diff --git a/paper/paper.org b/paper/paper.org index ddfbd69..450b622 100644 --- a/paper/paper.org +++ b/paper/paper.org @@ -24,7 +24,6 @@ #+LATEX_HEADER: \IEEEoverridecommandlockouts #+LATEX_HEADER: \usepackage{cite} -#+LATEX_HEADER: \usepackage{showframe} #+LATEX_HEADER: \usepackage{amsmath,amssymb,amsfonts} #+LATEX_HEADER: \usepackage{algorithmic} #+LATEX_HEADER: \usepackage{graphicx} @@ -36,6 +35,8 @@ #+LATEX_HEADER: \usepackage{import, hyperref} #+LATEX_HEADER: \renewcommand{\citedash}{--} +#+LATEX_HEADER_EXTRA: \usepackage{showframe} + #+LATEX_HEADER: \def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} \bibliographystyle{IEEEtran} @@ -89,6 +90,8 @@ * Optimal Super Sensor Noise: $\mathcal{H}_2$ Synthesis <> +** Sensor Model + ** Sensor Fusion Architecture #+name: fig:sensor_fusion_noise_arch @@ -96,10 +99,70 @@ #+attr_latex: :scale 1 [[file:figs/sensor_fusion_noise_arch.pdf]] +Let note $\Phi$ the PSD. +$\tilde{n}_1$ and $\tilde{n}_2$ are white noise with unitary power spectral density: +\begin{equation} + \Phi_{\tilde{n}_i}(\omega) = 1 +\end{equation} + +\begin{equation} + \hat{x} = \left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x + \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2 +\end{equation} + +Suppose the sensor dynamical model $\hat{G}_i$ is perfect: +\begin{equation} + \hat{G}_i = G_i +\end{equation} + +Complementary Filters +\begin{equation} + H_1(s) + H_2(s) = 1 +\end{equation} + + +\begin{equation} + \hat{x} = x + \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2 +\end{equation} + +Perfect dynamics + filter noise + + ** Super Sensor Noise +Let's note $n$ the super sensor noise. + +Its PSD is determined by: +\begin{equation} + \Phi_n(\omega) = \left| H_1 \hat{G}_1^{-1} N_1 \right|^2 + \left| H_2 \hat{G}_2^{-1} N_2 \right|^2 +\end{equation} + ** $\mathcal{H}_2$ Synthesis of Complementary Filters +The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise sources $\tilde{n}_1$ and $\tilde{n}_2$ has the smallest possible effect on the noise $n$ of the estimation $\hat{x}$. + +And the goal is the minimize the Root Mean Square (RMS) value of $n$: +#+name: eq:rms_value_estimation +\begin{equation} + \sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} +\end{equation} + + +The goal is to minimize the $\mathcal{H}_2$ norm between $w$ and $[z_1\ z_2]$: +\begin{equation} + \left\| \begin{matrix} w/z_1 \\ w/z_2 \end{matrix} \right\|_2 = \left\| \begin{matrix} \hat{G}_1^{-1} N_1 (1 - H_2) \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2 +\end{equation} + +By defining: +\begin{equation} + H_1 = 1 - H_2 +\end{equation} + +\begin{equation} + \left\| \begin{matrix} w/z_1 \\ w/z_2 \end{matrix} \right\|_2 = \left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2 = \sqrt{\int_0^\infty \left| H_1 \hat{G}_1^{-1} N_1 \right|^2 + \left| H_2 \hat{G}_2^{-1} N_2 \right|^2 d\omega} = \sigma_n +\end{equation} + +The $\mathcal{H}_2$ synthesis of the complementary filters thus minimized the RMS value of the super sensor noise. + #+name: fig:h_two_optimal_fusion #+caption: Figure caption #+attr_latex: :scale 1