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This document is arranged as follows:

• Section 1: the sensors are described (dynamics, uncertainty, noise)

• Section 2: the sensor fusion architecture is described and the super sensor noise and dynamical uncertainty
are derived

• Section 3: the H2 synthesis is used to design complementary filters such that the RMS value of the super
sensor’s noise is minimized

• Section 4: the H∞ synthesis is used to design complementary filters such that the super sensor’s uncertainty
is bonded to acceptable values

• Section 5: the mixed H2/H∞ synthesis is used to both limit the super sensor’s uncertainty and to lower the
RMS value of the super sensor’s noise

• Section 6: Matlab functions used for the analysis are described
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1 Sensor Description
In Figure 1 is shown a schematic of a sensor model that is used in the following study. In this example, the measured
quantity x is the velocity of an object.

Table 1 – Description of signals in Figure 1

Notation Meaning Unit
x Physical measured quantity [m/s]
ñi White noise with unitary PSD
ni Shaped noise [m/s]
vi Sensor output measurement [V ]
x̂i Estimate of x from the sensor [m/s]

Φn(ω) Power Spectral Density of n [ (m/s)2

Hz ]
φn(ω) Amplitude Spectral Density of n [ m/s√

Hz
]

σn Root Mean Square Value of n [m/s rms]

Table 2 – Description of Systems in Figure 1

Notation Meaning Unit

Ĝi Nominal Sensor Dynamics [ V
m/s ]

Wi Weight representing the size of the uncertainty at each frequency
∆i Any complex perturbation such that ||∆i||∞ < 1
Ni Weight representing the sensor noise [m/s]

Sensor

+

Ni

Wi ∆i

+ Ĝi Ĝ−1
i

x
ni

ñi

vi x̂i

Figure 1 – Sensor Model

1.1 Sensor Dynamics
Let’s consider two sensors measuring the velocity of an object.
The first sensor is an accelerometer. Its nominal dynamics Ĝ1(s) is defined below.

1 m_acc = 0.01; % Inertial Mass [kg]
2 c_acc = 5; % Damping [N/(m/s)]
3 k_acc = 1e5; % Stiffness [N/m]
4 g_acc = 1e5; % Gain [V/m]
5
6 G1 = g_acc*m_acc*s/(m_acc*s^2 + c_acc*s + k_acc); % Accelerometer Plant [V/(m/s)]

The second sensor is a displacement sensor, its nominal dynamics Ĝ2(s) is defined below.
1 w_pos = 2*pi*2e3; % Measurement Banwdith [rad/s]
2 g_pos = 1e4; % Gain [V/m]
3
4 G2 = g_pos/s/(1 + s/w_pos); % Position Sensor Plant [V/(m/s)]

These nominal dynamics are also taken as the model of the sensor dynamics. The true sensor dynamics has some
uncertainty associated to it and described in section 1.2.
Both sensor dynamics in [ V

m/s ] are shown in Figure 2.
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Figure 2 – Sensor nominal dynamics from the velocity of the object to the output voltage

1.2 Sensor Model Uncertainty
The uncertainty on the sensor dynamics is described by multiplicative uncertainty (Figure 1).
The true sensor dynamics Gi(s) is then described by (1).

Gi(s) = Ĝi(s) (1 +Wi(s)∆i(s)) ; |∆i(jω)| < 1∀ω (1)

The weights Wi(s) representing the dynamical uncertainty are defined below and their magnitude is shown in Figure
3.

1 W1 = createWeight('n', 2, 'w0', 2*pi*3, 'G0', 2, 'G1', 0.1, 'Gc', 1) * ...
2 createWeight('n', 2, 'w0', 2*pi*1e3, 'G0', 1, 'G1', 4/0.1, 'Gc', 1/0.1);
3
4 W2 = createWeight('n', 2, 'w0', 2*pi*1e2, 'G0', 0.05, 'G1', 4, 'Gc', 1);

The bode plot of the sensors nominal dynamics as well as their defined dynamical spread are shown in Figure 4.
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Figure 3 – Magnitude of the multiplicative uncertainty weights |Wi(jω)|

3



10!2

100

102

104

M
a
g
n
it
u
d
e

[
V

m
=
s
] G1

G2

Ĝ1
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Figure 4 – Nominal Sensor Dynamics Ĝi (solid lines) as well as the spread of the dynamical uncertainty (background color)

1.3 Sensor Noise
The noise of the sensors ni are modelled by shaping a white noise with unitary PSD ñi (2) with a LTI transfer
function Ni(s) (Figure 1).

Φñi
(ω) = 1 (2)

The Power Spectral Density of the sensor noise Φni
(ω) is then computed using (3) and expressed in [ (m/s)2

Hz ].

Φni(ω) = |Ni(jω)|2 Φñi(ω) (3)

The weights N1 and N2 representing the amplitude spectral density of the sensor noises are defined below and
shown in Figure 5.

1 omegac = 0.15*2*pi; G0 = 1e-1; Ginf = 1e-6;
2 N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);
3
4 omegac = 1000*2*pi; G0 = 1e-6; Ginf = 1e-3;
5 N2 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4);
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Figure 5 – Amplitude spectral density of the sensors
√

Φni (ω) = |Ni(jω)|
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1.4 Save Model
All the dynamical systems representing the sensors are saved for further use.

1 save('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');
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2 Introduction to Sensor Fusion
2.1 Sensor Fusion Architecture
The two sensors presented in Section 1 are now merged together using complementary filters H1(s) and H2(s) to
form a super sensor (Figure 6).

Super SensorSensor 1

Sensor 2

+

+

G1

G2

Ĝ−1
1

Ĝ−1
2

H1

H2

N1

N2
+x

n1

n2

ñ1

ñ2

v1

v2

x̂1

x̂2

x̂

Figure 6 – Sensor Fusion Architecture

The complementary property of H1(s) and H2(s) means that the sum of their transfer function is equal to 1 (4).

H1(s) +H2(s) = 1 (4)
The super sensor estimate x̂ is given by (5).

x̂ =
(
H1Ĝ

−1
1 G1 +H2Ĝ

−1
2 G2

)
x+

(
H1Ĝ

−1
1 G1N1

)
ñ1 +

(
H2Ĝ

−1
2 G2N2

)
ñ2 (5)

2.2 Super Sensor Noise
If we first suppose that the models of the sensors Ĝi are very close to the true sensor dynamics Gi (6), we have that
the super sensor estimate x̂ is equals to the measured quantity x plus the noise of the two sensors filtered out by
the complementary filters (7).

Ĝ−1
i (s)Gi(s) ≈ 1 (6)

x̂ = x+ (H1N1) ñ1 + (H2N2) ñ2︸ ︷︷ ︸
n

(7)

As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as
follow:

Φn(ω) = |H1(jω)N1(jω)|2 + |H2(jω)N2(jω)|2 (8)
And the Root Mean Square (RMS) value of the super sensor noise σn is given by Equation (9).

σn =

√∫ ∞
0

Φn(ω)dω (9)

2.3 Super Sensor Dynamical Uncertainty
If we consider some dynamical uncertainty (the true system dynamics Gi not being perfectly equal to our model
Ĝi) that we model by the use of multiplicative uncertainty (Figure 7), the super sensor dynamics is then equals to:

x̂

x
=
(
H1Ĝ

−1
1 Ĝ1(1 +W1∆1) +H2Ĝ

−1
2 Ĝ2(1 +W2∆2)

)
=
(
H1(1 +W1∆1) +H2(1 +W2∆2)

)
= (1 +H1W1∆1 +H2W2∆2) , ‖∆i‖∞ < 1

(10)
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Sensor
Wi ∆i

+ Ĝi Ĝ−1
i

x vi x̂i

Figure 7 – Sensor Model including Dynamical Uncertainty

The uncertainty set of the transfer function from x̂ to x at frequency ω is bounded in the complex plane by a circle
centered on 1 and with a radius equal to |W1(jω)H1(jω)|+ |W2(jω)H2(jω)| as shown in Figure 8.

1

|W1H1||W2H2|

|W1H1| + |W2H2|

Re

Im

∆φ

Figure 8 – Super Sensor model uncertainty displayed in the complex plane
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3 Optimal Super Sensor Noise: H2 Synthesis
In this section, the complementary filters H1(s) and H2(s) are designed in order to minimize the RMS value of
super sensor noise σn.
The RMS value of the super sensor noise is (neglecting the model uncertainty):

σn =

√∫ ∞
0
|H1(jω)N1(jω)|2 + |H2(jω)N2(jω)|2dω

=
∥∥∥∥H1N1
H2N2

∥∥∥∥
2

(11)

The goal is to design H1(s) and H2(s) such that H1(s) + H2(s) = 1 (complementary property) and such that∥∥∥∥H1N1
H2N2

∥∥∥∥
2
is minimized (minimized RMS value of the super sensor noise). This is done using the H2 synthesis in

Section 3.1.

3.1 H2 Synthesis
Consider the generalized plant PH2 shown in Figure 9 and described by Equation (12).

PH2

N1

N2

+
−

H2

w

u

v

z1

z2

Figure 9 – Architecture used for H∞ synthesis of complementary filters

z1
z2
v

 =

N1 −N1
0 N2
1 0


︸ ︷︷ ︸

PH2

(
w
u

)
(12)

Applying the H2 synthesis on PH2 will generate a filter H2(s) such that the H2 norm from w to (z1, z2) which is
actually equals to σn by defining H1(s) = 1−H2(s):∥∥∥∥z1/w

z2/w

∥∥∥∥
2

=
∥∥∥∥N1(1−H2)

N2H2

∥∥∥∥
2

= σn with H1(s) = 1−H2(s) (13)

We then have that the H2 synthesis applied on PH2 generates two complementary filters H1(s) and H2(s) such that
the RMS value of super sensor noise is minimized.
The generalized plant PH2 is defined below

1 PH2 = [N1 -N1;
2 0 N2;
3 1 0];

The H2 synthesis using the h2syn command
1 [H2, ~, gamma] = h2syn(PH2, 1, 1);

Finally, H1(s) is defined as follows
1 H1 = 1 - H2;

The obtained complementary filters are shown in Figure 10.
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Figure 10 – Obtained complementary filters using the H2 Synthesis

3.2 Super Sensor Noise
The Power Spectral Density of the individual sensors’ noise Φn1 ,Φn2 and of the super sensor noise ΦnH2

are
computed below.

1 PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
2 PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
3 PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
4 abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;

The obtained ASD are shown in Figure 11.
The RMS value of the individual sensors and of the super sensor are listed in Table 3.

Table 3 – RMS value of the individual sensor noise and of the super sensor using the H2 Synthesis

RMS value [m/s]
σn1 0.015
σn2 0.080
σnH2

0.003

A time domain simulation is now performed. The measured velocity x is set to be a sweep sine with an amplitude
of 0.1 [m/s]. The velocity estimates from the two sensors and from the super sensors are shown in Figure 12. The
resulting noises are displayed in Figure 13.

3.3 Discrepancy between sensor dynamics and model
If we consider sensor dynamical uncertainty as explained in Section 1.2, we can compute what would be the super
sensor dynamical uncertainty when using the complementary filters obtained using the H2 Synthesis.
The super sensor dynamical uncertainty is shown in Figure 14.
It is shown that the phase uncertainty is not bounded between 100Hz and 200Hz. As a result the super sensor
signal can not be used for feedback applications about 100Hz.
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Figure 14 – Super sensor dynamical uncertainty when using the H2 Synthesis
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4 Robust Sensor Fusion: H∞ Synthesis
We initially considered perfectly known sensor dynamics so that it can be perfectly inverted.
We now take into account the fact that the sensor dynamics is only partially known. To do so, we model the
uncertainty that we have on the sensor dynamics by multiplicative input uncertainty as shown in Figure 15.

Super SensorSensor 1

Sensor 2

W1

W2

∆1

∆2

+

+

Ĝ1

Ĝ2

Ĝ−1
1

Ĝ−1
2

H1

H2

+x

v1

v2

x̂

Figure 15 – Sensor fusion architecture with sensor dynamics uncertainty

As explained in Section 1.2, at each frequency ω, the dynamical uncertainty of the super sensor can be represented
in the complex plane by a circle with a radius equals to |H1(jω)W1(jω)|+ |H2(jω)W2(jω)| and centered on 1.
In order to specify a wanted upper bound on the dynamical uncertainty, a weight Wu(s) is used where 1/|Wu(jω)|
represents the maximum allowed radius of the uncertainty circle corresponding to the super sensor dynamics at a
frequency ω (14).

|H1(jω)W1(jω)|+ |H2(jω)W2(jω)| < 1
|Wu(jω)| , ∀ω (14)

⇔|H1(jω)W1(jω)Wu(jω)|+ |H2(jω)W2(jω)Wu(jω)| < 1, ∀ω (15)
|Wu(jω)| is also linked to the gain uncertainty ∆G (16) and phase uncertainty ∆φ (17) of the super sensor.

∆G(ω) ≤ 1
|Wu(jω)| , ∀ω (16)

∆φ(ω) ≤ arcsin
(

1
|Wu(jω)|

)
, ∀ω (17)

The choice of Wu is presented in Section 4.1.
Condition (15) can almost be represented by (18) (within a factor

√
2).∥∥∥∥H1(s)W1(s)Wu(s)

H2(s)W2(s)Wu(s)

∥∥∥∥
∞
< 1 (18)

The objective is to design H1(s) and H2(s) such that H1(s) +H2(s) = 1 (complementary property) and such that
(18) is verified (bounded dynamical uncertainty).
This is done using the H∞ synthesis in Section 4.2.

4.1 Weighting Function used to bound the super sensor uncertainty
Wu(s) is defined such that the super sensor phase uncertainty is less than 10 degrees below 100Hz (19) and is less
than 180 degrees below 400Hz (20).

1
|Wu(jω)| < sin

(
10 π

180

)
, ω < 100Hz (19)

1
|Wu(j2π400)| < 1 (20)

The uncertainty bounds of the two individual sensor as well as the wanted maximum uncertainty bounds of the
super sensor are shown in Figure 16.

1 Dphi = 10; % [deg]
2
3 Wu = createWeight('n', 2, 'w0', 2*pi*4e2, 'G0', 1/sin(Dphi*pi/180), 'G1', 1/4, 'Gc', 1);

12
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Figure 16 – Uncertainty region of the two sensors as well as the wanted maximum uncertainty of the super sensor (dashed
lines)

4.2 H∞ Synthesis
The generalized plant PH∞ used for the H∞ Synthesis of the complementary filters is shown in Figure 17 and is
described by Equation (21).

PH∞

W1

W2

Wu

Wu

+
−

H2

w

u

v

z1

z2

Figure 17 – Architecture used for H∞ synthesis of complementary filters

z1
z2
v

 =

WuW1 −WuW1
0 WuW2
1 0


︸ ︷︷ ︸

PH∞

(
w
u

)
(21)

The generalized plant is defined below.
1 P = [Wu*W1 -Wu*W1;
2 0 Wu*W2;
3 1 0];

And the H∞ synthesis is performed using the hinfsyn command.
1 H2 = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'DISPLAY', 'on');

Test bounds: 0.7071 <= gamma <= 1.291
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gamma X>=0 Y>=0 rho(XY)<1 p/f
9.554e-01 0.0e+00 0.0e+00 3.529e-16 p
8.219e-01 0.0e+00 0.0e+00 5.204e-16 p
7.624e-01 3.8e-17 0.0e+00 1.955e-15 p
7.342e-01 0.0e+00 0.0e+00 5.612e-16 p
7.205e-01 0.0e+00 0.0e+00 7.184e-16 p
7.138e-01 0.0e+00 0.0e+00 0.000e+00 p
7.104e-01 4.1e-16 0.0e+00 6.749e-15 p
7.088e-01 0.0e+00 0.0e+00 2.794e-15 p
7.079e-01 0.0e+00 0.0e+00 6.503e-16 p
7.075e-01 0.0e+00 0.0e+00 4.302e-15 p

Best performance (actual): 0.7071

The H∞ is successful as the H∞ norm of the “closed loop” transfer function from (w) to (z1, z2) is less than one.
H1(s) is then defined as the complementary of H2(s).

1 H1 = 1 - H2;

The obtained complementary filters as well as the wanted upper bounds are shown in Figure 18.
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Figure 18 – Obtained complementary filters using the H∞ Synthesis

4.3 Super sensor uncertainty
The super sensor dynamical uncertainty is displayed in Figure 19. It is confirmed that the super sensor dynamical
uncertainty is less than the maximum allowed uncertainty defined by the norm of Wu(s).
The H∞ synthesis thus allows to design filters such that the super sensor has specified bounded uncertainty.

4.4 Super sensor noise
We now compute the obtain Power Spectral Density of the super sensor’s noise. The Amplitude Spectral Densities
are shown in Figure 20.

1 PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
2 PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
3 PSD_Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
4 abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;

14



10!2

10!1

100

101

M
a
g
n
it
u
d
e

1 + W1"1

1 + W2"2

1 + W1"1 + W2"2

1 + W!1
u "

100 101 102 103 104

Frequency [Hz]

-180

-90

0

90

180
P
h
a
se

[d
eg

]

Figure 19 – Super sensor dynamical uncertainty (solid curve) when using the H∞ Synthesis

The obtained RMS of the super sensor noise in the H2 and H∞ case are shown in Table 4. As expected, the super
sensor obtained from the H∞ synthesis is much noisier than the super sensor obtained from the H2 synthesis.
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Figure 20 – Power Spectral Density of the estimated x̂ using the two sensors alone and using the

4.5 Conclusion
Using the H∞ synthesis, the dynamical uncertainty of the super sensor can be bounded to acceptable values.
However, the RMS of the super sensor noise is not optimized as it was the case with the H2 synthesis
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Table 4 – Comparison of the obtained RMS noise of the super sensor

RMS [m/s]
Optimal: H2 0.0027
Robust: H∞ 0.041
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5 Optimal and Robust Sensor Fusion: Mixed H2/H∞
Synthesis

The (optima) H2 synthesis and the (robust) H∞ synthesis are now combined to form an Optimal and Robust
synthesis of complementary filters for sensor fusion.
The sensor fusion architecture is shown in Figure 21 (Ĝi are omitted for space reasons).
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ñ1

ñ2
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Figure 21 – Sensor fusion architecture with sensor dynamics uncertainty

The goal is to design complementary filters such that:

• the maximum uncertainty of the super sensor is bounded to acceptable values (defined by Wu(s))

• the RMS value of the super sensor noise is minimized

To do so, we can use the Mixed H2/H∞ Synthesis presented in Section 5.1.

5.1 Mixed H2 / H∞ Synthesis
The synthesis architecture that is used here is shown in Figure 22.
The filter H2(s) is synthesized such that it:

• keeps the H∞ norm of the transfer function from w to zH∞ bellow some specified value

• minimizes the H2 norm of the transfer function from w to zH2

PH2/H∞

W1

W2

Wu

Wu

+
−

N1

N2

+
−

H2

w

u

v

z1

z2

z3

z4

zH∞

zH2

Figure 22 – Mixed H2/H∞ Synthesis
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Let’s see that with H1(s) = 1−H2(s) ∥∥∥z∞
w

∥∥∥
∞

=
∥∥∥∥H1(s)W1(s)Wu(s)
H2(s)W2(s)Wu(s)

∥∥∥∥
∞

(22)∥∥∥z2
w

∥∥∥
2

=
∥∥∥∥H1(s)N1(s)
H2(s)N2(s)

∥∥∥∥
2

= σn (23)

The generalized plant PH2/H∞ is defined below
1 W1u = ss(W2*Wu); W2u = ss(W1*Wu); % Weight on the uncertainty
2 W1n = ss(N2); W2n = ss(N1); % Weight on the noise
3
4 P = [Wu*W1 -Wu*W1;
5 0 Wu*W2;
6 N1 -N1;
7 0 N2;
8 1 0];

And the mixed H2/H∞ synthesis is performed.
1 [H2, ~] = h2hinfsyn(ss(P), 1, 1, 2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 1e-3, 'DISPLAY', 'on');

1 H1 = 1 - H2;

The obtained complementary filters are shown in Figure 23.
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Figure 23 – Obtained complementary filters after mixed H2/H∞ synthesis

5.2 Obtained Super Sensor’s noise
The Amplitude Spectral Density of the super sensor’s noise is shown in Figure 24.
A time domain simulation is shown in Figure 25.
The RMS values of the super sensor noise for the presented three synthesis are listed in Table 5.

1 PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
2 PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
3 PSD_H2Hinf = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2 + ...
4 abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;

5.3 Obtained Super Sensor’s Uncertainty
The uncertainty on the super sensor’s dynamics is shown in Figure 26.
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Figure 24 – Power Spectral Density of the Super Sensor obtained with the mixed H2/H∞ synthesis
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Figure 25 – Noise of individual sensors and noise of the super sensor

Table 5 – Comparison of the obtained RMS noise of the super sensor

RMS [m/s]
Optimal: H2 0.0027
Robust: H∞ 0.041

Mixed: H2/H∞ 0.0098
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Figure 26 – Super sensor dynamical uncertainty (solid curve) when using the mixed H2/H∞ Synthesis

5.4 Conclusion
The mixed H2/H∞ synthesis of the complementary filters allows to:

• limit the dynamical uncertainty of the super sensor

• minimize the RMS value of the estimation
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6 Matlab Functions
6.1 createWeight
This Matlab function is accessible here.

1 function [W] = createWeight(args)
2 % createWeight -
3 %
4 % Syntax: [in_data] = createWeight(in_data)
5 %
6 % Inputs:
7 % - n - Weight Order
8 % - G0 - Low frequency Gain
9 % - G1 - High frequency Gain

10 % - Gc - Gain of W at frequency w0
11 % - w0 - Frequency at which |W(j w0)| = Gc
12 %
13 % Outputs:
14 % - W - Generated Weight
15
16 arguments
17 args.n (1,1) double {mustBeInteger, mustBePositive} = 1
18 args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
19 args.G1 (1,1) double {mustBeNumeric, mustBePositive} = 10
20 args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
21 args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
22 end
23
24 mustBeBetween(args.G0, args.Gc, args.G1);
25
26 s = tf('s');
27
28 W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s +

(args.G0/args.Gc)^(1/args.n))/((1/args.G1)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s
+ (1/args.Gc)^(1/args.n)))^args.n;

↪→
↪→

29
30 end
31
32 % Custom validation function
33 function mustBeBetween(a,b,c)
34 if ~((a > b && b > c) || (c > b && b > a))
35 eid = 'createWeight:inputError';
36 msg = 'Gc should be between G0 and G1.';
37 throwAsCaller(MException(eid,msg))
38 end
39 end

6.2 plotMagUncertainty
This Matlab function is accessible here.

1 function [p] = plotMagUncertainty(W, freqs, args)
2 % plotMagUncertainty -
3 %
4 % Syntax: [p] = plotMagUncertainty(W, freqs, args)
5 %
6 % Inputs:
7 % - W - Multiplicative Uncertainty Weight
8 % - freqs - Frequency Vector [Hz]
9 % - args - Optional Arguments:

10 % - G
11 % - color_i
12 % - opacity
13 %
14 % Outputs:
15 % - p - Plot Handle
16
17 arguments
18 W
19 freqs double {mustBeNumeric, mustBeNonnegative}
20 args.G = tf(1)
21 args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
22 args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
23 args.DisplayName char = ''
24 end
25
26 % Get defaults colors
27 colors = get(groot, 'defaultAxesColorOrder');
28

21

src/createWeight.m
src/plotMagUncertainty.m


29 p = patch([freqs flip(freqs)], ...
30 [abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
31 flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
32 'DisplayName', args.DisplayName);
33
34 p.FaceColor = colors(args.color_i, :);
35 p.EdgeColor = 'none';
36 p.FaceAlpha = args.opacity;
37
38 end

6.3 plotPhaseUncertainty
This Matlab function is accessible here.

1 function [p] = plotPhaseUncertainty(W, freqs, args)
2 % plotPhaseUncertainty -
3 %
4 % Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
5 %
6 % Inputs:
7 % - W - Multiplicative Uncertainty Weight
8 % - freqs - Frequency Vector [Hz]
9 % - args - Optional Arguments:

10 % - G
11 % - color_i
12 % - opacity
13 %
14 % Outputs:
15 % - p - Plot Handle
16
17 arguments
18 W
19 freqs double {mustBeNumeric, mustBeNonnegative}
20 args.G = tf(1)
21 args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
22 args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
23 args.DisplayName char = ''
24 end
25
26 % Get defaults colors
27 colors = get(groot, 'defaultAxesColorOrder');
28
29 % Compute Phase Uncertainty
30 Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
31 Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) > 1) = 360;
32
33 % Compute Plant Phase
34 G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));
35
36 p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
37 'DisplayName', args.DisplayName);
38
39 p.FaceColor = colors(args.color_i, :);
40 p.EdgeColor = 'none';
41 p.FaceAlpha = args.opacity;
42
43 end

22
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