From dcd65832dcec7104f0dc0e4b32f9993643b74444 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Mon, 5 Oct 2020 11:47:18 +0200 Subject: [PATCH] Update CSS --- css/htmlize.css | 39 +++++++ css/readtheorg.css | 35 +++++- matlab/matlab/sensor_description.m | 174 +++++++++++++++++++++++++++++ 3 files changed, 246 insertions(+), 2 deletions(-) create mode 100644 matlab/matlab/sensor_description.m diff --git a/css/htmlize.css b/css/htmlize.css index 0b32a03..7f09829 100644 --- a/css/htmlize.css +++ b/css/htmlize.css @@ -143,3 +143,42 @@ .org-widget-field { /* widget-field */ background-color: #d9d9d9; } .org-widget-inactive { /* widget-inactive */ color: #7f7f7f; } .org-widget-single-line-field { /* widget-single-line-field */ background-color: #d9d9d9; } + + +pre {background-color:#FFFFFF;} +pre span.org-builtin {color:#006FE0;font-weight:bold;} +pre span.org-string {color:#008000;} +pre span.org-doc {color:#008000;} +pre span.org-keyword {color:#0000FF;} +pre span.org-variable-name {color:#BA36A5;} +pre span.org-function-name {color:#006699;} +pre span.org-type {color:#6434A3;} +pre span.org-preprocessor {color:#808080;font-weight:bold;} +pre span.org-constant {color:#D0372D;} +pre span.org-comment-delimiter {color:#8D8D84;} +pre span.org-comment {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-1 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-2 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-3 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-4 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-5 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-6 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-7 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-8 {color:#8D8D84;font-style:italic} +pre span.org-outshine-level-9 {color:#8D8D84;font-style:italic} +pre span.org-rainbow-delimiters-depth-1 {color:#707183;} +pre span.org-rainbow-delimiters-depth-2 {color:#7388d6;} +pre span.org-rainbow-delimiters-depth-3 {color:#909183;} +pre span.org-rainbow-delimiters-depth-4 {color:#709870;} +pre span.org-rainbow-delimiters-depth-5 {color:#907373;} +pre span.org-rainbow-delimiters-depth-6 {color:#6276ba;} +pre span.org-rainbow-delimiters-depth-7 {color:#858580;} +pre span.org-rainbow-delimiters-depth-8 {color:#80a880;} +pre span.org-rainbow-delimiters-depth-9 {color:#887070;} +pre span.org-sh-quoted-exec {color:#FF1493;} +pre span.org-diff-added {color:#008000;} +pre span.org-diff-changed {color:#0000FF;} +pre span.org-diff-header {color:#800000;} +pre span.org-diff-hunk-header {color:#990099;} +pre span.org-diff-none {color:#545454;} +pre span.org-diff-removed {color:#A60000;} diff --git a/css/readtheorg.css b/css/readtheorg.css index 5b6c1c5..10babc9 100644 --- a/css/readtheorg.css +++ b/css/readtheorg.css @@ -345,9 +345,11 @@ table{ border-collapse:collapse; border-spacing:0; empty-cells:show; - margin-bottom:24px; border-bottom:1px solid #e1e4e5; - margin: 0 auto; + margin-right: auto; + margin-left: auto; + margin-bottom:24px; + /* margin: 0 auto; */ } td{ @@ -1101,3 +1103,32 @@ h2.footnotes{ margin-bottom: 24px; font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif; } + + + +details { + /* color: #2980B9; */ + background: #fbfbfb; + border: 1px solid #c9c9c9; + border-radius: 3px; + padding: 0.25em; + margin-bottom: 1.0em; +} +details pre.src { + border: 0; + background: none; + margin: 0; +} +details pre.src-lisp::before { content: ""; } +summary { + outline: 0; + color: #c9c9c9; +} +summary::after { + font-size: 0.85em; + color: #c9c9c9; + display: inline-block; + float: right; + content: "Click to fold/unfold"; + padding-right: 0.5em; +} diff --git a/matlab/matlab/sensor_description.m b/matlab/matlab/sensor_description.m new file mode 100644 index 0000000..df94080 --- /dev/null +++ b/matlab/matlab/sensor_description.m @@ -0,0 +1,174 @@ +%% Clear Workspace and Close figures +clear; close all; clc; + +%% Intialize Laplace variable +s = zpk('s'); + +addpath('src'); +freqs = logspace(0, 4, 1000); + +% Sensor Dynamics +% <> +% Let's consider two sensors measuring the velocity of an object. + +% The first sensor is an accelerometer. +% Its nominal dynamics $\hat{G}_1(s)$ is defined below. + +m_acc = 0.01; % Inertial Mass [kg] +c_acc = 5; % Damping [N/(m/s)] +k_acc = 1e5; % Stiffness [N/m] +g_acc = 1e5; % Gain [V/m] + +G1 = g_acc*m_acc*s/(m_acc*s^2 + c_acc*s + k_acc); % Accelerometer Plant [V/(m/s)] + + + +% The second sensor is a displacement sensor, its nominal dynamics $\hat{G}_2(s)$ is defined below. + +w_pos = 2*pi*2e3; % Measurement Banwdith [rad/s] +g_pos = 1e4; % Gain [V/m] + +G2 = g_pos/s/(1 + s/w_pos); % Position Sensor Plant [V/(m/s)] + + + +% These nominal dynamics are also taken as the model of the sensor dynamics. +% The true sensor dynamics has some uncertainty associated to it and described in section [[sec:sensor_uncertainty]]. + +% Both sensor dynamics in $[\frac{V}{m/s}]$ are shown in Figure [[fig:sensors_nominal_dynamics]]. + +figure; +% Magnitude +ax1 = subplot(2,1,1); +hold on; +plot(freqs, abs(squeeze(freqresp(G1, freqs, 'Hz'))), '-', 'DisplayName', '$G_1(j\omega)$'); +plot(freqs, abs(squeeze(freqresp(G2, freqs, 'Hz'))), '-', 'DisplayName', '$G_2(j\omega)$'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Magnitude $\left[\frac{V}{m/s}\right]$'); set(gca, 'XTickLabel',[]); +legend('location', 'northeast', 'FontSize', 8); +hold off; + +% Phase +ax2 = subplot(2,1,2); +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(G1, freqs, 'Hz'))), '-'); +plot(freqs, 180/pi*angle(squeeze(freqresp(G2, freqs, 'Hz'))), '-'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Sensor Model Uncertainty +% <> +% The uncertainty on the sensor dynamics is described by multiplicative uncertainty (Figure [[fig:sensor_model_noise_uncertainty]]). + +% The true sensor dynamics $G_i(s)$ is then described by eqref:eq:sensor_dynamics_uncertainty. + +% \begin{equation} +% G_i(s) = \hat{G}_i(s) \left( 1 + W_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega \label{eq:sensor_dynamics_uncertainty} +% \end{equation} + +% The weights $W_i(s)$ representing the dynamical uncertainty are defined below and their magnitude is shown in Figure [[fig:sensors_uncertainty_weights]]. + +W1 = createWeight('n', 2, 'w0', 2*pi*3, 'G0', 2, 'G1', 0.1, 'Gc', 1) * ... + createWeight('n', 2, 'w0', 2*pi*1e3, 'G0', 1, 'G1', 4/0.1, 'Gc', 1/0.1); + +W2 = createWeight('n', 2, 'w0', 2*pi*1e2, 'G0', 0.05, 'G1', 4, 'Gc', 1); + + + +% The bode plot of the sensors nominal dynamics as well as their defined dynamical spread are shown in Figure [[fig:sensors_nominal_dynamics_and_uncertainty]]. + + +figure; +hold on; +plot(freqs, abs(squeeze(freqresp(W1, freqs, 'Hz'))), 'DisplayName', '$|W_1(j\omega)|$'); +plot(freqs, abs(squeeze(freqresp(W2, freqs, 'Hz'))), 'DisplayName', '$|W_2(j\omega)|$'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([0, 5]); +xlim([freqs(1), freqs(end)]); +legend('location', 'northwest', 'FontSize', 8); + + + +% #+name: fig:sensors_uncertainty_weights +% #+caption: Magnitude of the multiplicative uncertainty weights $|W_i(j\omega)|$ +% #+RESULTS: +% [[file:figs/sensors_uncertainty_weights.png]] + + +figure; +% Magnitude +ax1 = subplot(2,1,1); +hold on; +plotMagUncertainty(W1, freqs, 'G', G1, 'color_i', 1, 'DisplayName', '$G_1$'); +plotMagUncertainty(W2, freqs, 'G', G2, 'color_i', 2, 'DisplayName', '$G_2$'); + +set(gca,'ColorOrderIndex',1) +plot(freqs, abs(squeeze(freqresp(G1, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_1$'); +plot(freqs, abs(squeeze(freqresp(G2, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_2$'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); +ylabel('Magnitude $[\frac{V}{m/s}]$'); +ylim([1e-2, 2e3]); +legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); +hold off; +ylim([1e-2, 1e4]) + +% Phase +ax2 = subplot(2,1,2); +hold on; +plotPhaseUncertainty(W1, freqs, 'G', G1, 'color_i', 1); +plotPhaseUncertainty(W2, freqs, 'G', G2, 'color_i', 2); + +set(gca,'ColorOrderIndex',1) +plot(freqs, 180/pi*angle(squeeze(freqresp(G1, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_1$'); +plot(freqs, 180/pi*angle(squeeze(freqresp(G2, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_2$'); +set(gca,'xscale','log'); +yticks(-180:90:180); +ylim([-180 180]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Sensor Noise +% <> +% The noise of the sensors $n_i$ are modelled by shaping a white noise with unitary PSD $\tilde{n}_i$ eqref:eq:unitary_noise_psd with a LTI transfer function $N_i(s)$ (Figure [[fig:sensor_model_noise_uncertainty]]). +% \begin{equation} +% \Phi_{\tilde{n}_i}(\omega) = 1 \label{eq:unitary_noise_psd} +% \end{equation} + +% The Power Spectral Density of the sensor noise $\Phi_{n_i}(\omega)$ is then computed using eqref:eq:sensor_noise_shaping and expressed in $[\frac{(m/s)^2}{Hz}]$. +% \begin{equation} +% \Phi_{n_i}(\omega) = \left| N_i(j\omega) \right|^2 \Phi_{\tilde{n}_i}(\omega) \label{eq:sensor_noise_shaping} +% \end{equation} + +% The weights $N_1$ and $N_2$ representing the amplitude spectral density of the sensor noises are defined below and shown in Figure [[fig:sensors_noise]]. + +omegac = 0.15*2*pi; G0 = 1e-1; Ginf = 1e-6; +N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4); + +omegac = 1000*2*pi; G0 = 1e-6; Ginf = 1e-3; +N2 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/1e4); + +figure; +hold on; +plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1(j\omega)|$'); +plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2(j\omega)|$'); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('ASD $\left[ \frac{m/s}{\sqrt{Hz}} \right]$'); +hold off; +xlim([freqs(1), freqs(end)]); +legend('location', 'northeast', 'FontSize', 8); + +% Save Model +% All the dynamical systems representing the sensors are saved for further use. + + +save('./mat/model.mat', 'freqs', 'G1', 'G2', 'N2', 'N1', 'W2', 'W1');