Optimal and Robust Sensor Fusion

Dehaeze Thomas European Synchrotron Radiation Facility Grenoble, France Precision Mechatronics Laboratory University of Liege, Belgium thomas.dehaeze@esrf.fr

Abstract—Abstract text to be done *Index Terms*—Complementary Filters, Sensor Fusion, H-Infinity Synthesis

I. INTRODUCTION

Section II Section III Section IV Section V

II. Optimal Super Sensor Noise: \mathcal{H}_2 Synthesis

A. Sensor Model

Let's consider a sensor measuring a physical quantity x (Figure 1). The sensor has an internal dynamics which is here modelled with a Linear Time Invariant (LTI) system transfer function $G_i(s)$.

The noise of sensor can be described by the Power Spectral Density (PSD) $\Phi_{n_i}(\omega)$.

This is approximated by shaping a white noise with unitary PSD \tilde{n}_i (2) with a LTI transfer function $N_i(s)$:

$$\Phi_{n_i}(\omega) = |N_i(j\omega)|^2 \Phi_{\tilde{n}_i}(\omega)$$

= $|N_i(j\omega)|^2$ (1)

$$\Phi_{\tilde{n}_i}(\omega) = 1 \tag{2}$$

The output of the sensor v_i :

$$v_i = (G_i) x + (G_i N_i) \tilde{n}_i \tag{3}$$

In order to obtain an estimate \hat{x}_i of x, a model G_i of the (true) sensor dynamics G_i is inverted and applied at the output (Figure 1):

$$\hat{x}_i = \left(\hat{G}_i^{-1}G_i\right)x + \left(\hat{G}_i^{-1}G_iN_i\right)\tilde{n}_i \tag{4}$$

Fig. 1. Sensor Model

Collette Christophe BEAMS Department Free University of Brussels, Belgium Precision Mechatronics Laboratory University of Liege, Belgium ccollett@ulb.ac.be

B. Sensor Fusion Architecture

Let's now consider two sensors measuring the same physical quantity x but with different dynamics (G_1, G_2) and noise characteristics (N_1, N_2) (Figure 2).

The noise sources \tilde{n}_1 and \tilde{n}_2 are considered to be uncorrelated.

Fig. 2. Sensor Fusion Architecture with sensor noise

The output of both sensors (v1, v2) are then passed through the inverse of the sensor model to obtained two estimates (\hat{x}_1, \hat{x}_2) of x. These two estimates are then filtered out by two filters H_1 and H_2 and summed to gives the super sensor estimate \hat{x} .

$$\hat{x} = \left(H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2\right) x + \left(H_1 \hat{G}_1^{-1} G_1 N_1\right) \tilde{n}_1 + \left(H_2 \hat{G}_2^{-1} G_2 N_2\right) \tilde{n}_2$$
(5)

Suppose the sensor dynamical model \hat{G}_i is perfect:

$$\hat{G}_i = G_i \tag{6}$$

We considered here complementary filters:

$$H_1(s) + H_2(s) = 1 \tag{7}$$

In such case, the super sensor estimate \hat{x} is equal to x plus the noise of the individual sensors filtered out by the complementary filters:

$$\hat{x} = x + (H_1 N_1) \,\tilde{n}_1 + (H_2 N_2) \,\tilde{n}_2 \tag{8}$$

C. Super Sensor Noise

Let's note n the super sensor noise.

$$n = (H_1 N_1) \,\tilde{n}_1 + (H_2 N_2) \,\tilde{n}_2 \tag{9}$$

As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow:

$$\Phi_n(\omega) = |H_1 N_1|^2 + |H_2 N_2|^2 \tag{10}$$

It is clear that the PSD of the super sensor depends on the norm of the complementary filters.

D. \mathcal{H}_2 Synthesis of Complementary Filters

The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise sources \tilde{n}_1 and \tilde{n}_2 has the smallest possible effect on the noise n of the estimation \hat{x} .

And the goal is the minimize the Root Mean Square (RMS) value of n:

$$\sigma_n = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \frac{H_1 N_1}{H_2 N_2} \right\|_2 \tag{11}$$

Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\begin{vmatrix} H_1 N_1 \\ H_2 N_2 \end{vmatrix} \Big|_2$ is minimized. $\begin{pmatrix} z_1 \\ z_2 \\ v \end{pmatrix} = \begin{bmatrix} N_1 & N_1 \\ 0 & N_2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} w \\ u \end{pmatrix}$ (12)

The \mathcal{H}_2 synthesis of the complementary filters thus minimized the RMS value of the super sensor noise.

Fig. 3. Generalized plant $P_{\mathcal{H}_2}$ used for the \mathcal{H}_2 synthesis of complementary filters

E. Example

F. Robustness Problem

III. Robust Sensor Fusion: \mathcal{H}_{∞} Synthesis

A. Representation of Sensor Dynamical Uncertainty

Suppose that the sensor dynamics $G_i(s)$ can be modelled by a nominal d

$$G_i(s) = \hat{G}_i(s) \left(1 + w_i(s)\Delta_i(s)\right); \quad |\Delta_i(j\omega)| < 1\forall\omega \quad (13)$$

B. Sensor Fusion Architecture

$$\hat{x} = \left(H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + w_1 \Delta_1) + H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + w_2 \Delta_2)\right) x$$
(14)

with Δ_i is any transfer function satisfying $\|\Delta_i\|_{\infty} < 1$. Suppose the model inversion is equal to the nominal model:

$$\hat{G}_i = G_i \tag{15}$$

$$\hat{x} = (1 + H_1 w_1 \Delta_1 + H_2 w_2 \Delta_2) x \tag{16}$$

Fig. 4. Sensor Fusion Architecture with sensor model uncertainty

C. Super Sensor Dynamical Uncertainty

The uncertainty set of the transfer function from \hat{x} to x at frequency ω is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|w_1(j\omega)H_1(j\omega)| + |w_2(j\omega)H_2(j\omega)|$.

Fig. 5. Super Sensor model uncertainty displayed in the complex plane

D. \mathcal{H}_{∞} Synthesis of Complementary Filters

In order to minimize the super sensor dynamical uncertainty

Fig. 6. Generalized plant $P_{\mathcal{H}_{\infty}}$ used for the \mathcal{H}_{∞} synthesis of complementary filters

Fig. 7. Super Sensor Fusion with both sensor noise and sensor model uncertainty

Fig. 8. Generalized plant $P_{\mathcal{H}_2/H_{\infty}}$ used for the mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ synthesis of complementary filters

E. Example

IV. Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty \text{ Synthesis}$

- A. Sensor Fusion Architecture
- B. Synthesis Objective
- C. Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
- D. Example

V. EXPERIMENTAL VALIDATION

- A. Experimental Setup
- B. Sensor Noise and Dynamical Uncertainty
- C. Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
- D. Super Sensor Noise and Dynamical Uncertainty

VI. CONCLUSION

VII. ACKNOWLEDGMENT

REFERENCES

- M. Zimmermann and W. Sulzer, "High bandwidth orientation measurement and control based on complementary filtering," *Robot Control 1991*, pp. 525–530, 1992. [Online]. Available: https://doi.org/ 10.1016/b978-0-08-041276-4.50093-5
- [2] P. Corke, "An inertial and visual sensing system for a small autonomous helicopter," *Journal of Robotic Systems*, vol. 21, no. 2, pp. 43–51, 2004. [Online]. Available: https://doi.org/10.1002/rob.10127
- [3] H. G. Min and E. T. Jeung, "Complementary filter design for angle estimation using mems accelerometer and gyroscope," *Department of Control and Instrumentation, Changwon National University, Changwon, Korea*, pp. 641–773, 2015.
- [4] F. Shaw and K. Srinivasan, "Bandwidth enhancement of position measurements using measured acceleration," *Mechanical Systems and Signal Processing*, vol. 4, no. 1, pp. 23–38, 1990. [Online]. Available: https://doi.org/10.1016/0888-3270(90)90038-m
- [5] F. Matichard, B. Lantz, R. Mittleman, K. Mason, J. Kissel, B. Abbott, S. Biscans, J. McIver, R. Abbott, S. Abbott *et al.*, "Seismic isolation of advanced ligo: Review of strategy, instrumentation and performance," *Classical and Quantum Gravity*, vol. 32, no. 18, p. 185003, 2015.
- [6] W. Hua, D. B. Debra, C. T. Hardham, B. T. Lantz, and J. A. Giaime, "Polyphase fir complementary filters for control systems," in *Proceed*ings of ASPE Spring Topical Meeting on Control of Precision Systems, 2004, pp. 109–114.
- [7] C. Collette and F. Matichard, "Sensor fusion methods for high performance active vibration isolation systems," *Journal of Sound* and Vibration, vol. 342, no. nil, pp. 1–21, 2015. [Online]. Available: https://doi.org/10.1016/j.jsv.2015.01.006
- [8] A. Jensen, C. Coopmans, and Y. Chen, "Basics and guidelines of complementary filters for small uas navigation," in 2013 International Conference on Unmanned Aircraft Systems (ICUAS), 5 2013, p. nil. [Online]. Available: https://doi.org/10.1109/icuas.2013.6564726
- [9] W. Hua, "Low frequency vibration isolation and alignment system for advanced ligo," Ph.D. dissertation, stanford university, 2005.
- [10] R. Mahony, T. Hamel, and J.-M. Pflimlin, "Nonlinear complementary filters on the special orthogonal group," *IEEE Transactions on Automatic Control*, vol. 53, no. 5, pp. 1203–1218, 2008. [Online]. Available: https://doi.org/10.1109/tac.2008.923738
- [11] A. Pascoal, I. Kaminer, and P. Oliveira, "Navigation system design using time-varying complementary filters," in *Guidance, Navigation*, and Control Conference and Exhibit, 1999, p. nil. [Online]. Available: https://doi.org/10.2514/6.1999-4290
- [12] R. G. Brown, "Integrated navigation systems and kalman filtering: a perspective," *Navigation*, vol. 19, no. 4, pp. 355–362, 1972. [Online]. Available: https://doi.org/10.1002/j.2161-4296.1972.tb01706.x