#+TITLE: Optimal and Robust Sensor Fusion :DRAWER: #+LATEX_CLASS: IEEEtran #+LATEX_CLASS_OPTIONS: [conference] #+OPTIONS: toc:nil todo:nil #+STARTUP: overview #+DATE: {{{time(%Y-%m-%d)}}} #+AUTHOR: @@latex:\IEEEauthorblockN{Dehaeze Thomas}@@ #+AUTHOR: @@latex:\IEEEauthorblockA{\textit{European Synchrotron Radiation Facility} \\@@ #+AUTHOR: @@latex:Grenoble, France\\@@ #+AUTHOR: @@latex:\textit{Precision Mechatronics Laboratory} \\@@ #+AUTHOR: @@latex:\textit{University of Liege}, Belgium \\@@ #+AUTHOR: @@latex:thomas.dehaeze@esrf.fr@@ #+AUTHOR: @@latex:}\and@@ #+AUTHOR: @@latex:\IEEEauthorblockN{Collette Christophe}@@ #+AUTHOR: @@latex:\IEEEauthorblockA{\textit{BEAMS Department}\\@@ #+AUTHOR: @@latex:\textit{Free University of Brussels}, Belgium\\@@ #+AUTHOR: @@latex:\textit{Precision Mechatronics Laboratory} \\@@ #+AUTHOR: @@latex:\textit{University of Liege}, Belgium \\@@ #+AUTHOR: @@latex:ccollett@ulb.ac.be@@ #+AUTHOR: @@latex:}@@ #+LATEX_HEADER: \IEEEoverridecommandlockouts #+LATEX_HEADER: \usepackage{cite} #+LATEX_HEADER: \usepackage{amsmath,amssymb,amsfonts} #+LATEX_HEADER: \usepackage{algorithmic} #+LATEX_HEADER: \usepackage{graphicx} #+LATEX_HEADER: \usepackage{textcomp} #+LATEX_HEADER: \usepackage{xcolor} #+LATEX_HEADER: \usepackage{cases} #+LATEX_HEADER: \usepackage{tabularx,siunitx,booktabs} #+LATEX_HEADER: \usepackage{algorithmic} #+LATEX_HEADER: \usepackage{import, hyperref} #+LATEX_HEADER: \renewcommand{\citedash}{--} #+LATEX_HEADER_EXTRA: \usepackage{showframe} #+LATEX_HEADER: \def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} \bibliographystyle{IEEEtran} :END: * LaTeX Config :noexport: #+begin_src latex :tangle config.tex #+end_src * Build :noexport: #+NAME: startblock #+BEGIN_SRC emacs-lisp :results none (add-to-list 'org-latex-classes '("IEEEtran" "\\documentclass{IEEEtran}" ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\subsubsection{%s}" . "\\subsubsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") ("\\subparagraph{%s}" . "\\subparagraph*{%s}")) ) (defun delete-org-comments (backend) (loop for comment in (reverse (org-element-map (org-element-parse-buffer) 'comment 'identity)) do (setf (buffer-substring (org-element-property :begin comment) (org-element-property :end comment)) ""))) ;; add to export hook (add-hook 'org-export-before-processing-hook 'delete-org-comments) ;; Remove hypersetup (setq org-latex-with-hyperref nil) #+END_SRC * Abstract :ignore: #+begin_abstract Abstract text to be done #+end_abstract * Keywords :ignore: #+begin_IEEEkeywords Complementary Filters, Sensor Fusion, H-Infinity Synthesis #+end_IEEEkeywords * Introduction <> - Section ref:sec:optimal_fusion - Section ref:sec:robust_fusion - Section ref:sec:optimal_robust_fusion - Section ref:sec:experimental_validation * Optimal Super Sensor Noise: $\mathcal{H}_2$ Synthesis <> ** Sensor Model Let's consider a sensor measuring a physical quantity $x$ (Figure [[fig:sensor_model]]). The sensor has an internal dynamics which is here modelled with a Linear Time Invariant (LTI) system transfer function $G_i(s)$. The noise of sensor can be described by the Power Spectral Density (PSD) $\Phi_{n_i}(\omega)$. This is approximated by shaping a white noise with unitary PSD $\tilde{n}_i$ eqref:eq:unitary_sensor_noise_psd with a LTI transfer function $N_i(s)$: \begin{equation} \begin{aligned} \Phi_{n_i}(\omega) &= \left| N_i(j\omega) \right|^2 \Phi_{\tilde{n}_i}(\omega) \\ &= \left| N_i(j\omega) \right|^2 \end{aligned} \end{equation} #+name: eq:unitary_sensor_noise_psd \begin{equation} \Phi_{\tilde{n}_i}(\omega) = 1 \end{equation} The output of the sensor $v_i$: \begin{equation} v_i = \left( G_i \right) x + \left( G_i N_i \right) \tilde{n}_i \end{equation} In order to obtain an estimate $\hat{x}_i$ of $x$, a model $\hat{G}_i$ of the (true) sensor dynamics $G_i$ is inverted and applied at the output (Figure [[fig:sensor_model]]): \begin{equation} \hat{x}_i = \left( \hat{G}_i^{-1} G_i \right) x + \left( \hat{G}_i^{-1} G_i N_i \right) \tilde{n}_i \end{equation} #+name: fig:sensor_model #+caption: Sensor Model #+attr_latex: :scale 1 [[file:figs/sensor_model.pdf]] ** Sensor Fusion Architecture Let's now consider two sensors measuring the same physical quantity $x$ but with different dynamics $(G_1, G_2)$ and noise characteristics $(N_1, N_2)$ (Figure [[fig:sensor_fusion_noise_arch]]). The noise sources $\tilde{n}_1$ and $\tilde{n}_2$ are considered to be uncorrelated. #+name: fig:sensor_fusion_noise_arch #+caption: Sensor Fusion Architecture with sensor noise #+attr_latex: :scale 1 [[file:figs/sensor_fusion_noise_arch.pdf]] The output of both sensors $(v1,v2)$ are then passed through the inverse of the sensor model to obtained two estimates $(\hat{x}_1, \hat{x}_2)$ of $x$. These two estimates are then filtered out by two filters $H_1$ and $H_2$ and summed to gives the super sensor estimate $\hat{x}$. \begin{equation} \begin{split} \hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\ &+ \left( H_1 \hat{G}_1^{-1} G_1 N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} G_2 N_2 \right) \tilde{n}_2 \end{split} \end{equation} Suppose the sensor dynamical model $\hat{G}_i$ is perfect: \begin{equation} \hat{G}_i = G_i \end{equation} We considered here complementary filters: \begin{equation} H_1(s) + H_2(s) = 1 \end{equation} In such case, the super sensor estimate $\hat{x}$ is equal to $x$ plus the noise of the individual sensors filtered out by the complementary filters: \begin{equation} \hat{x} = x + \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 \end{equation} ** Super Sensor Noise Let's note $n$ the super sensor noise. \begin{equation} n = \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 \end{equation} As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow: \begin{equation} \Phi_n(\omega) = \left| H_1 N_1 \right|^2 + \left| H_2 N_2 \right|^2 \end{equation} It is clear that the PSD of the super sensor depends on the norm of the complementary filters. ** $\mathcal{H}_2$ Synthesis of Complementary Filters The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise sources $\tilde{n}_1$ and $\tilde{n}_2$ has the smallest possible effect on the noise $n$ of the estimation $\hat{x}$. And the goal is the minimize the Root Mean Square (RMS) value of $n$: #+name: eq:rms_value_estimation \begin{equation} \sigma_{n} = \sqrt{\int_0^\infty \Phi_{n}(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \end{equation} Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\sigma_n$ is minimized. This can be cast into an $\mathcal{H}_2$ synthesis problem by considering the following generalized plant (also represented in Figure [[fig:h_two_optimal_fusion]]): \begin{equation} \begin{pmatrix} z_1 \\ z_2 \\ v \end{pmatrix} = \underbrace{\begin{bmatrix} N_1 & N_1 \\ 0 & N_2 \\ 1 & 0 \end{bmatrix}}_{P_{\mathcal{H}_2}} \begin{pmatrix} w \\ u \end{pmatrix} \end{equation} Applying the $\mathcal{H}_2$ synthesis on $P_{\mathcal{H}_2}$ will generate a filter $H_2(s)$ such that the $\mathcal{H}_2$ norm from $w$ to $(z_1,z_2)$ is minimized: #+NAME: eq:H2_norm \begin{equation} \left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_2 = \left\| \begin{matrix} N_1 (1 - H_2) \\ N_2 H_2 \end{matrix} \right\|_2 \end{equation} The $\mathcal{H}_2$ norm of Eq. eqref:eq:H2_norm is equals to $\sigma_n$ by defining $H_1(s)$ to be the complementary filter of $H_2(s)$: \begin{equation} H_1(s) = 1 - H_2(s) \end{equation} We then have that the $\mathcal{H}_2$ synthesis applied on $P_{\mathcal{H}_2}$ generates two complementary filters $H_1(s)$ and $H_2(s)$ such that the RMS value of super sensor noise is minimized. #+name: fig:h_two_optimal_fusion #+caption: Generalized plant $P_{\mathcal{H}_2}$ used for the $\mathcal{H}_2$ synthesis of complementary filters #+attr_latex: :scale 1 [[file:figs/h_two_optimal_fusion.pdf]] ** Example ** Robustness Problem * Robust Sensor Fusion: $\mathcal{H}_\infty$ Synthesis <> ** Representation of Sensor Dynamical Uncertainty Suppose that the sensor dynamics $G_i(s)$ can be modelled by a nominal d \begin{equation} G_i(s) = \hat{G}_i(s) \left( 1 + w_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \end{equation} ** Sensor Fusion Architecture \begin{equation} \begin{split} \hat{x} = \Big( {} & H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + w_1 \Delta_1) \\ + & H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + w_2 \Delta_2) \Big) x \end{split} \end{equation} with $\Delta_i$ is any transfer function satisfying $\| \Delta_i \|_\infty < 1$. Suppose the model inversion is equal to the nominal model: \begin{equation} \hat{G}_i = G_i \end{equation} \begin{equation} \hat{x} = \left( 1 + H_1 w_1 \Delta_1 + H_2 w_2 \Delta_2 \right) x \end{equation} #+name: fig:sensor_fusion_arch_uncertainty #+caption: Sensor Fusion Architecture with sensor model uncertainty #+attr_latex: :scale 1 [[file:figs/sensor_fusion_arch_uncertainty.pdf]] ** Super Sensor Dynamical Uncertainty The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$. #+name: fig:uncertainty_set_super_sensor #+caption: Super Sensor model uncertainty displayed in the complex plane #+attr_latex: :scale 1 [[file:figs/uncertainty_set_super_sensor.pdf]] ** $\mathcal{H_\infty}$ Synthesis of Complementary Filters In order to minimize the super sensor dynamical uncertainty #+name: fig:h_infinity_robust_fusion #+caption: Generalized plant $P_{\mathcal{H}_\infty}$ used for the $\mathcal{H}_\infty$ synthesis of complementary filters #+attr_latex: :scale 1 [[file:figs/h_infinity_robust_fusion.pdf]] ** Example * Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis <> ** Sensor Fusion Architecture #+name: fig:sensor_fusion_arch_full #+caption: Super Sensor Fusion with both sensor noise and sensor model uncertainty #+attr_latex: :scale 1 [[file:figs/sensor_fusion_arch_full.pdf]] ** Synthesis Objective ** Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis #+name: fig:mixed_h2_hinf_synthesis #+caption: Generalized plant $P_{\mathcal{H}_2/\matlcal{H}_\infty}$ used for the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis of complementary filters #+attr_latex: :scale 1 [[file:figs/mixed_h2_hinf_synthesis.pdf]] ** Example * Experimental Validation <> ** Experimental Setup ** Sensor Noise and Dynamical Uncertainty ** Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis ** Super Sensor Noise and Dynamical Uncertainty * Conclusion <> * Acknowledgment * Bibliography :ignore: \bibliography{ref}