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II. OPTIMAL SUPER SENSOR NOISE: H2 SYNTHESIS

A. Sensor Model

Let’s consider a sensor measuring a physical quantity x
(Figure 1). The sensor has an internal dynamics which is here
modelled with a Linear Time Invariant (LTI) system transfer
function Gi(s).

The noise of sensor can be described by the Power Spectral
Density (PSD) Φni

(ω).
This is approximated by shaping a white noise with unitary

PSD ñi (2) with a LTI transfer function Ni(s):

Φni(ω) = |Ni(jω)|2 Φñi
(ω)

= |Ni(jω)|2
(1)

Φñi(ω) = 1 (2)

The output of the sensor vi:

vi = (Gi)x+ (GiNi) ñi (3)

In order to obtain an estimate x̂i of x, a model Ĝi of the
(true) sensor dynamics Gi is inverted and applied at the output
(Figure 1):

x̂i =
(
Ĝ−1i Gi

)
x+

(
Ĝ−1i GiNi

)
ñi (4)
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Fig. 1. Sensor Model

B. Sensor Fusion Architecture

Let’s now consider two sensors measuring the same physical
quantity x but with different dynamics (G1, G2) and noise
characteristics (N1, N2) (Figure 2).

The noise sources ñ1 and ñ2 are considered to be uncorre-
lated.
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Fig. 2. Sensor Fusion Architecture with sensor noise

The output of both sensors (v1, v2) are then passed through
the inverse of the sensor model to obtained two estimates
(x̂1, x̂2) of x. These two estimates are then filtered out by
two filters H1 and H2 and summed to gives the super sensor
estimate x̂.

x̂ =
(
H1Ĝ

−1
1 G1 +H2Ĝ

−1
2 G2

)
x

+
(
H1Ĝ

−1
1 G1N1

)
ñ1 +

(
H2Ĝ

−1
2 G2N2

)
ñ2

(5)

Suppose the sensor dynamical model Ĝi is perfect:

Ĝi = Gi (6)

We considered here complementary filters:

H1(s) +H2(s) = 1 (7)

In such case, the super sensor estimate x̂ is equal to x
plus the noise of the individual sensors filtered out by the
complementary filters:

x̂ = x+ (H1N1) ñ1 + (H2N2) ñ2 (8)



C. Super Sensor Noise

Let’s note n the super sensor noise.

n = (H1N1) ñ1 + (H2N2) ñ2 (9)

As the noise of both sensors are considered to be uncor-
related, the PSD of the super sensor noise is computed as
follow:

Φn(ω) = |H1N1|2 + |H2N2|2 (10)

It is clear that the PSD of the super sensor depends on the
norm of the complementary filters.

D. H2 Synthesis of Complementary Filters

The goal is to design H1(s) and H2(s) such that the effect
of the noise sources ñ1 and ñ2 has the smallest possible effect
on the noise n of the estimation x̂.

And the goal is the minimize the Root Mean Square (RMS)
value of n:

σn =

√∫ ∞
0

Φn̂(ω)dω =

∥∥∥∥H1N1

H2N2

∥∥∥∥
2

(11)

Thus, the goal is to design H1(s) and H2(s) such that

H1(s) +H2(s) = 1 and such that
∥∥∥∥H1N1

H2N2

∥∥∥∥
2

is minimized.z1z2
v

 =

N1 N1

0 N2

1 0

(w
u

)
(12)

The H2 synthesis of the complementary filters thus mini-
mized the RMS value of the super sensor noise.
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Fig. 3. Generalized plant PH2 used for the H2 synthesis of complementary
filters

E. Example

F. Robustness Problem

III. ROBUST SENSOR FUSION: H∞ SYNTHESIS

A. Representation of Sensor Dynamical Uncertainty

Suppose that the sensor dynamics Gi(s) can be modelled
by a nominal d

Gi(s) = Ĝi(s) (1 + wi(s)∆i(s)) ; |∆i(jω)| < 1∀ω (13)

B. Sensor Fusion Architecture

x̂ =
(
H1Ĝ

−1
1 Ĝ1(1 + w1∆1)

+H2Ĝ
−1
2 Ĝ2(1 + w2∆2)

)
x

(14)

with ∆i is any transfer function satisfying ‖∆i‖∞ < 1.
Suppose the model inversion is equal to the nominal model:

Ĝi = Gi (15)

x̂ = (1 +H1w1∆1 +H2w2∆2)x (16)
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Fig. 4. Sensor Fusion Architecture with sensor model uncertainty

C. Super Sensor Dynamical Uncertainty

The uncertainty set of the transfer function from x̂ to x
at frequency ω is bounded in the complex plane by a circle
centered on 1 and with a radius equal to |w1(jω)H1(jω)| +
|w2(jω)H2(jω)|.
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Fig. 5. Super Sensor model uncertainty displayed in the complex plane

D. H∞ Synthesis of Complementary Filters

In order to minimize the super sensor dynamical uncertainty
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Fig. 6. Generalized plant PH∞ used for the H∞ synthesis of complementary
filters
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ñ2

n1

n2

x̂

Fig. 7. Super Sensor Fusion with both sensor noise and sensor model
uncertainty
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Fig. 8. Generalized plant PH2/H∞ used for the mixed H2/H∞ synthesis
of complementary filters
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