\ +672.709913571241 -129.272180860213\\ +710.970943231237 -133.691321107189\\ +758.367791499744 -139.467140392697\\ +808.924348680602 -145.910559463178\\ +870.843149769058 -154.031624625955\\ +954.948563979212 -165.070571920746\\ +1000 -170.814457424012\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -154.983237204473\\ +0.108651577465251 -156.668159370059\\ +0.118051652856881 -158.214001908883\\ +0.128264983052803 -159.629215643877\\ +0.139361927422416 -160.92182084712\\ +0.151418932530433 -162.099307003536\\ +0.163009236097978 -163.054900459942\\ +0.175486714964814 -163.929396584023\\ +0.188919277620761 -164.726791920476\\ +0.2033800305847 -165.450670956668\\ +0.218947676285658 -166.104217157595\\ +0.235706941399678 -166.690231160309\\ +0.25142033481428 -167.149522878047\\ +0.268181260945295 -167.560407209759\\ +0.28605955351758 -167.924123677818\\ +0.302329468440578 -168.199152547814\\ +0.319524750575915 -168.440892033015\\ +0.337698031082518 -168.649837033778\\ +0.353629550135508 -168.79920886404\\ +0.37031266758699 -168.926297153917\\ +0.384224084605498 -169.012035461869\\ +0.398658107358057 -169.083686611526\\ +0.413634368406335 -169.141304864757\\ +0.425234633452872 -169.17533432365\\ +0.43716022482485 -169.201505358344\\ +0.44942026621191 -169.219825735926\\ +0.457784053837654 -169.227679761941\\ +0.466303492974262 -169.232046270227\\ +0.474981480322836 -169.232924442211\\ +0.48382096649261 -169.230312637708\\ +0.492824957004062 -169.224208399127\\ +0.501996513311016 -169.214608455898\\ +0.516074871038594 -169.193644951614\\ +0.530548052536955 -169.164789591498\\ +0.545427130532976 -169.128021189489\\ +0.565917016324609 -169.066643391287\\ +0.587176639073341 -168.991082178178\\ +0.609234915240079 -168.901254725635\\ +0.637976680860626 -168.768762926968\\ +0.668074391569548 -168.613620253318\\ +0.699592016543558 -168.435588337995\\ +0.739381991917593 -168.191361919041\\ +0.781435060784446 -167.913288797605\\ +0.825879938784402 -167.600818540229\\ +0.88093719044741 -167.192004791964\\ +0.939664831495459 -166.734569534602\\ +1.0023075482839 -166.227470425531\\ +1.06912633917349 -165.669641074013\\ +1.15096220088501 -164.968638551771\\ +1.23906215694794 -164.198452668201\\ +1.33390569003905 -163.357675192965\\ +1.44930957412626 -162.325938724454\\ +1.57469771464309 -161.20211156023\\ +1.71093390726897 -159.985640253404\\ +1.87617469143913 -158.5258128326\\ +2.05737431343286 -156.954224874874\\ +2.27697025538168 -155.101608885924\\ +2.54334576130472 -152.94340900031\\ +2.86719649749373 -150.464341481409\\ +3.32293251639897 -147.258150272486\\ +5.51749237612921 -136.083406095976\\ +6.16296625513279 -133.883395984512\\ +6.75818116816117 -132.179807032973\\ +7.34287044716661 -130.76291385684\\ +7.97814457207674 -129.466550874562\\ +8.58882855954615 -128.421177090637\\ +9.246257116406 -127.479617506943\\ +9.86265846131287 -126.741790503059\\ +10.5201521761614 -126.083775007597\\ +11.2214776820801 -125.50392828414\\ +11.8597101233768 -125.067066209286\\ +12.5342426546138 -124.683232568044\\ +13.2471398786616 -124.349458979288\\ +14.0005838246811 -124.062215839272\\ +14.6610868404698 -123.85547332448\\ +15.3527502878039 -123.675609090354\\ +16.0770442167387 -123.519776780934\\ +16.8355080296122 -123.384923909643\\ +17.629753752872 -123.267815007438\\ +18.6324631193151 -123.145921625261\\ +19.8745954958102 -123.021685286217\\ +24.3436887354314 -122.648672305336\\ +25.7282596744791 -122.523282834447\\ +26.9420371368182 -122.402817443847\\ +28.2130767593954 -122.264571366923\\ +29.544079988804 -122.105757113288\\ +30.9378757173011 -121.92388156965\\ +32.3974262952812 -121.71677963361\\ +34.240061379715 -121.43243843812\\ +36.1874981241128 -121.106785411617\\ +38.2456972246693 -120.738242618517\\ +40.4209583979642 -120.326073492257\\ +43.1156199031825 -119.790251651065\\ +45.9899209052235 -119.196776284405\\ +49.5102015955645 -118.451782685009\\ +53.7936150398065 -117.536407384202\\ +58.9889642550864 -116.437445600432\\ +65.8898955079985 -115.031547665749\\ +77.7841107128642 -112.822152232915\\ +97.0480887738009 -109.885042496611\\ +109.405470720574 -108.385160328583\\ +121.082975023208 -107.201631366353\\ +131.558562404571 -106.306063376444\\ +142.940453343172 -105.486490007322\\ +153.881775003836 -104.829430231361\\ +164.140297114445 -104.315195940866\\ +173.475935923388 -103.923287823533\\ +183.342548256232 -103.5798831396\\ +191.992066559328 -103.333294456545\\ +201.049641626046 -103.125063326588\\ +208.602408924844 -102.987735567672\\ +216.438908606406 -102.87789214272\\ +222.508879812839 -102.814436241065\\ +228.74908173557 -102.767949087256\\ +233.006141069691 -102.746737839666\\ +237.342425002384 -102.733611389985\\ +239.540735872084 -102.730152818154\\ +241.759407916908 -102.728804135565\\ +243.99862972595 -102.729596248195\\ +246.258591635048 -102.732560731687\\ +250.841505927762 -102.745136549408\\ +255.509709035257 -102.766798142603\\ +260.264788196906 -102.797823724614\\ +267.563844455207 -102.862558181477\\ +275.067600790807 -102.950051724146\\ +282.781797962532 -103.06140609315\\ +290.712337727252 -103.197794949152\\ +301.63343472593 -103.420760843227\\ +312.964801067081 -103.693650317717\\ +324.721849207315 -104.01992343564\\ +336.920570598025 -104.403333654753\\ +352.81541153808 -104.969174763736\\ +369.46012051994 -105.639366492606\\ +386.890073932801 -106.423497756422\\ +405.142317111462 -107.332130697983\\ +424.255643071768 -108.376880898485\\ +444.2706749607 -109.570498045223\\ +465.229952396024 -110.926942054095\\ +487.17802187946 -112.461446014745\\ +514.886745013736 -114.561272921578\\ +544.1714286866 -116.972426589857\\ +575.121707184161 -119.728338409111\\ +607.832312829711 -122.864142432586\\ +642.403365939436 -126.415305638661\\ +678.940681269615 -130.415267540586\\ +717.556091893683 -134.891749307882\\ +765.391938823037 -140.738018239157\\ +816.416760492152 -147.250183697873\\ +878.909065341978 -155.437675786016\\ +963.793479961591 -166.522634662159\\ +1000 -171.114165657579\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.666384360503\\ +0.108651577465251 -157.374764989481\\ +0.118051652856881 -158.940722286828\\ +0.128264983052803 -160.37219048496\\ +0.139361927422416 -161.676774965009\\ +0.151418932530433 -162.861684449677\\ +0.163009236097978 -163.819948625734\\ +0.175486714964814 -164.693442781415\\ +0.188919277620761 -165.486295732325\\ +0.2033800305847 -166.202322777588\\ +0.218947676285658 -166.845023591215\\ +0.233543813990654 -167.349747700988\\ +0.24911300260678 -167.802711716577\\ +0.265720110532445 -168.205672061881\\ +0.280833199882324 -168.512468829459\\ +0.296805860866562 -168.784581653496\\ +0.313686982456683 -169.02280847537\\ +0.331528234231953 -169.227855537594\\ +0.347168681892662 -169.373829590498\\ +0.363546996129332 -169.497501018306\\ +0.377204249341695 -169.58056135254\\ +0.391374560198028 -169.649637709775\\ +0.406077202570047 -169.704831112433\\ +0.41746552892532 -169.737166913566\\ +0.429173237842218 -169.761771018477\\ +0.441209286319117 -169.778667927817\\ +0.44942026621191 -169.785660568911\\ +0.457784053837654 -169.789241062622\\ +0.466303492974262 -169.789412956352\\ +0.474981480322836 -169.786178826284\\ +0.48382096649261 -169.779540285464\\ +0.492824957004062 -169.769497992072\\ +0.506646100892133 -169.748051629173\\ +0.520854855057768 -169.718941037329\\ +0.535462089927357 -169.682156622831\\ +0.555577622239876 -169.621148489414\\ +0.576448828292606 -169.546426120019\\ +0.598104096238105 -169.457929442539\\ +0.62632074521987 -169.327825037606\\ +0.655868565957134 -169.175909681931\\ +0.68681035889951 -169.001980144435\\ +0.725873365081736 -168.763876997633\\ +0.767158117677927 -168.493284801108\\ +0.81079098067315 -168.189699691475\\ +0.864842327573189 -167.793083236863\\ +0.922497005259214 -167.349875524099\\ +0.983995229627797 -166.859089199448\\ +1.05931476351838 -166.238625483163\\ +1.14039960197002 -165.553167040265\\ +1.22769104798839 -164.801244170243\\ +1.3216641839466 -163.98151042713\\ +1.43600898465122 -162.976845974668\\ +1.56024641436638 -161.883766514849\\ +1.69523234155408 -160.701795668595\\ +1.8589566796357 -159.284792247056\\ +2.03849339825241 -157.760847276306\\ +2.25607406649687 -155.966317798153\\ +2.52000499376417 -153.878426607042\\ +2.84088369018327 -151.483950278019\\ +3.29243733300778 -148.394492580459\\ +5.12518692705321 -139.018081728863\\ +5.72476623970219 -136.876847834698\\ +6.27766010580631 -135.218715364184\\ +6.82077673286572 -133.843429707671\\ +7.34287044716661 -132.725172705036\\ +7.90492762269657 -131.71291525268\\ +8.43190929286622 -130.918756032638\\ +8.9940221740918 -130.212977293825\\ +9.50556592010137 -129.679642481175\\ +10.0462042134681 -129.212839599516\\ +10.5201521761614 -128.87450576124\\ +11.0164594963369 -128.581752622389\\ +11.5361810173649 -128.333815560579\\ +11.9695570235905 -128.167029666366\\ +12.4192135270177 -128.02757161149\\ +12.8857621318549 -127.914640647273\\ +13.2471398786616 -127.846801844597\\ +13.6186523675611 -127.792937809968\\ +14.0005838246811 -127.752580142726\\ +14.3932264471941 -127.72522422609\\ +14.6610868404698 -127.713944842696\\ +14.9339321612423 -127.708036002608\\ +15.2118551798608 -127.707322292774\\ +15.4949503931459 -127.711621676322\\ +15.7833140565207 -127.720745633102\\ +16.0770442167387 -127.734499311862\\ +16.5279206146492 -127.763369192552\\ +16.9914417203464 -127.801498774112\\ +17.629753752872 -127.865472582195\\ +18.2920450484626 -127.942793122117\\ +19.1550055557359 -128.055329806464\\ +20.2444650997683 -128.208588782637\\ +21.9959306803003 -128.461308193686\\ +25.2582002696278 -128.883801163993\\ +26.6947849403426 -129.032296802157\\ +27.9541599906793 -129.139356583168\\ +29.0043049386403 -129.211292763242\\ +30.0939003444972 -129.26898605786\\ +30.9378757173011 -129.301820769307\\ +31.8055201533286 -129.324903569373\\ +32.3974262952812 -129.334532483018\\ +33.0003479112518 -129.339324972834\\ +33.6144900010886 -129.33909360122\\ +34.240061379715 -129.333658928737\\ +34.8772747481423 -129.322849806049\\ +35.5263467657817 -129.306503649892\\ +36.1874981241128 -129.284466701788\\ +37.2023668141304 -129.240427065172\\ +38.2456972246693 -129.182810839857\\ +39.3182875570566 -129.11121763585\\ +40.7953450345255 -128.993419514556\\ +42.327890655736 -128.849466528653\\ +43.9180089259608 -128.678833581795\\ +45.9899209052235 -128.42749388029\\ +48.159579101925 -128.133588414722\\ +50.4315948717143 -127.797195074197\\ +53.2999408084406 -127.338144142715\\ +56.3314267060121 -126.820199476334\\ +60.0867589171979 -126.144674439625\\ +64.0924401935642 -125.39719637545\\ +68.998371214298 -124.46281634986\\ +74.9678187496691 -123.322631331446\\ +82.9695852083464 -121.826177526461\\ +94.4006478941749 -119.81107138638\\ +132.777082935543 -114.432308489149\\ +146.949180062486 -112.963388965069\\ +161.141427725301 -111.729190205213\\ +173.475935923388 -110.826995144731\\ +185.040701954232 -110.109535694571\\ +197.376432630023 -109.46753032869\\ +208.602408924844 -108.983567600726\\ +218.443607114946 -108.631254861114\\ +228.74908173557 -108.328946348595\\ +237.342425002384 -108.125565998823\\ +246.258591635048 -107.958555575862\\ +253.164847863143 -107.858455988654\\ +260.264788196906 -107.780988073794\\ +265.108360190857 -107.742416112646\\ +270.042071883779 -107.71466905207\\ +275.067600790807 -107.698074026342\\ +277.615329443679 -107.694064123507\\ +280.186655645918 -107.692970543761\\ +282.781797962532 -107.694837755686\\ +285.40097698292 -107.699711075493\\ +290.712337727252 -107.718661656271\\ +296.122543798796 -107.750202497533\\ +301.63343472593 -107.794728613623\\ +310.0926635932 -107.886767436509\\ +318.789129267769 -108.010404337954\\ +327.72948499234 -108.167179849269\\ +336.920570598025 -108.358726422112\\ +349.577557436321 -108.671214796829\\ +362.710025233077 -109.052993844759\\ +376.335836228661 -109.508802762085\\ +390.473523688559 -110.043757757517\\ +408.894822629482 -110.832201067629\\ +428.18517986523 -111.764704498624\\ +448.385594802129 -112.854142092607\\ +469.539001068009 -114.114601320523\\ +491.690357762798 -115.56144413211\\ +514.886745013736 -117.211336849825\\ +539.177464038763 -119.082225155501\\ +569.843705946916 -121.645980400075\\ +602.254120146183 -124.59020355471\\ +636.507908129576 -127.95018069012\\ +672.709913571241 -131.759647963868\\ +710.970943231237 -136.047345644768\\ +751.408106111675 -140.832034469674\\ +801.500696156551 -147.044150676644\\ +862.851256636678 -154.923403235116\\ +937.50150151455 -164.59744743801\\ +1000 -172.496839645079\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.687761809685\\ +0.108651577465251 -157.397991902719\\ +0.118051652856881 -158.96595866557\\ +0.128264983052803 -160.399610171508\\ +0.139361927422416 -161.706566839455\\ +0.151418932530433 -162.894053730264\\ +0.163009236097978 -163.854795532162\\ +0.175486714964814 -164.730956945702\\ +0.188919277620761 -165.526681297617\\ +0.2033800305847 -166.24579950787\\ +0.218947676285658 -166.891828065711\\ +0.233543813990654 -167.399672216732\\ +0.24911300260678 -167.855964233162\\ +0.265720110532445 -168.262474394439\\ +0.283434330615137 -168.620795620086\\ +0.299554933435982 -168.890653580135\\ +0.316592411198347 -169.126945492134\\ +0.334598912055007 -169.330373597395\\ +0.350384224529072 -169.475237601079\\ +0.366914237840248 -169.598014907524\\ +0.380697987140222 -169.680514830484\\ +0.394999546122053 -169.74916821205\\ +0.409838367175735 -169.804076068828\\ +0.421332174384734 -169.836288013838\\ +0.433148322337641 -169.860845843829\\ +0.445295850994262 -169.877774296457\\ +0.453582882551013 -169.884831348546\\ +0.462024137175122 -169.888511085227\\ +0.470622484984116 -169.888817178986\\ +0.479380849508926 -169.885752346433\\ +0.4883022086878 -169.879318356637\\ +0.497389595879016 -169.869516039854\\ +0.511338753841437 -169.848496481334\\ +0.525679112201842 -169.819893535452\\ +0.540421642070586 -169.783698402204\\ +0.56072348828519 -169.723604506775\\ +0.58178800743451 -169.649945443698\\ +0.603643850607596 -169.562663808615\\ +0.632121847581245 -169.434296182149\\ +0.661943345877428 -169.284366015767\\ +0.693171727615563 -169.11267760161\\ +0.732596542821532 -168.877613673359\\ +0.774263682681121 -168.610458227614\\ +0.818300681586717 -168.310726485692\\ +0.872852662384851 -167.91916130819\\ +0.931041348706901 -167.48164110239\\ +0.99310918137495 -166.997224024282\\ +1.06912633917349 -166.384941597583\\ +1.15096220088501 -165.708713555909\\ +1.23906215694794 -164.967175018779\\ +1.33390569003905 -164.159100909927\\ +1.44930957412626 -163.169252968514\\ +1.57469771464309 -162.093012473238\\ +1.71093390726897 -160.930170472723\\ +1.87617469143913 -159.537482277177\\ +2.05737431343286 -158.041543180141\\ +2.27697025538168 -156.282740392822\\ +2.54334576130472 -154.240642897539\\ +2.8937530190509 -151.721043363064\\ +3.41612326858549 -148.331457162494\\ +4.71708469091704 -141.705811041362\\ +5.31772317785112 -139.408523904816\\ +5.8853157751914 -137.602179934397\\ +6.39448842855712 -136.241842288182\\ +6.88395206964551 -135.134988684808\\ +7.41088151564139 -134.134137840128\\ +7.90492762269657 -133.3513913807\\ +8.43190929286622 -132.659687043771\\ +8.91148232283998 -132.141513015678\\ +9.41833153464815 -131.693595446267\\ +9.86265846131287 -131.374437099533\\ +10.3279473191894 -131.104490024304\\ +10.7159339982264 -130.923777002835\\ +11.118496048193 -130.774086994203\\ +11.5361810173649 -130.655006448824\\ +11.8597101233768 -130.585465052159\\ +12.192312516491 -130.532569880342\\ +12.5342426546138 -130.496010180101\\ +12.7675070431924 -130.480541408549\\ +13.0051125217337 -130.472065476283\\ +13.125568357718 -130.470412479711\\ +13.2471398786616 -130.47046195141\\ +13.3698374182498 -130.472197672128\\ +13.6186523675611 -130.480660697987\\ +13.8720978054164 -130.495662638985\\ +14.1302599059955 -130.517057314723\\ +14.5265392594678 -130.560798263899\\ +14.9339321612423 -130.618028674927\\ +15.4949503931459 -130.71430769656\\ +16.0770442167387 -130.832053559939\\ +16.8355080296122 -131.007009798903\\ +17.629753752872 -131.209738223722\\ +18.6324631193151 -131.484705644458\\ +19.8745954958102 -131.841008683979\\ +21.7940698430292 -132.395632830657\\ +27.4434330322828 -133.811482510281\\ +29.544079988804 -134.209407525642\\ +31.2244282309282 -134.472575442227\\ +32.6974974451167 -134.663574771984\\ +34.240061379715 -134.825118423553\\ +35.5263467657817 -134.930961478137\\ +36.8609536217214 -135.014340673778\\ +37.8947091907461 -135.06127462248\\ +38.9574561577541 -135.094217568135\\ +39.6824610456936 -135.108151239754\\ +40.4209583979642 -135.115495226042\\ +40.7953450345255 -135.116653921069\\ +41.1731993116176 -135.116115642287\\ +41.9394395566725 -135.109887015563\\ +42.7199396630681 -135.096692402766\\ +43.5149650092505 -135.07642349757\\ +44.3247859124037 -135.048980726717\\ +45.5678626584099 -134.994169477867\\ +46.8458011587293 -134.922746218816\\ +48.159579101925 -134.834487752567\\ +49.9687745385497 -134.690321864256\\ +51.8459354389293 -134.515624195234\\ +53.7936150398065 -134.310248585646\\ +56.3314267060121 -134.010402691522\\ +58.9889642550864 -133.662955101143\\ +62.3440188862789 -133.184157689435\\ +65.8898955079985 -132.639627042243\\ +70.2824426430854 -131.924665669406\\ +74.9678187496691 -131.128853071218\\ +80.7062014114933 -130.1285114532\\ +87.6885609458755 -128.900737184652\\ +96.1574600143192 -127.430924524517\\ +108.401435917834 -125.398943338222\\ +165.660595894989 -118.083001438608\\ +181.659978837536 -116.672022462249\\ +195.565071586593 -115.63780791975\\ +208.602408924844 -114.815721157166\\ +222.508879812839 -114.082730235856\\ +235.164288449433 -113.534265796706\\ +246.258591635048 -113.139449605169\\ +257.876288759386 -112.806328268358\\ +267.563844455207 -112.587675721291\\ +277.615329443679 -112.414553965266\\ +285.40097698292 -112.316358202797\\ +293.404970921572 -112.246738376862\\ +298.86528735503 -112.216876828583\\ +304.427221206439 -112.200749468133\\ +307.246884270909 -112.197972546733\\ +310.0926635932 -112.198794746844\\ +312.964801067081 -112.203273224517\\ +315.863540826787 -112.211466118429\\ +321.74181506764 -112.23923276075\\ +327.72948499234 -112.282580314321\\ +333.828586473175 -112.342011637935\\ +343.1907197459 -112.462460165849\\ +352.81541153808 -112.622111451634\\ +362.710025233077 -112.822904734861\\ +372.882130718292 -113.066886907538\\ +386.890073932801 -113.463131714857\\ +401.424249049931 -113.945472846572\\ +416.504424854512 -114.519781517654\\ +432.151112778964 -115.192368797219\\ +452.538627817026 -116.181680918925\\ +473.887960971767 -117.349510784221\\ +496.244487762885 -118.711450308201\\ +519.655724382751 -120.284378073453\\ +544.1714286866 -122.086422264649\\ +569.843705946916 -124.136824512636\\ +602.254120146183 -126.953423517933\\ +636.507908129576 -130.191691966166\\ +672.709913571241 -133.885186461422\\ +710.970943231237 -138.062457768388\\ +751.408106111675 -142.742070331981\\ +801.500696156551 -148.838092032792\\ +854.93270662683 -155.581429298284\\ +928.897872016474 -165.042871823835\\ +1000 -173.941554924916\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.637272702533\\ +0.108651577465251 -157.343134925616\\ +0.118051652856881 -158.906355995069\\ +0.128264983052803 -160.334851315179\\ +0.139361927422416 -161.636205814788\\ +0.15002933220192 -162.692049368218\\ +0.161513269350313 -163.657873136431\\ +0.173876240021625 -164.538133293649\\ +0.187185529496553 -165.336977989427\\ +0.201513573381558 -166.058240875529\\ +0.216938351838516 -166.70543847467\\ +0.231400538013072 -167.213502797993\\ +0.246826845225571 -167.669261219078\\ +0.263281546564798 -168.074477248073\\ +0.278255940220721 -168.382782870386\\ +0.294082017058709 -168.656015229694\\ +0.310808217386903 -168.894973711403\\ +0.328485736602995 -169.100364966625\\ +0.343982648902299 -169.246329412843\\ +0.360210656235708 -169.369720724351\\ +0.373742574239103 -169.452361175029\\ +0.387782841458937 -169.520842476796\\ +0.402350554886941 -169.575264341565\\ +0.413634368406335 -169.606904740939\\ +0.425234633452872 -169.630712540891\\ +0.43716022482485 -169.646711400124\\ +0.445295850994262 -169.653048360885\\ +0.453582882551013 -169.655927245763\\ +0.462024137175122 -169.655351286888\\ +0.470622484984116 -169.651322726841\\ +0.479380849508926 -169.643842826436\\ +0.4883022086878 -169.632911872633\\ +0.501996513311016 -169.610042970358\\ +0.516074871038594 -169.579401127213\\ +0.530548052536955 -169.540975244922\\ +0.550478980785488 -169.477604240533\\ +0.571158647812626 -169.400316062385\\ +0.592615181247569 -169.309046155926\\ +0.620572880677654 -169.175176089395\\ +0.649849535446982 -169.01915299159\\ +0.680507369673503 -168.840762243574\\ +0.719211887222132 -168.596821418964\\ +0.760117761795532 -168.319840746907\\ +0.803350197712457 -168.009289987199\\ +0.856905505126854 -167.60377834134\\ +0.914031074875622 -167.150798324459\\ +0.974964918348386 -166.649304693639\\ +1.04959323055824 -166.015375746948\\ +1.12993393803321 -165.315037191941\\ +1.2164242938574 -164.546696175313\\ +1.30953502048267 -163.708867253385\\ +1.42283045721431 -162.681645710345\\ +1.54592773641949 -161.563436895114\\ +1.67967487209262 -160.353480592204\\ +1.84189668079973 -158.901644577084\\ +2.01978575681984 -157.338461456218\\ +2.23536964590981 -155.495040037354\\ +2.49687842888425 -153.346080200524\\ +2.81481236050756 -150.875140178258\\ +3.26222200971169 -147.674891025869\\ +4.30163575810668 -141.467645684954\\ +5.07815211232757 -137.835400896393\\ +5.72476623970219 -135.360439924982\\ +6.33580499265845 -133.408039774615\\ +6.94771254846023 -131.770822895108\\ +7.5487992816532 -130.424145528394\\ +8.12661920009201 -129.336095833037\\ +8.74866812047975 -128.355619435894\\ +9.33189771573347 -127.58818059227\\ +9.95400828762154 -126.905864243673\\ +10.5201521761614 -126.388359780957\\ +11.118496048193 -125.93191609858\\ +11.7508713090482 -125.534827607986\\ +12.3052400435925 -125.247594811112\\ +12.8857621318549 -124.998290205377\\ +13.4936714058834 -124.784944342001\\ +14.1302599059955 -124.605307356134\\ +14.7968806268638 -124.456860831251\\ +15.3527502878039 -124.35870571774\\ +15.9295021257217 -124.277213080517\\ +16.5279206146492 -124.21076289148\\ +17.1488196987055 -124.157652115918\\ +17.7930438991856 -124.116103083489\\ +18.4614694632451 -124.084272782002\\ +19.1550055557359 -124.060263073153\\ +19.8745954958102 -124.042131807466\\ +20.8122156998634 -124.024724704329\\ +22.8222447418683 -123.992623557213\\ +23.6796006783313 -123.975285668614\\ +24.5691646298281 -123.952446861807\\ +25.2582002696278 -123.930566515898\\ +25.9665597293484 -123.903749417285\\ +26.9420371368182 -123.859016822531\\ +27.9541599906793 -123.802464613057\\ +29.0043049386403 -123.732483282408\\ +30.0939003444972 -123.647575126453\\ +31.2244282309282 -123.546366420607\\ +32.3974262952812 -123.427618506906\\ +33.9258338274107 -123.252867331243\\ +35.5263467657817 -123.047216029286\\ +37.2023668141304 -122.809261771869\\ +38.9574561577541 -122.538010540356\\ +41.1731993116176 -122.16777343327\\ +43.5149650092505 -121.748574247593\\ +46.4158883361268 -121.198531403285\\ +49.5102015955645 -120.585173964804\\ +53.2999408084406 -119.81160973644\\ +57.9112264764194 -118.8580815608\\ +63.5042516859595 -117.711160118533\\ +70.9334120498816 -116.242752854322\\ +84.5136633068495 -113.806500652595\\ +104.476597156082 -110.876698405016\\ +117.779870119709 -109.320618291319\\ +130.351224468151 -108.098005146177\\ +141.628661629916 -107.177739611156\\ +152.469572701759 -106.429805580845\\ +162.633950404818 -105.835724998096\\ +173.475935923388 -105.303463322575\\ +183.342548256232 -104.900621121581\\ +193.770333747798 -104.550997949887\\ +202.911801804663 -104.303233711474\\ +210.534524276677 -104.135400098295\\ +218.443607114946 -103.996118135597\\ +224.569799553979 -103.911321541915\\ +230.867799418716 -103.844154921575\\ +237.342425002384 -103.795362176369\\ +241.759407916908 -103.773429912008\\ +246.258591635048 -103.760260938103\\ +248.539485742973 -103.757042607064\\ +250.841505927762 -103.756112351995\\ +253.164847863143 -103.757504020268\\ +255.509709035257 -103.76125217234\\ +260.264788196906 -103.775959828357\\ +265.108360190857 -103.800526658799\\ +270.042071883779 -103.83525642114\\ +277.615329443679 -103.90710300305\\ +285.40097698292 -104.003658152519\\ +293.404970921572 -104.12612046893\\ +301.63343472593 -104.275765197925\\ +312.964801067081 -104.519931811357\\ +324.721849207315 -104.818298179861\\ +336.920570598025 -105.174610014476\\ +349.577557436321 -105.592925944366\\ +366.069514759701 -106.209742362998\\ +383.339510176665 -106.939711914058\\ +401.424249049931 -107.793168915822\\ +420.362168384463 -108.781482878052\\ +440.193518520901 -109.917139845086\\ +460.96044868285 -111.213820380129\\ +482.707096560317 -112.686466415315\\ +505.479682119114 -114.351324173422\\ +534.229329953849 -116.627670661362\\ +564.614141930371 -119.238764355784\\ +596.727119597324 -122.219227369553\\ +630.666554056761 -125.60456520077\\ +666.5363268125 -129.42917529937\\ +704.446227729899 -133.723134753379\\ +744.512291079495 -138.507480059495\\ +794.145171902947 -144.715495832423\\ +854.93270662683 -152.594499385165\\ +928.897872016474 -162.289721566414\\ +1000 -171.381286042618\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.74666664701\\ +0.108651577465251 -157.461992515278\\ +0.118051652856874 -159.035495799664\\ +0.128264983052812 -160.475162671791\\ +0.139361927422416 -161.788654935868\\ +0.151418932530433 -162.983242606846\\ +0.163009236097967 -163.950810069746\\ +0.175486714964826 -164.834319302409\\ +0.188919277620773 -165.637953525226\\ +0.2033800305847 -166.365586587781\\ +0.218947676285658 -167.020781173279\\ +0.233543813990639 -167.537218748025\\ +0.249113002606763 -168.002676397521\\ +0.265720110532463 -168.418962411256\\ +0.283434330615137 -168.787710226205\\ +0.299554933435982 -169.067055857063\\ +0.316592411198347 -169.313374066673\\ +0.334598912054985 -169.527397565891\\ +0.350384224529049 -169.681548951458\\ +0.366914237840272 -169.814050730692\\ +0.384224084605523 -169.925189928665\\ +0.398658107358057 -169.998887553358\\ +0.413634368406335 -170.059180314819\\ +0.429173237842218 -170.106160703567\\ +0.441209286319117 -170.132706583008\\ +0.453582882551013 -170.151834576804\\ +0.462024137175122 -170.160476567728\\ +0.470622484984116 -170.165836918335\\ +0.479380849508895 -170.167920040955\\ +0.488302208687769 -170.166729431289\\ +0.497389595878983 -170.162267677645\\ +0.5066461008921 -170.154536470376\\ +0.520854855057734 -170.136810948103\\ +0.535462089927392 -170.111729767533\\ +0.550478980785524 -170.079287576666\\ +0.571158647812663 -170.024563606144\\ +0.592615181247569 -169.956701403003\\ +0.614877765381008 -169.87565374176\\ +0.643885742724037 -169.755710133777\\ +0.674262224177818 -169.614927698635\\ +0.706071771413749 -169.453136472223\\ +0.746230289139067 -169.230978343317\\ +0.788672861561456 -168.977902453822\\ +0.833529396509846 -168.693483803046\\ +0.889096598952924 -168.321431846732\\ +0.948368186628579 -167.905312264799\\ +1.01159111222379 -167.444315957872\\ +1.08902296226366 -166.861466268335\\ +1.17238180328665 -166.217758298876\\ +1.26212131452257 -165.512116128699\\ +1.3587299019027 -164.743644146011\\ +1.47628147190933 -163.803246749982\\ +1.60400310705692 -162.782232974387\\ +1.75891659032778 -161.553853656507\\ +1.92879150802077 -160.228774631894\\ +2.13466303332416 -158.664577975902\\ +2.38439047009384 -156.841270943573\\ +2.68800102153763 -154.748273345397\\ +3.14410830314712 -151.878268211775\\ +4.42227398050573 -145.577009875308\\ +4.93962174387859 -143.685401375839\\ +5.41668691103327 -142.227574176278\\ +5.8313051135262 -141.159066864834\\ +6.27766010580631 -140.192079226386\\ +6.69616005485286 -139.439017561573\\ +7.07701066118229 -138.868677334088\\ +7.4795225156221 -138.372181788336\\ +7.83238259917936 -138.017551773403\\ +8.20188949920225 -137.718684049762\\ +8.51000724712218 -137.520835618787\\ +8.8296999554939 -137.360421512719\\ +9.07732652520994 -137.265038374657\\ +9.33189771573286 -137.19125670549\\ +9.59360828709266 -137.13924907165\\ +9.77214696972517 -137.116742836342\\ +9.95400828762089 -137.104006742535\\ +10.0462042134688 -137.101310357675\\ +10.1392540755888 -137.101065040391\\ +10.233165783303 -137.103272697474\\ +10.3279473191901 -137.107934786244\\ +10.5201521761621 -137.124625834388\\ +10.7159339982272 -137.151140840524\\ +10.9153593533143 -137.187475262419\\ +11.2214776820801 -137.26036066517\\ +11.5361810173649 -137.35524177923\\ +11.8597101233768 -137.472012469468\\ +12.3052400435925 -137.661506174095\\ +12.7675070431924 -137.889221419478\\ +13.369837418249 -138.226768241844\\ +14.0005838246802 -138.621856606735\\ +14.6610868404707 -139.072907705047\\ +15.494950393147 -139.685438109852\\ +16.3762407452172 -140.372260972294\\ +17.4679621512724 -141.261934333398\\ +18.8050405512853 -142.386260187981\\ +20.4319732019515 -143.773844923492\\ +22.4052786930011 -145.446231398164\\ +24.7967289250217 -147.413706151994\\ +28.2130767593936 -150.055915899828\\ +35.5263467657817 -154.95035550005\\ +44.7353305449872 -159.788896189793\\ +52.3261423948667 -162.93218822977\\ +60.086758917194 -165.574060325971\\ +68.9983712143025 -168.087172893437\\ +79.965545258922 -170.635603827965\\ +93.5343152029291 -173.219951502749\\ +115.628013120735 -176.590366161659\\ +152.469572701759 -180.9971509546\\ +173.475935923388 -183.169079786976\\ +193.77033374781 -185.150400214147\\ +212.484535249894 -186.920951734037\\ +233.006141069691 -188.83390292066\\ +253.164847863126 -190.708129017694\\ +272.543253128086 -192.521946200021\\ +293.404970921591 -194.501532222984\\ +315.863540826787 -196.676142673798\\ +340.041193270368 -199.0791274237\\ +362.710025233053 -201.398829028979\\ +386.890073932776 -203.951153522946\\ +412.682084570317 -206.768309186962\\ +440.193518520901 -209.886337115313\\ +469.539001068009 -213.345485206276\\ +500.840798984813 -217.190513821009\\ +534.229329953814 -221.470804326564\\ +569.843705946879 -226.240031847716\\ +607.832312829751 -231.554993949569\\ +648.353428605487 -237.472956861865\\ +691.575882873852 -244.046639719156\\ +737.679760252757 -251.315872660564\\ +794.145171902895 -260.492458570856\\ +854.932706626886 -270.551478299092\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.855185331237\\ +0.108651577465251 -157.557841584096\\ +0.118051652856881 -159.118137897841\\ +0.128264983052803 -160.54415516197\\ +0.139361927422416 -161.843627064918\\ +0.151418932530433 -163.02387238987\\ +0.163009236097978 -163.978442623114\\ +0.175486714964814 -164.848725983657\\ +0.188919277620761 -165.638898218969\\ +0.2033800305847 -166.352814680888\\ +0.218947676285658 -166.99400956644\\ +0.233543813990654 -167.497935888331\\ +0.24911300260678 -167.950606641171\\ +0.265720110532445 -168.353795399855\\ +0.283434330615137 -168.709096778937\\ +0.299554933435982 -168.976606719769\\ +0.316592411198347 -169.210772365101\\ +0.334598912055007 -169.412295470718\\ +0.350384224529072 -169.555740524273\\ +0.366914237840248 -169.677251660847\\ +0.380697987140222 -169.758848373026\\ +0.394999546122053 -169.826695869702\\ +0.409838367175735 -169.880895006507\\ +0.421332174384734 -169.912639100886\\ +0.433148322337641 -169.936783631643\\ +0.445295850994262 -169.953353319244\\ +0.453582882551013 -169.960201491422\\ +0.462024137175122 -169.96369659143\\ +0.470622484984116 -169.96384230153\\ +0.479380849508926 -169.960641352571\\ +0.4883022086878 -169.954095532542\\ +0.497389595879016 -169.944205695471\\ +0.511338753841437 -169.923100502092\\ +0.525679112201842 -169.894466804141\\ +0.540421642070586 -169.858295948613\\ +0.56072348828519 -169.798320333536\\ +0.58178800743451 -169.72487819764\\ +0.603643850607596 -169.63791273582\\ +0.632121847581245 -169.510080971485\\ +0.661943345877428 -169.360844455055\\ +0.693171727615563 -169.190009363107\\ +0.732596542821532 -168.956183265523\\ +0.774263682681121 -168.690503036586\\ +0.818300681586717 -168.392488857784\\ +0.872852662384851 -168.003241352615\\ +0.931041348706901 -167.568386515422\\ +0.99310918137495 -167.086993998026\\ +1.06912633917349 -166.478624667051\\ +1.15096220088501 -165.80681742474\\ +1.23906215694794 -165.070231692223\\ +1.33390569003905 -164.267669496681\\ +1.44930957412626 -163.284728315767\\ +1.57469771464309 -162.216187876458\\ +1.71093390726897 -161.061892097595\\ +1.87617469143913 -159.679763539354\\ +2.05737431343286 -158.195590298839\\ +2.27697025538168 -156.451241719226\\ +2.54334576130472 -154.426887150379\\ +2.8937530190509 -151.930872083588\\ +3.41612326858549 -148.576775386334\\ +4.6737951079925 -142.219861891799\\ +5.26892142135084 -139.952096398609\\ +5.7777901179705 -138.327137279148\\ +6.27766010580631 -136.976014094415\\ +6.75818116816117 -135.877098685668\\ +7.2754835291961 -134.884510414733\\ +7.76050333513376 -134.109724096842\\ +8.20188949920225 -133.518837720644\\ +8.66837993001965 -132.99785558509\\ +9.1614024571388 -132.548359161257\\ +9.59360828709328 -132.229108275181\\ +10.0462042134681 -131.960427329527\\ +10.4236067397639 -131.781862433064\\ +10.8151870255226 -131.635460062408\\ +11.2214776820801 -131.52092755923\\ +11.5361810173649 -131.455697198861\\ +11.8597101233768 -131.407941291774\\ +12.0804213467733 -131.385685386364\\ +12.3052400435925 -131.37099476431\\ +12.5342426546138 -131.363775314576\\ +12.6503372039588 -131.362935797377\\ +12.7675070431924 -131.363925351895\\ +13.0051125217337 -131.371335657269\\ +13.2471398786616 -131.385889522829\\ +13.4936714058834 -131.40746280455\\ +13.8720978054164 -131.452694430058\\ +14.2611370719414 -131.512947465985\\ +14.6610868404698 -131.587710867704\\ +15.2118551798608 -131.709017031171\\ +15.7833140565207 -131.853751260507\\ +16.5279206146492 -132.065322344795\\ +17.3076553419573 -132.308003013931\\ +18.2920450484626 -132.635512123185\\ +19.5114834684666 -133.059723480896\\ +21.1995345753606 -133.655461837411\\ +24.3436887354314 -134.713153232043\\ +27.6976193503698 -135.6862262205\\ +30.0939003444972 -136.260477032396\\ +32.100108955431 -136.661415880374\\ +33.9258338274107 -136.964718914101\\ +35.5263467657817 -137.184446983082\\ +37.2023668141304 -137.370744872596\\ +38.5999361767968 -137.493735503747\\ +40.0500075787373 -137.592073790241\\ +41.1731993116176 -137.648886123798\\ +42.327890655736 -137.690631145621\\ +43.1156199031825 -137.709866672542\\ +43.9180089259608 -137.722081235079\\ +44.7353305449843 -137.727159023527\\ +45.1496777203605 -137.726987595525\\ +45.5678626584099 -137.724992129249\\ +46.4158883361268 -137.715480610771\\ +47.2796959160026 -137.698532552984\\ +48.159579101925 -137.674064119632\\ +49.5102015955645 -137.623097379562\\ +50.8987019351974 -137.554820321381\\ +52.3261423948667 -137.469053499993\\ +54.2918617761888 -137.327259562374\\ +56.3314267060121 -137.153922580642\\ +58.4476113163379 -136.948965221802\\ +61.2049837247677 -136.648399870404\\ +64.0924401935642 -136.298925028834\\ +67.7377599751758 -135.816035797344\\ +71.5904108596503 -135.26563310289\\ +76.3629826128223 -134.541551726128\\ +81.4537176628054 -133.734099073927\\ +87.6885609458755 -132.717225753353\\ +95.2750047242714 -131.466546478252\\ +104.476597156082 -129.965807809461\\ +116.698981861712 -128.049250727939\\ +142.940453343172 -124.381850906354\\ +167.194975973196 -121.603650116888\\ +185.040701954232 -119.922254141574\\ +201.049641626046 -118.654320394234\\ +216.438908606406 -117.631960701679\\ +230.867799418716 -116.834149164949\\ +243.99862972595 -116.232994321483\\ +255.509709035257 -115.797203424822\\ +267.563844455207 -115.426519900264\\ +277.615329443679 -115.180749652475\\ +288.044415339625 -114.983513218742\\ +296.122543798796 -114.869425213536\\ +304.427221206439 -114.785969505201\\ +310.0926635932 -114.748105648395\\ +315.863540826787 -114.72500934998\\ +318.789129267769 -114.71915064823\\ +321.74181506764 -114.717167686652\\ +324.721849207315 -114.719123785093\\ +327.72948499234 -114.725083283185\\ +330.764978074424 -114.73511156488\\ +336.920570598025 -114.767641385775\\ +343.1907197459 -114.817258156913\\ +349.577557436321 -114.884525116958\\ +359.381366380452 -115.019799124949\\ +369.46012051994 -115.198152176313\\ +379.82153061908 -115.421743333692\\ +390.473523688559 -115.692846550514\\ +405.142317111462 -116.132384513314\\ +420.362168384463 -116.666701195981\\ +436.153778920815 -117.302272240256\\ +452.538627817026 -118.046038389076\\ +473.887960971767 -119.139264628285\\ +496.244487762885 -120.428832272736\\ +519.655724382751 -121.931649038761\\ +544.1714286866 -123.665857256941\\ +569.843705946916 -125.650699591264\\ +596.727119597324 -127.906232195088\\ +630.666554056761 -130.998823712932\\ +666.5363268125 -134.544467907671\\ +704.446227729899 -138.572787950302\\ +744.512291079495 -143.104350155629\\ +794.145171902947 -149.033060444997\\ +847.086826655735 -155.621679159461\\ +911.92675984596 -163.845839532566\\ +1000 -174.827206000333\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.829778768684\\ +0.108651577465251 -157.551435000356\\ +0.118051652856874 -159.131858070731\\ +0.128264983052812 -160.579086787074\\ +0.139361927422416 -161.900839239188\\ +0.151418932530433 -163.104445855106\\ +0.163009236097967 -164.080719613893\\ +0.175486714964826 -164.97363508356\\ +0.188919277620773 -165.787428136247\\ +0.2033800305847 -166.526029154933\\ +0.218947676285658 -167.193061587666\\ +0.235706941399663 -167.791843348569\\ +0.251420334814296 -168.262168726231\\ +0.268181260945313 -168.684386806852\\ +0.28605955351758 -169.06016020825\\ +0.302329468440578 -169.34642323809\\ +0.319524750575915 -169.600510149046\\ +0.337698031082496 -169.823179667485\\ +0.356904934567502 -170.015105600689\\ +0.373742574239127 -170.15198783514\\ +0.391374560198054 -170.268230732842\\ +0.406077202570047 -170.346540936813\\ +0.421332174384734 -170.411925223305\\ +0.43716022482485 -170.46448438874\\ +0.44942026621191 -170.49553952532\\ +0.462024137175122 -170.519460032633\\ +0.474981480322836 -170.536272230248\\ +0.483820966492578 -170.54354227253\\ +0.49282495700403 -170.547668252511\\ +0.501996513310983 -170.548654697248\\ +0.511338753841404 -170.546505285982\\ +0.520854855057734 -170.541222860901\\ +0.53054805253699 -170.532809438269\\ +0.545427130533012 -170.514321093056\\ +0.560723488285227 -170.488791202576\\ +0.576448828292606 -170.456216481947\\ +0.598104096238105 -170.401811989547\\ +0.620572880677654 -170.334842898846\\ +0.643885742724037 -170.255270499164\\ +0.674262224177818 -170.13800505975\\ +0.706071771413749 -170.000849388238\\ +0.739381991917545 -169.843660969963\\ +0.781435060784497 -169.628360087593\\ +0.825879938784456 -169.383658405781\\ +0.872852662384851 -169.109207430861\\ +0.931041348706901 -168.750918209545\\ +0.99310918137495 -168.35101845553\\ +1.05931476351831 -167.908894740949\\ +1.14039960197009 -167.351157348076\\ +1.22769104798839 -166.736728796468\\ +1.3216641839466 -166.065007934487\\ +1.43600898465122 -165.240431605824\\ +1.56024641436628 -164.343003144248\\ +1.69523234155419 -163.373585326083\\ +1.8589566796357 -162.214346862923\\ +2.05737431343286 -160.844591455362\\ +2.298059988759 -159.247994110774\\ +2.61467321180114 -157.273724255593\\ +3.11525422355535 -154.472757537679\\ +3.92277675892774 -150.797900754665\\ +4.38168993151404 -149.148153492599\\ +4.76077523022607 -148.003175825259\\ +5.12518692705354 -147.072618174051\\ +5.46685729972028 -146.338908847406\\ +5.7777901179705 -145.778216178001\\ +6.10640754223191 -145.287220364788\\ +6.3944884285567 -144.935699374822\\ +6.69616005485286 -144.640152555641\\ +6.94771254846068 -144.446141705618\\ +7.2087150337825 -144.291496059916\\ +7.41088151564187 -144.202209745014\\ +7.61871770232323 -144.136443080744\\ +7.76050333513376 -144.10593274026\\ +7.90492762269657 -144.086268145012\\ +7.97814457207674 -144.080548856773\\ +8.05203967082557 -144.077595250831\\ +8.12661920009201 -144.07742459458\\ +8.20188949920225 -144.080053750696\\ +8.27785696619849 -144.08549918827\\ +8.43190929286622 -144.104902740263\\ +8.58882855954615 -144.135758916654\\ +8.74866812047975 -144.178184867675\\ +8.9940221740918 -144.263757270516\\ +9.24625711640539 -144.37595439102\\ +9.50556592010074 -144.515087976589\\ +9.86265846131223 -144.742975995933\\ +10.233165783303 -145.019805588288\\ +10.6175918348305 -145.346032972837\\ +11.118496048193 -145.823802029317\\ +11.6430313292089 -146.379729926192\\ +12.192312516491 -147.013990316999\\ +12.8857621318549 -147.878353627531\\ +13.6186523675602 -148.854708329194\\ +14.5265392594687 -150.133697848738\\ +15.494950393147 -151.560632516965\\ +16.6810053720008 -153.367674963204\\ +17.9578464700207 -155.355874512816\\ +19.5114834684654 -157.798452224566\\ +21.199534575362 -160.445375625677\\ +23.2469705998571 -163.606805537511\\ +25.7282596744791 -167.325044859936\\ +28.7381269185093 -171.630967097259\\ +32.6974974451189 -176.926306795728\\ +38.2456972246693 -183.653282117792\\ +47.7176094893891 -193.479876259535\\ +69.6374473062844 -210.288539548327\\ +82.2081575524031 -217.345703539905\\ +95.2750047242777 -223.323010163536\\ +108.401435917834 -228.279889215651\\ +122.204468663144 -232.635241006573\\ +137.765076954912 -236.748944743765\\ +155.307057393347 -240.631291045117\\ +176.704352608888 -244.581464696917\\ +204.791209666517 -248.865186817418\\ +321.74181506764 -261.770735884863\\ +352.81541153808 -264.715045799753\\ +383.33951017664 -267.585166106694\\ +408.894822629509 -270.005563149879\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.648753049518\\ +0.108651577465251 -157.355608264582\\ +0.118051652856881 -158.919908167911\\ +0.128264983052803 -160.349575571378\\ +0.139361927422416 -161.652203446892\\ +0.15002933220192 -162.709270968339\\ +0.161513269350313 -163.676412252975\\ +0.173876240021625 -164.558090601062\\ +0.187185529496553 -165.358461825105\\ +0.201513573381558 -166.081367815707\\ +0.216938351838516 -166.730333951765\\ +0.231400538013072 -167.240056103552\\ +0.246826845225571 -167.697582482169\\ +0.263281546564798 -168.104683856348\\ +0.278255940220721 -168.414704762131\\ +0.294082017058709 -168.689749468205\\ +0.310808217386903 -168.930622791397\\ +0.328485736602995 -169.138037107133\\ +0.343982648902299 -169.285774445951\\ +0.360210656235708 -169.41102164437\\ +0.373742574239103 -169.495209122046\\ +0.387782841458937 -169.565295041027\\ +0.402350554886941 -169.621381215378\\ +0.413634368406335 -169.654310325098\\ +0.425234633452872 -169.679442578006\\ +0.43716022482485 -169.69680260087\\ +0.445295850994262 -169.704067887863\\ +0.453582882551013 -169.707892155396\\ +0.462024137175122 -169.70827894058\\ +0.470622484984116 -169.705230795966\\ +0.479380849508926 -169.698749297368\\ +0.4883022086878 -169.688835051818\\ +0.501996513311016 -169.667526249323\\ +0.516074871038594 -169.638487547885\\ +0.530548052536955 -169.601708995318\\ +0.550478980785488 -169.540605198833\\ +0.571158647812626 -169.465667729542\\ +0.592615181247569 -169.376834976123\\ +0.620572880677654 -169.246137539886\\ +0.649849535446982 -169.093433001549\\ +0.680507369673503 -168.918513077911\\ +0.719211887222132 -168.678947476999\\ +0.760117761795532 -168.406582481994\\ +0.803350197712457 -168.100900039025\\ +0.856905505126854 -167.70140426181\\ +0.914031074875622 -167.254821918273\\ +0.974964918348386 -166.760129205958\\ +1.03996091395414 -166.216266025397\\ +1.11956431948387 -165.533125404598\\ +1.20526093687088 -164.782796159483\\ +1.29751716865759 -163.963809517126\\ +1.40977287162893 -162.958784507381\\ +1.5317404637021 -161.863816861\\ +1.66426017648587 -160.678107307879\\ +1.82499324481618 -159.254305707703\\ +2.001249798969 -157.720165587939\\ +2.21485523372639 -155.909609875645\\ +2.47396410088675 -153.797184972936\\ +2.78898029238043 -151.365952192128\\ +3.20262069365769 -148.414453526497\\ +3.99578030189527 -143.517155438594\\ +4.89428989611449 -139.076540339208\\ +5.56859644428648 -136.401960445456\\ +6.16296625513279 -134.435343304463\\ +6.75818116816117 -132.776516160888\\ +7.34287044716661 -131.403761489468\\ +7.90492762269657 -130.287708592825\\ +8.51000724712218 -129.275181439119\\ +9.07732652520994 -128.476818318457\\ +9.68246611930323 -127.761339696477\\ +10.3279473191894 -127.128638614078\\ +10.9153593533136 -126.651288478501\\ +11.5361810173649 -126.232394834697\\ +12.192312516491 -125.869889843248\\ +12.7675070431924 -125.608969671527\\ +13.3698374182498 -125.383509750578\\ +14.0005838246811 -125.191379192426\\ +14.6610868404698 -125.030182035013\\ +15.3527502878039 -124.897269597806\\ +15.9295021257217 -124.809372644909\\ +16.5279206146492 -124.73615524287\\ +17.1488196987055 -124.67595480367\\ +17.7930438991856 -124.627033793802\\ +18.4614694632451 -124.587588620781\\ +19.1550055557359 -124.555759482427\\ +20.0586777950826 -124.5237772331\\ +21.395888713434 -124.486759903224\\ +22.8222447418683 -124.449266551169\\ +23.6796006783313 -124.423591544937\\ +24.5691646298281 -124.392421469964\\ +25.4921465445141 -124.35388510541\\ +26.4498018242767 -124.306171973485\\ +27.4434330322828 -124.247546896761\\ +28.4743916646731 -124.176364150403\\ +29.544079988804 -124.0910810094\\ +30.6539529505651 -123.99027049594\\ +31.8055201533286 -123.872633141954\\ +33.3060034362469 -123.700168374039\\ +34.8772747481423 -123.497665683182\\ +36.5226736430817 -123.263565784977\\ +38.2456972246693 -122.99670959664\\ +40.4209583979642 -122.632219969236\\ +42.7199396630681 -122.219002914368\\ +45.1496777203605 -121.757407907996\\ +48.159579101925 -121.159347627905\\ +51.8459354389293 -120.401383084883\\ +55.8144624945484 -119.570612381272\\ +60.6432939540815 -118.559905177678\\ +67.1161176749614 -117.236052921655\\ +77.0702711421226 -115.325482434142\\ +108.401435917834 -110.564702140835\\ +121.082975023208 -109.140282861145\\ +132.777082935543 -108.037713009706\\ +144.264395121811 -107.124989361222\\ +155.307057393347 -106.386179081392\\ +165.660595894989 -105.801977567636\\ +176.704352608899 -105.281436562345\\ +186.754584276109 -104.89019369492\\ +195.565071586593 -104.605814723598\\ +204.791209666503 -104.361875512471\\ +212.484535249894 -104.197601801825\\ +220.466873523944 -104.062352435139\\ +226.64980792737 -103.980908141132\\ +233.006141069691 -103.917389936562\\ +239.540735872084 -103.872556479329\\ +243.99862972595 -103.853444236792\\ +248.539485742973 -103.843245463479\\ +250.841505927762 -103.841570170515\\ +253.164847863143 -103.84222247251\\ +255.509709035257 -103.845236905846\\ +260.264788196906 -103.858493968823\\ +265.108360190857 -103.881632498157\\ +270.042071883779 -103.914956045767\\ +275.067600790807 -103.958781097104\\ +282.781797962532 -104.04493457582\\ +290.712337727252 -104.156635377895\\ +298.86528735503 -104.295131950402\\ +310.0926635932 -104.523783742852\\ +321.74181506764 -104.805825899644\\ +333.828586473175 -105.144927394271\\ +346.369417737168 -105.545064606828\\ +359.381366380452 -106.010543735479\\ +376.335836228661 -106.691414032819\\ +394.090164040346 -107.491628500804\\ +412.68208457029 -108.422128993004\\ +432.151112778964 -109.494941489571\\ +452.538627817026 -110.723256153078\\ +473.887960971767 -112.121499853984\\ +496.244487762885 -113.705390616881\\ +524.468874949529 -115.875180568498\\ +554.298551568474 -118.368705758081\\ +585.82482001525 -121.220006662653\\ +619.144175597768 -124.464459812793\\ +654.358601888336 -128.137116225112\\ +691.575882873852 -132.269933813694\\ +730.909932860277 -136.887580973765\\ +779.636013040541 -142.902054124154\\ +831.610415323096 -149.574332908481\\ +895.265712599616 -157.914084105094\\ +990.822809900383 -170.253632048783\\ +1000 -171.403336432841\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.828809956318\\ +0.108651577465251 -157.551242923533\\ +0.118051652856874 -159.132468297301\\ +0.128264983052812 -160.580525487535\\ +0.139361927422416 -161.903134151512\\ +0.151418932530433 -163.107627173675\\ +0.163009236097967 -164.084716825202\\ +0.175486714964826 -164.978477416574\\ +0.188919277620773 -165.793148054079\\ +0.2033800305847 -166.532662767933\\ +0.218947676285658 -167.200649049281\\ +0.235706941399663 -167.80042924074\\ +0.251420334814296 -168.271668588124\\ +0.268181260945313 -168.694841911394\\ +0.28605955351758 -169.071615520075\\ +0.305129701718286 -169.403488365621\\ +0.322484249840837 -169.653229966714\\ +0.340825854742331 -169.871714079131\\ +0.360210656235685 -170.059603453499\\ +0.377204249341719 -170.193227933404\\ +0.394999546122078 -170.306303196268\\ +0.409838367175735 -170.38214037749\\ +0.425234633452872 -170.445102922774\\ +0.441209286319117 -170.49528895323\\ +0.453582882551013 -170.524594586832\\ +0.466303492974262 -170.546790441389\\ +0.479380849508895 -170.561901829064\\ +0.488302208687769 -170.568050763291\\ +0.497389595878983 -170.571065521946\\ +0.5066461008921 -170.570950361821\\ +0.51607487103856 -170.567708699847\\ +0.525679112201876 -170.561343124183\\ +0.535462089927392 -170.551855405522\\ +0.550478980785524 -170.531771702784\\ +0.565917016324646 -170.504665085184\\ +0.58178800743451 -170.470531554178\\ +0.603643850607596 -170.414075378792\\ +0.62632074521987 -170.345083857117\\ +0.649849535446982 -170.263517031357\\ +0.680507369673503 -170.143796354599\\ +0.712611543011144 -170.004225974367\\ +0.746230289139067 -169.844662341065\\ +0.788672861561456 -169.62656279935\\ +0.833529396509846 -169.379119385865\\ +0.88093719044741 -169.101985847538\\ +0.939664831495459 -168.740647317674\\ +1.00230754828383 -168.337794572892\\ +1.06912633917342 -167.892828813703\\ +1.15096220088509 -167.332004897013\\ +1.23906215694794 -166.714699956981\\ +1.33390569003905 -166.040363751871\\ +1.44930957412617 -165.213237943598\\ +1.57469771464299 -164.313787212874\\ +1.72678090388442 -163.230828387085\\ +1.8935521797563 -162.062757080167\\ +2.09566239948036 -160.68552466182\\ +2.34082727617843 -159.084365330522\\ +2.66333272517501 -157.111092668214\\ +3.26222200971147 -153.882955436355\\ +3.92277675892774 -150.985281838055\\ +4.38168993151404 -149.357408420251\\ +4.76077523022607 -148.230473646623\\ +5.12518692705354 -147.317236105378\\ +5.46685729972028 -146.599742313152\\ +5.7777901179705 -146.053784728754\\ +6.10640754223191 -145.578337818414\\ +6.3944884285567 -145.24042567191\\ +6.63470812109201 -145.010687228276\\ +6.88395206964506 -144.8188089604\\ +7.14255928554351 -144.666345651982\\ +7.34287044716709 -144.578750266591\\ +7.54879928165369 -144.514738222966\\ +7.68928372075853 -144.485440826443\\ +7.83238259917936 -144.467029277799\\ +7.90492762269657 -144.461953059474\\ +7.97814457207674 -144.459654353353\\ +8.05203967082557 -144.460151040608\\ +8.12661920009201 -144.463460592086\\ +8.20188949920225 -144.469600081785\\ +8.35452805838285 -144.490435188057\\ +8.51000724712218 -144.522784948165\\ +8.66837993001965 -144.566771460845\\ +8.91148232283998 -144.654821148674\\ +9.1614024571382 -144.769674229121\\ +9.41833153464754 -144.911659273909\\ +9.77214696972517 -145.14368240615\\ +10.1392540755888 -145.425064279125\\ +10.5201521761621 -145.756300545369\\ +11.0164594963369 -146.241032146634\\ +11.5361810173649 -146.804771733792\\ +12.0804213467733 -147.447765802962\\ +12.7675070431924 -148.323925259878\\ +13.4936714058825 -149.313619947567\\ +14.3932264471932 -150.610265593863\\ +15.3527502878049 -152.057252557675\\ +16.5279206146492 -153.890304556182\\ +17.7930438991856 -155.907939708315\\ +19.3324228755497 -158.387807995007\\ +21.0049824165405 -161.076411236796\\ +23.033628731422 -164.289069604688\\ +25.4921465445141 -168.069032135934\\ +28.4743916646712 -172.447434489441\\ +32.3974262952833 -177.831430828466\\ +37.8947091907461 -184.666029446036\\ +48.159579101925 -195.464170295209\\ +65.8898955080028 -209.538746387989\\ +77.7841107128642 -216.677647089494\\ +89.3204599858045 -222.350455769496\\ +101.626508939302 -227.372891683543\\ +114.566872863485 -231.780165088572\\ +129.154966501481 -235.934510603105\\ +145.600599502069 -239.843226719418\\ +164.140297114445 -243.526746491216\\ +186.754584276097 -247.280834491787\\ +218.443607114946 -251.62970816483\\ +298.865287355049 -260.26868872113\\ +330.764978074424 -263.28695360111\\ +362.710025233053 -266.24697958454\\ +394.090164040321 -269.15666401825\\ +405.142317111489 -270.190575438794\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.824254063595\\ +0.108651577465251 -157.546567964932\\ +0.118051652856874 -159.127730824708\\ +0.128264983052812 -160.57580105579\\ +0.139361927422416 -161.898521031684\\ +0.151418932530433 -163.103250317713\\ +0.163009236097967 -164.080679642896\\ +0.175486714964826 -164.974927092666\\ +0.188919277620773 -165.790258257238\\ +0.2033800305847 -166.530635554046\\ +0.218947676285658 -167.199716245218\\ +0.235706941399663 -167.800853159196\\ +0.251420334814296 -168.273518744565\\ +0.268181260945313 -168.698362268105\\ +0.28605955351758 -169.07706889331\\ +0.305129701718286 -169.411155052662\\ +0.322484249840837 -169.663028888292\\ +0.340825854742331 -169.883871615819\\ +0.360210656235685 -170.07435371791\\ +0.377204249341719 -170.210322468764\\ +0.394999546122078 -170.32591251868\\ +0.409838367175735 -170.403886232701\\ +0.425234633452872 -170.469097555197\\ +0.441209286319117 -170.52164575324\\ +0.453582882551013 -170.552798053503\\ +0.466303492974262 -170.576905352111\\ +0.479380849508895 -170.593993353571\\ +0.488302208687769 -170.601496425252\\ +0.497389595878983 -170.605894569224\\ +0.5066461008921 -170.607192156222\\ +0.51607487103856 -170.605392719015\\ +0.525679112201876 -170.600498964554\\ +0.535462089927392 -170.592512786315\\ +0.550478980785524 -170.57473739885\\ +0.565917016324646 -170.550006711208\\ +0.58178800743451 -170.518317220115\\ +0.603643850607596 -170.46522665407\\ +0.62632074521987 -170.399724217407\\ +0.649849535446982 -170.321771566684\\ +0.680507369673503 -170.20674732262\\ +0.712611543011144 -170.072075791475\\ +0.746230289139067 -169.917618145174\\ +0.788672861561456 -169.705926865649\\ +0.833529396509846 -169.465208519825\\ +0.88093719044741 -169.195129139823\\ +0.939664831495459 -168.842455062194\\ +1.00230754828383 -168.448758726812\\ +1.06912633917342 -168.013469537364\\ +1.15096220088509 -167.464381988209\\ +1.23906215694794 -166.859586233302\\ +1.33390569003905 -166.198589981525\\ +1.44930957412617 -165.387544283619\\ +1.57469771464299 -164.505405798761\\ +1.72678090388442 -163.443261582856\\ +1.8935521797563 -162.29782678126\\ +2.09566239948036 -160.947815783807\\ +2.34082727617843 -159.379429960133\\ +2.66333272517501 -157.448949231872\\ +3.35371015200313 -153.86927359382\\ +3.92277675892774 -151.487919338138\\ +4.34147833005496 -150.044973922032\\ +4.71708469091673 -148.956025092259\\ +5.0781521123279 -148.077692891107\\ +5.41668691103327 -147.391817681531\\ +5.72476623970219 -146.873913077436\\ +5.99484250318932 -146.496698336062\\ +6.27766010580631 -146.172812274386\\ +6.51349094627252 -145.954451890657\\ +6.75818116816072 -145.774165351276\\ +6.94771254846068 -145.664917840028\\ +7.14255928554351 -145.578658272775\\ +7.34287044716709 -145.516013483769\\ +7.4795225156221 -145.487666008907\\ +7.61871770232323 -145.470250002435\\ +7.68928372075853 -145.465692692379\\ +7.76050333513376 -145.463929145807\\ +7.83238259917936 -145.464978882653\\ +7.90492762269657 -145.468860999856\\ +8.05203967082557 -145.485196870383\\ +8.20188949920225 -145.513081765748\\ +8.35452805838285 -145.552654302166\\ +8.58882855954615 -145.634214748103\\ +8.8296999554939 -145.742786635658\\ +9.07732652520994 -145.878754952691\\ +9.41833153464754 -146.103264747821\\ +9.77214696972517 -146.377837481087\\ +10.1392540755888 -146.703101867175\\ +10.6175918348305 -147.18174702506\\ +11.118496048193 -147.741169067616\\ +11.6430313292089 -148.381863871298\\ +12.3052400435925 -149.258269467476\\ +13.0051125217337 -150.251868380568\\ +13.7447909267747 -151.361943163911\\ +14.6610868404707 -152.802488764802\\ +15.6384675830231 -154.39676075953\\ +16.8355080296122 -156.401758723684\\ +18.1241754737421 -158.594520350639\\ +19.6922025547908 -161.27417151977\\ +21.5940615210368 -164.497488557817\\ +23.8989256623109 -168.313897960581\\ +26.6947849403426 -172.759535137281\\ +30.372635797035 -178.252473690206\\ +35.5263467657817 -185.249402978637\\ +45.5678626584129 -196.738208179817\\ +59.535331308141 -208.991554336525\\ +69.6374473062844 -215.872651437291\\ +79.965545258922 -221.651397960092\\ +90.9827289445497 -226.749041048577\\ +102.567793074445 -231.203837348184\\ +114.566872863485 -235.071050696844\\ +127.969686821587 -238.706962034802\\ +142.940453343181 -242.124245359411\\ +161.141427725301 -245.604375843069\\ +183.34254825622 -249.137290354862\\ +214.452607597172 -253.218800747976\\ +290.712337727271 -261.076182066164\\ +321.74181506764 -263.899549667731\\ +352.81541153808 -266.668741946145\\ +383.33951017664 -269.391993943932\\ +390.473523688533 -270.03365271426\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.64149558636\\ +0.108651577465251 -157.347820065742\\ +0.118051652856881 -158.911568522788\\ +0.128264983052803 -160.340668043726\\ +0.139361927422416 -161.642717486147\\ +0.15002933220192 -162.699268239234\\ +0.161513269350313 -163.665897470162\\ +0.173876240021625 -164.547076932969\\ +0.187185529496553 -165.346972551323\\ +0.201513573381558 -166.069438068851\\ +0.216938351838516 -166.718012480045\\ +0.231400538013072 -167.227443860973\\ +0.246826845225571 -167.684739721955\\ +0.263281546564798 -168.091682814231\\ +0.278255940220721 -168.401635034709\\ +0.294082017058709 -168.676681407408\\ +0.310808217386903 -168.917634844935\\ +0.328485736602995 -169.125215681129\\ +0.343982648902299 -169.273163327872\\ +0.360210656235708 -169.39869035174\\ +0.373742574239103 -169.483154372522\\ +0.387782841458937 -169.55356566251\\ +0.402350554886941 -169.610027710026\\ +0.413634368406335 -169.643272774603\\ +0.425234633452872 -169.668750798781\\ +0.43716022482485 -169.686486910037\\ +0.445295850994262 -169.694019984015\\ +0.453582882551013 -169.69812582214\\ +0.462024137175122 -169.698808062431\\ +0.470622484984116 -169.696069345605\\ +0.479380849508926 -169.689911322987\\ +0.4883022086878 -169.680334664634\\ +0.501996513311016 -169.659558808994\\ +0.516074871038594 -169.631085036482\\ +0.530548052536955 -169.594903457073\\ +0.550478980785488 -169.534645475916\\ +0.571158647812626 -169.460610671808\\ +0.592615181247569 -169.372737164712\\ +0.620572880677654 -169.243317745092\\ +0.649849535446982 -169.091978025595\\ +0.680507369673503 -168.918508562733\\ +0.719211887222132 -168.68079478376\\ +0.760117761795532 -168.410400903308\\ +0.803350197712457 -168.106806779162\\ +0.856905505126854 -167.709893136136\\ +0.914031074875622 -167.26604796164\\ +0.974964918348386 -166.774246478931\\ +1.03996091395414 -166.233428929159\\ +1.11956431948387 -165.553960502452\\ +1.20526093687088 -164.807512842242\\ +1.29751716865759 -163.99262534\\ +1.40977287162893 -162.992485864451\\ +1.5317404637021 -161.902713575814\\ +1.66426017648587 -160.722534290244\\ +1.82499324481618 -159.305306634238\\ +2.001249798969 -157.778238471527\\ +2.21485523372639 -155.976102583681\\ +2.47396410088675 -153.873723063739\\ +2.78898029238043 -151.454522648549\\ +3.20262069365769 -148.51861446166\\ +4.03278998219369 -143.447126933749\\ +4.89428989611449 -139.243127917326\\ +5.56859644428648 -136.593034958804\\ +6.16296625513279 -134.647836339911\\ +6.75818116816117 -133.010299649181\\ +7.34287044716661 -131.658299030291\\ +7.90492762269657 -130.562041588811\\ +8.51000724712218 -129.57064819225\\ +9.07732652520994 -128.791926931017\\ +9.68246611930323 -128.09720801895\\ +10.2331657833024 -127.56857413194\\ +10.8151870255226 -127.100911178922\\ +11.430311291145 -126.692884775073\\ +11.9695570235905 -126.397030390804\\ +12.5342426546138 -126.139796828472\\ +13.125568357718 -125.919445944185\\ +13.7447909267756 -125.73395845574\\ +14.2611370719414 -125.609138876749\\ +14.7968806268638 -125.503875477402\\ +15.3527502878039 -125.416770662861\\ +15.9295021257217 -125.346328958907\\ +16.5279206146492 -125.290962917549\\ +16.9914417203464 -125.258328589276\\ +17.4679621512724 -125.232500432438\\ +17.9578464700207 -125.212721317793\\ +18.4614694632451 -125.198213811952\\ +18.9792164283904 -125.188182546992\\ +19.5114834684666 -125.181816756551\\ +20.2444650997683 -125.17760613229\\ +21.1995345753606 -125.176431290936\\ +22.6128006633721 -125.175425723866\\ +23.4622884814232 -125.171526092384\\ +24.1202820761804 -125.165501989471\\ +24.7967289250217 -125.155912000307\\ +25.4921465445141 -125.141954314273\\ +26.2070669648381 -125.122846102292\\ +26.9420371368182 -125.097826964014\\ +27.6976193503698 -125.066162313615\\ +28.4743916646731 -125.027146676767\\ +29.544079988804 -124.962532476509\\ +30.6539529505651 -124.882160559491\\ +31.8055201533286 -124.784657969188\\ +33.0003479112518 -124.668786348259\\ +34.240061379715 -124.533451662047\\ +35.8553985745983 -124.335494404086\\ +37.5469422407329 -124.104180568683\\ +39.3182875570566 -123.838428716944\\ +41.5545533471895 -123.473158501238\\ +43.9180089259608 -123.05699925594\\ +46.4158883361268 -122.590445677406\\ +49.5102015955645 -121.98424574167\\ +52.8107971193432 -121.314711313055\\ +56.8531791387359 -120.478101950744\\ +61.7718759733854 -119.456562692352\\ +68.3651600451004 -118.113710310923\\ +77.7841107128642 -116.300577623884\\ +113.515470892099 -110.916445401642\\ +126.795284678645 -109.476713107084\\ +139.041083409004 -108.367909147897\\ +151.070330448668 -107.455239682014\\ +162.633950404818 -106.721514578877\\ +173.475935923388 -106.146109562437\\ +183.342548256232 -105.706955437156\\ +193.770333747798 -105.321771403001\\ +202.911801804663 -105.045023171176\\ +212.484535249894 -104.811294778384\\ +220.466873523944 -104.657209269437\\ +228.74908173557 -104.534089016988\\ +235.164288449433 -104.463102635941\\ +241.759407916908 -104.411281694169\\ +246.258591635048 -104.387788746345\\ +250.841505927762 -104.373438878478\\ +253.164847863143 -104.369776185107\\ +255.509709035257 -104.368500953836\\ +257.876288759386 -104.36964855674\\ +260.264788196906 -104.373255101538\\ +265.108360190857 -104.387993222325\\ +270.042071883779 -104.413019504383\\ +275.067600790807 -104.448650949735\\ +282.781797962532 -104.522709232554\\ +290.712337727252 -104.622549863253\\ +298.86528735503 -104.749421693573\\ +307.246884270909 -104.904652691143\\ +318.789129267769 -105.158194225658\\ +330.764978074424 -105.468265195542\\ +343.1907197459 -105.838759772396\\ +356.083255262919 -106.273895275188\\ +372.882130718292 -106.915703767021\\ +390.473523688559 -107.675408588077\\ +408.894822629482 -108.563731621467\\ +428.18517986523 -109.592461402385\\ +448.385594802129 -110.77453406525\\ +469.539001068009 -112.124108272616\\ +491.690357762798 -113.656624578536\\ +519.655724382751 -115.760804211877\\ +549.211648388788 -118.183976279445\\ +580.448594276896 -120.959826427324\\ +613.462171799237 -124.123570027772\\ +648.353428605487 -127.710441511337\\ +685.229159528409 -131.753135479078\\ +724.20223346072 -136.277866219775\\ +772.48114514036 -142.183957390498\\ +823.978568452854 -148.753882165918\\ +887.04968896542 -156.994471416592\\ +981.72984061889 -169.250305124494\\ +1000 -171.544521175135\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.661482932254\\ +0.108651577465251 -157.369439261018\\ +0.118051652856881 -158.934935479081\\ +0.128264983052803 -160.365902617032\\ +0.139361927422416 -161.669942571563\\ +0.15002933220192 -162.728367403947\\ +0.161513269350313 -163.69696976498\\ +0.173876240021625 -164.580220865693\\ +0.187185529496553 -165.38228502703\\ +0.201513573381558 -166.107013289538\\ +0.216938351838516 -166.757940870274\\ +0.231400538013072 -167.269501746417\\ +0.246826845225571 -167.72898906867\\ +0.263281546564798 -168.138181677446\\ +0.280833199882324 -168.498679499971\\ +0.296805860866562 -168.770004590431\\ +0.313686982456683 -169.007398257101\\ +0.331528234231953 -169.211564048911\\ +0.347168681892662 -169.356764892788\\ +0.363546996129332 -169.479625954457\\ +0.377204249341695 -169.56201000149\\ +0.391374560198028 -169.630384112933\\ +0.406077202570047 -169.684848272668\\ +0.41746552892532 -169.716618774032\\ +0.429173237842218 -169.740641308684\\ +0.441209286319117 -169.756939885776\\ +0.44942026621191 -169.763524076239\\ +0.457784053837654 -169.766688289195\\ +0.466303492974262 -169.766435913667\\ +0.474981480322836 -169.76276936383\\ +0.48382096649261 -169.755690086976\\ +0.492824957004062 -169.745198571692\\ +0.506646100892133 -169.723062084217\\ +0.520854855057768 -169.693241280145\\ +0.535462089927357 -169.655725941205\\ +0.555577622239876 -169.59370990115\\ +0.576448828292606 -169.517940051152\\ +0.598104096238105 -169.428354641018\\ +0.62632074521987 -169.296828617096\\ +0.655868565957134 -169.143420788495\\ +0.68681035889951 -168.967924051249\\ +0.725873365081736 -168.727835796115\\ +0.767158117677927 -168.455137271795\\ +0.81079098067315 -168.149316333426\\ +0.864842327573189 -167.74991573017\\ +0.922497005259214 -167.303719810944\\ +0.983995229627797 -166.809724103158\\ +1.05931476351838 -166.185297405089\\ +1.14039960197002 -165.495531100222\\ +1.22769104798839 -164.73892045809\\ +1.3216641839466 -163.914079812104\\ +1.43600898465122 -162.903114257853\\ +1.56024641436638 -161.803077203781\\ +1.69523234155408 -160.613412798321\\ +1.8589566796357 -159.186888694558\\ +2.03849339825241 -157.652265671892\\ +2.25607406649687 -155.844467807278\\ +2.52000499376417 -153.740017935203\\ +2.84088369018327 -151.324769200862\\ +3.29243733300778 -148.205011105477\\ +5.26892142135084 -138.136523614044\\ +5.8853157751914 -135.986221819642\\ +6.45371540164686 -134.322925255317\\ +7.01206358900715 -132.943573451748\\ +7.5487992816532 -131.821117805078\\ +8.12661920009201 -130.803093161647\\ +8.66837993001965 -130.001770752378\\ +9.246257116406 -129.28606905946\\ +9.7721469697258 -128.741441154527\\ +10.3279473191894 -128.260237875884\\ +10.9153593533136 -127.841702735814\\ +11.430311291145 -127.539817415375\\ +11.9695570235905 -127.279375161523\\ +12.5342426546138 -127.058951010378\\ +13.0051125217337 -126.91028047876\\ +13.4936714058834 -126.785116597514\\ +14.0005838246811 -126.682332979596\\ +14.5265392594678 -126.600691352714\\ +14.9339321612423 -126.552528488425\\ +15.3527502878039 -126.514896037733\\ +15.7833140565207 -126.487155629348\\ +16.2259528707813 -126.46863851446\\ +16.5279206146492 -126.461074450879\\ +16.8355080296122 -126.457086622379\\ +17.1488196987055 -126.456456373573\\ +17.4679621512724 -126.458960150059\\ +17.7930438991856 -126.464369761969\\ +18.2920450484626 -126.477422810007\\ +18.8050405512853 -126.495688158643\\ +19.5114834684666 -126.526730689838\\ +20.4319732019529 -126.573484193624\\ +22.4052786929996 -126.678386552308\\ +23.6796006783313 -126.737815708375\\ +24.7967289250217 -126.779165025789\\ +25.4921465445141 -126.798648840737\\ +26.2070669648381 -126.81312700124\\ +26.6947849403426 -126.819599592829\\ +27.1915794303594 -126.823255921072\\ +27.6976193503698 -126.823867785818\\ +28.2130767593954 -126.82121234769\\ +28.7381269185112 -126.815072547334\\ +29.2729483504285 -126.805237514054\\ +29.8177229001969 -126.79150296372\\ +30.6539529505651 -126.763159920766\\ +31.5136348486643 -126.72496615751\\ +32.3974262952812 -126.676326933339\\ +33.3060034362469 -126.616689831083\\ +34.557199367622 -126.519194877832\\ +35.8553985745983 -126.400176992233\\ +37.2023668141304 -126.258717405298\\ +38.9574561577541 -126.049195878738\\ +40.7953450345255 -125.802323437084\\ +42.7199396630681 -125.517399975727\\ +45.1496777203605 -125.124896036862\\ +47.7176094893859 -124.677513666391\\ +50.4315948717143 -124.176391673225\\ +53.7936150398065 -123.526458593478\\ +57.9112264764194 -122.703030488323\\ +62.3440188862789 -121.801750544778\\ +68.3651600451004 -120.581389936049\\ +76.3629826128223 -119.01000605009\\ +89.3204599858103 -116.665124646738\\ +114.566872863485 -112.937953168321\\ +127.969686821595 -111.384004127594\\ +140.328908478584 -110.175178801276\\ +152.469572701759 -109.170967025628\\ +164.140297114445 -108.356072570084\\ +175.082703173578 -107.710674131088\\ +186.754584276109 -107.135105477767\\ +197.376432630023 -106.702457436309\\ +206.688024962902 -106.388193974123\\ +216.438908606406 -106.119038396103\\ +224.569799553979 -105.938260252301\\ +233.006141069691 -105.790032668086\\ +239.540735872084 -105.70132248078\\ +246.258591635048 -105.6327783153\\ +250.841505927762 -105.59871574295\\ +255.509709035257 -105.574276090204\\ +260.264788196906 -105.55974251367\\ +262.675410372388 -105.556282103134\\ +265.108360190857 -105.555409606351\\ +267.563844455207 -105.557163721369\\ +270.042071883779 -105.561583927846\\ +275.067600790807 -105.578584544888\\ +280.186655645918 -105.606743582738\\ +285.40097698292 -105.646406787985\\ +293.404970921572 -105.728263310587\\ +301.63343472593 -105.838095355025\\ +310.0926635932 -105.977260177756\\ +318.789129267769 -106.147199237862\\ +330.764978074424 -106.424314634102\\ +343.1907197459 -106.76276288728\\ +356.083255262919 -107.166755741718\\ +369.46012051994 -107.640849248975\\ +386.890073932801 -108.339585769886\\ +405.142317111462 -109.166074610284\\ +424.255643071768 -110.131857904331\\ +444.2706749607 -111.249606574926\\ +465.229952396024 -112.53319765298\\ +487.17802187946 -113.997778271907\\ +510.161531474972 -115.65980229551\\ +539.177464038763 -117.939932019488\\ +569.843705946916 -120.562911183887\\ +602.254120146183 -123.563507634334\\ +636.507908129576 -126.977111134475\\ +672.709913571241 -130.837563144611\\ +710.970943231237 -135.17370975647\\ +758.367791499744 -140.858094872203\\ +808.924348680602 -147.215582467729\\ +870.843149769058 -155.244784872607\\ +954.948563979212 -166.177782388948\\ +1000 -171.872159572377\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.636346000086\\ +0.108651577465251 -157.353782374141\\ +0.118051652856874 -158.930380254901\\ +0.128264983052812 -160.374088075329\\ +0.139361927422416 -161.692506702327\\ +0.151418932530433 -162.892827614908\\ +0.163009236097967 -163.866096336939\\ +0.175486714964826 -164.755807429003\\ +0.188919277620773 -165.566078568391\\ +0.2033800305847 -166.300721617683\\ +0.218947676285658 -166.963243159394\\ +0.233543813990639 -167.486313478286\\ +0.249113002606763 -167.958582167264\\ +0.265720110532463 -168.381835785496\\ +0.283434330615137 -168.757691497263\\ +0.299554933435982 -169.043232877465\\ +0.316592411198347 -169.295838018795\\ +0.334598912054985 -169.516238511391\\ +0.350384224529049 -169.675773809564\\ +0.366914237840272 -169.813725092079\\ +0.384224084605523 -169.930382579111\\ +0.398658107358057 -170.008547169577\\ +0.413634368406335 -170.073356225758\\ +0.429173237842218 -170.124905238792\\ +0.441209286319117 -170.154913939665\\ +0.453582882551013 -170.177537627341\\ +0.466303492974262 -170.192799925756\\ +0.474981480322836 -170.198894701304\\ +0.483820966492578 -170.201730786615\\ +0.49282495700403 -170.201311789812\\ +0.501996513310983 -170.197640435781\\ +0.511338753841404 -170.190718575428\\ +0.520854855057734 -170.18054719528\\ +0.535462089927392 -170.159197333486\\ +0.550478980785524 -170.13053304852\\ +0.565917016324646 -170.094547047518\\ +0.587176639073341 -170.035156103319\\ +0.609234915240079 -169.962690008973\\ +0.632121847581245 -169.877098480029\\ +0.661943345877428 -169.751555812735\\ +0.693171727615517 -169.605261100395\\ +0.725873365081689 -169.438042866022\\ +0.767158117677977 -169.209485562835\\ +0.810790980673203 -168.950138559838\\ +0.856905505126854 -168.659586241046\\ +0.914031074875622 -168.28057202433\\ +0.974964918348386 -167.857731345318\\ +1.03996091395407 -167.390301643975\\ +1.11956431948394 -166.800530963848\\ +1.20526093687088 -166.150476378705\\ +1.29751716865759 -165.439213143009\\ +1.40977287162893 -164.565010278418\\ +1.531740463702 -163.611932447012\\ +1.66426017648598 -162.580155578984\\ +1.82499324481618 -161.342804197858\\ +2.001249798969 -160.01287141328\\ +2.21485523372624 -158.449523509179\\ +2.47396410088691 -156.636659464015\\ +2.81481236050756 -154.406682482113\\ +3.44776405473464 -150.758778511025\\ +4.22304418720659 -147.145594379811\\ +4.71708469091673 -145.292093058868\\ +5.17265738721621 -143.857991315111\\ +5.62017384808323 -142.679001944365\\ +6.05036787939111 -141.736998076634\\ +6.45371540164644 -141.005594038878\\ +6.82077673286527 -140.454255131208\\ +7.2087150337825 -139.977703762252\\ +7.54879928165369 -139.640807355695\\ +7.83238259917936 -139.412324470108\\ +8.12661920009201 -139.221426890227\\ +8.43190929286622 -139.069028231413\\ +8.66837993001965 -138.980483389206\\ +8.91148232283998 -138.914350217939\\ +9.07732652520994 -138.882844860008\\ +9.24625711640539 -138.861488924182\\ +9.41833153464754 -138.850345478239\\ +9.50556592010074 -138.84862124575\\ +9.59360828709266 -138.849470631579\\ +9.6824661193026 -138.852899558968\\ +9.86265846131223 -138.867517551938\\ +10.0462042134688 -138.892513876371\\ +10.233165783303 -138.927920181143\\ +10.5201521761621 -139.000600367073\\ +10.8151870255233 -139.096810510537\\ +11.118496048193 -139.216568889842\\ +11.5361810173649 -139.412842801018\\ +11.9695570235905 -139.65080826067\\ +12.4192135270177 -139.930217144612\\ +13.0051125217337 -140.337202947392\\ +13.6186523675602 -140.807441768193\\ +14.3932264471932 -141.453523027118\\ +15.2118551798618 -142.186415510265\\ +16.2259528707813 -143.147096812431\\ +17.3076553419573 -144.216158900932\\ +18.6324631193151 -145.562404691526\\ +20.2444650997669 -147.222832011846\\ +22.1996611912005 -149.229528078226\\ +24.5691646298281 -151.605933815211\\ +27.4434330322828 -154.363544271873\\ +31.5136348486664 -157.993464783161\\ +37.8947091907461 -163.039456474231\\ +49.9687745385497 -170.825429608142\\ +69.6374473062844 -180.350931906816\\ +86.8838263525077 -186.886345860185\\ +103.51779556302 -192.25438806266\\ +121.0829750232 -197.260774932331\\ +140.328908478593 -202.187309781462\\ +162.633950404818 -207.351013839577\\ +188.484340903368 -212.774432780263\\ +216.438908606406 -218.113947982118\\ +248.539485742973 -223.725887343499\\ +282.78179796255 -229.248220948938\\ +318.789129267769 -234.67745848711\\ +356.083255262919 -240.016839082459\\ +394.090164040321 -245.267738325\\ +432.151112778992 -250.420265214718\\ +469.539001068009 -255.445437831995\\ +510.161531474972 -260.924667503573\\ +549.211648388752 -266.256178747426\\ +580.448594276934 -270.588851417254\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -156.914960399469\\ +0.108651577465251 -158.585210521472\\ +0.118051652856874 -160.109709009935\\ +0.128264983052812 -161.497541346413\\ +0.138082976521811 -162.623474670266\\ +0.148652484499784 -163.654077607286\\ +0.160031031373864 -164.594782203978\\ +0.172280544713129 -165.450649956575\\ +0.185467692308478 -166.226359361625\\ +0.199664245010983 -166.926202238485\\ +0.214947467343796 -167.554086582789\\ +0.229276931286557 -168.04724229123\\ +0.244561668345231 -168.490149811615\\ +0.260865361762268 -168.884736633007\\ +0.278255940220721 -169.232728793117\\ +0.294082017058709 -169.495088255111\\ +0.310808217386903 -169.725197519551\\ +0.328485736602995 -169.923812776516\\ +0.343982648902277 -170.065747237837\\ +0.360210656235685 -170.186604953588\\ +0.377204249341719 -170.286675981644\\ +0.391374560198054 -170.351934285064\\ +0.406077202570047 -170.404156289129\\ +0.41746552892532 -170.434823239381\\ +0.429173237842218 -170.458241452457\\ +0.441209286319117 -170.47443838829\\ +0.44942026621191 -170.481235833717\\ +0.457784053837654 -170.484839372956\\ +0.466303492974262 -170.485253504426\\ +0.474981480322836 -170.482481781957\\ +0.483820966492578 -170.476526825555\\ +0.49282495700403 -170.467390332146\\ +0.5066461008921 -170.447721680621\\ +0.520854855057734 -170.420894986617\\ +0.535462089927392 -170.386904637672\\ +0.555577622239913 -170.330422812678\\ +0.576448828292606 -170.261151823851\\ +0.598104096238105 -170.179043016498\\ +0.62632074521987 -170.058259184356\\ +0.655868565957134 -169.917172947092\\ +0.68681035889951 -169.755609506438\\ +0.725873365081689 -169.534418320861\\ +0.767158117677977 -169.283054862601\\ +0.810790980673203 -169.001080001849\\ +0.864842327573189 -168.632780649986\\ +0.922497005259214 -168.221352941626\\ +0.983995229627797 -167.765947040756\\ +1.05931476351831 -167.190521647113\\ +1.14039960197009 -166.555251860761\\ +1.22769104798839 -165.858944060461\\ +1.3216641839466 -165.100556084179\\ +1.43600898465122 -164.172172961163\\ +1.56024641436628 -163.163575755615\\ +1.69523234155419 -162.074866641896\\ +1.8589566796357 -160.77256084675\\ +2.05737431343286 -159.231237684569\\ +2.27697025538154 -157.583254185653\\ +2.56690271549201 -155.514004694003\\ +2.94760625512479 -152.997127949404\\ +3.85110700232562 -147.959743836876\\ +4.46323392671022 -145.25467875111\\ +4.98537346387415 -143.348174557733\\ +5.46685729972028 -141.879366311758\\ +5.8853157751914 -140.802766354058\\ +6.33580499265803 -139.828056797777\\ +6.75818116816072 -139.068333798869\\ +7.14255928554351 -138.4921968244\\ +7.54879928165369 -137.989681450862\\ +7.90492762269657 -137.629761229465\\ +8.27785696619849 -137.325262231459\\ +8.58882855954615 -137.122603104111\\ +8.91148232283998 -136.957055648299\\ +9.1614024571382 -136.857581865683\\ +9.41833153464754 -136.779480396953\\ +9.6824661193026 -136.722902890871\\ +9.86265846131223 -136.697200691079\\ +10.0462042134688 -136.681141731818\\ +10.1392540755888 -136.676734329929\\ +10.233165783303 -136.674743867667\\ +10.3279473191901 -136.675171444486\\ +10.4236067397645 -136.678017706878\\ +10.6175918348305 -136.690966608159\\ +10.8151870255233 -136.713586680587\\ +11.0164594963369 -136.745866786963\\ +11.3254131515284 -136.812357334406\\ +11.6430313292089 -136.900447413207\\ +11.9695570235905 -137.010008041522\\ +12.4192135270177 -137.189196602833\\ +12.8857621318549 -137.405765449904\\ +13.369837418249 -137.659110110252\\ +14.0005838246802 -138.026405921436\\ +14.6610868404707 -138.448399536095\\ +15.494950393147 -139.024304124572\\ +16.3762407452172 -139.672478562946\\ +17.4679621512724 -140.514347672275\\ +18.8050405512853 -141.580215867415\\ +20.4319732019515 -142.896778264731\\ +22.4052786930011 -144.483146532537\\ +25.0264009641792 -146.52082639419\\ +29.0043049386384 -149.385808187577\\ +43.1156199031796 -157.166916686307\\ +49.0558370636517 -159.536703572973\\ +55.302242561928 -161.614819726797\\ +61.7718759733813 -163.417501805198\\ +68.9983712143025 -165.105467538757\\ +76.3629826128223 -166.552952738398\\ +84.5136633068439 -167.908869783975\\ +94.400647894181 -169.290957168748\\ +105.444279352618 -170.582291541088\\ +118.870769771187 -171.894524481272\\ +135.248087041795 -173.230236437512\\ +165.660595894989 -175.243953679726\\ +195.565071586606 -176.913939410164\\ +216.438908606406 -177.998958283629\\ +237.342425002384 -179.063463637545\\ +255.509709035241 -179.991084333743\\ +275.067600790825 -181.007455187775\\ +293.404970921591 -181.987460336331\\ +312.964801067081 -183.070412207851\\ +333.828586473175 -184.276261768803\\ +356.083255262919 -185.62766474604\\ +379.821530619055 -187.150327165125\\ +401.424249049957 -188.613761153641\\ +424.255643071796 -190.244945525165\\ +448.385594802129 -192.066736216552\\ +473.887960971767 -194.104451569598\\ +500.840798984813 -196.386019660069\\ +529.326605836037 -198.942031064558\\ +559.432570616907 -201.805606780461\\ +591.250841383221 -205.011938801344\\ +624.878807200712 -208.597292613213\\ +660.419396233041 -212.597185584461\\ +704.446227729899 -217.829658465225\\ +751.408106111675 -223.704839621295\\ +801.500696156499 -230.229750069101\\ +862.851256636735 -238.432576316968\\ +946.184819472219 -249.576702192002\\ +1000 -256.550678982586\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.540843899603\\ +0.108651577465251 -157.23854950104\\ +0.118051652856881 -158.792960137556\\ +0.128264983052803 -160.211948950693\\ +0.139361927422416 -161.503058812898\\ +0.15002933220192 -162.549143299722\\ +0.161513269350313 -163.504565462503\\ +0.173876240021625 -164.373757001471\\ +0.187185529496553 -165.160845339972\\ +0.201513573381558 -165.869648621345\\ +0.214947467343796 -166.428398635694\\ +0.229276931286572 -166.932058762937\\ +0.244561668345247 -167.382607743554\\ +0.260865361762251 -167.781849778674\\ +0.275702332560967 -168.084464043558\\ +0.291383170483282 -168.351518136492\\ +0.30795587129142 -168.583856636933\\ +0.322484249840837 -168.751503935858\\ +0.337698031082518 -168.895968484668\\ +0.353629550135508 -169.017607881186\\ +0.366914237840248 -169.098701657693\\ +0.380697987140222 -169.165540029435\\ +0.394999546122053 -169.218255543932\\ +0.406077202570047 -169.248595766759\\ +0.41746552892532 -169.271103518324\\ +0.429173237842218 -169.285819273142\\ +0.43716022482485 -169.291318956597\\ +0.445295850994262 -169.293381427821\\ +0.453582882551013 -169.292015579725\\ +0.462024137175122 -169.28722950111\\ +0.470622484984116 -169.279030485318\\ +0.479380849508926 -169.267425038652\\ +0.492824957004062 -169.243642128076\\ +0.506646100892133 -169.212223537102\\ +0.520854855057768 -169.173181498826\\ +0.540421642070586 -169.109280786489\\ +0.56072348828519 -169.031851466012\\ +0.58178800743451 -168.940891467156\\ +0.609234915240079 -168.808142106264\\ +0.637976680860626 -168.65417722712\\ +0.668074391569548 -168.47891749193\\ +0.706071771413795 -168.240344407993\\ +0.746230289139115 -167.970715572217\\ +0.788672861561404 -167.669739277771\\ +0.841249704973636 -167.278515514126\\ +0.897331581458357 -166.843509996615\\ +0.95715215389917 -166.363990088983\\ +1.03041699495061 -165.760411835477\\ +1.10928986489522 -165.096305859717\\ +1.1942000281335 -164.370281236284\\ +1.29751716865759 -163.477747969421\\ +1.40977287162893 -162.503191668215\\ +1.5317404637021 -161.44501510007\\ +1.66426017648587 -160.30212453153\\ +1.82499324481618 -158.932506966014\\ +2.001249798969 -157.458941234151\\ +2.21485523372639 -155.721696266562\\ +2.47396410088675 -153.696420863247\\ +2.78898029238043 -151.367235655599\\ +3.23228397818141 -148.350423326328\\ +5.31772317785112 -138.01964136619\\ +5.8853157751914 -136.125065383003\\ +6.45371540164686 -134.528552152599\\ +7.01206358900715 -133.211411942136\\ +7.5487992816532 -132.146132195921\\ +8.12661920009201 -131.18723781493\\ +8.66837993001965 -130.439406292609\\ +9.246257116406 -129.778967319329\\ +9.7721469697258 -129.283218047929\\ +10.3279473191894 -128.85237582424\\ +10.8151870255226 -128.54245484399\\ +11.3254131515284 -128.276428407197\\ +11.8597101233768 -128.053272456334\\ +12.3052400435925 -127.904735098528\\ +12.7675070431924 -127.781979345238\\ +13.2471398786616 -127.68407114505\\ +13.6186523675611 -127.626317759302\\ +14.0005838246811 -127.581465224695\\ +14.3932264471941 -127.54899112981\\ +14.6610868404698 -127.533944770177\\ +14.9339321612423 -127.523979237312\\ +15.2118551798608 -127.518914279107\\ +15.4949503931459 -127.51856318218\\ +15.7833140565207 -127.522732932736\\ +16.0770442167387 -127.531224388927\\ +16.3762407452172 -127.543832468266\\ +16.8355080296122 -127.570000559828\\ +17.3076553419573 -127.604220793211\\ +17.9578464700207 -127.661054795871\\ +18.6324631193151 -127.728978738043\\ +19.5114834684666 -127.82652173457\\ +20.8122156998634 -127.979637203797\\ +25.0264009641792 -128.429800559969\\ +26.2070669648381 -128.52342749629\\ +27.1915794303594 -128.587308824496\\ +28.2130767593954 -128.639283119649\\ +29.0043049386403 -128.669321742801\\ +29.8177229001969 -128.690851955358\\ +30.3726357970331 -128.700118554717\\ +30.9378757173011 -128.705073201883\\ +31.5136348486643 -128.705515925369\\ +32.100108955431 -128.701254107798\\ +32.6974974451167 -128.692102816774\\ +33.3060034362469 -128.677885120691\\ +33.9258338274107 -128.658432388637\\ +34.8772747481423 -128.619089908025\\ +35.8553985745983 -128.56710800287\\ +36.8609536217214 -128.50203074313\\ +38.2456972246693 -128.394193047101\\ +39.6824610456936 -128.261527383707\\ +41.1731993116176 -128.10336724655\\ +43.1156199031825 -127.869068044686\\ +45.1496777203605 -127.593553162772\\ +47.2796959160026 -127.276624258425\\ +49.9687745385497 -126.841968031822\\ +52.8107971193432 -126.349124945174\\ +56.3314267060121 -125.703209599351\\ +60.0867589171979 -124.985091139801\\ +64.6860766154627 -124.083224670102\\ +70.2824426430854 -122.977390073899\\ +77.0702711421226 -121.655151799636\\ +86.8838263525134 -119.829995980581\\ +134.006889636394 -113.116875093235\\ +148.310251433614 -111.711985255159\\ +161.141427725301 -110.655259843029\\ +173.475935923388 -109.799292166358\\ +185.040701954232 -109.123476655717\\ +197.376432630023 -108.52372541895\\ +208.602408924844 -108.076142095294\\ +218.443607114946 -107.754077805128\\ +228.74908173557 -107.481827064325\\ +237.342425002384 -107.302283710765\\ +246.258591635048 -107.158871653106\\ +253.164847863143 -107.076288170996\\ +260.264788196906 -107.016161539702\\ +265.108360190857 -106.989045953256\\ +270.042071883779 -106.97266695291\\ +272.543253128104 -106.968604245684\\ +275.067600790807 -106.967347931439\\ +277.615329443679 -106.968940413981\\ +280.186655645918 -106.973424923363\\ +285.40097698292 -106.991247184584\\ +290.712337727252 -107.021177783866\\ +296.122543798796 -107.063594206759\\ +304.427221206439 -107.151492662279\\ +312.964801067081 -107.269762579575\\ +321.74181506764 -107.41987972552\\ +330.764978074424 -107.603409222792\\ +343.1907197459 -107.902973051234\\ +356.083255262919 -108.269112720079\\ +369.46012051994 -108.70638285083\\ +383.339510176665 -109.21970413552\\ +401.424249049931 -109.976436407588\\ +420.362168384463 -110.87163754029\\ +440.193518520901 -111.917721530354\\ +460.96044868285 -113.128289540901\\ +482.707096560317 -114.518198235203\\ +505.479682119114 -116.103604007604\\ +529.326605836072 -117.901963045713\\ +559.432570616944 -120.367472112237\\ +591.250841383182 -123.200770417662\\ +624.878807200671 -126.437157228554\\ +660.419396233041 -130.111231275888\\ +697.981390783064 -134.253906540578\\ +737.679760252757 -138.887956480694\\ +786.8571506937 -144.925778918005\\ +839.312949816634 -151.619370859271\\ +903.557834613866 -159.96998332537\\ +1000 -172.279181231225\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -156.286822670429\\ +0.108651577465251 -158.001704055979\\ +0.118051652856874 -159.572813518532\\ +0.128264983052812 -161.008526083433\\ +0.139361927422416 -162.316941007047\\ +0.151418932530433 -163.505791439683\\ +0.163009236097967 -164.468083639143\\ +0.175486714964826 -165.346487047312\\ +0.188919277620773 -166.145490838983\\ +0.2033800305847 -166.869255034152\\ +0.218947676285658 -167.521606092203\\ +0.233543813990639 -168.036586431948\\ +0.249113002606763 -168.501703617201\\ +0.265720110532463 -168.918900958666\\ +0.283434330615137 -169.289936122883\\ +0.299554933435982 -169.572424935817\\ +0.316592411198347 -169.823049868819\\ +0.334598912054985 -170.04260836109\\ +0.353629550135484 -170.231807873978\\ +0.370312667587014 -170.366733108292\\ +0.387782841458962 -170.48132136689\\ +0.402350554886941 -170.558534547139\\ +0.41746552892532 -170.623030029961\\ +0.433148322337641 -170.674914283934\\ +0.445295850994262 -170.70560676868\\ +0.457784053837654 -170.729289958996\\ +0.470622484984116 -170.745992134264\\ +0.479380849508895 -170.753260471705\\ +0.488302208687769 -170.757442683475\\ +0.497389595878983 -170.758543812202\\ +0.5066461008921 -170.75656803858\\ +0.51607487103856 -170.75151869327\\ +0.525679112201876 -170.743398269241\\ +0.540421642070621 -170.725462786387\\ +0.555577622239913 -170.700623154142\\ +0.571158647812663 -170.668877577667\\ +0.592615181247569 -170.615797163533\\ +0.614877765381008 -170.550405003159\\ +0.637976680860626 -170.472665671179\\ +0.668074391569548 -170.358056665667\\ +0.699592016543512 -170.223968865781\\ +0.732596542821484 -170.07026584973\\ +0.774263682681172 -169.859707042301\\ +0.818300681586771 -169.620367535187\\ +0.864842327573189 -169.351908818174\\ +0.922497005259214 -169.001419806481\\ +0.983995229627797 -168.61020563913\\ +1.04959323055817 -168.177666361016\\ +1.12993393803328 -167.631998416418\\ +1.2164242938574 -167.030843148086\\ +1.30953502048267 -166.373609026565\\ +1.42283045721431 -165.566784965936\\ +1.54592773641939 -164.688642856623\\ +1.67967487209273 -163.740025390173\\ +1.84189668079973 -162.605629777834\\ +2.03849339825241 -161.265219589041\\ +2.27697025538154 -159.702892456295\\ +2.59067785868806 -157.771302331538\\ +3.08666494333715 -155.032285552304\\ +3.85110700232562 -151.583763735954\\ +4.30163575810668 -149.968804890394\\ +4.6737951079922 -148.848270532941\\ +5.03154894503829 -147.938449861316\\ +5.36697694554061 -147.222331855811\\ +5.67222897164457 -146.676488677133\\ +5.99484250318932 -146.200314982777\\ +6.27766010580631 -145.861267748694\\ +6.57382014340928 -145.578439780208\\ +6.82077673286527 -145.394870980365\\ +7.07701066118229 -145.250983181021\\ +7.27548352919657 -145.170017667889\\ +7.4795225156221 -145.112824292412\\ +7.61871770232323 -145.088186115668\\ +7.76050333513376 -145.074530570436\\ +7.83238259917936 -145.071870285317\\ +7.90492762269657 -145.072013677934\\ +7.97814457207674 -145.074979280804\\ +8.05203967082557 -145.080785233164\\ +8.20188949920225 -145.100988724672\\ +8.35452805838285 -145.132761277725\\ +8.51000724712218 -145.176233572822\\ +8.74866812047975 -145.263648874072\\ +8.9940221740918 -145.378057827656\\ +9.24625711640539 -145.519818264171\\ +9.59360828709266 -145.751933896795\\ +9.95400828762089 -146.033919639466\\ +10.3279473191901 -146.366339925018\\ +10.8151870255233 -146.853471092049\\ +11.3254131515284 -147.420754178639\\ +11.8597101233768 -148.068563802971\\ +12.5342426546138 -148.952355629557\\ +13.2471398786607 -149.951898225152\\ +14.1302599059945 -151.263088420257\\ +15.0722530931083 -152.728171292464\\ +16.0770442167387 -154.343721782614\\ +17.3076553419573 -156.368596242169\\ +18.8050405512853 -158.864385384795\\ +20.4319732019515 -161.57740501643\\ +22.4052786930011 -164.827135721552\\ +24.7967289250217 -168.659373698052\\ +27.6976193503679 -173.106896916915\\ +31.5136348486664 -178.5836353331\\ +36.8609536217214 -185.539522805823\\ +47.7176094893891 -197.36017803913\\ +62.3440188862748 -209.499320421826\\ +73.5981447526585 -216.708303407458\\ +84.5136633068439 -222.418587810507\\ +96.1574600143255 -227.458081090102\\ +108.401435917834 -231.865947966913\\ +122.204468663144 -236.006579573726\\ +136.500780654609 -239.597643504684\\ +153.881775003836 -243.255707027659\\ +173.475935923388 -246.70275827735\\ +199.204570845397 -250.475594313447\\ +250.841505927746 -256.52478539551\\ +293.404970921591 -260.726959161273\\ +324.721849207315 -263.621810032618\\ +356.083255262919 -266.459881994496\\ +386.890073932776 -269.249489761929\\ +397.74030240583 -270.240780681262\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.770285092142\\ +0.108651577465251 -157.487654743851\\ +0.118051652856874 -159.063378747841\\ +0.128264983052812 -160.505458616093\\ +0.139361927422416 -161.82157282938\\ +0.151418932530433 -163.019009533464\\ +0.163009236097967 -163.989316007641\\ +0.175486714964826 -164.875774212323\\ +0.188919277620773 -165.682583512692\\ +0.2033800305847 -166.413635156275\\ +0.218947676285658 -167.072510577239\\ +0.233543813990639 -167.592399865057\\ +0.249113002606763 -168.061539995018\\ +0.265720110532463 -168.481754774445\\ +0.283434330615137 -168.854694218647\\ +0.299554933435982 -169.137855287742\\ +0.316592411198347 -169.388206917826\\ +0.334598912054985 -169.606494379798\\ +0.350384224529049 -169.764384748018\\ +0.366914237840272 -169.90080294132\\ +0.384224084605523 -170.016044493206\\ +0.398658107358057 -170.093163861695\\ +0.413634368406335 -170.157007844683\\ +0.429173237842218 -170.207673891646\\ +0.441209286319117 -170.237075331602\\ +0.453582882551013 -170.259139650049\\ +0.466303492974262 -170.273891127465\\ +0.474981480322836 -170.279672634434\\ +0.483820966492578 -170.282217479985\\ +0.49282495700403 -170.281529442253\\ +0.501996513310983 -170.277611411091\\ +0.511338753841404 -170.270465397836\\ +0.520854855057734 -170.260092545596\\ +0.535462089927392 -170.238483336469\\ +0.550478980785524 -170.209611585511\\ +0.565917016324646 -170.17347049479\\ +0.587176639073341 -170.113955081393\\ +0.609234915240079 -170.041459647027\\ +0.632121847581245 -169.955935058532\\ +0.661943345877428 -169.830613241162\\ +0.693171727615517 -169.6846939843\\ +0.725873365081689 -169.518008253654\\ +0.767158117677977 -169.290300893947\\ +0.810790980673203 -169.032038456299\\ +0.856905505126854 -168.742810478148\\ +0.914031074875622 -168.365651886062\\ +0.974964918348386 -167.945010641022\\ +1.03996091395407 -167.480135030902\\ +1.11956431948394 -166.893733043483\\ +1.20526093687088 -166.247546035797\\ +1.29751716865759 -165.540671519656\\ +1.40977287162893 -164.672059817028\\ +1.531740463702 -163.725303427843\\ +1.66426017648598 -162.700622186761\\ +1.82499324481618 -161.472122395916\\ +2.001249798969 -160.152132024517\\ +2.21485523372624 -158.601080303641\\ +2.47396410088691 -156.803396540071\\ +2.84088369018327 -154.432249523362\\ +3.54445567397058 -150.489116736054\\ +4.22304418720659 -147.41814374545\\ +4.71708469091673 -145.594928231415\\ +5.17265738721621 -144.1887881715\\ +5.56859644428648 -143.159196192728\\ +5.93982669392029 -142.340229132306\\ +6.33580499265803 -141.607357471716\\ +6.69616005485286 -141.054201042536\\ +7.07701066118229 -140.575532338023\\ +7.41088151564187 -140.236802173521\\ +7.68928372075853 -140.006904169269\\ +7.97814457207674 -139.814715535011\\ +8.27785696619849 -139.661224001078\\ +8.51000724712218 -139.572035160123\\ +8.74866812047975 -139.505444767772\\ +8.91148232283998 -139.473754690925\\ +9.07732652520994 -139.452321668332\\ +9.24625711640539 -139.441218767187\\ +9.33189771573286 -139.439562063976\\ +9.41833153464754 -139.440512173956\\ +9.50556592010074 -139.444076291229\\ +9.6824661193026 -139.459073165826\\ +9.86265846131223 -139.484601604169\\ +10.0462042134688 -139.520703586227\\ +10.3279473191901 -139.594756732242\\ +10.6175918348305 -139.692766625733\\ +10.9153593533143 -139.814787214102\\ +11.3254131515284 -140.014858983601\\ +11.7508713090482 -140.257594409112\\ +12.192312516491 -140.542832120774\\ +12.7675070431924 -140.958726207908\\ +13.369837418249 -141.43983623296\\ +14.1302599059945 -142.101796971027\\ +14.9339321612433 -142.853942182286\\ +15.9295021257217 -143.841743409485\\ +16.9914417203464 -144.94338235658\\ +18.2920450484626 -146.334115096643\\ +19.6922025547908 -147.855730550249\\ +21.3958887134354 -149.710330055455\\ +23.4622884814232 -151.928807388951\\ +25.9665597293484 -154.533914842652\\ +29.2729483504266 -157.794491500697\\ +33.9258338274107 -162.012524553028\\ +40.7953450345228 -167.502259543976\\ +51.3701354335138 -174.57931940008\\ +65.8898955080028 -182.432984374806\\ +81.4537176628054 -189.332938918411\\ +98.8541702191994 -195.860403716078\\ +118.870769771187 -202.320609044961\\ +142.940453343181 -209.035149408779\\ +173.475935923388 -216.350904943069\\ +212.484535249894 -224.288867551735\\ +255.509709035241 -231.769210910329\\ +298.865287355049 -238.407063431716\\ +340.041193270368 -244.1770781734\\ +379.821530619055 -249.45288818645\\ +416.504424854539 -254.175908701941\\ +452.538627817026 -258.761709196921\\ +491.690357762798 -263.750431399103\\ +529.326605836037 -268.601693091558\\ +544.171428686564 -270.538514436143\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -157.367027449333\\ +0.108651577465251 -159.188060775256\\ +0.118051652856874 -160.868535358701\\ +0.128264983052812 -162.415087249244\\ +0.139361927422416 -163.833776533332\\ +0.151418932530433 -165.130037870392\\ +0.164519058775359 -166.30867400489\\ +0.177112106434519 -167.26101588526\\ +0.190669084051231 -168.126352996835\\ +0.205263775270926 -168.907018713309\\ +0.218947676285658 -169.522324173778\\ +0.233543813990639 -170.075783840205\\ +0.249113002606763 -170.568707120843\\ +0.263281546564815 -170.944020550614\\ +0.278255940220721 -171.276653764598\\ +0.294082017058709 -171.567465117816\\ +0.30795587129142 -171.778498689545\\ +0.322484249840837 -171.96163113149\\ +0.337698031082496 -172.117402023326\\ +0.353629550135484 -172.246360516347\\ +0.366914237840272 -172.330595198126\\ +0.380697987140247 -172.398309843858\\ +0.391374560198054 -172.438425134784\\ +0.402350554886941 -172.469525788384\\ +0.413634368406335 -172.491728678612\\ +0.421332174384734 -172.501644217282\\ +0.429173237842218 -172.507689719109\\ +0.43716022482485 -172.509898052742\\ +0.445295850994262 -172.508301463876\\ +0.453582882551013 -172.502931513818\\ +0.462024137175122 -172.493819019718\\ +0.470622484984116 -172.480993996748\\ +0.483820966492578 -172.454859005473\\ +0.497389595878983 -172.420530728269\\ +0.511338753841404 -172.378098695166\\ +0.53054805253699 -172.309061544439\\ +0.550478980785524 -172.225950680049\\ +0.576448828292606 -172.102520526853\\ +0.603643850607596 -171.957635548211\\ +0.632121847581245 -171.791524784545\\ +0.668074391569548 -171.564421290401\\ +0.706071771413749 -171.307218481188\\ +0.746230289139067 -171.020025254533\\ +0.795977700231537 -170.647071004459\\ +0.849041520408896 -170.233168144997\\ +0.914031074875622 -169.709618821716\\ +0.983995229627797 -169.131576101766\\ +1.05931476351831 -168.498255285335\\ +1.14039960197009 -167.808782185172\\ +1.23906215694794 -166.964904038862\\ +1.3462605792989 -166.047700121531\\ +1.46273335620108 -165.056334214534\\ +1.60400310705692 -163.867457115665\\ +1.75891659032778 -162.587254989903\\ +1.94665634334225 -161.076182166904\\ +2.15443469003179 -159.462915049992\\ +2.42876438246056 -157.437485023665\\ +2.78898029238043 -154.96990080442\\ +3.41612326858571 -151.205065964031\\ +4.18428850790151 -147.47345537596\\ +4.71708469091673 -145.39821889132\\ +5.17265738721621 -143.917253702845\\ +5.62017384808323 -142.69648476113\\ +6.05036787939111 -141.717427466356\\ +6.45371540164644 -140.953506553662\\ +6.82077673286527 -140.374120684668\\ +7.2087150337825 -139.869272256109\\ +7.54879928165369 -139.508542973019\\ +7.90492762269657 -139.204659855094\\ +8.20188949920225 -139.003777168266\\ +8.51000724712218 -138.841366749523\\ +8.74866812047975 -138.745263536309\\ +8.9940221740918 -138.671504247192\\ +9.24625711640539 -138.620331315248\\ +9.41833153464754 -138.598867804651\\ +9.59360828709266 -138.587588200444\\ +9.6824661193026 -138.585781913916\\ +9.77214696972517 -138.586538187091\\ +9.86265846131223 -138.58986163575\\ +10.0462042134688 -138.604226317906\\ +10.233165783303 -138.628904095799\\ +10.4236067397645 -138.663916069477\\ +10.7159339982272 -138.735839508428\\ +11.0164594963369 -138.831062757847\\ +11.3254131515284 -138.949568161901\\ +11.7508713090482 -139.14369524653\\ +12.192312516491 -139.378891179683\\ +12.6503372039588 -139.654822100964\\ +13.2471398786607 -140.056333616069\\ +13.8720978054155 -140.51969019789\\ +14.6610868404707 -141.15542046452\\ +15.494950393147 -141.875411516542\\ +16.5279206146492 -142.817446650079\\ +17.629753752872 -143.863584160068\\ +18.9792164283904 -145.177869048604\\ +20.6212180399902 -146.794320566304\\ +22.6128006633736 -148.741354261162\\ +25.0264009641792 -151.038041789493\\ +28.2130767593936 -153.917624028739\\ +32.6974974451189 -157.634972018747\\ +41.1731993116149 -163.646004910109\\ +80.7062014114933 -181.462734558606\\ +98.8541702191994 -187.008906537295\\ +116.698981861712 -191.738229496574\\ +135.248087041795 -196.150653599372\\ +153.881775003836 -200.21513463383\\ +175.082703173566 -204.505289086446\\ +197.376432630036 -208.720517024946\\ +222.508879812839 -213.18756393858\\ +248.539485742973 -217.562203062488\\ +277.615329443697 -222.210252444864\\ +307.246884270909 -226.746610525595\\ +340.041193270368 -231.591299028231\\ +372.882130718268 -236.31233571855\\ +408.894822629509 -241.39516470012\\ +444.2706749607 -246.341037754559\\ +482.707096560317 -251.709783166392\\ +519.655724382751 -256.904344889659\\ +559.432570616907 -262.567870740541\\ +602.254120146222 -268.777555235865\\ +613.462171799277 -270.424872554193\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.785884975309\\ +0.108651577465251 -157.504817304354\\ +0.118051652856874 -159.082296868754\\ +0.128264983052812 -160.526356930331\\ +0.139361927422416 -161.84471412816\\ +0.151418932530433 -163.04470248949\\ +0.163009236097967 -164.017580566038\\ +0.175486714964826 -164.906943604011\\ +0.188919277620773 -165.717044817846\\ +0.2033800305847 -166.451838358131\\ +0.218947676285658 -167.114978795506\\ +0.235706941399663 -167.709823430396\\ +0.251420334814296 -168.176704665724\\ +0.268181260945313 -168.595519559603\\ +0.28605955351758 -168.967975157414\\ +0.302329468440578 -169.251500290698\\ +0.319524750575915 -169.502983899011\\ +0.337698031082496 -169.723222527171\\ +0.356904934567502 -169.912930267204\\ +0.373742574239127 -170.048156927728\\ +0.391374560198054 -170.162946485517\\ +0.406077202570047 -170.240256796991\\ +0.421332174384734 -170.304800084729\\ +0.43716022482485 -170.35669013726\\ +0.44942026621191 -170.387363920897\\ +0.462024137175122 -170.41101218469\\ +0.474981480322836 -170.427666342118\\ +0.483820966492578 -170.434896904107\\ +0.49282495700403 -170.439037751098\\ +0.501996513310983 -170.440094766981\\ +0.511338753841404 -170.438072937415\\ +0.520854855057734 -170.432976356765\\ +0.53054805253699 -170.424808235593\\ +0.545427130533012 -170.406801785162\\ +0.560723488285227 -170.381893649392\\ +0.576448828292606 -170.350083741563\\ +0.598104096238105 -170.296926368796\\ +0.620572880677654 -170.231469342366\\ +0.643885742724037 -170.153678318924\\ +0.674262224177818 -170.039022875518\\ +0.706071771413749 -169.904905849271\\ +0.739381991917545 -169.75118476059\\ +0.781435060784497 -169.540606218922\\ +0.825879938784456 -169.30122961569\\ +0.872852662384851 -169.032691332314\\ +0.931041348706901 -168.682017221938\\ +0.99310918137495 -168.290470821409\\ +1.05931476351831 -167.857400056158\\ +1.14039960197009 -167.310814744914\\ +1.22769104798839 -166.708343212527\\ +1.3216641839466 -166.04933272902\\ +1.43600898465122 -165.239902738304\\ +1.56024641436628 -164.35847442541\\ +1.69523234155419 -163.405884572456\\ +1.8589566796357 -162.266308831754\\ +2.05737431343286 -160.919383536655\\ +2.298059988759 -159.349212388191\\ +2.61467321180114 -157.407980851971\\ +3.14410830314712 -154.509858496788\\ +3.8867766908927 -151.194812413726\\ +4.34147833005496 -149.575459620346\\ +4.71708469091673 -148.452626370063\\ +5.0781521123279 -147.54143387605\\ +5.41668691103327 -146.824563434096\\ +5.72476623970219 -146.278340167615\\ +6.05036787939111 -145.801958848632\\ +6.33580499265803 -145.462812649902\\ +6.63470812109201 -145.179897840506\\ +6.88395206964506 -144.996230582879\\ +7.14255928554351 -144.852185571993\\ +7.34287044716709 -144.771044487862\\ +7.54879928165369 -144.713610753363\\ +7.68928372075853 -144.6887693788\\ +7.83238259917936 -144.67487131248\\ +7.90492762269657 -144.672073673207\\ +7.97814457207674 -144.672068269963\\ +8.05203967082557 -144.674873086699\\ +8.12661920009201 -144.680505718518\\ +8.27785696619849 -144.700322776507\\ +8.43190929286622 -144.731652171633\\ +8.58882855954615 -144.774620161222\\ +8.8296999554939 -144.861154661988\\ +9.07732652520994 -144.974520251574\\ +9.33189771573286 -145.115059703511\\ +9.6824661193026 -145.345245111981\\ +10.0462042134688 -145.624922678504\\ +10.4236067397645 -145.954621595262\\ +10.9153593533143 -146.437717098176\\ +11.430311291145 -147.000198028813\\ +11.9695570235905 -147.642374300087\\ +12.6503372039588 -148.518221541289\\ +13.369837418249 -149.508431694137\\ +14.2611370719404 -150.806856092002\\ +15.2118551798618 -152.257027633563\\ +16.2259528707813 -153.855415639561\\ +17.4679621512724 -155.857824362758\\ +18.9792164283904 -158.324646174581\\ +20.6212180399902 -161.004831184814\\ +22.6128006633736 -164.213776049563\\ +25.0264009641792 -167.996508201912\\ +27.9541599906775 -172.385696192116\\ +31.8055201533307 -177.791202818151\\ +37.2023668141304 -184.66151495032\\ +47.2796959160057 -195.522851758987\\ +64.0924401935684 -209.260322479074\\ +75.6621850048106 -216.438818850657\\ +86.8838263525077 -222.138960491558\\ +98.8541702191994 -227.181223927243\\ +111.441525146678 -231.601422438283\\ +125.631660247406 -235.762899486069\\ +141.628661629926 -239.672309347542\\ +159.662602210142 -243.349147534466\\ +181.659978837524 -247.086201751378\\ +210.534524276677 -251.148236736065\\ +304.427221206439 -261.185150269465\\ +336.920570598025 -264.207855741295\\ +366.069514759677 -266.879516038908\\ +394.090164040321 -269.457051178812\\ +401.424249049957 -270.137189611979\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -155.730410010604\\ +0.108651577465251 -157.444329842179\\ +0.118051652856881 -159.016305563146\\ +0.128264983052803 -160.454312864014\\ +0.139361927422416 -161.766002170186\\ +0.151418932530433 -162.958631144936\\ +0.163009236097978 -163.924315989144\\ +0.175486714964814 -164.805798805554\\ +0.188919277620761 -165.607251881691\\ +0.2033800305847 -166.332537314949\\ +0.218947676285658 -166.985205158253\\ +0.233543813990654 -167.499274260959\\ +0.24911300260678 -167.962206209181\\ +0.265720110532445 -168.375798945693\\ +0.283434330615137 -168.74167489725\\ +0.299554933435982 -169.018407931952\\ +0.316592411198347 -169.261965935831\\ +0.334598912055007 -169.473073387997\\ +0.350384224529072 -169.624669444468\\ +0.366914237840248 -169.75449639023\\ +0.384224084605498 -169.862835751751\\ +0.398658107358057 -169.934199655476\\ +0.413634368406335 -169.992071969196\\ +0.425234633452872 -170.026676678307\\ +0.43716022482485 -170.053774811373\\ +0.44942026621191 -170.073393329798\\ +0.457784053837654 -170.082328116866\\ +0.466303492974262 -170.087953921985\\ +0.474981480322836 -170.090275173747\\ +0.48382096649261 -170.089295371996\\ +0.492824957004062 -170.085017096763\\ +0.501996513311016 -170.077442017453\\ +0.511338753841437 -170.066570902318\\ +0.525679112201842 -170.044083651815\\ +0.540421642070586 -170.01417571457\\ +0.555577622239876 -169.976838587048\\ +0.576448828292606 -169.915476501316\\ +0.598104096238105 -169.840841797148\\ +0.620572880677654 -169.752879660892\\ +0.649849535446982 -169.624081686899\\ +0.680507369673503 -169.474196167453\\ +0.712611543011191 -169.303038112888\\ +0.753142016597439 -169.069270441224\\ +0.795977700231485 -168.804157497829\\ +0.841249704973636 -168.507248325863\\ +0.897331581458357 -168.120016590165\\ +0.95715215389917 -167.688024548217\\ +1.02096066230607 -167.21042358717\\ +1.0991097009295 -166.60765156004\\ +1.18324062745835 -165.942960546518\\ +1.27381132318649 -165.215223922646\\ +1.37131471775393 -164.423500101669\\ +1.48995507285289 -163.455511153306\\ +1.61885969017819 -162.405343463131\\ +1.77520801171768 -161.14269719135\\ +1.94665634334225 -159.781352889023\\ +2.15443469003193 -158.174948885455\\ +2.40647515001538 -156.302849606343\\ +2.71289780037248 -154.153801679156\\ +3.17322963473503 -151.205529431829\\ +4.54629546953248 -144.377094173206\\ +5.07815211232757 -142.4373419403\\ +5.56859644428648 -140.941375845087\\ +6.05036787939111 -139.712420666708\\ +6.51349094627294 -138.728593464402\\ +6.94771254846023 -137.960976922658\\ +7.34287044716661 -137.377693322938\\ +7.76050333513376 -136.867278165121\\ +8.12661920009201 -136.499908582137\\ +8.51000724712218 -136.186912800657\\ +8.8296999554939 -135.976532727387\\ +9.1614024571388 -135.802299878853\\ +9.50556592010137 -135.664624007383\\ +9.7721469697258 -135.585538330534\\ +10.0462042134681 -135.5272635409\\ +10.2331657833024 -135.499998082861\\ +10.4236067397639 -135.482005348751\\ +10.6175918348298 -135.47328149161\\ +10.7159339982264 -135.472392170035\\ +10.8151870255226 -135.473815278185\\ +10.9153593533136 -135.477548257956\\ +11.118496048193 -135.491931293482\\ +11.3254131515284 -135.515511589385\\ +11.5361810173649 -135.548252090693\\ +11.8597101233768 -135.614439075708\\ +12.192312516491 -135.700954071076\\ +12.5342426546138 -135.807579299964\\ +13.0051125217337 -135.980583697503\\ +13.4936714058834 -136.188179011162\\ +14.1302599059955 -136.49506046189\\ +14.7968806268638 -136.852863183877\\ +15.638467583022 -137.346459227106\\ +16.5279206146492 -137.906215148844\\ +17.629753752872 -138.636698197218\\ +18.9792164283904 -139.56365114987\\ +20.6212180399915 -140.707979086463\\ +22.6128006633721 -142.081517225486\\ +25.4921465445141 -143.980581035505\\ +38.9574561577541 -150.818491561461\\ +43.1156199031825 -152.292378930197\\ +47.2796959160026 -153.530759774255\\ +51.3701354335138 -154.550448738739\\ +55.302242561928 -155.37441864889\\ +59.5353313081449 -156.11600451482\\ +63.5042516859595 -156.694462104983\\ +67.1161176749614 -157.136456527192\\ +70.9334120498816 -157.527799364309\\ +74.9678187496691 -157.867803491394\\ +78.5045620020441 -158.11156313327\\ +82.2081575524031 -158.319136481398\\ +85.2964449974123 -158.45906406804\\ +88.5007491447353 -158.57573797581\\ +91.8254283565626 -158.669165602539\\ +94.4006478941749 -158.724001748113\\ +97.0480887738009 -158.765807723025\\ +99.7697764236289 -158.794618722137\\ +101.626508939302 -158.806628236826\\ +103.51779556302 -158.812897379575\\ +105.444279352618 -158.813443658655\\ +107.406615333344 -158.808286577014\\ +109.405470720574 -158.797447692839\\ +111.441525146678 -158.780950688716\\ +113.515470892099 -158.758821449554\\ +116.698981861712 -158.715129430179\\ +119.971773543585 -158.658934092374\\ +124.478714618793 -158.56476356672\\ +129.154966501489 -158.448895352532\\ +134.006889636394 -158.311696393338\\ +140.328908478584 -158.110846970259\\ +146.949180062486 -157.878281032746\\ +155.307057393347 -157.558920005594\\ +164.140297114445 -157.197790723965\\ +175.082703173578 -156.727362305159\\ +188.48434090338 -156.131494365148\\ +204.791209666503 -155.398634109266\\ +226.64980792737 -154.437974866883\\ +288.044415339625 -152.137238996822\\ +307.246884270909 -151.589904612471\\ +324.721849207315 -151.176005010836\\ +340.041193270368 -150.882498192212\\ +352.81541153808 -150.688877511189\\ +362.710025233077 -150.57150370737\\ +372.882130718292 -150.480909180991\\ +379.82153061908 -150.436755399541\\ +386.890073932801 -150.406593243892\\ +394.090164040346 -150.391310985555\\ +397.740302405804 -150.389535648406\\ +401.424249049931 -150.391827114438\\ +405.142317111462 -150.398305018997\\ +408.894822629482 -150.409090963391\\ +416.504424854512 -150.444083317905\\ +424.255643071768 -150.497817003391\\ +432.151112778964 -150.571337440438\\ +444.2706749607 -150.721086698389\\ +456.730127016882 -150.921572700448\\ +469.539001068009 -151.176749890355\\ +482.707096560317 -151.490746493983\\ +500.840798984813 -152.008364864025\\ +519.655724382751 -152.64888225052\\ +539.177464038763 -153.423469450032\\ +559.432570616944 -154.343745369635\\ +580.448594276896 -155.421679482729\\ +607.832312829711 -157.009344358197\\ +636.507908129576 -158.885996498353\\ +666.5363268125 -161.074189606786\\ +697.981390783064 -163.593949108199\\ +730.909932860277 -166.460804534995\\ +772.48114514036 -170.37056544538\\ +816.416760492152 -174.787371383423\\ +870.843149769058 -180.536564323253\\ +937.50150151455 -187.757089622514\\ +1000 -194.454742635627\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/nominal_performance.pdf b/matlab/figs/nominal_performance.pdf new file mode 100644 index 0000000..17f6c90 Binary files /dev/null and b/matlab/figs/nominal_performance.pdf differ diff --git a/matlab/figs/nominal_performance.png b/matlab/figs/nominal_performance.png new file mode 100644 index 0000000..4d2b412 Binary files /dev/null and b/matlab/figs/nominal_performance.png differ diff --git a/matlab/figs/nominal_performance.svg b/matlab/figs/nominal_performance.svg new file mode 100644 index 0000000..e25da45 --- /dev/null +++ b/matlab/figs/nominal_performance.svg @@ -0,0 +1,312 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/nominal_performance.tex b/matlab/figs/nominal_performance.tex new file mode 100644 index 0000000..fa7df33 --- /dev/null +++ b/matlab/figs/nominal_performance.tex @@ -0,0 +1,680 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.631in, +height=1.989in, +at={(0.325in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.0001, +ymax=2, +yminorticks=true, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.858828372910427\\ +0.948368186628593 0.855430977084206\\ +1.63385387780986 0.848464554621887\\ +2.25607406649686 0.838481392630524\\ +2.84088369018331 0.825483441582937\\ +3.38477285594598 0.809870936125849\\ +3.88677669089267 0.792197453642654\\ +4.38168993151419 0.771590712956729\\ +4.84937406733523 0.749237946678904\\ +5.31772317785097 0.724207917193457\\ +5.77779011797051 0.697321954370245\\ +6.2776601058065 0.665977650728913\\ +6.82077673286569 0.630082981879797\\ +7.34287044716676 0.594526592726723\\ +7.90492762269642 0.555945039936062\\ +8.51000724712225 0.514974205730173\\ +9.24625711640575 0.467067970789047\\ +10.0462042134681 0.418556054880849\\ +11.0164594963366 0.365622540117866\\ +12.1923125164911 0.310492951621024\\ +13.6186523675608 0.255899377733727\\ +15.4949503931463 0.200983368819815\\ +18.1241754737424 0.147379659270318\\ +22.4052786930002 0.0951225182594288\\ +37.2023668141307 0.0325701746959258\\ +56.8531791387375 0.013440163702973\\ +90.1477631452492 0.00523141705716653\\ +175.082703173573 0.00137048551941469\\ +648.353428605473 9.95249271298436e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.87321875395554\\ +2.03849339825246 0.842762445741982\\ +2.66333272517498 0.83095448380834\\ +3.23228397818138 0.816593481799039\\ +3.78074666359935 0.799136525094534\\ +4.3016357581068 0.779075890891317\\ +4.80487043965513 0.756438357165488\\ +5.31772317785097 0.730208726052344\\ +5.83130511352622 0.701059030112028\\ +6.33580499265825 0.670080234481572\\ +6.8839520696455 0.634461435148052\\ +7.41088151564157 0.599039741399914\\ +7.97814457207663 0.560462190434711\\ +8.58882855954626 0.519350493050541\\ +9.33189771573324 0.471115291091679\\ +10.1392540755882 0.422121222953251\\ +11.1184960481927 0.368532160224834\\ +12.3052400435926 0.312628572767655\\ +13.7447909267754 0.257237434830239\\ +15.6384675830225 0.201559134535707\\ +18.2920450484629 0.147333545572781\\ +22.6128006633728 0.0946904792752124\\ +64.6860766154633 0.0103370628835216\\ +104.476597156081 0.0038865455515582\\ +216.438908606402 0.000896417034904274\\ +648.353428605473 9.9617308304661e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.877735575526615\\ +1.05931476351837 0.874305464006002\\ +1.80824493487795 0.867319173127808\\ +2.49687842888433 0.856934390008852\\ +3.11525422355549 0.843783688133473\\ +3.67760910160103 0.828221611966111\\ +4.22304418720667 0.809525257716722\\ +4.76077523022637 0.787445987736134\\ +5.26892142135068 0.763253855962631\\ +5.77779011797051 0.735959672900244\\ +6.2776601058065 0.706489698981801\\ +6.82077673286569 0.672032595959213\\ +7.34287044716676 0.637181230661804\\ +7.90492762269642 0.598593838268588\\ +8.51000724712225 0.556791985687341\\ +9.16140245713852 0.512573897025967\\ +9.95400828762152 0.461209927826783\\ +10.8151870255229 0.409682603934247\\ +11.8597101233767 0.354137402228663\\ +13.1255683577184 0.297163628493032\\ +14.796880626864 0.237479025385925\\ +16.9914417203463 0.180215412604209\\ +20.4319732019527 0.12243775135497\\ +28.2130767593947 0.0609205276528793\\ +43.9180089259609 0.0234968568584744\\ +62.3440188862786 0.0112633048855324\\ +94.400647894176 0.00480247284280627\\ +170.306502925285 0.00145599562188675\\ +539.17746403875 0.000144459049346785\\ +648.353428605473 9.98862381386577e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.896082079333528\\ +1.14039960197003 0.892595369112339\\ +1.94665634334226 0.885412141571421\\ +2.66333272517498 0.874984869751465\\ +3.29243733300777 0.862015507599147\\ +3.88677669089267 0.845917554994339\\ +4.4222739805059 0.827833469530255\\ +4.93962174387833 0.806921258274028\\ +5.46685729972018 0.782070276411418\\ +5.99484250318941 0.753732567749896\\ +6.51349094627281 0.722857059670923\\ +7.01206358900718 0.690802382934365\\ +7.54879928165343 0.654348247776644\\ +8.12661920009194 0.613735120078382\\ +8.74866812047991 0.569543528782212\\ +9.41833153464796 0.52268740065762\\ +10.1392540755882 0.474340182356934\\ +11.0164594963366 0.419788823634392\\ +12.0804213467733 0.36107679595968\\ +13.3698374182495 0.301130975520327\\ +15.0722530931076 0.238824727403901\\ +17.4679621512725 0.176242547825434\\ +21.3958887134342 0.113802016742005\\ +47.2796959160039 0.0202323773294007\\ +66.5001803043112 0.00989396627769575\\ +100.693863147603 0.00422254899655064\\ +185.04070195423 0.00123452981995001\\ +636.507908129558 0.000103805469863415\\ +654.358601888324 9.82167903583186e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.847031258048194\\ +0.948368186628593 0.843685172280113\\ +1.63385387780986 0.836786920156335\\ +2.25607406649686 0.826880370994841\\ +2.84088369018331 0.814018694764293\\ +3.38477285594598 0.798667227286297\\ +3.92277675892772 0.78007053898048\\ +4.4222739805059 0.759709382543977\\ +4.93962174387833 0.735560133866875\\ +5.41668691103316 0.710733735509391\\ +5.93982669392036 0.681057240738531\\ +6.4537154016467 0.649902380522548\\ +7.01206358900718 0.614482185097011\\ +7.54879928165343 0.579601263315291\\ +8.12661920009194 0.54191823475695\\ +8.8296999554941 0.496919790835138\\ +9.59360828709315 0.450230307669646\\ +10.423606739764 0.403113435244874\\ +11.4303112911448 0.35181069687634\\ +12.650337203959 0.29843277324531\\ +14.1302599059953 0.245585360896395\\ +16.0770442167383 0.192431870489834\\ +18.8050405512858 0.14060066909878\\ +23.2469705998565 0.090242180542759\\ +64.0924401935646 0.0105686061752596\\ +100.693863147603 0.00419491426583943\\ +197.376432630026 0.00107943240618828\\ +648.353428605473 9.96629312036596e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.943712666939471\\ +1.46273335620113 0.940064710402118\\ +2.42876438246045 0.932715943025661\\ +3.26222200971167 0.921877234659386\\ +3.95911026646846 0.908501415235609\\ +4.58840412645476 0.892153464267567\\ +5.17265738721602 0.872681086409987\\ +5.72476623970218 0.850039211844668\\ +6.22004882563472 0.82603533029775\\ +6.75818116816111 0.796021212571188\\ +7.27548352919623 0.763572048301402\\ +7.76050333513357 0.730387030243685\\ +8.27785696619847 0.692695442015772\\ +8.8296999554941 0.650778667210147\\ +9.41833153464796 0.605263921936974\\ +10.0462042134681 0.557106405738376\\ +10.8151870255229 0.500376947063193\\ +11.7508713090481 0.43672271602876\\ +12.8857621318552 0.369192924567868\\ +14.2611370719413 0.301812687729789\\ +16.2259528707809 0.229250923595083\\ +19.3324228755505 0.154762894968701\\ +39.3182875570577 0.030895807933336\\ +51.8459354389291 0.0169657744804147\\ +70.93341204988 0.00876555832109111\\ +104.476597156081 0.00395012636097944\\ +183.342548256229 0.0012650599903652\\ +539.17746403875 0.000145391080818849\\ +654.358601888324 9.86864520795517e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.900550303053564\\ +0.637976680860628 0.90075446069925\\ +1.53174046370208 0.89564236752042\\ +2.29805998875885 0.887190714100143\\ +3.00246170908555 0.875325333966223\\ +3.64385898376355 0.860378461196345\\ +4.22304418720667 0.842942097918905\\ +4.76077523022637 0.823062592896096\\ +5.26892142135068 0.800853019137789\\ +5.77779011797051 0.775288195691349\\ +6.2776601058065 0.747118427636217\\ +6.75818116816111 0.717506189731341\\ +7.27548352919623 0.683361646872053\\ +7.8323825991792 0.644726322597922\\ +8.43190929286625 0.601973637638334\\ +9.07732652521022 0.555842387233448\\ +9.77214696972572 0.507403274716529\\ +10.5201521761616 0.457953546991197\\ +11.4303112911448 0.402815536424865\\ +12.534242654614 0.344248072617612\\ +13.8720978054162 0.285263596855044\\ +15.6384675830225 0.224799299233558\\ +18.2920450484629 0.16166048666357\\ +23.2469705998565 0.0956443525360238\\ +40.0500075787361 0.0289525205337186\\ +54.7947233690029 0.0148513212750102\\ +78.5045620020451 0.00703450951483356\\ +125.631660247412 0.00269775525040683\\ +267.563844455205 0.000589129278630076\\ +654.358601888324 9.82753974221254e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.0079239149287\\ +2.76338529005317 1.0043467125768\\ +4.03278998219371 0.997057942982311\\ +4.89428989611453 0.986639039698765\\ +5.56859644428641 0.973227858246956\\ +6.16296625513294 0.956092202897175\\ +6.69616005485322 0.935497895589723\\ +7.20871503378214 0.910428416659188\\ +7.68928372075831 0.881990874034396\\ +8.20188949920221 0.846526222371268\\ +8.66837993001977 0.810116322166632\\ +9.16140245713852 0.768173188485402\\ +9.68246611930313 0.721167574843965\\ +10.2331657833025 0.670032919210568\\ +10.9153593533139 0.606936593266064\\ +11.6430313292088 0.542495759137355\\ +12.534242654614 0.470332050962883\\ +13.7447909267754 0.386624060439893\\ +15.4949503931463 0.293631939414985\\ +18.6324631193156 0.187981509363732\\ +28.2130767593947 0.068628915473876\\ +35.5263467657814 0.0401132588983729\\ +44.7353305449847 0.023902104392974\\ +57.9112264764176 0.0136475231648815\\ +77.784110712865 0.00732819577568961\\ +113.5154708921 0.00336499643820307\\ +197.376432630026 0.00109781270086484\\ +575.121707184161 0.000128506004461652\\ +654.358601888324 9.9248935938668e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.861392341438008\\ +1.00230754828387 0.858044591641878\\ +1.72678090388436 0.851079376809565\\ +2.38439047009372 0.840928478170401\\ +2.97490754721444 0.828214830824117\\ +3.54445567397044 0.812309730861062\\ +4.07014245321944 0.794181469808166\\ +4.58840412645476 0.772937571204895\\ +5.07815211232767 0.749808527656958\\ +5.56859644428641 0.723842721575678\\ +6.05036787939122 0.69590697109644\\ +6.57382014340959 0.663316289431152\\ +7.07701066118189 0.630378735067301\\ +7.618717702323 0.593887183408437\\ +8.20188949920221 0.554274049863962\\ +8.8296999554941 0.512224384201335\\ +9.59360828709315 0.463125573965069\\ +10.423606739764 0.41353356098784\\ +11.4303112911448 0.359629763095066\\ +12.650337203959 0.303791992480311\\ +14.1302599059953 0.248879111160407\\ +16.0770442167383 0.194114518461388\\ +18.979216428391 0.138545669656224\\ +24.1202820761801 0.0834787143759797\\ +50.8987019351968 0.0170447276976568\\ +75.6621850048106 0.00751018906991671\\ +126.795284678643 0.00263100809668359\\ +304.427221206431 0.000452780126654787\\ +648.353428605473 9.969268867102e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.01182011777746\\ +3.0302710828664 1.00802214468156\\ +4.26215882901533 1.00056820483637\\ +5.12518692705333 0.989386545398402\\ +5.77779011797051 0.975443997745688\\ +6.33580499265825 0.958401537662979\\ +6.8839520696455 0.936077684703866\\ +7.41088151564157 0.908787894902512\\ +7.90492762269642 0.877828800424826\\ +8.35452805838287 0.845329051174317\\ +8.8296999554941 0.807035294414957\\ +9.33189771573324 0.763083364954926\\ +9.86265846131283 0.714091459709612\\ +10.5201521761616 0.652051955908\\ +11.2214776820798 0.587021347156463\\ +12.0804213467733 0.512398196953101\\ +13.1255683577184 0.432269855242197\\ +14.5265392594678 0.344723775964454\\ +16.6810053720006 0.248136211842234\\ +33.3060034362459 0.0466382173536748\\ +41.9394395566719 0.0276251360101248\\ +53.2999408084409 0.0163278625052381\\ +70.2824426430835 0.00906547443511728\\ +99.7697764236321 0.00438442981232446\\ +161.141427725302 0.00165342021368984\\ +366.069514759691 0.000317688834462534\\ +654.358601888324 9.92826149093876e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.02371861794019\\ +3.746050032749 1.01934470412741\\ +4.84937406733523 1.01178654698253\\ +5.62017384808319 1.00032910713742\\ +6.22004882563472 0.985800609357652\\ +6.75818116816111 0.967268198732134\\ +7.27548352919623 0.943671235757102\\ +7.76050333513357 0.915952193304188\\ +8.20188949920221 0.885985732919552\\ +8.66837993001977 0.849733908656776\\ +9.16140245713852 0.807069876145914\\ +9.68246611930313 0.758396253768374\\ +10.2331657833025 0.704700683836606\\ +10.9153593533139 0.637730210106194\\ +11.6430313292088 0.568868087487191\\ +12.534242654614 0.49156213631773\\ +13.7447909267754 0.402051335926094\\ +15.4949503931463 0.303270272210922\\ +18.979216428391 0.183725769166291\\ +26.4498018242772 0.0810067067614476\\ +33.0003479112529 0.0479152665883068\\ +41.1731993116168 0.0288995949193585\\ +52.3261423948667 0.0170382532948012\\ +68.9983712143002 0.00944170091566636\\ +97.0480887738031 0.00464713216075714\\ +153.881775003835 0.00181685819612443\\ +330.764978074424 0.00038965550332221\\ +654.358601888324 9.93679546934658e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.867689784395908\\ +0.957152153899186 0.864139587459316\\ +1.69523234155412 0.857349040951512\\ +2.36250846547795 0.847411910348477\\ +2.97490754721444 0.834530915355492\\ +3.54445567397044 0.81885983071243\\ +4.07014245321944 0.800936950084313\\ +4.58840412645476 0.779862847296455\\ +5.07815211232767 0.756844987800625\\ +5.56859644428641 0.730926546767057\\ +6.05036787939122 0.70296422788883\\ +6.57382014340959 0.670257110663406\\ +7.07701066118189 0.637123756093821\\ +7.618717702323 0.600339810265\\ +8.20188949920221 0.560336861934412\\ +8.8296999554941 0.517809375144982\\ +9.59360828709315 0.468092346010648\\ +10.423606739764 0.417834027232253\\ +11.4303112911448 0.363184910433794\\ +12.650337203959 0.306579822355676\\ +14.1302599059953 0.250943911030778\\ +16.0770442167383 0.195515568521387\\ +18.979216428391 0.139359749311254\\ +24.1202820761801 0.0838301463577769\\ +49.5102015955635 0.0180854914349853\\ +72.9227205872831 0.00810693612063921\\ +119.971773543589 0.00294365273794219\\ +270.042071883778 0.00057591906602415\\ +648.353428605473 9.97280967374308e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.867077228000441\\ +1.03996091395412 0.86366863423264\\ +1.77520801171764 0.85675088170975\\ +2.45126006203334 0.84652464870828\\ +3.05833803237843 0.833651056205895\\ +3.64385898376355 0.817468375741696\\ +4.18428850790158 0.798944748387355\\ +4.71708469091702 0.777158210074975\\ +5.22056752784697 0.753368035383304\\ +5.72476623970218 0.726600334246797\\ +6.22004882563472 0.697758616802507\\ +6.75818116816111 0.664085653413739\\ +7.27548352919623 0.630056047649048\\ +7.8323825991792 0.592387257253674\\ +8.43190929286625 0.551566851052468\\ +9.07732652521022 0.508348646447623\\ +9.86265846131283 0.458071568854551\\ +10.7159339982267 0.407531449122945\\ +11.7508713090481 0.352913455842257\\ +13.0051125217341 0.296724388875111\\ +14.5265392594678 0.241891397606868\\ +16.6810053720006 0.184202422115739\\ +19.8745954958099 0.128083816458707\\ +26.4498018242772 0.0693581629951671\\ +44.324785912404 0.0229118948186446\\ +64.0924401935646 0.0105987720176781\\ +99.7697764236321 0.00428234303527992\\ +190.230118866895 0.00116411881176843\\ +648.353428605473 9.9792079159358e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.960831458345208\\ +2.31934505927443 0.950465364681279\\ +3.23228397818138 0.940820424133344\\ +3.99578030189527 0.92820079966161\\ +4.67379510799246 0.912314850986399\\ +5.26892142135068 0.893871304117158\\ +5.83130511352622 0.871971926620689\\ +6.33580499265825 0.848321521659158\\ +6.82077673286569 0.821939865410604\\ +7.34287044716676 0.789701391194262\\ +7.8323825991792 0.756239905796447\\ +8.35452805838287 0.717743987996805\\ +8.9114823228402 0.67444799874279\\ +9.50556592010119 0.62699996798701\\ +10.1392540755882 0.576451857732165\\ +10.9153593533139 0.516637179354627\\ +11.7508713090481 0.45678058743747\\ +12.7675070431927 0.391987439850256\\ +14.1302599059953 0.319637452722339\\ +15.9295021257212 0.24673245950103\\ +18.979216428391 0.165619597163944\\ +36.5226736430818 0.0366867693831822\\ +47.2796959160039 0.0207990013241897\\ +62.9214610961035 0.0113051406477963\\ +88.5007491447344 0.00556289974256985\\ +140.328908478587 0.00217385923477218\\ +298.865287355038 0.000474756139824551\\ +654.358601888324 9.8821722414869e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.927864570120145\\ +0.196016347431919 0.935850243104776\\ +0.492824957004051 0.93877751996797\\ +1.48995507285285 0.935765394797471\\ +2.42876438246045 0.928282107161086\\ +3.23228397818138 0.917537970595891\\ +3.92277675892772 0.904071367222256\\ +4.5462954695324 0.887704787504513\\ +5.12518692705333 0.868307904782543\\ +5.67222897164455 0.845851394453869\\ +6.22004882563472 0.819146868830294\\ +6.75818116816111 0.788858633426438\\ +7.27548352919623 0.756250679738153\\ +7.76050333513357 0.723027309498396\\ +8.27785696619847 0.685419231184212\\ +8.8296999554941 0.643726194383121\\ +9.41833153464796 0.598579801738129\\ +10.1392540755882 0.543975474155127\\ +10.9153593533139 0.487854261546295\\ +11.8597101233767 0.425245220855427\\ +13.0051125217341 0.359161762257457\\ +14.3932264471941 0.293485944965106\\ +16.3762407452169 0.222953989993791\\ +19.6922025547917 0.147519437883495\\ +38.957456157755 0.0314686038843084\\ +51.3701354335135 0.0172814156554051\\ +70.2824426430835 0.0089279308814868\\ +103.517795563018 0.00402285583958418\\ +181.659978837533 0.00128823760327083\\ +529.326605836057 0.000150805967680399\\ +654.358601888324 9.86531308388883e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.908743779297948\\ +0.492824957004051 0.904721424003228\\ +1.01159111222383 0.89604695295751\\ +1.80824493487795 0.882690619103776\\ +2.54334576130465 0.86888294568185\\ +3.17322963473498 0.853947002640217\\ +3.746050032749 0.83691699571832\\ +4.3016357581068 0.816735957356515\\ +4.80487043965513 0.795112535430054\\ +5.31772317785097 0.769777531771712\\ +5.83130511352622 0.741241594508905\\ +6.33580499265825 0.7104816988152\\ +6.82077673286569 0.678836037664578\\ +7.34287044716676 0.643129067854902\\ +7.90492762269642 0.603620149697177\\ +8.51000724712225 0.560866475569011\\ +9.16140245713852 0.515710867300886\\ +9.95400828762152 0.463366751042736\\ +10.8151870255229 0.410991340389329\\ +11.8597101233767 0.354699490868311\\ +13.1255683577184 0.297152901944693\\ +14.796880626864 0.23708638121002\\ +16.9914417203463 0.179668520743606\\ +20.4319732019527 0.121939332340237\\ +29.2729483504282 0.0559990669893968\\ +43.9180089259609 0.0234310297661219\\ +62.9214610961035 0.0110310542558349\\ +96.157460014321 0.00462134674792017\\ +178.341022071001 0.0013265387182835\\ +630.666554056741 0.000105551462984392\\ +648.353428605473 9.986903562119e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.01134543201755\\ +0.337698031082509 1.01703072148836\\ +2.49687842888433 1.01664224120452\\ +4.10784088996565 1.011006418974\\ +5.03154894503806 1.00182752594879\\ +5.72476623970218 0.98929484021516\\ +6.33580499265825 0.972396804317614\\ +6.8839520696455 0.95134642559829\\ +7.41088151564157 0.925083871971524\\ +7.90492762269642 0.894800142265139\\ +8.35452805838287 0.862601824461706\\ +8.8296999554941 0.82426432482132\\ +9.33189771573324 0.779865174072326\\ +9.86265846131283 0.730009754459522\\ +10.423606739764 0.675839622873933\\ +11.1184960481927 0.609289444815205\\ +11.9695570235904 0.532264233110358\\ +13.0051125217341 0.449025702583647\\ +14.3932264471941 0.357736432279346\\ +16.527920614649 0.25692869018044\\ +32.397426295282 0.0499043164598144\\ +40.4209583979631 0.0300737378945416\\ +51.3701354335135 0.017714152949042\\ +67.1161176749629 0.0100003931321142\\ +93.534315202924 0.00501066528238942\\ +146.949180062482 0.00199367499574087\\ +304.427221206431 0.00046003818910679\\ +654.358601888324 9.93333042170353e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.963992294478471\\ +1.6642601764859 0.960308343691362\\ +2.73802517792786 0.95285537023742\\ +3.61041859717334 0.942157274151421\\ +4.34147833005509 0.928541001240229\\ +4.98537346387389 0.91189869492794\\ +5.56859644428641 0.892243596985625\\ +6.10640754223204 0.869736418602695\\ +6.63470812109235 0.843263976114331\\ +7.14255928554313 0.813736954116429\\ +7.618717702323 0.782650498561633\\ +8.12661920009194 0.746349127248791\\ +8.66837993001977 0.704858769287859\\ +9.24625711640575 0.658621264987498\\ +9.86265846131283 0.608529800067724\\ +10.5201521761616 0.555871753711796\\ +11.3254131515281 0.494517485449588\\ +12.3052400435926 0.426771894631903\\ +13.4936714058831 0.356358881722975\\ +15.0722530931076 0.281989011723979\\ +17.4679621512725 0.202405708546289\\ +23.0336287314213 0.106139089201857\\ +32.1001089554318 0.0492262142011478\\ +41.5545533471888 0.0276233646621786\\ +54.2918617761894 0.0154753298614196\\ +73.5981447526577 0.00815342545641269\\ +108.401435917833 0.00367480479003875\\ +190.230118866895 0.00117709566550151\\ +564.614141930367 0.000132820120541505\\ +654.358601888324 9.88663254855117e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.877622707114745\\ +0.163009236097974 0.888486880362965\\ +0.280833199882317 0.908179181291219\\ +0.545427130532984 0.931723875356105\\ +0.872852662384837 0.940774951230611\\ +1.47628147190939 0.943603304042768\\ +2.38439047009372 0.93946838038887\\ +3.26222200971167 0.930166201468068\\ +3.99578030189527 0.917875430057558\\ +4.67379510799246 0.901872877801515\\ +5.26892142135068 0.883366802757606\\ +5.83130511352622 0.861493267009318\\ +6.33580499265825 0.837968377734461\\ +6.82077673286569 0.811817713531531\\ +7.34287044716676 0.779957704888835\\ +7.8323825991792 0.746969307872238\\ +8.35452805838287 0.709086517316337\\ +8.9114823228402 0.666535158547049\\ +9.50556592010119 0.619937031564368\\ +10.1392540755882 0.570302362061114\\ +10.9153593533139 0.511544832944237\\ +11.7508713090481 0.452690130274808\\ +12.7675070431927 0.388890762217512\\ +14.1302599059953 0.317512528408179\\ +15.9295021257212 0.245418162933822\\ +18.8050405512858 0.16853554447441\\ +38.5999361767977 0.0324010585266168\\ +50.4315948717136 0.0180820696227002\\ +67.7377599751776 0.00967873687667321\\ +97.9469667069541 0.00451572165901894\\ +164.140297114447 0.00158319840562663\\ +408.894822629486 0.00025322616658056\\ +654.358601888324 9.87903863063193e-05\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.02041485662273\\ +1.27381132318648 1.01592709235967\\ +3.67760910160103 1.009476155612\\ +4.71708469091702 1.00061828095282\\ +5.46685729972018 0.988448206999938\\ +6.10640754223204 0.972186615873601\\ +6.63470812109235 0.953467310571691\\ +7.14255928554313 0.930204406710297\\ +7.618717702323 0.903338944410416\\ +8.12661920009194 0.869278975243414\\ +8.58882855954626 0.833793156542751\\ +9.07732652521022 0.792381715062998\\ +9.59360828709315 0.745411912749277\\ +10.1392540755882 0.693764349603233\\ +10.8151870255229 0.629400093302232\\ +11.5361810173648 0.563103921745512\\ +12.4192135270178 0.488375963776856\\ +13.6186523675608 0.401282736818957\\ +15.211855179861 0.31103732786719\\ +18.1241754737424 0.203246330916891\\ +27.9541599906786 0.0704709195515893\\ +34.8772747481418 0.041974147194429\\ +43.9180089259609 0.0249500680554351\\ +56.3314267060136 0.0145018061238544\\ +74.9678187496688 0.00792234701090756\\ +108.401435917833 0.00370009818155797\\ +183.342548256229 0.00127448678559471\\ +482.707096560319 0.000182583482120144\\ +654.358601888324 9.93011510880771e-05\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1\\ +1000 1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/nyquist_plot_sisotool_controller.pdf b/matlab/figs/nyquist_plot_sisotool_controller.pdf new file mode 100644 index 0000000..9522a38 Binary files /dev/null and b/matlab/figs/nyquist_plot_sisotool_controller.pdf differ diff --git a/matlab/figs/nyquist_plot_sisotool_controller.png b/matlab/figs/nyquist_plot_sisotool_controller.png new file mode 100644 index 0000000..70008ff Binary files /dev/null and b/matlab/figs/nyquist_plot_sisotool_controller.png differ diff --git a/matlab/figs/nyquist_robustness.pdf b/matlab/figs/nyquist_robustness.pdf new file mode 100644 index 0000000..ca3dec5 Binary files /dev/null and b/matlab/figs/nyquist_robustness.pdf differ diff --git a/matlab/figs/nyquist_robustness.png b/matlab/figs/nyquist_robustness.png new file mode 100644 index 0000000..b36bd7d Binary files /dev/null and b/matlab/figs/nyquist_robustness.png differ diff --git a/matlab/figs/nyquist_robustness.svg b/matlab/figs/nyquist_robustness.svg new file mode 100644 index 0000000..a7acbc2 --- /dev/null +++ b/matlab/figs/nyquist_robustness.svg @@ -0,0 +1,166 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/nyquist_robustness.tex b/matlab/figs/nyquist_robustness.tex new file mode 100644 index 0000000..2e47f20 --- /dev/null +++ b/matlab/figs/nyquist_robustness.tex @@ -0,0 +1,712 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.231in, +height=1.991in, +at={(0.505in,0.42in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmin=-1.4, +xmax=0.2, +xtick={-1.4, -1.2, -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2}, +xlabel={Real Part}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-1.4, +ymax=0.2, +ytick={-1.4, -1.2, -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2}, +ylabel={Imaginary Part}, +axis background/.style={fill=white}, +xmajorgrids, +ymajorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.36797893526011 -1.50001862303624\\ +-1.16498995424946 -1.35696621231185\\ +-0.99559961025809 -1.22636638984475\\ +-0.853981047113767 -1.10705800080225\\ +-0.735287602107294 -0.998016431478695\\ +-0.635489695862679 -0.898340115021801\\ +-0.551240783141879 -0.807238670583468\\ +-0.479767470373703 -0.724021826265133\\ +-0.418779528703161 -0.648088368331652\\ +-0.366395990332399 -0.578914495116748\\ +-0.321083862027054 -0.516041206974297\\ +-0.281606321007443 -0.459060726222526\\ +-0.216422889520012 -0.361318857422488\\ +-0.0929771380261113 -0.173362161727646\\ +-0.035769159430413 -0.087189343521481\\ +-0.0217254152011825 -0.0637445100449405\\ +-0.0132966735281785 -0.0474701710373959\\ +-0.00732897645877051 -0.0328869515231414\\ +-0.00480426849737592 -0.0235190250988806\\ +-0.00437071071015693 -0.0174407071898124\\ +-0.0051960505234796 -0.0141102837331601\\ +-0.0087652414789805 -0.00586854263157233\\ +-0.00814604208714309 -0.00174554484874134\\ +-0.00563245364328702 0.00109158594302494\\ +-0.00301516687412939 0.00183036879614207\\ +-0.000566779138372553 0.00101175288654698\\ +4.33619439887956e-06 4.64928740351311e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.38182288726253 -1.47720407548674\\ +-1.17870593604476 -1.33548392815947\\ +-1.00915187892965 -1.20606472916479\\ +-0.867327929571845 -1.08779627251356\\ +-0.748382296263 -0.979666505553309\\ +-0.6482811237289 -0.880787680121524\\ +-0.563674588518503 -0.790384251379557\\ +-0.491787249016289 -0.707781595808656\\ +-0.430328358296008 -0.632394720384497\\ +-0.377418281951746 -0.563716288696618\\ +-0.331527494429166 -0.501303563132216\\ +-0.291424947147702 -0.444764255017566\\ +-0.224886811689192 -0.347900707876285\\ +-0.130461816785873 -0.209758784622679\\ +-0.0836704578794285 -0.144049177057663\\ +-0.0317717903308949 -0.0719651343124343\\ +-0.0192568735770182 -0.0526247411250802\\ +-0.0101062808148391 -0.0357399886459873\\ +-0.00584629385641566 -0.0250681751717676\\ +-0.00427760097148022 -0.01821958147713\\ +-0.00452284243741552 -0.0136749557973785\\ +-0.00641101232382146 -0.00970837892099996\\ +-0.00796341091244956 -0.00525775051172261\\ +-0.00737661196267081 -0.00153941521146583\\ +-0.00508976562629626 0.00100992422232382\\ +-0.00272072529591427 0.0016654180204112\\ +-0.000312287827330282 0.000721997291961651\\ +3.9232421120694e-06 4.20209650453529e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.50535724900931\\ +-1.390562472599 -1.39960601016154\\ +-1.1914736871022 -1.26351068856521\\ +-1.02514489104354 -1.13907720422495\\ +-0.885858919182712 -1.0252185865401\\ +-0.768857657453007 -0.920980627146513\\ +-0.670182863069839 -0.825529617702031\\ +-0.586545725763649 -0.738141612238793\\ +-0.515220401554461 -0.658192268771019\\ +-0.453957319695559 -0.585146379755512\\ +-0.400912442964713 -0.518546331952047\\ +-0.354588922046141 -0.457998997818767\\ +-0.277564988204617 -0.353722680740706\\ +-0.189930939976545 -0.234891112679668\\ +-0.145100605685094 -0.177205309134045\\ +-0.10905479740875 -0.13363228930125\\ +-0.0806420898717188 -0.10134999526768\\ +-0.0423866839328368 -0.0603668217745521\\ +-0.0182877989612005 -0.0341876256850084\\ +-0.00949586865416374 -0.022925836151285\\ +-0.00479910770039127 -0.014741544921457\\ +-0.00363324610547067 -0.0100681058133638\\ +-0.00435743584879122 -0.00733261309976729\\ +-0.00563324611328664 -0.00348377749065309\\ +-0.00514088000326818 -0.000941016041339227\\ +-0.00351299106432434 0.000772349409272843\\ +-0.00127640949395635 0.00110843534418881\\ +4.5667588106646e-06 6.23927080400932e-06\\ +2.72330119810427e-06 2.90272460934382e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.43933230012855\\ +-1.39014801728604 -1.33497194103752\\ +-1.19460034247808 -1.20338328527939\\ +-1.03106667895463 -1.08298283611798\\ +-0.893937910245688 -0.972733738271957\\ +-0.778545397576963 -0.871729976747991\\ +-0.681005749260745 -0.779184580275941\\ +-0.598093858100534 -0.694419087896208\\ +-0.527139466729534 -0.616853286290956\\ +-0.465943040238388 -0.545994296038062\\ +-0.412707063151534 -0.481424259857306\\ +-0.324603371248104 -0.369768150063148\\ +-0.224594758202364 -0.24163502501623\\ +-0.173101063533159 -0.179142060617866\\ +-0.131238985926635 -0.132015245153821\\ +-0.0977965793420235 -0.0974032549294708\\ +-0.0717255509224966 -0.0724620216290568\\ +-0.0372169004653178 -0.0419171421237561\\ +-0.0113824474282764 -0.0188774918819543\\ +-0.0052993790630409 -0.0118030666465663\\ +-0.00317287741486938 -0.00732636441653822\\ +-0.00368234294209269 -0.00471381713303654\\ +-0.00414124902298907 -0.00149935199024642\\ +-0.00324506492290144 0.000141213576262844\\ +-0.00135648711214476 0.000896926935640474\\ +6.36300647149923e-06 1.34794078845424e-05\\ +2.00669003902476e-06 2.12802817678437e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.40721295054181 -1.50156739028061\\ +-1.20178524747 -1.35774138624796\\ +-1.03037255937286 -1.2262867202962\\ +-0.887048588287306 -1.10604131677438\\ +-0.766879381711734 -0.995984144172445\\ +-0.66575895496951 -0.895222532873192\\ +-0.580274762417476 -0.802980811868838\\ +-0.50759792713406 -0.718589254344256\\ +-0.445393717784121 -0.641472465991367\\ +-0.391748190748267 -0.571136560494852\\ +-0.345107264707861 -0.50715481170179\\ +-0.268117191810962 -0.396787481264092\\ +-0.158667181351622 -0.237293166895955\\ +-0.119682153071083 -0.182850248896864\\ +-0.0761947206444538 -0.124806339319024\\ +-0.0286356585068848 -0.0622326034062173\\ +-0.0147214373199167 -0.041285974693078\\ +-0.00793608763209153 -0.0283876163128598\\ +-0.00495421125148821 -0.0202118930058093\\ +-0.00418445078559193 -0.0149395097448488\\ +-0.00511916080669161 -0.0111547512214183\\ +-0.00759687328516145 -0.00495340156716906\\ +-0.00701661188024461 -0.00142938741804888\\ +-0.00483232213585594 0.000978774960654905\\ +-0.0017693372039489 0.00149795212377613\\ +9.72267318344322e-06 1.77783858734681e-05\\ +3.72888041888508e-06 3.99017586238948e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.27208837321292\\ +-1.39716627206371 -1.17630455776466\\ +-1.21038109134187 -1.05591464132848\\ +-1.05382757098056 -0.945510521341182\\ +-0.922155825698476 -0.844171632064228\\ +-0.810909594945431 -0.751102653568614\\ +-0.716380056739696 -0.665623346297092\\ +-0.635486852874352 -0.587159266774018\\ +-0.565681776172733 -0.515232257623042\\ +-0.504870987163716 -0.449449666877219\\ +-0.451351857781089 -0.389491445258653\\ +-0.322336128081188 -0.242109933357459\\ +-0.287083161402663 -0.203113883485638\\ +-0.254840816512332 -0.168826215361465\\ +-0.225317194002946 -0.138995615862977\\ +-0.198318738881838 -0.113333714587125\\ +-0.173715475938874 -0.0915149599576774\\ +-0.151411228853189 -0.0731828044827578\\ +-0.131320429905931 -0.0579606496540186\\ +-0.113352259593073 -0.0454653512431906\\ +-0.0833474532940193 -0.0271710062376214\\ +-0.060367079025099 -0.0155770447432009\\ +-0.0432123006033962 -0.00848854367024243\\ +-0.0257835325709106 -0.00291588432463863\\ +-0.0107237621048124 0.000177006883427477\\ +-0.000447154326500998 0.000815177742687245\\ +0.000199213577757984 0.000102653636737893\\ +-1.24520055377886e-07 -1.7827892340172e-07\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.41816083355792\\ +-1.39111423860558 -1.31494957176359\\ +-1.19664988050259 -1.18478191309627\\ +-1.03397797724532 -1.06564817601379\\ +-0.897521565273329 -0.956527009778565\\ +-0.782638365207144 -0.856526999363723\\ +-0.68546667675408 -0.764875118215509\\ +-0.602799409612989 -0.680906382401853\\ +-0.531981532782589 -0.604053702796353\\ +-0.470826731733197 -0.533837002298575\\ +-0.417549387966524 -0.469850839872852\\ +-0.329158213194562 -0.359233915915555\\ +-0.258578690706421 -0.269868827319196\\ +-0.20101047972631 -0.199592917607625\\ +-0.17624313989082 -0.170879496170876\\ +-0.133749916912614 -0.124634186968315\\ +-0.0997313436822493 -0.0908914511912604\\ +-0.0731701415692267 -0.0667865919211876\\ +-0.0448867741119467 -0.0432274586177561\\ +-0.00833131901533979 -0.0135195122024596\\ +-0.00369643791863172 -0.00795217538798632\\ +-0.00301366207083786 -0.00496530442593035\\ +-0.00361480198308617 -0.00123842681363939\\ +-0.00222291641242389 0.00057014286607826\\ +-0.000128435994781517 0.000322187601693003\\ +1.74001221453501e-06 1.83944701537264e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.40518166436843 -0.987606247120369\\ +-1.22887519719764 -0.880530136994483\\ +-1.08067114243838 -0.782012276291244\\ +-0.955529787416411 -0.691269592841817\\ +-0.849248915950594 -0.607637761976297\\ +-0.758328456177841 -0.530562957167996\\ +-0.679861067474466 -0.459594034455762\\ +-0.611444349026914 -0.394373906700984\\ +-0.551110646080663 -0.33462891340734\\ +-0.404329990602502 -0.186449446219706\\ +-0.363547630259094 -0.146989508935129\\ +-0.325818568875203 -0.112299857257094\\ +-0.290817052997111 -0.0822253977411547\\ +-0.258351016321737 -0.0565630203213403\\ +-0.228321307603254 -0.0350540603561207\\ +-0.200683574472227 -0.0173850475203099\\ +-0.175415482369833 -0.00319616559443103\\ +-0.152491395575903 0.00790448237466346\\ +-0.131865550816678 0.0163235138611968\\ +-0.113463492331842 0.022464641397526\\ +-0.0971804812194699 0.0267131269450156\\ +-0.0828849713753474 0.0294238198556702\\ +-0.0704251039841952 0.0309133724686981\\ +-0.0503493682620504 0.0312854352020546\\ +-0.035614703220328 0.029532475400748\\ +-0.0249764650399031 0.0267789413151296\\ +-0.0144521981416625 0.0221893779733566\\ +-0.00666226291539873 0.0167603968840835\\ +0.00368681613247634 0.00662391230888892\\ +0.00485659848845388 0.00442253886838118\\ +0.00489742117628533 0.00170268932680862\\ +0.00355533440042 -0.000316714889164293\\ +0.00136715338370563 -0.000972981216374125\\ +-6.79068082964918e-06 -1.2996820051292e-05\\ +-2.66047235131239e-06 -2.92258535661283e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.38902856229793 -1.45551287048673\\ +-1.18643209304947 -1.31531452218425\\ +-1.01725943664879 -1.18722067297964\\ +-0.875693559397491 -1.07010627842703\\ +-0.756895331014086 -0.962981561468822\\ +-0.6568411525733 -0.864978981279307\\ +-0.572189716548702 -0.775341745329267\\ +-0.500172999973672 -0.693412955796093\\ +-0.438507191713923 -0.618624560296616\\ +-0.385319673404632 -0.550485435440119\\ +-0.339088490075415 -0.488568209257773\\ +-0.262859273957515 -0.381921446496424\\ +-0.154924767715682 -0.228171081715673\\ +-0.116674089351829 -0.17578198796489\\ +-0.0741485239506783 -0.119969363206328\\ +-0.0278119388457905 -0.0598281525976005\\ +-0.0142865437579109 -0.0396945504364921\\ +-0.0076943336644939 -0.027294696288594\\ +-0.00443881916692379 -0.0179571755619099\\ +-0.00411255337252636 -0.0133789794180201\\ +-0.00539632419288449 -0.00982108596077569\\ +-0.007000799624306 -0.00633139651291259\\ +-0.0072592796844142 -0.00304390270213362\\ +-0.00581360068223735 1.24182885421487e-05\\ +-0.00348182804523778 0.00141147801668362\\ +-0.000734719352422086 0.00104161110457146\\ +3.58602963856924e-06 3.8370184329839e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.40587575072567 -0.976907284632715\\ +-1.2301620101815 -0.870585211221724\\ +-1.0824312872856 -0.772739309726946\\ +-0.957661098200763 -0.682594143776437\\ +-0.85166324906427 -0.599492680290978\\ +-0.760949092302939 -0.5228881683826\\ +-0.682620658909303 -0.45233642909619\\ +-0.614283362970828 -0.387487301851919\\ +-0.553976262058157 -0.328074038284356\\ +-0.40701722257435 -0.180721895373068\\ +-0.36610819392301 -0.141502947842202\\ +-0.328228535223561 -0.107046073237919\\ +-0.293058506240449 -0.0772003917522754\\ +-0.260412038610811 -0.0517659075396768\\ +-0.230195754192921 -0.0304859051234192\\ +-0.202370615605738 -0.0130477336346471\\ +-0.176918932070828 0.000908602166184602\\ +-0.153818883214299 0.0117759723340951\\ +-0.133027611836686 0.0199625175609592\\ +-0.114472657854412 0.0258737757987983\\ +-0.0980504350656257 0.029896914601744\\ +-0.0836298230247263 0.0323885923384957\\ +-0.071058803305682 0.0336670502896259\\ +-0.050799921198446 0.0336455533420752\\ +-0.0359275137133446 0.031542171847549\\ +-0.0251876405651612 0.0284834315375055\\ +-0.0145594537493352 0.0235176352007829\\ +-0.00668477455249028 0.0177201290161542\\ +0.00393272466969208 0.00697034786254025\\ +0.00515063275253169 0.00464501577419418\\ +0.00517908306093684 0.00177733429293658\\ +0.0037537844649238 -0.000347030607327214\\ +0.00144141669328302 -0.0010313358648959\\ +-7.18108528441341e-06 -1.37248919762634e-05\\ +-2.81157544201882e-06 -3.08613036503758e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.40673159644642 -0.94784087454129\\ +-1.23265462983521 -0.843563429933881\\ +-1.0862277609309 -0.74754597837873\\ +-0.962477288676397 -0.659033725398723\\ +-0.857255063437159 -0.577389428944067\\ +-0.767105439749221 -0.502085511291008\\ +-0.689157896099749 -0.432696518920973\\ +-0.621041052695652 -0.3688906589164\\ +-0.560814088230995 -0.310419181015246\\ +-0.413428233154021 -0.165454379407858\\ +-0.372208706051751 -0.126936883885765\\ +-0.333960860485937 -0.0931560255962878\\ +-0.29838054629576 -0.0639706097131623\\ +-0.265296785610384 -0.0391876693757613\\ +-0.234630360380498 -0.0185547934398462\\ +-0.206354992739627 -0.00176105776841129\\ +-0.180463934086854 0.0115540371351295\\ +-0.156944199426826 0.0217856027150745\\ +-0.135759538808312 0.0293451911458416\\ +-0.116841921932538 0.0346423587669693\\ +-0.100090210635686 0.038068402551785\\ +-0.0853740461368275 0.0399838329323332\\ +-0.0725408300007528 0.0407102000819863\\ +-0.0614239242483898 0.04052610497459\\ +-0.0436492884357866 0.0383258756325919\\ +-0.0307107285936277 0.0347921840905852\\ +-0.0214203471264467 0.030810286574976\\ +-0.0122512227140539 0.0250451318386817\\ +-0.0054039675571933 0.0187600534363026\\ +0.00589715862017548 0.00520814467421138\\ +0.00589362917822611 0.00196576984551977\\ +0.00425698836902333 -0.000424421882835313\\ +0.00162963893578083 -0.00117947015309894\\ +-8.17148275134016e-06 -1.55711358269528e-05\\ +-3.1948272112281e-06 -3.50084031075504e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.38527240778923 -1.44036168511157\\ +-1.18391898355899 -1.30132741205507\\ +-1.01576029347923 -1.17428301146684\\ +-0.875015613959669 -1.0581138341619\\ +-0.756875765402408 -0.951839950568483\\ +-0.657341892997603 -0.854603216042908\\ +-0.573093210213357 -0.765655862718618\\ +-0.50137883773865 -0.684349697480829\\ +-0.439929457643058 -0.610125070134445\\ +-0.38688491453924 -0.542498931333627\\ +-0.340734202578146 -0.481051583269261\\ +-0.264516987714335 -0.375243241481732\\ +-0.156242818248244 -0.222915699889985\\ +-0.117750907899316 -0.171162252040861\\ +-0.0748811585578744 -0.116225404324266\\ +-0.0237415277464481 -0.0516524339833093\\ +-0.0122424276376476 -0.0345004869190213\\ +-0.00672283005192464 -0.0238885450731749\\ +-0.00414720903395316 -0.0158829362733111\\ +-0.00416508804137727 -0.011892236950511\\ +-0.00623550411358709 -0.0073186035007069\\ +-0.00699621727921618 -0.00452688022096726\\ +-0.00645042933209972 -0.00129447240755631\\ +-0.00443734080800762 0.00090997258772596\\ +-0.00162290608352511 0.00137910227139004\\ +7.23908162103548e-06 1.13916629109756e-05\\ +3.42641988448911e-06 3.66441996058064e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.39537290958247 -1.4253046819372\\ +-1.19389431889461 -1.28715555579412\\ +-1.02558623655071 -1.16088256555741\\ +-0.884664751585721 -1.04538290949881\\ +-0.766317647137213 -0.939688205435436\\ +-0.66654332101461 -0.842951756348978\\ +-0.582018722155459 -0.754437287998176\\ +-0.509991427771299 -0.673508224051236\\ +-0.448191566029865 -0.599616637010182\\ +-0.394759686512796 -0.532291178445588\\ +-0.348186976609563 -0.471123584074999\\ +-0.27103870951176 -0.365854160448621\\ +-0.18399623609527 -0.245875923649625\\ +-0.139919015131057 -0.187460862786284\\ +-0.1047575982655 -0.143091378758093\\ +-0.0659756222856869 -0.0967138574557436\\ +-0.0206770696601692 -0.0430471849214118\\ +-0.010702488009626 -0.0288665334253553\\ +-0.00598309172153932 -0.0201007893926684\\ +-0.003912071340896 -0.0134905691425249\\ +-0.0041753490861911 -0.0100977010133725\\ +-0.00638186971003973 -0.00260736033344666\\ +-0.00509024373100142 4.97401777022066e-05\\ +-0.0030403962253609 0.0012550529227584\\ +-0.000639129921381709 0.000914572836829164\\ +3.14129265177598e-06 3.35562228448438e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.22435525007169\\ +-1.39874914125116 -1.1307443902101\\ +-1.21454497166368 -1.01355762659106\\ +-1.06004968142966 -0.906016620246952\\ +-0.929989887303873 -0.807232769352858\\ +-0.81997198055961 -0.716441444463944\\ +-0.726338613800814 -0.632992214529745\\ +-0.646052079925469 -0.556339862008072\\ +-0.576600092171053 -0.486035044608098\\ +-0.515919860944878 -0.421713519135705\\ +-0.414512402141949 -0.309907485200664\\ +-0.332215484316734 -0.219144082234972\\ +-0.296372916994237 -0.181190678323317\\ +-0.263471807948992 -0.147922782141479\\ +-0.233244458590987 -0.119100688311715\\ +-0.205520177431261 -0.0944431900498375\\ +-0.180189714408131 -0.0736276629096786\\ +-0.157174762548304 -0.0562967955929128\\ +-0.136404259143473 -0.0420703324935472\\ +-0.117798295942993 -0.0305595056421251\\ +-0.101259381554412 -0.0213817323426515\\ +-0.0738941400649999 -0.00860063745851791\\ +-0.0531798307555502 -0.00120312233445197\\ +-0.0378686571735165 0.00274275431315196\\ +-0.0224503682129129 0.00502997720458587\\ +-0.0110264535193014 0.00513021743378328\\ +-0.00303327900031825 0.00369202772669053\\ +0.00110925254230021 0.00159307610246961\\ +0.000805901815932097 -0.000113013116330718\\ +-2.48262176882896e-06 -1.03254853844881e-05\\ +-7.36051405159088e-07 -8.40046971539721e-07\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.28309367209372\\ +-1.39782750041374 -1.18754272414858\\ +-1.21024443005831 -1.06642213301021\\ +-1.05304874990978 -0.955349836564152\\ +-0.920867108643791 -0.85340316608399\\ +-0.809223967373055 -0.759783554708206\\ +-0.714394624899966 -0.673806642594159\\ +-0.633285556500677 -0.594893194187095\\ +-0.563337498043457 -0.522559752314637\\ +-0.502447132388871 -0.456408010509601\\ +-0.448903473491458 -0.396112072745973\\ +-0.284940204090695 -0.208585307622684\\ +-0.252840688476507 -0.174036692501741\\ +-0.223473399527048 -0.14394881881677\\ +-0.196638823124507 -0.118031606949101\\ +-0.172201616810439 -0.0959587902506176\\ +-0.150060988596588 -0.0773739772345052\\ +-0.130127618284743 -0.0619014105130731\\ +-0.112307843316714 -0.0491592534281047\\ +-0.0825657166683793 -0.0303881182953349\\ +-0.0597982151886585 -0.0183500195141677\\ +-0.0428086544458994 -0.0108592309324063\\ +-0.0255537551283187 -0.00477095816288253\\ +-0.0106538212685683 -0.00104565642244836\\ +2.72424064979848e-05 0.000224905855716884\\ +2.6406792530409e-08 -1.49729693088574e-08\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.50984397933501\\ +-1.36971864290584 -1.38923435087497\\ +-1.17373665572246 -1.25341483208809\\ +-1.00992931540724 -1.12937688043916\\ +-0.872686776049409 -1.01599629693569\\ +-0.757338243974422 -0.912292533612841\\ +-0.659997356987043 -0.817413818216013\\ +-0.577435306702299 -0.730624192461238\\ +-0.506977108633203 -0.651291429329776\\ +-0.446416932489898 -0.578874882741307\\ +-0.393948745379885 -0.512912498269219\\ +-0.348108772259219 -0.453006521301097\\ +-0.271881674752204 -0.349999891115709\\ +-0.185299551440737 -0.232915069684108\\ +-0.141178587639756 -0.176182569610189\\ +-0.105844716548467 -0.133336447460267\\ +-0.0667372878532349 -0.0889658599458079\\ +-0.0176507667758368 -0.0348321078408009\\ +-0.00918432557290383 -0.0234473484234141\\ +-0.00468579824135928 -0.0151169382230201\\ +-0.00362176085858157 -0.0103426519634646\\ +-0.0044155420316645 -0.0075449674596566\\ +-0.00575984274954844 -0.00359933913288191\\ +-0.00526868277975012 -0.000985590508885803\\ +-0.00360583212558518 0.000780544152410689\\ +-0.0013121313558504 0.0011338254635207\\ +5.90812741885216e-06 9.26233859299685e-06\\ +2.79279995152315e-06 2.97908470159314e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.40698158521997 -0.959462465585123\\ +-1.23214757793514 -0.854399774141202\\ +-1.08511360240876 -0.757672046103091\\ +-0.96088350494944 -0.668519506471965\\ +-0.855290732559999 -0.586299465956114\\ +-0.764864511042036 -0.510478529991121\\ +-0.686721789860718 -0.440625131936459\\ +-0.618480666080245 -0.376401137832393\\ +-0.558191278869893 -0.317551311573349\\ +-0.410912183081085 -0.171625751398576\\ +-0.36980274674813 -0.132825975602493\\ +-0.331690932501389 -0.0987731574534989\\ +-0.296265966357457 -0.0693221633395811\\ +-0.263350468774826 -0.0442771345595845\\ +-0.232859212745947 -0.0233838621082998\\ +-0.204760495003804 -0.0063306720755083\\ +-0.179042896700527 0.00724276889593645\\ +-0.155689638402433 0.0177306867431035\\ +-0.134661603409033 0.0255432585398427\\ +-0.115888803192622 0.0310884064358117\\ +-0.0992689703989384 0.0347557384607848\\ +-0.0846713248890036 0.0369041823257272\\ +-0.071943412557703 0.0378539226168821\\ +-0.0514267572303433 0.0372242231069877\\ +-0.0363609996975349 0.0345834605754656\\ +-0.0254786548033323 0.0310591960552145\\ +-0.0177035505112955 0.0273335780456547\\ +-0.0100447683204756 0.0221401149721177\\ +-0.00329115299521177 0.0155291078393873\\ +0.00559410283531725 0.00497957127422555\\ +0.00560356537286877 0.00188929311762354\\ +0.00405272118456157 -0.000392996654864364\\ +0.00155323470035995 -0.00111933437882583\\ +-7.76943753200143e-06 -1.48216794977341e-05\\ +-3.03925006761574e-06 -3.3324948527369e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.20759557793008\\ +-1.39917815147348 -1.11471749265959\\ +-1.21583384333856 -0.998673961721522\\ +-1.06202070355434 -0.892153524907759\\ +-0.932491407794455 -0.79428052964311\\ +-0.822873863858481 -0.704302443408351\\ +-0.729528591577012 -0.621580263283734\\ +-0.649432875879819 -0.545579660312908\\ +-0.580087218751991 -0.475861713656566\\ +-0.519439995358447 -0.412072148410852\\ +-0.417917959945509 -0.301202579926942\\ +-0.335325528726128 -0.211260888999372\\ +-0.299288672023714 -0.17369251101466\\ +-0.26617315299183 -0.140799252575997\\ +-0.235718999127489 -0.112344859296478\\ +-0.207762664352326 -0.0880502166022921\\ +-0.182201254732724 -0.0675935291701595\\ +-0.158961849128167 -0.0506172372294231\\ +-0.13797768071712 -0.0367400095259363\\ +-0.119172007208119 -0.0255714557823452\\ +-0.102449413936025 -0.0167270989121682\\ +-0.0876933869849614 -0.00984156876907583\\ +-0.0635251462204025 -0.00063808665811993\\ +-0.045451701629323 0.00428426218473232\\ +-0.0322214201734254 0.00656548575656002\\ +-0.019009700097697 0.00734845232470582\\ +-0.00927959588210658 0.00646134841011525\\ +-0.00239497062486627 0.00439424808273192\\ +0.00150236614150523 0.00188909073760946\\ +0.00129316730398421 3.02172194177608e-05\\ +8.82561777104662e-06 -5.97845992462709e-05\\ +-9.37750552321148e-07 -1.05827185237217e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.41069158802641 -1.14243874299565\\ +-1.2239782449029 -1.02496301526159\\ +-1.06742177870854 -0.917018178277057\\ +-0.93567208120152 -0.817761837655991\\ +-0.824272796808397 -0.726462419945519\\ +-0.729515132618797 -0.642492649638392\\ +-0.648319071522548 -0.565323023270868\\ +-0.57813738576094 -0.494514338050984\\ +-0.516878265059146 -0.429708345000812\\ +-0.414672050509194 -0.317001248560903\\ +-0.331932488146506 -0.225425915138221\\ +-0.295965223746099 -0.187096062562736\\ +-0.262987769173078 -0.153468765847322\\ +-0.23272219441812 -0.124302560528307\\ +-0.204988879944977 -0.0993148708251337\\ +-0.179670891310803 -0.0781821647452834\\ +-0.156683440557685 -0.0605466744119592\\ +-0.135950140660601 -0.0460280669772211\\ +-0.11738684653148 -0.0342377687319793\\ +-0.100892820545944 -0.0247935432676636\\ +-0.0736152426184427 -0.0115201021348732\\ +-0.0529776788513576 -0.00368598791322783\\ +-0.0377288352076024 0.000640711743487454\\ +-0.0223788253342248 0.00340008524982438\\ +-0.0110125521785207 0.00396836763452457\\ +-0.00308890413001062 0.00302051458561015\\ +0.000828843590616524 0.00138541116370572\\ +0.00066432576906772 -6.17617837885831e-05\\ +-5.92936044485626e-07 -6.85406583045278e-07\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.40427542211867 -0.969907354308587\\ +-1.22919632765388 -0.864022963843382\\ +-1.08197759827707 -0.76658570408585\\ +-0.957616640230078 -0.676819305623629\\ +-0.851941542232577 -0.594067115446948\\ +-0.761477058582718 -0.517783666403887\\ +-0.683336337961622 -0.447526722719317\\ +-0.615134118399525 -0.382948527517328\\ +-0.554917390679945 -0.323785029290952\\ +-0.4080261208966 -0.177083469974931\\ +-0.367090219292119 -0.138057433763396\\ +-0.329166941575128 -0.103785330195134\\ +-0.293940766806355 -0.0741180024682204\\ +-0.261229470104432 -0.0488567157546642\\ +-0.230943106475923 -0.0277455467526784\\ +-0.20304561812556 -0.0104721996174904\\ +-0.177521803985215 0.00332333776612548\\ +-0.154351826151339 0.0140342355567733\\ +-0.133494310638149 0.0220691187455688\\ +-0.114877814935801 0.0278340974112512\\ +-0.0983993593063619 0.0317169157826898\\ +-0.0839280864788496 0.0340747496054825\\ +-0.0713119707357364 0.0352262559077323\\ +-0.0509786257210472 0.0349725707112813\\ +-0.0360500595328743 0.0326664369615024\\ +-0.0252685860724196 0.0294335011496369\\ +-0.01459745471866 0.024255342899735\\ +-0.00820035003830211 0.0196078479908413\\ +-0.00167687341249545 0.0129776939262345\\ +0.00531391165394179 0.00476727820035538\\ +0.00533507067131156 0.00181798054013926\\ +0.00386350850104411 -0.000364179936283016\\ +0.00148241424171869 -0.00106372436853164\\ +-7.39728816356866e-06 -1.41275226703819e-05\\ +-2.89520000129606e-06 -3.17656691461998e-06\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +-1.56 -1.31536039739137\\ +-1.39519165658224 -1.21724884641018\\ +-1.20616502526331 -1.09396735605765\\ +-1.04782644978593 -0.980983055749097\\ +-0.914759853882887 -0.87734512797337\\ +-0.802454745292731 -0.78222949722568\\ +-0.707157724167183 -0.694928230836314\\ +-0.625751468555272 -0.61483992088067\\ +-0.555656599458786 -0.541459970051376\\ +-0.494752271168762 -0.474369768813685\\ +-0.441311590551505 -0.413223939395889\\ +-0.278628849762548 -0.222835428366151\\ +-0.246990641943052 -0.187634884080071\\ +-0.218110487446015 -0.156900838531868\\ +-0.191774372953314 -0.130338476024416\\ +-0.167833759969955 -0.107619637566664\\ +-0.146176460204407 -0.0883885103074074\\ +-0.126703911247927 -0.0722718490794183\\ +-0.0938998612325843 -0.0478780420020171\\ +-0.068472106140917 -0.0315777452742978\\ +-0.0492860577298948 -0.0209377505811885\\ +-0.0295942595972485 -0.0116434020632699\\ +-0.0088010693781293 -0.00372043738580019\\ +-0.00134565449189261 -0.000447481226480972\\ +-9.33014288835299e-05 0.000176897816299038\\ +4.26700953015668e-07 4.18235178711868e-07\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/plant_uncertainty_bode_plot.pdf b/matlab/figs/plant_uncertainty_bode_plot.pdf new file mode 100644 index 0000000..fe78089 Binary files /dev/null and b/matlab/figs/plant_uncertainty_bode_plot.pdf differ diff --git a/matlab/figs/plant_uncertainty_bode_plot.png b/matlab/figs/plant_uncertainty_bode_plot.png new file mode 100644 index 0000000..cf55d12 Binary files /dev/null and b/matlab/figs/plant_uncertainty_bode_plot.png differ diff --git a/matlab/figs/plant_uncertainty_bode_plot.svg b/matlab/figs/plant_uncertainty_bode_plot.svg new file mode 100644 index 0000000..1416172 --- /dev/null +++ b/matlab/figs/plant_uncertainty_bode_plot.svg @@ -0,0 +1,417 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/plant_uncertainty_bode_plot.tex b/matlab/figs/plant_uncertainty_bode_plot.tex new file mode 100644 index 0000000..803f5ea --- /dev/null +++ b/matlab/figs/plant_uncertainty_bode_plot.tex @@ -0,0 +1,4351 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.749in, +height=1.562in, +at={(0.599in,2.19in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={0.1,1,10,100,1000}, +xticklabels={{}}, +xminorticks=true, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=1e-10, +ymax=0.000496547810815053, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000108498472276567\\ +0.270665207003324 0.000109034010450729\\ +0.429173237842216 0.000109985458281458\\ +0.581788007434494 0.000111335576171084\\ +0.732596542821523 0.000113117500472123\\ +0.880937190447399 0.000115343438505964\\ +1.02096066230605 0.000117920844220387\\ +1.1616226326085 0.00012103243176088\\ +1.29751716865759 0.000124603040917109\\ +1.43600898465126 0.000128898983523913\\ +1.57469771464309 0.000133976978560946\\ +1.71093390726901 0.000139860616621259\\ +1.84189668079971 0.000146518543556735\\ +1.96468664618044 0.000153836758040962\\ +2.09566239948044 0.000163042918579891\\ +2.21485523372636 0.00017296483238895\\ +2.34082727617829 0.000185448089145532\\ +2.45126006203334 0.000198501162560025\\ +2.56690271549195 0.000214835711335755\\ +2.68800102153761 0.000235655686872247\\ +2.81481236050758 0.000262714980004439\\ +2.94760625512486 0.000298488589789484\\ +3.08666494333727 0.000345938724742643\\ +3.35371015200293 0.000456376292189216\\ +3.41612326858553 0.000476469258200292\\ +3.4796979038877 0.000488410294147918\\ +3.51192753045073 0.000490210174062816\\ +3.54445567397044 0.000488828287718365\\ +3.57728509936788 0.000484170922063144\\ +3.64385898376355 0.000465620308132517\\ +3.71167181947577 0.000437330794432417\\ +3.81576466127125 0.000385674702165148\\ +4.07014245321944 0.000272397572620362\\ +4.34147833005509 0.000195101593718514\\ +4.63090280179974 0.000145215009195527\\ +4.93962174387833 0.000111808019664777\\ +5.31772317785097 8.5611175912911e-05\\ +5.72476623970218 6.72349546859854e-05\\ +6.22004882563472 5.23932469099312e-05\\ +6.82077673286569 4.0539956498055e-05\\ +7.618717702323 3.04323989190985e-05\\ +8.58882855954626 2.27296594859989e-05\\ +9.86265846131283 1.65200135345635e-05\\ +11.6430313292088 1.14702630345052e-05\\ +14.000583824681 7.77978430337356e-06\\ +17.1488196987054 5.15930823626414e-06\\ +21.0049824165392 3.47331689714748e-06\\ +25.7282596744793 2.37358492904975e-06\\ +30.9378757173014 1.70297984623345e-06\\ +36.8609536217216 1.25949617583441e-06\\ +43.5149650092505 9.59207464337296e-07\\ +50.8987019351968 7.51024175191213e-07\\ +59.5353313081437 5.9524497001661e-07\\ +70.2824426430835 4.71291240765213e-07\\ +83.7380653526649 3.73009145272298e-07\\ +101.6265089393 2.9161587452254e-07\\ +127.969686821594 2.2014551259023e-07\\ +275.067600790807 8.74425082765578e-08\\ +330.764978074424 6.88598076911643e-08\\ +390.473523688556 5.49377711954904e-08\\ +460.960448682844 4.33083483439858e-08\\ +539.17746403875 3.41862604579443e-08\\ +636.507908129558 2.62750083483756e-08\\ +758.367791499719 1.96318054677943e-08\\ +911.92675984593 1.42494432513014e-08\\ +1000 1.20843331770768e-08\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000106710688259385\\ +0.235706941399673 0.000108185122617056\\ +0.43716022482485 0.000109862859097002\\ +0.598104096238094 0.000111451698913966\\ +0.753142016597438 0.000113395687870184\\ +0.897331581458352 0.000115642318917004\\ +1.03996091395412 0.000118340674545726\\ +1.18324062745838 0.000121594304795896\\ +1.32166418394661 0.000125330580498059\\ +1.44930957412621 0.000129372223324675\\ +1.57469771464309 0.000133989243958787\\ +1.71093390726901 0.000139859665886174\\ +1.84189668079971 0.000146502290335897\\ +1.96468664618044 0.000153803749341917\\ +2.09566239948044 0.000162989195662911\\ +2.21485523372636 0.000172889306053977\\ +2.34082727617829 0.000185345825817824\\ +2.45126006203334 0.000198371611302019\\ +2.56690271549195 0.000214672724729658\\ +2.68800102153761 0.000235450850314354\\ +2.81481236050758 0.000262456447641341\\ +2.94760625512486 0.000298159363577881\\ +3.08666494333727 0.000345514720987432\\ +3.35371015200293 0.000455712137230615\\ +3.41612326858553 0.000475750866246482\\ +3.4796979038877 0.000487648033209948\\ +3.51192753045073 0.00048943203417931\\ +3.54445567397044 0.000488039249457236\\ +3.57728509936788 0.000483376376434566\\ +3.64385898376355 0.000464830987883892\\ +3.71167181947577 0.000436565541473844\\ +3.81576466127125 0.000384967903998203\\ +4.07014245321944 0.00027184465542531\\ +4.34147833005509 0.000194666003615945\\ +4.63090280179974 0.00014486048557348\\ +4.93962174387833 0.000111510986288825\\ +5.31772317785097 8.53618866248118e-05\\ +5.72476623970218 6.70212232619818e-05\\ +6.22004882563472 5.22100490297032e-05\\ +6.82077673286569 4.03827908269195e-05\\ +7.618717702323 3.02990405609141e-05\\ +8.66837993001977 2.21269690072205e-05\\ +10.0462042134681 1.57548895189945e-05\\ +11.8597101233767 1.09445464011999e-05\\ +14.3932264471941 7.2799567200331e-06\\ +17.7930438991858 4.73566003590998e-06\\ +22.1996611911996 3.07244026864782e-06\\ +27.4434330322837 2.06124343039162e-06\\ +33.3060034362459 1.45273233849936e-06\\ +39.6824610456949 1.07296741433723e-06\\ +46.8458011587306 8.15790577302932e-07\\ +55.302242561929 6.28629436960926e-07\\ +64.6860766154633 4.97602246929351e-07\\ +76.3629826128224 3.9339778327894e-07\\ +90.9827289445557 3.10833504253634e-07\\ +110.418805085416 2.42510384874621e-07\\ +140.328908478587 1.80526501108391e-07\\ +272.543253128103 8.0289853408166e-08\\ +330.764978074424 6.24230266701069e-08\\ +394.090164040345 4.91289337805476e-08\\ +465.229952396019 3.86828325688862e-08\\ +549.211648388779 3.00692763854901e-08\\ +648.353428605473 2.30715494677114e-08\\ +772.48114514034 1.72106942418308e-08\\ +937.501501514529 1.22711272275018e-08\\ +1000 1.09303865227853e-08\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000106161777540379\\ +0.273172159844137 0.000106693649435728\\ +0.433148322337639 0.000107636191903778\\ +0.587176639073326 0.000108974357051141\\ +0.739381991917587 0.000110741709261984\\ +0.889096598952917 0.00011295132060887\\ +1.03041699495059 0.000115512354927531\\ +1.1723818032866 0.000118607695657118\\ +1.30953502048267 0.000122164262945384\\ +1.44930957412621 0.00012644963236464\\ +1.57469771464309 0.000130954429466831\\ +1.71093390726902 0.00013668410289673\\ +1.84189668079971 0.000143168904073163\\ +1.96468664618045 0.000150297873888516\\ +2.09566239948043 0.000159267159528486\\ +2.21485523372636 0.000168934893316964\\ +2.34082727617829 0.000181099534710667\\ +2.45126006203334 0.000193820441356009\\ +2.56690271549195 0.000209740272544986\\ +2.68800102153761 0.000230032586388387\\ +2.81481236050758 0.000256406826555313\\ +2.94760625512486 0.000291274843672557\\ +3.08666494333727 0.000337521979774698\\ +3.35371015200293 0.000445131433358172\\ +3.41612326858553 0.000464695140833651\\ +3.47969790388769 0.000476305512218887\\ +3.51192753045073 0.000478042713610977\\ +3.54445567397044 0.000476676965625263\\ +3.57728509936788 0.000472117242644679\\ +3.64385898376354 0.000453993168246729\\ +3.71167181947577 0.000426376406113966\\ +3.81576466127124 0.000375968763213805\\ +4.07014245321944 0.000265464344047218\\ +4.3414783300551 0.000190076426508321\\ +4.63090280179974 0.000141427722414495\\ +4.93962174387833 0.000108853262836214\\ +5.31772317785097 8.33120645010099e-05\\ +5.72476623970219 6.53978278966444e-05\\ +6.22004882563472 5.09309807205617e-05\\ +6.88395206964551 3.84153689645079e-05\\ +7.68928372075831 2.88526920143443e-05\\ +8.7486681204799 2.108066473898e-05\\ +10.1392540755881 1.50060404098482e-05\\ +12.0804213467733 1.02060897535323e-05\\ +14.796880626864 6.64467499824773e-06\\ +18.8050405512858 4.06955925292407e-06\\ +24.3436887354311 2.43910830349756e-06\\ +31.2244282309286 1.51120046762387e-06\\ +39.3182875570577 9.84420485148619e-07\\ +48.1595791019236 6.84680383912247e-07\\ +57.9112264764177 4.98911174126457e-07\\ +68.9983712143002 3.74357044057778e-07\\ +81.4537176628074 2.88861153255964e-07\\ +96.1574600143211 2.25673223207324e-07\\ +114.566872863487 1.76078223599051e-07\\ +139.041083409007 1.35502314433937e-07\\ +178.341022071001 9.80060436022154e-08\\ +301.63343472592 4.96594928948551e-08\\ +366.069514759691 3.81390602315054e-08\\ +436.153778920801 2.96896162402727e-08\\ +514.886745013749 2.31401885390944e-08\\ +607.832312829724 1.78135283404822e-08\\ +724.202233460732 1.33369014678999e-08\\ +870.843149769072 9.70147234201423e-09\\ +1000 7.58020925787276e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000103988639710109\\ +0.273172159844137 0.000104509161329156\\ +0.433148322337639 0.000105431589568851\\ +0.587176639073326 0.000106741197423331\\ +0.739381991917587 0.000108470832617654\\ +0.889096598952917 0.000110633287700968\\ +1.03041699495059 0.000113139664413033\\ +1.1723818032866 0.000116168942132432\\ +1.30953502048267 0.000119649599384566\\ +1.44930957412621 0.000123843498682136\\ +1.57469771464309 0.000128252136045092\\ +1.71093390726902 0.000133859494053034\\ +1.84189668079971 0.000140205846175677\\ +1.96468664618045 0.000147182596779813\\ +2.09566239948043 0.000155960341259496\\ +2.21485523372636 0.000165421582656967\\ +2.34082727617829 0.00017732634478191\\ +2.45126006203334 0.000189775418294526\\ +2.56690271549195 0.000205354951158996\\ +2.68800102153761 0.000225213315696785\\ +2.81481236050758 0.000251023203002509\\ +2.94760625512486 0.00028514443914444\\ +3.08666494333727 0.000330399604187832\\ +3.35371015200293 0.000435688111201614\\ +3.41612326858553 0.000454823943354308\\ +3.47969790388769 0.000466174044401921\\ +3.51192753045073 0.000467867263001643\\ +3.54445567397044 0.000466523448250321\\ +3.57728509936788 0.000462053653092282\\ +3.64385898376354 0.000444301690076666\\ +3.71167181947577 0.000417260627711651\\ +3.81576466127124 0.000367911538830492\\ +4.07014245321944 0.000259740794498528\\ +4.3414783300551 0.000185950309387712\\ +4.63090280179974 0.000138334103801349\\ +4.93962174387833 0.000106451684802278\\ +5.31772317785097 8.14535467222222e-05\\ +5.72476623970219 6.3920506961436e-05\\ +6.22004882563472 4.97617742570977e-05\\ +6.88395206964551 3.7513061090711e-05\\ +7.68928372075831 2.81547253077703e-05\\ +8.7486681204799 2.05493433549124e-05\\ +10.1392540755881 1.46057791246814e-05\\ +12.0804213467733 9.91062011237865e-06\\ +14.9339321612425 6.30553694481312e-06\\ +19.3324228755504 3.6990766374185e-06\\ +25.7282596744793 2.08220842268616e-06\\ +34.2400613797143 1.18955301662162e-06\\ +44.3247859124039 7.27875725220244e-07\\ +55.8144624945496 4.76429175080073e-07\\ +68.3651600451024 3.32886092644989e-07\\ +82.2081575524054 2.43634234935184e-07\\ +97.9469667069539 1.83541363462631e-07\\ +116.698981861715 1.40097756708262e-07\\ +140.328908478588 1.06824062739334e-07\\ +171.883914281715 8.0287885138585e-08\\ +228.74908173557 5.44097079701744e-08\\ +330.764978074424 3.28768052170021e-08\\ +405.142317111466 2.4612185935356e-08\\ +482.707096560319 1.89456282523203e-08\\ +575.121707184161 1.44021840125226e-08\\ +685.229159528406 1.08068931018067e-08\\ +823.978568452851 7.88095612068824e-09\\ +1000 5.58332412998932e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000110009306716853\\ +0.273172159844137 0.000110561983769042\\ +0.43314832233764 0.000111541392297922\\ +0.587176639073325 0.000112931890812025\\ +0.739381991917586 0.000114768349490098\\ +0.889096598952917 0.000117064342959955\\ +1.03041699495059 0.000119725475642896\\ +1.1723818032866 0.000122941769482224\\ +1.30953502048267 0.000126637278416877\\ +1.44930957412621 0.000131090019000053\\ +1.57469771464309 0.000135770715558031\\ +1.71093390726901 0.000141724066114036\\ +1.84189668079971 0.000148461970751475\\ +1.96468664618044 0.00015586913967419\\ +2.09566239948044 0.000165188397054289\\ +2.21485523372636 0.000175233330760571\\ +2.34082727617829 0.000187872597987267\\ +2.45126006203334 0.000201089885400382\\ +2.56690271549195 0.000217631056602428\\ +2.68800102153761 0.000238715677369563\\ +2.81481236050758 0.000266120387140951\\ +2.94760625512486 0.000302352308926792\\ +3.08666494333727 0.000350412197770995\\ +3.35371015200293 0.000462274220585638\\ +3.41612326858553 0.000482627402419259\\ +3.4796979038877 0.000494723888464099\\ +3.51192753045073 0.000496547810815052\\ +3.54445567397044 0.000495148977691447\\ +3.57728509936788 0.000490432446714652\\ +3.64385898376355 0.000471644385058489\\ +3.71167181947577 0.000442991721165876\\ +3.81576466127125 0.000390671671417\\ +4.07014245321944 0.000275937726250845\\ +4.34147833005509 0.000197648154787981\\ +4.63090280179974 0.000147120951892833\\ +4.93962174387833 0.000113285326714223\\ +5.31772317785097 8.67523779028233e-05\\ +5.72476623970218 6.8140007752374e-05\\ +6.22004882563472 5.31067072863615e-05\\ +6.82077673286569 4.10989387248911e-05\\ +7.618717702323 3.08572500735523e-05\\ +8.66837993001977 2.25521095467056e-05\\ +10.0462042134681 1.6070381458774e-05\\ +11.8597101233767 1.11710319294893e-05\\ +14.3932264471941 7.43237462354923e-06\\ +17.957846470021 4.7434365317692e-06\\ +22.6128006633728 3.01886211452535e-06\\ +28.2130767593947 1.98634279145253e-06\\ +34.5571993676214 1.37336232246497e-06\\ +41.5545533471888 9.95821963690582e-07\\ +49.5102015955635 7.44052650872394e-07\\ +58.4476113163364 5.72161963349417e-07\\ +68.9983712143002 4.45868416409378e-07\\ +81.4537176628075 3.51908935823293e-07\\ +97.0480887738031 2.77535180455003e-07\\ +117.779870119712 2.16062023902403e-07\\ +149.683929307726 1.60362044427754e-07\\ +275.067600790807 7.56556267879538e-08\\ +333.828586473176 5.87203518313652e-08\\ +397.740302405804 4.61516573554439e-08\\ +469.539001068006 3.62956340259258e-08\\ +554.298551568467 2.81831882617426e-08\\ +654.358601888324 2.16034724160284e-08\\ +779.636013040524 1.61012653436621e-08\\ +946.184819472201 1.14708121193533e-08\\ +1000 1.03865891492337e-08\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.87412452259834e-05\\ +0.273172159844137 9.92348204562054e-05\\ +0.433148322337639 0.000100109536893874\\ +0.587176639073326 0.000101351483889747\\ +0.739381991917587 0.000102991872871532\\ +0.889096598952917 0.000105042895449894\\ +1.03041699495059 0.000107420273595178\\ +1.1723818032866 0.000110293807587899\\ +1.30953502048267 0.000113595680505916\\ +1.44930957412621 0.000117574328752515\\ +1.57469771464309 0.000121756835187419\\ +1.71093390726902 0.00012707672235125\\ +1.84189668079971 0.000133097852465556\\ +1.96468664618045 0.000139717185977309\\ +2.09566239948043 0.000148045354399659\\ +2.21485523372636 0.000157022093762486\\ +2.34082727617829 0.000168317289398057\\ +2.45126006203334 0.000180128961440802\\ +2.56690271549195 0.000194910817878608\\ +2.68800102153761 0.000213752386671599\\ +2.81481236050758 0.000238240603062112\\ +2.94760625512486 0.000270614195119691\\ +3.08666494333727 0.000313550548750636\\ +3.35371015200293 0.000413435844271566\\ +3.41612326858553 0.000431585716419708\\ +3.47969790388769 0.000442346770910132\\ +3.51192753045073 0.000443948741442839\\ +3.54445567397044 0.000442668855301515\\ +3.57728509936788 0.000438422806790848\\ +3.64385898376354 0.000421569251077331\\ +3.71167181947577 0.000395902513063581\\ +3.81576466127124 0.000349066706387915\\ +4.07014245321944 0.000246413716553531\\ +4.3414783300551 0.000176390856981814\\ +4.63090280179974 0.000131206965964441\\ +4.93962174387833 0.000100953601322724\\ +5.31772317785097 7.72330174198303e-05\\ +5.72476623970219 6.05961666712853e-05\\ +6.22004882563472 4.71612471857745e-05\\ +6.88395206964551 3.55387898129208e-05\\ +7.68928372075831 2.66589976024944e-05\\ +8.7486681204799 1.94425819537047e-05\\ +10.1392540755881 1.38030541252506e-05\\ +12.1923125164911 9.16191601220163e-06\\ +15.2118551798611 5.70087540447303e-06\\ +20.4319732019527 3.08172245447696e-06\\ +30.9378757173014 1.32018866597359e-06\\ +168.743567772738 4.19080206536653e-08\\ +226.649807927369 2.24598958216087e-08\\ +293.404970921579 1.28044837198679e-08\\ +369.460120519931 7.62650158282593e-09\\ +465.22995239602 4.46464857507697e-09\\ +596.727119597331 2.45915046112334e-09\\ +854.93270662684 1.01803254121598e-09\\ +1000 6.92454023447087e-10\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000103472815095116\\ +0.246826845225569 0.000103764712552393\\ +0.406077202570037 0.000104588188830098\\ +0.560723488285204 0.000105815954588572\\ +0.712611543011176 0.000107451063224741\\ +0.856905505126836 0.00010943080578716\\ +1.00230754828386 0.000111889341459264\\ +1.14039960197003 0.000114706267495767\\ +1.27381132318648 0.00011793280577219\\ +1.40977287162897 0.000121806165975502\\ +1.54592773641948 0.000126372389785683\\ +1.67967487209265 0.00013164642921462\\ +1.80824493487796 0.000137593130467269\\ +1.92879150802078 0.000144103709211705\\ +2.05737431343292 0.000152256210389392\\ +2.17438947560008 0.000160996972288551\\ +2.29805998875885 0.000171929929132772\\ +2.42876438246045 0.000185866770171835\\ +2.54334576130465 0.000200645245280961\\ +2.66333272517498 0.000219410866201008\\ +2.78898029238044 0.000243706173132331\\ +2.92055551218275 0.000275733401139415\\ +3.05833803237843 0.000318277974291835\\ +3.38477285594598 0.000443112526240056\\ +3.44776405473447 0.000458710983159802\\ +3.47969790388769 0.000463155276999522\\ +3.51192753045073 0.000464836331558684\\ +3.54445567397044 0.000463500004683552\\ +3.57728509936788 0.000459057949567479\\ +3.64385898376354 0.000441418654731649\\ +3.71167181947577 0.000414550697830886\\ +3.81576466127124 0.000365518842678277\\ +4.07014245321944 0.000258045688086679\\ +4.3414783300551 0.000184731982176142\\ +4.63090280179974 0.000137423709905354\\ +4.93962174387833 0.000105747581315194\\ +5.31772317785097 8.09112499600049e-05\\ +5.72476623970219 6.34917310907488e-05\\ +6.22004882563472 4.94246956258575e-05\\ +6.88395206964551 3.72553323208468e-05\\ +7.68928372075831 2.79576433169383e-05\\ +8.7486681204799 2.04015723274259e-05\\ +10.1392540755881 1.44965747128902e-05\\ +12.0804213467733 9.83192417433522e-06\\ +14.9339321612425 6.25033051493064e-06\\ +19.3324228755504 3.66095393747018e-06\\ +26.2070669648386 1.98056450736137e-06\\ +35.8553985745982 1.06794410707533e-06\\ +47.2796959160039 6.28285305604724e-07\\ +60.0867589171969 4.02440307303411e-07\\ +74.2798248256491 2.75278943599132e-07\\ +90.1477631452492 1.97385182315382e-07\\ +108.401435917833 1.45809347414625e-07\\ +129.154966501488 1.10770538168833e-07\\ +155.307057393346 8.39937467286427e-08\\ +191.992066559329 6.1888019020341e-08\\ +272.543253128103 3.79230887352158e-08\\ +362.710025233065 2.52998322991477e-08\\ +444.270674960689 1.8750331636394e-08\\ +534.229329953836 1.409916037169e-08\\ +636.507908129558 1.06192772348653e-08\\ +765.391938823016 7.77583241179766e-09\\ +928.897872016452 5.53061713477902e-09\\ +1000 4.84173808160309e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.2452141056678e-05\\ +0.270665207003324 9.2902572699138e-05\\ +0.429173237842215 9.37076581965146e-05\\ +0.581788007434494 9.48505752808492e-05\\ +0.732596542821523 9.63593590889846e-05\\ +0.880937190447399 9.82444830345435e-05\\ +1.02096066230605 0.000100427712471849\\ +1.1616226326085 0.000103063980005556\\ +1.29751716865759 0.000106089781446567\\ +1.43600898465126 0.000109730991678469\\ +1.57469771464309 0.000114035927699999\\ +1.71093390726902 0.000119024798151104\\ +1.84189668079971 0.000124671166242433\\ +1.96468664618045 0.000130878418678899\\ +2.09566239948043 0.0001386880503086\\ +2.21485523372636 0.000147105826703551\\ +2.34082727617829 0.000157697679931069\\ +2.45126006203334 0.000168773874461592\\ +2.56690271549195 0.000182635390760772\\ +2.68800102153761 0.000200304045066533\\ +2.81481236050758 0.000223268240857912\\ +2.94760625512486 0.000253627942952938\\ +3.08666494333727 0.000293895314832468\\ +3.35371015200293 0.000387589305419955\\ +3.41612326858553 0.000404622416975093\\ +3.47969790388769 0.000414730189305415\\ +3.51192753045073 0.000416241944607998\\ +3.54445567397044 0.000415051882139278\\ +3.57728509936788 0.000411080761392506\\ +3.64385898376354 0.00039529807817934\\ +3.71167181947577 0.000371250107149507\\ +3.81576466127124 0.000327357377673645\\ +4.07014245321944 0.000231136699874716\\ +4.3414783300551 0.000165494106724969\\ +4.63090280179974 0.00012313445012684\\ +4.93962174387833 9.4771206008302e-05\\ +5.31772317785097 7.25321151053357e-05\\ +5.72476623970219 5.69340732929453e-05\\ +6.22004882563472 4.43378622733967e-05\\ +6.88395206964551 3.3440824291499e-05\\ +7.68928372075831 2.51151557547182e-05\\ +8.7486681204799 1.83489605567593e-05\\ +10.1392540755881 1.30611579749234e-05\\ +12.0804213467733 8.88392820478777e-06\\ +14.796880626864 5.78600079913867e-06\\ +18.6324631193156 3.61425509403601e-06\\ +23.6796006783308 2.25060025431261e-06\\ +29.8177229001967 1.44871216932303e-06\\ +36.8609536217215 9.80219775715329e-07\\ +44.7353305449846 6.96084458792822e-07\\ +53.2999408084408 5.17661795092282e-07\\ +62.9214610961035 3.96128589026787e-07\\ +74.2798248256491 3.0711344197889e-07\\ +87.6885609458744 2.41151683364678e-07\\ +104.476597156081 1.89188985465523e-07\\ +126.795284678644 1.46477239472934e-07\\ +161.141427725302 1.08019356060074e-07\\ +290.712337727258 5.13086636943455e-08\\ +352.815411538089 3.96051765841348e-08\\ +420.362168384472 3.0966074525065e-08\\ +496.244487762891 2.42306880370753e-08\\ +585.824820015255 1.87220391744222e-08\\ +691.575882873852 1.42845534783835e-08\\ +831.610415323096 1.04310616966053e-08\\ +1000 7.5205644695094e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000108175589061139\\ +0.273172159844137 0.000108717631737448\\ +0.433148322337639 0.000109678198994709\\ +0.587176639073326 0.000111041956591593\\ +0.739381991917587 0.000112843112784143\\ +0.889096598952917 0.000115094992148983\\ +1.03041699495059 0.00011770502334882\\ +1.1723818032866 0.000120859591600932\\ +1.30953502048267 0.000124484222104863\\ +1.44930957412621 0.00012885161533867\\ +1.57469771464309 0.000133442650163434\\ +1.71093390726902 0.000139282028074319\\ +1.84189668079971 0.000145891013692493\\ +1.96468664618045 0.000153156527120334\\ +2.09566239948043 0.00016229763476774\\ +2.21485523372636 0.000172150603431445\\ +2.34082727617829 0.000184548363097198\\ +2.45126006203334 0.000197513092784684\\ +2.56690271549195 0.00021373811900616\\ +2.68800102153761 0.00023441953719015\\ +2.81481236050758 0.000261299638066115\\ +2.94760625512486 0.000296836663365176\\ +3.08666494333727 0.00034397159866747\\ +3.35371015200293 0.000453650438029749\\ +3.41612326858553 0.000473591989288121\\ +3.47969790388769 0.000485428323618564\\ +3.51192753045073 0.000487200705342862\\ +3.54445567397044 0.000485810738021894\\ +3.57728509936788 0.00048116561411477\\ +3.64385898376354 0.00046269809941973\\ +3.71167181947577 0.000434555656172021\\ +3.81576466127124 0.000383186415793097\\ +4.07014245321944 0.000270570512742257\\ +4.3414783300551 0.000193740830252931\\ +4.63090280179974 0.000144161483533765\\ +4.93962174387833 0.000110963885375962\\ +5.31772317785097 8.49342037446196e-05\\ +5.72476623970219 6.66775115766709e-05\\ +6.22004882563472 5.19343213358537e-05\\ +6.82077673286569 4.01615023511823e-05\\ +7.61871770232298 3.01243171789596e-05\\ +8.66837993001979 2.19901352665132e-05\\ +10.0462042134682 1.5647753897885e-05\\ +11.8597101233767 1.08599963053537e-05\\ +14.3932264471941 7.21282928831614e-06\\ +17.7930438991858 4.68093621627836e-06\\ +22.1996611911995 3.02626628490821e-06\\ +27.697619350369 1.98632585278993e-06\\ +33.9258338274099 1.37029241208112e-06\\ +40.7953450345245 9.9152730956326e-07\\ +48.6056423214213 7.39334590785553e-07\\ +57.3797641421414 5.67429638932955e-07\\ +67.7377599751775 4.4134897358637e-07\\ +79.9655452589236 3.477384899308e-07\\ +95.275004724273 2.7381373306541e-07\\ +115.628013120738 2.12875398800721e-07\\ +145.600599502065 1.59630959956872e-07\\ +285.400976982924 6.93989497609734e-08\\ +343.190719745904 5.44110180539588e-08\\ +408.894822629486 4.26797600482071e-08\\ +482.707096560319 3.34947962766099e-08\\ +569.843705946914 2.59517995397749e-08\\ +672.709913571235 1.98508654594979e-08\\ +801.500696156541 1.4764660699464e-08\\ +972.720319245056 1.04981075942735e-08\\ +1000 9.98841221082439e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.20962174027622e-05\\ +0.273172159844137 9.25576413882406e-05\\ +0.433148322337639 9.33753416178664e-05\\ +0.587176639073326 9.45362635364136e-05\\ +0.739381991917587 9.60695261321599e-05\\ +0.889096598952917 9.79864704309721e-05\\ +1.03041699495059 0.000100208292073947\\ +1.1723818032866 0.000102893651809519\\ +1.30953502048267 0.000105979149872248\\ +1.44930957412621 0.000109696922070168\\ +1.57469771464309 0.000113605061188373\\ +1.71093390726902 0.000118575845729276\\ +1.84189668079971 0.000124201746275036\\ +1.96468664618045 0.000130386501001377\\ +2.09566239948043 0.000138167832239846\\ +2.21485523372636 0.000146555111249559\\ +2.34082727617829 0.000157108601152317\\ +2.45126006203334 0.000168144691577906\\ +2.56690271549195 0.00018195603943737\\ +2.68800102153761 0.000199560781836507\\ +2.81481236050758 0.000222441975591147\\ +2.94760625512486 0.000252692074083188\\ +3.08666494333727 0.00029281435358518\\ +3.35371015200293 0.000386173153397827\\ +3.41612326858553 0.000403146442784107\\ +3.47969790388769 0.000413219908285318\\ +3.51192753045073 0.000414727480550579\\ +3.54445567397044 0.000413543090546108\\ +3.57728509936788 0.000409587759564042\\ +3.64385898376354 0.000393865073274406\\ +3.71167181947577 0.000369906884957868\\ +3.81576466127124 0.000326176570426218\\ +4.07014245321944 0.000230309476405544\\ +4.3414783300551 0.000164907100454684\\ +4.63090280179974 0.000122702154896715\\ +4.93962174387833 9.44423810617963e-05\\ +5.31772317785097 7.22843483270925e-05\\ +5.72476623970219 5.67431157224059e-05\\ +6.22004882563472 4.41927466563383e-05\\ +6.82077673286569 3.41708968440979e-05\\ +7.61871770232298 2.56264754326803e-05\\ +8.66837993001979 1.87019663387312e-05\\ +10.0462042134682 1.33027252913336e-05\\ +11.8597101233767 9.22687977761469e-06\\ +14.3932264471941 6.12200978285997e-06\\ +17.957846470021 3.89371102014186e-06\\ +22.6128006633728 2.46790881333655e-06\\ +28.4743916646725 1.58843973183073e-06\\ +35.2003147279668 1.07520496667804e-06\\ +42.7199396630678 7.64099121393625e-07\\ +50.8987019351967 5.68766470333244e-07\\ +60.0867589171969 4.35695062057299e-07\\ +70.9334120498799 3.38191816763607e-07\\ +83.7380653526651 2.65898277327804e-07\\ +99.7697764236321 2.08905477754571e-07\\ +121.082975023204 1.62019180022894e-07\\ +153.881775003835 1.19763852906534e-07\\ +288.04441533963 5.46886483587234e-08\\ +349.577557436328 4.22784441511828e-08\\ +416.504424854519 3.3097834558044e-08\\ +491.690357762802 2.5927369855551e-08\\ +580.448594276898 2.00532720488411e-08\\ +685.229159528406 1.5314110123483e-08\\ +816.416760492149 1.13730662646493e-08\\ +990.822809900379 8.07528181315159e-09\\ +1000 7.94216474106572e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.10260424790388e-05\\ +0.268181260945302 9.14947101093114e-05\\ +0.425234633452869 9.22972035676161e-05\\ +0.581788007434494 9.34624324109794e-05\\ +0.732596542821523 9.49582769187775e-05\\ +0.880937190447399 9.68222685820465e-05\\ +1.02096066230605 9.89784774043585e-05\\ +1.1616226326085 0.000101580602650839\\ +1.29751716865759 0.000104566280467241\\ +1.43600898465126 0.000108158561813142\\ +1.57469771464309 0.00011240518858028\\ +1.71093390726902 0.000117326159338484\\ +1.84189668079971 0.000122895452005871\\ +1.96468664618045 0.000129017819768875\\ +2.09566239948043 0.000136720530464101\\ +2.21485523372636 0.000145022979092393\\ +2.34082727617829 0.000155469664917055\\ +2.45126006203334 0.000166394035248264\\ +2.56690271549195 0.00018006556300645\\ +2.68800102153761 0.00019749211611372\\ +2.81481236050758 0.000220141823378334\\ +2.94760625512486 0.000250086155729176\\ +3.08666494333727 0.000289803533224524\\ +3.35371015200293 0.000382226118911191\\ +3.41612326858553 0.000399031976664291\\ +3.47969790388769 0.000409009055839608\\ +3.51192753045073 0.000410504574019317\\ +3.54445567397044 0.000409335601515881\\ +3.57728509936788 0.00040542389756897\\ +3.64385898376354 0.000389867731748706\\ +3.71167181947577 0.000366159198591278\\ +3.81576466127124 0.000322880926794922\\ +4.07014245321944 0.000227998664307005\\ +4.3414783300551 0.000163265655816149\\ +4.63090280179974 0.00012149190891175\\ +4.93962174387833 9.35205663694054e-05\\ +5.31772317785097 7.15885293472521e-05\\ +5.72476623970219 5.6205722320232e-05\\ +6.22004882563472 4.37832383033456e-05\\ +6.82077673286569 3.38634728291714e-05\\ +7.61871770232298 2.54060571314191e-05\\ +8.66837993001979 1.85520301271464e-05\\ +10.0462042134682 1.32077093451141e-05\\ +11.8597101233767 9.17326056300593e-06\\ +14.3932264471941 6.0997974532622e-06\\ +17.7930438991858 3.96597212325065e-06\\ +22.1996611911995 2.5711624016391e-06\\ +27.4434330322837 1.72325916689663e-06\\ +33.306003436246 1.21313312582608e-06\\ +40.0500075787362 8.81005895476345e-07\\ +47.2796959160039 6.69438404696848e-07\\ +55.8144624945496 5.15514023055974e-07\\ +65.2852114112785 4.07800269101452e-07\\ +77.0702711421232 3.22183175229125e-07\\ +91.825428356563 2.54391903579753e-07\\ +111.441525146679 1.9833724644622e-07\\ +141.62866162992 1.47527738150631e-07\\ +275.067600790807 6.54674109509825e-08\\ +333.828586473176 5.0858306071518e-08\\ +397.740302405804 3.99953666172243e-08\\ +469.539001068005 3.14664018006807e-08\\ +554.298551568467 2.44402893383927e-08\\ +654.358601888323 1.8738253301496e-08\\ +779.636013040525 1.39679604964005e-08\\ +946.184819472199 9.95219767383153e-09\\ +1000 9.011753147682e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000107390632591073\\ +0.268181260945302 0.000107926506498806\\ +0.425234633452869 0.000108865156743274\\ +0.581788007434494 0.000110237352346869\\ +0.732596542821523 0.000112001321031209\\ +0.880937190447399 0.00011419979530404\\ +1.02096066230605 0.000116742797143369\\ +1.1616226326085 0.000119811495424174\\ +1.29751716865759 0.000123332326918234\\ +1.43600898465126 0.000127568324040259\\ +1.57469771464309 0.000132575782622857\\ +1.71093390726902 0.00013837828960718\\ +1.84189668079971 0.000144945169496655\\ +1.96468664618045 0.00015216412371421\\ +2.09566239948043 0.000161246410291757\\ +2.21485523372636 0.000171035789842108\\ +2.34082727617829 0.000183353364831795\\ +2.45126006203334 0.000196234110651307\\ +2.56690271549195 0.000212353908571439\\ +2.68800102153761 0.000232901062065236\\ +2.81481236050758 0.000259606504434612\\ +2.94760625512486 0.000294912435812034\\ +3.08666494333727 0.000341740599244693\\ +3.35371015200293 0.000450704184772937\\ +3.41612326858553 0.000470515130832274\\ +3.47969790388769 0.000482273366872552\\ +3.51192753045073 0.000484033597168295\\ +3.54445567397044 0.000482652014545749\\ +3.57728509936788 0.00047803642754126\\ +3.64385898376354 0.000459687672086539\\ +3.71167181947577 0.00043172699134655\\ +3.81576466127124 0.000380690222026516\\ +4.07014245321944 0.00026880430385645\\ +4.3414783300551 0.000192473003706936\\ +4.63090280179974 0.000143215305107979\\ +4.93962174387833 0.000110233039421154\\ +5.31772317785097 8.43721324046964e-05\\ +5.72476623970219 6.62337498514756e-05\\ +6.22004882563472 5.15860336098065e-05\\ +6.82077673286569 3.98893865800089e-05\\ +7.61871770232298 2.99170750851398e-05\\ +8.66837993001979 2.18354037753285e-05\\ +10.0462042134682 1.5533918897064e-05\\ +11.8597101233767 1.0777012959626e-05\\ +14.3932264471941 7.15336596071589e-06\\ +17.957846470021 4.55276679798004e-06\\ +22.6128006633728 2.88870349086598e-06\\ +28.2130767593947 1.89453581765069e-06\\ +34.5571993676214 1.30543305078253e-06\\ +41.5545533471888 9.43250093915678e-07\\ +49.5102015955635 7.02194882621604e-07\\ +58.4476113163363 5.38002166276754e-07\\ +68.9983712143002 4.1770749826442e-07\\ +81.4537176628074 3.2852039014729e-07\\ +97.0480887738033 2.58212718148332e-07\\ +117.779870119712 2.00376646954424e-07\\ +148.31025143361 1.49962055532269e-07\\ +290.712337727258 6.48442292025334e-08\\ +349.577557436328 5.07552867388197e-08\\ +412.682084570295 4.02729910765884e-08\\ +487.178021879464 3.1576145727494e-08\\ +575.121707184161 2.44432275566547e-08\\ +678.94068126961 1.86814577776779e-08\\ +808.924348680595 1.3884166587299e-08\\ +981.729840618886 9.86503414569779e-09\\ +1000 9.54277383513251e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000107466488413449\\ +0.273172159844137 0.000108004242618153\\ +0.433148322337639 0.0001089572201943\\ +0.587176639073326 0.000110310223388938\\ +0.739381991917587 0.000112097211178584\\ +0.889096598952917 0.000114331428374092\\ +1.03041699495059 0.000116921053136757\\ +1.1723818032866 0.000120051039781421\\ +1.30953502048267 0.000123647522698753\\ +1.44930957412621 0.000127981118075214\\ +1.57469771464309 0.000132536741501309\\ +1.71093390726902 0.000138331222799268\\ +1.84189668079971 0.000144889551894075\\ +1.96468664618045 0.000152099529588977\\ +2.09566239948043 0.000161170940758366\\ +2.21485523372636 0.000170948950463659\\ +2.34082727617829 0.000183252565473102\\ +2.45126006203334 0.000196118987598988\\ +2.56690271549195 0.000212221111529804\\ +2.68800102153761 0.000232745971682976\\ +2.81481236050758 0.00025942260649348\\ +2.94760625512486 0.000294690422633091\\ +3.08666494333727 0.000341467453395572\\ +3.35371015200293 0.000450303864542952\\ +3.41612326858553 0.000470087468337347\\ +3.47969790388769 0.000481824856673884\\ +3.51192753045073 0.000483578286310881\\ +3.54445567397044 0.000482192810845442\\ +3.57728509936788 0.000477576429028972\\ +3.64385898376354 0.000459235229551363\\ +3.71167181947577 0.000431292422917819\\ +3.81576466127124 0.000380293999245722\\ +4.07014245321944 0.000268502156184911\\ +4.3414783300551 0.000192239671488608\\ +4.63090280179974 0.00014302827970214\\ +4.93962174387833 0.000110078119972138\\ +5.31772317785097 8.42432930518535e-05\\ +5.72476623970219 6.61239137738063e-05\\ +6.22004882563472 5.14921821343883e-05\\ +6.88395206964551 3.88348376444012e-05\\ +7.68928372075831 2.91648179488392e-05\\ +8.7486681204799 2.13066050341723e-05\\ +10.1392540755881 1.51658351284306e-05\\ +12.0804213467733 1.03151492329859e-05\\ +14.796880626864 6.71803478686735e-06\\ +18.6324631193156 4.19650229346574e-06\\ +23.6796006783308 2.61328679526265e-06\\ +29.8177229001967 1.68231041640621e-06\\ +36.8609536217215 1.13840111304229e-06\\ +44.7353305449846 8.0851947922694e-07\\ +53.2999408084408 6.0136121027546e-07\\ +62.9214610961035 4.60244818461644e-07\\ +74.2798248256491 3.56876060248493e-07\\ +87.6885609458744 2.80268030323166e-07\\ +104.476597156081 2.1990869702271e-07\\ +126.795284678644 1.7028541886583e-07\\ +161.141427725302 1.25593889504384e-07\\ +288.04441533963 6.03905836608658e-08\\ +349.577557436328 4.66438101566808e-08\\ +416.504424854519 3.64938343958786e-08\\ +491.690357762802 2.85761366938732e-08\\ +580.448594276898 2.20954695357596e-08\\ +685.229159528406 1.68701036071363e-08\\ +816.416760492149 1.25266230404302e-08\\ +990.822809900379 8.89325280365144e-09\\ +1000 8.74661016440386e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.69823629889104e-05\\ +0.288709091735923 9.77020511969922e-05\\ +0.449420266211913 9.86334976901544e-05\\ +0.603643850607586 9.99096638753081e-05\\ +0.753142016597436 0.000101541907237785\\ +0.897331581458354 0.000103521394126783\\ +1.03996091395412 0.000105914345305849\\ +1.18324062745838 0.000108808577094782\\ +1.3216641839466 0.000112137352594628\\ +1.44930957412621 0.000115741192228493\\ +1.57469771464309 0.000119860057255668\\ +1.71093390726902 0.00012509871870448\\ +1.84189668079971 0.000131027679836048\\ +1.96468664618045 0.000137545502362842\\ +2.09566239948043 0.000145745777093468\\ +2.21485523372636 0.000154584520085117\\ +2.34082727617829 0.000165705944971032\\ +2.45126006203334 0.000177335799431511\\ +2.56690271549195 0.000191890028731275\\ +2.68800102153761 0.000210441371553754\\ +2.81481236050758 0.000234552317814991\\ +2.94760625512486 0.000266427132387057\\ +3.08666494333727 0.000308702053685832\\ +3.35371015200293 0.000407050104340278\\ +3.41612326858553 0.000424921424882936\\ +3.47969790388769 0.000435518178182419\\ +3.51192753045073 0.000437096369114753\\ +3.54445567397044 0.00043583719573377\\ +3.57728509936788 0.0004316576347069\\ +3.64385898376354 0.000415066015369978\\ +3.71167181947577 0.000389797018940646\\ +3.81576466127124 0.000343685950724727\\ +4.07014245321944 0.000242619614360299\\ +4.3414783300551 0.000173678277757327\\ +4.63090280179974 0.000129191988832953\\ +4.93962174387833 9.94055791754563e-05\\ +5.31772317785097 7.60510283548923e-05\\ +5.72476623970219 5.96708426227613e-05\\ +6.22004882563472 4.64431458009848e-05\\ +6.88395206964551 3.49999150721356e-05\\ +7.68928372075831 2.62570242799126e-05\\ +8.7486681204799 1.9151840783586e-05\\ +10.1392540755881 1.35992205966557e-05\\ +12.1923125164911 9.02958935123225e-06\\ +15.2118551798611 5.62186182949063e-06\\ +20.244465099768 3.10130217506531e-06\\ +29.5440799888038 1.4361610228722e-06\\ +47.7176094893875 5.49760591463758e-07\\ +74.2798248256491 2.29882596168142e-07\\ +105.444279352617 1.16971864303465e-07\\ +140.328908478588 6.84103867948166e-08\\ +179.992850678248 4.34896000040672e-08\\ +230.867799418717 2.80483455426538e-08\\ +307.246884270901 1.72057682573678e-08\\ +591.250841383187 5.65290988492398e-09\\ +758.367791499719 3.63586967832353e-09\\ +972.720319245056 2.3053631334071e-09\\ +1000 2.18974291441358e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000100427594060727\\ +0.175486714964815 9.98177694832718e-05\\ +0.294082017058707 9.99305129458046e-05\\ +0.441209286319119 0.000100666190605652\\ +0.592615181247556 0.000101870938093407\\ +0.739381991917587 0.000103449729318859\\ +0.889096598952917 0.000105500386153455\\ +1.03041699495059 0.000107882962068046\\ +1.1723818032866 0.000110765703372336\\ +1.30953502048267 0.000114079777592685\\ +1.44930957412621 0.000118074134142145\\ +1.57469771464309 0.000122273707567123\\ +1.71093390726902 0.000127615694750295\\ +1.84189668079971 0.000133662097187313\\ +1.96468664618045 0.000140309369130042\\ +2.09566239948043 0.000148672800979758\\ +2.21485523372636 0.000157687617895759\\ +2.34082727617829 0.000169030771527403\\ +2.45126006203334 0.000180892619038052\\ +2.56690271549195 0.000195737282494049\\ +2.68800102153761 0.000214658915510121\\ +2.81481236050758 0.000239251193016005\\ +2.94760625512486 0.000271762353859602\\ +3.08666494333727 0.000314881163803065\\ +3.35371015200293 0.0004151910114243\\ +3.41612326858553 0.000433418085342975\\ +3.47969790388769 0.000444224978309385\\ +3.51192753045073 0.000445833825211677\\ +3.54445567397044 0.000444548577774812\\ +3.57728509936788 0.000440284570832719\\ +3.64385898376354 0.000423359581675189\\ +3.71167181947577 0.000397583964912146\\ +3.81576466127124 0.000350549396870229\\ +4.07014245321944 0.000247460613838251\\ +4.3414783300551 0.000177140400054502\\ +4.63090280179974 0.000131764589391368\\ +4.93962174387833 0.000101382693033604\\ +5.31772317785097 7.75613062714097e-05\\ +5.72476623970219 6.08537357094231e-05\\ +6.22004882563472 4.73616900525222e-05\\ +6.88395206964551 3.56897962793781e-05\\ +7.68928372075831 2.67722195237909e-05\\ +8.7486681204799 1.9525085496746e-05\\ +10.1392540755881 1.38615425807555e-05\\ +12.1923125164911 9.20063362824712e-06\\ +15.2118551798611 5.72484432196084e-06\\ +20.4319732019527 3.09452710033845e-06\\ +31.2244282309286 1.30090984938128e-06\\ +151.070330448666 5.26570869140281e-08\\ +202.911801804668 2.82463388075195e-08\\ +260.2647881969 1.6433848975365e-08\\ +321.741815067638 1.01943786017394e-08\\ +394.090164040345 6.34580916401352e-09\\ +478.277201772749 3.96419101176333e-09\\ +580.448594276898 2.43083803489514e-09\\ +710.970943231242 1.42814665907831e-09\\ +887.049688965442 7.83180980836854e-10\\ +1000 5.61288719318092e-10\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.0001025400138405\\ +0.253749037973357 0.000103074493970354\\ +0.398658107358044 0.000103996201107134\\ +0.545427130532983 0.000105337156324466\\ +0.69317172761554 0.000107103797448169\\ +0.841249704973612 0.000109311088527987\\ +0.983995229627825 0.000111885011454501\\ +1.12993393803322 0.000115019855322018\\ +1.27381132318648 0.000118677481404232\\ +1.40977287162897 0.000122732823851734\\ +1.54592773641948 0.000127477443146758\\ +1.67967487209265 0.000132926432036429\\ +1.80824493487796 0.000139044784949152\\ +1.92879150802078 0.000145723117240242\\ +2.05737431343292 0.000154066427282432\\ +2.17438947560008 0.000162996288841078\\ +2.29805998875885 0.000174151302999391\\ +2.42876438246045 0.000188356506243909\\ +2.54334576130465 0.000203408364589999\\ +2.66333272517498 0.000222511041902539\\ +2.78898029238044 0.000247232884250797\\ +2.92055551218275 0.000279813400008833\\ +3.05833803237843 0.000323086438709579\\ +3.38477285594598 0.000450089215962621\\ +3.44776405473447 0.000465983559611565\\ +3.47969790388769 0.000470523408078213\\ +3.51192753045073 0.000472256197723699\\ +3.54445567397044 0.000470923273278742\\ +3.57728509936788 0.000466434391814458\\ +3.64385898376354 0.000448557920602585\\ +3.71167181947577 0.000421298266974567\\ +3.81576466127124 0.000371524088010691\\ +4.07014245321944 0.000262374462222456\\ +4.3414783300551 0.000187892780291782\\ +4.63090280179974 0.000139820158848889\\ +4.93962174387833 0.000107626099167122\\ +5.31772317785097 8.23789209767129e-05\\ +5.72476623970219 6.46678592962701e-05\\ +6.22004882563472 5.03626806802625e-05\\ +6.88395206964551 3.79847688501789e-05\\ +7.68928372075831 2.85257319681162e-05\\ +8.7486681204799 2.08369336633699e-05\\ +10.1392540755881 1.48269846056649e-05\\ +12.0804213467733 1.00784870159338e-05\\ +14.796880626864 6.55643898563249e-06\\ +18.6324631193156 4.08722630180894e-06\\ +23.8989256623105 2.49150244705002e-06\\ +30.3726357970332 1.56967005572315e-06\\ +37.8947091907467 1.03954304058675e-06\\ +46.4158883361277 7.22923344812519e-07\\ +55.8144624945496 5.27008502803162e-07\\ +66.5001803043113 3.95773222272068e-07\\ +78.5045620020451 3.05723125353735e-07\\ +92.675933011469 2.3916139447947e-07\\ +110.418805085416 1.86891456580674e-07\\ +134.006889636395 1.440903357351e-07\\ +170.306502925284 1.05724091811657e-07\\ +301.63343472592 5.07793802470043e-08\\ +366.069514759691 3.90387220331764e-08\\ +436.153778920801 3.04099203391108e-08\\ +514.886745013749 2.37123143086041e-08\\ +607.832312829724 1.82599738432035e-08\\ +724.202233460732 1.36745769247959e-08\\ +870.843149769072 9.94895019248109e-09\\ +1000 7.77436184850145e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.21395085575642e-05\\ +0.223022329796594 9.20002605420377e-05\\ +0.370312667586993 9.25170926527379e-05\\ +0.520854855057766 9.34592504726511e-05\\ +0.674262224177835 9.48114334116223e-05\\ +0.818300681586741 9.64572187401002e-05\\ +0.966017479952265 9.85570956757338e-05\\ +1.10928986489522 0.000101037278625504\\ +1.25053858729039 0.000103966448437028\\ +1.38401609657313 0.000107240352241536\\ +1.5176833902834 0.000111089678665657\\ +1.64898694447107 0.000115521879800813\\ +1.77520801171764 0.000120501768470639\\ +1.8935521797563 0.000125932827413159\\ +2.01978575681988 0.000132703328488243\\ +2.13466303332425 0.000139926230093591\\ +2.25607406649686 0.00014891028194816\\ +2.38439047009373 0.000160286421175175\\ +2.49687842888433 0.000172263732438954\\ +2.6146732118011 0.000187360167867242\\ +2.73802517792786 0.000206753054628061\\ +2.86719649749378 0.000232147539126757\\ +3.00246170908556 0.000265858676793424\\ +3.17322963473497 0.000320331578506675\\ +3.35371015200293 0.000383925626500346\\ +3.41612326858553 0.000400803276567726\\ +3.47969790388769 0.000410821549008087\\ +3.51192753045073 0.000412322106438564\\ +3.54445567397044 0.000411146350830681\\ +3.57728509936788 0.000407215726692939\\ +3.64385898376354 0.000391587627767536\\ +3.71167181947577 0.000367771424389638\\ +3.81576466127124 0.000324298358485214\\ +4.07014245321944 0.000228992004813763\\ +4.3414783300551 0.000163970897571289\\ +4.63090280179974 0.000122011626226429\\ +4.93962174387833 9.39162238807587e-05\\ +5.31772317785097 7.18870127205623e-05\\ +5.72476623970219 5.64361088522262e-05\\ +6.22004882563472 4.39586758176784e-05\\ +6.82077673286569 3.39950665671626e-05\\ +7.61871770232298 2.55003041410726e-05\\ +8.66837993001979 1.86160467155884e-05\\ +10.0462042134682 1.32481968930358e-05\\ +11.8597101233767 9.19604334193895e-06\\ +14.3932264471941 6.10918449473466e-06\\ +17.7930438991858 3.96620710781033e-06\\ +22.1996611911995 2.56564129410818e-06\\ +27.4434330322837 1.71453659032183e-06\\ +33.6144900010876 1.1831053839728e-06\\ +40.420958397963 8.56377840855191e-07\\ +48.1595791019236 6.38821726791822e-07\\ +56.8531791387375 4.90503758284557e-07\\ +67.1161176749627 3.81695528916744e-07\\ +79.2316862486626 3.00881844204995e-07\\ +94.400647894176 2.37036066128027e-07\\ +114.566872863487 1.84380391727332e-07\\ +144.264395121816 1.38348026219572e-07\\ +282.781797962534 6.02726395110545e-08\\ +340.04119327037 4.7291337253156e-08\\ +405.142317111466 3.71243474121799e-08\\ +478.277201772749 2.9157804944723e-08\\ +564.614141930366 2.26092433458474e-08\\ +666.536326812492 1.73070424255859e-08\\ +794.145171902934 1.28818017465289e-08\\ +963.79347996158 9.16546799723591e-09\\ +1000 8.57749894484449e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.66644581622536e-05\\ +0.273172159844137 9.71480871183357e-05\\ +0.433148322337639 9.80051369246229e-05\\ +0.587176639073326 9.92219242012523e-05\\ +0.739381991917587 0.000100828968278305\\ +0.889096598952917 0.000102838154638653\\ +1.03041699495059 0.000105166885448979\\ +1.1723818032866 0.000107981453864403\\ +1.30953502048267 0.000111215406898031\\ +1.44930957412621 0.000115112045410596\\ +1.57469771464309 0.000119208197916736\\ +1.71093390726902 0.000124418100098905\\ +1.84189668079971 0.000130314608022211\\ +1.96468664618045 0.000136796820632088\\ +2.09566239948043 0.000144952351056511\\ +2.21485523372636 0.000153742909112374\\ +2.34082727617829 0.000164803743250134\\ +2.45126006203334 0.000176370265604939\\ +2.56690271549195 0.000190845263863495\\ +2.68800102153761 0.000209295643306934\\ +2.81481236050758 0.000233275398641118\\ +2.94760625512486 0.000264976813273437\\ +3.08666494333727 0.000307021804889402\\ +3.35371015200293 0.000404835197289419\\ +3.41612326858553 0.000422609458175574\\ +3.47969790388769 0.000433148758701737\\ +3.51192753045073 0.000434718471098534\\ +3.54445567397044 0.000433466258872615\\ +3.57728509936788 0.000429309548187386\\ +3.64385898376354 0.000412808412079286\\ +3.71167181947577 0.000387677087704011\\ +3.81576466127124 0.000341817126804602\\ +4.07014245321944 0.000241300981961637\\ +4.3414783300551 0.000172734897321185\\ +4.63090280179974 0.000128490752971558\\ +4.93962174387833 9.88664914249072e-05\\ +5.31772317785097 7.56391008363545e-05\\ +5.72476623970219 5.93481298537557e-05\\ +6.22004882563472 4.61925120787324e-05\\ +6.88395206964551 3.48116856894877e-05\\ +7.68928372075831 2.61165348746088e-05\\ +8.7486681204799 1.90502298660778e-05\\ +10.1392540755881 1.35280977820139e-05\\ +12.1923125164911 8.98370452879205e-06\\ +15.2118551798611 5.594983496215e-06\\ +20.0586777950824 3.14777075493876e-06\\ +28.7381269185107 1.5152343586116e-06\\ +43.5149650092505 6.62030155153696e-07\\ +63.5042516859598 3.15964735308927e-07\\ +86.0864769614925 1.76779557360561e-07\\ +110.418805085416 1.11476857517902e-07\\ +137.765076954906 7.50119077830731e-08\\ +170.306502925284 5.20241446082554e-08\\ +212.484535249889 3.60167710800623e-08\\ +275.067600790807 2.37891345660947e-08\\ +500.840798984821 9.13883882200408e-09\\ +624.878807200689 6.31064191725509e-09\\ +772.481145140342 4.36538115184424e-09\\ +963.79347996158 2.93053858328538e-09\\ +1000 2.73875241060332e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000106175700189644\\ +0.166042865718753 0.000104949539326132\\ +0.466303492974274 0.000102096224998636\\ +0.592615181247556 0.000102411830391614\\ +0.725873365081725 0.000103357430039617\\ +0.864842327573171 0.000104889354133518\\ +1.00230754828386 0.000106908622367793\\ +1.14039960197003 0.000109445466362391\\ +1.27381132318648 0.000112413482873572\\ +1.40977287162897 0.000116018865507441\\ +1.54592773641948 0.000120299350373556\\ +1.67967487209265 0.000125264772116459\\ +1.80824493487796 0.000130878581743099\\ +1.92879150802078 0.000137035190417782\\ +2.05737431343292 0.000144753476037074\\ +2.17438947560008 0.000153035350916866\\ +2.29805998875885 0.000163400113807895\\ +2.42876438246045 0.00017661816316212\\ +2.54334576130465 0.00019063841114565\\ +2.66333272517498 0.000208444656024092\\ +2.78898029238044 0.000231501089448002\\ +2.92055551218275 0.000261897992709847\\ +3.05833803237843 0.000302278816288716\\ +3.38477285594598 0.000420754781869979\\ +3.44776405473447 0.000435551124424618\\ +3.47969790388769 0.000439763473878402\\ +3.51192753045073 0.000441352075749187\\ +3.54445567397044 0.000440075764168374\\ +3.57728509936788 0.000435850802305437\\ +3.64385898376354 0.00041908908535768\\ +3.71167181947577 0.000393567048706438\\ +3.81576466127124 0.000346999683497332\\ +4.07014245321944 0.000244943148661689\\ +4.3414783300551 0.000175331416272906\\ +4.63090280179974 0.000130414842308352\\ +4.93962174387833 0.000100341681469394\\ +5.31772317785097 7.67633455868029e-05\\ +5.72476623970219 6.02269449512651e-05\\ +6.22004882563472 4.68736844832652e-05\\ +6.88395206964551 3.53223693937396e-05\\ +7.68928372075831 2.6497321643053e-05\\ +8.7486681204799 1.93256993560138e-05\\ +10.1392540755881 1.37214010190124e-05\\ +12.1923125164911 9.10942551704433e-06\\ +15.2118551798611 5.6702440333834e-06\\ +20.244465099768 3.12649627825859e-06\\ +29.8177229001967 1.41935416787749e-06\\ +50.8987019351967 4.84893027815642e-07\\ +87.6885609458744 1.65036885495163e-07\\ +131.558562404571 7.49524134072796e-08\\ +181.659978837533 4.05825536744096e-08\\ +246.258591635054 2.31000599412922e-08\\ +343.190719745904 1.26832144780961e-08\\ +691.575882873852 3.59497218524587e-09\\ +928.897872016452 2.07703908245095e-09\\ +1000 1.80693091374625e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 9.13206800570211e-05\\ +0.260865361762254 9.1788686221625e-05\\ +0.413634368406327 9.26013724817683e-05\\ +0.565917016324625 9.37633415882599e-05\\ +0.719211887222118 9.53038194745358e-05\\ +0.864842327573171 9.71424798867935e-05\\ +1.01159111222383 9.94075945043006e-05\\ +1.15096220088503 0.000101991727127265\\ +1.2856096069433 0.000104945457116358\\ +1.42283045721435 0.000108488573084897\\ +1.56024641436637 0.000112665982916449\\ +1.69523234155412 0.000117494754316289\\ +1.82499324481615 0.000122946440006913\\ +1.94665634334226 0.000128924960773186\\ +2.07643010725578 0.000136426767744559\\ +2.19452908620331 0.000144489482209096\\ +2.31934505927443 0.000154602649502722\\ +2.45126006203334 0.000167538459979964\\ +2.56690271549195 0.000181305740613614\\ +2.68800102153761 0.000198853482776595\\ +2.81481236050758 0.000221659809920371\\ +2.94760625512486 0.000251810249015256\\ +3.08666494333727 0.000291799909211046\\ +3.35371015200293 0.000384851790527633\\ +3.41612326858553 0.000401770678118351\\ +3.47969790388769 0.000411813485746344\\ +3.51192753045073 0.000413317775962694\\ +3.54445567397044 0.000412139245093367\\ +3.57728509936788 0.000408199147029361\\ +3.64385898376354 0.000392533211520595\\ +3.71167181947577 0.00036865924549152\\ +3.81576466127124 0.000325080627238099\\ +4.07014245321944 0.000229542470850784\\ +4.3414783300551 0.000164362762849176\\ +4.63090280179974 0.000122300778754238\\ +4.93962174387833 9.41363273661014e-05\\ +5.31772317785097 7.20527363079093e-05\\ +5.72476623970219 5.65635105987671e-05\\ +6.22004882563472 4.4054982759194e-05\\ +6.82077673286569 3.40664216528013e-05\\ +7.61871770232298 2.55502814645559e-05\\ +8.66837993001979 1.86486194247859e-05\\ +10.0462042134682 1.32671518627698e-05\\ +11.8597101233767 9.20470895826661e-06\\ +14.3932264471941 6.11004791700389e-06\\ +17.957846470021 3.8890652158507e-06\\ +22.6128006633728 2.46789116857386e-06\\ +28.2130767593947 1.61881610916089e-06\\ +34.5571993676214 1.11567106962653e-06\\ +41.5545533471888 8.06316891968677e-07\\ +49.5102015955635 6.00403665886793e-07\\ +58.4476113163363 4.60129149793299e-07\\ +68.9983712143002 3.57339648801369e-07\\ +81.4537176628074 2.81113414910997e-07\\ +97.0480887738033 2.21006029514516e-07\\ +117.779870119712 1.71544169702632e-07\\ +148.31025143361 1.28412365993323e-07\\ +290.712337727258 5.55453042853576e-08\\ +349.577557436328 4.34786487102678e-08\\ +412.682084570295 3.45001341666488e-08\\ +487.178021879464 2.70504733670801e-08\\ +575.121707184161 2.09401953184999e-08\\ +678.94068126961 1.60043333555654e-08\\ +808.924348680595 1.18946085373849e-08\\ +981.729840618886 8.45145785480669e-09\\ +1000 8.17537863128702e-09\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.000100077040681054\\ +0.273172159844137 0.00010057770184961\\ +0.433148322337639 0.000101464934759738\\ +0.587176639073326 0.000102724574034075\\ +0.739381991917587 0.000104388213663543\\ +0.889096598952917 0.000106468157505684\\ +1.03041699495059 0.000108878898669169\\ +1.1723818032866 0.000111792586344107\\ +1.30953502048267 0.000115140426960708\\ +1.44930957412621 0.000119174289052999\\ +1.57469771464309 0.000123414689757397\\ +1.71093390726902 0.000128808059379416\\ +1.84189668079971 0.000134912211008599\\ +1.96468664618045 0.000141622689614222\\ +2.09566239948043 0.000150065406128602\\ +2.21485523372636 0.000159165506518303\\ +2.34082727617829 0.000170615818558327\\ +2.45126006203334 0.00018258961615137\\ +2.56690271549195 0.000197574288470602\\ +2.68800102153761 0.00021667429618998\\ +2.81481236050758 0.000241498328527855\\ +2.94760625512486 0.000274315811775901\\ +3.08666494333727 0.00031784087280573\\ +3.35371015200293 0.000419096223177928\\ +3.41612326858553 0.000437495359471581\\ +3.47969790388769 0.000448404557818924\\ +3.51192753045073 0.000450028866247803\\ +3.54445567397044 0.000448731850351485\\ +3.57728509936788 0.000444428041937894\\ +3.64385898376354 0.000427344400826068\\ +3.71167181947577 0.000401326770546662\\ +3.81576466127124 0.000353850226912398\\ +4.07014245321944 0.000249792117158281\\ +4.3414783300551 0.000178810416512645\\ +4.63090280179974 0.000133007662592734\\ +4.93962174387833 0.000102339850135891\\ +5.31772317785097 7.82942509115801e-05\\ +5.72476623970219 6.14294013423265e-05\\ +6.22004882563472 4.78103288035089e-05\\ +6.88395206964551 3.60285290569932e-05\\ +7.68928372075831 2.70269697943545e-05\\ +8.7486681204799 1.97115756916243e-05\\ +10.1392540755881 1.39946816408525e-05\\ +12.1923125164911 9.28986126574979e-06\\ +15.2118551798611 5.78132213657136e-06\\ +20.244465099768 3.18620226347221e-06\\ +30.3726357970332 1.39154078755146e-06\\ +58.4476113163363 3.72091121153173e-07\\ +277.61532944368 1.64358803296982e-08\\ +1000 1.26653043529967e-09\\ +}; +\end{axis} + +\begin{axis}[% +width=3.749in, +height=1.562in, +at={(0.599in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-360, +ymax=0, +ytick={-360, -270, -180, -90, 0, 90, 180}, +ylabel={Phase [deg]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.251760027483243\\ +0.111698681846785 -0.281292259421264\\ +0.124765955263085 -0.314310760344455\\ +0.138082976521811 -0.347998287948798\\ +0.152821403602584 -0.385331110633871\\ +0.169132951702966 -0.426716028383709\\ +0.185467692308466 -0.468238088454825\\ +0.2033800305847 -0.513869508191448\\ +0.223022329796589 -0.564038990837304\\ +0.244561668345247 -0.619226913489968\\ +0.268181260945295 -0.679973667022836\\ +0.291383170483282 -0.739901610046189\\ +0.316592411198347 -0.805327923195136\\ +0.343982648902299 -0.876818457921246\\ +0.373742574239103 -0.95501428791502\\ +0.406077202570047 -1.04064605542311\\ +0.441209286319117 -1.13455199560983\\ +0.479380849508926 -1.23770076662129\\ +0.516074871038594 -1.33805585327315\\ +0.555577622239876 -1.44752412588946\\ +0.598104096238105 -1.5671764789698\\ +0.643885742724037 -1.69826705118015\\ +0.693171727615563 -1.84227656967428\\ +0.746230289139115 -2.00096838222953\\ +0.803350197712457 -2.17646157127365\\ +0.856905505126854 -2.34580838913698\\ +0.914031074875622 -2.53205957204895\\ +0.974964918348386 -2.737722189008\\ +1.03996091395414 -2.96584369800883\\ +1.10928986489522 -3.22016376063706\\ +1.18324062745835 -3.50531880134778\\ +1.25053858729041 -3.7786463943838\\ +1.3216641839466 -4.08342859533482\\ +1.39683511798871 -4.42530748176733\\ +1.47628147190943 -4.81134875294794\\ +1.56024641436638 -5.25050883680697\\ +1.64898694447104 -5.75429559197102\\ +1.7267809038843 -6.23418160819529\\ +1.80824493487798 -6.78049798842585\\ +1.8935521797563 -7.40762482268528\\ +1.98288394912704 -8.13428864346412\\ +2.07643010725571 -8.98529519806553\\ +2.17438947560012 -9.99414386504623\\ +2.25607406649687 -10.9453705108788\\ +2.34082727617828 -12.058963020253\\ +2.4287643824604 -13.3780608196445\\ +2.52000499376417 -14.9617947247486\\ +2.61467321180114 -16.8930269191982\\ +2.71289780037248 -19.2906943665843\\ +2.78898029238043 -21.4974115189547\\ +2.86719649749373 -24.1676744223864\\ +2.94760625512479 -27.445075940691\\ +3.03027108286649 -31.5277852890372\\ +3.11525422355555 -36.686496135277\\ +3.20262069365769 -43.2755432936318\\ +3.29243733300778 -51.7061661459666\\ +3.38477285594596 -62.309563171079\\ +3.51192753045066 -79.5813011686902\\ +3.74605003274907 -110.759432908038\\ +3.85110700232562 -121.258680403853\\ +3.95911026646847 -129.588385673263\\ +4.07014245321941 -136.088080302704\\ +4.18428850790151 -141.168258498163\\ +4.30163575810668 -145.179893144172\\ +4.42227398050602 -148.390349681061\\ +4.58840412645483 -151.754591018014\\ +4.76077523022638 -154.357690376931\\ +4.93962174387827 -156.411160639613\\ +5.12518692705321 -158.057030526225\\ +5.31772317785112 -159.393052174805\\ +5.51749237612921 -160.488167377056\\ +5.72476623970219 -161.392117948305\\ +5.93982669392029 -162.141541386514\\ +6.16296625513279 -162.763926732343\\ +6.39448842855712 -163.280241137957\\ +6.63470812109245 -163.706712309482\\ +6.88395206964551 -164.056063043385\\ +7.14255928554305 -164.338382578973\\ +7.41088151564139 -164.561752407387\\ +7.61871770232323 -164.694570743851\\ +7.83238259917936 -164.800222809427\\ +8.05203967082557 -164.880683576693\\ +8.27785696619849 -164.937658431806\\ +8.43190929286622 -164.963331646333\\ +8.58882855954615 -164.979615488769\\ +8.74866812047975 -164.986863834674\\ +8.8296999554939 -164.98720168093\\ +8.91148232283998 -164.985399409174\\ +9.07732652520994 -164.975516769157\\ +9.246257116406 -164.95748495523\\ +9.41833153464815 -164.931549855825\\ +9.68246611930323 -164.878315120093\\ +9.95400828762154 -164.808479296416\\ +10.2331657833024 -164.722637736499\\ +10.6175918348298 -164.584176606356\\ +11.0164594963369 -164.419242529031\\ +11.5361810173649 -164.177190134408\\ +12.0804213467733 -163.896585078746\\ +12.7675070431924 -163.510569035359\\ +13.4936714058834 -163.072240923967\\ +14.2611370719414 -162.58280920907\\ +15.2118551798608 -161.948471525206\\ +16.2259528707813 -161.247068677109\\ +17.4679621512724 -160.364655674448\\ +18.8050405512853 -159.397443688761\\ +20.4319732019529 -158.209977276688\\ +22.1996611911991 -156.920068427354\\ +24.3436887354314 -155.371319908145\\ +26.6947849403426 -153.707822659243\\ +29.544079988804 -151.756802594869\\ +33.3060034362469 -149.309736852275\\ +38.5999361767968 -146.138806015699\\ +61.7718759733854 -135.89106637495\\ +68.3651600451004 -133.884706696048\\ +74.9678187496691 -132.189016010748\\ +81.4537176628054 -130.786727551903\\ +87.6885609458755 -129.65106226003\\ +93.534315202923 -128.75033494463\\ +99.7697764236289 -127.941914783897\\ +105.444279352618 -127.325915435736\\ +111.441525146678 -126.783544664272\\ +116.698981861712 -126.389343816329\\ +122.204468663152 -126.048783584384\\ +127.969686821595 -125.762748655862\\ +132.777082935543 -125.573678444945\\ +137.765076954903 -125.420289419548\\ +141.628661629916 -125.328818770658\\ +145.600599502069 -125.257650446268\\ +149.683929307729 -125.206854668994\\ +152.469572701759 -125.18433599481\\ +155.307057393347 -125.170907656172\\ +156.74554102056 -125.167605148848\\ +158.19734815786 -125.166578164202\\ +159.662602210142 -125.167827260913\\ +161.141427725301 -125.171352796022\\ +164.140297114445 -125.185233601788\\ +167.194975973196 -125.208219405765\\ +170.30650292528 -125.240305801436\\ +175.082703173578 -125.305481383756\\ +179.992850678251 -125.39107574365\\ +185.040701954232 -125.497032617384\\ +191.992066559328 -125.669854496106\\ +199.204570845384 -125.878523009148\\ +206.688024962902 -126.12276085438\\ +216.438908606406 -126.477561339195\\ +226.64980792737 -126.886624318893\\ +239.540735872084 -127.447792621783\\ +253.164847863143 -128.08380982125\\ +270.042071883779 -128.917374343516\\ +288.044415339625 -129.845464350132\\ +310.0926635932 -131.01552099932\\ +333.828586473175 -132.294074741613\\ +362.710025233077 -133.850037794328\\ +397.740302405804 -135.706664084985\\ +444.2706749607 -138.079963937543\\ +510.161531474972 -141.205884152087\\ +854.93270662683 -153.04576102651\\ +972.720319245064 -155.755590228134\\ +1000 -156.314119687902\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.242317279423763 0.000527261530862688\\ +0.263281546564798 -0.0811456376381159\\ +0.28605955351758 -0.170387644643682\\ +0.313686982456683 -0.278299764440135\\ +0.343982648902299 -0.395428881077066\\ +0.377204249341695 -0.521969995094054\\ +0.413634368406335 -0.658359026871977\\ +0.453582882551013 -0.805311687010715\\ +0.497389595879016 -0.963862290202314\\ +0.545427130532976 -1.13540874517179\\ +0.592615181247569 -1.3024063312572\\ +0.643885742724037 -1.48306996951217\\ +0.699592016543558 -1.67946697977456\\ +0.760117761795532 -1.89415198055866\\ +0.818300681586717 -2.10288109065249\\ +0.88093719044741 -2.33129514373712\\ +0.948368186628579 -2.58276383537083\\ +1.01159111222386 -2.82497383338489\\ +1.07902879151619 -3.09147954955304\\ +1.15096220088501 -3.38654147006349\\ +1.22769104798839 -3.7154650322048\\ +1.30953502048267 -4.08493672143445\\ +1.38401609657311 -4.44030995929617\\ +1.46273335620117 -4.8385274664812\\ +1.54592773641949 -5.28820957990604\\ +1.63385387780984 -5.80039972336587\\ +1.71093390726897 -6.2852082991686\\ +1.79165032736394 -6.83401141529708\\ +1.87617469143913 -7.46048401666835\\ +1.96468664618042 -8.18237547763428\\ +2.05737431343286 -9.0231106301932\\ +2.15443469003193 -10.0141930179362\\ +2.23536964590981 -10.9438673601576\\ +2.31934505927442 -12.027053816438\\ +2.40647515001538 -13.3037572433917\\ +2.49687842888425 -14.8285255213664\\ +2.59067785868806 -16.677360489627\\ +2.68800102153763 -18.9586811413407\\ +2.76338529005317 -21.0462647093371\\ +2.84088369018327 -23.5589288805873\\ +2.92055551218269 -26.6257181424796\\ +3.00246170908546 -30.4246646517959\\ +3.08666494333735 -35.2003758304918\\ +3.17322963473503 -41.2793944044134\\ +3.26222200971169 -49.0617597915371\\ +3.35371015200292 -58.9315559937795\\ +3.47969790388763 -75.4294666133501\\ +3.78074666359942 -114.966145809056\\ +3.8867766908927 -124.731708800851\\ +3.99578030189527 -132.417689694464\\ +4.1078408899656 -138.412509288167\\ +4.22304418720659 -143.114094202387\\ +4.34147833005496 -146.845482539607\\ +4.46323392671051 -149.848170890579\\ +4.63090280179979 -153.014591479607\\ +4.80487043965512 -155.481589586115\\ +4.98537346387382 -157.440240052114\\ +5.17265738721588 -159.01963597002\\ +5.36697694554061 -160.309189985652\\ +5.56859644428648 -161.372343344463\\ +5.7777901179705 -162.25512445196\\ +5.99484250318932 -162.991607989616\\ +6.22004882563454 -163.607478144545\\ +6.45371540164686 -164.122407669142\\ +6.6961600548533 -164.551680802529\\ +6.94771254846023 -164.907322761801\\ +7.20871503378203 -165.198900497493\\ +7.47952251562161 -165.434100139904\\ +7.76050333513376 -165.619149986245\\ +7.97814457207674 -165.728121353518\\ +8.20188949920225 -165.81356372935\\ +8.43190929286622 -165.877037044957\\ +8.58882855954615 -165.90782390781\\ +8.74866812047975 -165.929809142275\\ +8.91148232283998 -165.943318339531\\ +9.07732652520994 -165.948648810199\\ +9.1614024571388 -165.948332856762\\ +9.246257116406 -165.946072229754\\ +9.41833153464815 -165.935836995792\\ +9.59360828709328 -165.918170333486\\ +9.7721469697258 -165.893280180482\\ +10.0462042134681 -165.842812843772\\ +10.3279473191894 -165.777093186334\\ +10.6175918348298 -165.696625880682\\ +11.0164594963369 -165.567151364603\\ +11.430311291145 -165.413137085991\\ +11.9695570235905 -165.18724297022\\ +12.5342426546138 -164.925370359924\\ +13.2471398786616 -164.564958504323\\ +14.0005838246811 -164.155373550861\\ +14.7968806268638 -163.697572489942\\ +15.7833140565207 -163.10348246261\\ +16.8355080296122 -162.445602424713\\ +18.1241754737421 -161.61650065425\\ +19.5114834684666 -160.705896064776\\ +21.0049824165391 -159.714809901491\\ +22.8222447418683 -158.505289296624\\ +24.7967289250217 -157.198196009748\\ +27.1915794303594 -155.635984019715\\ +30.0939003444972 -153.792320259502\\ +33.6144900010886 -151.646597444911\\ +38.2456972246693 -148.996241247607\\ +45.1496777203605 -145.431338394954\\ +61.7718759733854 -138.666105881322\\ +69.6374473062844 -136.244256979563\\ +77.0702711421226 -134.335013675431\\ +83.7380653526675 -132.892972266241\\ +90.1477631452495 -131.716144413877\\ +97.0480887738009 -130.648798907058\\ +103.51779556302 -129.811778369778\\ +109.405470720574 -129.170530377658\\ +115.628013120735 -128.602667544139\\ +122.204468663152 -128.110675591999\\ +127.969686821595 -127.760173311413\\ +134.006889636394 -127.464861195859\\ +139.041083409004 -127.268932503255\\ +144.264395121811 -127.109245017794\\ +148.310251433614 -127.013445660222\\ +152.469572701759 -126.938305129986\\ +156.74554102056 -126.88390654072\\ +159.662602210142 -126.859196252478\\ +162.633950404818 -126.843747190663\\ +164.140297114445 -126.83949894237\\ +165.660595894989 -126.837569510453\\ +167.194975973196 -126.837959567995\\ +168.743567772734 -126.840669550006\\ +171.88391428171 -126.853049837575\\ +175.082703173578 -126.874709093266\\ +178.341022071005 -126.905642225455\\ +183.342548256232 -126.969409898507\\ +188.48434090338 -127.053976565122\\ +193.770333747798 -127.159276373455\\ +201.049641626046 -127.331776774799\\ +208.602408924844 -127.540722967752\\ +216.438908606406 -127.785791674802\\ +226.64980792737 -128.142324994198\\ +237.342425002384 -128.553775612114\\ +250.841505927762 -129.11847159257\\ +265.108360190857 -129.758475096265\\ +282.781797962532 -130.59685648596\\ +301.63343472593 -131.529433748449\\ +324.721849207315 -132.703490798629\\ +352.81541153808 -134.151053763409\\ +386.890073932801 -135.899045902045\\ +428.18517986523 -137.964738439045\\ +482.707096560317 -140.554317899556\\ +575.121707184161 -144.512305746288\\ +779.636013040541 -151.40151148665\\ +895.265712599616 -154.366754430395\\ +1000 -156.613827921468\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.296254070574861\\ +0.111698681846785 -0.330989382156645\\ +0.123620954373676 -0.366415062560634\\ +0.13681576279675 -0.405656563399845\\ +0.151418932530433 -0.449133524212073\\ +0.166042865718756 -0.49272691818129\\ +0.182079168009943 -0.540599702916268\\ +0.199664245010983 -0.593187349629062\\ +0.218947676285658 -0.650974528278425\\ +0.240093487686069 -0.714502180082292\\ +0.260865361762251 -0.777084311406043\\ +0.283434330615137 -0.845299124836941\\ +0.30795587129142 -0.919696537490239\\ +0.334598912055007 -1.00089219926573\\ +0.363546996129332 -1.08957855382963\\ +0.394999546122053 -1.18653850375202\\ +0.429173237842218 -1.29266243960396\\ +0.466303492974262 -1.40896964750669\\ +0.506646100892133 -1.53663546124767\\ +0.545427130532976 -1.66075117732302\\ +0.587176639073341 -1.79603156928383\\ +0.632121847581245 -1.94376920664078\\ +0.680507369673503 -2.10547619627783\\ +0.732596542821532 -2.28293670895278\\ +0.788672861561404 -2.47827530823028\\ +0.849041520408896 -2.69404676024359\\ +0.905642837944531 -2.90203216760619\\ +0.966017479952245 -3.13054551762522\\ +1.03041699495061 -3.38262932924619\\ +1.0991097009295 -3.66199647343316\\ +1.17238180328657 -3.97322606012003\\ +1.25053858729041 -4.32203075368471\\ +1.3216641839466 -4.65633260768894\\ +1.39683511798871 -5.02921204290948\\ +1.47628147190943 -5.44779641234072\\ +1.56024641436638 -5.92110615813309\\ +1.64898694447104 -6.46071594646065\\ +1.7267809038843 -6.97178325453811\\ +1.80824493487798 -7.55053432817547\\ +1.8935521797563 -8.21139420497374\\ +1.98288394912704 -8.97313698201958\\ +2.07643010725571 -9.86061899235517\\ +2.17438947560012 -10.9073936624866\\ +2.25607406649687 -11.8900443240402\\ +2.34082727617828 -13.0360579265097\\ +2.4287643824604 -14.3886075790108\\ +2.52000499376417 -16.0068599252422\\ +2.61467321180114 -17.9737152865944\\ +2.71289780037248 -20.4081512338141\\ +2.78898029238043 -22.6432222879213\\ +2.86719649749373 -25.3425268534056\\ +2.94760625512479 -28.6496779510297\\ +3.03027108286649 -32.7628658873775\\ +3.11525422355555 -37.9528063820042\\ +3.20262069365769 -44.5738572839423\\ +3.29243733300778 -53.0372820126316\\ +3.38477285594596 -63.6743041035874\\ +3.51192753045066 -80.9922012811773\\ +3.74605003274907 -112.25494144867\\ +3.85110700232562 -122.79201741022\\ +3.95911026646847 -131.160536018368\\ +4.07014245321941 -137.700060887689\\ +4.18428850790151 -142.821119291102\\ +4.30163575810668 -146.874718209578\\ +4.42227398050602 -150.128258198065\\ +4.58840412645483 -153.551747654456\\ +4.76077523022638 -156.216237459704\\ +4.93962174387827 -158.333331904473\\ +5.12518692705321 -160.045154102998\\ +5.31772317785112 -161.449553491196\\ +5.51749237612921 -162.615571975252\\ +5.72476623970219 -163.593054208156\\ +5.93982669392029 -164.418743147921\\ +6.16296625513279 -165.120235807723\\ +6.45371540164686 -165.854090465318\\ +6.75818116816117 -166.457583799798\\ +7.07701066118183 -166.953796510688\\ +7.34287044716661 -167.285387116098\\ +7.61871770232323 -167.5665553279\\ +7.90492762269657 -167.80301611563\\ +8.20188949920225 -167.999469577901\\ +8.51000724712218 -168.159807139642\\ +8.8296999554939 -168.287269592411\\ +9.07732652520994 -168.362940970073\\ +9.33189771573347 -168.422635849528\\ +9.59360828709328 -168.467217359279\\ +9.7721469697258 -168.48892148555\\ +9.95400828762154 -168.504451287784\\ +10.1392540755881 -168.513993475747\\ +10.3279473191894 -168.517719988456\\ +10.5201521761614 -168.515789208932\\ +10.7159339982264 -168.508347060122\\ +10.9153593533136 -168.495527995295\\ +11.118496048193 -168.477455894561\\ +11.430311291145 -168.440745452482\\ +11.7508713090482 -168.392818136146\\ +12.0804213467733 -168.333980995447\\ +12.5342426546138 -168.239023657407\\ +13.0051125217337 -168.125701375412\\ +13.6186523675611 -167.95892126763\\ +14.2611370719414 -167.764901191591\\ +14.9339321612423 -167.544217239437\\ +15.7833140565207 -167.244811227165\\ +16.6810053720008 -166.908180494976\\ +17.7930438991856 -166.468850719332\\ +18.9792164283904 -165.979601485231\\ +20.2444650997683 -165.440488971102\\ +21.7940698430292 -164.763164936112\\ +23.4622884814232 -164.020271095078\\ +25.2582002696278 -163.211464169794\\ +27.4434330322828 -162.222464774697\\ +29.8177229001969 -161.149742054961\\ +32.6974974451167 -159.86046432783\\ +35.8553985745983 -158.470946312084\\ +39.6824610456936 -156.831808755217\\ +44.3247859124037 -154.921948418201\\ +49.9687745385497 -152.729699077977\\ +58.4476113163379 -149.72182476597\\ +84.5136633068495 -142.577748519695\\ +94.4006478941749 -140.603404101749\\ +103.51779556302 -139.081255801993\\ +112.473717836474 -137.830674529784\\ +121.082975023208 -136.829093246645\\ +129.154966501489 -136.047070401015\\ +136.5007806546 -135.452319527734\\ +144.264395121811 -134.931335659965\\ +151.070330448668 -134.555941631093\\ +158.19734815786 -134.235750703144\\ +164.140297114445 -134.020308371347\\ +170.30650292528 -133.841728255616\\ +176.704352608899 -133.700527856909\\ +181.659978837536 -133.619413025532\\ +186.754584276109 -133.559700623934\\ +190.230118866895 -133.531837084737\\ +193.770333747798 -133.51355835968\\ +197.376432630023 -133.504882304111\\ +199.204570845384 -133.504149148933\\ +201.049641626046 -133.50582052611\\ +202.911801804663 -133.509896910575\\ +206.688024962902 -133.525264649023\\ +210.534524276677 -133.550248355471\\ +214.452607597172 -133.584837774507\\ +220.466873523944 -133.654694807757\\ +226.64980792737 -133.746044052719\\ +233.006141069691 -133.858771839648\\ +241.759407916908 -134.042075407008\\ +250.841505927762 -134.262691619718\\ +262.675410372388 -134.590113784747\\ +275.067600790807 -134.973743415933\\ +288.044415339625 -135.412083987825\\ +304.427221206439 -136.007853216788\\ +321.74181506764 -136.67645948566\\ +343.1907197459 -137.543326952898\\ +369.46012051994 -138.639950705104\\ +397.740302405804 -139.838444967621\\ +436.153778920815 -141.460488462681\\ +482.707096560317 -143.374096144544\\ +549.211648388788 -145.949028939944\\ +710.970943231237 -151.284838931754\\ +847.086826655735 -154.828743287754\\ +963.793479961591 -157.312584906546\\ +1000 -157.996501908968\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.317631519757327\\ +0.110673601809601 -0.351603925998347\\ +0.122486461375092 -0.389227226968927\\ +0.13556017853294 -0.430899952904667\\ +0.15002933220192 -0.477066333843936\\ +0.164519058775369 -0.523351454605461\\ +0.180408192871936 -0.57417400806915\\ +0.19783188827842 -0.629993768276364\\ +0.216938351838516 -0.691321854543958\\ +0.237890104107894 -0.758727945293231\\ +0.258471350746954 -0.825114960885315\\ +0.280833199882324 -0.897457731205122\\ +0.305129701718286 -0.97633235695011\\ +0.331528234231953 -1.06238241626434\\ +0.360210656235708 -1.15633001836102\\ +0.391374560198028 -1.25898940995569\\ +0.425234633452872 -1.3712838722806\\ +0.462024137175122 -1.49426689242824\\ +0.501996513311016 -1.62914893193212\\ +0.540421642070586 -1.7601614264544\\ +0.58178800743451 -1.90281820021508\\ +0.62632074521987 -2.05843536095799\\ +0.674262224177818 -2.22854651349863\\ +0.725873365081736 -2.41495389075396\\ +0.781435060784446 -2.61979472342884\\ +0.841249704973636 -2.84562828689141\\ +0.905642837944531 -3.09555136686632\\ +0.966017479952245 -3.33695316817537\\ +1.03041699495061 -3.60278197542448\\ +1.0991097009295 -3.89680719437089\\ +1.17238180328657 -4.22366811845714\\ +1.25053858729041 -4.58914146218984\\ +1.3216641839466 -4.93860788545257\\ +1.39683511798871 -5.32750942631992\\ +1.47628147190943 -5.763021321765\\ +1.56024641436638 -6.254214462964\\ +1.64898694447104 -6.81271664812783\\ +1.74277467840897 -7.45366706583309\\ +1.82499324481618 -8.06505346859197\\ +1.91109062168914 -8.76272572691218\\ +2.001249798969 -9.56655047551524\\ +2.0956623994805 -10.5029169632758\\ +2.19452908620335 -11.6075851416977\\ +2.27697025538168 -12.6451822357611\\ +2.36250846547792 -13.8563888428803\\ +2.45126006203328 -15.2878484740136\\ +2.54334576130472 -17.0038182230007\\ +2.63889081445755 -19.0948496757672\\ +2.73802517792786 -21.6917022679413\\ +2.81481236050756 -24.0844638176878\\ +2.8937530190509 -26.9847472865425\\ +2.97490754721436 -30.5524581185502\\ +3.05833803237852 -35.0079984564125\\ +3.14410830314732 -40.6496524674011\\ +3.23228397818141 -47.8572159221851\\ +3.32293251639897 -57.0388636867383\\ +3.41612326858549 -68.4357626224876\\ +3.57728509936777 -91.1264468324353\\ +3.74605003274907 -113.049858100226\\ +3.85110700232562 -123.608890783458\\ +3.95911026646847 -131.999953743548\\ +4.07014245321941 -138.562624779342\\ +4.18428850790151 -143.707445566705\\ +4.30163575810668 -147.785437701547\\ +4.42227398050602 -151.064016558092\\ +4.58840412645483 -154.521921497778\\ +4.76077523022638 -157.222037426851\\ +4.93962174387827 -159.376005277811\\ +5.12518692705321 -161.125985295385\\ +5.31772317785112 -162.569864475321\\ +5.51749237612921 -163.776722646745\\ +5.72476623970219 -164.79644267541\\ +5.99484250318932 -165.863051392992\\ +6.27766010580631 -166.746549006487\\ +6.57382014340971 -167.484578089677\\ +6.88395206964551 -168.104755771632\\ +7.20871503378203 -168.627745969736\\ +7.5487992816532 -169.069275662905\\ +7.90492762269657 -169.441492243291\\ +8.27785696619849 -169.753898412268\\ +8.66837993001965 -170.01400948763\\ +8.9940221740918 -170.188518724901\\ +9.33189771573347 -170.335938740935\\ +9.68246611930323 -170.458394015266\\ +10.0462042134681 -170.557682780249\\ +10.4236067397639 -170.635330907399\\ +10.7159339982264 -170.680153099904\\ +11.0164594963369 -170.714010190769\\ +11.3254131515284 -170.737322307339\\ +11.5361810173649 -170.747190928568\\ +11.7508713090482 -170.752638560157\\ +11.9695570235905 -170.753756798072\\ +12.192312516491 -170.750629947285\\ +12.4192135270177 -170.743335530995\\ +12.6503372039588 -170.731944756699\\ +13.0051125217337 -170.707319296474\\ +13.3698374182498 -170.673820355954\\ +13.7447909267756 -170.631620411227\\ +14.2611370719414 -170.562074624188\\ +14.7968806268638 -170.477622617237\\ +15.3527502878039 -170.378505261951\\ +16.0770442167387 -170.234270497346\\ +16.8355080296122 -170.067688314021\\ +17.7930438991856 -169.838537505659\\ +18.8050405512853 -169.577617937721\\ +19.8745954958102 -169.284948242215\\ +21.1995345753606 -168.903239692575\\ +22.6128006633721 -168.477879443744\\ +24.1202820761804 -168.008443256465\\ +25.9665597293484 -167.417330884033\\ +27.9541599906793 -166.767205239514\\ +30.0939003444972 -166.057314911715\\ +32.6974974451167 -165.18649392015\\ +35.5263467657817 -164.238763860043\\ +38.5999361767968 -163.214224768694\\ +42.327890655736 -161.98692539646\\ +46.4158883361268 -160.66881543507\\ +51.3701354335138 -159.119945523668\\ +57.3797641421395 -157.323722912665\\ +65.2852114112777 -155.112672279683\\ +78.5045620020441 -151.820846093158\\ +98.8541702191929 -147.723970670714\\ +110.418805085416 -145.874685588759\\ +121.082975023208 -144.440728643472\\ +131.558562404571 -143.258460857124\\ +141.628661629916 -142.310171715227\\ +151.070330448668 -141.570119681085\\ +159.662602210142 -141.008607204082\\ +168.743567772734 -140.518919950151\\ +176.704352608899 -140.168488555323\\ +185.040701954232 -139.872516050021\\ +191.992066559328 -139.67605421439\\ +199.204570845384 -139.51619494317\\ +204.791209666503 -139.420672052403\\ +210.534524276677 -139.34626121346\\ +216.438908606406 -139.293118834184\\ +220.466873523944 -139.269565302444\\ +224.569799553979 -139.255541062576\\ +226.64980792737 -139.252107813324\\ +228.74908173557 -139.251062340993\\ +230.867799418716 -139.252405411479\\ +233.006141069691 -139.25613728535\\ +237.342425002384 -139.270765958944\\ +241.759407916908 -139.294940342205\\ +246.258591635048 -139.32864434127\\ +253.164847863143 -139.397013338007\\ +260.264788196906 -139.486652360942\\ +267.563844455207 -139.597405599137\\ +277.615329443679 -139.777576589455\\ +288.044415339625 -139.994357260248\\ +301.63343472593 -140.315742220165\\ +315.863540826787 -140.69160752021\\ +330.764978074424 -141.120046024408\\ +349.577557436321 -141.700486475975\\ +372.882130718292 -142.463690780635\\ +397.740302405804 -143.312323647653\\ +428.18517986523 -144.376118190834\\ +465.229952396024 -145.676614892365\\ +514.886745013736 -147.386875422818\\ +580.448594276896 -149.530769972104\\ +724.20223346072 -153.643909016701\\ +878.909065341978 -157.191277590069\\ +1000 -159.441217188806\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.267142412604528\\ +0.111698681846785 -0.298472342589378\\ +0.124765955263085 -0.333498126562802\\ +0.138082976521811 -0.369230429764286\\ +0.152821403602584 -0.408825142462717\\ +0.169132951702966 -0.45271183682334\\ +0.185467692308466 -0.496737447261637\\ +0.2033800305847 -0.545111957611397\\ +0.223022329796589 -0.598286496354007\\ +0.244561668345247 -0.656765810132015\\ +0.268181260945295 -0.721116723485494\\ +0.291383170483282 -0.784579426374279\\ +0.316592411198347 -0.853839412592208\\ +0.343982648902299 -0.929486495007126\\ +0.373742574239103 -1.01218727051059\\ +0.406077202570047 -1.10269946968569\\ +0.441209286319117 -1.20188995379797\\ +0.479380849508926 -1.31075747831028\\ +0.516074871038594 -1.41658582268857\\ +0.555577622239876 -1.53191815088371\\ +0.598104096238105 -1.65784884772788\\ +0.643885742724037 -1.79565597943906\\ +0.693171727615563 -1.9468444275474\\ +0.746230289139115 -2.11320166987875\\ +0.803350197712457 -2.29687060591942\\ +0.864842327573189 -2.50044562790384\\ +0.922497005259214 -2.69738089599934\\ +0.983995229627797 -2.91456638794642\\ +1.04959323055824 -3.15515132584085\\ +1.11956431948387 -3.42300172182914\\ +1.1942000281335 -3.72291406969086\\ +1.26212131452257 -4.01002264922883\\ +1.33390569003905 -4.32980651252259\\ +1.40977287162893 -4.68812465245205\\ +1.48995507285289 -5.09232721765423\\ +1.57469771464309 -5.55175016305458\\ +1.66426017648587 -6.0784171489162\\ +1.74277467840897 -6.57987729349185\\ +1.82499324481618 -7.15064284860426\\ +1.91109062168914 -7.80586317419701\\ +2.001249798969 -8.56533018578156\\ +2.0956623994805 -9.45535638090695\\ +2.19452908620335 -10.5116229978551\\ +2.27697025538168 -11.508960633777\\ +2.36250846547792 -12.6784949433521\\ +2.45126006203328 -14.0668266641059\\ +2.54334576130472 -15.7381694693007\\ +2.63889081445755 -17.7830309226425\\ +2.73802517792786 -20.3321258845504\\ +2.81481236050756 -22.6880002295958\\ +2.8937530190509 -25.5504589197387\\ +2.97490754721436 -29.0793880846672\\ +3.05833803237852 -33.4951704361305\\ +3.14410830314732 -39.0960706063456\\ +3.23228397818141 -46.261864738887\\ +3.32293251639897 -55.4007079919875\\ +3.41612326858549 -66.7537474491453\\ +3.57728509936777 -89.3689342489882\\ +3.74605003274907 -111.213770348625\\ +3.85110700232562 -121.724142134503\\ +3.95911026646847 -130.065382863847\\ +4.07014245321941 -136.577050247572\\ +4.18428850790151 -141.669665820122\\ +4.30163575810668 -145.694230971629\\ +4.42227398050602 -148.918140790914\\ +4.58840412645483 -152.301186346058\\ +4.76077523022638 -154.924149860196\\ +4.93962174387827 -156.998623054699\\ +5.12518692705321 -158.666716265206\\ +5.31772317785112 -160.026265679431\\ +5.51749237612921 -161.146299183951\\ +5.72476623970219 -162.076646297966\\ +5.93982669392029 -162.85403334973\\ +6.16296625513279 -163.506038809314\\ +6.39448842855712 -164.053719288017\\ +6.63470812109245 -164.513391373\\ +6.88395206964551 -164.897865522261\\ +7.14255928554305 -165.217316748025\\ +7.41088151564139 -165.479909735879\\ +7.68928372075853 -165.692254859029\\ +7.97814457207674 -165.859745741635\\ +8.20188949920225 -165.958623835178\\ +8.43190929286622 -166.036356207089\\ +8.66837993001965 -166.094313026005\\ +8.8296999554939 -166.122560124609\\ +8.9940221740918 -166.142866360149\\ +9.1614024571388 -166.155519417004\\ +9.33189771573347 -166.160782213312\\ +9.41833153464815 -166.160718204043\\ +9.50556592010137 -166.158895117355\\ +9.68246611930323 -166.150077929313\\ +9.86265846131287 -166.134531657402\\ +10.0462042134681 -166.112440113486\\ +10.3279473191894 -166.067394039532\\ +10.6175918348298 -166.008503232412\\ +10.9153593533136 -165.936210462648\\ +11.3254131515284 -165.819631827069\\ +11.7508713090482 -165.6806844634\\ +12.3052400435925 -165.476509180622\\ +12.8857621318549 -165.239376461935\\ +13.6186523675611 -164.912380497916\\ +14.3932264471941 -164.53999302007\\ +15.2118551798608 -164.122879145057\\ +16.2259528707813 -163.5802856542\\ +17.3076553419573 -162.977807603052\\ +18.6324631193151 -162.216215101277\\ +20.0586777950826 -161.376918013384\\ +21.5940615210354 -160.460207861847\\ +23.4622884814232 -159.337073704011\\ +25.4921465445141 -158.118125886212\\ +27.9541599906793 -156.654414281458\\ +30.6539529505651 -155.080816884406\\ +33.9258338274107 -153.232328019381\\ +37.8947091907461 -151.092029506981\\ +43.5149650092505 -148.272998571902\\ +54.2918617761888 -143.587579554284\\ +65.8898955079985 -139.54246850402\\ +74.2798248256497 -137.180200811847\\ +82.2081575524031 -135.320136181137\\ +89.3204599858103 -133.918138660804\\ +96.1574600143192 -132.777230253081\\ +103.51779556302 -131.746516915315\\ +110.418805085416 -130.942431187712\\ +116.698981861712 -130.330253792111\\ +123.33634979138 -129.79237426135\\ +129.154966501489 -129.402780078184\\ +135.248087041786 -129.067879055322\\ +141.628661629916 -128.788771592359\\ +146.949180062486 -128.606278611709\\ +152.469572701759 -128.460468935229\\ +156.74554102056 -128.375376190972\\ +161.141427725301 -128.311201140531\\ +164.140297114445 -128.28008077733\\ +167.194975973196 -128.258313856405\\ +170.30650292528 -128.24591521114\\ +171.88391428171 -128.243232436838\\ +173.475935923388 -128.242895322258\\ +175.082703173578 -128.244904498957\\ +176.704352608899 -128.249260327402\\ +179.992850678251 -128.265012026159\\ +183.342548256232 -128.290147880488\\ +186.754584276109 -128.324661010557\\ +191.992066559328 -128.393987338584\\ +197.376432630023 -128.484329916134\\ +202.911801804663 -128.595610177536\\ +210.534524276677 -128.776375787434\\ +218.443607114946 -128.993879678528\\ +226.64980792737 -129.247747014602\\ +237.342425002384 -129.615526398498\\ +248.539485742973 -130.038374461593\\ +262.675410372388 -130.616736984735\\ +277.615329443679 -131.27012562724\\ +296.122543798796 -132.123352008126\\ +315.863540826787 -133.069442402783\\ +340.041193270368 -134.256612420908\\ +369.46012051994 -135.714984325702\\ +405.142317111462 -137.468807083068\\ +448.385594802129 -139.531902822731\\ +510.161531474972 -142.306931698437\\ +630.666554056761 -147.045828409609\\ +786.8571506937 -151.942561709542\\ +903.557834613866 -154.853989045129\\ +1000 -156.880948306508\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.376536357081875\\ +0.110673601809593 -0.416795495228712\\ +0.1224864613751 -0.461376359550343\\ +0.134316117004605 -0.506049231003828\\ +0.147288272390749 -0.555072810388708\\ +0.161513269350303 -0.608878877640109\\ +0.177112106434519 -0.66794463453931\\ +0.194217468148908 -0.732798293239455\\ +0.211020342856859 -0.796598050426383\\ +0.229276931286557 -0.86603148626898\\ +0.249113002606763 -0.941618537851923\\ +0.270665207003335 -1.02393348402376\\ +0.294082017058709 -1.11361237682621\\ +0.319524750575915 -1.21136193175187\\ +0.347168681892639 -1.3179702569866\\ +0.377204249341719 -1.43431991893146\\ +0.409838367175735 -1.56140399918723\\ +0.445295850994262 -1.70034601284254\\ +0.483820966492578 -1.85242485250609\\ +0.525679112201876 -2.01910633109429\\ +0.565917016324646 -2.18088934771646\\ +0.609234915240079 -2.35691602202354\\ +0.655868565957134 -2.54876916884245\\ +0.706071771413749 -2.75828971473425\\ +0.760117761795582 -2.98763760340091\\ +0.818300681586771 -3.23937119069723\\ +0.88093719044741 -3.51655190739632\\ +0.948368186628579 -3.82288393028807\\ +1.01159111222379 -4.118378358332\\ +1.07902879151612 -4.44335914628931\\ +1.15096220088509 -4.80235495741039\\ +1.22769104798839 -5.20095750142752\\ +1.30953502048267 -5.6461595982405\\ +1.39683511798871 -6.14682957059313\\ +1.47628147190933 -6.62869356817492\\ +1.56024641436628 -7.16885667861089\\ +1.64898694447115 -7.7790958196174\\ +1.74277467840897 -8.47470799708856\\ +1.82499324481618 -9.13400028450394\\ +1.91109062168914 -9.88182709461984\\ +2.001249798969 -10.73816169115\\ +2.09566239948036 -11.7295050411284\\ +2.1945290862032 -12.891734125016\\ +2.27697025538154 -13.9773226291395\\ +2.36250846547808 -15.2383181750782\\ +2.45126006203344 -16.7214321295201\\ +2.54334576130472 -18.4909919742703\\ +2.63889081445755 -20.6376223024452\\ +2.73802517792786 -23.2921582662593\\ +2.81481236050756 -25.7295974216773\\ +2.8937530190509 -28.6758093243918\\ +2.97490754721436 -32.2907345510075\\ +3.05833803237832 -36.7948113424956\\ +3.14410830314712 -42.4863609552424\\ +3.2322839781812 -49.7452172657106\\ +3.32293251639919 -58.9795942888933\\ +3.41612326858571 -70.4306991057318\\ +3.57728509936801 -93.2151205652165\\ +3.74605003274907 -115.236684353826\\ +3.85110700232562 -125.856813763574\\ +3.95911026646847 -134.310683845467\\ +4.07014245321941 -140.937920078716\\ +4.18428850790151 -146.149113112781\\ +4.30163575810668 -150.295334843906\\ +4.42227398050573 -153.64405230767\\ +4.58840412645453 -157.198536872565\\ +4.76077523022607 -159.998850455403\\ +4.93962174387859 -162.256768410705\\ +5.12518692705354 -164.114590243609\\ +5.31772317785112 -165.670347211138\\ +5.56859644428648 -167.293806199882\\ +5.8313051135262 -168.646841539502\\ +6.10640754223191 -169.794629422014\\ +6.3944884285567 -170.78331668295\\ +6.75818116816072 -171.806282817327\\ +7.14255928554351 -172.690006177114\\ +7.54879928165369 -173.464736833609\\ +7.97814457207674 -174.152787075161\\ +8.51000724712218 -174.868173696334\\ +9.07732652520994 -175.508503121976\\ +9.77214696972517 -176.167739243053\\ +10.5201521761621 -176.765909284447\\ +11.430311291145 -177.382057634079\\ +12.5342426546138 -178.012755565456\\ +13.8720978054155 -178.658291696427\\ +15.6384675830231 -179.376571539044\\ +18.4614694632451 -180.326412288092\\ +25.4921465445141 -182.164861232459\\ +29.2729483504266 -182.998209569605\\ +33.000347911254 -183.762783790971\\ +36.8609536217214 -184.514028433967\\ +40.7953450345228 -185.2493144884\\ +45.1496777203634 -186.037033669925\\ +49.5102015955645 -186.805350551206\\ +54.2918617761888 -187.629919103406\\ +59.535331308141 -188.517421024406\\ +65.2852114112819 -189.474926271809\\ +71.5904108596503 -190.50991923185\\ +78.5045620020441 -191.630315975324\\ +86.0864769614886 -192.844470059216\\ +93.5343152029291 -194.024621148851\\ +101.626508939302 -195.294505024246\\ +110.418805085416 -196.661036133829\\ +119.971773543585 -198.131316876057\\ +131.558562404562 -199.895434826732\\ +144.264395121821 -201.806519747258\\ +158.19734815786 -203.874396148393\\ +173.475935923388 -206.108511786658\\ +190.230118866882 -208.517640460935\\ +208.602408924857 -211.109531759573\\ +228.74908173557 -213.890515698195\\ +253.164847863126 -217.173288715956\\ +280.186655645936 -220.693012535487\\ +310.0926635932 -224.448502602034\\ +346.369417737168 -228.80755347662\\ +390.473523688533 -233.822780602583\\ +444.2706749607 -239.534901225088\\ +510.161531474972 -245.964815468045\\ +602.254120146222 -254.014961621401\\ +751.408106111675 -265.111349225649\\ +1000 -279.593887492973\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.485055041308868\\ +0.110673601809601 -0.509752437290473\\ +0.122486461375092 -0.53800180191493\\ +0.134316117004605 -0.567294752336039\\ +0.147288272390749 -0.600517074738747\\ +0.160031031373875 -0.634173100277735\\ +0.173876240021625 -0.671758702117103\\ +0.188919277620761 -0.71364549544208\\ +0.205263775270926 -0.760224035498055\\ +0.223022329796589 -0.811910025481353\\ +0.242317279423763 -0.869151087595242\\ +0.263281546564798 -0.932434179107617\\ +0.28605955351758 -1.00229382133\\ +0.310808217386903 -1.07932139798078\\ +0.337698031082518 -1.16417587742774\\ +0.366914237840248 -1.2575964301549\\ +0.398658107358057 -1.36041756054226\\ +0.429173237842218 -1.46046964319726\\ +0.462024137175122 -1.56945239863239\\ +0.497389595879016 -1.68822235902914\\ +0.535462089927357 -1.81775630926782\\ +0.576448828292606 -1.95917547471029\\ +0.620572880677654 -2.11377598023091\\ +0.668074391569548 -2.28306755845139\\ +0.719211887222132 -2.46882320461964\\ +0.774263682681121 -2.67314350288873\\ +0.833529396509846 -2.89854083719686\\ +0.897331581458357 -3.14805089117132\\ +0.95715215389917 -3.38904734279745\\ +1.02096066230607 -3.6543557321975\\ +1.08902296226373 -3.94765210180105\\ +1.16162263260848 -4.27345209016147\\ +1.23906215694794 -4.63736668114811\\ +1.3216641839466 -5.04645590868628\\ +1.39683511798871 -5.43982010989359\\ +1.47628147190943 -5.88013746047645\\ +1.56024641436638 -6.37649353318486\\ +1.64898694447104 -6.94053187489158\\ +1.74277467840897 -7.58740853669477\\ +1.82499324481618 -8.20404442831904\\ +1.91109062168914 -8.90726064003672\\ +2.001249798969 -9.71693548862282\\ +2.0956623994805 -10.6594705360677\\ +2.19452908620335 -11.7706387020131\\ +2.27697025538168 -12.8136835621699\\ +2.36250846547792 -14.0305660823493\\ +2.45126006203328 -15.4679373833551\\ +2.54334576130472 -17.190062475886\\ +2.63889081445755 -19.2875011790775\\ +2.73802517792786 -21.8910214877199\\ +2.81481236050756 -24.2889600936312\\ +2.8937530190509 -27.1945760069151\\ +2.97490754721436 -30.7677786633013\\ +3.05833803237852 -35.2289743115696\\ +3.14410830314732 -40.8764513420002\\ +3.23228397818141 -48.0900098677775\\ +3.32293251639897 -57.2778292195139\\ +3.41612326858549 -68.681080848051\\ +3.57728509936777 -91.3827682063348\\ +3.74605003274907 -113.317721496272\\ +3.85110700232562 -123.883947861558\\ +3.95911026646847 -132.282412305859\\ +4.07014245321941 -138.852698071322\\ +4.18428850790151 -144.00535242224\\ +4.30163575810668 -148.09140269092\\ +4.42227398050602 -151.378270138821\\ +4.58840412645483 -154.847595486723\\ +4.76077523022638 -157.559567037186\\ +4.93962174387827 -159.725840982874\\ +5.12518692705321 -161.488593347212\\ +5.31772317785112 -162.945727434823\\ +5.51749237612921 -164.166339925276\\ +5.72476623970219 -165.200331087385\\ +5.99484250318932 -166.285532917061\\ +6.27766010580631 -167.188495632485\\ +6.57382014340971 -167.94689958868\\ +6.88395206964551 -168.58840114983\\ +7.20871503378203 -169.133704944078\\ +7.5487992816532 -169.598580153867\\ +7.90492762269657 -169.995217879073\\ +8.27785696619849 -170.333166037533\\ +8.66837993001965 -170.619986668445\\ +9.07732652520994 -170.861726716387\\ +9.50556592010137 -171.063260929451\\ +9.86265846131287 -171.198224376196\\ +10.2331657833024 -171.311684734916\\ +10.6175918348298 -171.405075876107\\ +11.0164594963369 -171.479621785486\\ +11.3254131515284 -171.523799155262\\ +11.6430313292089 -171.558351640346\\ +11.9695570235905 -171.583620594526\\ +12.192312516491 -171.595460185903\\ +12.4192135270177 -171.603390387184\\ +12.6503372039588 -171.607486098323\\ +12.8857621318549 -171.607816344052\\ +13.125568357718 -171.604444663429\\ +13.3698374182498 -171.597429467613\\ +13.6186523675611 -171.586824368911\\ +14.0005838246811 -171.564291935284\\ +14.3932264471941 -171.53393999776\\ +14.7968806268638 -171.495897368772\\ +15.3527502878039 -171.433400209007\\ +15.9295021257217 -171.357645511279\\ +16.5279206146492 -171.268806923732\\ +17.3076553419573 -171.139558721292\\ +18.1241754737421 -170.990253735913\\ +19.1550055557359 -170.784755374713\\ +20.2444650997683 -170.550578336606\\ +21.395888713434 -170.287662328987\\ +22.8222447418683 -169.944390570111\\ +24.3436887354314 -169.561404435132\\ +25.9665597293484 -169.138214985175\\ +27.9541599906793 -168.604620363595\\ +30.0939003444972 -168.016894116044\\ +32.3974262952812 -167.374165441391\\ +35.2003147279672 -166.584397148639\\ +38.2456972246693 -165.723245793878\\ +41.5545533471895 -164.790401508675\\ +45.5678626584099 -163.670322358875\\ +49.9687745385497 -162.46411510617\\ +55.302242561928 -161.042291593204\\ +61.7718759733854 -159.387126638918\\ +69.6374473062844 -157.48967819865\\ +81.4537176628054 -154.892763275717\\ +111.441525146678 -149.669653152266\\ +124.478714618793 -147.9615643765\\ +135.248087041786 -146.775326973605\\ +145.600599502069 -145.80768126258\\ +155.307057393347 -145.039318641965\\ +165.660595894989 -144.353093557761\\ +175.082703173578 -143.836245518518\\ +183.342548256232 -143.459252561075\\ +191.992066559328 -143.133522034252\\ +201.049641626046 -142.861033842444\\ +208.602408924844 -142.682514433074\\ +216.438908606406 -142.539860233761\\ +222.508879812839 -142.456758363961\\ +228.74908173557 -142.394350749392\\ +233.006141069691 -142.364317672908\\ +237.342425002384 -142.343582008265\\ +241.759407916908 -142.332167928098\\ +243.99862972595 -142.329961608538\\ +246.258591635048 -142.330090724829\\ +248.539485742973 -142.332555797998\\ +253.164847863143 -142.344493115905\\ +257.876288759386 -142.365766600068\\ +262.675410372388 -142.396360395659\\ +270.042071883779 -142.459670170953\\ +277.615329443679 -142.543772276664\\ +285.40097698292 -142.64850170527\\ +296.122543798796 -142.819860712104\\ +307.246884270909 -143.026900240412\\ +318.789129267769 -143.268873301134\\ +333.828586473175 -143.619118999688\\ +349.577557436321 -144.020590651647\\ +369.46012051994 -144.566768925997\\ +390.473523688559 -145.179034290873\\ +416.504424854512 -145.970329441344\\ +448.385594802129 -146.965777239462\\ +487.17802187946 -148.185575044944\\ +539.177464038763 -149.791558534057\\ +613.462171799237 -151.96282530039\\ +1000 -160.326868264223\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.459648478756321\\ +0.109657929126777 -0.503144973782298\\ +0.120248614203733 -0.550914053619124\\ +0.131862140139479 -0.603376698140551\\ +0.144597292179202 -0.660995229883099\\ +0.158562396177109 -0.724278226394631\\ +0.173876240021636 -0.793786097661609\\ +0.188919277620773 -0.862175412721399\\ +0.205263775270926 -0.936603167800115\\ +0.223022329796589 -1.01761335213064\\ +0.242317279423747 -1.10580360899553\\ +0.263281546564815 -1.20183187837159\\ +0.28605955351758 -1.30642417507573\\ +0.310808217386903 -1.42038377764976\\ +0.337698031082496 -1.54460218327125\\ +0.366914237840272 -1.68007229054189\\ +0.398658107358057 -1.82790441505841\\ +0.433148322337641 -1.98934593638643\\ +0.470622484984116 -2.16580563985946\\ +0.511338753841404 -2.35888418236397\\ +0.555577622239913 -2.57041262217342\\ +0.598104096238105 -2.77562570094852\\ +0.643885742724037 -2.99878676754349\\ +0.693171727615517 -3.24186238628522\\ +0.746230289139067 -3.50713656282727\\ +0.80335019771251 -3.79728610297911\\ +0.864842327573189 -4.11547938024404\\ +0.931041348706901 -4.46550739682027\\ +1.00230754828383 -4.85196007000684\\ +1.06912633917342 -5.22437983977784\\ +1.14039960197009 -5.63359406911741\\ +1.2164242938574 -6.08525725940586\\ +1.29751716865759 -6.58638479402975\\ +1.38401609657311 -7.14580532620124\\ +1.47628147190933 -7.77480595126173\\ +1.56024641436628 -8.38034278758101\\ +1.64898694447115 -9.05968933543954\\ +1.74277467840897 -9.82835340862044\\ +1.84189668079973 -10.7067846467187\\ +1.92879150802077 -11.5422391420188\\ +2.01978575681984 -12.4941043018188\\ +2.11507282486872 -13.5906378450657\\ +2.21485523372624 -14.8702146611273\\ +2.31934505927457 -16.3861984971204\\ +2.40647515001554 -17.8193638466306\\ +2.49687842888441 -19.5067070628701\\ +2.59067785868806 -21.5244486718942\\ +2.68800102153763 -23.9812345842948\\ +2.78898029238043 -27.0358634190416\\ +2.86719649749373 -29.8581091495051\\ +2.94760625512479 -33.2916294187571\\ +3.03027108286629 -37.5347089504187\\ +3.11525422355535 -42.858160386475\\ +3.20262069365748 -49.6164410624301\\ +3.29243733300756 -58.2209165076308\\ +3.38477285594618 -69.0029150510308\\ +3.51192753045089 -86.52040713613\\ +3.74605003274907 -118.150487885579\\ +3.85110700232562 -128.852328296997\\ +3.95911026646847 -137.390184573043\\ +4.07014245321941 -144.10374458982\\ +4.18428850790151 -149.403663043219\\ +4.30163575810668 -153.641077562187\\ +4.46323392671022 -158.089889059476\\ +4.63090280179949 -161.561048395356\\ +4.80487043965544 -164.344234643803\\ +4.98537346387415 -166.630932515336\\ +5.17265738721621 -168.550658756503\\ +5.41668691103327 -170.568535061915\\ +5.67222897164457 -172.272414070934\\ +5.93982669392029 -173.743978921778\\ +6.27766010580631 -175.282255460769\\ +6.63470812109201 -176.636218029079\\ +7.07701066118229 -178.046119603453\\ +7.61871770232323 -179.49760951316\\ +8.27785696619849 -180.991562445049\\ +9.1614024571382 -182.692329511901\\ +10.7159339982272 -185.191727448966\\ +13.6186523675602 -189.020691784304\\ +15.494950393147 -191.197782577914\\ +17.4679621512724 -193.34090181662\\ +19.5114834684654 -195.44861241079\\ +21.5940615210368 -197.507405254885\\ +23.8989256623109 -199.701380370311\\ +26.4498018242767 -202.042167815925\\ +29.2729483504266 -204.539182122851\\ +32.3974262952833 -207.199175598597\\ +36.1874981241128 -210.290972508146\\ +40.4209583979615 -213.580539180169\\ +45.5678626584129 -217.360057403727\\ +51.8459354389293 -221.663056546015\\ +59.535331308141 -226.507138801921\\ +70.2824426430854 -232.571751067054\\ +87.6885609458698 -240.929501084185\\ +233.006141069691 -278.12699104162\\ +514.886745013736 -308.037888075763\\ +607.832312829751 -313.938917994967\\ +697.981390783064 -318.612596570694\\ +786.857150693649 -322.443408543724\\ +878.909065342036 -325.776125761933\\ +981.72984061889 -328.90006776696\\ +1000 -329.399839682371\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.278622759590093\\ +0.111698681846785 -0.311295401568657\\ +0.124765955263085 -0.347820844415594\\ +0.138082976521811 -0.385081308283276\\ +0.152821403602584 -0.426367081989412\\ +0.167580786453079 -0.467767683308239\\ +0.183765620038813 -0.513237811140385\\ +0.201513573381558 -0.563193284269488\\ +0.220975611479586 -0.618097422194523\\ +0.242317279423763 -0.678468019547722\\ +0.263281546564798 -0.737953874485214\\ +0.28605955351758 -0.802810621826666\\ +0.310808217386903 -0.873567292699647\\ +0.337698031082518 -0.950817364561914\\ +0.366914237840248 -1.03522986974107\\ +0.398658107358057 -1.12756316342936\\ +0.433148322337641 -1.22868213362415\\ +0.470622484984116 -1.33957989915106\\ +0.511338753841437 -1.4614054063739\\ +0.550478980785488 -1.57994702533057\\ +0.592615181247569 -1.70927503123474\\ +0.637976680860626 -1.85066629298205\\ +0.68681035889951 -2.00561990934364\\ +0.739381991917593 -2.17591121005285\\ +0.795977700231485 -2.36366214519555\\ +0.856905505126854 -2.57143399199919\\ +0.914031074875622 -2.7720969168883\\ +0.974964918348386 -2.99301215751842\\ +1.03996091395414 -3.23726256698467\\ +1.10928986489522 -3.50862271941659\\ +1.18324062745835 -3.81176327937041\\ +1.26212131452257 -4.15253056882108\\ +1.33390569003905 -4.48012904720872\\ +1.40977287162893 -4.84665543783615\\ +1.48995507285289 -5.25947360228673\\ +1.57469771464309 -5.72793257150656\\ +1.66426017648587 -6.264068196095\\ +1.74277467840897 -6.77375733251372\\ +1.82499324481618 -7.35306557332919\\ +1.91109062168914 -8.01714699104608\\ +2.001249798969 -8.78579716677541\\ +2.0956623994805 -9.68533102999814\\ +2.19452908620335 -10.7514308121271\\ +2.27697025538168 -11.7568689501669\\ +2.36250846547792 -12.9347104793215\\ +2.45126006203328 -14.3315540638699\\ +2.54334576130472 -16.0116103502193\\ +2.63889081445755 -18.065382828487\\ +2.73802517792786 -20.6235811421745\\ +2.81481236050756 -22.9864053792737\\ +2.8937530190509 -25.8559153228605\\ +2.97490754721436 -29.3919934367388\\ +3.05833803237852 -33.8150182932467\\ +3.14410830314732 -39.423249887777\\ +3.23228397818141 -46.5964592062709\\ +3.32293251639897 -55.7427957058747\\ +3.41612326858549 -67.1034002039465\\ +3.57728509936777 -89.7313360667974\\ +3.74605003274907 -111.589065897674\\ +3.85110700232562 -122.107226790675\\ +3.95911026646847 -130.456284711646\\ +4.07014245321941 -136.97578714508\\ +4.18428850790151 -142.076244742026\\ +4.30163575810668 -146.108647354331\\ +4.42227398050602 -149.340377884695\\ +4.58840412645483 -152.73380274964\\ +4.76077523022638 -155.367060844998\\ +4.93962174387827 -157.45170996772\\ +5.12518692705321 -159.129824838789\\ +5.31772317785112 -160.499204529585\\ +5.51749237612921 -161.628838539626\\ +5.72476623970219 -162.568517004332\\ +5.93982669392029 -163.354926187977\\ +6.16296625513279 -164.015604173747\\ +6.39448842855712 -164.571567258029\\ +6.63470812109245 -165.039092212822\\ +6.88395206964551 -165.430950635161\\ +7.14255928554305 -165.757280103964\\ +7.41088151564139 -166.026209782555\\ +7.68928372075853 -166.244316916044\\ +7.97814457207674 -166.416964866419\\ +8.20188949920225 -166.51929742009\\ +8.43190929286622 -166.60011872779\\ +8.66837993001965 -166.660790218504\\ +8.91148232283998 -166.70249747186\\ +9.07732652520994 -166.72028306575\\ +9.246257116406 -166.730376175016\\ +9.33189771573347 -166.732617110054\\ +9.41833153464815 -166.733027071144\\ +9.50556592010137 -166.731634041463\\ +9.68246611930323 -166.723544957105\\ +9.86265846131287 -166.708550517051\\ +10.0462042134681 -166.686834493806\\ +10.3279473191894 -166.642021791862\\ +10.6175918348298 -166.582970544251\\ +10.9153593533136 -166.510127269427\\ +11.3254131515284 -166.392217151468\\ +11.7508713090482 -166.251270822583\\ +12.3052400435925 -166.043690252955\\ +12.8857621318549 -165.802191408247\\ +13.4936714058834 -165.527599893242\\ +14.2611370719414 -165.155301482248\\ +15.0722530931073 -164.737100670044\\ +16.0770442167387 -164.191972609918\\ +17.1488196987055 -163.585835215115\\ +18.2920450484626 -162.919146645506\\ +19.6922025547921 -162.083533980687\\ +21.1995345753606 -161.169852552865\\ +23.033628731422 -160.049563756647\\ +25.0264009641792 -158.832993561392\\ +27.4434330322828 -157.37137618153\\ +30.0939003444972 -155.799118093459\\ +33.3060034362469 -153.950795589126\\ +37.2023668141304 -151.808319433785\\ +42.327890655736 -149.174009820729\\ +50.8987019351974 -145.256009215458\\ +65.2852114112777 -139.983090957373\\ +73.5981447526585 -137.59056411399\\ +81.4537176628054 -135.70182683662\\ +88.5007491447353 -134.274473416525\\ +95.2750047242714 -133.109771483575\\ +102.567793074445 -132.054259180554\\ +109.405470720574 -131.227792276803\\ +115.628013120735 -130.596023669947\\ +122.204468663152 -130.038259697204\\ +127.969686821595 -129.631926677789\\ +134.006889636394 -129.280179877106\\ +140.328908478584 -128.98416160529\\ +145.600599502069 -128.788120390552\\ +151.070330448668 -128.628766816284\\ +155.307057393347 -128.533530720795\\ +159.662602210142 -128.459233723979\\ +164.140297114445 -128.405967001751\\ +167.194975973196 -128.382174245008\\ +170.30650292528 -128.367774234558\\ +171.88391428171 -128.364099973331\\ +173.475935923388 -128.362777510454\\ +175.082703173578 -128.363807482361\\ +176.704352608899 -128.367190253399\\ +179.992850678251 -128.381014290105\\ +183.342548256232 -128.404247094093\\ +186.754584276109 -128.436881781919\\ +191.992066559328 -128.503436542686\\ +197.376432630023 -128.591062754741\\ +202.911801804663 -128.699681661767\\ +210.534524276677 -128.876983921003\\ +218.443607114946 -129.091121023035\\ +226.64980792737 -129.341717180007\\ +237.342425002384 -129.705540332341\\ +248.539485742973 -130.124577318009\\ +262.675410372388 -130.698554200878\\ +277.615329443679 -131.347756879655\\ +296.122543798796 -132.196344326814\\ +315.863540826787 -133.138050067018\\ +340.041193270368 -134.320507442364\\ +369.46012051994 -135.773939546376\\ +405.142317111462 -137.52269693978\\ +448.385594802129 -139.580700356152\\ +510.161531474972 -142.349914365615\\ +630.666554056761 -147.080688237247\\ +786.8571506937 -151.970551172734\\ +903.557834613866 -154.878382196426\\ +1000 -156.902998696731\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.458679666390537\\ +0.109657929126777 -0.503040776849446\\ +0.120248614203733 -0.551706083238003\\ +0.131862140139479 -0.605097616813623\\ +0.144597292179202 -0.663680196416578\\ +0.158562396177109 -0.727966212712886\\ +0.173876240021636 -0.798521085517166\\ +0.188919277620773 -0.867895330552983\\ +0.205263775270926 -0.943353728842169\\ +0.223022329796589 -1.02544606045387\\ +0.242317279423747 -1.11477637594402\\ +0.263281546564815 -1.21200963400037\\ +0.28605955351758 -1.31787948690118\\ +0.310808217386903 -1.43319748812115\\ +0.337698031082496 -1.5588640765061\\ +0.366914237840272 -1.69588179811467\\ +0.398658107358057 -1.84537137002741\\ +0.433148322337641 -2.00859138430161\\ +0.470622484984116 -2.18696271522111\\ +0.511338753841404 -2.38209905888118\\ +0.555577622239913 -2.59584554520347\\ +0.598104096238105 -2.8031770046033\\ +0.643885742724037 -3.02860653324541\\ +0.693171727615517 -3.27411299757222\\ +0.746230289139067 -3.5419935933898\\ +0.80335019771251 -3.83493927455294\\ +0.864842327573189 -4.15613359566947\\ +0.931041348706901 -4.50938385389605\\ +1.00230754828383 -4.89929746211664\\ +1.06912633917342 -5.27495609046082\\ +1.14039960197009 -5.68761975126006\\ +1.2164242938574 -6.14295727580145\\ +1.29751716865759 -6.64799930680471\\ +1.38401609657311 -7.21159074781917\\ +1.47628147190933 -7.84503600082189\\ +1.56024641436628 -8.45461431617264\\ +1.64898694447115 -9.13822927043731\\ +1.74277467840897 -9.91140166510854\\ +1.84189668079973 -10.7945948474157\\ +1.92879150802077 -11.6342217823441\\ +2.01978575681984 -12.5904543350991\\ +2.11507282486872 -13.6915594216383\\ +2.21485523372624 -14.9759215486562\\ +2.31934505927457 -16.4969145190861\\ +2.40647515001554 -17.9342553779495\\ +2.49687842888441 -19.6259296710528\\ +2.59067785868806 -21.6481637273158\\ +2.68800102153763 -24.109609468308\\ +2.78898029238043 -27.16907173873\\ +2.86719649749373 -29.9950603454757\\ +2.94760625512479 -33.4324275707173\\ +3.03027108286629 -37.6794610157588\\ +3.11525422355535 -43.0069762757126\\ +3.20262069365748 -49.7694337162652\\ +3.29243733300756 -58.3782019756027\\ +3.38477285594618 -69.1646125717606\\ +3.51192753045089 -86.6881785415334\\ +3.74605003274907 -118.329436848166\\ +3.85110700232562 -129.036290370449\\ +3.95911026646847 -137.579298656608\\ +4.07014245321941 -144.298153344799\\ +4.18428850790151 -149.603512983965\\ +4.30163575810668 -153.846519148177\\ +4.46323392671022 -158.303027213509\\ +4.63090280179949 -161.782167622194\\ +4.80487043965544 -164.573629578642\\ +4.98537346387415 -166.868908224091\\ +5.17265738721621 -168.797531036198\\ +5.41668691103327 -170.826988976716\\ +5.67222897164457 -172.54298250157\\ +5.93982669392029 -174.027217645586\\ +6.27766010580631 -175.581465402578\\ +6.63470812109201 -176.952275441331\\ +7.07701066118229 -178.38299751493\\ +7.61871770232323 -179.859904893337\\ +8.27785696619849 -181.3846494474\\ +9.24625711640539 -183.280427380295\\ +11.2214776820801 -186.446260491972\\ +13.4936714058825 -189.498729626527\\ +15.3527502878049 -191.747591811549\\ +17.3076553419573 -193.961757924434\\ +19.3324228755497 -196.138817431697\\ +21.3958887134354 -198.264076071056\\ +23.6796006783313 -200.526760143678\\ +26.2070669648381 -202.937701544268\\ +29.0043049386384 -205.505208513358\\ +32.3974262952833 -208.490852502761\\ +36.1874981241128 -211.671242032728\\ +40.7953450345228 -215.332234986649\\ +45.9899209052265 -219.205061973769\\ +52.8107971193432 -223.909221910227\\ +61.7718759733813 -229.491273889667\\ +75.6621850048106 -236.98727914975\\ +241.759407916908 -280.390368793153\\ +549.211648388752 -310.770399829436\\ +642.403365939436 -316.186104312373\\ +730.909932860277 -320.418208564085\\ +823.978568452801 -324.129012914611\\ +920.373199661849 -327.347790024815\\ +1000 -329.62469536746\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.454123773666083\\ +0.109657929126777 -0.498355762456299\\ +0.120248614203733 -0.546964239628721\\ +0.131862140139479 -0.600398135755484\\ +0.144597292179202 -0.65915492289605\\ +0.158562396177109 -0.723785757687153\\ +0.172280544713129 -0.787478941703\\ +0.187185529496565 -0.856913381698178\\ +0.2033800305847 -0.932625148687237\\ +0.220975611479586 -1.01520062022041\\ +0.240093487686053 -1.10528090446132\\ +0.260865361762268 -1.20356694208965\\ +0.283434330615137 -1.31082561962802\\ +0.30795587129142 -1.42789733335184\\ +0.334598912054985 -1.55570554366807\\ +0.363546996129356 -1.69526895137517\\ +0.394999546122078 -1.84771701610333\\ +0.429173237842218 -2.01430964498491\\ +0.466303492974262 -2.19646204325784\\ +0.5066461008921 -2.39577598829146\\ +0.550478980785524 -2.61407922533914\\ +0.592615181247569 -2.8257615043637\\ +0.637976680860626 -3.05580496259978\\ +0.68681035889951 -3.30616605508624\\ +0.739381991917545 -3.5791150216553\\ +0.795977700231537 -3.87730948842193\\ +0.856905505126854 -4.20389043636004\\ +0.922497005259214 -4.56260904283124\\ +0.99310918137495 -4.95799674885814\\ +1.06912633917342 -5.39559681411299\\ +1.14039960197009 -5.81848865879226\\ +1.2164242938574 -6.28464073363222\\ +1.29751716865759 -6.80112177857262\\ +1.38401609657311 -7.37681819053813\\ +1.47628147190933 -8.02307932158334\\ +1.56024641436628 -8.64424515051292\\ +1.64898694447115 -9.34003811722914\\ +1.74277467840897 -10.1260136631755\\ +1.84189668079973 -11.0226718281028\\ +1.92879150802077 -11.8740530779784\\ +2.01978575681984 -12.8425500677046\\ +2.11507282486872 -13.9564543987908\\ +2.21485523372624 -15.2541763706427\\ +2.31934505927457 -16.7891167168992\\ +2.40647515001554 -18.2380573421917\\ +2.49687842888441 -19.9417403229408\\ +2.59067785868806 -21.9764074315337\\ +2.68800102153763 -24.4507265472432\\ +2.78898029238043 -27.5235189975187\\ +2.86719649749373 -30.3598152347521\\ +2.94760625512479 -33.8077639858326\\ +3.03027108286629 -38.0656604080431\\ +3.11525422355535 -43.404327829984\\ +3.20262069365748 -50.1782345305515\\ +3.29243733300756 -58.798757242954\\ +3.38477285594618 -69.597235764012\\ +3.51192753045089 -87.1373945798126\\ +3.74605003274907 -118.809129833006\\ +3.85110700232562 -129.529629104425\\ +3.95911026646847 -138.086647070204\\ +4.07014245321941 -144.819884907339\\ +4.18428850790151 -150.140010894866\\ +4.30163575810668 -154.398176527762\\ +4.46323392671022 -158.875526241225\\ +4.63090280179949 -162.376249662175\\ +4.80487043965544 -165.190061069193\\ +4.98537346387415 -167.508481252874\\ +5.17265738721621 -169.46106389952\\ +5.41668691103327 -171.521663160113\\ +5.67222897164457 -173.270171786095\\ +5.93982669392029 -174.788350331445\\ +6.27766010580631 -176.385293813251\\ +6.69616005485286 -178.022981214089\\ +7.14255928554351 -179.487971555461\\ +7.68928372075853 -181.015673382455\\ +8.43190929286622 -182.781030483014\\ +9.59360828709266 -185.104248173652\\ +13.6186523675602 -191.334873259259\\ +15.494950393147 -193.796888924849\\ +17.3076553419573 -196.034061780992\\ +19.3324228755497 -198.410945910763\\ +21.5940615210368 -200.945122730491\\ +24.1202820761804 -203.650373401015\\ +26.9420371368182 -206.536215182311\\ +30.0939003444953 -209.607251493824\\ +33.9258338274107 -213.141896195022\\ +38.2456972246693 -216.883217126988\\ +43.5149650092477 -221.122526513681\\ +50.4315948717143 -226.192295288676\\ +60.6432939540775 -232.773957928975\\ +89.3204599858045 -246.926949086154\\ +121.0829750232 -257.903009188175\\ +171.88391428171 -270.262998508841\\ +272.543253128086 -286.549550513123\\ +424.255643071796 -302.512855164347\\ +534.229329953814 -310.686004317838\\ +624.878807200712 -316.020626599736\\ +717.556091893683 -320.499983589231\\ +808.924348680549 -324.169959361846\\ +903.557834613925 -327.360848134152\\ +1000 -330.108677437422\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.271365296431952\\ +0.111698681846785 -0.303325507396892\\ +0.124765955263085 -0.339104110231432\\ +0.138082976521811 -0.375659914569951\\ +0.152821403602584 -0.416235594472425\\ +0.167580786453079 -0.457001219948182\\ +0.183765620038813 -0.501864638334808\\ +0.201513573381558 -0.55126353741224\\ +0.220975611479586 -0.605687395363418\\ +0.242317279423763 -0.665684286826689\\ +0.263281546564798 -0.724952832367592\\ +0.28605955351758 -0.789732426409387\\ +0.310808217386903 -0.860579346233692\\ +0.337698031082518 -0.938114009912255\\ +0.366914237840248 -1.02303085632107\\ +0.398658107358057 -1.11611087016061\\ +0.433148322337641 -1.21823768311017\\ +0.470622484984116 -1.33041844878008\\ +0.506646100892133 -1.43950709777823\\ +0.545427130532976 -1.55838699964593\\ +0.587176639073341 -1.68813454373154\\ +0.632121847581245 -1.82999962253069\\ +0.680507369673503 -1.98544682749198\\ +0.732596542821532 -2.15620848081448\\ +0.788672861561404 -2.34435347486817\\ +0.849041520408896 -2.55237753553374\\ +0.905642837944531 -2.75308097923235\\ +0.966017479952245 -2.97379755541033\\ +1.03041699495061 -3.21752483171079\\ +1.0991097009295 -3.48792908766839\\ +1.17238180328657 -3.78954110355701\\ +1.25053858729041 -4.12802331817508\\ +1.3216641839466 -4.45287667745751\\ +1.39683511798871 -4.81571699188376\\ +1.47628147190943 -5.22363587989881\\ +1.56024641436638 -5.68561649002805\\ +1.64898694447104 -6.21319447418651\\ +1.7267809038843 -6.71366906631772\\ +1.80824493487798 -7.28128632152152\\ +1.8935521797563 -7.9304454315226\\ +1.98288394912704 -8.67989348718515\\ +2.07643010725571 -9.55445856994982\\ +2.17438947560012 -10.5876645203217\\ +2.25607406649687 -11.5589701249269\\ +2.34082727617828 -12.6931851266008\\ +2.4287643824604 -14.0334653987418\\ +2.52000499376417 -15.638959655972\\ +2.61467321180114 -17.5925495607213\\ +2.71289780037248 -20.013193256733\\ +2.78898029238043 -22.2375622724293\\ +2.86719649749373 -24.9258482645058\\ +2.94760625512479 -28.2216551263031\\ +3.03027108286649 -32.3231637471664\\ +3.11525422355555 -37.5010801285256\\ +3.20262069365769 -44.109752088935\\ +3.29243733300778 -52.5604326931247\\ +3.38477285594596 -63.184334785368\\ +3.51192753045066 -80.4841348038102\\ +3.74605003274907 -111.713467281613\\ +3.85110700232562 -122.23551717879\\ +3.95911026646847 -130.588566267803\\ +4.07014245321941 -137.112164881178\\ +4.18428850790151 -142.216826564058\\ +4.30163575810668 -146.253544107738\\ +4.42227398050602 -149.489703399009\\ +4.58840412645483 -152.889215586507\\ +4.76077523022638 -155.52877605275\\ +4.93962174387827 -157.619950024475\\ +5.12518692705321 -159.304819782087\\ +5.31772317785112 -160.681192082052\\ +5.51749237612921 -161.818064230082\\ +5.72476623970219 -162.765234283527\\ +5.93982669392029 -163.559396537918\\ +6.16296625513279 -164.228097209278\\ +6.39448842855712 -164.792360819007\\ +6.63470812109245 -165.268472444908\\ +6.88395206964551 -165.669212056842\\ +7.14255928554305 -166.00472565706\\ +7.41088151564139 -166.283150863015\\ +7.68928372075853 -166.511073381416\\ +7.97814457207674 -166.693865015918\\ +8.27785696619849 -166.835937364289\\ +8.51000724712218 -166.917986271248\\ +8.74866812047975 -166.98049629049\\ +8.9940221740918 -167.0246035176\\ +9.1614024571388 -167.044279893857\\ +9.33189771573347 -167.056483452673\\ +9.50556592010137 -167.061454555449\\ +9.59360828709328 -167.061297452614\\ +9.68246611930323 -167.059413280126\\ +9.86265846131287 -167.050561198087\\ +10.0462042134681 -167.035082969126\\ +10.2331657833024 -167.013147776174\\ +10.5201521761614 -166.968473651942\\ +10.8151870255226 -166.91008638846\\ +11.118496048193 -166.838397168976\\ +11.5361810173649 -166.722734904012\\ +11.9695570235905 -166.584788889853\\ +12.5342426546138 -166.381934619316\\ +13.125568357718 -166.146163375267\\ +13.8720978054164 -165.820831620083\\ +14.6610868404698 -165.450147346013\\ +15.4949503931459 -165.034808618272\\ +16.5279206146492 -164.494447496491\\ +17.629753752872 -163.894472915139\\ +18.9792164283904 -163.136211547742\\ +20.4319732019529 -162.300889486525\\ +21.9959306803003 -161.388916132893\\ +23.8989256623109 -160.272107186861\\ +25.9665597293484 -159.060547581843\\ +28.4743916646731 -157.606172376396\\ +31.2244282309282 -156.04281351383\\ +34.557199367622 -154.206087892605\\ +38.5999361767968 -152.078315119448\\ +43.9180089259608 -149.463749063407\\ +53.2999408084406 -145.382485234299\\ +67.1161176749614 -140.546688231932\\ +75.6621850048106 -138.17261801374\\ +83.7380653526675 -136.29830457476\\ +90.9827289445557 -134.882259351332\\ +97.9469667069515 -133.727484132067\\ +105.444279352618 -132.682003275911\\ +112.473717836474 -131.864566767041\\ +118.870769771187 -131.24083343502\\ +125.631660247414 -130.691457825707\\ +131.558562404571 -130.292432917799\\ +137.765076954903 -129.948317419219\\ +144.264395121811 -129.660278684178\\ +149.683929307729 -129.470883874813\\ +155.307057393347 -129.318416184534\\ +159.662602210142 -129.228502818175\\ +164.140297114445 -129.159663641783\\ +167.194975973196 -129.125523822443\\ +170.30650292528 -129.10081113051\\ +173.475935923388 -129.08554156212\\ +175.082703173578 -129.081451682391\\ +176.704352608899 -129.079726485753\\ +178.341022071005 -129.080366671707\\ +179.992850678251 -129.083372651464\\ +183.342548256232 -129.096482196062\\ +186.754584276109 -129.119052644171\\ +190.230118866895 -129.151076905166\\ +195.565071586593 -129.216812307036\\ +201.049641626046 -129.303732252982\\ +206.688024962902 -129.41175406689\\ +214.452607597172 -129.58842090449\\ +222.508879812839 -129.802091679082\\ +230.867799418716 -130.052371213356\\ +241.759407916908 -130.415973812522\\ +253.164847863143 -130.834935883369\\ +267.563844455207 -131.408930714981\\ +282.781797962532 -132.058159625365\\ +301.63343472593 -132.90661930082\\ +321.74181506764 -133.847822910112\\ +346.369417737168 -135.028964955948\\ +376.335836228661 -136.479582435456\\ +412.68208457029 -138.223048064916\\ +456.730127016882 -140.272021269151\\ +519.655724382751 -143.024178031352\\ +654.358601888336 -148.121906782025\\ +801.500696156551 -152.542517288311\\ +920.373199661849 -155.40714885456\\ +1000 -157.044183439025\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.291352642326387\\ +0.111698681846785 -0.325514199731003\\ +0.123620954373676 -0.360355040186647\\ +0.13681576279675 -0.398949121067488\\ +0.151418932530433 -0.441709346854623\\ +0.166042865718756 -0.484584740656715\\ +0.182079168009943 -0.53166987031733\\ +0.199664245010983 -0.583393381199613\\ +0.218947676285658 -0.640232427016116\\ +0.240093487686069 -0.702719665887457\\ +0.260865361762251 -0.764278993708785\\ +0.283434330615137 -0.831381551294925\\ +0.30795587129142 -0.904569247308245\\ +0.334598912055007 -0.984448955703158\\ +0.363546996129332 -1.0717034899788\\ +0.394999546122053 -1.16710516872229\\ +0.429173237842218 -1.27153272980905\\ +0.466303492974262 -1.38599260482073\\ +0.506646100892133 -1.51164591629245\\ +0.545427130532976 -1.63382138737697\\ +0.587176639073341 -1.7670063986873\\ +0.632121847581245 -1.91248008029615\\ +0.680507369673503 -2.07173971544489\\ +0.732596542821532 -2.24655308640871\\ +0.788672861561404 -2.4390265958462\\ +0.849041520408896 -2.65169483875292\\ +0.905642837944531 -2.85675201702139\\ +0.966017479952245 -3.08212102229891\\ +1.03041699495061 -3.33082602720719\\ +1.0991097009295 -3.6065596709899\\ +1.17238180328657 -3.91387873650243\\ +1.25053858729041 -4.25847124015348\\ +1.3216641839466 -4.58890199263575\\ +1.39683511798871 -4.9576499837336\\ +1.47628147190943 -5.37182216951533\\ +1.56024641436638 -5.84041684702112\\ +1.64898694447104 -6.37498467649934\\ +1.7267809038843 -6.88158196745067\\ +1.80824493487798 -7.4556018954228\\ +1.8935521797563 -8.11145234800168\\ +1.98288394912704 -8.86788921491024\\ +2.07643010725571 -9.74974954225084\\ +2.17438947560012 -10.7905663744898\\ +2.25607406649687 -11.7681943329501\\ +2.34082727617828 -12.9089448532742\\ +2.4287643824604 -14.2559790825029\\ +2.52000499376417 -15.8684512530002\\ +2.61467321180114 -17.8292488290495\\ +2.71289780037248 -20.2573360824768\\ +2.78898029238043 -22.4874464603118\\ +2.86719649749373 -25.1816130394879\\ +2.94760625512479 -28.483442747648\\ +3.03027108286649 -32.5911196610415\\ +3.11525422355555 -37.775353131125\\ +3.20262069365769 -44.3904944998517\\ +3.29243733300778 -52.8478005385874\\ +3.38477285594596 -63.4784879908345\\ +3.51192753045066 -80.7875910462673\\ +3.74605003274907 -112.033936938947\\ +3.85110700232562 -122.56357618958\\ +3.95911026646847 -130.924400666565\\ +4.07014245321941 -137.455966067367\\ +4.18428850790151 -142.568791538053\\ +4.30163575810668 -146.613875707662\\ +4.42227398050602 -149.858610537105\\ +4.58840412645483 -153.269892687646\\ +4.76077523022638 -155.921621351942\\ +4.93962174387827 -158.025378063275\\ +5.12518692705321 -159.723262097006\\ +5.31772317785112 -161.113097861787\\ +5.51749237612921 -162.263900935841\\ +5.72476623970219 -163.225488227235\\ +5.93982669392029 -164.034573413583\\ +6.16296625513279 -164.718722573244\\ +6.39448842855712 -165.298980515193\\ +6.63470812109245 -165.791652971418\\ +6.88395206964551 -166.209540870493\\ +7.14255928554305 -166.562811412343\\ +7.41088151564139 -166.859623581907\\ +7.68928372075853 -167.106584550132\\ +7.97814457207674 -167.309087604221\\ +8.27785696619849 -167.471565762359\\ +8.58882855954615 -167.597684498649\\ +8.8296999554939 -167.670264974052\\ +9.07732652520994 -167.725211502284\\ +9.33189771573347 -167.763481572283\\ +9.50556592010137 -167.78014890649\\ +9.68246611930323 -167.790001961959\\ +9.86265846131287 -167.793244723142\\ +9.95400828762154 -167.792446311346\\ +10.1392540755881 -167.786119400561\\ +10.3279473191894 -167.773621053059\\ +10.5201521761614 -167.75510185073\\ +10.8151870255226 -167.716332737618\\ +11.118496048193 -167.664742793251\\ +11.430311291145 -167.600698471743\\ +11.8597101233768 -167.496480695299\\ +12.3052400435925 -167.371336280216\\ +12.8857621318549 -167.186289123319\\ +13.4936714058834 -166.970226276602\\ +14.1302599059955 -166.723803124833\\ +14.9339321612423 -166.388709725144\\ +15.7833140565207 -166.011221223348\\ +16.8355080296122 -165.517765137439\\ +17.9578464700207 -164.967521796803\\ +19.1550055557359 -164.360666044591\\ +20.6212180399915 -163.597875901922\\ +22.1996611911991 -162.7612869459\\ +23.8989256623109 -161.851068909811\\ +25.9665597293484 -160.739619637602\\ +28.2130767593954 -159.536815214781\\ +30.9378757173011 -158.095976265116\\ +33.9258338274107 -156.550029849679\\ +37.5469422407329 -154.736830186287\\ +42.327890655736 -152.460206287813\\ +48.6056423214227 -149.692218615608\\ +62.3440188862789 -144.532037670312\\ +73.5981447526585 -141.163255946628\\ +82.2081575524031 -139.042869411846\\ +90.1477631452495 -137.393280627283\\ +97.9469667069515 -136.023158387234\\ +105.444279352618 -134.911207147375\\ +112.473717836474 -134.029292258631\\ +119.971773543585 -133.239427695338\\ +126.795284678645 -132.640197755254\\ +134.006889636394 -132.116258129593\\ +140.328908478584 -131.739214314569\\ +146.949180062486 -131.41783916984\\ +152.469572701759 -131.201630380013\\ +158.19734815786 -131.02233279601\\ +164.140297114445 -130.880375571589\\ +168.743567772734 -130.798622574503\\ +173.475935923388 -130.738183105095\\ +176.704352608899 -130.709775345194\\ +179.992850678251 -130.690899208233\\ +183.342548256232 -130.681568934149\\ +185.040701954232 -130.680486524156\\ +186.754584276109 -130.681793564766\\ +188.48434090338 -130.685490374789\\ +191.992066559328 -130.700052956105\\ +195.565071586593 -130.724170329252\\ +199.204570845384 -130.757833361241\\ +204.791209666503 -130.826193243348\\ +210.534524276677 -130.915927034906\\ +216.438908606406 -131.026937928185\\ +224.569799553979 -131.207833085537\\ +233.006141069691 -131.425965453583\\ +241.759407916908 -131.680883685041\\ +253.164847863143 -132.050435314496\\ +265.108360190857 -132.475381047655\\ +280.186655645918 -133.056379197068\\ +296.122543798796 -133.71213575396\\ +315.863540826787 -134.567182334866\\ +336.920570598025 -135.513359058146\\ +362.710025233077 -136.69752023903\\ +394.090164040346 -138.147213052824\\ +432.151112778964 -139.883121735246\\ +482.707096560317 -142.104404663021\\ +559.432570616944 -145.223122210609\\ +847.086826655735 -154.092990063499\\ +963.793479961591 -156.664727378264\\ +1000 -157.371821836267\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.266215710157724\\ +0.108651577465251 -0.30095704398741\\ +0.118051652856874 -0.339520974255436\\ +0.128264983052812 -0.382119708850098\\ +0.139361927422416 -0.428965122614784\\ +0.152821403602584 -0.486263704299063\\ +0.167580786453068 -0.549402513004338\\ +0.183765620038826 -0.618749371541071\\ +0.201513573381558 -0.694729839316665\\ +0.220975611479586 -0.777842197009363\\ +0.242317279423747 -0.868671303167673\\ +0.263281546564815 -0.957578816206592\\ +0.28605955351758 -1.05386657120738\\ +0.310808217386903 -1.15819346454106\\ +0.337698031082496 -1.27131006453914\\ +0.366914237840272 -1.39406986138607\\ +0.398658107358057 -1.52744312242413\\ +0.433148322337641 -1.67253428153691\\ +0.470622484984116 -1.83060401325741\\ +0.511338753841404 -2.00309747180631\\ +0.555577622239913 -2.19168065802177\\ +0.603643850607596 -2.39828757942661\\ +0.649849535446982 -2.59889043830555\\ +0.699592016543512 -2.8173758951944\\ +0.75314201659739 -3.05591755041291\\ +0.810790980673203 -3.31708069746355\\ +0.872852662384851 -3.6039234428074\\ +0.939664831495459 -3.92013144886721\\ +1.01159111222379 -4.27019985918338\\ +1.07902879151612 -4.60861975933551\\ +1.15096220088509 -4.9817813655668\\ +1.22769104798839 -5.39533678361767\\ +1.30953502048267 -5.85634248764734\\ +1.39683511798871 -6.37373386325407\\ +1.47628147190933 -6.87071443271549\\ +1.56024641436628 -7.42676694954224\\ +1.64898694447115 -8.05371717821868\\ +1.74277467840897 -8.76691324972586\\ +1.82499324481618 -9.44156406332229\\ +1.91109062168914 -10.2054250019356\\ +2.001249798969 -11.0785029919259\\ +2.09566239948036 -12.0873340543343\\ +2.1945290862032 -13.2678316974479\\ +2.27697025538154 -14.368622800002\\ +2.36250846547808 -15.6453652917816\\ +2.45126006203344 -17.1447915089456\\ +2.54334576130472 -18.9312506453926\\ +2.63889081445755 -21.095389783103\\ +2.73802517792786 -23.7680673750955\\ +2.81481236050756 -26.2195425330194\\ +2.8937530190509 -29.1801704771353\\ +2.97490754721436 -32.8099025858887\\ +3.05833803237832 -37.3291882002607\\ +3.14410830314712 -43.0363599841172\\ +3.2322839781812 -50.3112635383285\\ +3.32293251639919 -59.5621249288453\\ +3.41612326858571 -71.030163623904\\ +3.57728509936801 -93.8438418729432\\ +3.74605003274907 -115.896007783548\\ +3.85110700232562 -126.535170749977\\ +3.95911026646847 -135.008596064837\\ +4.07014245321941 -141.655923963845\\ +4.18428850790151 -146.88776026687\\ +4.30163575810668 -151.055192465957\\ +4.42227398050573 -154.425703629622\\ +4.58840412645453 -158.010182264491\\ +4.76077523022607 -160.841596479171\\ +4.93962174387859 -163.13176349028\\ +5.12518692705354 -165.023026231603\\ +5.31772317785112 -166.613461012053\\ +5.56859644428648 -168.2820780248\\ +5.8313051135262 -169.682372323049\\ +6.10640754223191 -170.879619667161\\ +6.3944884285567 -171.920071106938\\ +6.75818116816072 -173.008350405717\\ +7.14255928554351 -173.961061202217\\ +7.61871770232323 -174.941383380889\\ +8.12661920009201 -175.81341836252\\ +8.74866812047975 -176.709763749452\\ +9.41833153464754 -177.525567674372\\ +10.233165783303 -178.372493823782\\ +11.3254131515284 -179.33605429166\\ +12.8857621318549 -180.491798096412\\ +20.8122156998621 -184.71143707231\\ +23.4622884814232 -185.862756427956\\ +26.2070669648381 -186.993432569533\\ +29.0043049386384 -188.099986850643\\ +32.1001089554331 -189.285431837042\\ +35.2003147279672 -190.441557061801\\ +38.5999361767968 -191.681970977323\\ +42.3278906557332 -193.016328916984\\ +46.4158883361298 -194.454688467967\\ +50.8987019351974 -196.007509416426\\ +55.8144624945484 -197.685626743612\\ +61.2049837247637 -199.50019139582\\ +67.1161176749657 -201.462572358299\\ +73.5981447526585 -203.584212696151\\ +80.7062014114933 -205.876431914452\\ +88.5007491447295 -208.35016756293\\ +97.0480887738072 -211.015650877062\\ +106.420924406474 -213.88201484908\\ +116.698981861712 -216.956838826893\\ +129.154966501481 -220.586428690776\\ +142.940453343181 -224.478556604558\\ +158.19734815786 -228.632244662603\\ +176.704352608888 -233.454169529718\\ +199.204570845397 -239.00113070176\\ +226.64980792737 -245.31347136193\\ +262.675410372371 -252.885655687385\\ +315.863540826787 -262.727995330403\\ +514.886745013736 -289.000479926592\\ +596.727119597363 -296.457758631573\\ +678.940681269615 -302.642969663024\\ +765.391938822987 -308.053990178508\\ +854.932706626886 -312.738637116499\\ +946.184819472219 -316.759134581883\\ +1000 -318.839865221135\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -1.54483010954081\\ +0.111698681846785 -1.52792736130999\\ +0.13681576279675 -1.49626153644692\\ +0.148652484499784 -1.48661094456821\\ +0.160031031373875 -1.4810832357694\\ +0.170699493403842 -1.47921528806339\\ +0.182079168009943 -1.48060168614205\\ +0.192435097523039 -1.48470478764523\\ +0.2033800305847 -1.49176471747489\\ +0.214947467343796 -1.50201942769414\\ +0.227172813302684 -1.5156956547896\\ +0.240093487686069 -1.53301155246325\\ +0.253749037973356 -1.55417944005703\\ +0.268181260945295 -1.57940861983991\\ +0.283434330615137 -1.60890823434983\\ +0.299554933435982 -1.64289015131882\\ +0.316592411198347 -1.68157187843457\\ +0.337698031082518 -1.73294286738818\\ +0.360210656235708 -1.7913985667453\\ +0.384224084605498 -1.85734688830351\\ +0.409838367175735 -1.9312314185033\\ +0.43716022482485 -2.01353933276059\\ +0.466303492974262 -2.10481019557804\\ +0.497389595879016 -2.2056459532466\\ +0.530548052536955 -2.31672250137822\\ +0.565917016324609 -2.43880330711053\\ +0.609234915240079 -2.5929169159069\\ +0.655868565957134 -2.76403537520397\\ +0.706071771413795 -2.95391293927881\\ +0.760117761795532 -3.16462460231793\\ +0.81079098067315 -3.36802213948209\\ +0.864842327573189 -3.59122930011861\\ +0.922497005259214 -3.83658229226316\\ +0.983995229627797 -4.10687380142375\\ +1.04959323055824 -4.40547252940718\\ +1.11956431948387 -4.73648225047836\\ +1.1942000281335 -5.10495636579981\\ +1.27381132318649 -5.51719172310575\\ +1.3462605792989 -5.91133655219878\\ +1.42283045721431 -6.34971704288861\\ +1.50375532129977 -6.8401877328358\\ +1.58928286562298 -7.39270179688441\\ +1.67967487209262 -8.02005694920115\\ +1.77520801171768 -8.73897989166213\\ +1.8589566796357 -9.42387866208117\\ +1.94665634334225 -10.2046793655013\\ +2.03849339825241 -11.1036802927277\\ +2.1346630333243 -12.150702913176\\ +2.23536964590981 -13.3864821268318\\ +2.31934505927442 -14.5485686190826\\ +2.40647515001538 -15.9075819807215\\ +2.49687842888425 -17.518180908073\\ +2.59067785868806 -19.4564825913698\\ +2.68800102153763 -21.8310260496097\\ +2.78898029238043 -24.8004993231116\\ +2.86719649749373 -27.55689798464\\ +2.94760625512479 -30.9228185750927\\ +3.03027108286649 -35.0964948135632\\ +3.11525422355555 -40.3486870168798\\ +3.20262069365769 -47.0337988399958\\ +3.29243733300778 -55.5631407409479\\ +3.38477285594596 -66.2679845506654\\ +3.51192753045066 -83.6793591897222\\ +3.74605003274907 -115.11441131444\\ +3.85110700232562 -125.728873744729\\ +3.95911026646847 -134.176981951782\\ +4.07014245321941 -140.798356843028\\ +4.18428850790151 -146.003584425801\\ +4.30163575810668 -150.143731880512\\ +4.42227398050602 -153.486261449709\\ +4.58840412645483 -157.032310313177\\ +4.76077523022638 -159.823965744289\\ +4.93962174387827 -162.072991026213\\ +5.12518692705321 -163.921673292868\\ +5.31772317785112 -165.468031112941\\ +5.56859644428648 -167.079356257792\\ +5.8313051135262 -168.41980556563\\ +6.10640754223191 -169.554528090325\\ +6.39448842855712 -170.529642548552\\ +6.6961600548533 -171.378638015562\\ +7.07701066118183 -172.265524441732\\ +7.47952251562161 -173.038139551192\\ +7.90492762269657 -173.719862093948\\ +8.43190929286622 -174.423497700723\\ +8.9940221740918 -175.048094785491\\ +9.59360828709328 -175.60935943497\\ +10.3279473191894 -176.188554623791\\ +11.118496048193 -176.714470150289\\ +12.0804213467733 -177.255620555994\\ +13.2471398786616 -177.807862996637\\ +14.6610868404698 -178.37011423028\\ +16.3762407452172 -178.944298636539\\ +18.8050405512853 -179.624352922525\\ +23.8989256623109 -180.761047848929\\ +29.2729483504285 -181.736455550507\\ +33.6144900010886 -182.434481718825\\ +37.8947091907461 -183.073972404066\\ +42.327890655736 -183.701336746686\\ +46.8458011587293 -184.314409170995\\ +51.8459354389293 -184.970144342516\\ +56.8531791387359 -185.60868781254\\ +62.3440188862789 -186.292846605462\\ +68.3651600451004 -187.0279053504\\ +74.9678187496691 -187.81938858495\\ +82.2081575524031 -188.673057147156\\ +90.1477631452495 -189.594890779953\\ +98.8541702191929 -190.591053322699\\ +108.401435917834 -191.667836070809\\ +118.870769771187 -192.831574142554\\ +130.351224468151 -194.088530120551\\ +142.940453343172 -195.44473902025\\ +156.74554102056 -196.905809045019\\ +171.88391428171 -198.476673966621\\ +188.48434090338 -200.161295732395\\ +208.602408924844 -202.14887848292\\ +230.867799418716 -204.278395833715\\ +255.509709035257 -206.547844528841\\ +285.40097698292 -209.176335482146\\ +321.74181506764 -212.188458156212\\ +369.46012051994 -215.843618192517\\ +440.193518520901 -220.667475666039\\ +660.419396233041 -231.917529037968\\ +758.367791499744 -235.527133830614\\ +854.93270662683 -238.481036354053\\ +954.948563979212 -241.037527140603\\ +1000 -242.050341246476\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.170713609675005\\ +0.113777413322151 -0.194645271277324\\ +0.128264983052803 -0.219980584214483\\ +0.144597292179202 -0.248776662764129\\ +0.161513269350313 -0.27889413801546\\ +0.178752552590422 -0.309925595837001\\ +0.19783188827842 -0.344706277373234\\ +0.216938351838516 -0.380037611523818\\ +0.237890104107894 -0.419405984203422\\ +0.258471350746954 -0.458762372895279\\ +0.280833199882324 -0.50234587530764\\ +0.305129701718286 -0.550732856589036\\ +0.331528234231953 -0.604599260101253\\ +0.356904934567525 -0.657719436477976\\ +0.384224084605498 -0.71644393390207\\ +0.413634368406335 -0.781522784859447\\ +0.445295850994262 -0.853821832961103\\ +0.479380849508926 -0.934339690527622\\ +0.511338753841437 -1.012434976229\\ +0.545427130532976 -1.09857920123423\\ +0.58178800743451 -1.19376422367827\\ +0.620572880677654 -1.2991094570165\\ +0.661943345877428 -1.41587824817333\\ +0.706071771413795 -1.54549765048944\\ +0.753142016597439 -1.68958308546652\\ +0.803350197712457 -1.84997004492723\\ +0.856905505126854 -2.02875586557047\\ +0.914031074875622 -2.22835578500735\\ +0.974964918348386 -2.45157908043271\\ +1.03996091395414 -2.70173329520435\\ +1.10928986489522 -2.98276770847053\\ +1.17238180328657 -3.25183489519878\\ +1.23906215694794 -3.55074476765492\\ +1.30953502048267 -3.8839260452545\\ +1.38401609657311 -4.25681716961472\\ +1.46273335620117 -4.67618771778305\\ +1.54592773641949 -5.15058366592535\\ +1.63385387780984 -5.69095463530667\\ +1.7267809038843 -6.31155489022851\\ +1.80824493487798 -6.90344977945574\\ +1.8935521797563 -7.57837606300487\\ +1.98288394912704 -8.35499936851897\\ +2.07643010725571 -9.25806704106017\\ +2.17438947560012 -10.3210246288978\\ +2.25607406649687 -11.3169807420404\\ +2.34082727617828 -12.4765622915837\\ +2.4287643824604 -13.8428919959459\\ +2.52000499376417 -15.4750882419296\\ +2.61467321180114 -17.4560054361146\\ +2.71289780037248 -19.9045777284422\\ +2.78898029238043 -22.1502752804277\\ +2.86719649749373 -24.8602089877957\\ +2.94760625512479 -28.17797646205\\ +3.03027108286649 -32.3017534358161\\ +3.11525422355555 -37.5022418787414\\ +3.20262069365769 -44.1337866968004\\ +3.29243733300778 -52.6076391507007\\ +3.38477285594596 -63.2550113743147\\ +3.51192753045066 -80.5865696772445\\ +3.74605003274907 -111.872770134501\\ +3.85110700232562 -122.41970371464\\ +3.95911026646847 -130.797950344006\\ +4.07014245321941 -137.347066334998\\ +4.18428850790151 -142.477572105666\\ +4.30163575810668 -146.540468181691\\ +4.42227398050602 -149.803149013901\\ +4.58840412645483 -153.238573116691\\ +4.76077523022638 -155.914696317111\\ +4.93962174387827 -158.043110424048\\ +5.12518692705321 -159.765926456443\\ +5.31772317785112 -161.180981936343\\ +5.51749237612921 -162.357306834761\\ +5.72476623970219 -163.344733648558\\ +5.93982669392029 -164.179992762832\\ +6.16296625513279 -164.890668009802\\ +6.45371540164686 -165.635434476747\\ +6.75818116816117 -166.249182628083\\ +7.07701066118183 -166.754960788271\\ +7.34287044716661 -167.093683506612\\ +7.61871770232323 -167.381499778996\\ +7.90492762269657 -167.624102832694\\ +8.20188949920225 -167.826169217574\\ +8.51000724712218 -167.991564910775\\ +8.8296999554939 -168.123503286987\\ +9.07732652520994 -168.202131905456\\ +9.33189771573347 -168.264426856036\\ +9.59360828709328 -168.311237463162\\ +9.86265846131287 -168.343309940425\\ +10.0462042134681 -168.356831155606\\ +10.2331657833024 -168.364269921268\\ +10.4236067397639 -168.365786537015\\ +10.6175918348298 -168.361528200666\\ +10.8151870255226 -168.351630055334\\ +11.0164594963369 -168.33621613777\\ +11.2214776820801 -168.315400238889\\ +11.5361810173649 -168.274273480771\\ +11.8597101233768 -168.221540823778\\ +12.3052400435925 -168.133649470643\\ +12.7675070431924 -168.026171801565\\ +13.2471398786616 -167.89957066881\\ +13.8720978054164 -167.714998214025\\ +14.5265392594678 -167.501719150079\\ +15.3527502878039 -167.208500669344\\ +16.2259528707813 -166.875100281619\\ +17.1488196987055 -166.501846222837\\ +18.2920450484626 -166.016234379256\\ +19.5114834684666 -165.4766819208\\ +20.8122156998634 -164.883125992995\\ +22.4052786929996 -164.138484281159\\ +24.1202820761804 -163.322963721069\\ +26.2070669648381 -162.32075509207\\ +28.4743916646731 -161.229220944454\\ +30.9378757173011 -160.049496061901\\ +33.9258338274107 -158.637893076779\\ +37.5469422407329 -156.968243951337\\ +41.9394395566725 -155.018480143932\\ +47.2796959160026 -152.776104542022\\ +54.794723369002 -149.877749115295\\ +82.9695852083464 -141.636144683258\\ +91.8254283565626 -139.795592336804\\ +100.693863147606 -138.246051340326\\ +109.405470720574 -136.974573457404\\ +117.779870119709 -135.956981387676\\ +125.631660247414 -135.162602557296\\ +132.777082935543 -134.558270498911\\ +140.328908478584 -134.028458744327\\ +146.949180062486 -133.646168276551\\ +153.881775003836 -133.319408778265\\ +159.662602210142 -133.098896687499\\ +165.660595894989 -132.915374508313\\ +171.88391428171 -132.769330826823\\ +176.704352608899 -132.684633876544\\ +181.659978837536 -132.621373455172\\ +185.040701954232 -132.591160371854\\ +188.48434090338 -132.570543072351\\ +191.992066559328 -132.559538391407\\ +193.770333747798 -132.557644436777\\ +195.565071586593 -132.558157287114\\ +197.376432630023 -132.561077394371\\ +201.049641626046 -132.574139352264\\ +204.791209666503 -132.596826585357\\ +208.602408924844 -132.629129495373\\ +214.452607597172 -132.695577799837\\ +220.466873523944 -132.783548161821\\ +226.64980792737 -132.892933770654\\ +235.164288449433 -133.071853396155\\ +243.99862972595 -133.288191753342\\ +253.164847863143 -133.541447869258\\ +265.108360190857 -133.909017394559\\ +277.615329443679 -134.33196303817\\ +293.404970921572 -134.910325884423\\ +310.0926635932 -135.562920240716\\ +330.764978074424 -136.413201864611\\ +352.81541153808 -137.352972294214\\ +379.82153061908 -138.527152663392\\ +412.68208457029 -139.961372050757\\ +452.538627817026 -141.673777207895\\ +505.479682119114 -143.856854696395\\ +591.250841383182 -147.100083437142\\ +831.610415323096 -154.202777346646\\ +954.948563979212 -156.911924344011\\ +1000 -157.778843495115\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.916692380500706\\ +0.120248614203733 -0.989487817740212\\ +0.13556017853294 -1.04082401270455\\ +0.15002933220192 -1.08864113132398\\ +0.164519058775359 -1.13687475642325\\ +0.178752552590433 -1.18511437916584\\ +0.194217468148908 -1.2387808644292\\ +0.209083769055575 -1.29170854495447\\ +0.22508800520954 -1.35016193827681\\ +0.242317279423747 -1.41473232547719\\ +0.260865361762268 -1.48602227131494\\ +0.280833199882324 -1.56465181442383\\ +0.302329468440578 -1.65126597248604\\ +0.325471160553176 -1.74654342702235\\ +0.350384224529049 -1.85120635628869\\ +0.377204249341719 -1.96603149793901\\ +0.406077202570047 -2.09186264448522\\ +0.43716022482485 -2.22962490740957\\ +0.470622484984116 -2.380341237442\\ +0.5066461008921 -2.54515187065601\\ +0.545427130533012 -2.72533759948033\\ +0.587176639073341 -2.92234806821352\\ +0.632121847581245 -3.1378366980598\\ +0.680507369673503 -3.3737044063501\\ +0.732596542821484 -3.63215507168707\\ +0.788672861561456 -3.9157668223479\\ +0.849041520408896 -4.22758486146813\\ +0.914031074875622 -4.57124396133679\\ +0.983995229627797 -4.95113239979742\\ +1.04959323055817 -5.31744193989158\\ +1.11956431948394 -5.71996231983701\\ +1.19420002813357 -6.16404355264547\\ +1.27381132318649 -6.65629612576782\\ +1.3587299019027 -7.20500142168902\\ +1.44930957412617 -7.82069359416022\\ +1.531740463702 -8.41196953442261\\ +1.61885969017829 -9.07345677661908\\ +1.71093390726908 -9.81938147502598\\ +1.80824493487798 -10.6683791683235\\ +1.8935521797563 -11.4723297995701\\ +1.98288394912704 -12.3840676417169\\ +2.07643010725571 -13.4287642983103\\ +2.17438947559998 -14.6403032484039\\ +2.27697025538154 -16.0653342994716\\ +2.36250846547808 -17.4024654957956\\ +2.45126006203344 -18.9646575302821\\ +2.54334576130472 -20.8163436112875\\ +2.63889081445755 -23.048258009976\\ +2.73802517792786 -25.7913496432951\\ +2.81481236050756 -28.2974233530564\\ +2.8937530190509 -31.3142277462908\\ +2.97490754721436 -35.0017561972218\\ +3.05833803237832 -39.5805011945831\\ +3.14410830314712 -45.3488397277047\\ +3.2322839781812 -52.6866629266328\\ +3.32293251639919 -62.0022436164365\\ +3.41612326858571 -73.5368492808387\\ +3.57728509936801 -96.4657129012481\\ +3.74605003274907 -118.638570451706\\ +3.85110700232562 -129.352893643726\\ +3.95911026646847 -137.903605255833\\ +4.07014245321941 -144.630402115282\\ +4.18428850790151 -149.943948084781\\ +4.30163575810668 -154.195390176388\\ +4.46323392671022 -158.663544037213\\ +4.63090280179949 -162.154797392148\\ +4.80487043965544 -164.958853348815\\ +4.98537346387415 -167.267221326192\\ +5.17265738721621 -169.209443444781\\ +5.41668691103327 -171.256640548382\\ +5.67222897164457 -172.991223557497\\ +5.93982669392029 -174.494929309281\\ +6.27766010580631 -176.073749287182\\ +6.63470812109201 -177.470501384155\\ +7.07701066118229 -178.933296145128\\ +7.61871770232323 -180.449352547972\\ +8.35452805838285 -182.189849378063\\ +9.41833153464754 -184.304904049557\\ +14.3932264471932 -191.663768373126\\ +16.2259528707813 -193.924625550541\\ +18.1241754737421 -196.139290823351\\ +20.2444650997669 -198.497611259805\\ +22.6128006633736 -201.01670111764\\ +25.0264009641792 -203.478780044072\\ +27.9541599906775 -206.340578336315\\ +31.2244282309302 -209.390925622275\\ +34.8772747481423 -212.629682375567\\ +39.3182875570566 -216.343694488349\\ +44.7353305449872 -220.563896776961\\ +51.8459354389293 -225.627790689067\\ +61.7718759733813 -231.894174941819\\ +80.7062014114933 -241.742522235976\\ +124.478714618785 -257.688837555523\\ +181.659978837524 -271.29341118137\\ +288.044415339644 -287.923749635948\\ +539.177464038727 -310.671180805853\\ +630.666554056761 -316.039372583377\\ +724.20223346072 -320.539068821628\\ +816.416760492099 -324.220689878951\\ +911.92675984596 -327.418260944427\\ +1000 -329.926610165139\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.400154802213933\\ +0.110673601809593 -0.442935406101412\\ +0.121362379834432 -0.485798093770768\\ +0.133083472465411 -0.532827335649927\\ +0.145936579915575 -0.584434134713263\\ +0.160031031373864 -0.641071944483883\\ +0.175486714964826 -0.703241656458715\\ +0.192435097523039 -0.771497357563248\\ +0.209083769055575 -0.838637103050644\\ +0.227172813302684 -0.911697155265585\\ +0.246826845225555 -0.991221565731564\\ +0.268181260945313 -1.07781060871685\\ +0.291383170483282 -1.17212831121481\\ +0.316592411198347 -1.27491142903176\\ +0.343982648902277 -1.38698024047181\\ +0.373742574239127 -1.50925164258149\\ +0.406077202570047 -1.64275518760473\\ +0.441209286319117 -1.78865290454377\\ +0.479380849508895 -1.94826403470097\\ +0.520854855057734 -2.12309620330802\\ +0.560723488285227 -2.29267791796241\\ +0.603643850607596 -2.47705557133418\\ +0.649849535446982 -2.67784110716207\\ +0.699592016543512 -2.89690263569588\\ +0.75314201659739 -3.13642374042081\\ +0.810790980673203 -3.39898059392817\\ +0.872852662384851 -3.68764336550521\\ +0.939664831495459 -4.0061112188688\\ +1.01159111222379 -4.35889446584503\\ +1.07902879151612 -4.70007643037735\\ +1.15096220088509 -5.07637418071056\\ +1.22769104798839 -5.4934538406041\\ +1.30953502048267 -5.95838730153815\\ +1.39683511798871 -6.48012685587332\\ +1.47628147190933 -6.98118302522983\\ +1.56024641436628 -7.54164619172667\\ +1.64898694447115 -8.17335567764468\\ +1.74277467840897 -8.89167415897788\\ +1.84189668079973 -9.71689797035663\\ +1.92879150802077 -10.5057102728827\\ +2.01978575681984 -11.4087350723631\\ +2.11507282486872 -12.4541270124811\\ +2.21485523372624 -13.68015312701\\ +2.298059988759 -14.8261323943188\\ +2.38439047009384 -16.1586477626216\\ +2.47396410088691 -17.7282267107224\\ +2.56690271549201 -19.6048258599706\\ +2.66333272517501 -21.8875803235251\\ +2.76338529005317 -24.720502231245\\ +2.84088369018327 -27.3315686434569\\ +2.92055551218269 -30.4996278376527\\ +3.00246170908546 -34.4027880996607\\ +3.08666494333715 -39.2857350995548\\ +3.17322963473482 -45.4750919805643\\ +3.26222200971147 -53.3709807982593\\ +3.35371015200313 -63.3575704640313\\ +3.47969790388786 -80.0164435352934\\ +3.78074666359942 -119.938229245907\\ +3.8867766908927 -129.839558247484\\ +3.99578030189527 -137.66516913355\\ +4.1078408899656 -143.803585911058\\ +4.22304418720659 -148.652841134355\\ +4.34147833005496 -152.536081621253\\ +4.50457325175926 -156.618806968812\\ +4.6737951079922 -159.804949817784\\ +4.84937406733553 -162.355119042744\\ +5.03154894503829 -164.44244238334\\ +5.22056752784716 -166.184714677311\\ +5.46685729972028 -168.000188751408\\ +5.72476623970219 -169.51444984778\\ +5.99484250318932 -170.803050060072\\ +6.27766010580631 -171.918932468175\\ +6.63470812109201 -173.082937490308\\ +7.01206358900761 -174.100069848404\\ +7.4795225156221 -175.145827178703\\ +7.97814457207674 -176.076286016618\\ +8.58882855954615 -177.033958794704\\ +9.33189771573286 -178.012163688329\\ +10.233165783303 -179.01198780629\\ +11.430311291145 -180.132428610497\\ +13.369837418249 -181.641458916954\\ +17.7930438991856 -184.381918843734\\ +20.2444650997669 -185.68976923361\\ +22.8222447418698 -186.976695362482\\ +25.4921465445141 -188.244664962565\\ +28.2130767593936 -189.488522576544\\ +31.2244282309302 -190.823297077798\\ +34.240061379715 -192.126440224783\\ +37.5469422407329 -193.52529527456\\ +41.1731993116149 -195.030093530434\\ +45.1496777203634 -196.651331089464\\ +49.5102015955645 -198.399715154319\\ +54.2918617761888 -200.286070348131\\ +59.535331308141 -202.321199143624\\ +65.2852114112819 -204.515690516665\\ +71.5904108596503 -206.879672001608\\ +78.5045620020441 -209.422502846338\\ +86.0864769614886 -212.152410315452\\ +94.400647894181 -215.076077602852\\ +104.476597156082 -218.52143788928\\ +115.628013120735 -222.209692098327\\ +127.969686821587 -226.139422955318\\ +142.940453343181 -230.69441116297\\ +161.141427725301 -235.927414158104\\ +183.34254825622 -241.877856662316\\ +212.484535249894 -249.018344104325\\ +253.164847863126 -257.853122690877\\ +340.041193270368 -273.160480216343\\ +440.193518520901 -286.423421183356\\ +519.655724382751 -294.611063716615\\ +596.727119597363 -301.115071918544\\ +678.940681269615 -306.862025553827\\ +765.391938822987 -311.88163376287\\ +854.932706626886 -316.223522117643\\ +946.184819472219 -319.948046909414\\ +1000 -321.875183278479\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -1.99689715940553\\ +0.114831241454345 -2.22980316961548\\ +0.138082976521811 -2.55385226468798\\ +0.177112106434519 -2.98990120689484\\ +0.199664245010983 -3.18691828183876\\ +0.220975611479586 -3.34183759033806\\ +0.242317279423747 -3.47117129895111\\ +0.263281546564815 -3.57729056875019\\ +0.28605955351758 -3.67349645956563\\ +0.310808217386903 -3.76028466602008\\ +0.337698031082496 -3.83882453911184\\ +0.370312667587014 -3.91865602965703\\ +0.441209286319117 -4.06115095722885\\ +0.488302208687769 -4.14778771539267\\ +0.525679112201876 -4.2174854180451\\ +0.560723488285227 -4.2855220458024\\ +0.598104096238105 -4.36213091969569\\ +0.632121847581245 -4.43610107707838\\ +0.668074391569548 -4.51907682337674\\ +0.706071771413749 -4.61237172369886\\ +0.746230289139067 -4.71735650686622\\ +0.788672861561456 -4.8354778942799\\ +0.833529396509846 -4.96828323351906\\ +0.88093719044741 -5.11745186273424\\ +0.931041348706901 -5.28483454252813\\ +0.983995229627797 -5.47250286243059\\ +1.03996091395407 -5.68281131975795\\ +1.09910970092957 -5.91847587384552\\ +1.16162263260855 -6.182674345132\\ +1.22769104798839 -6.47917628654619\\ +1.29751716865759 -6.81251326949439\\ +1.37131471775393 -7.1882054881259\\ +1.44930957412617 -7.61306816376401\\ +1.531740463702 -8.09563305901253\\ +1.61885969017829 -8.64673930351779\\ +1.71093390726908 -9.28037867943533\\ +1.79165032736394 -9.8845479812129\\ +1.87617469143913 -10.5725263904926\\ +1.96468664618042 -11.3622336958938\\ +2.05737431343286 -12.2772733607396\\ +2.15443469003179 -13.3493366923279\\ +2.25607406649673 -14.6219084815739\\ +2.34082727617843 -15.8246198800829\\ +2.42876438246056 -17.2375480755319\\ +2.52000499376417 -18.9199493133965\\ +2.61467321180114 -20.9548174475472\\ +2.71289780037248 -23.4612277063203\\ +2.78898029238043 -25.7529404286087\\ +2.86719649749373 -28.511216965326\\ +2.94760625512479 -31.8797164737364\\ +3.03027108286629 -36.0566769043865\\ +3.11525422355535 -41.312863169458\\ +3.20262069365748 -48.0026838998832\\ +3.29243733300756 -56.5374549263448\\ +3.38477285594618 -67.2484538645196\\ +3.51192753045089 -84.6691754791128\\ +3.74605003274907 -116.123765982498\\ +3.85110700232562 -126.747860972329\\ +3.95911026646847 -135.206369002311\\ +4.07014245321941 -141.838919874082\\ +4.18428850790151 -147.056109006717\\ +4.30163575810668 -151.209013522753\\ +4.42227398050573 -154.56510615008\\ +4.58840412645453 -158.130512029401\\ +4.76077523022607 -160.943004805507\\ +4.93962174387859 -163.214377365357\\ +5.12518692705354 -165.086948354353\\ +5.31772317785112 -166.65876981645\\ +5.56859644428648 -168.304193518106\\ +5.8313051135262 -169.681331724268\\ +6.10640754223191 -170.855412664377\\ +6.3944884285567 -171.872639682533\\ +6.75818116816072 -172.932905552386\\ +7.14255928554351 -173.857366814199\\ +7.54879928165369 -174.676398420268\\ +8.05203967082557 -175.528310466462\\ +8.58882855954615 -176.293512911541\\ +9.24625711640539 -177.086786035934\\ +10.0462042134688 -177.901346475695\\ +11.0164594963369 -178.736451357164\\ +12.3052400435925 -179.672984833809\\ +14.2611370719404 -180.858804705836\\ +20.0586777950813 -183.578886075945\\ +22.8222447418698 -184.673459580806\\ +25.4921465445141 -185.666479429714\\ +28.4743916646712 -186.724165355568\\ +31.5136348486664 -187.762081534583\\ +34.8772747481423 -188.876492808106\\ +38.2456972246693 -189.965424206331\\ +41.9394395566697 -191.135709689511\\ +45.9899209052265 -192.396634250712\\ +50.4315948717143 -193.757950876794\\ +55.302242561928 -195.229896540852\\ +60.6432939540775 -196.823187677283\\ +66.5001803043143 -198.548990340916\\ +72.9227205872842 -200.418858885763\\ +79.965545258922 -202.444635686859\\ +87.6885609458698 -204.638303302329\\ +96.1574600143255 -207.011779753847\\ +105.444279352618 -209.576647619383\\ +115.628013120735 -212.343808820508\\ +126.795284678637 -215.323059872817\\ +139.041083409014 -218.522587494362\\ +152.469572701759 -221.948392254968\\ +168.743567772734 -225.98182805765\\ +186.754584276097 -230.292184164979\\ +208.602408924857 -235.302114642983\\ +235.164288449433 -241.070855165231\\ +267.56384445519 -247.637938422911\\ +310.0926635932 -255.509578725559\\ +379.821530619055 -266.740999976362\\ +534.229329953814 -285.667245147355\\ +624.878807200712 -293.94057249895\\ +710.970943231237 -300.397953974338\\ +801.500696156499 -306.04790332076\\ +895.265712599675 -310.937379878145\\ +990.822809900383 -315.130852120994\\ +1000 -315.498164102405\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.415754685381444\\ +0.110673601809593 -0.460470394346999\\ +0.121362379834432 -0.50534957915977\\ +0.133083472465411 -0.554687555989517\\ +0.145936579915575 -0.608951617309629\\ +0.160031031373864 -0.668664282969644\\ +0.173876240021636 -0.727546709554133\\ +0.188919277620773 -0.791792094318737\\ +0.205263775270926 -0.861929768898221\\ +0.223022329796589 -0.938548777110327\\ +0.242317279423747 -1.02230522061268\\ +0.263281546564815 -1.11393031151709\\ +0.28605955351758 -1.21423912423825\\ +0.310808217386903 -1.32414005365615\\ +0.337698031082496 -1.44464504295695\\ +0.366914237840272 -1.57688076738492\\ +0.394999546122078 -1.70528226400108\\ +0.425234633452872 -1.84491550935672\\ +0.457784053837654 -1.99685303576933\\ +0.49282495700403 -2.16227792098505\\ +0.53054805253699 -2.34249949346713\\ +0.571158647812663 -2.53897395182338\\ +0.614877765381008 -2.75333171728914\\ +0.661943345877428 -2.98741381495103\\ +0.712611543011144 -3.24332019188739\\ +0.767158117677977 -3.52347373065544\\ +0.825879938784456 -3.8307049715728\\ +0.889096598952924 -4.16836447589725\\ +0.95715215389917 -4.54047274147251\\ +1.03041699495054 -4.95192224542762\\ +1.09910970092957 -5.34892634055012\\ +1.17238180328665 -5.78564246359201\\ +1.25053858729041 -6.26822539364014\\ +1.33390569003905 -6.80436976294135\\ +1.42283045721431 -7.4038368229489\\ +1.50375532129967 -7.97750727711065\\ +1.58928286562308 -8.61704838501856\\ +1.67967487209273 -9.3354839966529\\ +1.77520801171768 -10.1497822919541\\ +1.87617469143913 -11.0824711701845\\ +1.96468664618042 -11.9718730506256\\ +2.05737431343286 -12.9882692919851\\ +2.15443469003179 -14.1635208201296\\ +2.25607406649673 -15.5412906999169\\ +2.34082727617843 -16.8297329225998\\ +2.42876438246056 -18.3298971464323\\ +2.52000499376417 -20.101142536454\\ +2.61467321180114 -22.2265692823658\\ +2.71289780037248 -24.8253623730652\\ +2.81481236050756 -28.0728220556107\\ +2.8937530190509 -31.0882871506022\\ +2.97490754721436 -34.7743228156962\\ +3.05833803237832 -39.3514192759637\\ +3.14410830314712 -45.1179512381827\\ +3.2322839781812 -52.4538075251501\\ +3.32293251639919 -61.7672586244764\\ +3.41612326858571 -73.2995696470084\\ +3.57728509936801 -96.2242355088816\\ +3.74605003274907 -118.392418644802\\ +3.85110700232562 -129.103703478608\\ +3.95911026646847 -137.651198239479\\ +4.07014245321941 -144.374597056822\\ +4.18428850790151 -149.68456103159\\ +4.30163575810668 -153.932234347671\\ +4.46323392671022 -158.395067609728\\ +4.63090280179949 -161.880656091594\\ +4.80487043965544 -164.67869561112\\ +4.98537346387415 -166.980688065744\\ +5.17265738721621 -168.916167821224\\ +5.41668691103327 -170.954408912093\\ +5.67222897164457 -172.679434123047\\ +5.93982669392029 -174.172963652062\\ +6.27766010580631 -175.738731666623\\ +6.63470812109201 -177.121486052626\\ +7.07701066118229 -178.566713016306\\ +7.61871770232323 -180.060998312928\\ +8.27785696619849 -181.606386036218\\ +9.24625711640539 -183.531628855123\\ +11.3254131515284 -186.907903342361\\ +13.4936714058825 -189.869633001862\\ +15.3527502878049 -192.166728152531\\ +17.3076553419573 -194.429079800513\\ +19.3324228755497 -196.653340712456\\ +21.5940615210368 -199.027906502782\\ +23.8989256623109 -201.35051759293\\ +26.4498018242767 -203.823069625714\\ +29.5440799888021 -206.699823943008\\ +33.000347911254 -209.768536945665\\ +36.8609536217214 -213.028841939288\\ +41.5545533471868 -216.769582727708\\ +47.2796959160057 -221.022332042572\\ +54.794723369002 -226.128108919136\\ +65.2852114112819 -232.450931550827\\ +84.5136633068439 -242.055658319443\\ +140.328908478593 -260.944205190267\\ +539.177464038727 -310.338872032777\\ +630.666554056761 -315.754268092146\\ +724.20223346072 -320.290210972296\\ +816.416760492099 -323.999597144492\\ +911.92675984596 -327.220098266099\\ +1000 -329.745759958342\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 -0.360279720677909\\ +0.110673601809601 -0.398804221499574\\ +0.122486461375092 -0.441465487877139\\ +0.134316117004605 -0.484216249269792\\ +0.147288272390749 -0.531132356370762\\ +0.161513269350313 -0.582627772638773\\ +0.177112106434508 -0.639160189072726\\ +0.194217468148908 -0.701236456999254\\ +0.212974853574551 -0.76941894021104\\ +0.231400538013072 -0.836519415027112\\ +0.25142033481428 -0.909576898034658\\ +0.27317215984413 -0.989150143846047\\ +0.296805860866562 -1.07585876115439\\ +0.322484249840837 -1.17039214581544\\ +0.350384224529072 -1.27352029277685\\ +0.380697987140222 -1.386106998846\\ +0.413634368406335 -1.50912613131595\\ +0.44942026621191 -1.64368185926998\\ +0.4883022086878 -1.79103404907312\\ +0.530548052536955 -1.95263044861375\\ +0.571158647812626 -2.10957933285724\\ +0.614877765381008 -2.28046647123236\\ +0.661943345877428 -2.46686823703078\\ +0.712611543011191 -2.67062335121449\\ +0.767158117677927 -2.89389559587062\\ +0.825879938784402 -3.13925570872144\\ +0.889096598952924 -3.40978953925455\\ +0.95715215389917 -3.70924266547007\\ +1.02096066230607 -3.9985784472124\\ +1.08902296226373 -4.31733755922835\\ +1.16162263260848 -4.67014138162662\\ +1.23906215694794 -5.06271309073682\\ +1.3216641839466 -5.50223181948735\\ +1.39683511798871 -5.92318479389485\\ +1.47628147190943 -6.39257013751163\\ +1.56024641436638 -6.91956220081212\\ +1.64898694447104 -7.51589809518882\\ +1.74277467840897 -8.19683250377332\\ +1.82499324481618 -8.84326930289876\\ +1.91109062168914 -9.57764407619283\\ +2.001249798969 -10.4199011863163\\ +2.0956623994805 -11.3965112455736\\ +2.19452908620335 -12.543319371293\\ +2.27697025538168 -13.6160535792067\\ +2.36250846547792 -14.8637155002298\\ +2.45126006203328 -16.3329979582955\\ +2.54334576130472 -18.0882091887422\\ +2.63889081445755 -20.219953813452\\ +2.73802517792786 -22.8590462665674\\ +2.81481236050756 -25.2845238311503\\ +2.8937530190509 -28.2184389482673\\ +2.97490754721436 -31.8207225796624\\ +3.05833803237852 -36.3118030876589\\ +3.14410830314732 -41.9899915796018\\ +3.23228397818141 -49.2351115056359\\ +3.32293251639897 -58.4553661699928\\ +3.41612326858549 -69.8919516509496\\ +3.57728509936777 -92.651261209346\\ +3.74605003274907 -114.646524618511\\ +3.85110700232562 -125.250279839548\\ +3.95911026646847 -133.687314810928\\ +4.07014245321941 -140.297241967609\\ +4.18428850790151 -145.490638558789\\ +4.30163575810668 -149.618562714362\\ +4.42227398050602 -152.948467327068\\ +4.58840412645483 -156.477041380036\\ +4.76077523022638 -159.250466980147\\ +4.93962174387827 -161.480482626305\\ +5.12518692705321 -163.309349610502\\ +5.31772317785112 -164.835059566858\\ +5.51749237612921 -166.126800666128\\ +5.7777901179705 -167.487312532955\\ +6.05036787939111 -168.629402950382\\ +6.33580499265845 -169.602321072342\\ +6.63470812109245 -170.441636172665\\ +6.94771254846023 -171.173628970886\\ +7.34287044716661 -171.937907735413\\ +7.76050333513376 -172.601643771529\\ +8.20188949920225 -173.183961196982\\ +8.66837993001965 -173.699365585657\\ +9.246257116406 -174.23089496572\\ +9.86265846131287 -174.700194101482\\ +10.5201521761614 -175.117768789539\\ +11.2214776820801 -175.49180720678\\ +11.9695570235905 -175.82878723646\\ +12.7675070431924 -176.133903411857\\ +13.7447909267756 -176.448964301635\\ +14.7968806268638 -176.732997512212\\ +15.9295021257217 -176.990134927704\\ +17.1488196987055 -177.223761294251\\ +18.4614694632451 -177.436681504309\\ +19.8745954958102 -177.63124490227\\ +21.5940615210354 -177.83064939319\\ +23.4622884814232 -178.011723443822\\ +25.4921465445141 -178.176493226676\\ +27.6976193503698 -178.326689577425\\ +30.0939003444972 -178.463804267797\\ +32.6974974451167 -178.589133428251\\ +35.5263467657817 -178.703811403885\\ +38.5999361767968 -178.808837414841\\ +41.9394395566725 -178.905096753404\\ +45.5678626584099 -178.993377796313\\ +49.5102015955645 -179.074385784828\\ +53.7936150398065 -179.148754088302\\ +58.9889642550864 -179.22429059255\\ +64.6860766154627 -179.293037386094\\ +70.9334120498816 -179.355625763662\\ +77.7841107128642 -179.412623295819\\ +85.2964449974123 -179.464541432936\\ +93.534315202923 -179.511841947607\\ +103.51779556302 -179.55903636686\\ +114.566872863485 -179.60164894271\\ +126.795284678645 -179.640129525183\\ +140.328908478584 -179.674882483552\\ +156.74554102056 -179.708969992739\\ +175.082703173578 -179.739477039585\\ +197.376432630023 -179.768923207091\\ +222.508879812839 -179.795037372855\\ +253.164847863143 -179.819866800722\\ +290.712337727252 -179.843139603745\\ +336.920570598025 -179.864657906206\\ +394.090164040346 -179.884295033699\\ +465.229952396024 -179.901990067283\\ +559.432570616944 -179.918495365688\\ +685.229159528409 -179.933459133508\\ +854.93270662683 -179.946667955046\\ +1000 -179.954404899517\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/robust_performance.pdf b/matlab/figs/robust_performance.pdf new file mode 100644 index 0000000..3a3428d Binary files /dev/null and b/matlab/figs/robust_performance.pdf differ diff --git a/matlab/figs/robust_performance.png b/matlab/figs/robust_performance.png new file mode 100644 index 0000000..a9f1182 Binary files /dev/null and b/matlab/figs/robust_performance.png differ diff --git a/matlab/figs/robust_performance.svg b/matlab/figs/robust_performance.svg new file mode 100644 index 0000000..69b9079 --- /dev/null +++ b/matlab/figs/robust_performance.svg @@ -0,0 +1,270 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/robust_performance.tex b/matlab/figs/robust_performance.tex new file mode 100644 index 0000000..08489ab --- /dev/null +++ b/matlab/figs/robust_performance.tex @@ -0,0 +1,1134 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.631in, +height=3.395in, +at={(0.325in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.004713250135358, +ymax=1.12370047521489, +yminorticks=true, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.958795361063258\\ +0.603643850607587 0.956312065581973\\ +1.03996091395412 0.951266404663396\\ +1.44930957412622 0.944046864860062\\ +1.84189668079971 0.93480461492508\\ +2.2353696459098 0.92319390796258\\ +2.61467321180109 0.909707231895546\\ +2.97490754721444 0.894759479608335\\ +3.32293251639897 0.878308042559017\\ +3.67760910160103 0.859505499507488\\ +4.03278998219371 0.838647587855715\\ +4.38168993151419 0.816254668652193\\ +4.71708469091702 0.793058618131101\\ +5.07815211232768 0.766425298411168\\ +5.41668691103315 0.740087892520039\\ +5.77779011797051 0.710795579809076\\ +6.16296625513294 0.678524428661746\\ +6.5134909462728 0.648564023700512\\ +6.8839520696455 0.616636214444701\\ +7.27548352919623 0.582982815167802\\ +7.68928372075831 0.547940212718821\\ +8.2018894992022 0.505874691672337\\ +8.74866812047991 0.463308228372181\\ +9.33189771573324 0.421141687112854\\ +10.0462042134681 0.374638310252924\\ +11.1184960481927 0.315959300312862\\ +12.8857621318552 0.24653772584792\\ +13.7447909267754 0.223155362056731\\ +14.5265392594678 0.206561840359648\\ +15.211855179861 0.195046960273997\\ +15.9295021257212 0.185467737137229\\ +16.6810053720006 0.177619868684411\\ +17.4679621512725 0.171270072888287\\ +18.2920450484629 0.166173538281057\\ +19.1550055557353 0.162090283374817\\ +20.244465099768 0.158217027679395\\ +21.5940615210357 0.154700108620187\\ +23.4622884814226 0.15114060539511\\ +27.4434330322837 0.145575760162817\\ +33.9258338274099 0.1381808836643\\ +61.7718759733849 0.118561461567541\\ +72.2534949178721 0.114850657789259\\ +83.7380653526649 0.11199512062595\\ +97.946966706954 0.109570397325194\\ +115.628013120738 0.107582821060992\\ +139.041083409007 0.105932391527963\\ +171.883914281715 0.104575798228211\\ +222.508879812837 0.103455080248918\\ +315.863540826782 0.102473950571646\\ +580.448594276898 0.101355019090756\\ +1000 0.100392589315325\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.973140076995027\\ +1.25053858729039 0.947666660437045\\ +1.67967487209265 0.939089536014942\\ +2.07643010725577 0.928879818481707\\ +2.47396410088681 0.916325709065329\\ +2.86719649749377 0.901528847317373\\ +3.23228397818138 0.885619203648016\\ +3.61041859717334 0.866913077242983\\ +3.95911026646846 0.847668150005689\\ +4.3016357581068 0.826948815126461\\ +4.63090280179974 0.805416163345632\\ +4.98537346387389 0.780595420480652\\ +5.31772317785097 0.755938568642431\\ +5.67222897164454 0.728373695332985\\ +6.05036787939122 0.697820262243398\\ +6.4537154016467 0.664305124310912\\ +6.82077673286568 0.633342109976124\\ +7.20871503378214 0.600522837102383\\ +7.618717702323 0.566143864627265\\ +8.12661920009194 0.524591917226355\\ +8.66837993001978 0.482222999660587\\ +9.24625711640574 0.439923211640317\\ +9.95400828762153 0.392875914707438\\ +10.9153593533139 0.338016384408331\\ +13.1255683577184 0.249457606522554\\ +14.000583824681 0.22649475849879\\ +14.796880626864 0.21016462360571\\ +15.6384675830225 0.196722753959508\\ +16.3762407452169 0.187509511364916\\ +17.1488196987054 0.179875259441973\\ +17.957846470021 0.173586493233501\\ +18.8050405512858 0.168408196548671\\ +19.8745954958098 0.163347817940895\\ +21.1995345753607 0.158608297498815\\ +22.822244741869 0.154196549157408\\ +25.4921465445142 0.148634583034605\\ +37.2023668141307 0.131533540815962\\ +52.3261423948666 0.117525121567994\\ +61.204983724767 0.112224654655237\\ +70.2824426430835 0.108260706025438\\ +80.7062014114951 0.10494924168841\\ +92.6759330114688 0.102235612307481\\ +107.406615333343 0.0999160154145658\\ +125.631660247412 0.0979943210239154\\ +149.683929307726 0.096372675135937\\ +181.659978837533 0.095066732296423\\ +230.867799418717 0.0939418290249198\\ +312.964801067075 0.0929968571482831\\ +496.244487762892 0.0920606994552468\\ +1000 0.0908842762411124\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.977705607174264\\ +0.655868565957143 0.975205036682582\\ +1.12993393803322 0.970122861022955\\ +1.57469771464309 0.962804669558412\\ +2.00124979896904 0.953370879941619\\ +2.42876438246045 0.941436901572658\\ +2.8408836901833 0.92748371231562\\ +3.23228397818138 0.91192878940832\\ +3.61041859717334 0.894722209612525\\ +3.99578030189527 0.87496840153907\\ +4.38168993151419 0.852969740337782\\ +4.76077523022637 0.829277415297202\\ +5.12518692705333 0.804678684594122\\ +5.46685729972018 0.780140681203129\\ +5.83130511352622 0.75259590928142\\ +6.22004882563471 0.721936104528688\\ +6.63470812109235 0.688163738581235\\ +7.01206358900718 0.656847775223857\\ +7.41088151564157 0.623550803730327\\ +7.8323825991792 0.588577167687172\\ +8.35452805838287 0.546209121495945\\ +8.9114823228402 0.502937725128659\\ +9.5055659201012 0.459708575470662\\ +10.2331657833025 0.411643779498942\\ +11.3254131515281 0.350415338912864\\ +13.3698374182495 0.269077421558599\\ +14.3932264471941 0.241716222182816\\ +15.211855179861 0.224669394259798\\ +16.0770442167382 0.210340897510262\\ +16.9914417203463 0.198404730757673\\ +17.957846470021 0.188488784890882\\ +18.979216428391 0.180211712081479\\ +20.244465099768 0.172148776045079\\ +21.7940698430296 0.164436300589814\\ +23.8989256623105 0.156223292969266\\ +28.4743916646725 0.142706239461601\\ +35.8553985745982 0.126471713903307\\ +58.4476113163363 0.0975368933912135\\ +67.1161176749628 0.0912823019103025\\ +75.6621850048106 0.0866067749990825\\ +85.2964449974102 0.0825913992329056\\ +96.157460014321 0.0791866532250871\\ +108.401435917833 0.0763318504162133\\ +122.204468663149 0.0739611712224831\\ +137.765076954905 0.0720083555639387\\ +156.74554102056 0.0703001011296766\\ +179.992850678248 0.0688440885326727\\ +210.534524276671 0.0675660826354085\\ +250.841505927754 0.0664941314104772\\ +307.2468842709 0.0655909924260062\\ +394.090164040345 0.0648122755883864\\ +554.298551568467 0.0640878301571828\\ +1000 0.0631816945568334\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.99605369708305\\ +0.693171727615541 0.993511073556924\\ +1.19420002813353 0.988349792480619\\ +1.6642601764859 0.980902584518247\\ +2.1150728248688 0.971276464878535\\ +2.54334576130465 0.95976092455929\\ +2.97490754721444 0.945700538445475\\ +3.38477285594598 0.929962666723555\\ +3.78074666359935 0.912479065045042\\ +4.18428850790158 0.892316356875619\\ +4.5462954695324 0.872217197835113\\ +4.93962174387832 0.848273764393009\\ +5.31772317785097 0.823293131827448\\ +5.67222897164454 0.798263616637972\\ +6.05036787939122 0.770051869692962\\ +6.4537154016467 0.738528741442659\\ +6.82077673286568 0.708864827880123\\ +7.20871503378214 0.676854080735086\\ +7.618717702323 0.642697912673235\\ +8.05203967082548 0.606717852732215\\ +8.58882855954625 0.563033146941088\\ +9.16140245713852 0.518361621393145\\ +9.77214696972572 0.473734425161481\\ +10.61759183483 0.418166557034811\\ +11.9695570235904 0.345475705288615\\ +13.6186523675608 0.281717420675462\\ +14.6610868404698 0.252828477910426\\ +15.6384675830225 0.23183945010566\\ +16.6810053720006 0.214420562351309\\ +17.6297537528721 0.201924744058797\\ +18.8050405512858 0.18967348747737\\ +20.0586777950823 0.179394461339526\\ +21.5940615210357 0.169428458703693\\ +23.6796006783308 0.158789183945136\\ +27.1915794303602 0.145044786226624\\ +38.5999361767977 0.115525437784965\\ +61.204983724767 0.0852996023371437\\ +70.93341204988 0.07796158560457\\ +80.7062014114951 0.0724603334172097\\ +90.9827289445556 0.0680750669279118\\ +101.6265089393 0.064597955145865\\ +113.5154708921 0.0616195677460934\\ +126.795284678643 0.0590889418567301\\ +141.62866162992 0.0569544583623271\\ +158.19734815786 0.0551656884710902\\ +178.341022071001 0.0535626101961694\\ +201.04964162605 0.0522532536674479\\ +228.74908173557 0.0511143639584965\\ +265.108360190854 0.0500894960416643\\ +312.964801067075 0.049209180723979\\ +376.335836228653 0.0484806969171073\\ +469.539001068006 0.0478472348420057\\ +624.878807200689 0.0472732324327319\\ +1000 0.0465996673852863\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.946999050053824\\ +0.603643850607587 0.944566208415903\\ +1.03996091395412 0.939613956569818\\ +1.44930957412622 0.932513878922046\\ +1.84189668079971 0.923412983149077\\ +2.2353696459098 0.911978790058775\\ +2.61467321180109 0.898713273847607\\ +2.97490754721444 0.884044715819326\\ +3.32293251639897 0.867950608685735\\ +3.67760910160103 0.849624424486523\\ +4.03278998219371 0.829378147004624\\ +4.38168993151419 0.807732491263185\\ +4.71708469091702 0.785398871056514\\ +5.07815211232768 0.759850920857855\\ +5.41668691103315 0.734669305854231\\ +5.77779011797051 0.706737533563643\\ +6.16296625513294 0.676030892482198\\ +6.57382014340959 0.642631534445555\\ +7.01206358900718 0.606753854078371\\ +7.47952251562182 0.568763212802399\\ +7.97814457207663 0.529182705343356\\ +8.51000724712225 0.488683470420961\\ +9.07732652521023 0.448056359706862\\ +9.77214696972572 0.402579333224483\\ +10.7159339982267 0.349071816991866\\ +13.1255683577184 0.254220031048915\\ +14.000583824681 0.232230041369448\\ +14.796880626864 0.216575782765837\\ +15.6384675830225 0.203657345041628\\ +16.3762407452169 0.194761680058412\\ +17.1488196987054 0.187338412798915\\ +17.957846470021 0.181158447093148\\ +18.979216428391 0.175063879839176\\ +20.0586777950823 0.170068046483317\\ +21.5940615210357 0.164582113493305\\ +23.8989256623105 0.158298980489182\\ +35.5263467657814 0.136727480932751\\ +54.2918617761894 0.116089892813479\\ +62.9214610961034 0.110388252489414\\ +71.5904108596489 0.106136348240059\\ +81.4537176628074 0.102546864553853\\ +92.6759330114688 0.0995649632839327\\ +105.444279352617 0.0971201213550273\\ +121.082975023204 0.095010253874579\\ +140.328908478587 0.0932402339127923\\ +165.660595894991 0.0917192513688655\\ +201.04964162605 0.0904179400685234\\ +253.164847863136 0.0893318931344836\\ +340.041193270371 0.0883975976733966\\ +524.468874949512 0.0874905844761554\\ +1000 0.0863984086586942\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.0436885975104\\ +0.818300681586739 1.04108228637746\\ +1.40977287162897 1.03578274238422\\ +1.96468664618044 1.02807284809406\\ +2.49687842888433 1.0180169623074\\ +3.00246170908555 1.00585852394126\\ +3.47969790388769 0.991858811568182\\ +3.95911026646846 0.975128606206133\\ +4.4222739805059 0.956245296316834\\ +4.84937406733524 0.936332268094356\\ +5.26892142135068 0.914358306043449\\ +5.67222897164454 0.890963755117564\\ +6.05036787939122 0.867049427197839\\ +6.4537154016467 0.839544074066735\\ +6.8839520696455 0.808156444683387\\ +7.27548352919623 0.778036359106813\\ +7.68928372075831 0.744959903622756\\ +8.12661920009194 0.709090335177418\\ +8.58882855954625 0.670764010665331\\ +9.07732652521023 0.630500151790733\\ +9.68246611930312 0.582001362290794\\ +10.3279473191895 0.533104841886621\\ +11.1184960481927 0.478509947236975\\ +12.4192135270178 0.403103508519441\\ +14.3932264471941 0.320848726583808\\ +15.6384675830225 0.284633569763344\\ +16.835508029612 0.257945810369948\\ +18.1241754737424 0.235646457276432\\ +19.5114834684662 0.216897340962149\\ +21.1995345753607 0.199072252360902\\ +23.2469705998565 0.182239011833212\\ +26.4498018242772 0.162232938405229\\ +48.6056423214213 0.0946913883446795\\ +61.7718759733849 0.0757494824627761\\ +82.2081575524054 0.0576556431162801\\ +122.204468663149 0.0392054229376747\\ +301.63343472592 0.0162468201201732\\ +394.090164040345 0.0126158406730216\\ +487.178021879463 0.0103891201081295\\ +580.448594276898 0.00890505236189785\\ +678.940681269611 0.00780735376748889\\ +779.636013040524 0.00699451175977601\\ +887.04968896544 0.006350780780998\\ +1000 0.00584036920112192\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00053189653381\\ +0.409838367175726 1.00086858525575\\ +0.931041348706908 0.997270051175661\\ +1.42283045721435 0.99111931025716\\ +1.8935521797563 0.982664594735328\\ +2.34082727617829 0.972185071362777\\ +2.78898029238044 0.959161896175641\\ +3.20262069365765 0.944784508535637\\ +3.61041859717334 0.928299729159405\\ +3.99578030189527 0.910551539818183\\ +4.38168993151419 0.890636292386331\\ +4.76077523022637 0.868999004991272\\ +5.12518692705333 0.846316773125521\\ +5.51749237612913 0.819952439416244\\ +5.88531577519145 0.793564047925824\\ +6.2776601058065 0.763873456420782\\ +6.69616005485322 0.730788207258886\\ +7.07701066118189 0.69976332096074\\ +7.47952251562182 0.666424767191149\\ +7.90492762269643 0.631036433941253\\ +8.35452805838287 0.593989561014869\\ +8.9114823228402 0.549362822128166\\ +9.5055659201012 0.504167207833541\\ +10.2331657833025 0.453225106884855\\ +11.2214776820798 0.392990109340414\\ +14.1302599059953 0.27355969553116\\ +15.211855179861 0.246458531686749\\ +16.2259528707809 0.226828386477956\\ +17.3076553419573 0.210499441113538\\ +18.4614694632455 0.196905754794486\\ +19.6922025547917 0.185479643716013\\ +21.1995345753607 0.174417629511608\\ +23.0336287314213 0.163769645765353\\ +25.9665597293487 0.150499763763807\\ +41.9394395566719 0.107970346089818\\ +63.5042516859596 0.0805596106941933\\ +74.2798248256492 0.0726146186241958\\ +84.5136633068472 0.0670263940274453\\ +95.2750047242729 0.0625591979411297\\ +106.420924406472 0.059004989811165\\ +118.87076977119 0.0559490849103473\\ +132.777082935543 0.0533421583755355\\ +148.31025143361 0.0511343948010661\\ +165.660595894991 0.0492769905882045\\ +185.04070195423 0.0477233773552009\\ +208.60240892485 0.0463328704213488\\ +235.164288449435 0.045197914910497\\ +267.563844455205 0.0442107078385596\\ +310.092663593193 0.0433216031482285\\ +366.06951475969 0.0425565001110335\\ +444.270674960688 0.041894420282234\\ +559.432570616938 0.0413279393032977\\ +758.367791499719 0.0408025489054665\\ +1000 0.0404285433339246\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.10790582399746\\ +1.10928986489522 1.10538687123369\\ +1.96468664618044 1.09985503411656\\ +2.76338529005317 1.09176125484231\\ +3.51192753045073 1.08125876183164\\ +4.18428850790158 1.06886500211812\\ +4.80487043965513 1.054240879688\\ +5.36697694554048 1.03763787220016\\ +5.88531577519145 1.01884963487438\\ +6.33580499265825 0.99934948518404\\ +6.75818116816111 0.978086448411812\\ +7.14255928554313 0.956081314115152\\ +7.54879928165344 0.930039719615069\\ +7.97814457207663 0.899524529058051\\ +8.35452805838287 0.87048305967772\\ +8.74866812047991 0.838147595909333\\ +9.16140245713852 0.802693673906413\\ +9.68246611930312 0.756576995506301\\ +10.2331657833025 0.707544193194204\\ +10.8151870255229 0.6569322908651\\ +11.5361810173648 0.59786942801615\\ +12.650337203959 0.517627799217008\\ +15.4949503931463 0.375667945110976\\ +16.835508029612 0.332879360338779\\ +18.1241754737424 0.301235055885511\\ +19.5114834684662 0.274578463978199\\ +21.1995345753607 0.249370965295851\\ +23.0336287314213 0.228114319471106\\ +25.2582002696278 0.208029007217298\\ +27.9541599906786 0.189189761993527\\ +31.5136348486648 0.17024198790348\\ +35.8553985745982 0.152925421490953\\ +40.7953450345245 0.138167122674549\\ +46.4158883361278 0.125547648705927\\ +52.3261423948666 0.115489882990649\\ +58.988964255085 0.106845061591528\\ +65.8898955079995 0.0999855919185274\\ +73.5981447526576 0.0940883490653205\\ +81.4537176628074 0.0894397088041265\\ +90.1477631452492 0.0854376665013954\\ +99.769776423632 0.0820106669503991\\ +111.441525146679 0.0788486122718759\\ +124.478714618791 0.0762086111799732\\ +139.041083409007 0.0740154851318626\\ +156.74554102056 0.0720652073653085\\ +178.341022071001 0.0703746692277135\\ +204.791209666509 0.0689438096892172\\ +239.540735872088 0.0676937235798916\\ +285.400976982924 0.0666470398546634\\ +352.815411538088 0.0657296463981683\\ +456.730127016875 0.0649491062278801\\ +654.358601888324 0.0642046977468346\\ +1000 0.0635136837491274\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.961361047152004\\ +0.632121847581245 0.958878945433373\\ +1.07902879151618 0.95397019823817\\ +1.50375532129974 0.946847805864676\\ +1.91109062168914 0.937687958621981\\ +2.31934505927443 0.926132380331292\\ +2.71289780037247 0.912662086612624\\ +3.08666494333727 0.897690600132838\\ +3.44776405473446 0.88117688854208\\ +3.81576466127125 0.862269627619576\\ +4.18428850790158 0.841264822382096\\ +4.5462954695324 0.81868759994935\\ +4.89428989611453 0.795279267057676\\ +5.26892142135068 0.768383397511556\\ +5.62017384808319 0.741774049477027\\ +5.99484250318941 0.712173457955183\\ +6.39448842855694 0.679566272815272\\ +6.75818116816111 0.649307703352128\\ +7.14255928554313 0.617088418567701\\ +7.54879928165344 0.583170844038407\\ +8.05203967082548 0.54194178339421\\ +8.58882855954625 0.499630214329803\\ +9.16140245713852 0.457105245081815\\ +9.86265846131282 0.409461057450567\\ +10.8151870255229 0.353404581213583\\ +13.3698374182495 0.250491907623723\\ +14.2611370719413 0.227993124708199\\ +15.0722530931076 0.211976509781995\\ +15.9295021257212 0.198736153606657\\ +16.6810053720006 0.189590862250532\\ +17.4679621512725 0.181929810528816\\ +18.2920450484629 0.175523142671036\\ +19.3324228755505 0.169173938065965\\ +20.4319732019527 0.163948013834697\\ +21.7940698430296 0.158863636753091\\ +23.6796006783308 0.153350481783146\\ +27.4434330322837 0.144900061049139\\ +36.5226736430818 0.129807834423469\\ +51.3701354335134 0.113715900878853\\ +60.0867589171969 0.107625549462465\\ +68.9983712143002 0.103054348404866\\ +78.5045620020451 0.0994537116108193\\ +89.3204599858097 0.0964492458124316\\ +101.6265089393 0.0939768898265121\\ +116.698981861715 0.0918369510218238\\ +135.248087041788 0.0900376355662018\\ +159.662602210143 0.0884893687257779\\ +191.992066559328 0.0872183126762245\\ +239.540735872088 0.0861358358314327\\ +315.863540826782 0.0852182141376822\\ +469.539001068006 0.0843514239736881\\ +1000 0.0831097554938821\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.11180203697399\\ +1.1723818032866 1.10910062199203\\ +2.05737431343291 1.10342751725605\\ +2.89375301905095 1.09505946036039\\ +3.64385898376354 1.08468824313543\\ +4.34147833005509 1.0719636089025\\ +4.93962174387832 1.05795939149704\\ +5.46685729972018 1.04256993565446\\ +5.93982669392036 1.02578515489346\\ +6.39448842855694 1.0065412129217\\ +6.82077673286568 0.985406031744196\\ +7.20871503378214 0.963398882478357\\ +7.618717702323 0.937217223947214\\ +8.05203967082548 0.906396335011016\\ +8.43190929286626 0.876963348155894\\ +8.82969995549409 0.844115924151444\\ +9.24625711640574 0.808047380657343\\ +9.68246611930312 0.769165471421016\\ +10.2331657833025 0.719673703051028\\ +10.8151870255229 0.668399463491648\\ +11.5361810173648 0.608384117770568\\ +12.650337203959 0.526643605785898\\ +15.4949503931463 0.381785068605205\\ +16.835508029612 0.338121244628593\\ +18.1241754737424 0.305844068364883\\ +19.5114834684662 0.278672107173839\\ +21.1995345753607 0.253002494289642\\ +23.0336287314213 0.231386463107547\\ +25.2582002696278 0.210999630443372\\ +27.9541599906786 0.191924111925931\\ +31.2244282309286 0.174158649570554\\ +35.2003147279668 0.157696690358933\\ +40.0500075787361 0.14256693231146\\ +45.5678626584106 0.129681292320172\\ +51.3701354335134 0.119445005925193\\ +57.9112264764176 0.110671510497381\\ +64.6860766154633 0.103727506014428\\ +72.2534949178721 0.0977712863313934\\ +79.9655452589235 0.0930860606845228\\ +88.5007491447344 0.0890602777745911\\ +97.946966706954 0.085619230612867\\ +109.405470720574 0.082449845267435\\ +122.204468663149 0.0798082138917153\\ +136.500780654601 0.0776170533749265\\ +153.881775003835 0.0756711627887072\\ +175.082703173572 0.0739864389690741\\ +201.04964162605 0.0725618338992251\\ +235.164288449435 0.0713178971771521\\ +282.781797962534 0.0702295708883317\\ +352.815411538088 0.0692960737962906\\ +465.229952396019 0.0684901178640444\\ +691.575882873852 0.0677022960820754\\ +1000 0.0670942102144721\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.12370047521489\\ +1.14039960197003 1.12059148334119\\ +2.13466303332425 1.11518756799958\\ +3.05833803237844 1.10725577182713\\ +3.88677669089267 1.0972607394215\\ +4.63090280179974 1.08506021710552\\ +5.26892142135068 1.07110993297807\\ +5.83130511352622 1.05514474750257\\ +6.33580499265825 1.03708618599781\\ +6.75818116816111 1.0187403645898\\ +7.20871503378214 0.995544443597399\\ +7.618717702323 0.970994506564543\\ +8.05203967082548 0.941484523787645\\ +8.43190929286626 0.912782501030636\\ +8.82969995549409 0.880245407874072\\ +9.24625711640574 0.844003347247673\\ +9.68246611930312 0.804437287906369\\ +10.2331657833025 0.753479588202582\\ +10.8151870255229 0.700148644202863\\ +11.5361810173648 0.637232000236173\\ +12.534242654614 0.559290553117768\\ +15.7833140565212 0.386776207297234\\ +17.1488196987054 0.342633835248662\\ +18.4614694632455 0.310089309980867\\ +19.8745954958098 0.282727413043066\\ +21.5940615210357 0.256899087152837\\ +23.4622884814226 0.235170785904381\\ +25.7282596744793 0.214715253389777\\ +28.4743916646725 0.195638388688078\\ +31.8055201533292 0.177962602027764\\ +35.5263467657814 0.162857190774772\\ +40.0500075787361 0.1488450596023\\ +45.149677720361 0.136883960702272\\ +50.4315948717136 0.127409999414427\\ +56.3314267060136 0.119255313839188\\ +62.9214610961034 0.112268234613881\\ +69.6374473062822 0.106773925327639\\ +77.070271142123 0.102052507868072\\ +85.2964449974102 0.0980156344053349\\ +95.2750047242729 0.0942959494542698\\ +106.420924406472 0.0911944157444499\\ +118.87076977119 0.0886211012752699\\ +134.006889636395 0.0863357902988756\\ +152.469572701757 0.084357991907656\\ +175.082703173572 0.0826873735999211\\ +204.791209666509 0.0812318346290302\\ +243.998629725955 0.0800178481361749\\ +301.63343472592 0.0789594895694509\\ +394.090164040345 0.0780385771422265\\ +569.843705946914 0.0771838238315516\\ +1000 0.0761885383479042\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.967658125333682\\ +0.592615181247555 0.965071507057786\\ +1.05931476351837 0.960052810455109\\ +1.50375532129974 0.952737406448336\\ +1.92879150802078 0.943268008639409\\ +2.34082727617829 0.931665184954772\\ +2.73802517792786 0.918127563518623\\ +3.11525422355549 0.903062675084866\\ +3.47969790388769 0.886424007893984\\ +3.85110700232557 0.867348185520041\\ +4.22304418720668 0.846128466973571\\ +4.58840412645476 0.823293111800702\\ +4.93962174387832 0.7995932092133\\ +5.31772317785097 0.772339357434781\\ +5.67222897164454 0.74535878343311\\ +6.05036787939122 0.715333391723099\\ +6.4537154016467 0.682253304297866\\ +6.82077673286568 0.651559629907107\\ +7.20871503378214 0.618889294355885\\ +7.618717702323 0.584519126567353\\ +8.12661920009194 0.542782783873999\\ +8.66837993001978 0.500013623801709\\ +9.24625711640574 0.457107559520759\\ +9.95400828762153 0.409147471290936\\ +10.9153593533139 0.352894013062723\\ +13.3698374182495 0.253717916165452\\ +14.2611370719413 0.230739113216163\\ +15.0722530931076 0.214320873264044\\ +15.9295021257212 0.200689957898802\\ +16.6810053720006 0.191229634396907\\ +17.4679621512725 0.183264990180909\\ +18.4614694632455 0.175360661899582\\ +19.5114834684662 0.168896934731817\\ +20.8122156998634 0.162712710583364\\ +22.4052786930002 0.156873714187384\\ +24.7967289250216 0.150098737297843\\ +50.8987019351968 0.111716954521928\\ +59.5353313081437 0.105312081921071\\ +68.3651600451024 0.10049281469722\\ +77.7841107128649 0.0966873813742494\\ +88.5007491447344 0.0935045893840945\\ +100.693863147603 0.0908798922374485\\ +115.628013120738 0.0886038733059986\\ +134.006889636395 0.0866873379174587\\ +156.74554102056 0.0851166646916621\\ +186.754584276108 0.0837992821399834\\ +228.74908173557 0.0826956549928206\\ +293.404970921579 0.0817564834982234\\ +408.894822629486 0.0809203234178442\\ +710.970943231243 0.0799763339176051\\ +1000 0.0794275933703686\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.967046804212669\\ +0.643885742724042 0.964580227543114\\ +1.10928986489522 0.959565907725391\\ +1.54592773641948 0.952352990654006\\ +1.96468664618044 0.943067721390806\\ +2.38439047009372 0.931341202347265\\ +2.78898029238044 0.917656037142646\\ +3.17322963473498 0.902428683370293\\ +3.54445567397044 0.885614914062009\\ +3.92277675892772 0.866344818489357\\ +4.3016357581068 0.844917383570949\\ +4.67379510799246 0.821868443499861\\ +5.03154894503806 0.79795796958826\\ +5.41668691103315 0.77047656087868\\ +5.77779011797051 0.743287197661996\\ +6.16296625513294 0.713050665707074\\ +6.57382014340959 0.679766977860645\\ +6.94771254846024 0.648915235782516\\ +7.34287044716677 0.616113794451584\\ +7.76050333513357 0.581652774584903\\ +8.27785696619848 0.539880858991486\\ +8.82969995549409 0.497174113408981\\ +9.41833153464795 0.454448358695762\\ +10.1392540755882 0.406853913532602\\ +11.2214776820798 0.346062633359404\\ +13.2471398786612 0.265026738157017\\ +14.2611370719413 0.237748223244073\\ +15.0722530931076 0.220790667966739\\ +15.9295021257212 0.206595422483226\\ +16.835508029612 0.194847640205363\\ +17.7930438991858 0.185178732092874\\ +18.8050405512858 0.177204215076499\\ +19.8745954958098 0.170556595075432\\ +21.1995345753607 0.164044732706246\\ +23.0336287314213 0.157000162097269\\ +25.9665597293487 0.148296323153577\\ +42.3278906557355 0.118135454968999\\ +52.3261423948666 0.107190242657797\\ +60.6432939540806 0.100689901956311\\ +68.9983712143002 0.0957994950519501\\ +77.7841107128649 0.091908858948105\\ +87.6885609458743 0.0886042806280464\\ +98.8541702191957 0.0858314754249817\\ +112.473717836475 0.0833692369254894\\ +127.969686821594 0.0813728509345104\\ +146.949180062482 0.0796644090443283\\ +171.883914281715 0.0781619412288977\\ +204.791209666509 0.0769029648268028\\ +250.841505927754 0.075847763013551\\ +321.741815067637 0.0749478821669671\\ +448.385594802119 0.0741445196859812\\ +772.48114514034 0.073246452538667\\ +1000 0.0728430250448702\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.06080084694604\\ +1.29751716865759 1.05272124370738\\ +1.91109062168914 1.04550090537136\\ +2.49687842888433 1.03577929577042\\ +3.0302710828664 1.02430232537149\\ +3.54445567397044 1.01063028548022\\ +4.03278998219371 0.995034151016307\\ +4.50457325175946 0.977321007225042\\ +4.93962174387832 0.958500546630364\\ +5.36697694554048 0.937554959986494\\ +5.77779011797051 0.915049248684584\\ +6.16296625513294 0.891829009753516\\ +6.57382014340959 0.864866837415649\\ +6.94771254846024 0.838492599419861\\ +7.34287044716677 0.80893047925104\\ +7.76050333513357 0.77612942941312\\ +8.2018894992022 0.740194632034058\\ +8.66837993001978 0.701425318583022\\ +9.16140245713852 0.660334311934262\\ +9.68246611930312 0.617638307517116\\ +10.3279473191895 0.56697178971867\\ +11.1184960481927 0.509806159283285\\ +12.3052400435926 0.436246188920829\\ +14.796880626864 0.328071649192354\\ +16.0770442167382 0.291346721719041\\ +17.3076553419573 0.264208077360719\\ +18.6324631193156 0.241405247778736\\ +20.0586777950823 0.222092909012939\\ +21.7940698430296 0.203589816055047\\ +24.1202820761801 0.184381220374791\\ +27.4434330322837 0.163675768153976\\ +35.5263467657814 0.130046366185541\\ +51.8459354389291 0.0926831406969791\\ +89.3204599858097 0.0568576997986941\\ +109.405470720574 0.0477356974135995\\ +129.154966501488 0.041633727124971\\ +148.31025143361 0.037364561535069\\ +168.743567772738 0.0339715893430654\\ +190.230118866894 0.0312767787147839\\ +212.484535249888 0.0291374689151996\\ +237.342425002387 0.0272969494981158\\ +262.675410372384 0.0258444048018525\\ +290.712337727258 0.0245917556029469\\ +321.741815067637 0.0235165779814841\\ +356.083255262928 0.0225978373975876\\ +397.740302405804 0.0217510387613848\\ +444.270674960688 0.0210438454330395\\ +500.840798984821 0.02041089248635\\ +564.614141930367 0.0198933264048529\\ +642.403365939419 0.0194412262536085\\ +744.512291079513 0.0190304727167993\\ +878.909065341995 0.0186703099685688\\ +1000 0.0184445219411724\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.02789163552558\\ +0.173876240021625 1.03492189348482\\ +0.337698031082509 1.03808228038908\\ +0.781435060784454 1.03720180730851\\ +1.34626057929891 1.03239789400953\\ +1.8935521797563 1.02494627586037\\ +2.42876438246045 1.01492946611475\\ +2.92055551218275 1.00318038872236\\ +3.41612326858553 0.988679520480783\\ +3.88677669089267 0.972242506901234\\ +4.34147833005509 0.953727325410226\\ +4.76077523022637 0.934240007183593\\ +5.17265738721602 0.91277288549911\\ +5.56859644428641 0.889951009421327\\ +5.93982669392036 0.866646643440708\\ +6.33580499265825 0.839859939216584\\ +6.75818116816111 0.809296595225488\\ +7.14255928554313 0.779953984063895\\ +7.54879928165344 0.747696985006135\\ +7.97814457207663 0.712654411328315\\ +8.43190929286626 0.675117561368645\\ +8.9114823228402 0.635553897970933\\ +9.5055659201012 0.587690456973455\\ +10.1392540755882 0.539170812652807\\ +10.9153593533139 0.484647077680225\\ +12.0804213467733 0.414635429008414\\ +14.5265392594678 0.311781418484981\\ +15.7833140565212 0.276995378628605\\ +16.9914417203463 0.251427348373729\\ +18.2920450484629 0.230086979735731\\ +19.6922025547917 0.21213890573504\\ +21.3958887134342 0.19504550787982\\ +23.6796006783308 0.1773567092823\\ +27.1915794303602 0.156973532955255\\ +43.1156199031823 0.105005512123919\\ +53.2999408084409 0.0865268282939697\\ +67.7377599751775 0.0690696467399128\\ +90.9827289445556 0.0519829117547004\\ +134.006889636395 0.03554536141974\\ +228.74908173557 0.020880022022477\\ +465.229952396019 0.0102320910393133\\ +1000 0.004713250135358\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00870624825717\\ +0.384224084605506 1.00570785151253\\ +0.693171727615541 0.999843820543056\\ +1.08902296226373 0.990825048507013\\ +1.54592773641948 0.979580418179586\\ +2.00124979896904 0.967136357807747\\ +2.42876438246045 0.953721368878897\\ +2.8408836901833 0.9387882612507\\ +3.23228397818138 0.92254083761697\\ +3.61041859717334 0.904790083509099\\ +3.99578030189527 0.884545545462134\\ +4.38168993151419 0.862077410011768\\ +4.76077523022637 0.837917232742815\\ +5.12518692705333 0.812846044468616\\ +5.46685729972018 0.787836998258695\\ +5.83130511352622 0.75975701710518\\ +6.22004882563471 0.728491024234152\\ +6.63470812109235 0.694039431183923\\ +7.01206358900718 0.662086188152622\\ +7.41088151564157 0.628108242314817\\ +7.8323825991792 0.592420766800458\\ +8.35452805838287 0.5491972147427\\ +8.9114823228402 0.50507008113587\\ +9.5055659201012 0.461010005062715\\ +10.2331657833025 0.412052487771611\\ +11.3254131515281 0.34972841877073\\ +13.3698374182495 0.266947446549218\\ +14.3932264471941 0.239076219390757\\ +15.3527502878042 0.219080341756512\\ +16.2259528707809 0.204900762070103\\ +17.1488196987054 0.193103791287104\\ +18.1241754737424 0.183314648407702\\ +19.1550055557353 0.175153392151518\\ +20.4319732019527 0.167217002012212\\ +21.9959306803007 0.1596475922074\\ +24.1202820761801 0.15162711493201\\ +28.2130767593947 0.139862278866711\\ +38.957456157755 0.118454443020067\\ +52.3261423948666 0.10177950126347\\ +60.6432939540806 0.0948429672390895\\ +68.9983712143002 0.0896037319072604\\ +77.7841107128649 0.0854175785353044\\ +87.6885609458743 0.0818462325526739\\ +98.8541702191957 0.0788363901153637\\ +111.441525146679 0.0763264787040401\\ +125.631660247412 0.0742521020054275\\ +142.940453343176 0.0724328811227635\\ +164.140297114447 0.0708795935055257\\ +190.230118866894 0.0695856625522474\\ +224.569799553977 0.0684767603171103\\ +272.543253128103 0.0675247221705536\\ +346.369417737173 0.0666932961101298\\ +473.887960971766 0.0659557773173536\\ +772.48114514034 0.0651697008948176\\ +1000 0.0647905823121663\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.11135112449661\\ +0.268181260945302 1.11645996443848\\ +0.856905505126835 1.11655445827398\\ +1.7916503273639 1.11226581153108\\ +2.68800102153761 1.1051118607949\\ +3.51192753045073 1.09568149283878\\ +4.26215882901533 1.08406250335813\\ +4.89428989611453 1.07120583607474\\ +5.46685729972018 1.05628592436287\\ +5.99484250318941 1.03897859063273\\ +6.4537154016467 1.02058291758075\\ +6.8839520696455 1.00009452040047\\ +7.27548352919623 0.978499280755246\\ +7.68928372075831 0.952527721312318\\ +8.12661920009194 0.921649057481769\\ +8.51000724712225 0.891925750844549\\ +8.9114823228402 0.858553036152831\\ +9.33189771573324 0.821732663210053\\ +9.77214696972572 0.781904838450293\\ +10.3279473191895 0.731098824119638\\ +10.9153593533139 0.678426570902571\\ +11.6430313292088 0.616830777147484\\ +12.7675070431927 0.53318011055682\\ +15.4949503931463 0.391360309505871\\ +16.835508029612 0.346240733101134\\ +18.1241754737424 0.312925718023178\\ +19.5114834684662 0.284919568287456\\ +21.0049824165392 0.261217471827392\\ +22.822244741869 0.238618993857681\\ +25.0264009641792 0.217411783168855\\ +27.6976193503689 0.197683611692288\\ +30.9378757173014 0.179425291471482\\ +34.8772747481418 0.162614906517367\\ +39.3182875570577 0.148276492312705\\ +44.324785912404 0.135994204579924\\ +49.9687745385488 0.125476711110326\\ +55.8144624945496 0.1171411583524\\ +62.3440188862786 0.109972823826099\\ +69.6374473062822 0.103841946530743\\ +77.070271142123 0.0990316679346553\\ +85.2964449974102 0.0949078045838821\\ +94.400647894176 0.0913903472422374\\ +105.444279352617 0.0881571321476935\\ +117.779870119712 0.0854674694461927\\ +132.777082935543 0.0830732228036602\\ +149.683929307726 0.0811301087232458\\ +171.883914281715 0.0793446320925641\\ +199.204570845387 0.077867870316256\\ +235.164288449435 0.0766090216282321\\ +285.400976982924 0.0755320273191118\\ +362.710025233065 0.0745926870810988\\ +496.244487762892 0.0737579726825855\\ +823.978568452852 0.0728267280136324\\ +1000 0.0724943842724882\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.06396996525797\\ +0.880937190447399 1.0613644743423\\ +1.53174046370208 1.05595307259512\\ +2.13466303332425 1.04816505887707\\ +2.71289780037247 1.03798755639319\\ +3.26222200971167 1.02561698959983\\ +3.78074666359935 1.01125629928463\\ +4.26215882901533 0.995333107092117\\ +4.71708469091702 0.977766369486714\\ +5.17265738721602 0.957519720231653\\ +5.62017384808319 0.934890682488563\\ +6.05036787939122 0.910499033386544\\ +6.4537154016467 0.885289485389776\\ +6.8839520696455 0.856013050505798\\ +7.27548352919623 0.827419723425527\\ +7.68928372075831 0.795476482956668\\ +8.12661920009194 0.760223768358882\\ +8.58882855954625 0.72189659977168\\ +9.07732652521023 0.680953909398293\\ +9.59360828709315 0.638079021431016\\ +10.2331657833025 0.586785011072583\\ +11.0164594963366 0.528408131511785\\ +12.0804213467733 0.459142575005418\\ +15.0722530931076 0.326127712817372\\ +16.3762407452169 0.289934792633434\\ +17.6297537528721 0.263187870989665\\ +18.979216428391 0.24067047499832\\ +20.6212180399914 0.219348112832111\\ +22.6128006633728 0.199417868493286\\ +25.2582002696278 0.179234492031249\\ +29.2729483504282 0.156602610148123\\ +40.7953450345245 0.116590657585686\\ +74.2798248256492 0.0687082278646442\\ +90.1477631452492 0.058328674713282\\ +105.444279352617 0.0513821323890238\\ +121.082975023204 0.0462065415109857\\ +137.765076954905 0.0420940280449057\\ +155.307057393346 0.0388299067198596\\ +173.475935923393 0.0362411471234604\\ +193.770333747799 0.0340165992407196\\ +214.452607597167 0.0322633071419922\\ +237.342425002387 0.0307533916469165\\ +262.675410372384 0.0294592683075374\\ +290.712337727258 0.0283550431491415\\ +324.721849207313 0.0273387794135132\\ +362.710025233065 0.0264912926547706\\ +408.894822629486 0.0257338581531637\\ +465.229952396019 0.0250728927357431\\ +534.229329953835 0.0245084805753822\\ +619.144175597784 0.024035145173333\\ +737.679760252773 0.0236026610944424\\ +903.557834613893 0.0232245508363839\\ +1000 0.0230688763376863\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.977658458906337\\ +0.151418932530435 0.986464420323345\\ +0.229276931286565 1.00031064741771\\ +0.540421642070592 1.03143594849758\\ +0.781435060784454 1.03862738599348\\ +1.14039960197003 1.04099772099815\\ +1.6188596901782 1.0384867428808\\ +2.15443469003188 1.03188519084234\\ +2.68800102153761 1.02231200887173\\ +3.20262069365765 1.01037077147038\\ +3.71167181947577 0.995829168216221\\ +4.18428850790158 0.979725057483278\\ +4.63090280179974 0.962035780135586\\ +5.07815211232768 0.941767873648629\\ +5.51749237612913 0.919265921235388\\ +5.93982669392036 0.895173499431709\\ +6.33580499265825 0.870425754649545\\ +6.75818116816111 0.841845540108769\\ +7.14255928554313 0.814062549604697\\ +7.54879928165344 0.783136535129263\\ +7.97814457207663 0.749097203545731\\ +8.43190929286626 0.712144532965388\\ +8.9114823228402 0.67267722713304\\ +9.41833153464795 0.631298326731164\\ +10.0462042134681 0.58165716000259\\ +10.7159339982267 0.531919371596868\\ +11.6430313292088 0.470188697939482\\ +15.6384675830225 0.300344795785853\\ +16.835508029612 0.271812739709943\\ +18.1241754737424 0.247856158246599\\ +19.5114834684662 0.227634771563928\\ +21.1995345753607 0.208364270708147\\ +23.2469705998565 0.19016771275966\\ +26.2070669648385 0.170053281193342\\ +32.1001089554317 0.141838101329263\\ +46.4158883361278 0.101963013504547\\ +66.5001803043112 0.0733479399250486\\ +100.693863147603 0.0502142445611599\\ +124.478714618791 0.0416383554289211\\ +148.31025143361 0.0358938088405976\\ +171.883914281715 0.0318661851853424\\ +197.376432630026 0.0286788933661098\\ +222.508879812837 0.0263246398137155\\ +250.841505927754 0.0243072196185547\\ +280.18665564592 0.0227116869710535\\ +312.964801067075 0.0213438985256031\\ +346.369417737173 0.0202680472724083\\ +383.33951017666 0.0193430831934689\\ +424.255643071778 0.0185514151067944\\ +469.539001068006 0.0178766356345899\\ +524.468874949512 0.0172560199127475\\ +585.824820015254 0.0167384735629284\\ +660.419396233031 0.0162753634405166\\ +751.408106111697 0.0158697736673792\\ +862.85125663669 0.0155204772494835\\ +1000 0.015222191765161\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.12039439417036\\ +0.609234915240071 1.11726372721698\\ +1.6642601764859 1.11056760882564\\ +2.56690271549195 1.10288380466199\\ +3.38477285594598 1.09312519806691\\ +4.10784088996565 1.08158948029744\\ +4.76077523022637 1.06801721133129\\ +5.31772317785097 1.05330045907145\\ +5.83130511352622 1.03647295774112\\ +6.2776601058065 1.01880044479633\\ +6.69616005485322 0.999295055737647\\ +7.14255928554313 0.975082715712932\\ +7.54879928165344 0.949880608625615\\ +7.97814457207663 0.920023786933664\\ +8.35452805838287 0.891331813452302\\ +8.74866812047991 0.859117091395681\\ +9.16140245713852 0.823522496906589\\ +9.59360828709315 0.784910694853998\\ +10.1392540755882 0.735430245806251\\ +10.7159339982267 0.683810824891324\\ +11.4303112911448 0.622980780082827\\ +12.4192135270178 0.547539933035553\\ +15.9295021257212 0.369227442326622\\ +17.3076553419573 0.327822951408102\\ +18.6324631193156 0.297251811150321\\ +20.0586777950823 0.271480986973466\\ +21.7940698430296 0.247059702787276\\ +23.6796006783308 0.226411109712535\\ +25.9665597293487 0.206855685578872\\ +28.7381269185107 0.188491630904338\\ +32.1001089554317 0.171347632422975\\ +36.1874981241128 0.155448568773433\\ +41.1731993116168 0.140847683665606\\ +46.4158883361278 0.129259348732141\\ +52.3261423948666 0.119312140118026\\ +58.4476113163363 0.111417043564824\\ +65.2852114112785 0.104621549183048\\ +72.9227205872831 0.0988063788148306\\ +80.7062014114951 0.0942423115051346\\ +89.3204599858097 0.0903287503838503\\ +98.8541702191957 0.0869902223841471\\ +110.418805085416 0.0839211432447957\\ +123.336349791378 0.0813677330985722\\ +139.041083409007 0.079094431674592\\ +156.74554102056 0.0772490535974057\\ +179.992850678248 0.0755527550724616\\ +208.60240892485 0.0741488792818329\\ +246.258591635055 0.0729509575379838\\ +298.865287355038 0.0719244397747057\\ +379.821530619074 0.0710269391033537\\ +519.655724382766 0.0702265959740202\\ +870.843149769072 0.0693087675838971\\ +1000 0.0690758177244967\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1\\ +1000 1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/robust_performance_compare.pdf b/matlab/figs/robust_performance_compare.pdf new file mode 100644 index 0000000..c42d86e Binary files /dev/null and b/matlab/figs/robust_performance_compare.pdf differ diff --git a/matlab/figs/robust_performance_compare.png b/matlab/figs/robust_performance_compare.png new file mode 100644 index 0000000..bd69cbd Binary files /dev/null and b/matlab/figs/robust_performance_compare.png differ diff --git a/matlab/figs/robust_performance_result.pdf b/matlab/figs/robust_performance_result.pdf new file mode 100644 index 0000000..3ecbba8 Binary files /dev/null and b/matlab/figs/robust_performance_result.pdf differ diff --git a/matlab/figs/robust_performance_result.png b/matlab/figs/robust_performance_result.png new file mode 100644 index 0000000..8f78d4f Binary files /dev/null and b/matlab/figs/robust_performance_result.png differ diff --git a/matlab/figs/robust_performance_result.svg b/matlab/figs/robust_performance_result.svg new file mode 100644 index 0000000..6b8b019 --- /dev/null +++ b/matlab/figs/robust_performance_result.svg @@ -0,0 +1,330 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/robust_performance_result.tex b/matlab/figs/robust_performance_result.tex new file mode 100644 index 0000000..04ac8ad --- /dev/null +++ b/matlab/figs/robust_performance_result.tex @@ -0,0 +1,1719 @@ +% This file was created by matlab2tikz. +% +\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}% +\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}% +% +\begin{tikzpicture} + +\begin{axis}[% +width=2.518in, +height=1.989in, +at={(0.551in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xtick={ 0.1, 1, 10, 100, 1000}, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.001, +ymax=2, +yminorticks=true, +ylabel={Magnitude [m/N]}, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.0001931122177\\ +0.535462089927361 1.00573493472724\\ +0.922497005259217 1.01680236010719\\ +1.32166418394661 1.03374858384494\\ +1.74277467840892 1.05687817368458\\ +2.21485523372636 1.08784873206357\\ +2.76338529005317 1.12820099616263\\ +3.51192753045073 1.18553946072086\\ +5.22056752784697 1.28965685221731\\ +5.93982669392036 1.31022397541787\\ +6.57382014340959 1.31414440876117\\ +7.20871503378214 1.30497065729765\\ +7.8323825991792 1.28445066175576\\ +8.51000724712225 1.25141598556613\\ +9.24625711640574 1.20596156260807\\ +10.0462042134681 1.14917565028267\\ +10.9153593533139 1.08300042075559\\ +11.9695570235904 1.00151443652005\\ +13.2471398786612 0.906489000195522\\ +14.796880626864 0.801614690150466\\ +16.835508029612 0.683826841375039\\ +19.5114834684662 0.561302789116589\\ +23.6796006783308 0.42560963805056\\ +33.0003479112529 0.259341011797121\\ +45.9899209052244 0.159046987989402\\ +57.3797641421413 0.116770448003281\\ +70.2824426430835 0.0893928832098493\\ +86.0864769614925 0.0695444840114252\\ +105.444279352617 0.0549418589545345\\ +130.351224468151 0.0435976465729145\\ +161.141427725302 0.0350978183492074\\ +197.376432630026 0.028904752452537\\ +239.540735872088 0.0243262510672367\\ +288.04441533963 0.0209107964333833\\ +340.041193270371 0.0184689543209229\\ +401.424249049932 0.0165108877066972\\ +473.887960971766 0.0149335773074393\\ +737.679760252773 0.0115264177379453\\ +794.145171902934 0.0108525646870933\\ +847.08682665574 0.0101810410947052\\ +903.557834613893 0.00942356415046645\\ +963.793479961579 0.00858500367514173\\ +1000 0.00807691303004834\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 0.000983633691377331\\ +0.699592016543537 0.0099439702172477\\ +2.00124979896904 0.0799937322915588\\ +3.0302710828664 0.178577134330778\\ +3.92277675892772 0.288736055451022\\ +4.76077523022637 0.40594913859665\\ +5.51749237612913 0.51668205276236\\ +6.2776601058065 0.626407366778494\\ +7.01206358900718 0.726028543742273\\ +7.76050333513357 0.817456773337205\\ +8.51000724712225 0.896753063329142\\ +9.24625711640574 0.962143314273546\\ +10.0462042134681 1.01976109831102\\ +10.9153593533139 1.06822943498017\\ +11.8597101233767 1.10692281324805\\ +13.0051125217341 1.13857785742596\\ +14.2611370719413 1.15921603518581\\ +15.7833140565212 1.17096352472234\\ +17.7930438991858 1.17310551167201\\ +20.6212180399914 1.16352305294118\\ +25.4921465445142 1.13711774727298\\ +46.8458011587305 1.05878187635299\\ +63.5042516859596 1.03499216818096\\ +90.1477631452492 1.01881100125843\\ +141.62866162992 1.00872696029412\\ +282.781797962534 1.00420871972614\\ +697.981390783066 1.00800293184063\\ +1000 1.0079725081608\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019534374483\\ +0.535462089927361 1.00573411613921\\ +0.922497005259217 1.01679349761586\\ +1.32166418394661 1.03375140820082\\ +1.74277467840892 1.0569456920462\\ +2.21485523372636 1.08809637421514\\ +2.76338529005317 1.12886572312616\\ +3.47969790388769 1.18476567777419\\ +5.41668691103315 1.30422471017917\\ +6.10640754223204 1.32259657410345\\ +6.75818116816111 1.32537729338898\\ +7.41088151564157 1.31433015545732\\ +8.05203967082548 1.2914228770447\\ +8.74866812047991 1.25540448783636\\ +9.5055659201012 1.20651788935808\\ +10.3279473191895 1.14606178880926\\ +11.2214776820798 1.07621652251626\\ +12.3052400435926 0.990926075815642\\ +13.6186523675608 0.892323790198539\\ +15.211855179861 0.784483754484604\\ +17.3076553419573 0.664541749293765\\ +20.244465099768 0.533954346847223\\ +24.7967289250216 0.394800825271885\\ +38.24569722467 0.202102342662966\\ +49.9687745385488 0.135236791007901\\ +61.7718759733849 0.100008294279411\\ +75.6621850048106 0.0762297207642266\\ +91.8254283565628 0.059788246822666\\ +111.441525146679 0.0476109999921181\\ +136.500780654601 0.038076798066957\\ +167.194975973199 0.0308967058154004\\ +204.791209666509 0.0254302558263634\\ +246.258591635055 0.0215817268529103\\ +293.404970921579 0.0186967981945757\\ +346.369417737173 0.0165194303158824\\ +408.894822629486 0.0147771330965201\\ +482.707096560318 0.0133733476285466\\ +724.202233460732 0.0105614401119155\\ +786.857150693685 0.00989089300243232\\ +839.312949816636 0.00929380131808741\\ +895.26571259964 0.00861986625792464\\ +954.948563979197 0.00787146939222389\\ +1000 0.0073001265041731\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 0.000990788338256138\\ +0.525679112201842 0.00562855461974205\\ +2.2353696459098 0.0993877613568488\\ +3.26222200971167 0.205811685192902\\ +4.18428850790158 0.325781044532665\\ +4.98537346387389 0.441773447875627\\ +5.77779011797051 0.560216094315097\\ +6.5134909462728 0.667586663854359\\ +7.20871503378214 0.762460101298794\\ +7.90492762269643 0.848158871107208\\ +8.66837993001978 0.929550164527769\\ +9.41833153464795 0.996162933722516\\ +10.2331657833025 1.05425497906712\\ +11.1184960481927 1.10240869464133\\ +12.0804213467733 1.14003701674249\\ +13.1255683577184 1.16733268679212\\ +14.3932264471941 1.18653638203251\\ +15.9295021257212 1.19607729038231\\ +17.957846470021 1.19511565434667\\ +20.8122156998634 1.18151314959324\\ +25.9665597293487 1.1483260769365\\ +43.1156199031823 1.07292604108529\\ +56.8531791387375 1.045759167949\\ +77.7841107128649 1.02623023651786\\ +114.566872863487 1.01316773810595\\ +197.376432630026 1.00568310022139\\ +456.730127016875 1.00472176461485\\ +1000 1.0072118752458\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019743291514\\ +0.525679112201842 1.00565578770071\\ +0.905642837944528 1.01660181531655\\ +1.29751716865759 1.03344335412117\\ +1.71093390726902 1.05659863777713\\ +2.15443469003188 1.08649407923845\\ +2.66333272517498 1.12547763725157\\ +3.29243733300777 1.17729558295916\\ +4.5462954695324 1.27590540081524\\ +5.46685729972018 1.32950348700345\\ +6.16296625513294 1.35312947749374\\ +6.82077673286568 1.36012933423597\\ +7.41088151564157 1.35366007386874\\ +8.05203967082548 1.33397259012394\\ +8.66837993001978 1.30432778800347\\ +9.33189771573324 1.26308002567807\\ +10.0462042134681 1.2108899515173\\ +10.9153593533139 1.14088542292172\\ +11.8597101233767 1.06171503485177\\ +13.0051125217341 0.967058758667463\\ +14.3932264471941 0.860016541861465\\ +16.0770442167382 0.745566162789153\\ +18.2920450484629 0.621232676188219\\ +21.3958887134342 0.489226306145428\\ +26.2070669648385 0.35235978558186\\ +36.8609536217216 0.198435567238159\\ +52.8107971193433 0.10895628133552\\ +66.5001803043112 0.0756182405472248\\ +80.7062014114951 0.0566161948325665\\ +97.0480887738031 0.0437155466574612\\ +115.628013120738 0.0347485680655739\\ +137.765076954905 0.0280541194297464\\ +164.140297114447 0.0229928805845313\\ +195.565071586595 0.0191207125851768\\ +233.006141069692 0.0161298452560615\\ +275.067600790807 0.0139137690303927\\ +321.741815067637 0.012250709351361\\ +376.335836228653 0.0109189360722762\\ +440.193518520887 0.00984863022089378\\ +524.468874949512 0.00888002330062905\\ +691.575882873852 0.00755647189111879\\ +758.367791499719 0.00706718627840073\\ +816.416760492147 0.0066189759956369\\ +870.843149769072 0.00617336402736346\\ +928.89787201645 0.00567530015868301\\ +990.82280990038 0.00513198056695298\\ +1000 0.00505155141071614\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.216938351838518 0.00098712092183707\\ +0.66194334587744 0.00910519748705946\\ +2.15443469003188 0.0948661839282853\\ +3.26222200971167 0.211951776694594\\ +4.22304418720668 0.342730523927302\\ +5.07815211232768 0.473954725862985\\ +5.88531577519145 0.602749057982459\\ +6.63470812109235 0.719935245875769\\ +7.34287044716677 0.823588511504464\\ +8.05203967082548 0.91700726887862\\ +8.74866812047991 0.996689418343782\\ +9.5055659201012 1.06893037430489\\ +10.3279473191895 1.1310889258712\\ +11.1184960481927 1.1764343974798\\ +12.0804213467733 1.21561774030981\\ +13.1255683577184 1.24250335678959\\ +14.3932264471941 1.25921817044493\\ +15.9295021257212 1.264107684459\\ +17.7930438991858 1.257055660713\\ +20.4319732019527 1.23611819655803\\ +25.2582002696278 1.19163840518399\\ +38.957456157755 1.10418902227521\\ +49.9687745385488 1.06876757009708\\ +64.6860766154633 1.04350993990184\\ +87.6885609458743 1.02495147364674\\ +129.154966501488 1.01235557099846\\ +226.649807927369 1.00509755068201\\ +549.211648388779 1.00428464328525\\ +1000 1.00500808075128\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00020159359984\\ +0.520854855057766 1.00567172535509\\ +0.897331581458352 1.01666355041185\\ +1.2856096069433 1.03361489279836\\ +1.69523234155412 1.05700444913078\\ +2.13466303332425 1.08735977386374\\ +2.63889081445751 1.12724988215656\\ +3.23228397818138 1.17830385350012\\ +4.14588849683291 1.25750377202671\\ +5.46685729972018 1.35013329615573\\ +6.16296625513294 1.37917759246699\\ +6.82077673286568 1.39075341183722\\ +7.41088151564157 1.38749020528887\\ +7.97814457207663 1.37270212302108\\ +8.58882855954625 1.34537641698621\\ +9.24625711640574 1.30501926235893\\ +9.95400828762153 1.25209606492726\\ +10.7159339982267 1.18803898901496\\ +11.6430313292088 1.10545394176578\\ +12.650337203959 1.01545434612583\\ +13.8720978054162 0.911586542589518\\ +15.4949503931463 0.788089111850598\\ +17.6297537528721 0.653231805344941\\ +20.4319732019527 0.517900761749378\\ +24.7967289250216 0.374503476257587\\ +32.6974974451177 0.230699657269204\\ +60.0867589171969 0.0790657798059202\\ +75.6621850048106 0.0539127847809466\\ +91.8254283565628 0.0397818073586747\\ +110.418805085416 0.0303201374033559\\ +131.55856240457 0.0238407481400605\\ +155.307057393346 0.0192973711248455\\ +183.342548256229 0.0158702928756436\\ +214.452607597167 0.013386309476278\\ +250.841505927754 0.0114490548454772\\ +293.404970921579 0.00992882786111844\\ +340.041193270371 0.00879363285695708\\ +394.090164040345 0.00788314426845895\\ +460.960448682843 0.00710616975254985\\ +559.432570616938 0.00633355948128595\\ +685.229159528406 0.00560731267774325\\ +751.408106111697 0.00524605074668434\\ +808.924348680594 0.00491813661164044\\ +862.85125663669 0.00459344284946633\\ +920.373199661822 0.00423069501597384\\ +981.729840618884 0.00383405611635296\\ +1000 0.00371593986420837\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.214947467343798 0.000989526639691109\\ +0.637976680860628 0.00863789412735541\\ +2.27697025538168 0.108242044458094\\ +3.44776405473446 0.241904945641534\\ +4.4222739805059 0.384499699551156\\ +5.31772317785097 0.531427341739104\\ +6.10640754223204 0.665137792675513\\ +6.8839520696455 0.793319447757841\\ +7.618717702323 0.905305023353438\\ +8.35452805838287 1.00443885365664\\ +9.07732652521023 1.08696908832651\\ +9.77214696972572 1.15193917417243\\ +10.5201521761616 1.20690361495895\\ +11.3254131515281 1.25062968745523\\ +12.1923125164911 1.28275153704526\\ +13.2471398786612 1.30558371452019\\ +14.3932264471941 1.31582322748993\\ +15.7833140565212 1.31498909888806\\ +17.6297537528721 1.30127852329881\\ +20.4319732019527 1.26953866839886\\ +26.4498018242772 1.20114095072094\\ +35.8553985745982 1.12869660073072\\ +45.149677720361 1.0877066062042\\ +57.3797641421413 1.05739235794576\\ +74.9678187496688 1.03514421333952\\ +103.517795563018 1.01928776973159\\ +159.662602210143 1.0088197193203\\ +312.964801067075 1.00351469278748\\ +1000 1.00369510851451\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019048279805\\ +0.535462089927361 1.00565768883422\\ +0.922497005259217 1.01658106227662\\ +1.32166418394661 1.0333194437492\\ +1.74277467840892 1.05619097686443\\ +2.21485523372636 1.08686795193661\\ +2.76338529005317 1.12695244830046\\ +3.51192753045073 1.18426663876716\\ +5.41668691103315 1.299717825742\\ +6.10640754223204 1.31887104227412\\ +6.75818116816111 1.32329832374052\\ +7.41088151564157 1.31471709838457\\ +8.05203967082548 1.2948245968557\\ +8.74866812047991 1.26242317460152\\ +9.5055659201012 1.21745884100342\\ +10.3279473191895 1.1608327766042\\ +11.2214776820798 1.09431281344014\\ +12.3052400435926 1.01172312730851\\ +13.4936714058831 0.923584916336478\\ +14.9339321612425 0.824553951703573\\ +16.835508029612 0.710177621467782\\ +19.3324228755505 0.587898768801723\\ +22.822244741869 0.460547631227719\\ +28.7381269185107 0.321930742610885\\ +50.4315948717136 0.133427032384923\\ +62.3440188862786 0.0977786321413313\\ +75.6621850048106 0.0748413443810201\\ +91.8254283565628 0.0582525072445148\\ +111.441525146679 0.0460906485607264\\ +135.248087041788 0.0370344822838798\\ +164.140297114447 0.0301906194162913\\ +199.204570845387 0.024957929419966\\ +239.540735872088 0.0210977222142257\\ +285.400976982924 0.0182156363753302\\ +336.920570598027 0.0160459186693989\\ +397.740302405804 0.0143134771285805\\ +469.539001068006 0.0129233402889808\\ +596.727119597332 0.0113038234418744\\ +691.575882873852 0.0103561321211341\\ +758.367791499719 0.00969198057423907\\ +816.416760492147 0.00908114594313646\\ +870.843149769072 0.00847212722611604\\ +928.89787201645 0.00779002049058179\\ +990.82280990038 0.00704485794161946\\ +1000 0.00693448459259668\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.22097561147959 0.000988015563046809\\ +0.719211887222118 0.0103634741974293\\ +2.00124979896904 0.0788892828364127\\ +3.0302710828664 0.176094438347807\\ +3.95911026646846 0.289606936542707\\ +4.80487043965513 0.407181033234171\\ +5.62017384808319 0.526174296912567\\ +6.39448842855694 0.638014981788235\\ +7.14255928554313 0.740052814379102\\ +7.90492762269643 0.834342538425389\\ +8.66837993001978 0.916800347899088\\ +9.41833153464795 0.985390302168061\\ +10.2331657833025 1.04633797117934\\ +11.1184960481927 1.09798731275417\\ +12.0804213467733 1.13941031469348\\ +13.1255683577184 1.17043269203085\\ +14.3932264471941 1.19331250060507\\ +15.9295021257212 1.2059995762687\\ +17.7930438991858 1.20768374447583\\ +20.244465099768 1.19795496661256\\ +24.1202820761801 1.17282635794731\\ +50.4315948717136 1.06087193131546\\ +66.5001803043112 1.03752077346802\\ +91.8254283565628 1.02098167872263\\ +140.328908478587 1.00998963130886\\ +265.108360190854 1.00443861867521\\ +654.358601888324 1.0065798149595\\ +1000 1.00685563687749\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00021240746699\\ +0.511338753841433 1.00576491840608\\ +0.880937190447399 1.01697241444159\\ +1.25053858729039 1.03373838064559\\ +1.63385387780986 1.05650025665683\\ +2.03849339825246 1.08575254952158\\ +2.49687842888433 1.12426771790369\\ +3.00246170908555 1.17172729470902\\ +3.64385898376354 1.23634285191361\\ +4.67379510799246 1.34010933922584\\ +5.88531577519145 1.44049977790754\\ +6.57382014340959 1.47736869674208\\ +7.20871503378214 1.49437579273908\\ +7.76050333513357 1.49479344511541\\ +8.35452805838287 1.48038159962587\\ +8.9114823228402 1.45390636042689\\ +9.5055659201012 1.4137978725404\\ +10.1392540755882 1.36039272880957\\ +10.8151870255229 1.29504306137774\\ +11.6430313292088 1.20860543334188\\ +12.650337203959 1.1013895152247\\ +13.8720978054162 0.977113025339458\\ +15.3527502878042 0.842553781417945\\ +17.4679621512725 0.684690291672569\\ +20.4319732019527 0.521847020250513\\ +25.2582002696278 0.353856158340937\\ +34.2400613797143 0.198163655489002\\ +57.3797641421413 0.0723013860660759\\ +136.500780654601 0.0133140065874688\\ +193.770333747799 0.00686938997980456\\ +253.164847863136 0.00423120783088052\\ +315.863540826782 0.00289024633859841\\ +383.33951017666 0.00211008386090508\\ +460.960448682843 0.00159278526162922\\ +564.614141930367 0.00119101615000305\\ +642.403365939419 0.000994444496124888\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.209083769055575 0.000986598263337912\\ +0.581788007434494 0.00757139739726711\\ +2.81481236050758 0.174317049233237\\ +4.14588849683291 0.36890978228711\\ +5.22056752784697 0.565029207330472\\ +6.10640754223204 0.74090547828939\\ +6.8839520696455 0.895675693174564\\ +7.618717702323 1.03389137722625\\ +8.27785696619848 1.14561468988031\\ +8.99402217409204 1.24965781214134\\ +9.68246611930312 1.3306522153231\\ +10.3279473191895 1.3895982394204\\ +11.0164594963366 1.43568980092478\\ +11.7508713090481 1.4682965427414\\ +12.534242654614 1.48776566308326\\ +13.4936714058831 1.49542764876625\\ +14.6610868404698 1.48850958519231\\ +16.0770442167382 1.46634056846893\\ +18.1241754737424 1.42314250784083\\ +21.9959306803007 1.33994483208152\\ +30.3726357970331 1.21246172777406\\ +36.8609536217216 1.15411971343847\\ +44.7353305449847 1.10971634773792\\ +54.7947233690029 1.07577733447031\\ +68.9983712143002 1.04918777016186\\ +90.1477631452492 1.0295322627637\\ +126.795284678643 1.0153348485452\\ +204.791209666509 1.00616661194216\\ +482.707096560318 1.00121997764289\\ +1000 0.999812500165089\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00020286546282\\ +0.520854855057766 1.00570911633119\\ +0.897331581458352 1.01677699183254\\ +1.27381132318648 1.03325672631315\\ +1.67967487209265 1.05644931671139\\ +2.1150728248688 1.08661912895143\\ +2.59067785868801 1.12439246623547\\ +3.17322963473498 1.17496482600133\\ +3.99578030189527 1.24814506896084\\ +5.56859644428641 1.36254507009756\\ +6.2776601058065 1.39149968538336\\ +6.8839520696455 1.40175568124962\\ +7.47952251562182 1.39831761718072\\ +8.05203967082548 1.38291174749581\\ +8.66837993001978 1.35448571781747\\ +9.33189771573324 1.31255736044116\\ +10.0462042134681 1.25766954471392\\ +10.8151870255229 1.19138996904959\\ +11.7508713090481 1.10620677883826\\ +12.7675070431927 1.01373403050583\\ +14.000583824681 0.9074901149025\\ +15.6384675830225 0.781845363316426\\ +17.7930438991858 0.645490804300097\\ +20.8122156998634 0.501829114009966\\ +25.2582002696278 0.360636586537632\\ +33.6144900010877 0.216709905986814\\ +64.0924401935645 0.068200409972777\\ +80.7062014114951 0.046156564479281\\ +98.8541702191957 0.0333525736178467\\ +118.87076977119 0.0252855019649419\\ +140.328908478587 0.0200404577313662\\ +165.660595894991 0.0161510110883667\\ +193.770333747799 0.0133809893689203\\ +226.649807927369 0.0112560549963639\\ +262.675410372384 0.00969876805391976\\ +304.42722120643 0.0084693864501225\\ +352.815411538088 0.00749439089341161\\ +408.894822629486 0.00671719951478734\\ +478.277201772749 0.00605583180383909\\ +591.250841383188 0.00533494792259004\\ +691.575882873852 0.0048396004639872\\ +758.367791499719 0.00451913482873575\\ +816.416760492147 0.00422811109460214\\ +870.843149769072 0.00394048699385006\\ +928.89787201645 0.00362038110668811\\ +990.82280990038 0.00327227852073189\\ +1000 0.0032208178147386\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.214947467343798 0.000995493435519096\\ +0.655868565957143 0.00918650760608809\\ +2.31934505927443 0.113044554618168\\ +3.51192753045073 0.252655721863092\\ +4.50457325175946 0.401507908976705\\ +5.36697694554048 0.546034783995305\\ +6.16296625513294 0.68361801627651\\ +6.94771254846024 0.81536120474835\\ +7.68928372075831 0.93015204948426\\ +8.43190929286626 1.03131698924367\\ +9.16140245713852 1.11498652337075\\ +9.86265846131282 1.18027675012903\\ +10.61759183483 1.23485732816843\\ +11.4303112911448 1.27752721659609\\ +12.3052400435926 1.30802331753532\\ +13.3698374182495 1.32853238757083\\ +14.5265392594678 1.3361513932155\\ +16.0770442167382 1.33134352246048\\ +18.1241754737424 1.31134139344463\\ +21.1995345753607 1.2719159174143\\ +40.4209583979631 1.10913578182755\\ +50.4315948717136 1.0743933754553\\ +64.0924401935645 1.04819503644811\\ +85.2964449974102 1.02833913210501\\ +122.204468663149 1.0145112910283\\ +202.911801804668 1.00600046309331\\ +469.539001068006 1.00294696104001\\ +1000 1.00320765829766\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.0002270076268\\ +0.497389595879006 1.00583553817725\\ +0.849041520408875 1.01690974122798\\ +1.20526093687084 1.03374148150558\\ +1.57469771464309 1.05680763059383\\ +1.96468664618044 1.08684381862442\\ +2.38439047009372 1.12498324911001\\ +2.8408836901833 1.17233114171225\\ +3.35371015200293 1.23139979052085\\ +3.95911026646846 1.30684073065481\\ +4.76077523022637 1.41119316983258\\ +6.75818116816111 1.63888113573723\\ +7.41088151564157 1.68315941459321\\ +7.97814457207663 1.70242173637051\\ +8.51000724712225 1.70235185991864\\ +8.99402217409204 1.68678486288908\\ +9.5055659201012 1.65522796754242\\ +10.0462042134681 1.60722860901709\\ +10.61759183483 1.54366645799519\\ +11.3254131515281 1.4527956871202\\ +12.0804213467733 1.34878361073928\\ +13.0051125217341 1.22119926994747\\ +14.2611370719413 1.06012256304008\\ +16.0770442167382 0.864777725866691\\ +19.1550055557353 0.628411443123857\\ +37.8947091907467 0.178102379869795\\ +47.2796959160039 0.121559163556905\\ +57.9112264764176 0.087312441791938\\ +69.6374473062822 0.065811438111727\\ +82.9695852083491 0.0511682321380963\\ +98.8541702191957 0.0404428989538499\\ +117.779870119712 0.032474292015286\\ +141.62866162992 0.0261909545281595\\ +170.306502925284 0.0214482441382243\\ +204.791209666509 0.0178218338421672\\ +243.998629725955 0.0151477404594074\\ +290.712337727258 0.0130491323028158\\ +343.190719745904 0.0114775900892022\\ +401.424249049932 0.0102882913929889\\ +473.887960971766 0.00927079232592664\\ +737.679760252773 0.00708946157682914\\ +794.145171902934 0.00666788113216188\\ +854.932706626838 0.00618825685036627\\ +911.92675984593 0.00571530026201436\\ +972.720319245054 0.00519645428471822\\ +1000 0.00496304500510529\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.203380030584698 0.0009976366376964\\ +0.535462089927361 0.00685501870061004\\ +4.80487043965513 0.542452499067977\\ +6.05036787939122 0.839822182447969\\ +6.94771254846024 1.07151184792903\\ +7.68928372075831 1.2590185468638\\ +8.35452805838287 1.41311837101153\\ +8.99402217409204 1.54074102526148\\ +9.59360828709315 1.63766184722241\\ +10.1392540755882 1.7053296068843\\ +10.7159339982267 1.75616797175311\\ +11.3254131515281 1.78912953010938\\ +11.9695570235904 1.80461890128862\\ +12.7675070431927 1.80283337603009\\ +13.6186523675608 1.7834396893436\\ +14.796880626864 1.73977955627631\\ +16.3762407452169 1.66951307304861\\ +19.5114834684662 1.53548778015298\\ +25.0264009641792 1.36560231032803\\ +29.5440799888038 1.27657791629261\\ +34.5571993676214 1.20995176342021\\ +40.7953450345245 1.15530818275177\\ +48.6056423214213 1.11205075703598\\ +58.4476113163363 1.07891428515325\\ +72.2534949178721 1.05238374633462\\ +93.5343152029239 1.03157981046968\\ +129.154966501488 1.01659464596939\\ +202.911801804668 1.00642001270794\\ +487.178021879463 0.998734308906213\\ +1000 0.995230658440607\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019372988218\\ +0.530548052536957 1.00565098577973\\ +0.914031074875623 1.01657441511691\\ +1.30953502048267 1.03334641537903\\ +1.72678090388436 1.05633295925728\\ +2.17438947560008 1.08587355379057\\ +2.71289780037247 1.12606439473689\\ +3.41612326858553 1.18182377561663\\ +5.62017384808319 1.31851667967784\\ +6.2776601058065 1.33393554487729\\ +6.8839520696455 1.33522922014505\\ +7.47952251562182 1.32478438116366\\ +8.12661920009194 1.30159779610591\\ +8.74866812047991 1.26958686600392\\ +9.41833153464795 1.22694420378901\\ +10.2331657833025 1.16731592213256\\ +11.1184960481927 1.09740405194999\\ +12.1923125164911 1.01106219579305\\ +13.4936714058831 0.910370977650801\\ +15.0722530931076 0.799575456632487\\ +17.1488196987054 0.675900642814778\\ +19.8745954958098 0.54845806026647\\ +23.8989256623105 0.415063345020131\\ +32.1001089554317 0.260413317967457\\ +47.2796959160039 0.141700974665486\\ +58.988964255085 0.101909173911241\\ +72.2534949178721 0.076654718187481\\ +87.6885609458743 0.0594148527440465\\ +106.420924406472 0.0468226185395045\\ +129.154966501488 0.0374829167253574\\ +156.74554102056 0.0304496172280087\\ +190.230118866894 0.0250860514680367\\ +228.74908173557 0.0211347694224598\\ +272.543253128103 0.0181853625646385\\ +321.741815067637 0.0159639033099413\\ +379.821530619074 0.0141898040599508\\ +448.385594802119 0.0127701935027061\\ +544.171428686589 0.0114348358927496\\ +678.940681269611 0.01007545198537\\ +744.512291079513 0.00945294820476786\\ +801.50069615654 0.00888508444098359\\ +854.932706626838 0.0083195461197256\\ +911.92675984593 0.00768348719241727\\ +972.720319245054 0.00698272589983077\\ +1000 0.00666689697084442\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 0.000986591214990927\\ +0.686810358899531 0.00961607450665613\\ +2.07643010725577 0.0864397123269998\\ +3.14410830314726 0.193066332844884\\ +4.07014245321944 0.312234060893812\\ +4.89428989611453 0.432109454557903\\ +5.67222897164454 0.550362362826791\\ +6.39448842855694 0.658816026005437\\ +7.14255928554313 0.764692516217005\\ +7.90492762269643 0.861838142364302\\ +8.66837993001978 0.945817835423729\\ +9.41833153464795 1.01459042548427\\ +10.2331657833025 1.07448032840532\\ +11.1184960481927 1.12391158749394\\ +12.0804213467733 1.16220577084714\\ +13.1255683577184 1.18954254201485\\ +14.3932264471941 1.20812875804871\\ +15.9295021257212 1.21635071225877\\ +17.957846470021 1.21326695495313\\ +20.8122156998634 1.19669668486254\\ +25.9665597293487 1.15923284594155\\ +41.1731993116168 1.08329334675042\\ +53.793615039807 1.05320132888198\\ +71.5904108596489 1.0320381722762\\ +101.6265089393 1.01702228685995\\ +162.633950404819 1.00766460406443\\ +336.920570598027 1.00394499503993\\ +1000 1.00659149840496\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00022788340208\\ +0.497389595879006 1.00585838316961\\ +0.849041520408875 1.0169777020696\\ +1.20526093687084 1.03388257921384\\ +1.57469771464309 1.05705835537382\\ +1.96468664618044 1.08725473098291\\ +2.38439047009372 1.12562858663579\\ +2.8408836901833 1.17332141455905\\ +3.35371015200293 1.23291645731565\\ +3.95911026646846 1.30921457916537\\ +4.76077523022637 1.41518921803517\\ +6.82077673286568 1.65499003575386\\ +7.47952251562182 1.70011041399613\\ +8.05203967082548 1.71918099675407\\ +8.58882855954625 1.7180627426843\\ +9.07732652521023 1.70085448735846\\ +9.59360828709315 1.66699730247143\\ +10.1392540755882 1.61617447689633\\ +10.7159339982267 1.54949431157949\\ +11.4303112911448 1.45498008973714\\ +12.1923125164911 1.34769973246834\\ +13.2471398786612 1.20066861798284\\ +14.5265392594678 1.03788381825594\\ +16.527920614649 0.829583280200129\\ +20.244465099768 0.570442597840016\\ +33.0003479112529 0.230433317062223\\ +41.5545533471888 0.153618412942845\\ +50.8987019351968 0.109523035285756\\ +61.7718759733849 0.0808043734258892\\ +74.2798248256492 0.0616112863356516\\ +88.5007491447344 0.0484284265072419\\ +105.444279352617 0.0386752204862665\\ +126.795284678643 0.0310159759415969\\ +152.469572701757 0.0252538928995306\\ +183.342548256229 0.0208563113378881\\ +220.466873523941 0.0174639981690851\\ +262.675410372384 0.0149472628200375\\ +310.092663593193 0.0130578588174446\\ +366.06951475969 0.0115509756570184\\ +432.151112778977 0.0103465273306163\\ +519.655724382766 0.00926991152637878\\ +691.575882873852 0.00783422957859858\\ +758.367791499719 0.00732274373750306\\ +816.416760492147 0.00685663827475403\\ +870.843149769072 0.0063953905120238\\ +928.89787201645 0.00588169092617318\\ +990.82280990038 0.00532255838700279\\ +1000 0.00523984081839646\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 0.000983356747414889\\ +0.525679112201842 0.00663265676049562\\ +5.03154894503806 0.597050898258991\\ +6.22004882563471 0.890849293359434\\ +7.07701066118189 1.11632415896504\\ +7.8323825991792 1.30888350836189\\ +8.51000724712225 1.46485849412832\\ +9.16140245713852 1.5915035370475\\ +9.77214696972572 1.68519022648511\\ +10.3279473191895 1.7484145818945\\ +10.9153593533139 1.79361076852263\\ +11.5361810173648 1.82022108329581\\ +12.1923125164911 1.82918320318258\\ +13.0051125217341 1.82017614081157\\ +14.000583824681 1.78969725479838\\ +15.211855179861 1.73794080892886\\ +17.1488196987054 1.64677326476406\\ +27.4434330322837 1.31748296226789\\ +32.1001089554317 1.24193005921703\\ +37.5469422407334 1.18256983580377\\ +44.324785912404 1.13440698907649\\ +52.8107971193433 1.09659672174653\\ +64.0924401935645 1.06662142623845\\ +80.7062014114951 1.04252510591626\\ +106.420924406472 1.02461823071235\\ +153.881775003835 1.01166295207242\\ +270.042071883777 1.00308112686129\\ +1000 0.994958974748763\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00023055490082\\ +0.492824957004051 1.00581611976503\\ +0.841249704973612 1.01685911116696\\ +1.19420002813353 1.03366447524185\\ +1.56024641436637 1.05673818001975\\ +1.92879150802078 1.08534830640425\\ +2.34082727617829 1.12311320449088\\ +2.78898029238044 1.17026379561332\\ +3.29243733300777 1.22955054364906\\ +3.85110700232557 1.30139579670551\\ +4.5462954695324 1.39644048805521\\ +5.77779011797051 1.56524035954748\\ +6.75818116816111 1.6795454448748\\ +7.41088151564157 1.73385838933694\\ +7.97814457207663 1.76110589773899\\ +8.51000724712225 1.76704313958592\\ +8.99402217409204 1.75516558389328\\ +9.5055659201012 1.72538643281389\\ +10.0462042134681 1.67692234449359\\ +10.61759183483 1.61063699493652\\ +11.2214776820798 1.52902347588837\\ +11.9695570235904 1.41943015995361\\ +12.8857621318552 1.28355239164254\\ +14.1302599059953 1.11140043695707\\ +15.9295021257212 0.90333622493005\\ +19.3324228755505 0.631870785859824\\ +30.0939003444972 0.278288610386236\\ +37.5469422407334 0.18875912124164\\ +45.9899209052244 0.134797995610482\\ +55.302242561929 0.101061810147035\\ +66.5001803043112 0.0771538702632976\\ +79.2316862486625 0.0607065984057186\\ +95.2750047242729 0.0479584078499907\\ +114.566872863487 0.0384848754758716\\ +139.041083409007 0.0310126156212049\\ +168.743567772738 0.0253506528612443\\ +204.791209666509 0.0210087393881551\\ +246.258591635055 0.0177972651231806\\ +293.404970921579 0.0153942764555667\\ +346.369417737173 0.0135811751508579\\ +408.894822629486 0.0121285052187282\\ +487.178021879463 0.0108958003414909\\ +717.556091893693 0.00865563555448452\\ +779.636013040524 0.00810988856160254\\ +839.312949816636 0.00755573716191403\\ +895.26571259964 0.00700777825248481\\ +954.948563979197 0.00640236013241158\\ +1000 0.00594138705279572\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 0.00099472363035317\\ +0.525679112201842 0.00670632726603642\\ +5.72476623970218 0.780836769911304\\ +6.75818116816111 1.06067376170896\\ +7.54879928165344 1.27750815472483\\ +8.2018894992022 1.44525401505821\\ +8.82969995549409 1.58713956665277\\ +9.41833153464795 1.69687276187022\\ +9.95400828762153 1.77457223776392\\ +10.5201521761616 1.83355930441868\\ +11.1184960481927 1.87208636723445\\ +11.7508713090481 1.89026098058825\\ +12.4192135270178 1.88983883584413\\ +13.2471398786612 1.86972214913389\\ +14.2611370719413 1.82746569026238\\ +15.6384675830225 1.75691466391346\\ +18.1241754737424 1.62930802903082\\ +24.1202820761801 1.405880523387\\ +28.4743916646725 1.30628593563976\\ +33.3060034362459 1.23212168162655\\ +38.957456157755 1.17444759555503\\ +45.9899209052244 1.12800147681489\\ +54.7947233690029 1.09174562190275\\ +67.1161176749628 1.06200512106838\\ +85.2964449974102 1.03876146090514\\ +114.566872863487 1.02153700945417\\ +170.306502925284 1.00948857278961\\ +321.741815067637 1.00142205069168\\ +1000 0.994270444604027\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019513496248\\ +0.530548052536957 1.00568970807611\\ +0.914031074875623 1.01668700782915\\ +1.30953502048267 1.03357758781538\\ +1.72678090388436 1.05673898933865\\ +2.17438947560008 1.08652734929763\\ +2.68800102153761 1.12514797602198\\ +3.35371015200293 1.17848080666259\\ +5.72476623970218 1.32621381381782\\ +6.39448842855694 1.34002524226856\\ +7.01206358900718 1.3391545885544\\ +7.618717702323 1.32612486739831\\ +8.27785696619848 1.29985349292251\\ +8.9114823228402 1.2648360760854\\ +9.59360828709315 1.21912638054486\\ +10.423606739764 1.1562196947766\\ +11.3254131515281 1.08345237377689\\ +12.4192135270178 0.994646767360003\\ +13.7447909267754 0.892223337546892\\ +15.3527502878042 0.780657062635426\\ +17.4679621512725 0.657279232767804\\ +20.4319732019527 0.523962553769108\\ +24.7967289250216 0.388871126510428\\ +35.2003147279668 0.221779505225601\\ +48.6056423214213 0.133160333473648\\ +60.6432939540806 0.0955390613949424\\ +73.5981447526576 0.0726471496794468\\ +89.3204599858097 0.056188498144931\\ +107.406615333343 0.0446955162638014\\ +130.351224468151 0.0357094538655792\\ +158.19734815786 0.0289672616469181\\ +191.992066559328 0.0238425678292925\\ +230.867799418717 0.0200776978886586\\ +275.067600790807 0.0172736750849493\\ +324.721849207313 0.0151653971777367\\ +383.33951017666 0.0134838134876411\\ +452.538627817017 0.012138831759109\\ +549.211648388779 0.0108712020687637\\ +678.940681269611 0.00962511426052542\\ +744.512291079513 0.00902966157303615\\ +801.50069615654 0.0084867578052907\\ +854.932706626838 0.00794628768338953\\ +911.92675984593 0.00733860073445905\\ +972.720319245054 0.00666923865891795\\ +1000 0.0063675922255174\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 0.000993683498129834\\ +0.693171727615541 0.00986107491181145\\ +2.1150728248688 0.0902588037487937\\ +3.20262069365765 0.201505938087618\\ +4.14588849683291 0.32559584195205\\ +4.98537346387389 0.449994311544008\\ +5.77779011797051 0.572089118533177\\ +6.5134909462728 0.683327432797346\\ +7.20871503378214 0.782008012053079\\ +7.90492762269643 0.871373734370721\\ +8.66837993001978 0.956313217891875\\ +9.41833153464795 1.02571357882929\\ +10.2331657833025 1.08594457215986\\ +11.1184960481927 1.13540507672703\\ +12.0804213467733 1.17342993246118\\ +13.1255683577184 1.20024366843185\\ +14.3932264471941 1.21802850337886\\ +15.9295021257212 1.22520839978314\\ +17.957846470021 1.22081952621386\\ +20.8122156998634 1.20271075160049\\ +26.2070669648385 1.16157244183947\\ +40.0500075787361 1.08882328636126\\ +52.3261423948666 1.05684096316286\\ +69.6374473062822 1.03424408497473\\ +97.946966706954 1.01845914640602\\ +153.881775003835 1.00844443771496\\ +307.2468842709 1.00395125244648\\ +1000 1.00629794083907\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019502800461\\ +0.530548052536957 1.00568988121355\\ +0.914031074875623 1.01669481676841\\ +1.30953502048267 1.03360899347959\\ +1.72678090388436 1.05682659974006\\ +2.17438947560008 1.0867329399606\\ +2.68800102153761 1.12559832236443\\ +3.35371015200293 1.17949332784561\\ +5.83130511352622 1.33579039884428\\ +6.5134909462728 1.34934296441228\\ +7.14255928554313 1.34769324630327\\ +7.76050333513357 1.33345053631879\\ +8.43190929286626 1.30546702846209\\ +9.07732652521023 1.26854744951125\\ +9.77214696972572 1.22065903879413\\ +10.61759183483 1.15511312963574\\ +11.5361810173648 1.07968887646144\\ +12.650337203959 0.988130892832227\\ +14.000583824681 0.883145745297856\\ +15.6384675830225 0.769505378109745\\ +17.7930438991858 0.6446969352834\\ +20.8122156998634 0.510875504164063\\ +25.4921465445142 0.370874338006802\\ +37.2023668141307 0.199480501298638\\ +50.8987019351968 0.120354962448871\\ +63.5042516859596 0.0858152722872483\\ +77.070271142123 0.0649372225342789\\ +92.6759330114688 0.0506229352816457\\ +111.441525146679 0.0401109497548331\\ +134.006889636395 0.0322837595984688\\ +161.141427725302 0.0263724276350799\\ +193.770333747799 0.0218523117089745\\ +233.006141069692 0.0183648596092637\\ +277.61532944368 0.0157810182859253\\ +327.729484992338 0.0138459867298172\\ +383.33951017666 0.0123836581820187\\ +452.538627817017 0.0111397801861152\\ +549.211648388779 0.00996962615834048\\ +678.940681269611 0.00882187840099713\\ +744.512291079513 0.00827452565657016\\ +801.50069615654 0.00777604808326403\\ +854.932706626838 0.00728022082243072\\ +911.92675984593 0.00672307796487261\\ +972.720319245054 0.00610966899916823\\ +1000 0.00583330066268641\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.218947676285662 0.000993111462811602\\ +0.686810358899531 0.00968062162550128\\ +2.13466303332425 0.0919662044793055\\ +3.23228397818138 0.205392663556225\\ +4.18428850790158 0.332038924609619\\ +5.03154894503806 0.459159442126436\\ +5.83130511352622 0.584085057469465\\ +6.57382014340959 0.698014728155759\\ +7.27548352919623 0.799122248251886\\ +7.97814457207663 0.890644303969089\\ +8.74866812047991 0.97748641202933\\ +9.5055659201012 1.04820176494391\\ +10.3279473191895 1.10922961637822\\ +11.2214776820798 1.15888732185325\\ +12.1923125164911 1.19649954511023\\ +13.2471398786612 1.22234955384601\\ +14.5265392594678 1.23855086021887\\ +16.0770442167382 1.24357812752163\\ +18.1241754737424 1.23640612879901\\ +21.0049824165392 1.21494782254608\\ +26.6947849403432 1.16755630668553\\ +38.957456157755 1.09760183255867\\ +50.4315948717136 1.06347914839118\\ +65.8898955079995 1.03953022455568\\ +90.1477631452492 1.02234004816404\\ +135.248087041788 1.01081862950645\\ +246.258591635055 1.00456883525182\\ +613.462171799251 1.00529992477952\\ +1000 1.00577436551448\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00021607235956\\ +0.506646100892127 1.00575200657261\\ +0.872852662384838 1.01694381643291\\ +1.23906215694792 1.03371251052616\\ +1.6188596901782 1.0565315387764\\ +2.01978575681988 1.08595490755404\\ +2.45126006203334 1.12281253302012\\ +2.94760625512486 1.17043127985289\\ +3.54445567397044 1.2325901937055\\ +4.38168993151419 1.32266767496597\\ +6.10640754223204 1.48013005035423\\ +6.82077673286568 1.51890072699045\\ +7.41088151564157 1.53427941233886\\ +7.97814457207663 1.53363959321354\\ +8.51000724712225 1.51935240350784\\ +9.07732652521023 1.49056875317561\\ +9.68246611930312 1.4466373827049\\ +10.3279473191895 1.38809302815284\\ +11.0164594963366 1.31668595740746\\ +11.8597101233767 1.2228686981262\\ +12.8857621318552 1.10769216046452\\ +14.1302599059953 0.975958468022417\\ +15.7833140565212 0.823204307634532\\ +18.1241754737424 0.652260172082157\\ +21.7940698430296 0.468043376005329\\ +28.4743916646725 0.282814166586618\\ +49.5102015955635 0.0971226896640252\\ +80.7062014114951 0.0381315336354449\\ +108.401435917833 0.0221246554729174\\ +136.500780654601 0.0147427851340664\\ +165.660595894991 0.010679900647644\\ +197.376432630026 0.00812790588463667\\ +230.867799418717 0.00648022573022635\\ +267.563844455205 0.00532687682797522\\ +307.2468842709 0.00450574828860765\\ +349.577557436328 0.00391131189377146\\ +397.740302405804 0.00344388289171274\\ +452.538627817017 0.00307336860371955\\ +519.655724382766 0.00275550803571285\\ +765.391938823015 0.00205285601249384\\ +823.978568452852 0.00190671380900516\\ +887.04968896544 0.00174504223495197\\ +946.1848194722 0.00159044484796015\\ +1000 0.001450119779708\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.207164967560207 0.000984977952612685\\ +0.545427130532983 0.00676362065265335\\ +3.11525422355549 0.21679588554222\\ +4.4632339267104 0.434323824475532\\ +5.51749237612913 0.641928165663123\\ +6.39448842855694 0.826911840911409\\ +7.20871503378214 0.996622201468997\\ +7.90492762269643 1.13155450714358\\ +8.58882855954625 1.24877335435785\\ +9.24625711640574 1.34349988574698\\ +9.86265846131282 1.41496895316942\\ +10.5201521761616 1.47298766258374\\ +11.2214776820798 1.51598602945727\\ +11.9695570235904 1.54363990039541\\ +12.7675070431927 1.55678457483246\\ +13.7447909267754 1.55625430716884\\ +14.9339321612425 1.53980378456727\\ +16.527920614649 1.50380346206315\\ +18.979216428391 1.43962460646706\\ +32.6974974451177 1.19938088781834\\ +39.3182875570577 1.14509170434202\\ +47.2796959160039 1.1041300715203\\ +57.9112264764176 1.0714778300226\\ +72.9227205872831 1.046161493084\\ +96.157460014321 1.02709822787356\\ +136.500780654601 1.01372646760208\\ +228.74908173557 1.00499522641043\\ +648.353428605472 0.999578989448129\\ +1000 0.99870383593354\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00021071596485\\ +0.511338753841433 1.00574234908319\\ +0.880937190447399 1.01690641882821\\ +1.25053858729039 1.03360182824143\\ +1.63385387780986 1.05625718341722\\ +2.03849339825246 1.08535368388402\\ +2.49687842888433 1.12362843510873\\ +3.00246170908555 1.17072898966223\\ +3.64385898376354 1.23472119699469\\ +4.67379510799246 1.33703888339513\\ +5.83130511352622 1.43158840842782\\ +6.57382014340959 1.47050153055458\\ +7.20871503378214 1.48625703564617\\ +7.76050333513357 1.48577100278315\\ +8.35452805838287 1.47066794789268\\ +8.9114823228402 1.44385583812113\\ +9.5055659201012 1.40372489997194\\ +10.1392540755882 1.35063689870264\\ +10.8151870255229 1.28592442008821\\ +11.6430313292088 1.2005268352098\\ +12.650337203959 1.09471745436885\\ +13.8720978054162 0.97206496563296\\ +15.3527502878042 0.839126694363539\\ +17.4679621512725 0.682867640084677\\ +20.4319732019527 0.521256628951543\\ +25.0264009641792 0.360161357466413\\ +33.3060034362459 0.209412878393601\\ +52.8107971193433 0.0853223945750632\\ +153.881775003835 0.0105672898682992\\ +216.438908606402 0.00556081224213261\\ +282.781797962534 0.00343027939467486\\ +356.083255262928 0.00230668563013984\\ +444.270674960688 0.0016071495541506\\ +591.250841383188 0.00102956377512518\\ +607.832312829723 0.000986205727897114\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.211020342856859 0.00099698944666563\\ +0.922497005259217 0.0189210926724661\\ +2.76338529005317 0.167288039260035\\ +4.07014245321944 0.354116638241176\\ +5.12518692705333 0.542779850013828\\ +6.05036787939122 0.723671122634888\\ +6.82077673286568 0.875214438873428\\ +7.54879928165344 1.01104119831165\\ +8.27785696619848 1.13335454003902\\ +8.99402217409204 1.2357272421968\\ +9.68246611930312 1.31555308910115\\ +10.3279473191895 1.37383932418325\\ +11.0164594963366 1.41967106070649\\ +11.7508713090481 1.45242680686405\\ +12.650337203959 1.47428414048885\\ +13.6186523675608 1.4811503133443\\ +14.796880626864 1.47403959525975\\ +16.3762407452169 1.44955699686614\\ +18.6324631193156 1.40311682099961\\ +23.2469705998565 1.31053261746054\\ +30.6539529505653 1.20632945246234\\ +37.5469422407334 1.14738141162976\\ +45.5678626584106 1.10487194609209\\ +55.8144624945496 1.07241282961999\\ +70.2824426430835 1.04700313260738\\ +92.6759330114688 1.02773843361645\\ +131.55856240457 1.01417557010508\\ +218.443607114943 1.00546405585203\\ +554.298551568467 1.00105982307764\\ +1000 1.00008650697837\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00020420451419\\ +0.520854855057766 1.00571591593343\\ +0.905642837944528 1.01698208839834\\ +1.29751716865759 1.03403134772919\\ +1.71093390726902 1.05737606028692\\ +2.15443469003188 1.08744975356347\\ +2.66333272517498 1.12661212053633\\ +3.29243733300777 1.17859844449565\\ +4.67379510799246 1.28581543726942\\ +5.56859644428641 1.33449012408357\\ +6.2776601058065 1.35500296156782\\ +6.8839520696455 1.35842158901939\\ +7.47952251562182 1.34923612042116\\ +8.12661920009194 1.32638521304547\\ +8.74866812047991 1.29371402381126\\ +9.41833153464795 1.24943963005363\\ +10.1392540755882 1.19443799916559\\ +11.0164594963366 1.12177287525432\\ +11.9695570235904 1.04066826035085\\ +13.1255683577184 0.94482321091424\\ +14.5265392594678 0.83759794623065\\ +16.3762407452169 0.71490421690769\\ +18.8050405512858 0.585445407558462\\ +22.1996611911995 0.452653070310868\\ +27.9541599906786 0.310482434582043\\ +57.3797641421413 0.0944807417194765\\ +70.93341204988 0.0682879879792687\\ +86.0864769614925 0.051692613048903\\ +103.517795563018 0.0403447934748092\\ +123.336349791378 0.0323865175499063\\ +146.949180062482 0.0263871141261768\\ +175.082703173572 0.0218072467703292\\ +208.60240892485 0.0182729722712013\\ +248.53948574298 0.015524264486379\\ +293.404970921579 0.0134779119950247\\ +343.190719745904 0.0119375874997524\\ +401.424249049932 0.0107006963718353\\ +473.887960971766 0.00964780496994262\\ +602.254120146193 0.00842206485344181\\ +691.575882873852 0.00774812552408906\\ +758.367791499719 0.00724735502409625\\ +816.416760492147 0.00678829730653833\\ +870.843149769072 0.00633168001907941\\ +928.89787201645 0.0058211374262079\\ +990.82280990038 0.00526406287474181\\ +1000 0.00518158830426909\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.212974853574552 0.000984703605242891\\ +2.94760625512486 0.177044606863457\\ +3.95911026646846 0.308581759155715\\ +4.84937406733524 0.443356769275993\\ +5.67222897164454 0.575326883459059\\ +6.4537154016467 0.699597208130357\\ +7.20871503378214 0.812445953415892\\ +7.90492762269643 0.906252617547371\\ +8.58882855954625 0.986632068003923\\ +9.33189771573324 1.05982650392161\\ +10.1392540755882 1.12308643116154\\ +10.9153593533139 1.16944021217196\\ +11.8597101233767 1.20970018615646\\ +12.8857621318552 1.23753851634942\\ +14.000583824681 1.25395166223857\\ +15.3527502878042 1.26068377371205\\ +17.1488196987054 1.2561680739653\\ +19.6922025547917 1.23727680991666\\ +23.8989256623105 1.19824395023137\\ +39.6824610456948 1.09756656717935\\ +50.8987019351968 1.06412544855\\ +66.5001803043112 1.03980606216937\\ +90.9827289445556 1.02242577389334\\ +136.500780654601 1.01080142561579\\ +248.53948574298 1.00446219087767\\ +636.507908129557 1.00495769545405\\ +1000 1.00513437205795\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00022858659365\\ +0.492824957004051 1.00578727958155\\ +0.841249704973612 1.01677933223578\\ +1.19420002813353 1.03350297655154\\ +1.56024641436637 1.05645471714185\\ +1.94665634334226 1.0864028783824\\ +2.34082727617829 1.1224087526332\\ +2.78898029238044 1.16918918444277\\ +3.29243733300777 1.22791384367162\\ +3.85110700232557 1.29891092549611\\ +4.58840412645476 1.39825361021008\\ +7.20871503378214 1.70529560133243\\ +7.76050333513357 1.73654590633757\\ +8.27785696619848 1.74841081742161\\ +8.74866812047991 1.74345676455276\\ +9.24625711640574 1.72202222192619\\ +9.77214696972572 1.68274852409116\\ +10.3279473191895 1.62570473877806\\ +10.9153593533139 1.55254228553205\\ +11.6430313292088 1.45090405481467\\ +12.534242654614 1.3209326689805\\ +13.6186523675608 1.16839038323014\\ +15.0722530931076 0.98791097920778\\ +17.4679621512725 0.758225084840296\\ +37.8947091907467 0.183482603160954\\ +46.4158883361278 0.130569702647175\\ +56.3314267060136 0.0961629881082258\\ +67.7377599751775 0.0731974116432733\\ +80.7062014114951 0.0574384845104833\\ +97.0480887738031 0.0452626678194245\\ +116.698981861715 0.0362476777925308\\ +140.328908478587 0.0294577842184924\\ +170.306502925284 0.0240404614519806\\ +206.688024962908 0.0199023481828423\\ +248.53948574298 0.0168514292996959\\ +296.122543798803 0.0145743280652851\\ +349.577557436328 0.0128595094540004\\ +412.682084570295 0.0114873297029423\\ +491.690357762803 0.0103229516576721\\ +710.970943231243 0.00829623045433711\\ +772.48114514034 0.00778356242217467\\ +831.610415323096 0.00726429402914252\\ +887.04968896544 0.00675050128683016\\ +946.1848194722 0.00618114039187035\\ +1000 0.00565667531118576\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 0.000987044521074404\\ +0.598104096238094 0.00863299902648169\\ +5.26892142135068 0.660104504943558\\ +6.4537154016467 0.966421242610135\\ +7.34287044716677 1.20689361301378\\ +8.05203967082548 1.38912702203261\\ +8.66837993001978 1.53040268800954\\ +9.24625711640574 1.64226145765674\\ +9.86265846131282 1.73592133384525\\ +10.423606739764 1.7974602824601\\ +11.0164594963366 1.83955385295083\\ +11.6430313292088 1.8619560939015\\ +12.3052400435926 1.86602682083049\\ +13.1255683577184 1.85102265139232\\ +14.1302599059953 1.81397743145129\\ +15.4949503931463 1.74863007611775\\ +17.7930438991858 1.63419736350766\\ +25.0264009641792 1.37723711116814\\ +29.5440799888038 1.28424167611116\\ +34.5571993676214 1.21517884195361\\ +40.4209583979631 1.16156897129869\\ +47.7176094893875 1.11845984316009\\ +57.3797641421413 1.08336320878975\\ +70.93341204988 1.05529243877451\\ +90.9827289445556 1.03390892541377\\ +124.478714618791 1.01812182142005\\ +191.992066559328 1.00728209697426\\ +420.362168384471 0.999473762743937\\ +1000 0.994549834110329\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.0002170121082\\ +0.506646100892127 1.00578421595155\\ +0.872852662384838 1.01704257363672\\ +1.23906215694792 1.03391820873031\\ +1.6188596901782 1.05689749417677\\ +2.01978575681988 1.08655461445589\\ +2.45126006203334 1.1237527744692\\ +2.94760625512486 1.17190120917623\\ +3.54445567397044 1.23493327442668\\ +4.34147833005509 1.32237246305059\\ +6.22004882563471 1.49762767007992\\ +6.8839520696455 1.53373317797514\\ +7.47952251562182 1.54943586075336\\ +8.05203967082548 1.54839021523008\\ +8.58882855954625 1.53308246111554\\ +9.16140245713852 1.50261587210357\\ +9.77214696972572 1.45639644256517\\ +10.423606739764 1.39511730931319\\ +11.1184960481927 1.32076302650099\\ +11.9695570235904 1.22364878519491\\ +13.0051125217341 1.10524353822154\\ +14.2611370719413 0.970836990876706\\ +15.9295021257212 0.816231151720163\\ +18.2920450484629 0.644650699867354\\ +22.1996611911995 0.453423427371125\\ +29.8177229001967 0.259262192354296\\ +76.3629826128224 0.0431143287679629\\ +99.769776423632 0.0265791205318374\\ +124.478714618791 0.0181685863872198\\ +149.683929307726 0.0134771451887414\\ +176.704352608895 0.0104795914535714\\ +206.688024962908 0.00840589185207104\\ +239.540735872088 0.00694439797474118\\ +275.067600790807 0.00589562333705034\\ +315.863540826782 0.00508191808281756\\ +359.381366380463 0.00448504753893933\\ +408.894822629486 0.00400905545815459\\ +469.539001068006 0.00360107036003306\\ +554.298551568467 0.00320907615648738\\ +710.970943231243 0.00270519726294141\\ +779.636013040524 0.00250424123665625\\ +839.312949816636 0.00232408248247338\\ +895.26571259964 0.0021488559505733\\ +954.948563979197 0.00195753460039927\\ +1000 0.00181302873881621\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.207164967560207 0.000989577661714325\\ +0.565917016324624 0.00731958862421034\\ +3.17322963473498 0.226338841376543\\ +4.5462954695324 0.453674526410645\\ +5.62017384808319 0.670498407504386\\ +6.5134909462728 0.863047985558827\\ +7.27548352919623 1.02467014630974\\ +7.97814457207663 1.16290998131774\\ +8.66837993001978 1.28222668749995\\ +9.33189771573324 1.37772263906533\\ +9.95400828762153 1.44883456609627\\ +10.61759183483 1.5055079034635\\ +11.3254131515281 1.54628344541952\\ +12.0804213467733 1.57105401403903\\ +12.8857621318552 1.58092486787751\\ +13.8720978054162 1.57651305804747\\ +15.0722530931076 1.55588971220731\\ +16.6810053720006 1.51544669144933\\ +19.3324228755505 1.44182979870039\\ +30.3726357970331 1.22926973646728\\ +36.5226736430818 1.16768840666419\\ +43.9180089259609 1.12078677562943\\ +53.2999408084409 1.08458278396406\\ +65.8898955079995 1.05670419197755\\ +84.5136633068472 1.03516839167553\\ +115.628013120738 1.01913734088751\\ +176.704352608895 1.00834269908519\\ +356.083255262928 1.00180729032106\\ +1000 0.998338654356233\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00019997053167\\ +0.511338753841433 1.00571743705366\\ +0.872852662384838 1.01672701851584\\ +1.23906215694792 1.03340440041598\\ +1.6188596901782 1.05609876982551\\ +2.01978575681988 1.08535110680322\\ +2.45126006203334 1.12197438179983\\ +2.94760625512486 1.16925411051604\\ +3.54445567397044 1.23090413499703\\ +4.38168993151419 1.32009886536953\\ +6.10640754223204 1.47556532170834\\ +6.82077673286568 1.51376904033354\\ +7.41088151564157 1.52894755856796\\ +7.97814457207663 1.5283944707877\\ +8.51000724712225 1.5144424487903\\ +9.07732652521023 1.48625540095531\\ +9.68246611930312 1.44316204005344\\ +10.3279473191895 1.38563633853832\\ +11.0164594963366 1.31533675592855\\ +11.8597101233767 1.2227626031127\\ +12.8857621318552 1.10879997722328\\ +14.1302599059953 0.978057780723203\\ +15.7833140565212 0.825962617447402\\ +17.957846470021 0.665745982577778\\ +21.3958887134342 0.486795115680686\\ +27.4434330322837 0.305178690539769\\ +41.9394395566719 0.13448716999309\\ +88.5007491447344 0.0317813417274345\\ +121.082975023204 0.0177378028321802\\ +153.881775003835 0.0115853026518327\\ +186.754584276108 0.00836672239350672\\ +222.508879812837 0.00634982750817787\\ +260.2647881969 0.00505178292222461\\ +298.865287355038 0.00419599248049215\\ +343.190719745904 0.00354294636012853\\ +390.473523688556 0.00307229439751212\\ +444.270674960688 0.0027032416515601\\ +510.161531474983 0.00239137935770204\\ +607.832312829723 0.0020779665778434\\ +724.202233460732 0.00180197554215247\\ +794.145171902934 0.00164997290723325\\ +854.932706626838 0.0015172762201196\\ +911.92675984593 0.00139118298149873\\ +972.720319245054 0.00125654582367325\\ +1000 0.00119691993022631\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.214947467343798 0.000991474154018678\\ +1.87617469143912 0.0786051354534781\\ +3.47969790388769 0.266177275678597\\ +4.71708469091702 0.476367211090243\\ +5.72476623970218 0.676881786128738\\ +6.57382014340959 0.854133949936334\\ +7.34287044716677 1.01075925746182\\ +8.05203967082548 1.14384000084806\\ +8.74866812047991 1.25813922998681\\ +9.41833153464795 1.3493739774202\\ +10.0462042134681 1.41731957931482\\ +10.7159339982267 1.47166365243692\\ +11.4303112911448 1.51113390151674\\ +12.1923125164911 1.53566424431487\\ +13.0051125217341 1.54626354256286\\ +14.000583824681 1.54362364906843\\ +15.211855179861 1.52578235458935\\ +16.835508029612 1.48925025735678\\ +19.5114834684662 1.42125324166503\\ +31.8055201533292 1.20748056754498\\ +38.24569722467 1.15148553388737\\ +45.9899209052244 1.1089778932911\\ +56.3314267060136 1.07494597307969\\ +70.93341204988 1.04847396918585\\ +92.6759330114688 1.02900513119491\\ +130.351224468151 1.01498493137987\\ +212.484535249888 1.00580801181602\\ +524.468874949512 1.00049982099324\\ +1000 0.998963273489523\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.0002297416947\\ +0.492824957004051 1.00578773132736\\ +0.849041520408875 1.01706107469385\\ +1.20526093687084 1.03402613383994\\ +1.57469771464309 1.05728416936759\\ +1.94665634334226 1.0860723151995\\ +2.36250846547795 1.12398581027201\\ +2.81481236050758 1.17117604858452\\ +3.32293251639897 1.23026025033061\\ +3.92277675892772 1.30612085907368\\ +4.67379510799246 1.40617781439369\\ +6.94771254846024 1.67239726729273\\ +7.54879928165344 1.71170867410161\\ +8.12661920009194 1.72933730768751\\ +8.66837993001978 1.72606920770066\\ +9.16140245713852 1.70637097050349\\ +9.68246611930312 1.66955176293465\\ +10.2331657833025 1.61551432220752\\ +10.8151870255229 1.5456452587658\\ +11.5361810173648 1.44780778279753\\ +12.4192135270178 1.3216205869055\\ +13.4936714058831 1.1722032144949\\ +14.9339321612425 0.993838136479915\\ +17.1488196987054 0.777745543012107\\ +22.4052786930002 0.472371699766719\\ +31.8055201533292 0.247201866096736\\ +40.0500075787361 0.164664687999375\\ +49.0558370636505 0.117312977497726\\ +59.5353313081437 0.086489477633604\\ +71.5904108596489 0.0658987907248137\\ +85.2964449974102 0.0517610803282885\\ +101.6265089393 0.0413041693654156\\ +122.204468663149 0.0330932570651336\\ +146.949180062482 0.0269154110849164\\ +176.704352608895 0.0221983912974139\\ +212.484535249888 0.0185565439438878\\ +255.509709035251 0.015725944048536\\ +304.42722120643 0.013618399306739\\ +359.381366380463 0.0120343819503353\\ +424.255643071778 0.0107678604170973\\ +505.479682119124 0.00968999712364423\\ +697.981390783066 0.00801207543559182\\ +765.391938823015 0.00747918340606319\\ +823.978568452852 0.00699186077452934\\ +878.909065341995 0.00650955862624419\\ +937.501501514529 0.00597367066993419\\ +1000 0.00539288850252799\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.201513573381556 0.000991369565026902\\ +0.550478980785497 0.00731880118015693\\ +5.36697694554048 0.679839593590152\\ +6.4537154016467 0.958477682381947\\ +7.27548352919623 1.17696209521055\\ +7.97814457207663 1.35512984917002\\ +8.58882855954625 1.49417517168493\\ +9.16140245713852 1.60534550339679\\ +9.77214696972572 1.69980237718783\\ +10.3279473191895 1.76324688565682\\ +10.9153593533139 1.80822609146817\\ +11.5361810173648 1.83421625412845\\ +12.1923125164911 1.84223851847655\\ +13.0051125217341 1.83187655378131\\ +14.000583824681 1.79971564616347\\ +15.211855179861 1.74612573305982\\ +17.1488196987054 1.65270076885321\\ +26.9420371368188 1.32921049267154\\ +31.5136348486648 1.25102687383997\\ +36.8609536217216 1.18953287215509\\ +43.5149650092505 1.1395955040182\\ +51.8459354389291 1.10036260736914\\ +62.9214610961034 1.06923906517432\\ +78.5045620020451 1.04501166315356\\ +103.517795563018 1.02606896872531\\ +148.31025143361 1.01260150224567\\ +253.164847863136 1.0036921317713\\ +972.720319245054 0.994672345758512\\ +1000 0.994808613989335\\ +}; +\addplot [color=mycolor1, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1.00020954496384\\ +0.516074871038591 1.00579146307111\\ +0.889096598952916 1.01703959463547\\ +1.26212131452255 1.03383979653677\\ +1.64898694447106 1.05659555246692\\ +2.05737431343291 1.08574586815517\\ +2.52000499376409 1.1239507180103\\ +3.05833803237844 1.17338880266678\\ +3.74605003274899 1.24045599701126\\ +6.2776601058065 1.44057990425486\\ +6.94771254846024 1.46116763418812\\ +7.54879928165344 1.46382443377929\\ +8.12661920009194 1.45223914241432\\ +8.74866812047991 1.42539993442632\\ +9.33189771573324 1.38858554667703\\ +9.95400828762153 1.33949883455865\\ +10.7159339982267 1.26977073990895\\ +11.5361810173648 1.1882166195253\\ +12.534242654614 1.0868667534867\\ +13.7447909267754 0.968764216009991\\ +15.211855179861 0.83985245355863\\ +17.1488196987054 0.697328850279999\\ +19.8745954958098 0.544449879386969\\ +24.1202820761801 0.38544854739369\\ +31.2244282309286 0.238078940532575\\ +46.4158883361278 0.111034629018082\\ +122.204468663149 0.0171162319914057\\ +164.140297114447 0.00992430724437396\\ +206.688024962908 0.00661436956912793\\ +250.841505927754 0.00479772888002399\\ +296.122543798803 0.00371157692757879\\ +343.190719745904 0.00300548244364327\\ +394.090164040345 0.002506686745748\\ +452.538627817017 0.00212548895791761\\ +519.655724382766 0.00183068994706429\\ +613.462171799251 0.00155386932491147\\ +744.512291079513 0.00128203494651237\\ +816.416760492147 0.0011528522896618\\ +878.909065341995 0.00104395024350009\\ +911.92675984593 0.00098726789669818\\ +}; +\addplot [color=mycolor2, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.211020342856859 0.00099135526076278\\ +0.598104096238094 0.00789341869276899\\ +2.61467321180109 0.148407886961816\\ +3.92277675892772 0.325690971355827\\ +4.98537346387389 0.507889209498173\\ +5.88531577519145 0.677513921741425\\ +6.69616005485322 0.832012028793756\\ +7.41088151564157 0.961752171130274\\ +8.12661920009194 1.07959943238888\\ +8.82969995549409 1.17955171767708\\ +9.5055659201012 1.25893512355348\\ +10.2331657833025 1.32589651610798\\ +10.9153593533139 1.37244462231969\\ +11.6430313292088 1.40699290954211\\ +12.534242654614 1.4319795371025\\ +13.4936714058831 1.44276985588542\\ +14.6610868404698 1.44054164735945\\ +16.0770442167382 1.42429827881865\\ +18.1241754737424 1.38886050405382\\ +21.5940615210357 1.32360151035419\\ +32.1001089554317 1.18379119700084\\ +39.3182875570577 1.13109190534588\\ +48.1595791019235 1.09166733125577\\ +60.0867589171969 1.06111065730019\\ +77.070271142123 1.03827810402975\\ +104.47659715608 1.02145049880974\\ +156.74554102056 1.00995946517423\\ +293.404970921579 1.00332016608336\\ +1000 1.00081388192113\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +20 0.7\\ +50 0.7\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +50 0.1\\ +500 0.1\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +500 0.01\\ +1000 0.01\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.136766110409167 0.000467624223911311\\ +2 0.1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/robust_stability.pdf b/matlab/figs/robust_stability.pdf new file mode 100644 index 0000000..2780f79 Binary files /dev/null and b/matlab/figs/robust_stability.pdf differ diff --git a/matlab/figs/robust_stability.png b/matlab/figs/robust_stability.png new file mode 100644 index 0000000..340dde5 Binary files /dev/null and b/matlab/figs/robust_stability.png differ diff --git a/matlab/figs/robust_stability.svg b/matlab/figs/robust_stability.svg new file mode 100644 index 0000000..a4772ee --- /dev/null +++ b/matlab/figs/robust_stability.svg @@ -0,0 +1,249 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/robust_stability.tex b/matlab/figs/robust_stability.tex new file mode 100644 index 0000000..c8f2861 --- /dev/null +++ b/matlab/figs/robust_stability.tex @@ -0,0 +1,1132 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=3.631in, +height=1.989in, +at={(0.325in,0.419in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmode=log, +xmin=0.1, +xmax=1000, +xminorticks=true, +xlabel={Frequency [Hz]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymode=log, +ymin=0.02, +ymax=2, +yminorticks=true, +axis background/.style={fill=white}, +xmajorgrids, +xminorgrids, +ymajorgrids, +yminorgrids +] +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039309331963\\ +0.334598912054997 0.100448499077048\\ +0.550478980785497 0.101213615752643\\ +0.760117761795533 0.10230988010538\\ +0.974964918348409 0.103789816323683\\ +1.19420002813353 0.105665295529374\\ +1.40977287162897 0.107861002060435\\ +1.63385387780986 0.110502209230813\\ +1.87617469143912 0.113755065012372\\ +2.13466303332425 0.117657972599812\\ +2.40647515001542 0.122214979737495\\ +2.68800102153761 0.127386333934347\\ +3.00246170908555 0.133650403249216\\ +3.35371015200293 0.141170922595561\\ +3.78074666359935 0.15090341759335\\ +4.3016357581068 0.163350309907326\\ +5.17265738721602 0.184483588631828\\ +6.2776601058065 0.209301921782174\\ +7.01206358900718 0.223213908942937\\ +7.68928372075831 0.233714232215048\\ +8.35452805838287 0.241757905518141\\ +8.99402217409204 0.247457216120373\\ +9.68246611930312 0.251584432955964\\ +10.423606739764 0.254035852882007\\ +11.2214776820798 0.254802487145319\\ +12.0804213467733 0.253958925122535\\ +13.0051125217341 0.251643430434739\\ +14.1302599059953 0.247502999505734\\ +15.4949503931463 0.241329252221409\\ +17.1488196987054 0.2330776648182\\ +19.1550055557353 0.222882955497879\\ +21.7940698430296 0.210124135111641\\ +25.9665597293487 0.192510191623661\\ +42.3278906557355 0.150116842029793\\ +49.5102015955635 0.139922645937256\\ +56.8531791387375 0.132380562077484\\ +65.2852114112785 0.126106640181273\\ +74.9678187496688 0.120970389824955\\ +86.0864769614925 0.116822671145113\\ +99.769776423632 0.113316512888807\\ +116.698981861715 0.110438312481853\\ +139.041083409007 0.108030274597808\\ +168.743567772738 0.106110400578584\\ +212.484535249888 0.104533661548839\\ +285.400976982924 0.103222408075678\\ +436.153778920801 0.102054407488548\\ +1000 0.100433842599204\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039532454044\\ +0.334598912054997 0.100448854583523\\ +0.550478980785497 0.101213490411252\\ +0.760117761795533 0.102309221059694\\ +0.974964918348409 0.103788893615614\\ +1.19420002813353 0.10566481639416\\ +1.40977287162897 0.107862141433199\\ +1.63385387780986 0.110506853489999\\ +1.87617469143912 0.11376635421112\\ +2.13466303332425 0.117680638225121\\ +2.40647515001542 0.122255692302471\\ +2.68800102153761 0.127453905130932\\ +3.00246170908555 0.133759950981242\\ +3.35371015200293 0.141345281042914\\ +3.74605003274899 0.150366241795426\\ +4.26215882901533 0.162845134730737\\ +5.03154894503806 0.181927425691727\\ +6.33580499265825 0.212231532887353\\ +7.01206358900718 0.225488931276784\\ +7.68928372075831 0.236503659978922\\ +8.27785696619848 0.244127293812137\\ +8.9114823228402 0.250353854860675\\ +9.59360828709315 0.254943660020929\\ +10.3279473191895 0.257753592672854\\ +11.1184960481927 0.258745594416087\\ +11.9695570235904 0.257978994699316\\ +12.8857621318552 0.255590854358017\\ +14.000583824681 0.251203265256171\\ +15.211855179861 0.245314284191756\\ +16.6810053720006 0.237398053073717\\ +18.4614694632455 0.227498735260711\\ +20.8122156998634 0.214835538352444\\ +24.1202820761801 0.19874289304181\\ +30.0939003444972 0.175417788264677\\ +40.4209583979631 0.148664951114005\\ +47.7176094893875 0.136458698980801\\ +55.302242561929 0.127371240103598\\ +63.5042516859596 0.120270475412753\\ +72.2534949178721 0.114768566077155\\ +82.2081575524054 0.110228909110254\\ +94.400647894176 0.106287256943315\\ +108.401435917833 0.103148795620553\\ +125.631660247412 0.100525351680836\\ +148.31025143361 0.0982813525088763\\ +178.341022071001 0.0964532110717337\\ +222.508879812837 0.0949158664243899\\ +293.404970921579 0.0936448943362589\\ +428.185179865241 0.0925490814032504\\ +903.557834613893 0.0911240307671813\\ +1000 0.0909255299672521\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039741453916\\ +0.331528234231942 0.100445288861589\\ +0.545427130532983 0.101205298766711\\ +0.753142016597437 0.102294965938552\\ +0.966017479952265 0.103767346662503\\ +1.18324062745838 0.105635495901382\\ +1.39683511798874 0.107825843912904\\ +1.6188596901782 0.110465282127657\\ +1.85895667963569 0.113723126946082\\ +2.09566239948043 0.117330110736577\\ +2.36250846547795 0.121844276724518\\ +2.63889081445751 0.12698976714078\\ +2.94760625512486 0.133256864816243\\ +3.29243733300777 0.14083437890197\\ +3.67760910160103 0.149906397380846\\ +4.14588849683291 0.161593526606246\\ +4.76077523022637 0.177569270186147\\ +6.75818116816111 0.226445857700697\\ +7.41088151564157 0.239060804957856\\ +8.05203967082548 0.24916268885705\\ +8.66837993001978 0.256660497293653\\ +9.24625711640574 0.261790324128794\\ +9.86265846131282 0.265405799881411\\ +10.5201521761616 0.267411767798893\\ +11.2214776820798 0.267790505538969\\ +11.9695570235904 0.266595958820007\\ +12.8857621318552 0.263450541572095\\ +13.8720978054162 0.258630464525679\\ +15.0722530931076 0.251541828990874\\ +16.3762407452169 0.243069637258493\\ +17.957846470021 0.232488062728249\\ +20.0586777950823 0.218782107545443\\ +22.822244741869 0.202207971650301\\ +26.6947849403432 0.182284329738422\\ +33.6144900010877 0.155155810866983\\ +46.4158883361278 0.123896005851482\\ +54.7947233690029 0.111182634814013\\ +63.5042516859596 0.10171677771965\\ +72.2534949178721 0.09474168965598\\ +82.2081575524054 0.0888714301279918\\ +92.6759330114688 0.0843044884347159\\ +104.47659715608 0.080487414251977\\ +118.87076977119 0.0771038044443926\\ +135.248087041788 0.0743615810956175\\ +155.307057393346 0.0720147607586568\\ +179.992850678248 0.0700580736700784\\ +210.534524276671 0.0684653743158031\\ +253.164847863136 0.067075470338047\\ +312.964801067075 0.0659384541977185\\ +408.894822629486 0.0649641583191198\\ +585.824820015254 0.0641128868088293\\ +1000 0.0632228716035705\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100040157568956\\ +0.331528234231942 0.100450072866426\\ +0.540421642070592 0.10119617692357\\ +0.746230289139111 0.102278098935548\\ +0.957152153899187 0.103740746762033\\ +1.1723818032866 0.105597778773413\\ +1.38401609657313 0.107776882571623\\ +1.60400310705682 0.110405400957745\\ +1.84189668079971 0.113653844842354\\ +2.07643010725577 0.117255848758978\\ +2.34082727617829 0.121772129125499\\ +2.61467321180109 0.126931838377873\\ +2.92055551218275 0.1332341030233\\ +3.26222200971167 0.140881823087619\\ +3.64385898376354 0.150080386521331\\ +4.07014245321944 0.161010758817714\\ +4.63090280179974 0.176090954556336\\ +5.83130511352622 0.208667043489907\\ +6.69616005485322 0.229975908991228\\ +7.34287044716677 0.243593929601519\\ +7.97814457207663 0.254578887521195\\ +8.58882855954625 0.262751974765064\\ +9.16140245713852 0.268318773985445\\ +9.77214696972572 0.272175912056834\\ +10.423606739764 0.274194764689467\\ +11.1184960481927 0.274344846628086\\ +11.8597101233767 0.272689026962925\\ +12.650337203959 0.269367243799403\\ +13.6186523675608 0.263781539195983\\ +14.6610868404698 0.256609757899286\\ +15.9295021257212 0.247076346981239\\ +17.4679621512725 0.235205618852969\\ +19.3324228755505 0.221226376742767\\ +21.7940698430296 0.204231507707659\\ +25.2582002696278 0.183585660849496\\ +30.3726357970331 0.159380246949423\\ +57.9112264764176 0.096490501995401\\ +67.7377599751775 0.086382760470516\\ +77.7841107128649 0.0789045823011848\\ +88.5007491447344 0.0730198544264904\\ +100.693863147603 0.0680776162331063\\ +113.5154708921 0.0642347559675103\\ +127.969686821594 0.0610213036987137\\ +144.264395121816 0.0583540686146761\\ +162.633950404819 0.0561550609121929\\ +185.04070195423 0.0542284695772366\\ +212.484535249888 0.0525836776283053\\ +246.258591635055 0.0512132037753561\\ +290.712337727258 0.0500390711204919\\ +349.577557436328 0.0490745100120771\\ +436.153778920801 0.0482485654674035\\ +575.121707184161 0.0475430727154661\\ +862.85125663669 0.0468518456614003\\ +1000 0.0466406891001802\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039046362111\\ +0.334598912054997 0.100445449165051\\ +0.550478980785497 0.101205413277941\\ +0.760117761795533 0.102294426064943\\ +0.974964918348409 0.10376481368121\\ +1.19420002813353 0.105628584578516\\ +1.40977287162897 0.107811138817119\\ +1.63385387780986 0.110437327722318\\ +1.87617469143912 0.113672932565486\\ +2.13466303332425 0.117557070436497\\ +2.40647515001542 0.122095084366883\\ +2.68800102153761 0.127249199256073\\ +3.00246170908555 0.133499548514065\\ +3.35371015200293 0.141016043017149\\ +3.74605003274899 0.149955276593594\\ +4.26215882901533 0.162329076104293\\ +4.98537346387389 0.180163789704007\\ +6.5134909462728 0.215500521947535\\ +7.20871503378214 0.228900987707911\\ +7.90492762269643 0.240051456404574\\ +8.58882855954625 0.248684387297625\\ +9.24625711640574 0.254880953688143\\ +9.95400828762153 0.259444541034382\\ +10.7159339982267 0.26223170714347\\ +11.5361810173648 0.263194415580188\\ +12.4192135270178 0.262375115970832\\ +13.3698374182495 0.259891819784404\\ +14.3932264471941 0.255917821073481\\ +15.6384675830225 0.249924238378106\\ +17.1488196987054 0.24174634179627\\ +18.979216428391 0.231402530087128\\ +21.1995345753607 0.219110056310037\\ +24.3436887354311 0.203133009243582\\ +29.2729483504282 0.182199638713624\\ +43.5149650092505 0.143956598290518\\ +50.8987019351968 0.132250368026605\\ +58.4476113163363 0.123552684035801\\ +66.5001803043112 0.116722893209532\\ +75.6621850048106 0.1110204649962\\ +86.0864769614925 0.10631588785321\\ +97.946966706954 0.102475013153921\\ +112.473717836475 0.0991699291250006\\ +130.351224468151 0.0964044925369112\\ +152.469572701757 0.0941511196853621\\ +181.659978837533 0.0922731447641971\\ +222.508879812837 0.0907143222461905\\ +285.400976982924 0.0894097671443501\\ +397.740302405804 0.0882879003915183\\ +666.536326812491 0.0871821350806374\\ +1000 0.0864396465626864\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100041239077541\\ +0.328485736603004 0.100454047174218\\ +0.535462089927361 0.101207213062394\\ +0.739381991917587 0.102300283771359\\ +0.948368186628592 0.103779729324222\\ +1.1616226326085 0.10566098718688\\ +1.37131471775395 0.107872731390394\\ +1.58928286562298 0.110546817335653\\ +1.80824493487795 0.113611404131746\\ +2.03849339825246 0.117234233307091\\ +2.27697025538168 0.121407778331318\\ +2.54334576130465 0.126559351449963\\ +2.81481236050758 0.13231842981246\\ +3.11525422355549 0.139257645052903\\ +3.44776405473446 0.147578162498039\\ +3.81576466127125 0.15748902446517\\ +4.26215882901533 0.170344578489015\\ +4.80487043965513 0.186880614081581\\ +5.77779011797051 0.217478427011821\\ +6.75818116816111 0.246687927425103\\ +7.41088151564157 0.26360343885422\\ +7.97814457207663 0.275954398452341\\ +8.51000724712225 0.285261083447128\\ +9.07732652521023 0.292657409917169\\ +9.59360828709315 0.297167857866312\\ +10.1392540755882 0.299803204357318\\ +10.7159339982267 0.300483815162503\\ +11.3254131515281 0.299228673909526\\ +11.9695570235904 0.29614699273252\\ +12.650337203959 0.2914193510991\\ +13.4936714058831 0.284128410696054\\ +14.5265392594678 0.273941112855678\\ +15.7833140565212 0.26080796222924\\ +17.3076553419573 0.244987281786282\\ +19.3324228755505 0.225353693022436\\ +21.9959306803007 0.202716520279011\\ +25.7282596744793 0.17678965278761\\ +31.5136348486648 0.14681894547588\\ +41.1731993116168 0.113917600793655\\ +60.6432939540806 0.0781546824763455\\ +125.631660247412 0.0380680591896684\\ +241.759407916913 0.0199931987324404\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100040284782766\\ +0.331528234231942 0.100451574749252\\ +0.540421642070592 0.1012002298691\\ +0.746230289139111 0.102285955374607\\ +0.957152153899187 0.103753943111246\\ +1.1723818032866 0.105618087620732\\ +1.38401609657313 0.107806020863473\\ +1.60400310705682 0.110445899291878\\ +1.84189668079971 0.113709481931013\\ +2.07643010725577 0.117329734934458\\ +2.34082727617829 0.121871143274436\\ +2.61467321180109 0.127062735946748\\ +2.92055551218275 0.13340873871846\\ +3.23228397818138 0.140417352084479\\ +3.61041859717334 0.149561057056254\\ +4.03278998219371 0.160455532415904\\ +4.58840412645476 0.175545007009192\\ +5.56859644428641 0.202753910172064\\ +6.57382014340959 0.228753676275444\\ +7.20871503378214 0.242908541921277\\ +7.8323825991792 0.254531928122161\\ +8.43190929286626 0.26336291187577\\ +8.99402217409204 0.269537025798332\\ +9.59360828709315 0.273990852951512\\ +10.2331657833025 0.276556937185058\\ +10.9153593533139 0.277171618540287\\ +11.6430313292088 0.275874760293767\\ +12.4192135270178 0.27279543992427\\ +13.2471398786612 0.268128409533462\\ +14.2611370719413 0.261151211808076\\ +15.4949503931463 0.251648659541833\\ +16.9914417203463 0.239628681725558\\ +18.8050405512858 0.225328505663144\\ +21.0049824165392 0.209177568004348\\ +24.1202820761801 0.189091331735278\\ +28.4743916646725 0.166168352549696\\ +36.5226736430818 0.135673596993908\\ +54.2918617761894 0.0982170122414681\\ +65.2852114112785 0.0852102774012613\\ +76.3629826128224 0.0760890767826632\\ +87.6885609458743 0.0693584231092391\\ +99.769776423632 0.0640694440464387\\ +113.5154708921 0.0596306699092731\\ +127.969686821594 0.0561799911023947\\ +144.264395121816 0.0532940580946228\\ +162.633950404819 0.0508976857860789\\ +183.342548256229 0.0489207653295616\\ +208.60240892485 0.0471873196594332\\ +239.540735872088 0.0457058553858399\\ +277.61532944368 0.0444698782512754\\ +327.729484992338 0.0434093737019623\\ +394.090164040345 0.0425367417505171\\ +491.690357762803 0.0417883213936126\\ +648.353428605472 0.0411472475322237\\ +972.720319245054 0.0405075992259774\\ +1000 0.0404694412585928\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100042699262142\\ +0.322484249840844 0.100453457281297\\ +0.525679112201842 0.101206249037776\\ +0.725873365081725 0.102299889677625\\ +0.931041348706908 0.103782237660798\\ +1.12993393803322 0.105567395502775\\ +1.33390569003906 0.107752561356851\\ +1.54592773641948 0.110402306792031\\ +1.75891659032773 0.113449814150161\\ +1.98288394912707 0.117067883130394\\ +2.21485523372636 0.121257509848885\\ +2.45126006203334 0.125984304771929\\ +2.71289780037247 0.131744786242046\\ +3.00246170908555 0.138754311834252\\ +3.29243733300777 0.146422420388229\\ +3.61041859717334 0.155548271638937\\ +3.99578030189527 0.167556850749846\\ +4.4222739805059 0.181954367116973\\ +4.93962174387832 0.200751830071589\\ +5.67222897164454 0.229135965127689\\ +7.20871503378214 0.288669155464527\\ +7.8323825991792 0.30951861416246\\ +8.35452805838287 0.324168541026719\\ +8.82969995549409 0.334830318255261\\ +9.33189771573324 0.343114646077511\\ +9.77214696972572 0.347846067861805\\ +10.2331657833025 0.350399906341752\\ +10.7159339982267 0.35070276776699\\ +11.2214776820798 0.348799398568033\\ +11.7508713090481 0.34484217642249\\ +12.4192135270178 0.337718963817898\\ +13.1255683577184 0.328483128407576\\ +14.000583824681 0.31575039233253\\ +15.0722530931076 0.299583118612878\\ +16.527920614649 0.278354704708528\\ +18.8050405512858 0.249005251861527\\ +33.0003479112529 0.1517924793109\\ +38.5999361767977 0.133870031933836\\ +44.324785912404 0.120717734350841\\ +50.4315948717136 0.110404543161352\\ +57.3797641421413 0.101747861741434\\ +64.6860766154633 0.0950068434002469\\ +72.9227205872831 0.0893547078887378\\ +82.2081575524054 0.0846476697359903\\ +92.6759330114688 0.0807538065008274\\ +104.47659715608 0.0775529861225676\\ +118.87076977119 0.0747571432690848\\ +135.248087041788 0.0725201330652954\\ +156.74554102056 0.0705155341681046\\ +183.342548256229 0.068892063905465\\ +218.443607114943 0.0675431861118353\\ +270.042071883777 0.0663801469670971\\ +349.577557436328 0.065421196530567\\ +496.244487762892 0.0645790563007188\\ +920.373199661822 0.0635984734764157\\ +1000 0.0634712490736721\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039371105839\\ +0.334598912054997 0.100449251194478\\ +0.550478980785497 0.101215829253657\\ +0.760117761795533 0.102314573383781\\ +0.974964918348409 0.103798575413549\\ +1.19420002813353 0.105680389336601\\ +1.40977287162897 0.107885192087173\\ +1.63385387780986 0.110539753654983\\ +1.87617469143912 0.113812717839519\\ +2.1150728248688 0.117431734985795\\ +2.38439047009372 0.121953753429179\\ +2.66333272517498 0.127098042716536\\ +2.97490754721444 0.13334840977954\\ +3.32293251639897 0.140882143689784\\ +3.71167181947577 0.14986581910889\\ +4.18428850790158 0.16137739772212\\ +4.84937406733524 0.178115735420223\\ +6.5134909462728 0.217510706758398\\ +7.20871503378214 0.230936559814628\\ +7.8323825991792 0.24086878250817\\ +8.43190929286626 0.248444658032485\\ +9.07732652521023 0.254503166443802\\ +9.68246611930312 0.258366994154062\\ +10.3279473191895 0.260786501418647\\ +11.0164594963366 0.261732826982501\\ +11.8597101233767 0.261056928460847\\ +12.7675070431927 0.258637581649587\\ +13.7447909267754 0.254671986679352\\ +14.9339321612425 0.248652330437637\\ +16.3762407452169 0.240434862342233\\ +18.1241754737424 0.230061857159074\\ +20.244465099768 0.217765334980846\\ +23.2469705998565 0.201810080622694\\ +27.9541599906786 0.180894926385303\\ +43.1156199031823 0.13945083612557\\ +50.4315948717136 0.128018474590898\\ +57.9112264764176 0.119519823848059\\ +65.8898955079995 0.112840991525864\\ +74.9678187496688 0.1072596468031\\ +85.2964449974102 0.10265081201239\\ +97.0480887738031 0.0988849112942828\\ +111.441525146679 0.0956418421569686\\ +129.154966501488 0.092926477236724\\ +151.070330448665 0.0907127965289954\\ +179.992850678248 0.0888674463675145\\ +220.466873523941 0.087335985192034\\ +282.781797962534 0.0860556453505565\\ +390.473523688556 0.0849820556253528\\ +642.403365939419 0.0839312640397147\\ +1000 0.083151002993036\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100042786848124\\ +0.322484249840844 0.100454411430569\\ +0.525679112201842 0.101208818267488\\ +0.725873365081725 0.102304867882633\\ +0.931041348706908 0.103790600681117\\ +1.12993393803322 0.10558001995293\\ +1.33390569003906 0.107770682054686\\ +1.54592773641948 0.110427513749487\\ +1.75891659032773 0.113483755366676\\ +1.98288394912707 0.117113026801429\\ +2.21485523372636 0.121316789260191\\ +2.45126006203334 0.126061081755551\\ +2.71289780037247 0.131845192402301\\ +3.00246170908555 0.138887034614293\\ +3.29243733300777 0.146595194960985\\ +3.61041859717334 0.155775454967936\\ +3.99578030189527 0.167867484673811\\ +4.4222739805059 0.182384080728139\\ +4.93962174387832 0.201370885402445\\ +5.62017384808319 0.228031094333402\\ +7.27548352919623 0.293221121153388\\ +7.8323825991792 0.312167917003953\\ +8.35452805838287 0.32723600981086\\ +8.82969995549409 0.338226786140439\\ +9.24625711640574 0.345548877549851\\ +9.68246611930312 0.350870992482372\\ +10.1392540755882 0.353975202771114\\ +10.61759183483 0.354758458796442\\ +11.1184960481927 0.353243087927109\\ +11.6430313292088 0.349569089518657\\ +12.1923125164911 0.343970835759296\\ +12.8857621318552 0.335132307484529\\ +13.7447909267754 0.322604533931023\\ +14.796880626864 0.306406225477851\\ +16.2259528707809 0.284883916810221\\ +18.4614694632455 0.254916094214346\\ +31.5136348486648 0.159235943252193\\ +36.8609536217216 0.140435377118528\\ +42.3278906557355 0.12666384675789\\ +48.1595791019235 0.115882725900182\\ +54.7947233690029 0.106846841821188\\ +61.7718759733849 0.0998201409604129\\ +69.6374473062822 0.0939357077793409\\ +78.5045620020451 0.0890408278577578\\ +88.5007491447344 0.0849958719765243\\ +99.769776423632 0.0816741060547768\\ +113.5154708921 0.0787753265257151\\ +130.351224468151 0.0763117986637265\\ +151.070330448665 0.0742709821688597\\ +176.704352608895 0.0726200178400009\\ +212.484535249888 0.071188730172803\\ +262.675410372384 0.0700268634147469\\ +343.190719745904 0.0690400949757076\\ +491.690357762803 0.0681857904309281\\ +1000 0.0670517693517074\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100043054027284\\ +0.322484249840844 0.100457213763969\\ +0.525679112201842 0.101216199388379\\ +0.725873365081725 0.102319012251187\\ +0.922497005259217 0.103744588000355\\ +1.12993393803322 0.105615553000465\\ +1.33390569003906 0.10782157439258\\ +1.54592773641948 0.110498202986457\\ +1.75891659032773 0.113578840728686\\ +1.98288394912707 0.117239397466427\\ +2.21485523372636 0.12148263176453\\ +2.45126006203334 0.126275777854664\\ +2.71289780037247 0.13212585527345\\ +3.00246170908555 0.13925791110596\\ +3.29243733300777 0.147077875760668\\ +3.61041859717334 0.156410024659619\\ +3.95911026646846 0.167516087527991\\ +4.38168993151419 0.182119921222322\\ +4.84937406733524 0.199589755325511\\ +5.46685729972018 0.224338313520994\\ +7.618717702323 0.312113465359168\\ +8.12661920009194 0.329094543649849\\ +8.58882855954625 0.342023211400001\\ +9.07732652521023 0.352682291446949\\ +9.5055659201012 0.359346581831862\\ +9.95400828762153 0.363672305617205\\ +10.423606739764 0.365485140986821\\ +10.9153593533139 0.364755585586495\\ +11.4303112911448 0.361598446644895\\ +11.9695570235904 0.35625069317628\\ +12.650337203959 0.347398860041981\\ +13.3698374182495 0.336489832546468\\ +14.2611370719413 0.321998155595618\\ +15.4949503931463 0.301899737428475\\ +17.3076553419573 0.274708313245248\\ +22.6128006633728 0.21611602295428\\ +27.4434330322837 0.182645770531839\\ +32.1001089554317 0.160740033271844\\ +36.8609536217216 0.144751216875113\\ +41.9394395566719 0.132273687444806\\ +47.2796959160039 0.122526883578114\\ +53.2999408084409 0.114323468209353\\ +60.0867589171969 0.107462068262017\\ +67.7377599751775 0.101759865574157\\ +76.3629826128224 0.0970511874801428\\ +86.0864769614925 0.0931866893596872\\ +97.946966706954 0.0898162729626551\\ +111.441525146679 0.0871238170505514\\ +127.969686821594 0.0848481753138231\\ +149.683929307726 0.0828701146160128\\ +178.341022071001 0.0812329342940786\\ +218.443607114943 0.0798815237957649\\ +280.18665564592 0.078755131375745\\ +390.473523688556 0.0777877663474557\\ +660.419396233031 0.0768140998779684\\ +1000 0.0761460809766107\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.10003951163013\\ +0.331528234231942 0.100442586748913\\ +0.545427130532983 0.10119775580872\\ +0.753142016597437 0.10228020379601\\ +0.966017479952265 0.10374240573103\\ +1.18324062745838 0.105596972886617\\ +1.39683511798874 0.107770446458391\\ +1.6188596901782 0.110388166195065\\ +1.85895667963569 0.113617066510716\\ +2.1150728248688 0.11749864905519\\ +2.38439047009372 0.122041336750999\\ +2.66333272517498 0.127210834578961\\ +2.97490754721444 0.1334942407969\\ +3.32293251639897 0.141071262445402\\ +3.71167181947577 0.150111375745627\\ +4.18428850790158 0.161702545468117\\ +4.84937406733524 0.178569551838688\\ +6.5134909462728 0.218298314300018\\ +7.20871503378214 0.231825890519119\\ +7.8323825991792 0.241812814614091\\ +8.43190929286626 0.249404357085939\\ +9.07732652521023 0.255439696024972\\ +9.68246611930312 0.259247988266029\\ +10.3279473191895 0.261578724345694\\ +11.0164594963366 0.262405287074325\\ +11.7508713090481 0.261766244390401\\ +12.650337203959 0.259362318261419\\ +13.6186523675608 0.255366919252849\\ +14.796880626864 0.249267225035746\\ +16.2259528707809 0.240915468406977\\ +17.957846470021 0.230355980286124\\ +20.0586777950823 0.217827519547088\\ +22.822244741869 0.202649712183313\\ +27.1915794303602 0.182299780444854\\ +45.5678626584106 0.132735224675638\\ +53.2999408084409 0.121788000064308\\ +61.204983724767 0.113694720906284\\ +69.6374473062822 0.107360339183917\\ +79.2316862486625 0.102084045090144\\ +90.1477631452492 0.0977388078595889\\ +102.567793074442 0.0941960427963462\\ +117.779870119712 0.0911505128812063\\ +136.500780654601 0.0886040047813469\\ +159.662602210143 0.0865297110435833\\ +190.230118866894 0.0848007589246697\\ +233.006141069692 0.0833644397646807\\ +298.865287355038 0.0821600296444686\\ +416.504424854519 0.0811206282065958\\ +697.981390783066 0.0800894865041406\\ +1000 0.0794688369205967\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039500934294\\ +0.331528234231942 0.100442532289924\\ +0.545427130532983 0.101197786413806\\ +0.753142016597437 0.102280542036644\\ +0.966017479952265 0.103743408415737\\ +1.18324062745838 0.10559919296313\\ +1.39683511798874 0.107774621629503\\ +1.6188596901782 0.110395468457818\\ +1.85895667963569 0.113629429133698\\ +2.09566239948043 0.117208744131435\\ +2.36250846547795 0.121686441282588\\ +2.63889081445751 0.126787828782966\\ +2.94760625512486 0.132997509396743\\ +3.29243733300777 0.140500096525155\\ +3.67760910160103 0.149474388332407\\ +4.14588849683291 0.161022626160439\\ +4.76077523022637 0.176784854333516\\ +6.75818116816111 0.224850681709372\\ +7.41088151564157 0.237227591324216\\ +8.05203967082548 0.247138642013383\\ +8.66837993001978 0.254502232241157\\ +9.24625711640574 0.259552643263041\\ +9.86265846131282 0.263131189573808\\ +10.5201521761616 0.26514658825199\\ +11.2214776820798 0.26558201521117\\ +11.9695570235904 0.264489618277746\\ +12.8857621318552 0.261511637289404\\ +13.8720978054162 0.256905788848708\\ +15.0722530931076 0.250104003923577\\ +16.527920614649 0.240984821267297\\ +18.2920450484629 0.229628468781797\\ +20.4319732019527 0.216313371252623\\ +23.4622884814226 0.199203956581248\\ +27.9541599906786 0.178049860195392\\ +46.8458011587305 0.127282348409001\\ +54.7947233690029 0.116133231942623\\ +62.9214610961034 0.107886022808255\\ +71.5904108596489 0.101422238325794\\ +81.4537176628074 0.0960282042814724\\ +92.6759330114688 0.0915765845185454\\ +105.444279352617 0.0879391293922765\\ +119.971773543588 0.0849925607552135\\ +137.765076954905 0.0824727795300428\\ +159.662602210143 0.0803741138472389\\ +188.48434090338 0.0785818545761335\\ +226.649807927369 0.0771197593991105\\ +282.781797962534 0.0758827015382458\\ +372.882130718283 0.0748458964244621\\ +549.211648388779 0.0739132524282663\\ +1000 0.072884250921578\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100041605597981\\ +0.325471160553185 0.100449547224306\\ +0.530548052536957 0.101195324158205\\ +0.732596542821523 0.102277936782731\\ +0.939664831495469 0.103743745863499\\ +1.15096220088503 0.10560854843011\\ +1.35872990190271 0.107802249616351\\ +1.57469771464309 0.110456458432118\\ +1.7916503273639 0.113500957761786\\ +2.01978575681988 0.117103880628611\\ +2.25607406649686 0.121259851890917\\ +2.52000499376409 0.126397996846531\\ +2.78898029238044 0.132153414518934\\ +3.08666494333727 0.139105051792708\\ +3.41612326858553 0.147466311410239\\ +3.78074666359935 0.157465294111395\\ +4.22304418720668 0.170505163300437\\ +4.76077523022637 0.187407728140543\\ +5.56859644428641 0.213970529677068\\ +6.75818116816111 0.251954398285663\\ +7.41088151564157 0.270174860323376\\ +7.97814457207663 0.283581148122799\\ +8.51000724712225 0.293730548064099\\ +8.99402217409204 0.300800792901185\\ +9.5055659201012 0.30603838673669\\ +10.0462042134681 0.309217594684543\\ +10.61759183483 0.31022235636608\\ +11.2214776820798 0.309056860236364\\ +11.8597101233767 0.305838285298674\\ +12.534242654614 0.300774533147646\\ +13.3698374182495 0.292893741750011\\ +14.2611370719413 0.283335681820086\\ +15.3527502878042 0.270949409030866\\ +16.835508029612 0.254158177418019\\ +18.6324631193156 0.235045913555154\\ +21.1995345753607 0.211043228073902\\ +25.0264009641792 0.182174898228149\\ +31.8055201533292 0.145943172745495\\ +54.7947233690029 0.0871980751338694\\ +76.3629826128224 0.0640226920024638\\ +96.157460014321 0.0520745578500219\\ +116.698981861715 0.0441369264146655\\ +137.765076954905 0.0386108841627922\\ +159.662602210143 0.0345470943675963\\ +183.342548256229 0.0313668632673071\\ +208.60240892485 0.02887912286949\\ +235.164288449435 0.0269331731846724\\ +265.108360190854 0.0252942604946889\\ +298.865287355038 0.0239229322490787\\ +336.920570598027 0.0227826736979913\\ +379.821530619074 0.0218399859910609\\ +432.151112778977 0.0210109736118985\\ +491.690357762803 0.0203421598714618\\ +534.229329953835 0.0199829179727495\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.10004107001011\\ +0.328485736603004 0.100453043503935\\ +0.535462089927361 0.101204738022032\\ +0.739381991917587 0.102295604324777\\ +0.948368186628592 0.103771932136271\\ +1.1616226326085 0.105649007065118\\ +1.37131471775395 0.107855525862452\\ +1.58928286562298 0.110522853201224\\ +1.80824493487795 0.11357909935091\\ +2.03849339825246 0.117191239397433\\ +2.27697025538168 0.121351335735762\\ +2.54334576130465 0.126484589659681\\ +2.81481236050758 0.132220867990112\\ +3.11525422355549 0.139129233014425\\ +3.44776405473446 0.147407679974197\\ +3.81576466127125 0.157260845495805\\ +4.26215882901533 0.170028584102792\\ +4.84937406733524 0.187802757683317\\ +6.10640754223204 0.22671515858717\\ +6.8839520696455 0.248908597409446\\ +7.47952251562182 0.263738689640295\\ +8.05203967082548 0.275683051955737\\ +8.58882855954625 0.28458062308\\ +9.07732652521023 0.290682920291453\\ +9.59360828709315 0.295122574526552\\ +10.1392540755882 0.29773302249905\\ +10.7159339982267 0.298437512105048\\ +11.3254131515281 0.297253514933396\\ +11.9695570235904 0.294284738952799\\ +12.7675070431927 0.288797848439428\\ +13.6186523675608 0.281466035795482\\ +14.6610868404698 0.271318272623939\\ +15.9295021257212 0.25830955183074\\ +17.4679621512725 0.24268636546912\\ +19.5114834684662 0.223322181892607\\ +22.1996611911995 0.200993828150228\\ +25.9665597293487 0.175393882969647\\ +31.8055201533292 0.145750994744628\\ +41.5545533471888 0.113143795368061\\ +60.0867589171969 0.0790444608535303\\ +105.444279352617 0.0453074339167997\\ +239.540735872088 0.0199479214736118\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100040418676219\\ +0.328485736603004 0.100444288093833\\ +0.540421642070592 0.101200739837534\\ +0.746230289139111 0.102282386433806\\ +0.957152153899187 0.103740492573892\\ +1.1723818032866 0.105587207605028\\ +1.39683511798874 0.107891654513665\\ +1.6188596901782 0.110542437603718\\ +1.85895667963569 0.113812118163913\\ +2.09566239948043 0.11743049629004\\ +2.36250846547795 0.1219572688534\\ +2.63889081445751 0.127115480599275\\ +2.94760625512486 0.133396050631251\\ +3.29243733300777 0.140986885414508\\ +3.67760910160103 0.150069979107214\\ +4.14588849683291 0.161761561186804\\ +4.80487043965513 0.178872995197394\\ +6.57382014340959 0.222307248082786\\ +7.20871503378214 0.23496865571991\\ +7.8323825991792 0.245244667591601\\ +8.43190929286626 0.252993072309339\\ +8.99402217409204 0.258400356711509\\ +9.59360828709315 0.26232898669235\\ +10.2331657833025 0.264664504980801\\ +10.9153593533139 0.265371351804104\\ +11.6430313292088 0.264489318118028\\ +12.4192135270178 0.262121475500356\\ +13.3698374182495 0.257788937790088\\ +14.3932264471941 0.251977343416604\\ +15.6384675830225 0.244022605232361\\ +17.1488196987054 0.233880335671112\\ +18.979216428391 0.221691007627787\\ +21.3958887134342 0.206594988415675\\ +24.7967289250216 0.187935423800146\\ +30.3726357970331 0.163618997924617\\ +45.9899209052244 0.123015331789685\\ +54.2918617761894 0.11071354948073\\ +62.3440188862786 0.102108427368374\\ +70.93341204988 0.0953212127139855\\ +80.7062014114951 0.0896209987020617\\ +90.9827289445556 0.085195398079347\\ +102.567793074442 0.0815035574594847\\ +116.698981861715 0.0782371179814413\\ +132.777082935543 0.0755945701753018\\ +152.469572701757 0.0733366544868592\\ +176.704352608895 0.0714566639268859\\ +208.60240892485 0.0698505019945468\\ +250.841505927754 0.0685383299153375\\ +312.964801067075 0.067424828560964\\ +412.682084570295 0.0664870135210629\\ +607.832312829723 0.0656368948925952\\ +1000 0.0648317835036451\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100042857220936\\ +0.322484249840844 0.100455861337435\\ +0.525679112201842 0.101212934908017\\ +0.725873365081725 0.102312970233258\\ +0.922497005259217 0.103734859157231\\ +1.12993393803322 0.105600785119898\\ +1.33390569003906 0.107800556161814\\ +1.54592773641948 0.11046913851511\\ +1.75891659032773 0.113539872299609\\ +1.98288394912707 0.117187743203658\\ +2.21485523372636 0.121414991385912\\ +2.45126006203334 0.126188375682619\\ +2.71289780037247 0.132011802054558\\ +3.00246170908555 0.139107458318458\\ +3.29243733300777 0.1468823683456\\ +3.61041859717334 0.156153380670461\\ +3.95911026646846 0.167175707694328\\ +4.38168993151419 0.181650225420117\\ +4.89428989611453 0.200656447433874\\ +5.56859644428641 0.227512232632272\\ +7.41088151564157 0.301891442486522\\ +7.97814457207663 0.321293137956411\\ +8.51000724712225 0.3364378474159\\ +8.99402217409204 0.347186806451676\\ +9.41833153464795 0.35406924337494\\ +9.86265846131282 0.358740800826563\\ +10.3279473191895 0.36101096347197\\ +10.8151870255229 0.360822641754313\\ +11.3254131515281 0.358255984813395\\ +11.8597101233767 0.353511792512443\\ +12.534242654614 0.345356179963236\\ +13.2471398786612 0.335073427793094\\ +14.1302599059953 0.321191873935213\\ +15.3527502878042 0.301671204965777\\ +17.1488196987054 0.274923834468287\\ +20.8122156998634 0.231257935608311\\ +26.6947849403432 0.185493874783785\\ +31.5136348486648 0.161489228508423\\ +36.5226736430818 0.143939761201156\\ +41.9394395566719 0.130284681290529\\ +47.7176094893875 0.119655610303488\\ +53.793615039807 0.111375772826826\\ +60.6432939540806 0.104428224490152\\ +68.3651600451024 0.0986364569608709\\ +77.070271142123 0.0938396651982683\\ +86.8838263525118 0.0898920237041262\\ +97.946966706954 0.0866623737691366\\ +111.441525146679 0.0838537487026314\\ +127.969686821594 0.0814744007898757\\ +148.31025143361 0.0795086103409853\\ +175.082703173572 0.0778413945961544\\ +212.484535249888 0.0764325612751647\\ +267.563844455205 0.0752731746478773\\ +359.381366380463 0.0742970117897779\\ +554.298551568467 0.0733891945467724\\ +1000 0.0724519338241498\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100041699595492\\ +0.325471160553185 0.100450838269719\\ +0.530548052536957 0.101198885625292\\ +0.732596542821523 0.102284887698005\\ +0.939664831495469 0.103755458440634\\ +1.15096220088503 0.105626608441622\\ +1.35872990190271 0.10782819855565\\ +1.57469771464309 0.110492574557094\\ +1.7916503273639 0.113549594632287\\ +2.01978575681988 0.117168551691856\\ +2.25607406649686 0.121344706164533\\ +2.52000499376409 0.126510390404634\\ +2.78898029238044 0.1323001828788\\ +3.08666494333727 0.139298526305381\\ +3.41612326858553 0.147723847619379\\ +3.78074666359935 0.157811365155473\\ +4.18428850790158 0.169796324734557\\ +4.67379510799246 0.185270017219279\\ +5.36697694554048 0.208296079542295\\ +6.8839520696455 0.257711790182321\\ +7.54879928165344 0.276206446731189\\ +8.12661920009194 0.28959199600217\\ +8.66837993001978 0.299501391890799\\ +9.16140245713852 0.306187262810913\\ +9.68246611930312 0.310881176654003\\ +10.2331657833025 0.313379469203164\\ +10.8151870255229 0.313602028879514\\ +11.4303112911448 0.311597585607318\\ +12.0804213467733 0.307529627027222\\ +12.7675070431927 0.301647735113336\\ +13.6186523675608 0.29289486795212\\ +14.6610868404698 0.281012663602126\\ +15.9295021257212 0.266085115736595\\ +17.4679621512725 0.248532959791036\\ +19.6922025547917 0.225511214194578\\ +22.822244741869 0.198383362166701\\ +28.2130767593947 0.163511945089236\\ +43.9180089259609 0.108022607355504\\ +61.7718759733849 0.0788125390234276\\ +77.7841107128649 0.0642156491604455\\ +93.5343152029239 0.0549376188429199\\ +110.418805085416 0.0481231087123204\\ +127.969686821594 0.0431164842617766\\ +146.949180062482 0.0392029456295828\\ +167.194975973199 0.0361456135170514\\ +188.48434090338 0.033757480273286\\ +212.484535249888 0.0317491211702224\\ +239.540735872088 0.0300712783739457\\ +270.042071883777 0.028678361549807\\ +304.42722120643 0.0275285887691837\\ +346.369417737173 0.0265190305199759\\ +397.740302405804 0.0256542651067741\\ +460.960448682843 0.0249304495020906\\ +539.17746403875 0.0243367727365609\\ +648.353428605472 0.023811531542776\\ +808.924348680594 0.023353725034572\\ +1000 0.0230267124093595\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100039995382778\\ +0.328485736603004 0.100448395603533\\ +0.535462089927361 0.10120285616225\\ +0.739381991917587 0.102301267205156\\ +0.948368186628592 0.103789538279654\\ +1.15096220088503 0.105579594321524\\ +1.35872990190271 0.107766880250426\\ +1.57469771464309 0.110413153959755\\ +1.7916503273639 0.113448213849464\\ +2.01978575681988 0.117039444031374\\ +2.25607406649686 0.121181195658855\\ +2.52000499376409 0.126300662443901\\ +2.78898029238044 0.132033720581112\\ +3.08666494333727 0.138956355135087\\ +3.41612326858553 0.147279915538287\\ +3.78074666359935 0.157229956277873\\ +4.22304418720668 0.17020015889987\\ +4.76077523022637 0.187003942246646\\ +5.56859644428641 0.213398584375782\\ +6.82077673286568 0.252995711138386\\ +7.47952251562182 0.271038318845258\\ +8.05203967082548 0.284231427561173\\ +8.58882855954625 0.294151381462537\\ +9.07732652521023 0.301004846549217\\ +9.59360828709315 0.306020531470359\\ +10.1392540755882 0.308986674990844\\ +10.7159339982267 0.309800122725064\\ +11.3254131515281 0.308474892042535\\ +11.9695570235904 0.305133673725734\\ +12.650337203959 0.299985363467045\\ +13.4936714058831 0.292050159243131\\ +14.3932264471941 0.282476954859484\\ +15.4949503931463 0.270107947657407\\ +16.9914417203463 0.253368421668156\\ +18.8050405512858 0.234326776745701\\ +21.3958887134342 0.210407267074359\\ +25.2582002696278 0.181612018081406\\ +31.8055201533292 0.146680412165576\\ +46.4158883361278 0.102317397322257\\ +81.4537176628074 0.0599246662952167\\ +106.420924406472 0.0468779003602336\\ +131.55856240457 0.0389030890462838\\ +156.74554102056 0.0336128715073769\\ +183.342548256229 0.029722377229935\\ +212.484535249888 0.026687463745536\\ +241.759407916913 0.0244660633497804\\ +275.067600790807 0.022598767956341\\ +310.092663593193 0.0211426786003403\\ +349.577557436328 0.019919959348731\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 0.100042972695903\\ +0.322484249840844 0.100456187754015\\ +0.525679112201842 0.101212849496548\\ +0.725873365081725 0.102311515801628\\ +0.931041348706908 0.103800340320318\\ +1.12993393803322 0.105593271819578\\ +1.33390569003906 0.107788203424453\\ +1.54592773641948 0.110450342050374\\ +1.75891659032773 0.113512969514476\\ +1.98288394912707 0.117150288986187\\ +2.21485523372636 0.121364062028398\\ +2.45126006203334 0.126120590458601\\ +2.71289780037247 0.13192102331674\\ +3.00246170908555 0.138984902209865\\ +3.29243733300777 0.146720014722752\\ +3.61041859717334 0.155936383941494\\ +3.95911026646846 0.166882938175738\\ +4.38168993151419 0.181238824089569\\ +4.89428989611453 0.200053446821372\\ +5.56859644428641 0.226561737367177\\ +7.34287044716677 0.296974760055533\\ +7.90492762269643 0.316002565329802\\ +8.43190929286626 0.330974270475286\\ +8.9114823228402 0.341732666850762\\ +9.33189771573324 0.348751269462931\\ +9.77214696972572 0.353677913411406\\ +10.2331657833025 0.356312215918227\\ +10.7159339982267 0.356576460434152\\ +11.2214776820798 0.354522461071471\\ +11.7508713090481 0.350319477307516\\ +12.4192135270178 0.342808909993869\\ +13.1255683577184 0.333126992138782\\ +14.000583824681 0.319854152287988\\ +15.0722530931076 0.303104012105386\\ +16.6810053720006 0.27907445547318\\ +19.3324228755505 0.245174755372418\\ +28.2130767593947 0.175347227439863\\ +33.3060034362459 0.152832595446652\\ +38.5999361767977 0.136352947201544\\ +44.324785912404 0.123515468503427\\ +50.4315948717136 0.1135135856602\\ +56.8531791387375 0.10571702351859\\ +64.0924401935645 0.0991717451626986\\ +72.2534949178721 0.0937133160607055\\ +81.4537176628074 0.0891913622368309\\ +91.8254283565628 0.0854691142108785\\ +103.517795563018 0.0824232925208976\\ +117.779870119712 0.0797739809020994\\ +135.248087041788 0.0775289445833139\\ +156.74554102056 0.0756732668416551\\ +185.04070195423 0.0740981903323757\\ +224.569799553977 0.0727652794981475\\ +282.781797962534 0.0716654373000517\\ +383.33951017666 0.0707118830532704\\ +596.727119597332 0.0698332563816705\\ +1000 0.0690333736119628\\ +}; +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0.1 1\\ +1000 1\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/u_and_y_with_Kr.pdf b/matlab/figs/u_and_y_with_Kr.pdf new file mode 100644 index 0000000..05fa3bf Binary files /dev/null and b/matlab/figs/u_and_y_with_Kr.pdf differ diff --git a/matlab/figs/u_and_y_with_Kr.png b/matlab/figs/u_and_y_with_Kr.png new file mode 100644 index 0000000..5cc4965 Binary files /dev/null and b/matlab/figs/u_and_y_with_Kr.png differ diff --git a/matlab/figs/u_and_y_with_Kr.svg b/matlab/figs/u_and_y_with_Kr.svg new file mode 100644 index 0000000..27ab8aa --- /dev/null +++ b/matlab/figs/u_and_y_with_Kr.svg @@ -0,0 +1,124 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/matlab/figs/u_and_y_with_Kr.tex b/matlab/figs/u_and_y_with_Kr.tex new file mode 100644 index 0000000..729ea41 --- /dev/null +++ b/matlab/figs/u_and_y_with_Kr.tex @@ -0,0 +1,466 @@ +% This file was created by matlab2tikz. +% +\begin{tikzpicture} + +\begin{axis}[% +width=2.709in, +height=0.977in, +at={(0.425in,1.498in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmin=0, +xmax=0.025, +xtick={0,0.005,0.01,0.015,0.02,0.025}, +xticklabels={{}}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=-200000000, +ymax=249080300.771036, +ylabel={Command Input}, +axis background/.style={fill=white}, +xmajorgrids, +ymajorgrids +] +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0 0\\ +4.00543212890625e-05 152838854.357043\\ +8.00788402557373e-05 229087311.327999\\ +0.000100106000900269 244963327.238778\\ +0.0001201331615448 249080300.771036\\ +0.000140130519866943 243504640.705787\\ +0.000180184841156006 210608588.647421\\ +0.000240236520767212 129721301.091616\\ +0.000360369682312012 -42442010.3469158\\ +0.000420421361923218 -102663701.252617\\ +0.000460445880889893 -129273582.656602\\ +0.000500500202178955 -145210697.278334\\ +0.000520527362823486 -149451932.280237\\ +0.000540554523468018 -151419648.129282\\ +0.000560551881790161 -151300588.560236\\ +0.000580579042434692 -149296621.230113\\ +0.000620633363723755 -140484547.596145\\ +0.000680685043334961 -118481803.841868\\ +0.000940948724746704 -7734355.70249945\\ +0.00100100040435791 6690641.63550088\\ +0.00106105208396912 15629149.7445768\\ +0.00110110640525818 18885448.3263874\\ +0.00114113092422485 20324213.6037057\\ +0.00116115808486938 20465784.5673147\\ +0.00118118524551392 20279089.3923545\\ +0.00120121240615845 19806611.6162299\\ +0.00124123692512512 18169299.0291621\\ +0.00130128860473633 14556401.0512774\\ +0.00148147344589233 2666887.27511838\\ +0.00154155492782593 -98372.2431023717\\ +0.00160160660743713 -1988705.97661781\\ +0.00164163112640381 -2784537.95735282\\ +0.00168168544769287 -3249824.13477308\\ +0.0017017126083374 -3373024.41545278\\ +0.00172170996665955 -3431835.44564754\\ +0.00174173712730408 -3432958.73404357\\ +0.00176176428794861 -3383163.85166374\\ +0.00180178880691528 -3157598.16888145\\ +0.00186187028884888 -2599519.87995425\\ +0.00208207964897156 -252375.361381501\\ +0.00214213132858276 147817.758812636\\ +0.00220221281051636 405308.692927778\\ +0.00224223732948303 504455.335819036\\ +0.00228229165077209 553694.066347629\\ +0.00230228900909424 562186.409437597\\ +0.00232231616973877 561388.472966969\\ +0.0023423433303833 552410.3326011\\ +0.00238236784934998 514289.413686305\\ +0.00244244933128357 422192.137045741\\ +0.00266265869140625 41773.0410014987\\ +0.00272271037101746 -22188.0260950029\\ +0.00278279185295105 -62959.8133739233\\ +0.00282281637191772 -78415.4941419363\\ +0.00286287069320679 -85834.5551544428\\ +0.00288286805152893 -86955.4772187173\\ +0.00290289521217346 -86589.501888901\\ +0.00292292237281799 -84917.5311318934\\ +0.00296297669410706 -78366.8497380316\\ +0.00302302837371826 -63034.3599178195\\ +0.00322321057319641 -5356.03306815028\\ +0.00328329205513 6199.94496458769\\ +0.00334334373474121 13930.419824481\\ +0.00338339805603027 17091.5380617678\\ +0.00342342257499695 18854.0523784161\\ +0.00344344973564148 19276.7403378487\\ +0.00346347689628601 19431.8546063006\\ +0.00348347425460815 19348.8372575641\\ +0.00350350141525269 19057.185669601\\ +0.00354355573654175 17963.6389225423\\ +0.00360360741615295 15454.5701937973\\ +0.0038037896156311 6186.86704626679\\ +0.0038638710975647 4365.25625237823\\ +0.0039239227771759 3166.92685168982\\ +0.00396397709846497 2690.90589889884\\ +0.00400400161743164 2440.53315225244\\ +0.00402402877807617 2389.09630891681\\ +0.0040440559387207 2380.57239583135\\ +0.00406405329704285 2410.15142562985\\ +0.00410410761833191 2564.4626146853\\ +0.00416415929794312 2965.13961666822\\ +0.00440439581871033 4855.63612785935\\ +0.00446447730064392 5144.33908778429\\ +0.00452452898025513 5333.21420791745\\ +0.0045645534992218 5409.42419201136\\ +0.00460460782051086 5451.99717387557\\ +0.0046246349811554 5462.55413922668\\ +0.00464463233947754 5467.00193920732\\ +0.00466465950012207 5466.12381199002\\ +0.0046846866607666 5460.68934473395\\ +0.00472471117973328 5439.10415315628\\ +0.00478479266166687 5390.04074859619\\ +0.00492492318153381 5270.01751759648\\ +0.00498497486114502 5237.1495488584\\ +0.00502502918243408 5224.30301401019\\ +0.00506505370140076 5218.80818831921\\ +0.00508508086204529 5218.7070646584\\ +0.00510510802268982 5220.26934981346\\ +0.00514513254165649 5227.98950591683\\ +0.00518518686294556 5241.07613578439\\ +0.00524523854255676 5268.58334395289\\ +0.00534534454345703 5327.18084090948\\ +0.00556555390357971 5460.95884227753\\ +0.00568568706512451 5520.74590948224\\ +0.00582581758499146 5578.9701256454\\ +0.0060860812664032 5674.71195977926\\ +0.006386399269104 5789.13635256886\\ +0.00698697566986084 6020.29790610075\\ +0.00756755471229553 6233.35721236467\\ +0.00812813639640808 6431.97298955917\\ +0.00868868827819824 6623.41019067168\\ +0.0092492401599884 6807.92509528995\\ +0.00980982184410095 6985.69013544917\\ +0.0103703737258911 7156.88736629486\\ +0.0109309256076813 7321.69295877218\\ +0.0114714801311493 7474.72120645642\\ +0.0120120048522949 7622.11897554994\\ +0.0125525593757629 7764.03523731232\\ +0.0130930840969086 7900.61605229974\\ +0.0136336386203766 8032.00462830067\\ +0.0141741633415222 8158.34137400985\\ +0.0147147178649902 8279.7639503479\\ +0.0152352452278137 8392.17086899281\\ +0.0157557427883148 8500.26424512267\\ +0.0162762701511383 8604.16002592444\\ +0.0167967975139618 8703.97195118666\\ +0.0173173248767853 8799.81158778071\\ +0.0178378522396088 8891.78836259246\\ +0.0183383524417877 8976.68463546038\\ +0.0188388526439667 9058.20230412483\\ +0.0193393528461456 9136.43321171403\\ +0.0198398530483246 9211.46747386456\\ +0.0200000107288361 9234.81779319048\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0 0\\ +2.00197100639343e-05 172003.397761576\\ +6.0059130191803e-05 1296495.19877251\\ +0.00024024024605751 8380021.47182029\\ +0.000280279666185379 9062842.64188114\\ +0.000300299376249313 9230334.00991511\\ +0.000320320948958397 9286142.61443239\\ +0.000340340659022331 9236177.70124168\\ +0.000360360369086266 9087987.31810614\\ +0.000400399789214134 8532977.56046625\\ +0.000460460782051086 7205876.15627842\\ +0.000580580905079842 3773936.12389509\\ +0.000680681318044662 1157472.26662786\\ +0.0007607601583004 -359833.152813375\\ +0.000820821151137352 -1107867.02253667\\ +0.000860860571265221 -1431168.61734521\\ +0.000900899991393089 -1630141.37480331\\ +0.000940941274166107 -1722454.71423133\\ +0.000960960984230042 -1734642.2436592\\ +0.000980980694293976 -1727484.38668413\\ +0.00100100040435791 -1703441.60345054\\ +0.00104104168713093 -1614254.67701401\\ +0.00110110081732273 -1410969.87905996\\ +0.00130130164325237 -663711.794534469\\ +0.00136136077344418 -515913.284634504\\ +0.00142142176628113 -417171.002465505\\ +0.001461461186409 -376614.217401141\\ +0.00150150060653687 -353627.095345382\\ +0.00152152217924595 -347851.322465824\\ +0.00154154188930988 -345389.349429861\\ +0.00156156159937382 -345859.639064619\\ +0.00158158130943775 -348881.969313176\\ +0.00162162072956562 -361100.84659504\\ +0.00168168172240257 -389692.009020504\\ +0.00186186097562313 -483560.526145646\\ +0.00192192196846008 -503564.418877633\\ +0.00196196138858795 -512387.883504892\\ +0.00200200267136097 -517697.935508706\\ +0.0020220223814249 -519118.547689434\\ +0.00204204209148884 -519777.22640034\\ +0.00206206180155277 -519727.33078406\\ +0.00208208151161671 -519026.516335363\\ +0.00212212279438972 -515916.182704996\\ +0.00218218192458153 -507915.778905211\\ +0.00226226262748241 -493521.449901331\\ +0.00246246159076691 -456334.05556405\\ +0.00256256200373173 -442368.651183221\\ +0.00264264270663261 -433796.083071772\\ +0.00274274311959743 -425512.067089871\\ +0.00286286324262619 -417521.969740465\\ +0.00312312319874763 -400744.623201301\\ +0.00334334373474121 -384654.938030547\\ +0.00370370410382748 -358313.648697285\\ +0.00398398377001286 -339595.934418663\\ +0.00432432442903519 -318303.17847864\\ +0.00466466508805752 -298205.408332469\\ +0.00500500574707985 -279343.328914747\\ +0.00534534454345703 -261659.112636166\\ +0.00568568520247936 -245062.641378731\\ +0.00602602586150169 -229487.550548971\\ +0.00636636652052402 -214872.376674388\\ +0.00670670717954636 -201157.181333365\\ +0.00704704783856869 -188286.091608958\\ +0.00738738663494587 -176206.908645689\\ +0.0077277272939682 -164870.594796512\\ +0.00806806795299053 -154231.147759346\\ +0.00840840861201286 -144245.432168497\\ +0.00874874927103519 -134872.989320537\\ +0.00908908993005753 -126075.870818207\\ +0.00942942872643471 -117818.484065188\\ +0.00976976938545704 -110067.445645412\\ +0.0101101100444794 -102791.443960441\\ +0.0104504507035017 -95961.1105761174\\ +0.010790791362524 -89548.8995125387\\ +0.0111311320215464 -83528.9740232658\\ +0.0114714708179235 -77877.1004176009\\ +0.0118118114769459 -72570.5484798383\\ +0.0121521521359682 -67587.9980750289\\ +0.0124924927949905 -62909.451557938\\ +0.0128328334540129 -58516.1516243964\\ +0.0131731722503901 -54390.5042668823\\ +0.0135135129094124 -50516.006517129\\ +0.0138538535684347 -46877.1786783654\\ +0.014194194227457 -43459.5007682014\\ +0.0145345348864794 -40249.3529105056\\ +0.0148748755455017 -37233.9594309423\\ +0.0152152143418789 -34401.3364259973\\ +0.0155555550009012 -31740.2425896954\\ +0.0158958956599236 -29240.1330955736\\ +0.0162362363189459 -26891.1163440645\\ +0.0165765769779682 -24683.9133972712\\ +0.0169169176369905 -22609.819934113\\ +0.0172572564333677 -20660.6705692802\\ +0.0175975970923901 -18828.8053890839\\ +0.0179379377514124 -17107.038566472\\ +0.0182782784104347 -15488.6289260145\\ +0.0186186190694571 -13967.2523377109\\ +0.0189589597284794 -12536.9758259561\\ +0.0192992985248566 -11192.2332871165\\ +0.0196396391838789 -9927.80271576345\\ +0.0199799798429012 -8738.78484580852\\ +0.0199999995529652 -8671.09141031094\\ +}; +\end{axis} + +\begin{axis}[% +width=2.709in, +height=0.977in, +at={(0.425in,0.39in)}, +scale only axis, +separate axis lines, +every outer x axis line/.append style={black}, +every x tick label/.append style={font=\color{black}}, +every x tick/.append style={black}, +xmin=0, +xmax=0.02, +xlabel={Time [s]}, +every outer y axis line/.append style={black}, +every y tick label/.append style={font=\color{black}}, +every y tick/.append style={black}, +ymin=0, +ymax=1.08435810777396, +ylabel={Output}, +axis background/.style={fill=white}, +xmajorgrids, +ymajorgrids +] +\addplot [color=black, dashed, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0 0\\ +2.00200200199951e-05 0.000311447447728819\\ +4.00400400399903e-05 0.00233728996160987\\ +6.00600600599854e-05 0.00739380019495184\\ +0.000100100100100198 0.0300006368171892\\ +0.000140140140140188 0.0719228780308649\\ +0.000200200200200173 0.170264701934967\\ +0.000280280280280376 0.350371214218036\\ +0.000460460460460554 0.784515145354939\\ +0.000540540540540535 0.926277790191129\\ +0.00060060060060052 1.00125782047615\\ +0.000660660660660728 1.05015066126654\\ +0.000700700700700718 1.06983262181065\\ +0.000740740740740709 1.08073415515131\\ +0.000760760760760704 1.08335934509003\\ +0.000780780780780699 1.08435810777396\\ +0.000800800800800694 1.08392324938945\\ +0.000820820820820911 1.08224433000085\\ +0.000860860860860901 1.07588329744316\\ +0.000920920920920887 1.06134261244242\\ +0.00110110110110107 1.01305972546003\\ +0.00116116116116105 1.00197717988672\\ +0.00122122122122126 0.994542413176676\\ +0.00126126126126125 0.991513501930099\\ +0.00130130130130124 0.989850186076292\\ +0.00132132132132123 0.989468841653654\\ +0.00134134134134145 0.989351411010814\\ +0.00136136136136145 0.989469627344891\\ +0.00138138138138144 0.989795012992209\\ +0.00142142142142143 0.99095499047611\\ +0.00148148148148142 0.993570327048134\\ +0.00168168168168159 1.00332594455807\\ +0.0017417417417418 1.00533032812004\\ +0.00180180180180178 1.00672010782468\\ +0.00184184184184177 1.00732604528264\\ +0.00188188188188199 1.00770659771272\\ +0.00192192192192198 1.0078958971062\\ +0.00194194194194197 1.00793039108148\\ +0.00196196196196197 1.007931072017\\ +0.00198198198198196 1.0079026020156\\ +0.00202202202202195 1.00777619913748\\ +0.00208208208208216 1.00747496303689\\ +0.00222222222222213 1.00670112661171\\ +0.00228228228228233 1.00647220153499\\ +0.00232232232232232 1.00637300671858\\ +0.00236236236236231 1.00631780307656\\ +0.0024024024024023 1.00630463318467\\ +0.00244244244244252 1.00632960778839\\ +0.00248248248248251 1.00638755193196\\ +0.00254254254254249 1.00652333578517\\ +0.00262262262262269 1.00676399969896\\ +0.00288288288288285 1.00759959219134\\ +0.00300300300300305 1.007897483421\\ +0.00312312312312302 1.00813945349469\\ +0.00332332332332341 1.00848504135361\\ +0.00366366366366377 1.00907560125699\\ +0.00412412412412411 1.00988038951865\\ +0.00446446446446447 1.01042921048388\\ +0.00486486486486482 1.01103549570503\\ +0.00524524524524517 1.01157487707859\\ +0.00562562562562552 1.01207836223171\\ +0.00600600600600609 1.01254738084573\\ +0.00638638638638644 1.01298312771307\\ +0.0067667667667668 1.01338667687462\\ +0.00714714714714715 1.01375912345842\\ +0.0075275275275275 1.01410153270994\\ +0.00788788788788786 1.01439915353386\\ +0.00824824824824821 1.01467161047029\\ +0.00860860860860857 1.01491974752501\\ +0.00898898898898892 1.01515619720666\\ +0.00936936936936927 1.01536741656137\\ +0.00974974974974985 1.01555433068972\\ +0.0101301301301302 1.01571784235905\\ +0.0105105105105106 1.01585883239171\\ +0.0108908908908909 1.01597816004301\\ +0.0112712712712713 1.01607666337506\\ +0.0116716716716716 1.01615875198765\\ +0.0120720720720722 1.01621960059377\\ +0.0124724724724725 1.01626011324892\\ +0.0128928928928929 1.0162817273782\\ +0.0133133133133134 1.01628288134169\\ +0.0137537537537538 1.01626319339467\\ +0.0141941941941941 1.01622317956186\\ +0.0146546546546547 1.01616074358811\\ +0.0151351351351352 1.01607436571646\\ +0.0156356356356357 1.01596268083495\\ +0.0161561561561561 1.01582449418956\\ +0.0166966966966966 1.01565879560522\\ +0.0172572572572574 1.01546477206972\\ +0.0178378378378379 1.01524181854969\\ +0.0184584584584584 1.01498078154179\\ +0.0190990990990991 1.0146889277091\\ +0.0197797797797798 1.01435637829801\\ +0.02 1.0142442504991\\ +}; +\addplot [color=black, line width=1.5pt, forget plot] + table[row sep=crcr]{% +0 0\\ +4.00400400399903e-05 4.51861896255679e-06\\ +6.00600600600965e-05 2.17158155135788e-05\\ +8.00800800800916e-05 6.5125370185215e-05\\ +0.000100100100100087 0.000150809669017482\\ +0.000120120120120082 0.000296495880618086\\ +0.000160160160160183 0.000841398844879881\\ +0.000200200200200173 0.00184179525138484\\ +0.000240240240240275 0.00341968375407253\\ +0.000280280280280265 0.00566586374015443\\ +0.000340340340340362 0.0103975083679522\\ +0.000400400400400347 0.016780055359552\\ +0.000480480480480439 0.0276276833530709\\ +0.000580580580580525 0.0440876989591902\\ +0.00078078078078081 0.0814020996187174\\ +0.00102102102102097 0.12489911642543\\ +0.00124124124124125 0.160843294826016\\ +0.00158158158158161 0.212512061505326\\ +0.00196196196196197 0.267358048050794\\ +0.00228228228228233 0.310708674845896\\ +0.00262262262262258 0.35393993055407\\ +0.00296296296296295 0.394539794691123\\ +0.00330330330330331 0.43266850706115\\ +0.00364364364364367 0.468464854798051\\ +0.00398398398398403 0.502074240754175\\ +0.00432432432432428 0.533631567538742\\ +0.00466466466466464 0.563261909996636\\ +0.005005005005005 0.591083091974484\\ +0.00534534534534536 0.617205758987924\\ +0.00568568568568573 0.641733662696517\\ +0.00602602602602598 0.664764163207483\\ +0.00636636636636634 0.686388629850454\\ +0.0067067067067067 0.706692802652984\\ +0.00704704704704706 0.725757142412647\\ +0.00738738738738742 0.743657158631406\\ +0.00772772772772767 0.760463715860628\\ +0.00806806806806804 0.776243321305946\\ +0.0084084084084084 0.791058394666981\\ +0.00874874874874876 0.804967521173735\\ +0.00908908908908912 0.818025688912938\\ +0.00942942942942948 0.830284511427761\\ +0.00976976976976973 0.84179243649858\\ +0.0101101101101101 0.852594941963846\\ +0.0104504504504505 0.862734719386942\\ +0.0107907907907908 0.872251846323914\\ +0.0111311311311312 0.88118394790019\\ +0.0114714714714714 0.889566348360497\\ +0.0118118118118118 0.897432213214861\\ +0.0121521521521522 0.9048126825649\\ +0.0124924924924925 0.911736996158292\\ +0.0128328328328329 0.918232610685289\\ +0.0131731731731731 0.924325309799184\\ +0.0135135135135135 0.930039307312723\\ +0.0138538538538538 0.935397343994359\\ +0.0141941941941942 0.940420778361897\\ +0.0145345345345346 0.945129671846397\\ +0.0148748748748748 0.94954286867602\\ +0.0152152152152152 0.95367807080777\\ +0.0155555555555555 0.957551908214733\\ +0.0158958958958959 0.961180004817265\\ +0.0162162162162163 0.964383359753625\\ +0.0165365365365365 0.967393565371105\\ +0.0168568568568569 0.970221486787369\\ +0.0171771771771771 0.972877371980637\\ +0.0174974974974975 0.975370887486108\\ +0.0178178178178178 0.977711152008323\\ +0.0181381381381381 0.979906768071518\\ +0.0184584584584585 0.981965851822817\\ +0.0187787787787788 0.983896061096446\\ +0.0190990990990991 0.985704621840763\\ +0.0194194194194194 0.987398353003948\\ +0.0197397397397397 0.988983689968601\\ +0.02 0.990196166583419\\ +}; +\end{axis} +\end{tikzpicture}% \ No newline at end of file diff --git a/matlab/figs/verification_NP.pdf b/matlab/figs/verification_NP.pdf new file mode 100644 index 0000000..4d05c3c Binary files /dev/null and b/matlab/figs/verification_NP.pdf differ diff --git a/matlab/figs/verification_NP.png b/matlab/figs/verification_NP.png new file mode 100644 index 0000000..b1ffef6 Binary files /dev/null and b/matlab/figs/verification_NP.png differ diff --git a/matlab/figs/weights_NP_RS_RP.pdf b/matlab/figs/weights_NP_RS_RP.pdf new file mode 100644 index 0000000..ac84737 Binary files /dev/null and b/matlab/figs/weights_NP_RS_RP.pdf differ diff --git a/matlab/figs/weights_NP_RS_RP.png b/matlab/figs/weights_NP_RS_RP.png new file mode 100644 index 0000000..2cb7bac Binary files /dev/null and b/matlab/figs/weights_NP_RS_RP.png differ diff --git a/matlab/figs/weights_wl_wh.pdf b/matlab/figs/weights_wl_wh.pdf new file mode 100644 index 0000000..c1c4146 Binary files /dev/null and b/matlab/figs/weights_wl_wh.pdf differ diff --git a/matlab/figs/weights_wl_wh.png b/matlab/figs/weights_wl_wh.png new file mode 100644 index 0000000..d134aa2 Binary files /dev/null and b/matlab/figs/weights_wl_wh.png differ diff --git a/matlab/index.html b/matlab/index.html new file mode 100644 index 0000000..9849fda --- /dev/null +++ b/matlab/index.html @@ -0,0 +1,1091 @@ + + + + + + + +Sensor Fusion Paper - Computation with Matlab + + + + + + + + + + + + + + +
+

Sensor Fusion Paper - Computation with Matlab

+
+

Table of Contents

+ +
+ +

+The control architecture studied here is shown on figure 1 where: +

+ + + +
+

sf_arch_class_prefilter.png +

+

Figure 1: Control Architecture

+
+ +

+Here is the outline of the matlab analysis for this control architecture: +

+ + +
+

+All the files (data and Matlab scripts) are accessible here. +

+ +
+ +
+

1 Definition of the plant

+
+

+ +

+ +

+The studied system consists of a solid positioned on top of a motorized uni-axial soft suspension. +

+ +

+The absolute position \(x\) of the solid is measured using an inertial sensor and a force \(F\) can be applied to the mass using a voice coil actuator. +

+ +

+The model of the system is represented on figure 2 where the mass of the solid is \(m = 20\ [kg]\), the stiffness of the suspension is \(k = 10^4\ [N/m]\) and the damping of the system is \(c = 10^2\ [N/(m/s)]\). +

+ + +
+

mech_sys_alone.png +

+

Figure 2: One degree of freedom system

+
+ +

+The plant \(G\) is defined on matlab and its bode plot is shown on figure 3. +

+ +
+
m = 20;  % [kg]
+k = 1e4; % [N/m]
+c = 1e2; % [N/(m/s)]
+
+G = 1/(m*s^2 + c*s + k);
+
+
+ + +
+

bode_plot_mech_sys.png +

+

Figure 3: Bode plot of \(G\) (png, pdf)

+
+
+
+ +
+

2 Multiplicative input uncertainty

+
+

+ +We choose to use the multiplicative input uncertainty to model the plant uncertainty: +\[ \Pi_I: \ G^\prime(s) = G(s) (1 + w_I(s) \Delta(s)),\text{ with } |\Delta(j\omega)| < 1 \ \forall \omega \] +

+ + +

+The uncertainty weight \(w_I\) has the following form: +\[ w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1} \] +where \(r_0=0.1\) is the relative uncertainty at steady-state, \(1/\tau=80\text{Hz}\) is the frequency at which the relative uncertainty reaches 100%, and \(r_\infty=10\) is the magnitude of the weight at high frequency. +

+ +

+We defined the uncertainty weight on matlab. Its bode plot is shown on figure 4. +

+ +
+
r0 = 0.1;
+rinf = 10;
+tau = 1/2/pi/80;
+
+wI = (tau*s + r0)/((tau/rinf)*s+1);
+
+
+ + +
+

bode_wi.png +

+

Figure 4: Bode plot of \(w_I\) (png, pdf)

+
+ +

+The uncertain model is created with the ultidyn function. Elements in the uncertainty set \(\Pi_I\) are computed and their bode plot is shown on figure 5. +

+ +
+
Delta = ultidyn('Delta', [1 1]);
+
+Gd = G*(1+wI*Delta);
+Gds = usample(Gd, 20);
+
+
+ + +
+

plant_uncertainty_bode_plot.png +

+

Figure 5: Some elements in the uncertainty set \(\Pi_I\) (png, pdf)

+
+
+
+ +
+

3 Specifications and performance weights

+
+

+ +

+ +

+The control objective is to isolate the displacement \(x\) of the mass from the ground motion \(w\). +

+ +

+The specifications are described below: +

+
    +
  • at least a factor \(10\) of disturbance rejection at \(2\ \text{Hz}\) and with a slope of \(2\) below \(2\ \text{Hz}\) until a rejection of \(10^3\)
  • +
  • the noise attenuation should be at least \(10\) above \(100\ \text{Hz}\) and with a slope of \(-2\) above
  • +
+ +

+These specifications can be represented as upper bounds on the closed loop transfer functions \(S\) and \(T\) (see figure 6). +

+ + +
+

bode_requirements.png +

+

Figure 6: Upper bounds on \(S\) and \(T\) (png, pdf)

+
+ +

+We now define two weights, \(w_S(s)\) and \(w_T(s)\) such that \(1/|w_S|\) and \(1/|w_T|\) are lower than the previously defined upper bounds. +Then, the performance specifications are satisfied if the following condition is valid: +\[ \big|S(j\omega)\big| < \frac{1}{|w_S(j\omega)|} ; \quad \big|T(j\omega)\big| < \frac{1}{|w_T(j\omega)|}, \quad \forall \omega \] +

+ +

+The weights are defined as follow. They magnitude is compared with the upper bounds on \(S\) and \(T\) on figure 7. +

+
+
wS = 1600/(s+0.13)^2;
+wT = 1000*((s/(2*pi*1000)))^2;
+
+
+ + +
+

compare_weights_upper_bounds_S_T.png +

+

Figure 7: Weights \(w_S\) and \(w_T\) with the upper bounds on \(S\) and \(T\) obtained from the specifications (png, pdf)

+
+
+
+ +
+

4 Upper bounds on the norm of the complementary filters for NP, RS and RP

+
+

+ +

+ +

+Now that we have defined \(w_I\), \(w_S\) and \(w_T\), we can derive conditions for Nominal Performance, Robust Stability and Robust Performance (\(j\omega\) is omitted here for readability): +

+\begin{align*} + \text{NP} &\Leftrightarrow |H_H| < \frac{1}{|w_S|} \text{ and } |H_L| < \frac{1}{|w_T|} \quad \forall \omega \\ + \text{RS} &\Leftrightarrow |H_L| < \frac{1}{|w_I| (2 + |w_I|)} \quad \forall \omega \\ + \text{RP for } S &\Leftarrow |H_H| < \frac{1 + |w_I|}{|w_S| (2 + |w_I|)} \quad \forall \omega \\ + \text{RP for } T &\Leftrightarrow |H_L| < \frac{1}{|w_T| (1 + |w_I|) + |w_I|} \quad \forall \omega +\end{align*} + +

+These conditions are upper bounds on the complementary filters used for control. +

+ +

+We plot these conditions on figure 8. +

+ + +
+

weights_NP_RS_RP.png +

+

Figure 8: Upper bounds on the norm of the complementary filters for NP, RS and RP (png, pdf)

+
+
+
+ +
+

5 H-Infinity synthesis of complementary filters

+
+

+ +

+ +

+We here synthesize the complementary filters using the \(\mathcal{H}_\infty\) synthesis. +The goal is to specify upper bounds on the norms of \(H_L\) and \(H_H\) while ensuring their complementary property (\(H_L + H_H = 1\)). +

+ +

+In order to do so, we use the generalized plant shown on figure 9 where \(w_L\) and \(w_H\) weighting transfer functions that will be used to shape \(H_L\) and \(H_H\) respectively. +

+ + +
+

sf_hinf_filters_plant_b.png +

+

Figure 9: Generalized plant used for the \(\mathcal{H}_\infty\) synthesis of the complementary filters

+
+ +

+The \(\mathcal{H}_\infty\) synthesis applied on this generalized plant will give a transfer function \(H_L\) (figure 10) such that the \(\mathcal{H}_\infty\) norm of the transfer function from \(w\) to \([z_H,\ z_L]\) is less than one: +\[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \] +

+ +

+Thus, if the above condition is verified, we can define \(H_H = 1 - H_L\) and we have that: +\[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \] +Which is almost (with an maximum error of \(\sqrt{2}\)) equivalent to: +

+\begin{align*} + |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\ + |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega +\end{align*} + +

+We then see that \(w_L\) and \(w_H\) can be used to shape both \(H_L\) and \(H_H\) while ensuring (by definition of \(H_H = 1 - H_L\)) their complementary property. +

+ + +
+

sf_hinf_filters_b.png +

+

Figure 10: \(\mathcal{H}_\infty\) synthesis of the complementary filters

+
+ + +

+Thus, if we choose \(w_L\) and \(w_H\) such that \(1/|w_L|\) and \(1/|w_H|\) lie below the upper bounds of figure 8, we will ensure the NP, RS and RP of the controlled system. +

+ +

+Depending if we are interested only in NP, RS or RP, we can adjust the weights \(w_L\) and \(w_H\). +

+ +
+
omegab = 2*pi*9;
+wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2;
+omegab = 2*pi*28;
+wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3;
+
+
+ + +
+

weights_wl_wh.png +

+

Figure 11: Weights on the complementary filters \(w_L\) and \(w_H\) and the associated performance weights (png, pdf)

+
+ +

+We define the generalized plant \(P\) on matlab. +

+
+
P = [0   wL;
+     wH -wH;
+     1   0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Test bounds:      0.0000 <  gamma  <=      1.7285
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+    1.729   4.1e+01   8.4e-12   1.8e-01    0.0e+00    0.0000    p
+    0.864   3.9e+01 -5.8e-02#  1.8e-01    0.0e+00    0.0000    f
+    1.296   4.0e+01   8.4e-12   1.8e-01    0.0e+00    0.0000    p
+    1.080   4.0e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.972   3.9e+01 -4.2e-01#  1.8e-01    0.0e+00    0.0000    f
+    1.026   4.0e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.999   3.9e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.986   3.9e+01 -1.2e+00#  1.8e-01    0.0e+00    0.0000    f
+    0.993   3.9e+01 -8.2e+00#  1.8e-01    0.0e+00    0.0000    f
+    0.996   3.9e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.994   3.9e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.993   3.9e+01 -3.2e+01#  1.8e-01    0.0e+00    0.0000    f
+
+ Gamma value achieved:     0.9942
+
+ +

+We then define the high pass filter \(H_H = 1 - H_L\). The bode plot of both \(H_L\) and \(H_H\) is shown on figure 12. +

+
+
Hh_hinf = 1 - Hl_hinf;
+
+
+ + +
+

hinf_filters_results.png +

+

Figure 12: Obtained complementary filters using \(\mathcal{H}_\infty\) synthesis (png, pdf)

+
+
+
+ +
+

6 Complementary filters using analytical formula

+
+

+ +

+ +

+We here use analytical formula for the complementary filters \(H_L\) and \(H_H\). +

+ +

+The first two formulas that are used to generate complementary filters are: +

+\begin{align*} + H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)} +\end{align*} +

+where: +

+
    +
  • \(\omega_0\) is the blending frequency in rad/s.
  • +
  • \(\alpha\) is used to change the shape of the filters: +
      +
    • Small values for \(\alpha\) will produce high magnitude of the filters \(|H_L(j\omega)|\) and \(|H_H(j\omega)|\) near \(\omega_0\) but smaller value for \(|H_L(j\omega)|\) above \(\approx 1.5 \omega_0\) and for \(|H_H(j\omega)|\) below \(\approx 0.7 \omega_0\)
    • +
    • A large \(\alpha\) will do the opposite
    • +
  • +
+ +

+This is illustrated on figure 13. +As it is usually wanted to have the \(\| S \|_\infty < 2\), \(\alpha\) between \(0.5\) and \(1\) gives a good trade-off between the performance and the robustness. +The slope of those filters at high and low frequencies is \(-2\) and \(2\) respectively for \(H_L\) and \(H_H\). +

+ + +
+

comp_filters_param_alpha.png +

+

Figure 13: Effect of the parameter \(\alpha\) on the shape of the generated second order complementary filters (png, pdf)

+
+ + +

+The parameters \(\alpha\) and \(\omega_0\) are chosen in order to have that the complementary filters stay below the defined upper bounds. +

+ +

+The obtained complementary filters are shown on figure 14. +The Robust Performance is not fulfilled for \(T\), and we see that the RP condition as a slop of \(-3\). We thus have to use different formula for the complementary filters here. +

+ +
+
w0 = 2*pi*13;
+alpha = 0.8;
+
+Hh2_ana = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+Hl2_ana = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1));
+
+
+ + +
+

complementary_filters_second_order.png +

+

Figure 14: Second order complementary filters using the analytical formula (png, pdf)

+
+ + +

+The following formula gives complementary filters with slopes of \(-3\) and \(3\): +

+\begin{align*} + H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)} +\end{align*} + +

+The parameters are: +

+
    +
  • \(\omega_0\) is the blending frequency in rad/s
  • +
  • \(\alpha\) and \(\beta\) that are used to change the shape of the filters similarly to the parameter \(\alpha\) for the second order complementary filters
  • +
+ +

+The filters are defined below and the result is shown on figure 15 where we can see that the complementary filters are below the defined upper bounds. +

+ +
+
alpha = 1;
+beta = 10;
+w0 = 2*pi*14;
+
+Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+
+
+ + +
+

complementary_filters_third_order.png +

+

Figure 15: Third order complementary filters using the analytical formula (png, pdf)

+
+
+
+ +
+

7 Comparison of complementary filters

+
+

+ +The generated complementary filters using \(\mathcal{H}_\infty\) and the analytical formulas are compared on figure 16. +

+ +

+Although they are very close to each other, there is some difference to note here: +

+
    +
  • the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters \(\alpha\) and \(\omega_0\). However, these formula have the property that \(|H_H|\) and \(|H_L|\) are symmetrical with the frequency \(\omega_0\) which may not be desirable.
  • +
  • while the \(\mathcal{H}_\infty\) synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters
  • +
+ +

+The complementary filters obtained with the \(\mathcal{H}_\infty\) will be used for further analysis. +

+ + +
+

comp_hinf_analytical.png +

+

Figure 16: Comparison of the complementary filters obtained with \(\mathcal{H}_\infty\) synthesis and with the analytical formula (png, pdf)

+
+
+
+ +
+

8 Controller Analysis

+
+

+ +

+ +

+The controller \(K\) is computed from the plant model \(G\) and the low pass filter \(H_H\): +\[ K = G^{-1} H_H^{-1} \] +

+ +

+As this is not proper and thus realizable, a second order low pass filter is added with a crossover frequency much larger than the control bandwidth. +

+ +
+
omega = 2*pi*1000;
+K = 1/(Hh_hinf*G) * 1/((1+s/omega)*(1+s/omega+(s/omega)^2));
+
+
+ +
+zpk(K)
+
+ans =
+
+        4.961e12 (s+9.915e04) (s^2 + 5s + 500) (s^2 + 284.6s + 2.135e04) (s^2 + 130.5s + 9887)
+  --------------------------------------------------------------------------------------------------
+  (s+9.914e04) (s+6283) (s^2 + 0.3576s + 0.03198) (s^2 + 413.8s + 6.398e04) (s^2 + 6283s + 3.948e07)
+
+Continuous-time zero/pole/gain model.
+
+ +

+The bode plot of the controller is shown on figure 17: +

+
    +
  • two integrator are present at low frequency
  • +
  • the resonance of the plant at \(3.5\ \text{Hz}\) is inverted (notched)
  • +
  • a lead is added at \(10\ \text{Hz}\)
  • +
+ + +
+

bode_plot_controller.png +

+

Figure 17: Bode plot of the obtained controller \(K\) (png, pdf)

+
+
+
+ +
+

9 Nominal Stability and Nominal Performance

+
+

+ +

+ +

+The nominal stability of the system is first checked with the allmargin matlab command. +

+ +
+
allmargin(K*G*Hl_hinf)
+
+
+ +
+allmargin(K*G*Hl_hinf)
+ans =
+  struct with fields:
+
+     GainMargin: 4.46426896164391
+    GMFrequency: 243.854595348016
+    PhaseMargin: 35.7045152899792
+    PMFrequency: 88.3664383511655
+    DelayMargin: 0.00705201387841809
+    DMFrequency: 88.3664383511655
+         Stable: 1
+
+ +

+The system is stable and the stability margins are good. +

+ +

+The bode plot of the loop gain \(L = K*G*H_L\) is shown on figure 18. +

+ + +
+

bode_plot_loop_gain.png +

+

Figure 18: Bode Plot of the Loop Gain \(L = K G H_L\) (png, pdf)

+
+ +

+In order to check the Nominal Performance of the system, we compute the sensibility and the complementary sensibility transfer functions. +

+ +
+
S = 1/(K*G*Hl_hinf + 1);
+T = K*G*Hl_hinf/(K*G*Hl_hinf + 1);
+
+
+ +

+We then compare their norms with the upper bounds on the performance of the system (figure 19). +As expected, we guarantee the Nominal Performance of the system. +

+ + +
+

verification_NP.png +

+

Figure 19: Bode plot of \(S\) and \(T\) in order to verify the nominal performance of the system (png, pdf)

+
+
+
+ +
+

10 Robust Stability and Robust Performance

+
+

+ +In order to verify the Robust stability of the system, we can use the following equivalence: +\[ \text{RS} \Leftrightarrow \left| w_I T \right| < 1 \quad \forall \omega \] +

+ +

+This is shown on figure 20. +

+ + +
+

robust_stability.png +

+

Figure 20: Robust Stability Check: \(|w_I T| < 1, \quad \forall \omega\) (png, pdf)

+
+ +

+To check Robust Stability, we can also look at the loop gain of the uncertain system (figure 21) or the Nyquist plot (figure 22). +

+ + +
+

loop_gain_robustness.png +

+

Figure 21: Loop Gain of the uncertain system (png, pdf)

+
+ + + +
+

nyquist_robustness.png +

+

Figure 22: Nyquist plot of the uncertain system (png, pdf)

+
+ +

+The Robust Performance is verified by plotting \(|S|\) and \(|T|\) for the uncertain system along side the upper bounds defined for performance. +This is shown on figure 23 and we can indeed confirmed that the robust performance property of the system is valid. +

+ + +
+

robust_performance_result.png +

+

Figure 23: Verification of the Robust Performance (png, pdf)

+
+
+
+ +
+

11 Pre-filter

+
+

+ +

+ +

+For now, we have not specified any performance requirements on the input usage due to change of reference. +Do limit the input usage due to change of reference, we can use a pre-filter \(K_r\) as shown on figure 1. +

+ +

+If we want a response time of 0.01 second, we can choose a first order low pass filter with a crossover frequency at \(1/0.01 = 100\ \text{Hz}\) as defined below. +

+ +
+
Kr = 1/(1+s/2/pi/100);
+
+
+ +

+We then run a simulation for a step of \(1\mu m\) for the system without and with the pre-filter \(K_r\) (figure 24). +This confirms that a pre-filter can be used to limit the input usage due to change of reference using this architecture. +

+ +
+
t  = linspace(0, 0.02, 1000);
+
+opts = stepDataOptions;
+opts.StepAmplitude = 1e-6;
+
+u  = step((K)/(1+G*K*Hl_hinf),      t, opts);
+uf = step((Kr*K)/(1+G*K*Hl_hinf),   t, opts);
+y  = step((K*G)/(1+G*K*Hl_hinf),    t, opts);
+yf = step((Kr*G*K)/(1+G*K*Hl_hinf), t, opts);
+
+
+ + +
+

u_and_y_with_Kr.png +

+

Figure 24: Input usage and response due to a step change of reference when using a pre-filter \(K_r\) (png, pdf)

+
+
+
+ +
+

12 Controller using classical techniques

+
+

+ +A controller is designed using SISOTOOL with a bandwidth of approximately \(20\ \text{Hz}\) and with two integrator. +

+ +

+The obtained controller is shown below. +

+
+
Kf = 1.1814e12*(s+10.15)*(s+9.036)*(s+53.8)/(s^2*(s+216.1)*(s+1200)*(s+1864));
+
+
+ +
+
zpk(Kf)
+
+
+ +
+zpk(Kf)
+
+ans =
+
+  1.1814e12 (s+10.15) (s+9.036) (s+53.8)
+  --------------------------------------
+     s^2 (s+216.1) (s+1200) (s+1864)
+
+Continuous-time zero/pole/gain model.
+
+ +

+The loop gain for both cases are compared on figure 25. +

+ + +
+

loop_gain_compare.png +

+

Figure 25: Comparison of the Loop Gains (png, pdf)

+
+ +

+The Robust Stability of the system is verified using the Nyquist plot on figure 26. +

+ + +
+

nyquist_plot_sisotool_controller.png +

+

Figure 26: Nyquist Plot of the uncertain system (png, pdf)

+
+ +

+The closed loop sensitivity and complementary sensitivity transfer functions are computed. +And finally, the Robust Performance of both systems are compared on figure 27. +

+ + +
+

robust_performance_compare.png +

+

Figure 27: Comparison of the Robust Performance for both controllers (png, pdf)

+
+
+
+
+
+

Author: Thomas Dehaeze

+

Created: 2019-08-21 mer. 16:03

+

Validate

+
+ + diff --git a/matlab/index.org b/matlab/index.org new file mode 100644 index 0000000..c71fd75 --- /dev/null +++ b/matlab/index.org @@ -0,0 +1,1345 @@ +#+TITLE: Sensor Fusion Paper - Matlab Computation +:DRAWER: +#+HTML_LINK_HOME: ../index.html +#+HTML_LINK_UP: ../index.html + +#+LATEX_CLASS: cleanreport +#+LATEX_CLASS_OPTIONS: [tocnp, secbreak, minted] + +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: + +#+PROPERTY: header-args:matlab :session *MATLAB* +#+PROPERTY: header-args:matlab+ :tangle matlab/comp_filters_design.m +#+PROPERTY: header-args:matlab+ :comments org +#+PROPERTY: header-args:matlab+ :exports both +#+PROPERTY: header-args:matlab+ :results none +#+PROPERTY: header-args:matlab+ :eval no-export +#+PROPERTY: header-args:matlab+ :noweb yes +#+PROPERTY: header-args:matlab+ :mkdirp yes +#+PROPERTY: header-args:matlab+ :output-dir figs +:END: + +* Introduction :ignore: +The control architecture studied here is shown on figure [[fig:sf_arch_class_prefilter]] where: +- $G^{\prime}$ is the plant to control +- $K = G^{-1} H_L^{-1}$ is the controller used with $G$ a model of the plant +- $H_L$ and $H_H$ are complementary filters ($H_L + H_H = 1$) +- $K_r$ is a pre-filter that can be added + +#+name: fig:sf_arch_class_prefilter +#+caption: Control Architecture +[[file:figs-tikz/sf_arch_class_prefilter.png]] + +Here is the outline of the =matlab= analysis for this control architecture: +- Section [[sec:plant]]: the plant model $G$ is defined +- Section [[sec:uncertainty]]: the plant uncertainty set $\Pi_I$ is defined using the multiplicative input uncertainty: $\Pi_I: \ G^\prime = G (1 + w_I \Delta)$. Thus the weight $w_I$ is defined such that the true system dynamics is included in the set $\Pi_I$ +- Section [[sec:specifications]]: From the specifications on performance that are expressed in terms of upper bounds of $S$ and $T$, performance weights $w_S$ and $w_T$ are derived such that the goal is to obtain $|S| < \frac{1}{|w_S|}$ and $|T| < \frac{1}{|w_T|}, \ \forall \omega$ +- Section [[sec:upper_bounds_filters]]: upper bounds on the magnitude of the complementary filters $|H_L|$ and $|H_H|$ are defined in order to ensure Nominal Performance (NP), Robust Stability (RS) and Robust Performance (RP) +- Then, $H_L$ and $H_H$ are synthesize such that $|H_L|$ and $|H_H|$ are within the specified bounds and such that $H_L + H_H = 1$ (complementary property). This is done using two techniques, first $\mathcal{H}_\infty$ (section [[sec:h_infinity]]) and then analytical formulas (section [[sec:analytical_formula]]). Resulting complementary filters for both methods are compared in section [[sec:comp_filters]]. +- Section [[sec:controller_analysis]]: the obtain controller $K = G^{-1} H_H^{-1}$ is analyzed +- Section [[sec:nominal_stability_performance]]: the Nominal Stability (NS) and Nominal Performance conditions are verified +- Section [[sec:robustness_analysis]]: robust Stability and Robust Performance conditions are studied +- Section [[sec:pre_filter]]: a pre-filter that is used to limit the input usage due to the change of the reference is added +- Section [[sec:sisotool_controller]]: a controller is designed using =SISOTOOL= and then compared with the previously generated controller + +* ZIP file containing the data and matlab files :ignore: +#+begin_src bash :exports none :results none + if [ matlab/sensor_fusion.m -nt data/sensor_fusion.zip ]; then + cp matlab/sensor_fusion.m sensor_fusion.m; + zip data/sensor_fusion \ + sensor_fusion.m + rm sensor_fusion.m; + fi +#+end_src + +#+begin_note + All the files (data and Matlab scripts) are accessible [[file:data/sensor_fusion.zip][here]]. +#+end_note + +* Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +* Definition of the plant + <> + +The studied system consists of a solid positioned on top of a motorized uni-axial soft suspension. + +The absolute position $x$ of the solid is measured using an inertial sensor and a force $F$ can be applied to the mass using a voice coil actuator. + +The model of the system is represented on figure [[fig:mech_sys_alone]] where the mass of the solid is $m = 20\ [kg]$, the stiffness of the suspension is $k = 10^4\ [N/m]$ and the damping of the system is $c = 10^2\ [N/(m/s)]$. + +#+name: fig:mech_sys_alone +#+caption: One degree of freedom system +[[file:figs-tikz/mech_sys_alone.png]] + +The plant $G$ is defined on matlab and its bode plot is shown on figure [[fig:bode_plot_mech_sys]]. + +#+begin_src matlab + m = 20; % [kg] + k = 1e4; % [N/m] + c = 1e2; % [N/(m/s)] + + G = 1/(m*s^2 + c*s + k); +#+end_src + +#+begin_src matlab :exports none + figure; + ax1 = subaxis(2,1,1); + hold on; + plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-'); + hold off; + xlim([0.1, 100]); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude [m/N]'); + + ax2 = subaxis(2,1,2); + hold on; + plot(freqs, 180/pi*angle(squeeze(freqresp(G, freqs, 'Hz'))), 'k-'); + hold off; + yticks(-180:90:180); + ylim([-180 180]); + xlim([0.1, 1000]); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/bode_plot_mech_sys.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:bode_plot_mech_sys +#+CAPTION: Bode plot of $G$ ([[./figs/bode_plot_mech_sys.png][png]], [[./figs/bode_plot_mech_sys.pdf][pdf]]) +[[file:figs/bode_plot_mech_sys.png]] + +* Multiplicative input uncertainty + <> +We choose to use the multiplicative input uncertainty to model the plant uncertainty: +\[ \Pi_I: \ G^\prime(s) = G(s) (1 + w_I(s) \Delta(s)),\text{ with } |\Delta(j\omega)| < 1 \ \forall \omega \] + + +The uncertainty weight $w_I$ has the following form: +\[ w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1} \] +where $r_0=0.1$ is the relative uncertainty at steady-state, $1/\tau=80\text{Hz}$ is the frequency at which the relative uncertainty reaches 100%, and $r_\infty=10$ is the magnitude of the weight at high frequency. + +We defined the uncertainty weight on matlab. Its bode plot is shown on figure [[fig:bode_wi]]. + +#+begin_src matlab + r0 = 0.1; + rinf = 10; + tau = 1/2/pi/80; + + wI = (tau*s + r0)/((tau/rinf)*s+1); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(wI, freqs, 'Hz'))), 'k-'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-1, 10]); + xticks([0.1, 1, 10, 100, 1000]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/bode_wi.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:bode_wi +#+CAPTION: Bode plot of $w_I$ ([[./figs/bode_wi.png][png]], [[./figs/bode_wi.pdf][pdf]]) +[[file:figs/bode_wi.png]] + +The uncertain model is created with the =ultidyn= function. Elements in the uncertainty set $\Pi_I$ are computed and their bode plot is shown on figure [[fig:plant_uncertainty_bode_plot]]. + +#+begin_src matlab + Delta = ultidyn('Delta', [1 1]); + + Gd = G*(1+wI*Delta); + Gds = usample(Gd, 20); +#+end_src + +#+begin_src matlab :exports none + figure; + ax1 = subplot(2,1,1); + hold on; + for i=1:length(Gds) + plot(freqs, abs(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]); + end + plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), 'k-'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude [m/N]'); + hold off; + % Phase + ax2 = subplot(2,1,2); + hold on; + for i=1:length(Gds) + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]); + end + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), 'k-'); + set(gca,'xscale','log'); + yticks(-360:90:180); + ylim([-360 0]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/plant_uncertainty_bode_plot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:plant_uncertainty_bode_plot +#+CAPTION: Some elements in the uncertainty set $\Pi_I$ ([[./figs/plant_uncertainty_bode_plot.png][png]], [[./figs/plant_uncertainty_bode_plot.pdf][pdf]]) +[[file:figs/plant_uncertainty_bode_plot.png]] + +* Specifications and performance weights + <> + +The control objective is to isolate the displacement $x$ of the mass from the ground motion $w$. + +The specifications are described below: +- at least a factor $10$ of disturbance rejection at $2\ \text{Hz}$ and with a slope of $2$ below $2\ \text{Hz}$ until a rejection of $10^3$ +- the noise attenuation should be at least $10$ above $100\ \text{Hz}$ and with a slope of $-2$ above + +These specifications can be represented as upper bounds on the closed loop transfer functions $S$ and $T$ (see figure [[fig:bode_requirements]]). + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); + set(gca,'ColorOrderIndex',2) + plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/bode_requirements.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:bode_requirements +#+CAPTION: Upper bounds on $S$ and $T$ ([[./figs/bode_requirements.png][png]], [[./figs/bode_requirements.pdf][pdf]]) +[[file:figs/bode_requirements.png]] + +We now define two weights, $w_S(s)$ and $w_T(s)$ such that $1/|w_S|$ and $1/|w_T|$ are lower than the previously defined upper bounds. +Then, the performance specifications are satisfied if the following condition is valid: +\[ \big|S(j\omega)\big| < \frac{1}{|w_S(j\omega)|} ; \quad \big|T(j\omega)\big| < \frac{1}{|w_T(j\omega)|}, \quad \forall \omega \] + +The weights are defined as follow. They magnitude is compared with the upper bounds on $S$ and $T$ on figure [[fig:compare_weights_upper_bounds_S_T]]. +#+begin_src matlab + wS = 1600/(s+0.13)^2; + wT = 1000*((s/(2*pi*1000)))^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_T|$'); + set(gca,'ColorOrderIndex',1) + plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_S|$'); + set(gca,'ColorOrderIndex',2) + plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-4, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/compare_weights_upper_bounds_S_T.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:compare_weights_upper_bounds_S_T +#+CAPTION: Weights $w_S$ and $w_T$ with the upper bounds on $S$ and $T$ obtained from the specifications ([[./figs/compare_weights_upper_bounds_S_T.png][png]], [[./figs/compare_weights_upper_bounds_S_T.pdf][pdf]]) +[[file:figs/compare_weights_upper_bounds_S_T.png]] + +* Upper bounds on the norm of the complementary filters for NP, RS and RP + <> + +Now that we have defined $w_I$, $w_S$ and $w_T$, we can derive conditions for Nominal Performance, Robust Stability and Robust Performance ($j\omega$ is omitted here for readability): +\begin{align*} + \text{NP} &\Leftrightarrow |H_H| < \frac{1}{|w_S|} \text{ and } |H_L| < \frac{1}{|w_T|} \quad \forall \omega \\ + \text{RS} &\Leftrightarrow |H_L| < \frac{1}{|w_I| (2 + |w_I|)} \quad \forall \omega \\ + \text{RP for } S &\Leftarrow |H_H| < \frac{1 + |w_I|}{|w_S| (2 + |w_I|)} \quad \forall \omega \\ + \text{RP for } T &\Leftrightarrow |H_L| < \frac{1}{|w_T| (1 + |w_I|) + |w_I|} \quad \forall \omega +\end{align*} + +These conditions are upper bounds on the complementary filters used for control. + +We plot these conditions on figure [[fig:weights_NP_RS_RP]]. + +#+begin_src matlab :exports none + wT_resp = abs(squeeze(freqresp(wT, freqs, 'Hz'))); + wI_resp = abs(squeeze(freqresp(wI, freqs, 'Hz'))); + wS_resp = abs(squeeze(freqresp(wS, freqs, 'Hz'))); + Hh_resp = wT_resp.*(1 + wI_resp)./(wS_resp.*(wT_resp .* (1 + wI_resp) + wI_resp)); + Hl_resp = 1./(wT_resp .* (1 + wI_resp) + wI_resp); + + figure; + hold on; + plot(freqs, wS_resp .* Hh_resp + wI_resp .* Hl_resp, '--', 'DisplayName', 'NP - $H_L$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :exports none + wT_resp = abs(squeeze(freqresp(wT, freqs, 'Hz'))); + wI_resp = abs(squeeze(freqresp(wI, freqs, 'Hz'))); + wS_resp = abs(squeeze(freqresp(wS, freqs, 'Hz'))); + + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./wT_resp, '--', 'DisplayName', 'NP - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(wT_resp .* (1 + wI_resp) + wI_resp), ':', 'DisplayName', 'RP for T - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(wI_resp .* (2 + wI_resp)), '-.', 'DisplayName', 'RS - $H_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./wS_resp, '--', 'DisplayName', 'NP - $H_H$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, (1 + wI_resp)./(wS_resp .* (2 + wI_resp)), ':', 'DisplayName', 'RP for S - $H_H$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, wT_resp.*(1 + wI_resp)./(wS_resp.*(wT_resp .* (1 + wI_resp) + wI_resp)), '-', 'DisplayName', 'RP for S - $H_H$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/weights_NP_RS_RP.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:weights_NP_RS_RP +#+CAPTION: Upper bounds on the norm of the complementary filters for NP, RS and RP ([[./figs/weights_NP_RS_RP.png][png]], [[./figs/weights_NP_RS_RP.pdf][pdf]]) +[[file:figs/weights_NP_RS_RP.png]] + +* H-Infinity synthesis of complementary filters + <> + +We here synthesize the complementary filters using the $\mathcal{H}_\infty$ synthesis. +The goal is to specify upper bounds on the norms of $H_L$ and $H_H$ while ensuring their complementary property ($H_L + H_H = 1$). + +In order to do so, we use the generalized plant shown on figure [[fig:sf_hinf_filters_plant_b]] where $w_L$ and $w_H$ weighting transfer functions that will be used to shape $H_L$ and $H_H$ respectively. + +#+name: fig:sf_hinf_filters_plant_b +#+caption: Generalized plant used for the $\mathcal{H}_\infty$ synthesis of the complementary filters +[[file:figs-tikz/sf_hinf_filters_plant_b.png]] + +The $\mathcal{H}_\infty$ synthesis applied on this generalized plant will give a transfer function $H_L$ (figure [[fig:sf_hinf_filters_b]]) such that the $\mathcal{H}_\infty$ norm of the transfer function from $w$ to $[z_H,\ z_L]$ is less than one: +\[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \] + +Thus, if the above condition is verified, we can define $H_H = 1 - H_L$ and we have that: +\[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \] +Which is almost (with an maximum error of $\sqrt{2}$) equivalent to: +\begin{align*} + |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\ + |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega +\end{align*} + +We then see that $w_L$ and $w_H$ can be used to shape both $H_L$ and $H_H$ while ensuring (by definition of $H_H = 1 - H_L$) their complementary property. + +#+name: fig:sf_hinf_filters_b +#+caption: $\mathcal{H}_\infty$ synthesis of the complementary filters +[[file:figs-tikz/sf_hinf_filters_b.png]] + + +Thus, if we choose $w_L$ and $w_H$ such that $1/|w_L|$ and $1/|w_H|$ lie below the upper bounds of figure [[fig:weights_NP_RS_RP]], we will ensure the NP, RS and RP of the controlled system. + +Depending if we are interested only in NP, RS or RP, we can adjust the weights $w_L$ and $w_H$. + +#+begin_src matlab + omegab = 2*pi*9; + wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2; + omegab = 2*pi*28; + wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3; +#+end_src + +#+begin_src matlab :exports none + wT_resp = abs(squeeze(freqresp(wT, freqs, 'Hz'))); + wI_resp = abs(squeeze(freqresp(wI, freqs, 'Hz'))); + wS_resp = abs(squeeze(freqresp(wS, freqs, 'Hz'))); + Hh_resp = wT_resp.*(1 + wI_resp)./(wS_resp.*(wT_resp .* (1 + wI_resp) + wI_resp)); + Hl_resp = 1./(wT_resp .* (1 + wI_resp) + wI_resp); + + figure; + hold on; + plot(freqs, wS_resp .* Hh_resp + wI_resp .* Hl_resp, '--', 'DisplayName', 'NP - $H_L$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :exports none + wH_resp = abs(squeeze(freqresp(wH, freqs, 'Hz'))); + wL_resp = abs(squeeze(freqresp(wL, freqs, 'Hz'))); + + figure; + hold on; + plot(freqs, wH_resp .* Hh_resp + wL_resp.*Hl_resp, '--', 'DisplayName', 'NP - $H_L$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '-', 'DisplayName', '$w_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '-', 'DisplayName', '$w_H$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/weights_wl_wh.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:weights_wl_wh +#+CAPTION: Weights on the complementary filters $w_L$ and $w_H$ and the associated performance weights ([[./figs/weights_wl_wh.png][png]], [[./figs/weights_wl_wh.pdf][pdf]]) +[[file:figs/weights_wl_wh.png]] + +We define the generalized plant $P$ on matlab. +#+begin_src matlab + P = [0 wL; + wH -wH; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Test bounds: 0.0000 < gamma <= 1.7285 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p + 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f + 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p + 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f + 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f + 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f + 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f + + Gamma value achieved: 0.9942 +#+end_example + +We then define the high pass filter $H_H = 1 - H_L$. The bode plot of both $H_L$ and $H_H$ is shown on figure [[fig:hinf_filters_results]]. +#+begin_src matlab + Hh_hinf = 1 - Hl_hinf; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/hinf_filters_results.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:hinf_filters_results +#+CAPTION: Obtained complementary filters using $\mathcal{H}_\infty$ synthesis ([[./figs/hinf_filters_results.png][png]], [[./figs/hinf_filters_results.pdf][pdf]]) +[[file:figs/hinf_filters_results.png]] + +* Complementary filters using analytical formula + <> + +We here use analytical formula for the complementary filters $H_L$ and $H_H$. + +The first two formulas that are used to generate complementary filters are: +\begin{align*} + H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)} +\end{align*} +where: +- $\omega_0$ is the blending frequency in rad/s. +- $\alpha$ is used to change the shape of the filters: + - Small values for $\alpha$ will produce high magnitude of the filters $|H_L(j\omega)|$ and $|H_H(j\omega)|$ near $\omega_0$ but smaller value for $|H_L(j\omega)|$ above $\approx 1.5 \omega_0$ and for $|H_H(j\omega)|$ below $\approx 0.7 \omega_0$ + - A large $\alpha$ will do the opposite + +This is illustrated on figure [[fig:comp_filters_param_alpha]]. +As it is usually wanted to have the $\| S \|_\infty < 2$, $\alpha$ between $0.5$ and $1$ gives a good trade-off between the performance and the robustness. +The slope of those filters at high and low frequencies is $-2$ and $2$ respectively for $H_L$ and $H_H$. + +#+begin_src matlab :exports none + freqs_study = logspace(-2, 2, 10000); + alphas = [0.1, 1, 10]; + w0 = 2*pi*1; + + figure; + ax1 = subaxis(2,1,1); + hold on; + for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz')))); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz')))); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + hold off; + ylim([1e-3, 20]); + % Phase + ax2 = subaxis(2,1,2); + hold on; + for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'HandleVisibility', 'off'); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); + legend('Location', 'northeast'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs_study(1), freqs_study(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filters_param_alpha.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filters_param_alpha +#+CAPTION: Effect of the parameter $\alpha$ on the shape of the generated second order complementary filters ([[./figs/comp_filters_param_alpha.png][png]], [[./figs/comp_filters_param_alpha.pdf][pdf]]) +[[file:figs/comp_filters_param_alpha.png]] + + +The parameters $\alpha$ and $\omega_0$ are chosen in order to have that the complementary filters stay below the defined upper bounds. + +The obtained complementary filters are shown on figure [[fig:complementary_filters_second_order]]. +The Robust Performance is not fulfilled for $T$, and we see that the RP condition as a slop of $-3$. We thus have to use different formula for the complementary filters here. + +#+begin_src matlab + w0 = 2*pi*13; + alpha = 0.8; + + Hh2_ana = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2_ana = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/complementary_filters_second_order.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:complementary_filters_second_order +#+CAPTION: Second order complementary filters using the analytical formula ([[./figs/complementary_filters_second_order.png][png]], [[./figs/complementary_filters_second_order.pdf][pdf]]) +[[file:figs/complementary_filters_second_order.png]] + + +The following formula gives complementary filters with slopes of $-3$ and $3$: +\begin{align*} + H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)} +\end{align*} + +The parameters are: +- $\omega_0$ is the blending frequency in rad/s +- $\alpha$ and $\beta$ that are used to change the shape of the filters similarly to the parameter $\alpha$ for the second order complementary filters + +The filters are defined below and the result is shown on figure [[fig:complementary_filters_third_order]] where we can see that the complementary filters are below the defined upper bounds. + +#+begin_src matlab + alpha = 1; + beta = 10; + w0 = 2*pi*14; + + Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/complementary_filters_third_order.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:complementary_filters_third_order +#+CAPTION: Third order complementary filters using the analytical formula ([[./figs/complementary_filters_third_order.png][png]], [[./figs/complementary_filters_third_order.pdf][pdf]]) +[[file:figs/complementary_filters_third_order.png]] + +* Comparison of complementary filters + <> +The generated complementary filters using $\mathcal{H}_\infty$ and the analytical formulas are compared on figure [[fig:comp_hinf_analytical]]. + +Although they are very close to each other, there is some difference to note here: +- the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters $\alpha$ and $\omega_0$. However, these formula have the property that $|H_H|$ and $|H_L|$ are symmetrical with the frequency $\omega_0$ which may not be desirable. +- while the $\mathcal{H}_\infty$ synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters + +The complementary filters obtained with the $\mathcal{H}_\infty$ will be used for further analysis. + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), ':'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + hold off; + ylim([1e-4, 10]); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $2$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':', 'DisplayName', '$H_L$ - $3$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(Hh3_ana, freqs, 'Hz')))+360, ':', 'DisplayName', '$H_H$ - $3$'); + set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + yticks([-360:90:360]); + legend('location', 'northeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_hinf_analytical.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_hinf_analytical +#+CAPTION: Comparison of the complementary filters obtained with $\mathcal{H}_\infty$ synthesis and with the analytical formula ([[./figs/comp_hinf_analytical.png][png]], [[./figs/comp_hinf_analytical.pdf][pdf]]) +[[file:figs/comp_hinf_analytical.png]] + +* Controller Analysis + <> + +The controller $K$ is computed from the plant model $G$ and the low pass filter $H_H$: +\[ K = G^{-1} H_H^{-1} \] + +As this is not proper and thus realizable, a second order low pass filter is added with a crossover frequency much larger than the control bandwidth. + +#+begin_src matlab + omega = 2*pi*1000; + K = 1/(Hh_hinf*G) * 1/((1+s/omega)*(1+s/omega+(s/omega)^2)); +#+end_src + +#+begin_src matlab :exports none + K = zpk(minreal(K)); +#+end_src + +#+begin_src matlab :results output replace :exports results :wrap example + zpk(K) +#+end_src + +#+RESULTS: +#+begin_example +zpk(K) + +ans = + + 4.961e12 (s+9.915e04) (s^2 + 5s + 500) (s^2 + 284.6s + 2.135e04) (s^2 + 130.5s + 9887) + -------------------------------------------------------------------------------------------------- + (s+9.914e04) (s+6283) (s^2 + 0.3576s + 0.03198) (s^2 + 413.8s + 6.398e04) (s^2 + 6283s + 3.948e07) + +Continuous-time zero/pole/gain model. +#+end_example + +The bode plot of the controller is shown on figure [[fig:bode_plot_controller]]: +- two integrator are present at low frequency +- the resonance of the plant at $3.5\ \text{Hz}$ is inverted (notched) +- a lead is added at $10\ \text{Hz}$ + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + plot(freqs, abs(squeeze(freqresp(K, freqs, 'Hz'))), 'k-'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude [N/m]'); + % ylim([1e3, 1e8]) + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + plot(freqs, 180/pi*angle(squeeze(freqresp(K, freqs, 'Hz'))), 'k-'); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/bode_plot_controller.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:bode_plot_controller +#+CAPTION: Bode plot of the obtained controller $K$ ([[./figs/bode_plot_controller.png][png]], [[./figs/bode_plot_controller.pdf][pdf]]) +[[file:figs/bode_plot_controller.png]] + +* Nominal Stability and Nominal Performance + <> + +The nominal stability of the system is first checked with the =allmargin= matlab command. + +#+begin_src matlab :results output replace + allmargin(K*G*Hl_hinf) +#+end_src + +#+RESULTS: +#+begin_example +allmargin(K*G*Hl_hinf) +ans = + struct with fields: + + GainMargin: 4.46426896164391 + GMFrequency: 243.854595348016 + PhaseMargin: 35.7045152899792 + PMFrequency: 88.3664383511655 + DelayMargin: 0.00705201387841809 + DMFrequency: 88.3664383511655 + Stable: 1 +#+end_example + +The system is stable and the stability margins are good. + +The bode plot of the loop gain $L = K*G*H_L$ is shown on figure [[fig:bode_plot_loop_gain]]. + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k-'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude [m/N]'); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz')))), 'k-'); + set(gca,'xscale','log'); + yticks(-270:90:0); + ylim([-270 0]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/bode_plot_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:bode_plot_loop_gain +#+CAPTION: Bode Plot of the Loop Gain $L = K G H_L$ ([[./figs/bode_plot_loop_gain.png][png]], [[./figs/bode_plot_loop_gain.pdf][pdf]]) +[[file:figs/bode_plot_loop_gain.png]] + +In order to check the Nominal Performance of the system, we compute the sensibility and the complementary sensibility transfer functions. + +#+begin_src matlab + S = 1/(K*G*Hl_hinf + 1); + T = K*G*Hl_hinf/(K*G*Hl_hinf + 1); +#+end_src + +We then compare their norms with the upper bounds on the performance of the system (figure [[fig:verification_NP]]). +As expected, we guarantee the Nominal Performance of the system. + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', 'Upper bound on $|T|$'); + set(gca,'ColorOrderIndex',2) + plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', 'Upper bound on $|S|$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), '-', 'DisplayName', '$T$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), '-', 'DisplayName', '$S$'); + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-4, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/verification_NP.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:verification_NP +#+CAPTION: Bode plot of $S$ and $T$ in order to verify the nominal performance of the system ([[./figs/verification_NP.png][png]], [[./figs/verification_NP.pdf][pdf]]) +[[file:figs/verification_NP.png]] + +* Robust Stability and Robust Performance + <> +In order to verify the Robust stability of the system, we can use the following equivalence: +\[ \text{RS} \Leftrightarrow \left| w_I T \right| < 1 \quad \forall \omega \] + +This is shown on figure [[fig:robust_stability]]. + +#+begin_src matlab :exports none + Ts = Gds*K*Hl_hinf/(Gds*K*Hl_hinf + 1); + Ss = 1/(Gds*K*Hl_hinf + 1); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(wI*T, freqs, 'Hz'))), 'k-'); + plot([freqs(1) freqs(end)], [1 1], 'k--'); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); + ylim([0.02, 2]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/robust_stability.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:robust_stability +#+CAPTION: Robust Stability Check: $|w_I T| < 1, \quad \forall \omega$ ([[./figs/robust_stability.png][png]], [[./figs/robust_stability.pdf][pdf]]) +[[file:figs-tikz/robust_stability.png]] + +To check Robust Stability, we can also look at the loop gain of the uncertain system (figure [[fig:loop_gain_robustness]]) or the Nyquist plot (figure [[fig:nyquist_robustness]]). + +#+begin_src matlab :results silent :exports none + figure; + ax2 = subplot(2,1,1); + hold on; + for i=1:length(Gds) + plot(freqs, abs(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]); + end + plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz'))), 'k-'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude [m/N]'); + ylim([1e-4 1e4]); + hold off; + % Phase + ax2 = subplot(2,1,2); + hold on; + for i=1:length(Gds) + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]); + end + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz')))), 'k-'); + set(gca,'xscale','log'); + yticks(-360:90:180); + ylim([-270 0]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/loop_gain_robustness.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:loop_gain_robustness +#+CAPTION: Loop Gain of the uncertain system ([[./figs/loop_gain_robustness.png][png]], [[./figs/loop_gain_robustness.pdf][pdf]]) +[[file:figs/loop_gain_robustness.png]] + + +#+begin_src matlab :exports none + freqs_nyquist = logspace(0, 4, 100); + + figure; + hold on; + for i=1:length(Gds) + plot(real(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]); + end + plot(real(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'k'); + hold off; + xlim([-1.4, 0.2]); ylim([-1.4, 0.2]); + xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2); + xlabel('Real Part'); ylabel('Imaginary Part'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/nyquist_robustness.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:nyquist_robustness +#+CAPTION: Nyquist plot of the uncertain system ([[./figs/nyquist_robustness.png][png]], [[./figs/nyquist_robustness.pdf][pdf]]) +[[file:figs/nyquist_robustness.png]] + +The Robust Performance is verified by plotting $|S|$ and $|T|$ for the uncertain system along side the upper bounds defined for performance. +This is shown on figure [[fig:robust_performance_result]] and we can indeed confirmed that the robust performance property of the system is valid. + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain'); + plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain'); + + for i=2:length(Gds) + plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off'); + end + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(1/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal'); + + set(gca,'ColorOrderIndex',1) + plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); + set(gca,'ColorOrderIndex',2) + plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); + xlim([freqs(1), freqs(end)]); + ylim([1e-4, 5]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeastoutside'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/robust_performance_result.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:robust_performance_result +#+CAPTION: Verification of the Robust Performance ([[./figs/robust_performance_result.png][png]], [[./figs/robust_performance_result.pdf][pdf]]) +[[file:figs/robust_performance_result.png]] + +* Pre-filter + <> + +For now, we have not specified any performance requirements on the input usage due to change of reference. +Do limit the input usage due to change of reference, we can use a pre-filter $K_r$ as shown on figure [[fig:sf_arch_class_prefilter]]. + +If we want a response time of 0.01 second, we can choose a first order low pass filter with a crossover frequency at $1/0.01 = 100\ \text{Hz}$ as defined below. + +#+begin_src matlab + Kr = 1/(1+s/2/pi/100); +#+end_src + +We then run a simulation for a step of $1\mu m$ for the system without and with the pre-filter $K_r$ (figure [[fig:u_and_y_with_Kr]]). +This confirms that a pre-filter can be used to limit the input usage due to change of reference using this architecture. + +#+begin_src matlab + t = linspace(0, 0.02, 1000); + + opts = stepDataOptions; + opts.StepAmplitude = 1e-6; + + u = step((K)/(1+G*K*Hl_hinf), t, opts); + uf = step((Kr*K)/(1+G*K*Hl_hinf), t, opts); + y = step((K*G)/(1+G*K*Hl_hinf), t, opts); + yf = step((Kr*G*K)/(1+G*K*Hl_hinf), t, opts); +#+end_src + +#+begin_src matlab :exports none + figure; + ax1 = subplot(2,1,1); + hold on; + plot(t, u, 'k--', 'DisplayName', 'Without Pre-filter'); + plot(t, uf, 'k-', 'DisplayName', 'With Pre-Filter'); + hold off; + ylabel('Command Input [N]'); + set(gca, 'XTickLabel',[]); + legend('location', 'northeast'); + + ax2 = subplot(2,1,2); + hold on; + plot(t, y, 'k--'); + plot(t, yf, 'k-' ); + hold off; + xlabel('Time [s]'); + ylabel('Output [m]'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/u_and_y_with_Kr.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:u_and_y_with_Kr +#+CAPTION: Input usage and response due to a step change of reference when using a pre-filter $K_r$ ([[./figs/u_and_y_with_Kr.png][png]], [[./figs/u_and_y_with_Kr.pdf][pdf]]) +[[file:figs/u_and_y_with_Kr.png]] + +* Controller using classical techniques + <> +A controller is designed using =SISOTOOL= with a bandwidth of approximately $20\ \text{Hz}$ and with two integrator. + +The obtained controller is shown below. +#+begin_src matlab + Kf = 1.1814e12*(s+10.15)*(s+9.036)*(s+53.8)/(s^2*(s+216.1)*(s+1200)*(s+1864)); +#+end_src + +#+begin_src matlab :results output :exports results replace :wrap example + zpk(Kf) +#+end_src + +#+RESULTS: +#+begin_example +zpk(Kf) + +ans = + + 1.1814e12 (s+10.15) (s+9.036) (s+53.8) + -------------------------------------- + s^2 (s+216.1) (s+1200) (s+1864) + +Continuous-time zero/pole/gain model. +#+end_example + +The loop gain for both cases are compared on figure [[fig:loop_gain_compare]]. + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--'); + plot(freqs, abs(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude [N/m]'); + % ylim([1e3, 1e8]) + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + plot(freqs, 180/pi*angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--', 'DisplayName', '$K G H_L$ - $\mathcal{H}_\infty$'); + plot(freqs, 180/pi*angle(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-', 'DisplayName', '$K G$ - SISOTOOL'); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + legend('location', 'northwest'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]) +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/loop_gain_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:loop_gain_compare +#+CAPTION: Comparison of the Loop Gains ([[./figs/loop_gain_compare.png][png]], [[./figs/loop_gain_compare.pdf][pdf]]) +[[file:figs/loop_gain_compare.png]] + +The Robust Stability of the system is verified using the Nyquist plot on figure [[fig:nyquist_plot_sisotool_controller]]. + +#+begin_src matlab :exports none + freqs_nyquist = logspace(0, 4, 100); + + figure; + hold on; + for i=1:length(Gds) + plot(real(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]); + end + plot(real(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), 'k'); + hold off; + xlim([-1.4, 0.2]); ylim([-1.4, 0.2]); + xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2); + xlabel('Real Part'); ylabel('Imaginary Part'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/nyquist_plot_sisotool_controller.pdf" :var figsize="normal-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:nyquist_plot_sisotool_controller +#+CAPTION: Nyquist Plot of the uncertain system ([[./figs/nyquist_plot_sisotool_controller.png][png]], [[./figs/nyquist_plot_sisotool_controller.pdf][pdf]]) +[[file:figs/nyquist_plot_sisotool_controller.png]] + +The closed loop sensitivity and complementary sensitivity transfer functions are computed. +And finally, the Robust Performance of both systems are compared on figure [[fig:robust_performance_compare]]. + +#+begin_src matlab :exports none + Sf = 1/(Kf*G + 1); + Tf = Kf*G/(Kf*G + 1); + + Tfs = Gds*Kf/(Gds*Kf + 1); + Sfs = 1/(Gds*Kf + 1); +#+end_src + + +#+begin_src matlab :exports none + figure; + ax1 = subplot(1, 2, 1); + title('$K$ - SISOTOOL'); + hold on; + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Tf, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Sf, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal'); + + plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain'); + plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain'); + + for i=2:length(Gds) + plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off'); + end + + set(gca,'ColorOrderIndex',1) + plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); + set(gca,'ColorOrderIndex',2) + plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); + + ax2 = subplot(1, 2, 2); + title('$K$ - complementary filters'); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal'); + + plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain'); + plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain'); + + for i=2:length(Gds) + plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off'); + end + + set(gca,'ColorOrderIndex',1) + plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); + set(gca,'ColorOrderIndex',2) + plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); + + linkaxes([ax1 ax2], 'y') + ylim([1e-4, 10]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/robust_performance_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:robust_performance_compare +#+CAPTION: Comparison of the Robust Performance for both controllers ([[./figs/robust_performance_compare.png][png]], [[./figs/robust_performance_compare.pdf][pdf]]) +[[file:figs/robust_performance_compare.png]] diff --git a/matlab/matlab/complementary_filters_order.m b/matlab/matlab/complementary_filters_order.m new file mode 100644 index 0000000..adb6cf6 --- /dev/null +++ b/matlab/matlab/complementary_filters_order.m @@ -0,0 +1,667 @@ +%% Clear Workspace and Close figures +clear; close all; clc; + +%% Intialize Laplace variable +s = zpk('s'); + +freqs = logspace(-1, 3, 1000); + +% Generate Complementary filters with different order :noexport: +% The weights are generated automatically base on the wanted blending frequency and the order. +% For each weight, the synthesis of the filter is made and the result are displayed figure [[fig:order_filter]]. + + +n_array = 1:3; +Hhs = {zeros(1, length(n_array))}; +gammas = zeros(1, length(n_array)); + +for i = 1:length(n_array) + f0 = 10; n = n_array(i); alpha = 1; + + G0 = 1e7; + b = 2*pi*f0/(sqrt((G0/sqrt(2))^(2/n)-1)); + Wh = alpha*G0/(1+s/b)^n; + b = 2*pi*f0/2^(1/2/n)*sqrt(G0^(2/n)-2^(1/n)); + Wl = alpha*G0*((s/b)/(s/b + 1))^n; + P = [0 Wh; + Wl -Wl; + 1 0]; + [Hh, ~, gamma, ~] = hinfsyn(minreal(P), 1, 1,'TOLGAM', 0.001, 'GMAX', 10, 'GMIN', 0.01, 'METHOD', 'ric', 'DISPLAY', 'on'); + Hhs(i) = {Hh}; + gammas(i) = gamma; +end + +figure; +% Magnitude +ax1 = subaxis(2,1,1); +hold on; +for i = 1:length(n_array) + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(Hhs{i}, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(1-Hhs{i}, freqs, 'Hz'))), '--'); +end +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +for i = 1:length(n_array) + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hhs{i}, freqs, 'Hz')))), 'DisplayName', sprintf('n = %i', n_array(i))); + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(1-Hhs{i}, freqs, 'Hz')))), '--', 'HandleVisibility', 'off'); +end +set(gca,'xscale','log'); +yticks(-270:90:270); +ylim([-270 270]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +legend('Location', 'northeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Analytical formula for complementary filters of 1st, 2nd and 3rd order :noexport: +% The approximate analytical formula for complementary filters of 1st, 2nd and 3rd orders are defined below. +% Their bode plot are shown on figure ref:fig:comp_filters_order. + + +f0 = 1; % [Hz] + +Hh1 = (s/2/pi/f0)/((s/2/pi/f0)+1); +Hl1 = 1/((s/2/pi/f0)+1); + +Hh2 = (s/f0)^2*((s/f0)+14.3)/(((s/f0)+2*pi)*((s/f0)^2 + 8*(s/f0) + 40)); +Hl2 = 90.4*((s/f0)+2.78)/(((s/f0)+2*pi)*((s/f0)^2 + 8*(s/f0) + 40)); + +Hh3 = (s/f0)^3*((s/f0)^2 + 20*(s/f0) + 200)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40)); +Hl3 = 2*pi*200*((s/f0)^2 + 4*(s/f0) + 8)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40)); + +w0 = 2*pi; % [Hz] + +Hh1 = (s/w0)/((s/w0)+1); +Hl1 = 1/((s/w0)+1); + +Hh2 = (s/w0)^2*((s/w0)+3)/(((s/w0)+1)*((s/w0)^2 + 2*(s/w0) + 1)); +Hl2 = (3*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + 2*(s/w0) + 1)); + +Hh3 = (s/f0)^3*((s/f0)^2 + 20*(s/f0) + 200)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40)); +Hl3 = 2*pi*200*((s/f0)^2 + 4*(s/f0) + 8)/(((s/f0)+2*pi)*((s/f0)^2 + 10*(s/f0) + 40)*((s/f0)^2 + 4*(s/f0) + 40)); + +figure; +% Magnitude +ax1 = subaxis(2,1,1); +hold on; +set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz')))); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz'))), 'DisplayName', '1st order'); +set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz'))), 'HandleVisibility', 'off'); +set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))), 'DisplayName', '2nd order'); +set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))), 'HandleVisibility', 'off'); +set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))), 'DisplayName', '3rd order'); +set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))), 'HandleVisibility', 'off'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +legend('Location', 'northeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + + + +% #+LABEL: fig:comp_filters_order +% #+CAPTION: Bode plot of complementary filters of order 1, 2 and 3 +% #+RESULTS: fig:comp_filters_order +% [[file:figs/comp_filters_order.png]] + +% For each order, we plot the low pass filter, the high pass filter and the sum of the two to check their complementary properties. + +freqs = logspace(-2, 2, 1000); + +figure; +ax1=subaxis(1, 3, 1); +hold on; +plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hl1+Hh1, freqs, 'Hz'))), 'k--'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Magnitude'); +title('1st Order'); + +ax2=subaxis(1, 3, 2); +hold on; +plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hl2+Hh2, freqs, 'Hz'))), 'k--'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); +title('2nd Order'); + +ax3=subaxis(1, 3, 3); +hold on; +plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hl3+Hh3, freqs, 'Hz'))), 'k--'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +title('3rd Order'); + +linkaxes([ax1,ax2,ax3],'x'); +linkaxes([ax1,ax2,ax3],'y'); +set(gca, 'YTickLabel',[]); + + + +% #+LABEL: fig:comp_filters_magnitude +% #+CAPTION: Magnitude of complementary filters with order 1, 2 and 3 +% #+RESULTS: fig:comp_filters_magnitude +% [[file:figs/comp_filters_magnitude.png]] + + + +freqs = logspace(-2, 2, 1000); + +figure; +ax1=subaxis(1, 3, 1); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz')))); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz')))); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1+Hh1, freqs, 'Hz'))), 'k--'); +hold off; +set(gca, 'XScale', 'log'); +yticks(-180:90:180); +ylim([-180 180]); +ylabel('Phase [deg]'); +title('1st Order'); + +ax2=subaxis(1, 3, 2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz')))); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz')))); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2+Hh2, freqs, 'Hz'))), 'k--'); +hold off; +set(gca, 'XScale', 'log'); +set(gca, 'YTickLabel',[]); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Frequency [Hz]'); +title('2nd Order'); + +ax3=subaxis(1, 3, 3); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz')))); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz')))); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3+Hh3, freqs, 'Hz'))), 'k--'); +hold off; +set(gca, 'XScale', 'log'); +set(gca, 'YTickLabel',[]); +title('3rd Order'); + +yticks(-180:90:180); +ylim([-180 180]); + + + +% #+LABEL: fig:comp_filters_phase +% #+CAPTION: Phase of complementary filters with order 1, 2 and 3 +% #+RESULTS: fig:comp_filters_phase +% [[file:figs/comp_filters_phase.png]] + +% We then plot the loop gain obtained for each filter in the nominal case $K G^\prime H_L = H_H^{-1} H_L$ (figure ref:fig:comp_filters_loop_gain). + + +freqs = logspace(-2, 2, 1000); + +figure; +% Magnitude +ax1 = subaxis(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz')))); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); +ylim([1e-5 1e5]); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz')))), 'DisplayName', '1st order'); +plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz')))), 'DisplayName', '2nd order'); +plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))))-360, 'DisplayName', '3rd order'); +set(gca,'xscale','log'); +yticks(-270:90:90); +ylim([-270 90]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +legend('Location', 'northeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + + + +% #+LABEL: fig:comp_filters_loop_gain +% #+CAPTION: Loop gain ${H_H}^{-1}H_L$ for complementary filters with order 1, 2 and 3 +% #+RESULTS: fig:comp_filters_loop_gain +% [[file:figs/comp_filters_loop_gain.png]] + +% Obtained stability margins are display on table ref:tab:GM_PM_comp_filters. + + +[gm1, pm1] = margin(Hl1/Hh1); +[gm2, pm2] = margin(Hl2/Hh2); +[gm3, pm3] = margin(Hl3/Hh3); +data = [abs(20*log10(gm1)), pm1; + abs(20*log10(gm2)), pm2; + abs(20*log10(gm3)), pm3]; + +data2orgtable(data, {'1', '2', '3'}, {'Order', 'GM [db]', 'PM [deg]'}, ' %.1f '); + +% Result +% Their bode plot is shown Fig. ref:fig:comp_filter_1st_order. + + +w0 = 2*pi; % [rad/s] + +Hh1 = (s/w0)/((s/w0)+1); +Hl1 = 1/((s/w0)+1); + +freqs = logspace(-2, 2, 1000); + +figure; +% Magnitude +ax1 = subaxis(2,1,1); +hold on; +set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz')))); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz')))); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + + + +% #+LABEL: fig:comp_filter_1st_order +% #+CAPTION: Bode plot of first order complementary filter +% #+RESULTS: fig:comp_filter_1st_order +% [[file:figs/comp_filter_1st_order.png]] + +% The obtain loop gain $L = H_L{H_H}^{-1}$ is shown Fig. ref:fig:comp_filter_1st_order_loop_gain. + + +figure; +ax1 = subaxis(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz')))); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +% Phase +ax2 = subaxis(2,1,2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1/Hh1, freqs, 'Hz')))); +hold off; +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Result +% Bode plots of those filters for multiple values of $\alpha$ are displayed on figure ref:fig:comp_filter_2nd_order_alphas. + +% We also plot the loop gain obtained for different values of $\alpha$: $L = H_L{H_H}^{-1}$ (figure ref:fig:comp_filter_2nd_order_loop_gain) + + +alphas = [0.1, 1, 10, 100]; +w0 = 2*pi*1; + +figure; +ax1 = subaxis(2,1,1); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz')))); +end +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +hold off; +ylim([1e-4, 20]); +% Phase +ax2 = subaxis(2,1,2); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))), 'HandleVisibility', 'off'); +end +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +legend('Location', 'northeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + + + +% #+LABEL: fig:comp_filter_2nd_order_alphas +% #+CAPTION: Second order complementary filters +% #+RESULTS: fig:comp_filter_2nd_order_alphas +% [[file:figs/comp_filter_2nd_order_alphas.png]] + + +figure; +ax1 = subaxis(2,1,1); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz')))); +end +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); +end +hold off; +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +legend('Location', 'northeast'); +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Parameter Study +% We then study the effect of $\alpha$ on the obtained performance and stability margins (figure ref:fig:comp_filter_2nd_order_study_alphas). + + +alphas = logspace(-1, 1, 10); + +Ms = zeros(1, length(alphas)); +dist_reject_w_10 = zeros(1, length(alphas)); + +for i=1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Ms(i) = hinfnorm(Hh2); + dist_reject_w_10(i) = abs(freqresp(Hh2, w0/10)); +end + +figure; +ax1 = subplot(1, 2, 1); +plot(alphas, 20*log10(Ms./(Ms-1))); +xlabel('$\alpha$'); ylabel('Guaranted GM $\frac{M_S}{M_S-1}$ [dB]'); +set(gca, 'XScale', 'log'); +ax2 = subplot(1, 2, 2); +plot(alphas, (360/2/pi)./Ms); +xlabel('$\alpha$'); ylabel('Guaranted PM $\frac{1}{M_S}$ [deg]'); +set(gca, 'XScale', 'log'); + + + +% #+LABEL: fig:comp_filter_2nd_order_study_alphas +% #+CAPTION: Guaranted GM and PM as a function of $\alpha$ +% #+RESULTS: fig:comp_filter_2nd_order_study_alphas +% [[file:figs/comp_filter_2nd_order_study_alphas.png]] + + + +figure; +plot(alphas, 20*log10(1./dist_reject_w_10)); +xlabel('$\alpha$'); ylabel('Disturbance Rejection at $\frac{\omega_0}{10} [dB]$'); +set(gca, 'XScale', 'log'); + +% Results + +alpha = 1; +beta = 10; +w0 = 2*pi*1; + +Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); +Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + +alphas = [0.1, 1, 10, 100]; +beta = 10; +w0 = 2*pi*1; + +figure; +ax1 = subaxis(2,1,1); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',i); + plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz')))); +end +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +ylim([1e-5, 20]); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); + set(gca,'ColorOrderIndex',i); + plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))), 'HandleVisibility', 'off'); +end +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +legend('Location', 'southeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + + + +% #+LABEL: fig:comp_filter_3rd_order +% #+CAPTION: Bode plot of 3rd order complementary filters, $\beta = 10$ +% #+RESULTS: fig:comp_filter_3rd_order +% [[file:figs/comp_filter_3rd_order.png]] + + + +figure; +ax1 = subaxis(2,1,1); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + plot(freqs, abs(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz')))); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +% Phase +ax2 = subaxis(2,1,2); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); +end +hold off; +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +legend('Location', 'northeast'); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Parametric Study + +alphas = logspace(-1, 1, 10); +Ms = zeros(1, length(alphas)); +noise_reject_w_10 = zeros(1, length(alphas)); + +for i=1:length(alphas) + alpha = alphas(i); + beta = 5*alphas(i); + Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Ms(i) = hinfnorm(Hh3); + noise_reject_w_10(i) = abs(freqresp(Hh3, w0/10)); +end + +figure; +ax1 = subplot(1, 3, 1); +plot(alphas, 20*log10(Ms./(Ms-1))); +xlabel('$\alpha$'); ylabel('Guaranted Gain Margin $\frac{M_S}{M_S-1}$ [dB]'); +set(gca, 'XScale', 'log'); +ax2 = subplot(1, 3, 2); +plot(alphas, (360/2/pi)./Ms); +xlabel('$\alpha$'); ylabel('Guaranted Phase Margin $\frac{1}{M_S}$ [deg]'); +set(gca, 'XScale', 'log'); +ax3 = subplot(1, 3, 3); +plot(alphas, 20*log10(1./noise_reject_w_10)); +xlabel('$\alpha$'); ylabel('Disturbance Rejection at $\frac{\omega_0}{10}$ [dB]'); +set(gca, 'XScale', 'log'); + +% Compare 2nd and 3rd order filters +% Compare performance when having similar stability margins. + + +alpha = 1.7; +beta = 5*1.7; +Hh3 = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); +Hl3 = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + +alpha = 1.4; +Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); +Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + +figure; +ax1 = subaxis(2,1,1); +hold on; +set(gca,'ColorOrderIndex',1); +plot(freqs, abs(squeeze(freqresp(Hh2, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',1); +plot(freqs, abs(squeeze(freqresp(Hl2, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',2); +plot(freqs, abs(squeeze(freqresp(Hh3, freqs, 'Hz')))); +set(gca,'ColorOrderIndex',2); +plot(freqs, abs(squeeze(freqresp(Hl3, freqs, 'Hz')))); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +ylim([1e-5, 20]); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +set(gca,'ColorOrderIndex',1); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hh2, freqs, 'Hz'))), 'DisplayName', '2nd order'); +set(gca,'ColorOrderIndex',1); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2, freqs, 'Hz'))), 'HandleVisibility', 'off'); +set(gca,'ColorOrderIndex',2); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hh3, freqs, 'Hz'))), 'DisplayName', '3rd order'); +set(gca,'ColorOrderIndex',2); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3, freqs, 'Hz'))), 'HandleVisibility', 'off'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +legend('Location', 'southeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + + + +% #+LABEL: fig:filter_order_bode_plot +% #+CAPTION: Bode Plot +% #+RESULTS: fig:filter_order_bode_plot +% [[file:figs/filter_order_bode_plot.png]] + + + +figure; +ax1 = subaxis(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz')))); +plot(freqs, abs(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz')))); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +hold off; +% Phase +ax2 = subaxis(2,1,2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl2/Hh2, freqs, 'Hz'))), 'DisplayName', '2nd order'); +plot(freqs, 180/pi*angle(squeeze(freqresp(Hl3/Hh3, freqs, 'Hz'))), 'DisplayName', '3rd order'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +legend('Location', 'southeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); diff --git a/matlab/matlab/sensor_fusion.m b/matlab/matlab/sensor_fusion.m new file mode 100644 index 0000000..a25418b --- /dev/null +++ b/matlab/matlab/sensor_fusion.m @@ -0,0 +1,1030 @@ +%% Clear Workspace and Close figures +clear; close all; clc; + +%% Intialize Laplace variable +s = zpk('s'); + +freqs = logspace(-1, 3, 1000); + +% Definition of the plant +% <> + +% The studied system consists of a solid positioned on top of a motorized uni-axial soft suspension. + +% The absolute position $x$ of the solid is measured using an inertial sensor and a force $F$ can be applied to the mass using a voice coil actuator. + +% The model of the system is represented on figure [[fig:mech_sys_alone]] where the mass of the solid is $m = 20\ [kg]$, the stiffness of the suspension is $k = 10^4\ [N/m]$ and the damping of the system is $c = 10^2\ [N/(m/s)]$. + +% #+name: fig:mech_sys_alone +% #+caption: One degree of freedom system +% [[file:figs/mech_sys_alone.png]] + +% The plant $G$ is defined on matlab and its bode plot is shown on figure [[fig:bode_plot_mech_sys]]. + + +m = 20; % [kg] +k = 1e4; % [N/m] +c = 1e2; % [N/(m/s)] + +G = 1/(m*s^2 + c*s + k); + +figure; +ax1 = subaxis(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-'); +hold off; +xlim([0.1, 100]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); + +ax2 = subaxis(2,1,2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(G, freqs, 'Hz'))), 'k-'); +hold off; +yticks(-180:90:180); +ylim([-180 180]); +xlim([0.1, 1000]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +linkaxes([ax1,ax2],'x'); + +% Multiplicative input uncertainty +% <> +% We choose to use the multiplicative input uncertainty to model the plant uncertainty: +% \[ \Pi_I: \ G^\prime(s) = G(s) (1 + w_I(s) \Delta(s)),\text{ with } |\Delta(j\omega)| < 1 \ \forall \omega \] + + +% The uncertainty weight $w_I$ has the following form: +% \[ w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1} \] +% where $r_0=0.1$ is the relative uncertainty at steady-state, $1/\tau=80\text{Hz}$ is the frequency at which the relative uncertainty reaches 100%, and $r_\infty=10$ is the magnitude of the weight at high frequency. + +% We defined the uncertainty weight on matlab. Its bode plot is shown on figure [[fig:bode_wi]]. + + +r0 = 0.1; +rinf = 10; +tau = 1/2/pi/80; + +wI = (tau*s + r0)/((tau/rinf)*s+1); + +figure; +hold on; +plot(freqs, abs(squeeze(freqresp(wI, freqs, 'Hz'))), 'k-'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-1, 10]); +xticks([0.1, 1, 10, 100, 1000]) + + + +% #+NAME: fig:bode_wi +% #+CAPTION: Bode plot of $w_I$ ([[./figs/bode_wi.png][png]], [[./figs/bode_wi.pdf][pdf]]) +% [[file:figs/bode_wi.png]] + +% The uncertain model is created with the =ultidyn= function. Elements in the uncertainty set $\Pi_I$ are computed and their bode plot is shown on figure [[fig:plant_uncertainty_bode_plot]]. + + +Delta = ultidyn('Delta', [1 1]); + +Gd = G*(1+wI*Delta); +Gds = usample(Gd, 20); + +figure; +ax1 = subplot(2,1,1); +hold on; +for i=1:length(Gds) + plot(freqs, abs(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]); +end +plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), 'k-'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); +hold off; +% Phase +ax2 = subplot(2,1,2); +hold on; +for i=1:length(Gds) + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i), freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]); +end +plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), 'k-'); +set(gca,'xscale','log'); +yticks(-360:90:180); +ylim([-360 0]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]) + +% Specifications and performance weights +% <> + +% The control objective is to isolate the displacement $x$ of the mass from the ground motion $w$. + +% The specifications are described below: +% - at least a factor $10$ of disturbance rejection at $2\ \text{Hz}$ and with a slope of $2$ below $2\ \text{Hz}$ until a rejection of $10^3$ +% - the noise attenuation should be at least $10$ above $100\ \text{Hz}$ and with a slope of $-2$ above + +% These specifications can be represented as upper bounds on the closed loop transfer functions $S$ and $T$ (see figure [[fig:bode_requirements]]). + + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); +set(gca,'ColorOrderIndex',2) +plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-3, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + + + +% #+NAME: fig:bode_requirements +% #+CAPTION: Upper bounds on $S$ and $T$ ([[./figs/bode_requirements.png][png]], [[./figs/bode_requirements.pdf][pdf]]) +% [[file:figs/bode_requirements.png]] + +% We now define two weights, $w_S(s)$ and $w_T(s)$ such that $1/|w_S|$ and $1/|w_T|$ are lower than the previously defined upper bounds. +% Then, the performance specifications are satisfied if the following condition is valid: +% \[ \big|S(j\omega)\big| < \frac{1}{|w_S(j\omega)|} ; \quad \big|T(j\omega)\big| < \frac{1}{|w_T(j\omega)|}, \quad \forall \omega \] + +% The weights are defined as follow. They magnitude is compared with the upper bounds on $S$ and $T$ on figure [[fig:compare_weights_upper_bounds_S_T]]. + +wS = 1600/(s+0.13)^2; +wT = 1000*((s/(2*pi*1000)))^2; + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_T|$'); +set(gca,'ColorOrderIndex',1) +plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', '$1/|w_S|$'); +set(gca,'ColorOrderIndex',2) +plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-4, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + +% Upper bounds on the norm of the complementary filters for NP, RS and RP +% <> + +% Now that we have defined $w_I$, $w_S$ and $w_T$, we can derive conditions for Nominal Performance, Robust Stability and Robust Performance ($j\omega$ is omitted here for readability): +% \begin{align*} +% \text{NP} &\Leftrightarrow |H_H| < \frac{1}{|w_S|} \text{ and } |H_L| < \frac{1}{|w_T|} \quad \forall \omega \\ +% \text{RS} &\Leftrightarrow |H_L| < \frac{1}{|w_I| (2 + |w_I|)} \quad \forall \omega \\ +% \text{RP for } S &\Leftarrow |H_H| < \frac{1 + |w_I|}{|w_S| (2 + |w_I|)} \quad \forall \omega \\ +% \text{RP for } T &\Leftrightarrow |H_L| < \frac{1}{|w_T| (1 + |w_I|) + |w_I|} \quad \forall \omega +% \end{align*} + +% These conditions are upper bounds on the complementary filters used for control. + +% We plot these conditions on figure [[fig:weights_NP_RS_RP]]. + + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-3, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + +% H-Infinity synthesis of complementary filters +% <> + +% We here synthesize the complementary filters using the $\mathcal{H}_\infty$ synthesis. +% The goal is to specify upper bounds on the norms of $H_L$ and $H_H$ while ensuring their complementary property ($H_L + H_H = 1$). + +% In order to do so, we use the generalized plant shown on figure [[fig:sf_hinf_filters_plant_b]] where $w_L$ and $w_H$ weighting transfer functions that will be used to shape $H_L$ and $H_H$ respectively. + +% #+name: fig:sf_hinf_filters_plant_b +% #+caption: Generalized plant used for the $\mathcal{H}_\infty$ synthesis of the complementary filters +% [[file:figs/sf_hinf_filters_plant_b.png]] + +% The $\mathcal{H}_\infty$ synthesis applied on this generalized plant will give a transfer function $H_L$ (figure [[fig:sf_hinf_filters_b]]) such that the $\mathcal{H}_\infty$ norm of the transfer function from $w$ to $[z_H,\ z_L]$ is less than one: +% \[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \] + +% Thus, if the above condition is verified, we can define $H_H = 1 - H_L$ and we have that: +% \[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \] +% Which is almost (with an maximum error of $\sqrt{2}$) equivalent to: +% \begin{align*} +% |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\ +% |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega +% \end{align*} + +% We then see that $w_L$ and $w_H$ can be used to shape both $H_L$ and $H_H$ while ensuring (by definition of $H_H = 1 - H_L$) their complementary property. + +% #+name: fig:sf_hinf_filters_b +% #+caption: $\mathcal{H}_\infty$ synthesis of the complementary filters +% [[file:figs/sf_hinf_filters_b.png]] + + +% Thus, if we choose $w_L$ and $w_H$ such that $1/|w_L|$ and $1/|w_H|$ lie below the upper bounds of figure [[fig:weights_NP_RS_RP]], we will ensure the NP, RS and RP of the controlled system. + +% Depending if we are interested only in NP, RS or RP, we can adjust the weights $w_L$ and $w_H$. + + +omegab = 2*pi*9; +wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2; +omegab = 2*pi*28; +wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3; + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '-', 'DisplayName', '$w_L$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '-', 'DisplayName', '$w_H$'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-3, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + + + +% #+NAME: fig:weights_wl_wh +% #+CAPTION: Weights on the complementary filters $w_L$ and $w_H$ and the associated performance weights ([[./figs/weights_wl_wh.png][png]], [[./figs/weights_wl_wh.pdf][pdf]]) +% [[file:figs/weights_wl_wh.png]] + +% We define the generalized plant $P$ on matlab. + +P = [0 wL; + wH -wH; + 1 0]; + + + +% And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. + +[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); + + + +% #+RESULTS: +% #+begin_example +% [Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +% Test bounds: 0.0000 < gamma <= 1.7285 + +% gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f +% 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p +% 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f +% 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p +% 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p +% 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f +% 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p +% 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p +% 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f +% 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f +% 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p +% 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p +% 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f + +% Gamma value achieved: 0.9942 +% #+end_example + +% We then define the high pass filter $H_H = 1 - H_L$. The bode plot of both $H_L$ and $H_H$ is shown on figure [[fig:hinf_filters_results]]. + +Hh_hinf = 1 - Hl_hinf; + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-3, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + +% Complementary filters using analytical formula +% <> + +% We here use analytical formula for the complementary filters $H_L$ and $H_H$. + +% The first two formulas that are used to generate complementary filters are: +% \begin{align*} +% H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\ +% H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)} +% \end{align*} +% where: +% - $\omega_0$ is the blending frequency in rad/s. +% - $\alpha$ is used to change the shape of the filters: +% - Small values for $\alpha$ will produce high magnitude of the filters $|H_L(j\omega)|$ and $|H_H(j\omega)|$ near $\omega_0$ but smaller value for $|H_L(j\omega)|$ above $\approx 1.5 \omega_0$ and for $|H_H(j\omega)|$ below $\approx 0.7 \omega_0$ +% - A large $\alpha$ will do the opposite + +% This is illustrated on figure [[fig:comp_filters_param_alpha]]. +% As it is usually wanted to have the $\| S \|_\infty < 2$, $\alpha$ between $0.5$ and $1$ gives a good trade-off between the performance and the robustness. +% The slope of those filters at high and low frequencies is $-2$ and $2$ respectively for $H_L$ and $H_H$. + + +freqs_study = logspace(-2, 2, 10000); +alphas = [0.1, 1, 10]; +w0 = 2*pi*1; + +figure; +ax1 = subaxis(2,1,1); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz')))); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz')))); +end +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude'); +hold off; +ylim([1e-3, 20]); +% Phase +ax2 = subaxis(2,1,2); +hold on; +for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'HandleVisibility', 'off'); +end +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); +legend('Location', 'northeast'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs_study(1), freqs_study(end)]); + + + +% #+NAME: fig:comp_filters_param_alpha +% #+CAPTION: Effect of the parameter $\alpha$ on the shape of the generated second order complementary filters ([[./figs/comp_filters_param_alpha.png][png]], [[./figs/comp_filters_param_alpha.pdf][pdf]]) +% [[file:figs/comp_filters_param_alpha.png]] + + +% The parameters $\alpha$ and $\omega_0$ are chosen in order to have that the complementary filters stay below the defined upper bounds. + +% The obtained complementary filters are shown on figure [[fig:complementary_filters_second_order]]. +% The Robust Performance is not fulfilled for $T$, and we see that the RP condition as a slop of $-3$. We thus have to use different formula for the complementary filters here. + + +w0 = 2*pi*13; +alpha = 0.8; + +Hh2_ana = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); +Hl2_ana = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-3, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + + + +% #+NAME: fig:complementary_filters_second_order +% #+CAPTION: Second order complementary filters using the analytical formula ([[./figs/complementary_filters_second_order.png][png]], [[./figs/complementary_filters_second_order.pdf][pdf]]) +% [[file:figs/complementary_filters_second_order.png]] + + +% The following formula gives complementary filters with slopes of $-3$ and $3$: +% \begin{align*} +% H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\ +% H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)} +% \end{align*} + +% The parameters are: +% - $\omega_0$ is the blending frequency in rad/s +% - $\alpha$ and $\beta$ that are used to change the shape of the filters similarly to the parameter $\alpha$ for the second order complementary filters + +% The filters are defined below and the result is shown on figure [[fig:complementary_filters_third_order]] where we can see that the complementary filters are below the defined upper bounds. + + +alpha = 1; +beta = 10; +w0 = 2*pi*14; + +Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); +Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./abs(squeeze(freqresp(wT, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wT, freqs, 'Hz'))) .* (1 + abs(squeeze(freqresp(wI, freqs, 'Hz')))) + abs(squeeze(freqresp(wI, freqs, 'Hz')))), ':', 'DisplayName', 'RP for T - $H_L$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, 1./(abs(squeeze(freqresp(wI, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), '-.', 'DisplayName', 'RS - $H_L$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 1./abs(squeeze(freqresp(wS, freqs, 'Hz'))), '--', 'DisplayName', 'NP - $H_H$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, (1 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))./(abs(squeeze(freqresp(wS, freqs, 'Hz'))) .* (2 + abs(squeeze(freqresp(wI, freqs, 'Hz'))))), ':', 'DisplayName', 'RP for S - $H_H$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-3, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + +% Comparison of complementary filters +% <> +% The generated complementary filters using $\mathcal{H}_\infty$ and the analytical formulas are compared on figure [[fig:comp_hinf_analytical]]. + +% Although they are very close to each other, there is some difference to note here: +% - the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters $\alpha$ and $\omega_0$. However, these formula have the property that $|H_H|$ and $|H_L|$ are symmetrical with the frequency $\omega_0$ which may not be desirable. +% - while the $\mathcal{H}_\infty$ synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters + +% The complementary filters obtained with the $\mathcal{H}_\infty$ will be used for further analysis. + + +figure; + +ax1 = subplot(2,1,1); +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), ':'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Magnitude'); +hold off; +ylim([1e-4, 10]); + +ax2 = subplot(2,1,2); +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, 180/pi*phase(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 180/pi*phase(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '--', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, 180/pi*phase(squeeze(freqresp(Hl2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $2$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 180/pi*phase(squeeze(freqresp(Hh2_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $2$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, 180/pi*phase(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), ':', 'DisplayName', '$H_L$ - $3$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, 180/pi*phase(squeeze(freqresp(Hh3_ana, freqs, 'Hz')))+360, ':', 'DisplayName', '$H_H$ - $3$'); +set(gca, 'XScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks([-360:90:360]); +legend('location', 'northeast'); + +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]); + +% Controller Analysis +% <> + +% The controller $K$ is computed from the plant model $G$ and the low pass filter $H_H$: +% \[ K = G^{-1} H_H^{-1} \] + +% As this is not proper and thus realizable, a second order low pass filter is added with a crossover frequency much larger than the control bandwidth. + + +omega = 2*pi*1000; +K = 1/(Hh_hinf*G) * 1/((1+s/omega)*(1+s/omega+(s/omega)^2)); + +K = zpk(minreal(K)); + +zpk(K) + + + +% #+RESULTS: +% #+begin_example +% zpk(K) + +% ans = + +% 4.961e12 (s+9.915e04) (s^2 + 5s + 500) (s^2 + 284.6s + 2.135e04) (s^2 + 130.5s + 9887) +% -------------------------------------------------------------------------------------------------- +% (s+9.914e04) (s+6283) (s^2 + 0.3576s + 0.03198) (s^2 + 413.8s + 6.398e04) (s^2 + 6283s + 3.948e07) + +% Continuous-time zero/pole/gain model. +% #+end_example + +% The bode plot of the controller is shown on figure [[fig:bode_plot_controller]]: +% - two integrator are present at low frequency +% - the resonance of the plant at $3.5\ \text{Hz}$ is inverted (notched) +% - a lead is added at $10\ \text{Hz}$ + + +figure; +% Magnitude +ax1 = subplot(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(K, freqs, 'Hz'))), 'k-'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [N/m]'); +% ylim([1e3, 1e8]) +hold off; + +% Phase +ax2 = subplot(2,1,2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(K, freqs, 'Hz'))), 'k-'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]) + +% Nominal Stability and Nominal Performance +% <> + +% The nominal stability of the system is first checked with the =allmargin= matlab command. + + +allmargin(K*G*Hl_hinf) + + + +% #+RESULTS: +% #+begin_example +% allmargin(K*G*Hl_hinf) +% ans = +% struct with fields: + +% GainMargin: 4.46426896164391 +% GMFrequency: 243.854595348016 +% PhaseMargin: 35.7045152899792 +% PMFrequency: 88.3664383511655 +% DelayMargin: 0.00705201387841809 +% DMFrequency: 88.3664383511655 +% Stable: 1 +% #+end_example + +% The system is stable and the stability margins are good. + +% The bode plot of the loop gain $L = K*G*H_L$ is shown on figure [[fig:bode_plot_loop_gain]]. + + +figure; +% Magnitude +ax1 = subplot(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k-'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); +hold off; + +% Phase +ax2 = subplot(2,1,2); +hold on; +plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz')))), 'k-'); +set(gca,'xscale','log'); +yticks(-270:90:0); +ylim([-270 0]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]) + + + +% #+NAME: fig:bode_plot_loop_gain +% #+CAPTION: Bode Plot of the Loop Gain $L = K G H_L$ ([[./figs/bode_plot_loop_gain.png][png]], [[./figs/bode_plot_loop_gain.pdf][pdf]]) +% [[file:figs/bode_plot_loop_gain.png]] + +% In order to check the Nominal Performance of the system, we compute the sensibility and the complementary sensibility transfer functions. + + +S = 1/(K*G*Hl_hinf + 1); +T = K*G*Hl_hinf/(K*G*Hl_hinf + 1); + + + +% We then compare their norms with the upper bounds on the performance of the system (figure [[fig:verification_NP]]). +% As expected, we guarantee the Nominal Performance of the system. + + +figure; +hold on; +set(gca,'ColorOrderIndex',1) +plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', 'Upper bound on $|T|$'); +set(gca,'ColorOrderIndex',2) +plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', 'Upper bound on $|S|$'); +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), '-', 'DisplayName', '$T$'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), '-', 'DisplayName', '$S$'); + +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +hold off; +xlim([freqs(1), freqs(end)]); +ylim([1e-4, 10]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeast'); + +% Robust Stability and Robust Performance +% <> +% In order to verify the Robust stability of the system, we can use the following equivalence: +% \[ \text{RS} \Leftrightarrow \left| w_I T \right| < 1 \quad \forall \omega \] + +% This is shown on figure [[fig:robust_stability]]. + + +Ts = Gds*K*Hl_hinf/(Gds*K*Hl_hinf + 1); +Ss = 1/(Gds*K*Hl_hinf + 1); + +figure; +hold on; +plot(freqs, abs(squeeze(freqresp(wI*T, freqs, 'Hz'))), 'k-'); +plot([freqs(1) freqs(end)], [1 1], 'k--'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); +ylim([0.02, 2]) + + + +% #+NAME: fig:robust_stability +% #+CAPTION: Robust Stability Check: $|w_I T| < 1, \quad \forall \omega$ ([[./figs/robust_stability.png][png]], [[./figs/robust_stability.pdf][pdf]]) +% [[file:figs/robust_stability.png]] + +% To check Robust Stability, we can also look at the loop gain of the uncertain system (figure [[fig:loop_gain_robustness]]) or the Nyquist plot (figure [[fig:nyquist_robustness]]). + + +figure; +ax2 = subplot(2,1,1); +hold on; +for i=1:length(Gds) + plot(freqs, abs(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz'))), '-', 'color', [0, 0, 0, 0.1]); +end +plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz'))), 'k-'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [m/N]'); +ylim([1e-4 1e4]); +hold off; +% Phase +ax2 = subplot(2,1,2); +hold on; +for i=1:length(Gds) + plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs, 'Hz')))), '-', 'color', [0, 0, 0, 0.1]); +end +plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K*Hl_hinf, freqs, 'Hz')))), 'k-'); +set(gca,'xscale','log'); +yticks(-360:90:180); +ylim([-270 0]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]) + + + +% #+NAME: fig:loop_gain_robustness +% #+CAPTION: Loop Gain of the uncertain system ([[./figs/loop_gain_robustness.png][png]], [[./figs/loop_gain_robustness.pdf][pdf]]) +% [[file:figs/loop_gain_robustness.png]] + + + +freqs_nyquist = logspace(0, 4, 100); + +figure; +hold on; +for i=1:length(Gds) + plot(real(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]); +end +plot(real(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'k'); +hold off; +xlim([-1.4, 0.2]); ylim([-1.4, 0.2]); +xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2); +xlabel('Real Part'); ylabel('Imaginary Part'); + + + +% #+NAME: fig:nyquist_robustness +% #+CAPTION: Nyquist plot of the uncertain system ([[./figs/nyquist_robustness.png][png]], [[./figs/nyquist_robustness.pdf][pdf]]) +% [[file:figs/nyquist_robustness.png]] + +% The Robust Performance is verified by plotting $|S|$ and $|T|$ for the uncertain system along side the upper bounds defined for performance. +% This is shown on figure [[fig:robust_performance_result]] and we can indeed confirmed that the robust performance property of the system is valid. + + +figure; +hold on; +plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain'); +plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain'); + +for i=2:length(Gds) + plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off'); +end + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(1/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal'); + +set(gca,'ColorOrderIndex',1) +plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); +set(gca,'ColorOrderIndex',2) +plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +hold off; +xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); +xlim([freqs(1), freqs(end)]); +ylim([1e-4, 5]); +xticks([0.1, 1, 10, 100, 1000]); +legend('location', 'northeastoutside'); + +% Pre-filter +% <> + +% For now, we have not specified any performance requirements on the input usage due to change of reference. +% Do limit the input usage due to change of reference, we can use a pre-filter $K_r$ as shown on figure [[fig:sf_arch_class_prefilter]]. + +% If we want a response time of 0.01 second, we can choose a first order low pass filter with a crossover frequency at $1/0.01 = 100\ \text{Hz}$ as defined below. + + +Kr = 1/(1+s/2/pi/100); + + + +% We then run a simulation for a step of $1\mu m$ for the system without and with the pre-filter $K_r$ (figure [[fig:u_and_y_with_Kr]]). +% This confirms that a pre-filter can be used to limit the input usage due to change of reference using this architecture. + + +t = linspace(0, 0.02, 1000); + +opts = stepDataOptions; +opts.StepAmplitude = 1e-6; + +u = step((K)/(1+G*K*Hl_hinf), t, opts); +uf = step((Kr*K)/(1+G*K*Hl_hinf), t, opts); +y = step((K*G)/(1+G*K*Hl_hinf), t, opts); +yf = step((Kr*G*K)/(1+G*K*Hl_hinf), t, opts); + +figure; +ax1 = subplot(2,1,1); +hold on; +plot(t, u, 'k--', 'DisplayName', 'Without Pre-filter'); +plot(t, uf, 'k-', 'DisplayName', 'With Pre-Filter'); +hold off; +ylabel('Command Input [N]'); +set(gca, 'XTickLabel',[]); +legend('location', 'northeast'); + +ax2 = subplot(2,1,2); +hold on; +plot(t, y, 'k--'); +plot(t, yf, 'k-' ); +hold off; +xlabel('Time [s]'); +ylabel('Output [m]'); + +% Controller using classical techniques +% <> +% A controller is designed using =SISOTOOL= with a bandwidth of approximately $20\ \text{Hz}$ and with two integrator. + +% The obtained controller is shown below. + +Kf = 1.1814e12*(s+10.15)*(s+9.036)*(s+53.8)/(s^2*(s+216.1)*(s+1200)*(s+1864)); + +zpk(Kf) + + + +% #+RESULTS: +% #+begin_example +% zpk(Kf) + +% ans = + +% 1.1814e12 (s+10.15) (s+9.036) (s+53.8) +% -------------------------------------- +% s^2 (s+216.1) (s+1200) (s+1864) + +% Continuous-time zero/pole/gain model. +% #+end_example + +% The loop gain for both cases are compared on figure [[fig:loop_gain_compare]]. + + +figure; +% Magnitude +ax1 = subplot(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--'); +plot(freqs, abs(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude [N/m]'); +% ylim([1e3, 1e8]) +hold off; + +% Phase +ax2 = subplot(2,1,2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k--', 'DisplayName', '$K G H_L$ - $\mathcal{H}_\infty$'); +plot(freqs, 180/pi*angle(squeeze(freqresp(Kf*G, freqs, 'Hz'))), 'k-', 'DisplayName', '$K G$ - SISOTOOL'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +legend('location', 'northwest'); + +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]) + + + +% #+NAME: fig:loop_gain_compare +% #+CAPTION: Comparison of the Loop Gains ([[./figs/loop_gain_compare.png][png]], [[./figs/loop_gain_compare.pdf][pdf]]) +% [[file:figs/loop_gain_compare.png]] + +% The Robust Stability of the system is verified using the Nyquist plot on figure [[fig:nyquist_plot_sisotool_controller]]. + + +freqs_nyquist = logspace(0, 4, 100); + +figure; +hold on; +for i=1:length(Gds) + plot(real(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*Kf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]); +end +plot(real(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*Kf, freqs_nyquist, 'Hz'))), 'k'); +hold off; +xlim([-1.4, 0.2]); ylim([-1.4, 0.2]); +xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2); +xlabel('Real Part'); ylabel('Imaginary Part'); + + + +% #+NAME: fig:nyquist_plot_sisotool_controller +% #+CAPTION: Nyquist Plot of the uncertain system ([[./figs/nyquist_plot_sisotool_controller.png][png]], [[./figs/nyquist_plot_sisotool_controller.pdf][pdf]]) +% [[file:figs/nyquist_plot_sisotool_controller.png]] + +% The closed loop sensitivity and complementary sensitivity transfer functions are computed. +% And finally, the Robust Performance of both systems are compared on figure [[fig:robust_performance_compare]]. + + +Sf = 1/(Kf*G + 1); +Tf = Kf*G/(Kf*G + 1); + +Tfs = Gds*Kf/(Gds*Kf + 1); +Sfs = 1/(Gds*Kf + 1); + +figure; +ax1 = subplot(1, 2, 1); +title('$K$ - SISOTOOL'); +hold on; + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(Tf, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(Sf, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal'); + +plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain'); +plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain'); + +for i=2:length(Gds) + plot(freqs, abs(squeeze(freqresp(Tfs(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Sfs(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off'); +end + +set(gca,'ColorOrderIndex',1) +plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); +set(gca,'ColorOrderIndex',2) +plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +hold off; +xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]); + +ax2 = subplot(1, 2, 2); +title('$K$ - complementary filters'); +hold on; +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(T, freqs, 'Hz'))), 'DisplayName', '$|T|$ - Nominal'); +set(gca,'ColorOrderIndex',2) +plot(freqs, abs(squeeze(freqresp(S, freqs, 'Hz'))), 'DisplayName', '$|S|$ - Nominal'); + +plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'DisplayName', '$|T|$ - Uncertain'); +plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'DisplayName', '$|S|$ - Uncertain'); + +for i=2:length(Gds) + plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1] , 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off'); +end + +set(gca,'ColorOrderIndex',1) +plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Upper bound'); +set(gca,'ColorOrderIndex',2) +plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Upper bound'); + +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +hold off; +xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); +xlim([freqs(1), freqs(end)]); +xticks([0.1, 1, 10, 100, 1000]); + +linkaxes([ax1 ax2], 'y') +ylim([1e-4, 10]); diff --git a/matlab/ref.bib b/matlab/ref.bib new file mode 100644 index 0000000..7402d1b --- /dev/null +++ b/matlab/ref.bib @@ -0,0 +1,67 @@ +@article{collette15_sensor_fusion_method_high_perfor, + author = {C. Collette and F. Matichard}, + title = {Sensor Fusion Methods for High Performance Active Vibration Isolation Systems}, + journal = {Journal of Sound and Vibration}, + volume = {342}, + number = {nil}, + pages = {1-21}, + year = {2015}, + doi = {10.1016/j.jsv.2015.01.006}, + url = {https://doi.org/10.1016/j.jsv.2015.01.006}, + keywords = {}, +} + +@inproceedings{collette14_vibrat, + author = {Collette, C. and Matichard, F}, + title = {Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs}, + booktitle = {International Conference on Noise and Vibration Engineering (ISMA2014)}, + year = {2014}, + keywords = {}, +} + +@article{oomen18_advan_motion_contr_precis_mechat, + author = {Tom Oomen}, + title = {Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems}, + journal = {IEEJ Journal of Industry Applications}, + volume = {7}, + number = {2}, + pages = {127-140}, + year = {2018}, + doi = {10.1541/ieejjia.7.127}, + url = {https://doi.org/10.1541/ieejjia.7.127}, +} + +@book{skogestad07_multiv_feedb_contr, + author = {Skogestad, Sigurd and Postlethwaite, Ian}, + title = {Multivariable Feedback Control: Analysis and Design}, + year = {2007}, + publisher = {John Wiley}, + keywords = {favorite}, +} + +@phdthesis{hua05_low_ligo, + author = {Hua, Wensheng}, + school = {stanford university}, + title = {Low frequency vibration isolation and alignment system for + advanced LIGO}, + year = 2005, +} + +@book{lurie12_class, + author = {Lurie, B. J}, + title = {Classical feedback control : with MATLAB and Simulink}, + year = 2012, + publisher = {CRC Press}, + address = {Boca Raton, FL}, + isbn = 9781439897461, + keywords = {favorite}, +} + +@techreport{bibel92_guidel_h, + author = {Bibel, John E and Malyevac, D Stephen}, + institution = {NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA}, + title = {Guidelines for the selection of weighting functions for + H-infinity control}, + year = 1992, + keywords = {}, +} \ No newline at end of file