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I. INTRODUCTION
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II. OPTIMAL SUPER SENSOR NOISE: H2 SYNTHESIS

A. Sensor Model

Let’s consider a sensor measuring a physical quantity x
(Figure 1). The sensor has an internal dynamics which is here
modelled with a Linear Time Invariant (LTI) system transfer
function Gi(s).

The noise of sensor can be described by the Power Spectral
Density (PSD) Φni

(ω).
This is approximated by shaping a white noise with unitary

PSD ñi (2) with a LTI transfer function Ni(s):

Φni
(ω) = |Ni(jω)|2 Φñi

(ω)

= |Ni(jω)|2
(1)

Φñi
(ω) = 1 (2)

The output of the sensor vi:

vi = (Gi)x+ (GiNi) ñi (3)

In order to obtain an estimate x̂i of x, a model Ĝi of the
(true) sensor dynamics Gi is inverted and applied at the output
(Figure 1):

x̂i =
(
Ĝ−1i Gi

)
x+

(
Ĝ−1i GiNi

)
ñi (4)
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Fig. 1. Sensor Model

B. Sensor Fusion Architecture

Let’s now consider two sensors measuring the same physical
quantity x but with different dynamics (G1, G2) and noise
characteristics (N1, N2) (Figure 2).

The noise sources ñ1 and ñ2 are considered to be uncorre-
lated.
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Fig. 2. Sensor Fusion Architecture with sensor noise

The output of both sensors (v1, v2) are then passed through
the inverse of the sensor model to obtained two estimates
(x̂1, x̂2) of x. These two estimates are then filtered out by
two filters H1 and H2 and summed to gives the super sensor
estimate x̂.

x̂ =
(
H1Ĝ

−1
1 G1 +H2Ĝ

−1
2 G2

)
x

+
(
H1Ĝ

−1
1 G1N1

)
ñ1 +

(
H2Ĝ

−1
2 G2N2

)
ñ2

(5)

Suppose the sensor dynamical model Ĝi is perfect:

Ĝi = Gi (6)

We considered here complementary filters:

H1(s) +H2(s) = 1 (7)

In such case, the super sensor estimate x̂ is equal to x
plus the noise of the individual sensors filtered out by the
complementary filters:

x̂ = x+ (H1N1) ñ1 + (H2N2) ñ2 (8)



C. Super Sensor Noise

Let’s note n the super sensor noise.

n = (H1N1) ñ1 + (H2N2) ñ2 (9)

As the noise of both sensors are considered to be uncor-
related, the PSD of the super sensor noise is computed as
follow:

Φn(ω) = |H1N1|2 + |H2N2|2 (10)

It is clear that the PSD of the super sensor depends on the
norm of the complementary filters.

D. H2 Synthesis of Complementary Filters

The goal is to design H1(s) and H2(s) such that the effect
of the noise sources ñ1 and ñ2 has the smallest possible effect
on the noise n of the estimation x̂.

And the goal is the minimize the Root Mean Square (RMS)
value of n:

σn =

√∫ ∞
0

Φn(ω)dω =

∥∥∥∥H1N1

H2N2

∥∥∥∥
2

(11)

Thus, the goal is to design H1(s) and H2(s) such that
H1(s) +H2(s) = 1 and such that σn is minimized.

This can be cast into an H2 synthesis problem by consider-
ing the following generalized plant (also represented in Figure
3): z1z2

v

 =

N1 −N1

0 N2

1 0


︸ ︷︷ ︸

PH2

(
w
u

)
(12)

Applying the H2 synthesis on PH2 will generate a filter
H2(s) such that the H2 norm from w to (z1, z2) is minimized:∥∥∥∥z1/wz2/w

∥∥∥∥
2

=

∥∥∥∥N1(1−H2)
N2H2

∥∥∥∥
2

(13)

The H2 norm of Eq. (13) is equals to σn by defining H1(s)
to be the complementary filter of H2(s):

H1(s) = 1−H2(s) (14)

We then have that the H2 synthesis applied on PH2
gen-

erates two complementary filters H1(s) and H2(s) such that
the RMS value of super sensor noise is minimized.

E. Example

F. Robustness Problem

III. ROBUST SENSOR FUSION: H∞ SYNTHESIS

A. Representation of Sensor Dynamical Uncertainty

In Section II, the model Ĝi(s) of the sensor was considered
to be perfect. In reality, there are always uncertainty (neglected
dynamics) associated with the estimation of the sensor dynam-
ics.

The Uncertainty on the sensor dynamics Gi(s) is here
modelled by (input) multiplicative uncertainty:

Gi(s) = Ĝi(s) (1 +Wi(s)∆i(s)) ; |∆i(jω)| < 1∀ω (15)
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Fig. 3. Generalized plant PH2
used for the H2 synthesis of complementary

filters
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Fig. 4. Sensor nominal dynamics from the velocity of the object to the output
voltage
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Fig. 5. Amplitude spectral density of the sensors
√

Φni (ω) = |Ni(jω)|
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Fig. 6. Obtained complementary filters using the H2 Synthesis

100 102 104

Frequency [Hz]

10!6

10!4

10!2

A
S
D

h m
=
s

p
H

z

i ?n1

?n2

?nH2

Fig. 7. Power Spectral Density of the estimated x̂ using the two sensors alone
and using the optimally fused signal

where Ĝi(s) is the nominal model, Wi a weight representing
the size of the uncertainty at each frequency, and ∆i is any
complex perturbation such that ‖∆i‖∞ < 1.

The sensor can then be represented as shown in Figure 11.

B. Sensor Fusion Architecture

Let’s consider the sensor fusion architecture shown in Figure
12 where the dynamical uncertainties of both sensors are
included.
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Fig. 8. Noise of individual sensors and noise of the super sensor
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Fig. 9. Nominal Sensor Dynamics Ĝi (solid lines) as well as the spread of
the dynamical uncertainty (background color)
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Fig. 10. Super sensor dynamical uncertainty when using the H2 Synthesis
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Fig. 11. Sensor Model including Dynamical Uncertainty

The super sensor estimate is then:

x̂ =
(
H1Ĝ

−1
1 Ĝ1(1 +W1∆1)

+H2Ĝ
−1
2 Ĝ2(1 +W2∆2)

)
x

=
(
H1(1 +W1∆1) +H2(1 +W2∆2)

)
x

(16)

with ∆i is any transfer function satisfying ‖∆i‖∞ < 1.
As H1 and H2 are complementary filters, we finally have:

x̂ = (1 +H1W1∆1 +H2W2∆2)x, ‖∆i‖∞ < 1 (17)

C. Super Sensor Dynamical Uncertainty

The uncertainty set of the transfer function from x̂ to x
at frequency ω is bounded in the complex plane by a circle
centered on 1 and with a radius equal to |W1(jω)H1(jω)|+
|W2(jω)H2(jω)| as shown in Figure 13.

And we can see that the dynamical uncertainty of the super
sensor is equal to the sum of the individual sensor uncertainties
filtered out by the complementary filters.
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Fig. 12. Sensor Fusion Architecture with sensor model uncertainty
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Fig. 13. Super Sensor model uncertainty displayed in the complex plane

At frequencies where |Wi(jω)| > 1 the uncertainty exceeds
100% and sensor fusion is impossible.

D. H∞ Synthesis of Complementary Filters

In order for the fusion to be “robust”, meaning no phase
drop will be induced in the super sensor dynamics,

The goal is to design two complementary filters H1(s) and
H2(s) such that the super sensor noise uncertainty is kept
reasonably small.

To define what by “small” we mean, we use a weighting
filter Wu(s) such that the synthesis objective is:

|W1(jω)H1(jω)|+ |W2(jω)H2(jω)| < 1

|Wu(jω)|
, ∀ω

(18)
This is actually almost equivalent as to have (within a factor√
2): ∥∥∥∥WuW1H1

WuW2H2

∥∥∥∥
∞
< 1 (19)

This problem can thus be dealt with an H∞ synthesis prob-
lem by considering the following generalized plant (Figure
14): z1z2

v

 =

WuW1 −WuW1

0 WuW2

1 0


︸ ︷︷ ︸

PH∞

(
w
u

)
(20)

Applying the H∞ synthesis on PH∞ will generate a filter
H2(s) such that theH∞ norm from w to (z1, z2) is minimized:∥∥∥∥z1/wz2/w

∥∥∥∥
∞

=

∥∥∥∥WuW1(1−H2)
WuW2H2

∥∥∥∥
∞

(21)



The H∞ norm of Eq. (21) is equals to σn by defining H1(s)
to be the complementary filter of H2(s):

H1(s) = 1−H2(s) (22)
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Fig. 14. Generalized plant PH∞ used for the H∞ synthesis of complemen-
tary filters

E. Example
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Fig. 15. Magnitude of the multiplicative uncertainty weights |Wi(jω)|

IV. OPTIMAL AND ROBUST SENSOR FUSION: MIXED
H2/H∞ SYNTHESIS

A. Sensor with noise and model uncertainty

We wish now to combine the two previous synthesis, that
is to say

The sensors are now modelled by a white noise with
unitary PSD ñi shaped by a LTI transfer function Ni(s).
The dynamical uncertainty of the sensor is modelled using
multiplicative uncertainty

vi = Ĝi(1 +Wi∆i)x+ Ĝi(1 +Wi∆i)Niñi (23)

Multiplying by the inverse of the nominal model of the
sensor dynamics gives an estimate x̂i of x:

x̂ = (1 +Wi∆i)x+ (1 +Wi∆i)Niñi (24)
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Fig. 16. Uncertainty region of the two sensors as well as the wanted maximum
uncertainty of the super sensor (dashed lines)
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Fig. 17. Obtained complementary filters using the H∞ Synthesis
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Fig. 18. Super sensor dynamical uncertainty (solid curve) when using the
H∞ Synthesis
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Fig. 19. Power Spectral Density of the estimated x̂ using the two sensors
alone and using the H∞ synthesis
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Fig. 20. Sensor Model including Noise and Dynamical Uncertainty

B. Sensor Fusion Architecture

For reason of space, the blocks Ĝi and Ĝ−1i are omitted.

x̂ =
(
H1(1 +W1∆1) +H2(1 +W2∆2)

)
x

+
(
H1(1 +W1∆1)N1

)
ñ1 +

(
H2(1 +W2∆2)N2

)
ñ2
(25)

x̂ =
(

1 +H1W1∆1 +H2W2∆2

)
x

+
(
H1(1 +W1∆1)N1

)
ñ1 +

(
H2(1 +W2∆2)N2

)
ñ2
(26)

The estimate x̂ of x
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Fig. 21. Super Sensor Fusion with both sensor noise and sensor model
uncertainty

C. Mixed H2/H∞ Synthesis

The synthesis objective is to generate two complementary
filters H1(s) and H2(s) such that the uncertainty associated
with the super sensor is kept reasonably small and such that
the RMS value of super sensors noise is minimized.

To specify how small we want the super sensor dynamic
spread, we use a weighting filter Wu(s) as was done in Section
III.

This synthesis problem can be solved using the mixed
H2/H∞ synthesis on the following generalized plant:

z∞,1

z∞,2

z2,1
z2,2
v

 =


WuW1 WuW1

0 WuW2

N1 N1

0 N2

1 0


︸ ︷︷ ︸

PH2/H∞

(
w
u

)
(27)

The synthesis objective is to:

• Keep the H∞ norm from w to (z∞,1, z∞,2) below 1
• Minimize the H2 norm from w to (z2,1, z2,2)
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Fig. 22. Generalized plant PH2/H∞ used for the mixed H2/H∞ synthesis
of complementary filters
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Fig. 23. Obtained complementary filters after mixed H2/H∞ synthesis
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Fig. 24. Power Spectral Density of the Super Sensor obtained with the mixed
H2/H∞ synthesis
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Fig. 25. Noise of individual sensors and noise of the super sensor
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