diff --git a/paper/figs/hinf_comp_filters.pdf b/paper/figs/hinf_comp_filters.pdf index 9fa0b61..031351d 100644 Binary files a/paper/figs/hinf_comp_filters.pdf and b/paper/figs/hinf_comp_filters.pdf differ diff --git a/paper/figs/htwo_comp_filters.pdf b/paper/figs/htwo_comp_filters.pdf index 273e57e..0c5536c 100644 Binary files a/paper/figs/htwo_comp_filters.pdf and b/paper/figs/htwo_comp_filters.pdf differ diff --git a/paper/figs/htwo_hinf_comp_filters.pdf b/paper/figs/htwo_hinf_comp_filters.pdf index 470e6e9..26decfa 100644 Binary files a/paper/figs/htwo_hinf_comp_filters.pdf and b/paper/figs/htwo_hinf_comp_filters.pdf differ diff --git a/paper/figs/sensors_nominal_dynamics.pdf b/paper/figs/sensors_nominal_dynamics.pdf index 0d57c38..17bdd19 100644 Binary files a/paper/figs/sensors_nominal_dynamics.pdf and b/paper/figs/sensors_nominal_dynamics.pdf differ diff --git a/paper/figs/sensors_nominal_dynamics_and_uncertainty.pdf b/paper/figs/sensors_nominal_dynamics_and_uncertainty.pdf index 066b735..d5678c2 100644 Binary files a/paper/figs/sensors_nominal_dynamics_and_uncertainty.pdf and b/paper/figs/sensors_nominal_dynamics_and_uncertainty.pdf differ diff --git a/paper/figs/super_sensor_dynamical_uncertainty_H2.pdf b/paper/figs/super_sensor_dynamical_uncertainty_H2.pdf index 3790cff..b2499d8 100644 Binary files a/paper/figs/super_sensor_dynamical_uncertainty_H2.pdf and b/paper/figs/super_sensor_dynamical_uncertainty_H2.pdf differ diff --git a/paper/figs/super_sensor_dynamical_uncertainty_Hinf.pdf b/paper/figs/super_sensor_dynamical_uncertainty_Hinf.pdf index c48291d..df6cb5d 100644 Binary files a/paper/figs/super_sensor_dynamical_uncertainty_Hinf.pdf and b/paper/figs/super_sensor_dynamical_uncertainty_Hinf.pdf differ diff --git a/paper/figs/super_sensor_dynamical_uncertainty_Htwo_Hinf.pdf b/paper/figs/super_sensor_dynamical_uncertainty_Htwo_Hinf.pdf index f108c83..8088f3f 100644 Binary files a/paper/figs/super_sensor_dynamical_uncertainty_Htwo_Hinf.pdf and b/paper/figs/super_sensor_dynamical_uncertainty_Htwo_Hinf.pdf differ diff --git a/paper/figs/weight_uncertainty_bounds_Wu.pdf b/paper/figs/weight_uncertainty_bounds_Wu.pdf index d5f94aa..be47ca9 100644 Binary files a/paper/figs/weight_uncertainty_bounds_Wu.pdf and b/paper/figs/weight_uncertainty_bounds_Wu.pdf differ diff --git a/paper/paper.pdf b/paper/paper.pdf index 6889ae1..2877669 100644 Binary files a/paper/paper.pdf and b/paper/paper.pdf differ diff --git a/paper/paper.tex b/paper/paper.tex index 9e766a2..6a6a1e2 100644 --- a/paper/paper.tex +++ b/paper/paper.tex @@ -1,4 +1,4 @@ -% Created 2020-10-05 lun. 15:33 +% Created 2020-10-25 dim. 10:05 % Intended LaTeX compiler: pdflatex \documentclass[conference]{IEEEtran} \usepackage[utf8]{inputenc} @@ -35,7 +35,7 @@ \def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} \usepackage{showframe} \author{\IEEEauthorblockN{Dehaeze Thomas} \IEEEauthorblockA{\textit{European Synchrotron Radiation Facility} \\ Grenoble, France\\ \textit{Precision Mechatronics Laboratory} \\ \textit{University of Liege}, Belgium \\ thomas.dehaeze@esrf.fr }\and \IEEEauthorblockN{Collette Christophe} \IEEEauthorblockA{\textit{BEAMS Department}\\ \textit{Free University of Brussels}, Belgium\\ \textit{Precision Mechatronics Laboratory} \\ \textit{University of Liege}, Belgium \\ ccollett@ulb.ac.be }} -\date{2020-10-05} +\date{2020-10-25} \title{Optimal and Robust Sensor Fusion} \begin{document} @@ -50,7 +50,7 @@ Complementary Filters, Sensor Fusion, H-Infinity Synthesis \end{IEEEkeywords} \section{Introduction} -\label{sec:org26a7400} +\label{sec:org2a4e2c2} \label{sec:introduction} \begin{itemize} @@ -61,11 +61,11 @@ Complementary Filters, Sensor Fusion, H-Infinity Synthesis \end{itemize} \section{Optimal Super Sensor Noise: \(\mathcal{H}_2\) Synthesis} -\label{sec:org49e80fd} +\label{sec:orgb0fb3f0} \label{sec:optimal_fusion} \subsection{Sensor Model} -\label{sec:org9555932} +\label{sec:org9e4a17b} Let's consider a sensor measuring a physical quantity \(x\) (Figure \ref{fig:sensor_model_noise}). The sensor has an internal dynamics which is here modelled with a Linear Time Invariant (LTI) system transfer function \(G_i(s)\). @@ -101,7 +101,7 @@ In order to obtain an estimate \(\hat{x}_i\) of \(x\), a model \(\hat{G}_i\) of \end{figure} \subsection{Sensor Fusion Architecture} -\label{sec:orga12ae12} +\label{sec:orge7841b3} Let's now consider two sensors measuring the same physical quantity \(x\) but with different dynamics \((G_1, G_2)\) and noise characteristics \((N_1, N_2)\) (Figure \ref{fig:sensor_fusion_noise_arch}). The noise sources \(\tilde{n}_1\) and \(\tilde{n}_2\) are considered to be uncorrelated. @@ -138,7 +138,7 @@ In such case, the super sensor estimate \(\hat{x}\) is equal to \(x\) plus the n \end{equation} \subsection{Super Sensor Noise} -\label{sec:org924b750} +\label{sec:orge42a7c0} Let's note \(n\) the super sensor noise. \begin{equation} n = \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2 @@ -152,7 +152,7 @@ As the noise of both sensors are considered to be uncorrelated, the PSD of the s It is clear that the PSD of the super sensor depends on the norm of the complementary filters. \subsection{\(\mathcal{H}_2\) Synthesis of Complementary Filters} -\label{sec:org042a601} +\label{sec:org150fd28} The goal is to design \(H_1(s)\) and \(H_2(s)\) such that the effect of the noise sources \(\tilde{n}_1\) and \(\tilde{n}_2\) has the smallest possible effect on the noise \(n\) of the estimation \(\hat{x}\). And the goal is the minimize the Root Mean Square (RMS) value of \(n\): @@ -196,7 +196,7 @@ We then have that the \(\mathcal{H}_2\) synthesis applied on \(P_{\mathcal{H}_2} \end{figure} \subsection{Example} -\label{sec:org98c54c2} +\label{sec:org4abe5c3} \begin{figure}[htbp] \centering @@ -232,7 +232,7 @@ We then have that the \(\mathcal{H}_2\) synthesis applied on \(P_{\mathcal{H}_2} \end{figure} \subsection{Robustness Problem} -\label{sec:org81a0772} +\label{sec:org1116fe0} \begin{figure}[htbp] \centering @@ -247,11 +247,11 @@ We then have that the \(\mathcal{H}_2\) synthesis applied on \(P_{\mathcal{H}_2} \end{figure} \section{Robust Sensor Fusion: \(\mathcal{H}_\infty\) Synthesis} -\label{sec:org78ced60} +\label{sec:orgcf4e02a} \label{sec:robust_fusion} \subsection{Representation of Sensor Dynamical Uncertainty} -\label{sec:org9df3b01} +\label{sec:org45ee620} In Section \ref{sec:optimal_fusion}, the model \(\hat{G}_i(s)\) of the sensor was considered to be perfect. In reality, there are always uncertainty (neglected dynamics) associated with the estimation of the sensor dynamics. @@ -271,7 +271,7 @@ The sensor can then be represented as shown in Figure \ref{fig:sensor_model_unce \end{figure} \subsection{Sensor Fusion Architecture} -\label{sec:orgf4531ff} +\label{sec:orgec549bc} Let's consider the sensor fusion architecture shown in Figure \ref{fig:sensor_fusion_arch_uncertainty} where the dynamical uncertainties of both sensors are included. The super sensor estimate is then: @@ -296,7 +296,7 @@ As \(H_1\) and \(H_2\) are complementary filters, we finally have: \end{figure} \subsection{Super Sensor Dynamical Uncertainty} -\label{sec:orgf5bb33e} +\label{sec:org6867184} The uncertainty set of the transfer function from \(\hat{x}\) to \(x\) at frequency \(\omega\) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\) as shown in Figure \ref{fig:uncertainty_set_super_sensor}. @@ -311,7 +311,7 @@ And we can see that the dynamical uncertainty of the super sensor is equal to th At frequencies where \(\left|W_i(j\omega)\right| > 1\) the uncertainty exceeds \(100\%\) and sensor fusion is impossible. \subsection{\(\mathcal{H_\infty}\) Synthesis of Complementary Filters} -\label{sec:orgf07efa7} +\label{sec:org9cbbe5b} In order for the fusion to be ``robust'', meaning no phase drop will be induced in the super sensor dynamics, The goal is to design two complementary filters \(H_1(s)\) and \(H_2(s)\) such that the super sensor noise uncertainty is kept reasonably small. @@ -357,7 +357,7 @@ The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigm \end{figure} \subsection{Example} -\label{sec:org0ca6ef9} +\label{sec:orgfc0d330} \begin{figure}[htbp] \centering @@ -392,11 +392,11 @@ The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigm \section{Optimal and Robust Sensor Fusion: Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis} -\label{sec:orgf642e73} +\label{sec:org81d3977} \label{sec:optimal_robust_fusion} \subsection{Sensor with noise and model uncertainty} -\label{sec:org8949812} +\label{sec:orgcd51fc4} We wish now to combine the two previous synthesis, that is to say The sensors are now modelled by a white noise with unitary PSD \(\tilde{n}_i\) shaped by a LTI transfer function \(N_i(s)\). @@ -417,7 +417,7 @@ Multiplying by the inverse of the nominal model of the sensor dynamics gives an \end{figure} \subsection{Sensor Fusion Architecture} -\label{sec:orgcbc3d54} +\label{sec:org32c4c98} For reason of space, the blocks \(\hat{G}_i\) and \(\hat{G}_i^{-1}\) are omitted. @@ -444,7 +444,7 @@ The estimate \(\hat{x}\) of \(x\) \end{figure} \subsection{Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis} -\label{sec:org9d3f160} +\label{sec:org73e0335} The synthesis objective is to generate two complementary filters \(H_1(s)\) and \(H_2(s)\) such that the uncertainty associated with the super sensor is kept reasonably small and such that the RMS value of super sensors noise is minimized. @@ -479,7 +479,7 @@ The synthesis objective is to: \end{figure} \subsection{Example} -\label{sec:org85f304b} +\label{sec:orga68c808} \begin{figure}[htbp] \centering @@ -506,27 +506,27 @@ The synthesis objective is to: \end{figure} \section{Experimental Validation} -\label{sec:org49bf34a} +\label{sec:orga4af6ce} \label{sec:experimental_validation} \subsection{Experimental Setup} -\label{sec:orgdd8fce6} +\label{sec:orgab10fd3} \subsection{Sensor Noise and Dynamical Uncertainty} -\label{sec:org21add72} +\label{sec:orgc6d5bae} \subsection{Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis} -\label{sec:org30521a3} +\label{sec:orga5c7815} \subsection{Super Sensor Noise and Dynamical Uncertainty} -\label{sec:org86cde79} +\label{sec:orgd7da409} \section{Conclusion} -\label{sec:org16245b7} +\label{sec:org6eddbc8} \label{sec:conclusion} \section{Acknowledgment} -\label{sec:orgd992049} +\label{sec:org44ed488} \bibliography{ref} \end{document}