diff --git a/matlab/figs/bendat57_noise_weights.pdf b/matlab/figs/bendat57_noise_weights.pdf new file mode 100644 index 0000000..a848a0f Binary files /dev/null and b/matlab/figs/bendat57_noise_weights.pdf differ diff --git a/matlab/figs/bendat57_noise_weights.png b/matlab/figs/bendat57_noise_weights.png new file mode 100644 index 0000000..9de17d9 Binary files /dev/null and b/matlab/figs/bendat57_noise_weights.png differ diff --git a/matlab/figs/bendat57_optimal_filters.pdf b/matlab/figs/bendat57_optimal_filters.pdf new file mode 100644 index 0000000..d937b24 Binary files /dev/null and b/matlab/figs/bendat57_optimal_filters.pdf differ diff --git a/matlab/figs/bendat57_optimal_filters.png b/matlab/figs/bendat57_optimal_filters.png new file mode 100644 index 0000000..49c75a8 Binary files /dev/null and b/matlab/figs/bendat57_optimal_filters.png differ diff --git a/matlab/figs/bendat57_psd_estimation.pdf b/matlab/figs/bendat57_psd_estimation.pdf new file mode 100644 index 0000000..d1c32b0 Binary files /dev/null and b/matlab/figs/bendat57_psd_estimation.pdf differ diff --git a/matlab/figs/bendat57_psd_estimation.png b/matlab/figs/bendat57_psd_estimation.png new file mode 100644 index 0000000..97856e6 Binary files /dev/null and b/matlab/figs/bendat57_psd_estimation.png differ diff --git a/matlab/figs/plummer06_noise_weights.pdf b/matlab/figs/plummer06_noise_weights.pdf new file mode 100644 index 0000000..39439eb Binary files /dev/null and b/matlab/figs/plummer06_noise_weights.pdf differ diff --git a/matlab/figs/plummer06_noise_weights.png b/matlab/figs/plummer06_noise_weights.png new file mode 100644 index 0000000..817fabf Binary files /dev/null and b/matlab/figs/plummer06_noise_weights.png differ diff --git a/matlab/figs/plummer06_optimal_filters.pdf b/matlab/figs/plummer06_optimal_filters.pdf new file mode 100644 index 0000000..65c97cc Binary files /dev/null and b/matlab/figs/plummer06_optimal_filters.pdf differ diff --git a/matlab/figs/plummer06_optimal_filters.png b/matlab/figs/plummer06_optimal_filters.png new file mode 100644 index 0000000..a042fdf Binary files /dev/null and b/matlab/figs/plummer06_optimal_filters.png differ diff --git a/matlab/figs/plummer06_psd_estimation.pdf b/matlab/figs/plummer06_psd_estimation.pdf new file mode 100644 index 0000000..13d7b92 Binary files /dev/null and b/matlab/figs/plummer06_psd_estimation.pdf differ diff --git a/matlab/figs/plummer06_psd_estimation.png b/matlab/figs/plummer06_psd_estimation.png new file mode 100644 index 0000000..6bb1678 Binary files /dev/null and b/matlab/figs/plummer06_psd_estimation.png differ diff --git a/matlab/figs/plummer06_time_domain_signals.pdf b/matlab/figs/plummer06_time_domain_signals.pdf new file mode 100644 index 0000000..8272944 Binary files /dev/null and b/matlab/figs/plummer06_time_domain_signals.pdf differ diff --git a/matlab/figs/plummer06_time_domain_signals.png b/matlab/figs/plummer06_time_domain_signals.png new file mode 100644 index 0000000..aa1c289 Binary files /dev/null and b/matlab/figs/plummer06_time_domain_signals.png differ diff --git a/matlab/figs/robert12_noise_weights.pdf b/matlab/figs/robert12_noise_weights.pdf new file mode 100644 index 0000000..928b308 Binary files /dev/null and b/matlab/figs/robert12_noise_weights.pdf differ diff --git a/matlab/figs/robert12_noise_weights.png b/matlab/figs/robert12_noise_weights.png new file mode 100644 index 0000000..a2e6a2c Binary files /dev/null and b/matlab/figs/robert12_noise_weights.png differ diff --git a/matlab/figs/robert12_optimal_filters.pdf b/matlab/figs/robert12_optimal_filters.pdf new file mode 100644 index 0000000..82d51b9 Binary files /dev/null and b/matlab/figs/robert12_optimal_filters.pdf differ diff --git a/matlab/figs/robert12_optimal_filters.png b/matlab/figs/robert12_optimal_filters.png new file mode 100644 index 0000000..18621ea Binary files /dev/null and b/matlab/figs/robert12_optimal_filters.png differ diff --git a/matlab/figs/robert12_psd_estimation.pdf b/matlab/figs/robert12_psd_estimation.pdf new file mode 100644 index 0000000..b19d0db --- /dev/null +++ b/matlab/figs/robert12_psd_estimation.pdf @@ -0,0 +1,2403 @@ +%PDF-1.4 +% +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20200928171931+02'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +97 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +98 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +99 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +100 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +101 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +102 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +103 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +104 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +105 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +106 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +107 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +108 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +109 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +110 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +111 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +112 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +113 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +114 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +115 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +116 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +117 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +118 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +119 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +120 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +121 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +122 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +123 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +124 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +125 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +126 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +127 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +128 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +129 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +130 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +131 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +132 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +133 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +134 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +135 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +136 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +137 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +138 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +139 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +140 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +141 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +142 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +143 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +144 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +145 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +146 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +147 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +148 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +149 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +150 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +151 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +152 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +153 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +154 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +155 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +156 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +157 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +158 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +159 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +160 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +161 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +162 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +163 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +164 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +165 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +166 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +167 0 obj +<< /Length 168 0 R /Filter /FlateDecode >> +stream +x̽r9WQ7%&`lɀtP7A~$Ǫ::ksl[\ ˈ7&_l?GE=RzcMN//)Tjorf~=?M?j_\6(W~?oG)ox8ZC*[ߖ+n#V:z\rȭ::z\rM>{*ߗć<4FSU/W͏\Gr^rG}Z~>x<QBIa8:z\r(kvN#Wؾ/vV`Co?(rI#%Mz:&sl( +-M$~FßЛ֗?;z`WvVcCozNWa +v:&7O$5il#5v:&_~;z`u 8^9%\ӡ7 }_Qg=v:&kLz4Mțޯ)>;cCozAI&ЛozЛo5ubCozubCo |_7YI6^;yX}kϾЛZ_ހ KȈdBo +Gxm~ 囂b,o +Q󶞆Mo +2ӷov!CTKowkC+gGk"KvG"؋v` uACo5Kx(>mt-f B/(m?O"k@V(Qq:^J]á%5JNx-fBMZ$Kv8^/[~)*[E,A(Mz U5KJ*7VEl"o&}DL;Lt.<ݬ1K7>!+}DUL~3M#2fGdz,wS>"o8}DnL ~7#2fXGd圦HM")~3#2n"oFA}D_NDEbXq_2iS&~Ǿ?_yiz<~F?{_Six9xσG/ 48y=!@OG/Ӏ 4yT= @/O軭<7ꝯ@'I>w.8N"}B\d޹`: sAtz$'ξp>l1Z CE9awiVI#vLu)S'ح2X³L} %S<#<7;28 ",SxȔIvLQ#FtnT6q_U{_5Ur:@1;%eD~ح21doKlwi:u[etUc;(Geb~Y'V#,tniӁbm/SAYNح2}Y}8u1/ S~Zt@~U#vL5N'Ni UvLg5NGVOkN'2}o!ŢuLy/> Sд)D'VOkN؝2mUB#tDI|MGV6bJktN'V*x[eZƔ[}8[eڴ)e;e5N'V6꘶~[pTc)|ɠ[ebrus*ѦeL|wOح=:&/j:bC=>Ԙ"uL&կ)S?q:aw:uLm_tn)QTErni:QtD[*&,tn)kS0VON؝=c)S/0"d2dIe:34eCtbhz~&t M&ӑILCӓH34L''ghR Mg>d2dIe:34eCtfh:&$ M&S<24=ogh2N MO2dN Mg>t5,g7<14eCtfh:&rqfh: &$ M*ә,LCӓL34L''gh2N MO2Ф22}Ie:14EI%:34ECtbhz~&t M&S<24=oghN'L`h2N MO2d2DjYL_R3CY04L''ghR Mg>d2dI'ΝN2}d:14=t?Ctbhz~&t M&ӗ}#CJpfh:&t M*ә,LO04LgL`h2Ok>d2D$ +?qCՄדLt M*ә,LO04L'H34D''gh2N MO2Фs M'>d2dd:14=t?Ctfh:&$ M*ә,LCӓL34LgL`h2 MO"dDIe:34eCTZ &t M*ә,T3CY04L''gh2 MO"Ф"}d:24=t;CI~Z &dzbh: &t M*ә,LCӓL34L'H34D''gh2N MO2Ф22}d:14=t?Cɔ~Z &t M&O04LgL`h2N MO2Ф22}d:14=t?Ctbhz~&t M&ӉIt MHtfh:I&em914[ghRN MgghRN Mggh2#C M804=6<_^KnZvFfy=W|ȌGw0.A?QBpGʨH +l޶.2#d o%Z:ZK^ |" Y!K(LxܺFB}l%Ow>Y՛%/HK }r$*%\n\h8R\pMbzw~?ە7toDXn[^QqZkzc>yd^kyq'|(Kar}&EqMֲrYGrrb(+,qrWH]/ϫK$p lF^hRC`Qϵ\aHwQwzWyKjĹty5z[F^a1-YRK|y^5+YCHZzbB݀ch-|Yi$@*u_<: i=ůH3/d<#U@eH)B>UH_%hmk-[|AdW:"4_AUG: 0YƜ0Q>qy|Aty`zIB;H\ӄ 6! cJwzWX5 mcC5+LtC_1r(b(D ^anl5]aVCŠ\Mׅ,bG/ϓO^C$w?=J}TL%C7Q#WX &qȈc< CoW0[UK%z% kZR/_f<+ V.ϡ W)m#FD+,k -6*5kQ]ei2.N-mUfL]51@yYނ' ++}0vy^ydy%IW| +|$tJYL8O {Q^_RH9^WpcqG|qo{5,J)E#&JW IZdvuy GxFb1yUx +'ZGx;ⴾg$BW(rTGL~0K?BcvpwL&zMmD2 q+Q"va'Oa\ bʾlD^M,:&Ⱦ(dȿMܣWlQ&n;R%'YV M4A9 Xoz"%`L +fQ%c̋ +cնBF}= ~D}s H,\9jFq>"漊ӵOXz{焉⨮fˁUt! ՓQ~:CYȜW,BSwwK>B$zHK]AxcÖlZ=.otS߳=LH2y8aA⁗ Ytzɇ{Myf0d'LpԋGLgk{:zb%pҊNO(z>j;kvr-՗n?adMly* R+8a] |6DҼ TkvLw +K4ϫƃ &&&m{:vy0" jbQ߼ϱߡ6Abs޳',ɢnu$Pcr &bkCb&޹,e.AI',&$_P>#ۊYihPK&[;Y\yV0C+u-\VA10o,K_aw(K%bvj=LH NNw׌ {*go/fZ񄉂fj=;z"+LNGăRY*"XTQJd +F2퉞VrUmfqaOHGam#'Lħ^b?O꘬vT`Zn"@W Pme2 o+%_aabW|PI oo.+l}Y88 +%D "lsM9imxD_(@AV.u0ԓe<=ObF~D=.7S-4jT a{\:/$l{48۞?`b̋i{ +\~[@"p+ hV}6PƷ++ 8avybÚ|si.Ű>ȗ0@{0M[%NQ܅@xπ nwyK=n+# 5,xpž?ab%JyoR:rPmڭkyc/bg9$/o}Zx4f&7*z/TieP(̂ + ++ +PbcO~˓qWbuiF263b2eb23bmZȣ +VzDTX<|W +cH0jD^0┾1Q,D u1vʞIfgp1I̛ž%0<EjB0Q߲ʄtH®KѬvN'Pfc%>]H"R2c-H4^,&G*i[NQ-J~5LB屫ƸeZUib3M1J'VUs,RC619&o\ʼnUcTc;s[)r7R0[Z+0%>I툡+dFj +Xî;Z ᷶NO;L Z i`<|P2PQZXžKʁBhtPrwͪ:< VXg/gkE1jZQl|Ԋ`J}GzD +owׂ1DWk "GODI+}JIHQ^ǔr:O̼_/cVhm7RL =Lm忓4QW|iW40JJF`~S 9RIUC] GP9L R^LɄ.DukaױZ9a;nVUGY`+óHrU;+Mм1\n(fWDa;bg,/y>Ib ܮLB`\>hZbPEէuű,c׋b[<1Ѳ,:O_דeu5α>gF]CoY}KT-09&@۝aUkD؂,_oAc?I ƿe -;>{u&x,6f߸u!`!k:O8&jy++1*ty ͿI1凎0T${bR/JNũm-V'2;F^j1yA34|DqtiXO͕f1/'Vnd 8A/OHoyZy%yGf[ {c|y!'m@U +'ϫ:K>;2sъ +4:*WcC9]`TNpLM<C⛕#ŋ;ؗ;!Krtii$-Yڧ(i1IvՈANְΓWc +14yݭNҧS5fÚp&MCQ`~KS%NNk*Y[n]PuxW FE˂&korGBuLleY DpeoAzbeJ:KcLj&ZZqfa 7{B@fNκJdquZq(EoşdV7=̷7,j׌GrLy[7 !U VqLB|u|$}f,M{1GEhchc +N!#Γ0VǢn^o +bȎϰ^šZ1ϫ[N&1Y&7MSo8Hê`8uF0X %X߫sA{u +|uK3RZIYڄ>]iob4}7RVij+-K%fFĜWgƹlf(Jyw<&$`.mnUVIoމm{uQi#JeEovic9([oOCHO sV|Y 5?yZDg]-*xfs r@k&k&.HDmFV_O($5+JNveRnI- +n60yq[YonjY*JߵbAزL\Z,͊e |U+Sxj% b7 +ei-6 f /y'&$n7{>  9f{OPC+i%{S.ٗ,ՕњH`bEJ4䋶_pɑ]')͂d5gcfK,(&C7[՘'"JHk6v0+M7KN3҉MtT|z5;T<hPi6ϓ˕mw2>Jm)E + L\y3>< *i뤥j~Z"0ek)E ȴc0ZtzF4Ҙq;c<-L)ٵ"ߌEٲ+-N"FuёK+J0Oc43#E#%E,:&6ccy=^2L6;F#-#H(Zٝv*<߲&+e#15pW{AV[g1žoox;aàr,z2ɰ+F +(DϋhLLbW[ D+M|S’]B׶AwmMkbuĆ-b-03~GyGmbt#AտA%jb6-K;9FLoViM7ۙcurW;qrFrE4bXPS52D zsQ}H~ypGz'XsK30OD^su,m֏Q<W3)#eb~An`0U;ՙ$,}Qh "0Čv<b(*jWe$t:̙Ԍ Zx j+ =ۛ,Z44c[dW!}SԆ=$6]0i +MfjkԹy4!$)ebmiFvej˄:$bD8e7S3V5U֫Bv{twv7ucJy6OVa8r8ZZ +< OS=J(GpLOM6)c]Bvsm\FA=`/՘㾭Qy qOC&0mz-O@V"KߤU|LB +ils?)Z ~ F+}}SLn?:$A$fS/nLf6h۳WfBchf) 2AԖ< <0lM?0rub#l{N*'Dm\x# =Xî@L6X~PQ<]\K11 c7P]?{~v:=6ظZ{j`D`LB63=̃N*1L^GO_A(PڻZ,4ؼpbl`8<(qL4L{}Qp7;I&>t1w& K$ 06=&eYK/3S㢆1Zut7-vlFXrծ4ǜRhս z<uoki ėK+^aYsE{xڨʙz0yz*qn!j4WX=A'ϧB]12ET:; i7v+eal/HVbOR?DmZQt`l230֌WƖT0e30<$zC pcq+){(aL:&ɍa<}04L=*M;ɐ :-FxJK-6Jd!j V3昶HC˥bW1j j4O2}[kil=4]/'LF095#Flӡ31UvI_S %׫6eE1Fncb5TSØf 6+[oß9V,SW4S1N +ϼ}lƈ1=l^誟IpڭY2eK3R<6QAm&z2S3I}a4nK3>s:Fds.9RpW5k⏐j_Qуy$U+2rw4!k;,d ;<|HzorꓙFksаƶTMf~9m&F =q(}k},p3~Z,8VlG4?\mZRqTLm+IJD98&FڦS,Gdm`NPYxY +xk3kY5 #PY1o~7ǭ-8"mڪ%CӒ0(UU4ɡyh*hB`4/HYvV(,q9Q8tm<o57DxK9R$|m!t㍨jiyTݡFVpX[L5B uNc,7ɻYS0fy<ULԻ9ːzCmU#z!_ER3Rp^fydhk,n!(UlrHR4FrDݹ|1Dp +#dm)NQF61JFs-1j}K^c:1-?/cmՒmV4tmu6_$ݚFak`swPx6^~4]3ڎֲ5k4ް6 D4@&KUc"6Y1)P &L8Ƥ" Uk=v[l*aJ`1){D1`]5&l0\5&ݵV(ףQ+X]Uly6VldFF»VyiZ+]_ͼ5^?)O>GVx_L@U#:sbbLʙ\5UcQ Ip8k4#54ak+@1n׶15uco߬t"ϋ[~d9W88fM꽛MRDolSru#'TdqYhʑ^qwnk<3XRuF޵ +[[aFZ77Q㝣+wbٱ[*S5f)ϰVt-'`,(Q*iiFym<15#UU(dw,s;P(j~d;Ɵu횱hv?,C%39׌*Qc.(,:Іr`c4,Hl>-\5Vw-Mh%ѡk +~F1]YS5VGj H9(tm<ʩ! nҡk=-HZG-h6ܜMD͵;c֔`Ӱ&ܒ%6kG!JD#lmE1Č8ôGXi2\mWCzu Z<բ|끪1S-R ۂԢ{>џZ8 U7*`3(ۮItRлV`j3">mqy@]mTi1lc26L+Z;fk|NS-߮"QG2ni0xnڭO *kC^z_*8̾I;ʳ̮ڡ =bɵY0#(5ŨC=&fcCU1tʊc4fԝh+b4a)p(XDxΦsدgѱM5›L *!kc,<0H84Ls8sDX:I$י;3tSB0p:쥑joU:mA5A8l~60`9DRm=0:ު+F6|K1BkcZnR٧c[Z\b}m؛f,Zl]D.,FS@`XV9߇+F>MhЋ{!lc&M@̘]1%+P,L(/3%u +ug@g\Е\UcF9'ckbbo.4hvX^=x>6Y)Lئ}/7v14f\7Hx.ȎndL&g$S ܻ mc;tcQϙ:JM7kY`Y_&jmvfiX;ɠm52gm&Fi>AƝnK2V ámcBF +Ý0RĽ&hYXѯG +B2XDj9f7BA0[oܪ rn{CpP:( @ڡ_ 6n.:&'Pl3N{ym6u' fm!Q5:EYcD(\12Wu܂c]~E0:7"/omKal暑馑iF>g)JW|PN 0WHMO׌fEl4#⠾^nʙ>7m t)o~6E0QiJM92=a_vag'LP:Բapڕ#9BG.?m?z7m!g׍8evaϮƾrL0\5n$55!DU#E'&_2aY 9: O&FFN^X ^Ex֦Y"F@m&lv9zhq,TlɄ`Y`؞mY+xoAbj/4,DNJxt5k jKy]LP`j1{P8Bi8o/͟Ԣ: Pɖ ^c2nFOtZ|鐼Ja5S AqF0lTSs_aD;'w*Ʀ4?U"S sNmtcT +늑\ej mW\9 e:" ` vBʨ +/"dӆ <_1r!nSE7J:0 +-]/IobfN#)Unñhgd6K5`׀89&!3V1kƭO!cM!Ra Qv1+`?ŋ肢Wfs}TV Rґr-+ƮLwLo0Wc_ƽ'm׌])=}V/I,ە w.s01U#΢Ҭ̚65c +ٮGwѡNiFڿϯٞkƮ0 )kF[$v%{1!X|z{W싖*iVk4DHޑaztW75LjꨙTlr %CwȏףiM6FXfg:Rp0ݨaJp1E`Rs P;2ofsb,z# +Tʴf̻5#֣;nI1XD+&1 kk.{Sfqb0TkF*3Y'89?a6gmeX`8r$]"8tfTo,G6 +'c[(檵`ՙN6׌Ej{ 6I34Pbu͈SÖct nL7u#kQ6P\7yhJ5RFV2XJc!Ä[R6zi$ٛmҮa՛j:jcĴ ,Ci$kvbLlvը]H_ߤU# +|OaI]Ff%;G:}wZRU6Ì6mRbVcQnoę-UjPbP rlu`eʑQ2$G|ٰꣴ +:}W.y9ReJbadmD`P;׸0Zr)k];@rHD21t]NBU&ʛfAV5Bݶ9sj2PgFiF`n6ՑhQ5Ppck94I 6k]ABklcٻ zWU6HƉuؑP`66\y߽̽BV-4 crSl1Fi`jdjd'h +Q1;?4\8IT`RAJknbP? +Iv͈v"rm#_Yي f#&˂rCwՙh(ɚ)FJkkQbL\ő!#}!OF & ͎Xx0 +ݐ U#V:eby8y Xa1zX2q=;a s!WNx+{`n `kh9@]S8&A + z 1[Ud6H/nfi8Vww4Q4P +!wE>+JINc;/s&2<ݵcS푍 2B׎Lɲodr$͹'!rCp)bT8'W Bd`)Xԗf`8V#Rs>kk4e*Fl7-቎>o,l<*9YYJfbKI ]@J_lS? *M +I(%+RuD:rYGyxE]Ƕ+Es] +MUjm\' q$}:b9%gVt4,x@ +mbcnPU,1j͐ H!vsʣb)=i]&rf}o·m#dĔ#!{_?Xuc)X! a S(xC[5;a!0jC;+`0k$fU$o(Fͽ7b֘Zl=_5c6Kǚ +#>#KȠ"aںPnXu$[slਝ{dE )ƪT~)'Ib] (E3~Jl3F"Y6XxcB +ނ- ILQ[Hy\SS F%aAc <7\"5G"7beǖ>mJi|俠#aĂoPJM(Xg􍍕Os3ؠZl9W ֛߹R=Zm +8#Y_OȀJv蘲^ThA`4cbȄғhV}rzZHAd2%wi&@:DkR,Ims1^`bҳcTX14r2Lv 3Y1 +0\5*(yҮ1VsoSbujfxhkc`,Kkl8F w@Byv@5# Q{qLmWrcb2F|m1uc}@mUF +sb 6"R eJ3z\0%6 Vѷ%JcR V͊Oݕ#IO(̘-I*EQўJх'|XF0%nK\O3ܵؠ]l(' U#bڕ zƃ,ݦw Bh҈T4fa3VY޾Mtޔ+dV׍d>6+hqڄpJ!Yf&*{ ^[R+C 6ͨ*k2Xl06nS]/W6L/Mwl8t ?`8t6Ӯ&FEV6 ;umކ'4J^ LU1X=f%Wjͭ/x(l%2:-Hˡy|X16j1iqb:' Ob#Vvh w/b;A"\+~e%JH,NN36\@mvZIųi0,;9&(ˎgyOJ5v &z3(XcF!I^{,?Ҥ A_H1TM9 `Ey69$.sw4E}1Ӎ4ȳk<cC׺S9F=;A)\$/g¥2[rָ(*rl_Qe0%% +O}%mѕ3ybᥦq/uGv)yq/`B5w ~cy֦Aӱ"DhWV8\vP=c^6,"tc07X2vRdcp vŦgw ;Qd؜8%7Q8dl"l\uc[vF (8CІAa&mzO72ʼn}8<ṋSu.7ccRNDkcx43Oa\PDsVUףxA-1,'=4| + +YcQ6jib͛nyoʎ11CsA)^~P):NQPwzB+Qk4cWI6ь0|EX4~m[7s4ҁE}wZAUoJ>ŠLeIuazT;&zG^vq8Ƃ%31(axaL':,uv`-c @\#lv? TV~b lc+DFS宲xCh\v0IݪaGHunOI6ukqxa484n5iY!F<^P*ؓ)1P}_w2")187Yz ++tɰЄ1&2.Tީ%3_y#/G}B>0vJ5plIJo%6bb[ȶ_ϩ üxF Lk}H-vOlsKia[D(س1Ӳn0 d)b6Uh· Nl4hx\-qj~G5f|\GF^nzT:Mz_H o2zb+\N痌ekƠe'+2ba̡sdBg/r%\Q[>;},aȵa(ܝ4V?T,E2 8Ϳ(վ6h]un{Aj8$Ўk㹋{'4)޸EA;3υ_cBFXInOdZqdi5Ctg`7|3[GVj51QG«#`lzg?2Ocb?'ᰭ7«}ǗظԳ\^ JaPvpd,gwM ;u+lf!eb902!v%.n%Bjy{SkRFMԟ1;gGڭ^|i]@c?$X +9{.;& ~G46 $D.#Gv'ѱh+Zn#+"yp& #+jޏr0ܵ z#+/S:.l)kvhjTM]Yl^w3*z"qW`[8:5n?M]8qLW|o}OaX::broĈa2ѩPf1a7uwV):K1^9tjRGʱkf\zB>2d5*jO5)[<^ҽ@9Q+=XZ[нTM[Z;Ӵ8FSn(;(5c_ +ue qf~u$.%zGn9h]ٌDŽFS{?p] +%A0,Ŏ8I1-acBIqwdtb#jٞϼPl2^-_5YDG2oCXh5pa|ϱyZBn +\׽:X=}y# -rXűǥn. oyH*FWŖրyP)׭aDJzw*:i3&h/.c4H86V)N]>Cw'1LVlݪ*9ccڣлJ|X0JReIJ`"I-H)uڡ4J)]}wC`Fw>~'X+ycEEi0Qrl 7-@ ph)@4 *+ + k~9vɶ;"{ ܫvTg aδ/ha&Tg;qBq|/DƪRo.0Yi׀ |S1;0x(0hj cabh0kFul=#Lne>F $.bUjDqc~)T/i0Tqfw=Mﮡ&Nu(0V^K}&NFN<o90?˶C{c< v+zܺ8Hj1D\iχXGNːFa8v,gFNi>d0|Löso%XW?,;NUVw=hU`̐a3K͈kt߉ep4ijLؤ6# Xo/:y- +lVr Ml=(h&KI`ܲ=57<RP<'坛f9MTVꧥVKz0(iijɃ'aEa\zs-5!UgakS#\O8Wwiae[ no=1ul1~JfL#tdcoɏkqLh9~x7*4bYHa;6bYrCWs͎GNB!pn z05l!Kx6Lq-їH;~eMK0|N=ZɆzC@Chę_ J){6 f'gΏ94ʙD^#0iDuqx\3adgj}EkP=+`FFJl s'iԘ>q^~`jZT]5'\J]VRFfw̥_݈ z1GSl0@cwL=bl߉^5}yԸT vlOG긑Uo61| j.:!~2$0Do}M jq6oh +aƵf3Nb +e)#x9E|Gq!$;]gz0ϨjSl`}9*jp@.&l5O2ߕ14Ve%JEMKBtaxﺪEoOPiiX7hY;{"o[7a9(6mxEk *AqEnH&F*("Dip=20"0ia[iIknf.S+OYqЅUdBRENW8ª +Na’{n?Grv zIHdkA琈{Hw|4'y$1%sQ +.vO4IC011WfU?.cFR, }&qq |eG#b/v~ag^H1 Ar&Nc;?ⰾy_Oa0%-uF\BE{jBx}9_yCOoύI #> o3L/]e8 命f9 {3ƫ}PWl>܂U;a4JMˆޥ؃@qrY qqFbV@4$؀0E;""5^ +Kr|IHthyZ'\E?OcI}á̼Ev3c][UFLېw _Aan6VhZ?C#Nz?<斯i*/XҤTq%2۠.ShJp9bWӇajRFB;9J;סMT!qhdtf}($St'}ceȑ2DLft˜=w1舱02XM0,("if'"T*[mp {-6ˬ1HǡV'²P,:4J4wR3{SeA#87fK#wm,MdcFY~ET =6i֧Ul5XǹZѶ% ?3.@*dYb&z{uMѣM'݁j+.fEY;qH)auN>rrFi؍[+Bْ41%[ZaD2XU0;4bOkiBdi_v/7*Ŋv`63 %ӢMȈi&ldÞGK7'IJP(2ϋq40j"cx"#4 v#{udėqFG,vRM,LcB1qUUYk?崡zv;ٙ0rP~vc#gc ؈74RvKzHQtvGZ=iаTV3H{Lloa';cb# Œ812o1o1ֱ <F_kSO~r5h icFЈv.Xɫ( x +7A vl|c= {K#nZdK҅[EaKsIQ&0oyFXlPIRr85,}2TŒ l2<"T߬0 -Ǐj;CQd-%ϼK:[}wĖRC}.͛kxd;=Ƽ,db4 aFZ0*'9SIs:m\dJ^ 4S}ARi*[FU"5rDZQdTRSG'6N{U;X2,H؈[W7Vz2`L|nic+8xܩ̓`d? b#^3=Fu?X*he|xeLva6CaȈ +rkx%L`M}8H2$%00,oIZV->Iq9qA$pjUQU[ޱLQl , Ʃy^4zslm.q?\&U&kjNB N|tF(4N,}?+nwʜp2b% ##vGm(L6,EFZX<.B"+7mTdĸ}+~>[ ~ֹ0bsS =9WH_^TK}$(0^2#LFq5&7Q[5ZaI{b311W0R94by޲6ShĻll9 dBp~[nBi6b09cqS= 3=$K?FdiUuk.0E:al;0ʜbȄ;'y#C.퍏u%?[/QnEaGܴ?Jֻ1:2ZO6 )а0^8Pd4G%O)LqP7; Gƅe801e92b@QS:5Ӝ(EF9So!VØBÇ~t+&S79#`%J3?c]#+zS`KS^_;qmg5aqɟs5抉lbiNwm(Өd䋤FxKLx]D mpEcޜQXdl}cŰ٤"q0rE(^2䫚g.XU# LXaτx2XQ>g\9 V +d񥊌H0h~fEB& fro [8gwe:4Oe]٬^Fw RF"X=e94bhJKh-1J["<>0Z¿4rϾŰPjͤREHX. Q#kl.pɱQP7\1ʋEoy:Dq7 kY ",Sl.b5ظH5iS3> YGؠDsZ&lXb/9#OR?~s- + tIΈĔDD|m/Up*v5fQޯac9}aK=L[}S! B6GGAR匸:!_C9tʼnǒm:8b4ʯ*Cl{*ʲKi]F)fl}oG,!> 띋&~,a?_ru=!$}bAdOXepk;ӧ÷fKׇߐKBbc;s__SX :kJĈڬ1k7߻_#,O#>MJOrMmm}ؽO3bpD뿇n|wh"fR?.W4&!s0o4а;ud/1v766:qv`H];iLxh?Vqpp\ف%PZrO^V0zeTggiK¯>dCMf±bQL=? g#{fXyR@,MI}Rެ3J vMc.g΍٦@Xl(6Gt0n) eNf5 7 +țuB~Lhaض%Ƣgz`7+z?VFwyʅs,H,F- +0Ģo+sFp˔49e |e9kr毙n1umJM +mFJms<.&,_݀gvABh&)ͩqU^*8#f&K +9>3K)_./˜^[)"w^c2JN'cᵠW f05;4kTwV۠*1$jĦ<+GEG=*=߄M»#-H Z|Đ.CjJӝ3a/ +Abw1L6,z7F8L1#lMx\V-cw9Jȝ%pvՃ:vMް CoCtV*87̒͗;n>UD(fl )/vb^j]≎Xly+ed޿M, ^舵,DϹ z]&=*֎kval g>`X4@[$b5}[3- $"6blplѦ)6_аLoױitߎJmA%;.RO,ɝ`v|B63ŶNknL #0ھ͹/dآ}PI,{eϢ~$m%[$ta~us4 _ߗ̒akQ}D;L7ÒTE +4$2zm9,=(^x`<hVy2[!}rhq6bDђ/mlB#n|) >7_& 2{v;l"gnTxza&pF #oeGoAۨ 1X0ko(2V)G]%aWka/]2Marq\Zav6|d\h"Go1%qgtEyX|4,_4hM)8yh8QTX{nLDW *b qayְ0ӆT3\bQP|)W2F2:20gE4>sj-~QyU`O#9,b `Gw:E=aCk@Fb(j61Z Rw܍`ESZah`h/ʙ$@ n7bֹ] +`ei[_qwXW/|!]WLF[F]cDڻvgo Ƭ%{zhTnv/d4J݋g&!i^,+1e+bSP?q#/'4="J{ܛq(Kq y+y J|#w\kt3yv31^M/6jzZv_w;Tv[ !Vyu"xDZ ++9˨YsZeIKTDEz͙+g枈"M s +t2w%a+'۞Ipr2}KQqO_3U4Lj'~>2{2z!HXD*OR[Ez䷽4k^ i$]07ޏDR9Cn%#ٍ[b-BFS03X(E}̘b(EL @]b(`U`ȈQqH㰫cwg`[Qg\܂wj +AJƯC?vz0 +<ߎCC3}Y;; VaSլ?7iٍw>v՛b+C4uOiȍv= [9%ZF4iJX5XA47hA}҆"ysdfir;RE4!1Zy%FN@IQzL~J15?вԄFX7k/)cՑ%LkHz,_qʖIlo?N + +t֧Lt-%WºaIΖ/ߊonGFQpdDQyFǫ61g2FшP%tK dL:܋ƮBQ)46{Ѱ{0;ܘ\BQDر}|"'xI {cd{{,մ"63h0CQ +,a`QBC︻NKʈ xX +2Q;dPҋ>z{#Pe:G3ѭ8о_9YQUW3Ia,4pc Jp$[:.R&aPFHd}0MPRX͌ of(yxa6邕6=M!; /3jyǩ‘Q;;d b$Fw `If,h% MɹTfIΈ֏nڰlƈfgNbE ;є33Q8L%C}1")_8=.ﯲĸj­ u1");n2\;#l}iBI+2'/Ȱl7C#vFv.an 4w j#Y0-k3&cD85Z~IANeQ{GFSc}Xïk;2fD.ƈv\')1} I!PY+2bg42>Οq,v0ͨl)4kk*My]iꌓYfB8i)z]54Y㤈=8UkBCO l r C+bx\g8d -z{sh̔<`MXO҈>mP؈Q̵w&37BgDoxbr xgF4Is]j4KVv|8(dD<H T\0F׿=d݃ b@|W׿=~C(oV^ ?;.$aR~)>!vT~RWaD~BpXY('^_fmHTT: s{2ipMT>ٽtK($l ꃱK0k^w/j6M -0-]r},AbL v?%]ZY_{ YƔ**#+ì_DVFU-6b^[d<`0ٯjo +AQ^F2rq?/e]_nmSY=<t}s#t`X9&ʨZ(+9$f+v•{ʊW-h2A"z7fhES\IeedījRBͫ"yyhZGUwtQo 'dZߩgZ dzn~E9ɴaar2ۓfݬZ"NFiVSSݗu 0SY'"jta99(؃Lec)^MbjZ|)FO {6ɟk!mP%5fR +m?~ELaox$W_.]h;| eb13O5h:fmedb46{Bî+:xlgw +nwc 2Wh΂nLV]Ӭuz5M1S܍ Q׌xk:.o嶜Uu m\NW^D%X$'YD%Rܑ l\vE7YG +X/"hy?Dâ<-qj^qQF2栈,5ºf:(`э'N㠈,:aT1E6m 3ÕU&;)r ER1?NY"%tY k!QEی]:${~}fq5(w,hmldS9)gL5-+S8r՗E6qnTis +h 6à&"aT$ݻeEzIl[al`dvމ4V$:c"fZNoęie6ʢ͞ n4ULi3iLg0iW2-ҙ +~=%fSZX/ C!&_gOE/562*"9j6*N63γ#"Uwg,Hys$/ @|&__Oy `tJ%ý +2:.vyuE3켖XXZ#ݟ0(aQ/cJi}1KGhKdsK]-"Q{܂"Bpi$![DL{5P uEPEbFIG#":!B7_`adMu1p͎4GFəy 0yU:Z~fͰ_U2/_٢HU,+ +bAx4\v %h#aa"Z[N.@a*wzC{AsшEYa.av簈ytӅH + M(Q!쾧*C&k[Ek2&UD|T>aod ʳ7݅;Ĩ}4Љ1<6?OxV|Z+߫,\^fۍUG&^e3g+ q8]7H =>r΁h趨!P`5!f"8"EDQ5z}4joAÎ@$njawzuEFMנ7]<px3KvܲUjf=ݿDE6R#`}4 +ic̻ډYQ7shT ګ,"'~f+ȉݲ(]jfr tΈRw3-gԭ.䱝c8]SvHW^d +fÚ"2vReECӾg0HXgʈ=<3#^¬S`Pp/ E#0JX+Sw*GqdDX{q!a92EVr 9p:>|5 ꗤi-c C '-]lqʈUd ˘㸈uQ2{IXeq3((af"v0ܾR5v޸`N6#l 1w.)urżg!q,C'7gk)4Ɨr;L%U\ļ(ݰ1RhxMӧQPPόqOJ:FMjS~5)#Ea5ͭAT\D eEE9N%MjsD-`:0;I_^Kc^tW 4- +7"d<}bb`8."-A"Eo;6Y.bL* ^4OQƪYMۅh fUݵ\&# #"3xvqQ"B┊m{XrK&MCнQ0h4]xLúln.lQ_ l!ip\Jzm:.j~txoǼF-qЄeb.'%#2.יwXʈ{}b]vb3ꗄ">Ɓܸr6#+#ĠmgI#"W7W1q֜63{ jL$qv}ReļMya{_YHa+!FO>u"vt|j ӨYhY}Sv^󢝉fY[|1zeF䬋 %%.f }ogN.aM+g576YvX[ͣaZ6JMʈLo_05uhľ +g֩š5(40HIF9 +E=\]xua?l5إrlDZT&Ū~;kYu9ٛЈbt˶-ꍳ&v}[ #[qhl038N6,s 1'eq@FC#=O:3b_h+v7b OX^{+~u㬕#4L%|6Sٶs[h6M<&WNK(ajF7Dup05fuB# ` 9:"LŦ!W^j + [߫3"LU+THb.;\% 5"L%:ɌZL`U 5X \ ;A*cg>}XWxnWfD{6BXحv]9tiOo Yذv?!)[as tE oPf;Fli;߾!PxF QjKXkΈ;jB%i# +Sd'@F0Q~SvDR;/c%i]|g"#l!nhHcC90_7y1T`DC3 ڳWez2lUI<3!íy:R-7VS`DB:bktӂ( )2\.ΈTs s ^h=,El%޼SVׯIKpkwQOMEwވPU{`xܵVOsv6882vy?`/3#tTʌDN{6XiuWʌD\caT +?XX{.VO~UGL#_9i#:QUhv39-EFbPIZ'I#"ћkJ}r4`a=WgD&Žy0>=b2 Gǎ<}x4v5C ڴP(<}&kD*tLL(I(d%ΰԆؽOvk;f$2rީu{TzmwhX:b6z"#oL„Fbh:F xqE D<yk* '4yzϊݥ;*63lh*qhkK%rOevMdv4d2̤;B#a:0"Bq?_g +]^R}êGͽ6MNF}A&n;o$nh\AFL@)߹d6c"v#߽;\)vI҈|󾜾*SH+6˔YrF7|+ M +&F7pd'L8sؓwdD +{mRpow܍b Q4"=7͈;9# +Ν2ٽC#6FYЄu*2w/P5c8Uz! ee&DFD[< Y##.F4|ٚ 8yRFbgive @FD7imH4uzFTQHUD(f}RhD(.݅tFTJäehrèZEar&4taf?"s'idQa©b#Zcjxyd;6ؑE,F,yFLfzFjơPfOXP7.ϧymOۛ%,f.m7聐&6bh.1tt8h +?—(#k;It3$ЈC3%sCW..nҊ[ 6u~?xeEiX_WhDn0mԈh~a^) ; &UdDp38KXFNۃ.3(̾DF+ڊr|F< Qœ\>K˃PaP82"-{xyH9L>Gdz5P;Iq12'zǑ0UecQA|F\on;`x2(| H*/IE(IelsVF4I8WhDTٞ'!(֫X?OB^NaTXXI &Udè< ab##ڎ@Lr`D8YXx?ђ4NϕΫ3bagf8U)IO֟-!l.2iw?jˌ9F'ҪaF)x򾈗5Y)0N~%iD=|h4r`.n#);rVN%-[zݜˮFC vXCNhDh+I#"IWI҈H_p&Hc/1kVtuDcvơv06<^0'txޅwyBHyܕn2FnI[}UF|l^$c7;1q;,sE31zS~pat`FߓfȨ .תTa{eF %x}V+UXQA72.tAб!m J\~H;5(މx# uS91"٧viFvx$:T{3~rFlQwX +AwiݧтFh>!D㽛r*sՌ.13xK孼*#2=Jlfݺ]I!Fwaad} +{R/t\D\yUCϫ FS t*<;n<4 gtTaVډB=IZGX2..>ݞեhl(gX]Czb7`tKA܌nw.76GF7:lWg\<'u(mNJʈj\YK`>IWj3)#En%s^l)4ZŠ|uFTdUX2J;Nkdʌ,Xʌ-2,;2"[JEfyס$f~~4EUO;Q8HWfD\ObXWkw7vRFT7&M"#L S"#NF[MA%cS0x/?:yxa"v195q;W1c1PQҺ#gT=&^%\ݖ`zDӔ#JƸs(MuhD`O0Lry} Fv\ Ј ¨$4rwmʌK^Ti9bze7/K5G'a,͘Ј1OrhܲѧZ_1$iD~7gڱ-;M5 yG׆ SJv\/?pe`i}&2.Iķ`'2j JDF$ޘdόQhf 085;lgM #k~+r>_#޺^X+2j +0߹o"#·p-1(s;2iHP1L'uFWَaerqHlP-1->_Ƣ-/ûM_ۡ?|:7aMDpM"k#ȫ*y$^cڎF##ʶ@.@N/GZCW.EFmoK̛M输5Td<#lHCK`JqgwofovRa X؅ڹ3ZHT0[)#3*PAef7ȌYFOctg{M<#Joƌ6)."^yC92"^Ӡ9x XQ=b+0}dy>a =9.]qO5iuq\DeX9{Z\Hdel[E쌴sjw,@#ש{F3=fCwԯg*bk,m(;("Pk,nlĚvZt3d.AZPG2b+eFآ}w9৛:do3=Do# +v#vOz={?brVZgSi6F%ݡQRܚIUX@@jS* JX|%K(eFMaw9]{cNU6B}ْUl(Z E×wVaxs~;?nL%ӑ@^VLA*.JMv_1qb뉞'L4^(/-LMcZ%ۑ5Y{NwAwhb81:2"&sK;##F-NfQhZq-Xevc̄$D0{uDmbd56_f-W%x@2ګ'e!srkο*⣅53ŋ϶2=693 {]@;4x粘Ј{k )M0̀Tˌ :OdtbKvI I0 W> ̈$؍IMg`a) ?;wƍo߶ +mlBאUؼ+@ʌ}Nj&Xnz({ǵGaSUќ?bq?b!L➨{LHeˌy=w x d_=a7:'al2SSi#,RD"/aGTwkmRߒj;`,ZHN}!,NU3Y1o/Q113֧dT}9Ҿ㘜s(Ϫ-kF܌&%bqXDuw$-#vF ]ߩ IZzFIw$Q7 +n|Il@l +ܠS!ʰ_Ϗ=$5l'JTDܵٳpl+dsIw5RXE^Q`k*7"Ɍ$|a ͌%|O [obV1JLv5jfu#%;\a?G6^u;.7#%lw1l5I;΁)>]hzgúvPk敏>|VόF;1(_E4ZH1cnF$-LϗʔxPv{a>f06<W̦ 4 '.福E4{{!&wWF%R 6:-be4p4sKD;bK-̂efS񎻿HXDS}:¦}8* 8i׳?Qo{q2ʋMU61NzE$XcF~~0Rd +M5CUx['LSykfl㎞]Ům 9_ETX ~{f$0gr yHT 6leZY =,h<  V$--FV-rXdf2%&OgNZ1. 0zZs\am b֙~:<ճ[l԰XE7VZ~JafueUSq-]LQ;P f-#*h8T ۘO1YnڇF3Ccg.W9 Byy_#T{oh*1"zfwfDT\?N6I0ЈjJ;M< +qc#)|TnNʈhj<բO2F4S\'cD3Ÿ9RJ(Ta86]ۻq4[67kӌC#`H3%vG;C`Y5l$c?egvǶ/ aiesnANF(Ӯ*+2S$ZF>;N1yL-u (>y:b;?`NVF%v* BޟۣrQ?8ʈgp8Nl0o6N7x=T`-L5<4n'~7MIٻwaLRgܯ!9!qg56mm]~u6+ 2g1Knfq=\.#OEQ`vҒˈ+Xh h=)Pb9Of8}bllbOa-}rXbɌCW[%c.HyHSVfu\نs)3\ؼX:s= )cg'Tgdd7}]\FY-a2(Cņ\[#Mwl*0ߴ[$@ѓal掴Xet2QۛBYTl4WN+#=n5&Ҋpel p$0:-jJ a\Ixpʹ0QW%uFF3Y)oÄ\FtRm5Xaia(X_DȻ<{ L.0yO#⋴0iu_š*h0UOg̫eiL_Ux+Sf\&e";=:;-=z*)&⬇>skOe8KAz$j3\Y1FT*ꁬ a< #c*{uYJ1Xz`W"pW0Dd)l 7@}d6yyGDSf9,#<, zBVJG +i\,#_R=NNCWD +gѼ%øN?l :]0&dI +-dR,#n+_1ҍd~R+ 0qti7}w.g I83{-g!^0inmt n0qHQ6>kjotȎb~2k1b wZy`+zc3I[>ngƸKB U Ö߄zsHˑ9D\؟3:>TLz b̃bDH;]%)Z2[ kyK\Aw!ĩL&F]]⣇aq(r{3"dQgeqH*b'H=! %6ds爺&֠ }#ճ #sfh0.eEC #;Rֆ׀>$ظ3HkPyE#AfAeNlmVLƠ $cVz\h];ՃNalKSt?Pӣ48(h`ŵHY04 +eלh + k ,n=? ]j\|@ Pw3td'Y\gRy#ĭ92T,Ʊ+= APi]zF-@2\FjC0(L#=@*c #bF5]E.#=@˫ls]K@pl?SӋ[~z1;ܸHOdAy^=SS䛷 |F|W﹄mǫ/#C0#m>xMB0a3Ֆ&v̨p1wX!v D_S2$M@D=#L#<̌hT QOl#`i9Q0Qm68x!4< *y#jCiqil$Y$4Dh"uGTgm\OE9 #)axY`'[=cW'=Atqx@ҩP`wt'+JVhE:u<+-txsםΆbed|1:uޘڭʍNU4惹P>N"_ADgM|]T =py'A*8\ +)TX_Ftp\Gu#{va9v*ɑqF Z1aTY1K'ÒaX`Gq|2k6;/7Od= "C`.HDicGM0bww9 ]ž_#?W +\rK#8u*sSNvx286l5scxΘQFty.U@VF)@=v H͌1b>5=71Tv͛nV4<#3N20t3FW+Nw+q'=meD.PYdv((tAyQGfpVj.oE-m~a1R[3:GkոLIIw iZ]1CFnFjΖ}5 Fr9L#}5=ŀTQf%K\#q7,DPm]JHV人2H̵1u ˈQ3ӃT#3ؙrAK*#鞹4O6mzB,v:2>s(Gϴ3=H]5s6Xp6,:#PԵ;8$`^:qn,D䈮Dm$>cǴ뚹ʾH8P>ܐ̄LCfQ6"؜f #ZFӆoeb1Ę+Hν=9F(=H=1aFBpi#4bgufl]OK=2>w{_lS4+NEW@@FQ2`qH0itOOt6ܮu2w'6Oi`J6(c豍 gg/9taS#Cj4"e#{s\f\^Pv3Z#אHG Av!+--#5 צ\Р9T@v|ahQClϸBU"=$OjψQ̷bX릝Jj|gb+6]_I ӈ;3 2и| rPa1beⱈ g綑lU7oYQ< ;ƿ|Gܚȵ=ntĐ&VaUZrQ2 -ɺOpӈIOÿ5tVkh;_ 0!؝I&{d3TS`АˈPk@-#NSi].#})ޒwG+SP.0+=12ҖbwQTbriK@VnzrmzHlhA+r=I!eQ1D!N}бt Q\jo ]e +2$LN#,2u \paD v'-X֮\7.eNsB[g?NwPZ r.%\gbm]AFXaPlSሰ#na=0#M* 74쬈fEƨW;߃Vݙna6?FLj#<2̼$=Z`jvu/3>dd4@˶@B+ܽDNi7U)y FaxJkn,T+"\[ΜlFИ5vB_8#D: jB o|t=5$QFPϱa9[)N6V O=Р/a27}x~|⌠HF44˜{5Hb=4y#T@-FWgd\K9xibcZ 4Q{;2_2.s|]m +3Pcn]E6p3r] +3vES`\8S{5$>b,r0: 0x^ +4V F\Aֵ=^'hأxgEYFI\nVx +}]C#iy䓊M]rY4'\r-#xpܲ?>vd\gi2RMnq{0X>㉡i 2>놝G!0|Zp;=!v/ai)Ķ;d`# `tM[Fbj|kL #C'c q%m],^]d݌w%Uk90}k\ǬB=pjkS9#L&VٗՌb欄3v=Pp;=vw0 ڽ烮q}~2@]QY Jsw 3BT:߄[*b T]=sey1:mUQF3N+\F&m>?M2t~Ӿ[X鹎a2bjAȟ3W^@() +<9.#nPaQ֎z +FFFZ;'Zri@_,k([pG"2jM.M%Kװ|ȸ`wk9O  -mKhd(,hco/ `H 7ɚ`Ewj䳊Xr0э6}'|b vFfYvt L@Q .dUt ّ`Yu%m/EׅCs˰=/2Xɘl+7l[-1l3ŇFV2R BC>;avYJ= s^/ACP qWu5~ tFuilr!:e)3=&-U0tEmF-4HfS9bE:0JݹIy|w ؝Ca&^S2amxG"= +u2WaȑSaxNh0vRi7` 6-҂4<Ӥ=XW˸acZQl=e'{1o(z;sU +}CMgI6F(b4"6qEaT/0k*=EDRU/P ':Gbt.#(o> Ѫ4HCy/,pGrg3"}ٷ ğ->zQ|:xv4T#,`H (>Tf^K\fOE,rmʔ-6hE'͙Do1_(dd6pI"ChF;u'{i|fpv{uVLӑ4rngUaY1CC~&fQ" #daXq]D(Ű+.r ֘rq,ǟA-ٞp{& TBme]tCt 4*ˈ ۃs| ^䔘`b溺2*a+v]b*Ѓ FK3W`w3{3C: dvwHCXb iD(fv14`_̔1rB2:0]nE"@bmhq}L}NNV HCdMc|EMb>Z: h2p9X,0n5ÀV۝aF:^W3|P&C)Eo^gbYoevHYG* TY 7>N 3P#Q|mW%Z X<5k1 :Y?Fwb=8"eubgnKG2 G5kA3mEoP2`#:Fd)iqfrFnj r'pe[SHdypC: *Gc@Ş'J/|< Ud;kWia0s1o~-6ftTsxeދ>o>ef?tz͜8حP32+eiMq)VsϛNwSȊ`5kDHsbⓛF$V&{fLx\V3{L#.] z V5ٖ s~ dUZ{`oӈV@tlF::OK_ABqKðkQDf>W^Zj۰4#D +w9>3&Pg/-3(h!idvY=daz#ώ@la}tjbTd|t'acF"#@cLe&ř1S~U +ffR~# jrdOEt7hgUƁbvv DQٞImF5=gټqƘ;`gy{1L⩙L/Bv:HAdĒ崱κk +P l7~C4,#-eDɨX44r`^yh +W0H"eDn~rVJex{@z(dXFԌ]?π-:> *#3='M}l+ l NXF: bc~9231;v[(1wg\S@'ˊ3{ru yPCD3?{8d.*NYeчƽ9#=r]2ΈQHl(k۝-$v~HD)=#tBaRP^?DžOa7ps4|v\e݅:}?C½<_!ij3s #-_ e7ѳI͢ YUHeV`\5jM8(}  NE[=˖~m`F{XY kXg_Μ,3nÞ>`\`b:}>=+ذUh_}f_F 1_f{v`rYY|W}Q>4l>-Ub(6v@IbIO-_0:{Q\gw&/jl}/D/-/M~,B`/\%lV/\(b4F@b텴Z|0;/X7dm勑/g‡/Frabt%|1;.UX X,Q8_|Yha_~/Ft/2 +F5#7X1:AQ^v}~./˦7}!^1$b,YʕuWVlvN_9~l?MVVMf?5`|Ls~/E`p`?zeyjqx#Ũv1ۏ]z:ڬ~+ X{4u4>u+d?Q c[v|EJaQwblx;-r jUߞumy.v}a]?1yhz7/r=g"VO{GXsݴmߌ^rC>jKofD3ut/,|7#7OFUn5@bH}o֘oL*- +}^0zcwKVp^sS__9G7c~g;bQ +|s28`a|1,s]Af7;Ym/ohy0+ԡ_RNeĈ?/oV M_aTߐ;ͨh/oj3ofFqs~~ y/VL,*n҆LN`BR[}F"z:/B"q]zhZERXj_݁L9ټboxMV_cMVf75sx3;?+Q|3Br9nOwF׈9G! LC_8ft esYq0:*` +1F8 ~7(z3Ov_ljp_F*:Isx3ۑ`L}k'k/F %6xf~[h+fX~!GžX '_l k_^=u3L !뮷M|!3+B4_@ s"R_r"L"Jz EuCZŽ:9f%Wjs_l1eCTE?֡1of{t^Kϸ~|Crʋ~˿zf6ҾAj//0ճf(&aU8>VU|(1ofbO^S}oSfcqB%d7ګE2?u kQ8RYah{[#Rqhvz]N)b`\'̦zb;?C9r~1V7B}3\~'1\qubTAżCw^YLj1<}0{,0%?u1O sOdk27~;V˥ş/Dy0B. t? |0v^^N&'*<ưԱO?| Q-g.w2e #NUۙ |Ƭa"l>ǧvsmm>̉=yA,]~1y|3>3#2p i5&B'ÊYݦ$u?ktb):7~Y{of.ysMĽWLxcR?aޏ7Y֭?+&<b>&_ݵg3/TaOs`s=.`E>0;aF/I?aFi`LOvozu< }^WûzcXkJd}1$_V׷u|3o=ubHɱ/FU}zg]ipb-/_ϗya*Ybq?6>]nI?.Y-cC ~δ2?M~ +>1 ݬ>AĠ狕`Hi^'na%(|"_}ɪFI~B>17mߌJo׋OBe%?fU+߷mȊ1NyՉ0ϱ!vcNjO6C/Q(+}1.I@_`!*o6BX#+F#8q4Hl$Ũ7kjb}@dC0zّRW. hOϋ;b%:4?qDO!RN \\<\->@&abf5N`3~X!g"[ЈPhe9Ǹe|#v7##ԽMbCE_lQywc8|=~Frh`w`}sSub={n2y"?Gq:uډ04^Ƒ(C]a&>hݧVz#RCyuCERO\ +&1/n' {%e'6> r/ƴԵڡ,3?e}1:GF[Āu֡; 3sKDp Vm١Q:vMN +' +UC`(1yc7mz$v.cb~P2?^)Oӓcn_:fҭ^]d/Čj( +Ys1d-k/jE G/_JP4O m]岇9W}}'bn7 /F}٥b $̿ش7nC=4\?AXs\R<_l0jIPydFX4*xD,El␇xs(hC}k~x!b|wgB`1{P6爵(As(\@24A! }V!ee.ɽfp2XA}C(ju^!wњi]y/ƠŶ7SJ0%/( R`wЛubI6F9W_%9=>lbіa'nN[LņY}1>XIO+0}x1U XywL#!c>Oω U0h 8wՌwg|DXLg*Mky?qY7KvHR>ФX=_ѫ'ieu!]O؉7JZo13@uB=?Ss}B=}״Ωa}M5tJ2O-W ~1FjDl9q6&~ޱ9\`y>1+D{j>0pU5iVYKVb@ƒvR_QBfL#8(xSO]O\P_JuEC`Hr /c`M1fQ-{7oˬaq.Z',f^}ECu2o61 G/V$ (,né+H=fG{`"#]|;B-gUM=_ќk,,h$@HH-#J9'e*u5?)*dAy ]!uaa>X ?9EEdt3W˧6eH[J|Xsvff=aחeafAC>5.F}k^nu,[N[oJdYF5c{bRb4}z8Ϙ]#wb}hQsm G|^X + +! q,N/c[eA3?K߱з"! >^fL8ȶ0)&6p"]BBhH(݌<w2V86cO{bc.N|"8ubUSaҗ-#D1o;/eCO#_mj9mF<v#w;i5n/۸arw1B0/hPGD1eiw +G uYu1Dj;_M6z(61}Ny`[ 5M d)'Tn'#Q`eHS; +m~XHf]QRNg@ʤ{]Ø3O\!0>2H DP}Xl%3XGF\7\}@uɋ(n<p$zͽj|01W/j {}3r[lP02xhNk+~Pmc0ڛ5V/ea(q6kB_t 1r/&v1C 0?Z7w9a7CSO|DAr *fG&Hx;fr1ӏq\#jsV{SumB);΃":h^Ź_8/#Wv(؜}J^#wLP$ɶh/&`u:H9ъK0^d`MlDq0 ܦ1`d5ӸQK3n{F?̰pU;c]:bBeFՙgub0#CA;ֳ#NØ|^JbB -|bJ"E d^|!R2`94ь0rm؟ԉdI;}/xGO0;ҳAoGhem#Y.f|=W90֎3?.~؎2cFOQk^vPǽL#D_\Е9S/ )7fqW'g!d(^lGm;X:hϢJVNfC:Su|!!0>;]}bqʝGĘl2dBLڧ{q\1N^-bqsn޲ᶣ/m _BqۨԁzFE&| Ğ0w|[:؞&ō2{GMsGgkk_BD1bp5d x"Ƭ+vϺ_ZmLN=4z9͎T2jݤhG{8UP^hq)Fmӱvʌqj *( If^]Tڪ0X昹~yGobp(Vûf#ujP;CZ&ȵe8 J{*@p?ma}5fyXL打&T(ڝQg/XN;AK8XUv <lEllb)D/HZ#Pm<N1kH_%+ ;cDDmZ>zYƘ7&Fr+sl,#1G;f1P>R }f2_vѼp5+=fv(a FH2;k2sͱnoP1\21< +7Q]vҦZOJK|d1/MٱB.6 0@Ex ¤'xI{ralꎂ/%T}6[$-g_fԓM@;8bI^guP4]4ZAᣢf޽l +W{NKY&׽-&GЎ6۲{d@4#`dgw~623^V,&(=GqH nH@xȶtg y+cu;s0m?2y)3,D1 +e~-֟ %f[E t.!i(<6q0t QWv9&@}2R}(1:Qǟb^oĆw;Ql"ub v4g{w@B˜Ealsm!FG@'?(dxE"~6o8HZ F5gɢF8Vqř\a1sfNI'QF"U6  ~1.ߏL +6 [vsL![i[w<8н"筒DxzZcqY ffhᨠ1-1 +nA}&?f>b%Fu1<r/|N $WbdrC`,}1b433M@-%Ӱ>G̞U{i#Ɣ'<+ fY4V52`5?(-JA7iё0{Fce+wW}uf;dȯm`b31نsm œ% V4NÉ*ucFbcFYF(2>mB_t=bwEL6F2R6jj!^Q*<,=r( źZ纈5jG 66ҼӘQ4M! ®ߏi< @R&b8@/{mѶ;Dj-ɷcƲMfئ |\e;~b[=!ɪ˶bmأ'$CvmI0Z##f2u?%D6?VȠXƅmKuU6#+XŰHQ1I9|DHQN6v #3TG7]Iu ؏]zhu1浩bb! F`TxmtQ3"mԛohPs +l˾yٌoLAY$Q4R^mS6}ឮ,B~|y=1tVψMf0%q 7!e[ o2gh|7zl2TY3CS cO.m7o>x-o-4s*bpm*02G?,ʗozhA^̌d +A4ìm5X;:lco~i2{#DX~t\[20Mۦ&1m<ʥ a?9"ۨ?EncV鱍ݖeaGdB<2u/UWb1JqF }/{l^CuTw fe Sk(ʠe|"FGRa"m2NܥV=dPq`Sg{GQj[^>#?uTڥѷuRod}8J-X7[KE6\cy(gsqC;CKZ['b[_b.nr|?v;]]e߶qŐ`&4.vяm|Q Gm'~lA=+cdHO1"qݾn75K +G~`F%z`xןE1=6>DE춍C>foRt"sl#ZDm~kڇQm%mRфSŞf6h'-¤mÿZYwy~?*66>dKr}+kf17UUqqs^Vzhxc=:g+:-^Ecyy췛U_1t_I'A;J`~faD8 NijFT?@ϼbXeL鶍,ƂU^cѽU><%8Ƒ̑zWneZ{ݾW~qB㶍ecp" aq|;B8>f`ps~q$JX8"MB |_)vDod,ʵ1>cwqWW$eQ6v\5[O6lNE*&msL첱E8m%Fh7ΦО/e/iG]/u Eȶdeƒ?΢`+F[^omm3vglY )bOkeIE,!W+(]i*tfKCF}%UD#ٳKRcߕ(T`LDQI}Qv[Xa=p֋ 6FPUp1< 1f٦,mv[=MɷiZ~FF%~m-ߏcS> F>#`z,LBt(pBbH.PSɉ|;4\Ow>oH)C #Fc"Qu)XCӈr^h.}LcuUnGylTpR܂ukd'=r8 +m>=`|ua =Eu&(m,cAb2m).1s9cOG)bХm~9FݙC1y[ + +9R#ۖyq!ۦjdnܙ3F35`vE׸T0sk|p<2zJ3?]4zNfu梮Xն[Z}i`yE3knjBbL|4VQ*/_K]hs}L=CXۈlh_c1Ԟ)v[D}(^x 蚦1^N#,tQYwȠ(=0}?H^c +z2crL:\jO@pom_C;02ޥ,SMۈA]BrQ3^nci1qCXF# EۖslU,2ᰝk`*Q$(;ٮa$|'r#v#"V(䯙$ن㋀=\2"5Oq4/m2×\c e=}K% +C"Ɓ^_Bn:D e7x(+EryF#asCcXqv8q ;1rG8@v#hC7D9qDT̾FZG€YC'dL~#gs#*gu,/)P`6fI:/1eڃByO}LE汏wTጂk_Hf,9q.nŕży~5Ɖ%#+fj=Y>sD> YY>N/suk>t鈅IG/TxaH6i ]ւMFi1xZ'Cs"2nƑL7nH**`ҦqDiu<1mZ8Ҧe FK%*b_gȅ8nϱ\#.f4*d+QF\r4܊<̜_y RXϟ(Dd=n?/q&6fhYfR#/bw}Wkm8@+©Hږq6bEvcfvBqnӈ})\mU4G Nm3ϸ*nӁL(95ġG6Š71:cAƍ,hGp2,m9Q& m ,bZ`F󣠫,Cd|QEb7.?CW}dȸ14#O=÷X%۔@ FVm)huiZ̽!n BmI/-}~#f8yySa0h Q@1é;Wlaq{Xy<*+Z +2nPyc)܀[qD}F8(fEѢ^v8xqf1CQ\sQIu%fqM!'5BNo j(65认}|\FOȷI+j1Un>ǣAP]Ģ>"N:;!-wziiS]Sl|?rwSx/uƲDEo Eb䆛Ul* fi }[Q1*R=āhap{dJ[Q8%D( [# m~d^'fB5Kc[$2`nnQ5.=X l]}TIZq{89P7s +-dܮr ь +13+:'%{0֠bDjuʗm$vZGd/ +ƞ#ϩptD<`^Ş P+J/i4[Y(qk(qy.фK! fqq]B LqLE ƑdHx|} +l 2 'ߎ U;ߏjl¼<ժ`u [Y6\߈@1GfU;j8NP;GC> d$m_RQiD>~7W76RD?y9 }JZvB A!.1@(emWh"i4+$ +4~%{Q=ba$Y-_I%c2߈-:nv:.#=Itz{J*Ä[*n\GnE]uפ]\c테k('69حF1Dsad*ϒ( ]]w +Q8:>~^9#g{sG1rmD? fiF*J GӈOC\R M#a3g1|mwvRRtb|(WS _kch[C-v&\ JtYQQ Ot t5RE'!e4VtJh.άڦqE[k~NLG$ =gƜmIHHgmo:a%DkwۓuqVV`@EJ,NGqmhB*~(ӴlJ!2Y\!6Řaxcm,q*Pq#l2/A?>2/@}v3W.tR蠐i\s%/MӈsX6TԄm +L,d@΅`vݑ=CG.~~"T݇[ԞXk:t#Kµ>#5=BȍsFv؍ݶa=\.cԗtAMD` 濫NyTd!7zTN65. a0Q^chaiLd6Si$:Q miIG˭*TLU fXF<{rCsx)7$!"f(|Dʍ 0.rOB+;eC6irV q # <1R"UCNhchw^V-lsͪLŊYxƁkea"}m\~~L6"G)C|R[8q}3>;uQh17):=1~U1LjdI;:YGYR5X̸3 V9e$(cLB\ldFb\G>NV-hȥnOi)57aD +[y6 &(Fjhݒ}sM4eYoV/(@ɍdל]Y]Rn]bTj; i&0Ƶ/ R206x)&ۆLNblH Hv8פzMf(0r +n])25t@Ģ7뺧+6;%6!V[kh6mK_uCٖ碕FH14-Sc`'2,eؘڌI:ru9sRuotr O݈8mWdL,hم@¸rC8 {#F>hFf4]FͼmWdHe>#vbH]!FsF?s9K QfnގG b>>cÙFi|,%rk8ϫ`>>mWJnGӎ=|cTb>1d4T鈢]+~~*U|Vq5֕ʐm5IAʍlT%7~ִ& Dyv[#2G0M+ӷYΑs1#%ŰN/f؝u7BtJkZ IA-oTkL0Mke;Yn2/O՗m1%N/mCy_ 5{(lKuCf|vMW +4Q[B+YPp=oB>0d̵rQ`sӈMyuӄ.-#ޫ"F$p[F.:}h[FD226:':Iٱx`xdcݖ\0eV)7r$i6~)7(((\m(kbnmv-Kh:W"Vqq4v9h\PEަp -2#ļmHå?jo4Fyݽh= (FK <UB'M#R  y IKgsa(mXfbFdJ6qǫ`a m߂s(UusLG2?fo[1s:&ɤ` +eK>~ޖ>z{bnDOiQQݦFi <.v>v GF{ڈS +~"oq# PF{ȸhYm~t)ӳSZkcRϓL\E {/cC,9KeG{+kVe6$ʭk6^R-Di.1{dBZ?ȫ#]d޶)$6qT4nFFJhςidL(Bw8Uv3?h?dۉ8fnۈExL}+JNsM1N&)F)' c6-,x^bF Tq2ߪ<ӭa8L0rTsX}|AOՙeɮ0p+{lKְuLO4E@;_ֈWzOaOhcu/2<@|q v^t>K%8+J[ŘI1bղp_lĝ tPei5MsZЈu'a]-d>)tI'Qm|~sÚ}֟ • |K hZv^5 +Ж{$dueחdiew[] [XVTܨQb,ocVC،9 ((>-aҮ`9<ݩ['[sh%*"~A[:-Qot]u6ۂsH{yP`þYf|͞/f|ht\v6bp|V wTH\6>5}DK}k\--b͂iӊo+ +skTHGRĚ:RԵfn Gv;a^Vlx$h[V9dy}>W(}0$9"ƢGRm .n"FLI3iiEy fGY"s^n$sxvΒ'.0n}ks'#/fw4'I3n!e; OLgއ1fȝ/ 'w)EZ>v\D,.$Ww|"EOF?Cyp 4 :mw_XD&%[zFyV=D'B~AqB{ **G}煍ty8ظ-;VQi#MWZo(5m4/W_*,-,G[Fn#Fy 6$Q/;Z1/.jrrtfu4z=QL"c !9?{9bř#܆ɥEO L^D! ݶs oZE u R6q/KkV2 +7~q,zSgAְkHyƯ A8ƲT1+S 3e[|x[Pm=^adr5E,^Qm˸y` ܙI=,y-o+ygVؔE-m16}}sψ{L31>iH{ +;A"kԟtUT|~i2d>̞x}m:4$1OnM#y.f[c[ +HYBY /,⺘24mG +Pٛ~QlLff{hF0\]ESf,$7`W"`v+_OXֱOYdU߳;!b0g}V4 ¦'Q+`&J-֣C "Qp'SC޲D& XH@5e]p/0T)!BB!̢D𧻓asfܙ?n:N|Y !q;jdXCm˫-߀-lbuԼ_d/͘O +Wa5)DO<Çblz݀EƓUod s;4C5kH(7q#rV6-udruUF,Dn9􆝄lZf/dao^ugYָ3lo,onA3F.l}! m6Ok3CT ;}>h#R1aF>r2]?$2A,,'3e9aX\C;ͅhZN9َG A'Q ~\|6«:qA_E⢌] E"l+ ;e'.p4hؼV>Ͷb9Z8h1愑&syTˆ_ϻ׌.Q,mvs' Kv%._*nv="N؉CcJmk>Q7qcνhA zFrcrD5*QF@K(1 H;"y/JX2pbWsv؉m#L]G +߆TfTbM DLJ(# ֛!>~[z^>r=;J"UGMMXD;fϛV!smU9 {w)/!0_*,YrMKOFZQaEס&9--jOs1T/.^eC ^`5<6Lwb%(FS=0K#;҂F*$w⤰5}Y 7_m_`ĮagՆv +[L%S +Iׇq`/0ңuYV;IBhfXbۣEl`>}1=vOdwC@#zIN +ðb#g^׆BE/KSB].d:|*i{՟Y2fw( Pat).1PYqq!^rbr#M+ǾCa'-ȸ@֩yUd<]J0ZHGnu fM|,߰GgGm,&lk}b\ng{WB`ifEƍhvlÛ\RF ~`#m|Na ].S}#Kal$0ji=eؤkac&U>i*%Px&դǟȵ/5o{}# L !ƲȵQp`$C,KcyŮ-}nu,;#d\*{yLJr;O Hn߹g0n^@<0@赝~ndÕkA*aJTaְ+96&^e^{psZ@ηU%1,X@ qڍ/ӳr?3!icU섩A+O Y=!Αʀ`g87:lJЌO+MNw\^jw.!֮bι-"w]PL̏6!Vt)a3~f C +` g x6]!aGVb[vH w5 K*vJc'脔ieyם}o5cMT?=E~va= +]LB@Z;kaIFgz|# j(y% XؕVTxh<"xq< #Zىf< _X%}hmη{pr_$RfL⧭gFk$;]ss4^aLqqф_wZV&d0/..ds-yDWgH$'.@nPOޒ]=xNtz`/Nk4ģpSTAiuۜ1lVUCZmս2 +-T\A-tF]V&#im0 \{N!w٭:cD68}z*c|I7=;W2Ɨιw~/i^@B>e" d9G٧zP,CcmjT| |woDF&r%8Ǘy;KZY-q*6jm<9}먵 _H{g%Y-4R|<*b/.a5;jUHpHyxgwFy&k뵿иcttg%+ 3ih.dh+YNq*ݏoy7^|lҗƍ!a5êԅKSq`d2_DQj;7fɥ^?2(=4kgu6R[Mq(;H[X}eXDZOu|5FA+e<;<.tA FLX?u/ 2bgyȤmۨYG/>l4ogsYkh^t98v8aTX;xa=j:myFOxg"ߝЈZMUSg TH%nyo=%bh:L~PyDԟ6`u/PhXG#3g["[PLN`PnU8sEVafcZ <57[XU9j.M +202.xp_lۼo#)0ȾHj=x3'."-oߵK-12ydYVAS;*mvf #1%l]²#3ό72m&v8KџL[WTk oX8yxW҄E8޵DEPcu-!30U:k{)\: ]Z%517ᯒS!~[vN{"b[L_BsmhW+*.&wY9·ReG_+6G5wn=Ky̜܌M(ٕY$1tT +ߕ4JU]h{ς^FGԃuD E=γ;\JR 5gA孌FڠOb9 ĆML%`wrNK3lp%.N2m'&.2Ŭ3m*a"澗oX/1A v޴)Rp5 Z8:.MaDELg ҝSH0i.haM&0|f8o1{鵻2Pᄅ|YFa!v8tT_ul\ĿJd4b6 ; /+wλی'pFj֯Чvٴ>i MSFVsb֘dupb9[v()Ut"?'䔱jUѩ'8􄃴ɳ2-E2+fXF!^ٚ-/[rTmhnޡ35g¡[]/e+W}!x 7wM?+wR8c . +VJ[C776(}.'E<[,7ף3kH&(!4bie,j94"f~l\UVj]aZY7Kmڌ +;Gf YJνhމ9eM aի %R(bށtKddZ -3T^{ā}Rfefl$KfQOP5촜ƝJo2?DuxY,d.N- =C]mY\!iA*Qܸ^~(6Mbu#6F 53E׋Lᎌȶ+JЭ5Gҷz(yMFbF :mtNەbfy-vL42~9}o,-u1NdGA]1*zқ, z $B؅x2ƣH]u,k'Phu[ D;])cCxfLL5$uiQco64heg6umƮkϵJ n'/fuJI\[YFShuҨ*elO?Y>#Sn.5u6l2g딑ݍwFK!贝!n<&aƜY^XVq'.D5qVM>I"D~=aKqBzAm(BܙH6<;͟Jٔ}+YCMQLIy߈T.:ͻ rFz7t`~rWFPy"J&$}rUʨ>< +R:4_MΨD'@6\s0,+cs{W8UBn6{`d|f09.G0<3ي}^#Ɛ!,,rB##Ǩ_yJl'&JP rSDؠ-c@gak{'u`<-aCiӭvr_63m.JJdTajZZ֚M%كdS(q1j}ߨ.2Xǐ~[YU҈1 +gֆFZbMC +&c+7='Id\~sZX`^݁TLf}"'@:R5TnyzN Uva63ag6ܽxȈ;$2,Ŭ094!KddaaJ[`MԉE^T{ lphdJh|kWddSq#lh+!^<EdOHEK{Wֈ#H +̯S-;[ti A6Ȉc4lfȵUcY\yk:2~έ@L8P-Q,EJwxGFyv0GPK %&G\gGBqG)hoM(r?)*(:*ͪ/¸}GԮ@PE7 ooi=73HeLT^̮KnTM c(0J$⯣"h | +VFN~tms&_ 'hYx&6^j^[L^]ve2vN R`焵i=g{AUߧ'Wa|׶&cvZ¾rBb1O3M(,Rw'` k[*O"V-hܺBO97i͓W*,j{}R]O_FЮ/G[O,jUb{gS' +b6kH}$ȵuToef6am[ހIc9(q#ubmzͤKBoNk&t"CZ0t  F5Ƞ-O6 +l̝FؼFhc)F~L2SYdڅ"Rmoa/ ]8%rP*7fmj@gRmХ\sC{V=-¨Q֎V۹v<=QVuTl?83w,]H".T~(,6ѬbhDdvrxd0DD)g1J=F$lM]6I5am6Z[ +#V(zI*- $bmjWk{S{U';.";aP=y +;Gc6C>M?9*ZrJJB+93"9Z)rbR<FЉεV[VۘIa-¦)oQ,kÕa!vWR8&Zm m̦7ÞQF#ֆ#b*^h0jPygIWX'XzZhC8kI ro,.Ag&^P->E632ET2n&-_Ů*?H]U`maT@t_JZ λAJ_͒Ռ!Ip3caP4$EvH2R~jc"Emv#Bmtylb2Qm"lt"Hy\Uuq>;kR3fcۜ[OzuwFˢկ*QY5&aU\f>T[5nZfzn[rEڰ#]d ٪Stg#CRE!S@fqiz1-mW^ix]&hÐTq1NTm2LYoWi^͋VO#MNjl2`EKvTH(/QjS_ma0{0O{u ԓC~U^d_MNN*+ύٟ${TU`;*F4N;VBnG&lZs͓j_ڼ=E2rsR"->WWl# +&'h\w4U + c%z">!&H{Vmͬ(JmgH +ު-8G >V󶮦o3HN&b!(#E+;7~Ohd'~mZ>ecS>3 D>O һagQ"=k2QE=̣4gQc#L_zY\ tie+IUuR !J !ZZm''4R9ŪC2f̙¤0b$v֒a'TTU]+X;҈E}Cu +[ * 02H+)l_02}@; 6^*vWRHʈfֻi a}+lۿ-:ڰb1Q +#9ҥ8%eŵ$7)#M/ x! mBՓ2j> +ܵw<_ں$#YnI%/GF|0ʒ ՚;/–ƕG[yEPvSo165СKڞrvjHČoFĪߵ +,ovn[~9$I&l+i#@(dw%mTM8u"U_p%UlM-G33x zwTA +f +FKCvC |jsGb˸5PdLΈmOorGyJx >25De>O;4foL3; _f H򅭻ʋ0v2;T}<ؓ3lHndF`|dXL:roSyYm{iL0 rَ8 7sԩ?F:h]{$0-tn3穼9܅vZ،p<5 z2{Bl>VKur5C5ӕڞ*1ّtvFmȨgyQ_+6hf̴:4R^ [6c}#A\57벺~nLIDƖWBc+K06G/I3CGǛ$ܰbaQ"KZm!- Zmؒ:4JlV5oN/''0f a/pj8Q9$2RNKۋ٬_1P<Ŗ{ܳ01%^EFzΥL:-;3_n'~܆w4SY~Jà.tU޳J\iL%u~H _9u%>ˀZ[*#}3euR=*y>m}=`m?_ $,=w[`Ng0_C\ s[Ǡ8ZY[֝%6dxKKS@lNJV,;OI*iTYxa1mrjyGڞ;)#'"Eܘ+&Y1?J-wH#݈ocF|W҈P;F%cӰ[%ԕd#PiVӏJs({-$(Վ;n6 (.jOUgS1#k-\*g\ڨbO8P`.ؾIF}4t`n?6 ++gAe7iaOh Gk_Ia}sW9%*<􍔡ֆ3⧰?0J‰eɒ4LYiEYa]Ɇw_ϛ-pڵ vn)'UJ@#bPF̞+DIoڞ] #ϒ +q%`>Zb\+Kr/nu)t7- --g;"H=Uf|Tb8|$Yܲۋ ,$=0WӀo9Iih3KpW0L~R*1z8H,(A8 *&HH՜#2m%WEOQ:cf:&LBG +`75,vzFhF?!ȴaKc\) ȴ*1xqLumEF>RdGٰI+b1.1~ukhDGqNY37;bY{G6^Hv=sK$"vThKnAaVa&$poU_=!mq&R'0!0$xeDMyMO&m!LQ$#{p>&"3-?bQWhCKa_53"q cqF&o;97vPߦbkt 6G[f˱ [2/qɲ1>s*2~ 826Q1e/ ?~W=P/M^\=EOY -3!ZȪE^nK[1pl׾1UblGw{11įvƨGB.acTIȎ]'Lg]QvoUGNuUղ' 7 #l{gb/)m-Gƹqy36=~e F0 +t2F6"਑}tZ Ҷić(Pf4#)~19[C +hUʨ.6ZxPN`5yu9@ ]V,!rR&ƷoBD}3(kPٹV~'ú rm".2xq #<)0$|ĘtQo?݄GK*a:bTҕkI5!Qf=+&搬J WO͔⫆4Ỳ\O!/&z9ɨY;#`psEV}" ̢Ʃuy` +7 G)h`vs3$eH)F-ȭ! +Gx +mwu9L 5)Ev~gł?$gSGED1 X;aً iEj~>GvN\IW^[uM\2^1b :o, ^ nI$PJp_/X`Wy!yV%sY-|J"BGK!{x[^[ !*/J1qG\VtؤZ\CJRF 7ްQ 0%b|04~/.6܌?Kl\R>'PSs[auʈ6{*q^CU`dM}œT1%Ktc#-vQe=<()>^5 b 4YðOpܲΞ 4\n*͚A'\$6no\zNS˄5 h{\ dw*e,V2(rvRF&ҪxK +Ǯ8-TŐ -ؽk)Ċ5v)&ʁ6erNhS_ m'ĞtP\sׯټ#Wk }|Hppdl +U5Ǝ"UCwUciN!:k~kQ82~goC>bPWK ˳7ifC9$!ܓ6–/s!wKס1yWV 4 A5{6eFhdoulVA?ܗ]cJʡk +M DFN1{}ݐ@7$Y.bqyQ6%m8oN'4w##HBHˠX_)Q`_EQtZ% G9a'Jhcc%0d{WةwM#xŻfMȠO kvA`X&2;": Z>9v w.3Qy&:DKr,vJY4ț þ΁ZLz}CW ~?[iwWRC6Q=,Ny'DFV!یEu_ ^5O(,ByxYEKx*+cd~'C1$Σ^dWE؃7"FgdTW|TϨT@Yitni]c`XEE=C%gbqTx"oZ:#yMZ̖{}x dS>b <0 +\%(;#KD^FƄ>A;F l[J_XF61Ag>y4b\T \uܕ4Ra0GA)wDG`~W<4rT'1̩c$:mGIaG@Ջ'vB F#K NsX ʖM +&iRLeHv$: +0,9[[UFUp[>9iL2ػNl=hd.eoGFDuMwd|)`DIa1-FUV;# m[0wwE&;OK z1,pC +c2)㫪Hw9Hؽhu9as̊/-ۙ?M];'هWS:RJ0F۪1+*2QwJ0ȓ9ʾ=ajh+ i؉e3k̪jb ̭%&jǽ`g'dg_)Y6CuWK6lk +0Fbo^1ynLQA3l7ۚ"a[ja9]"6~B"#5 +(\gW!qi!؞\_Qp=^WzQ>'8"ږ9q5b=b-joFeL2?Tu9&wL(Ezʌ~s"M; 5r^bd:Y'"їvky'Gs]>عۙ)U_GK̬esKnʓUXD(lvJMtўr +] mK@"YT3$MOyɛ;_a%!+UYuE86΂y:巪ږ5Xyݘ4+(؋á l- $gvD+ϘY2EXuJ7\s`(,")'~6!Qg`-Lq,l8ǁ9oVQ(_/*XWEYS`vrIQ,[Xp想4o*j:Xv MA "5D;ߕ̿;0q\֟*+"zCy!M3,wLY9:6gDosW;Y+± >w%02[#qY6 2'D:t(Of1wbaUYQ +;S0$$xۿeSJIjs{Pa<x~^ +fקRY5DƮlN+=L%62p[hlKlr/cJƈOk&")_`锄O'YG^ +vH@6ulFtHR4H%<UUYD?DͦE7U#@&qoM Ϸ+{p 7̞QEt_xΟBOE)!NqHyr=hygu;͐|\%v' !Ya-zfqB#`WHk!'-wUiqhxޞLm$B_E̡7Y,ln9UkrvYEGSsg"e[%R9DVDؠnKIUagM=U5x.IAόNYY&a5ֺAgUv~?KNsolzwe\ d"=@Ou}XX>"LU\jFr!H-Y5Mfe4F1 }-z4|7,z; FLvܒFBہqXg\69Ȭ +#XVYC24XDņ5W?) rr(di:vXdKS]905"-̰3uI8yP\a9*"u:\^@kjHj[^B]윐-88t{ +C,},ģ*%b[쑈X{l5E?nƵ3Ngsn'bSŸ<ųCO6+l-v28"[a##eey-RǑ2kuJ1)#̎6ObEFovnRɘॏ3z{rrGO; % COqԘt*2ο9sQOzdGfj;;> Rعa4m11l4v^u++#kUdC&"; +CyϑvIzVe)9r}4w]uF [bM-+mWhʧĜ&։a$_hu ?/ 5g}日?CRaefffˌ絖(o2F~*!ц9ð&muNܗk؋ccOdնc +_ ;e)Mm:,tl&g6gkUgk#K<ly9L0Ա4 cX3ְ48C'7 +IfD3 1ZFYbsk;1CNmi:oOA㷱@[mH E~4N +BʂM)ZLle -'  XXkbK/*Y +HWŨzUk]%61\O8h +m3m''*g-:S{F5r7rof'6tll!]kF<) +1z84?u$5Jy Yۯo17rD$L,HE`$ojjݔV/ԺQi{'?j<=>#,P-FLCf)Fftgqz) +;ѷGM,%?Xau}" 2mVh1 a sWƺjGEC7G(eq%6JIά4Zm#ƥ`uEk!JUGI+}vj#)#M>mrŭ~ѯGoNH:iLx` Wxfq7YQHdd;ڮa__yo J>kyG#:'0Y# 1y`ԁyPj{dd/JF"+4!V2s`[dbm'80"t"IRL=dh>*݋&8 }UR KѽчXY'0J)kkGa0?9##ɟ9@UqIBmI~W %}9q!V3&P^ﰞ.0_4rmh| + {|3֔U%;v"EF=02 l6b1l]!v)iT?ڲ æc]$c^F# FgRFtmYv\e,h~fĹNlWOl"6ZeNs:U}=UiUUoF1b#4MW}8<kYI*}UqiD#\6?T=i%=/8=rƥ΁ujtnb0>K= _%]|D1ھָ,Ȑ%'ߕ3{k1WȈ2켬d)VfFo?- |{¼=N³n*5"|}j6 )2JѲf'Q'u5{e>oar&;ݪB 9j2Fں7̶|IOF![_C?"A 9R/{XHͰs'_-O|EV ;ȆGLllk?s +dL,v  j'QeI ׅaNaH0I8+.9쵁#Ba3bQC-X[Wg{g!Zꌬ޴lȊ.a=[bly7s`ˁ4dv +Wٲl#g̭2EX49B]amWo2fq<_ϫTRZJډ}bku*Zp{82R7;L.sKȲt26O^D*^+1~fA0Fʡt}{+?r2#kY| *3dnO`whu|$'KLFiރn7NddؾʸF1$0xW:j%N%|tl䋻fC$+7ym#;_#rvZ+":\tݣJ_ ľIR;˺cK[kz7yLӓ/niSix=컩Ķ+abڵLPw>}Rڏ#X`k'j[3x05V`߶<',܅iaQںh0*.Jf"f<`-XL}W +lX+if7"v#KԔLa(\1fعDFH]߽/1=Ȉn/q/6bl0;zILr$̝Wدfʅ6*[':G%4aϪ#wB1BmO%E8s.i1AQlAii)r;}͏datrZ]fpS26Y6+^LJ΂mZs`Ȥ*8]Naa:>Cb%cOXa%co!huSRL +b},#j-7 +^HEh^.3ErkJui vimO.ʓ@[ ?F(4լgxlRmr ; F:OL/a+Tb]Mm:bSё+uFeg.žv[>ȿK *zI*?G=[ l%GkdgB#S!.dUvHSpgs5Dz~!o2ؖp ; ˌyKf̒6C),nw1&+QAef*o;:6 b&d䌢T[Eeߖ5<-v(kƼnDyEvR5Jzl֯&6+6WN$ķ;^QwT 996W F)oDE6RWĹ@] +oj&M$$?C'y{"Iu 7[NvF35y_d8aagFmr)`/biFwÛ!̂Yq)ޭ~RG*|=$NnQ|qDZ'*-%ZdF ڹU|*^Pʡhϻ$B PihS#^9^k k$(RWe!ylT\[Rj-\u!Frm]N3A^ַEI.m&$T)cgN1Dz㪙GiM>m* X_zj"v y-6vؽS_H~ j=weXRR +l2Bq]-j8/&tfѠ)aȵ9kbL竘ꠎKle`Or) ;/HOe"0KX𓚄;.ڰ)?vȵť4*{V\&`ԩ1ԀTcgԕMF%Yp ݔi ݷI0O91ΠHtD{Panj4KL^gQYn\yp۳akalskU7Y +rmZS1#s_Od~㨈Svo5A,*ުa=üCxnS۳0ucmu6&MYkKKψzxq +U7s7#15(;}>F ֓S(=̷֮PLUIE6^2lBλcٚGzEкQi {&jIu=wXs64lcQey55zu#X鮟y9h39i#bcL63S_lr:rSBس$k< +bj; +՝hўf:̖ v."KvXa'zN>Ul[Tn~8ΜshvX:!}u AX%K|_3aэTaO\H`ځR`de{(x6jy룽|CJ~ݚhDMo,aSddgQ-,Q6 DF:oN|1ZiYEv$_PV6$uT H`$FƝlI}'cԛOlw\d N電Z&ƦiWqggYBuqWv$G⭑ OFm0NYL;IѡQm?Ɨ0z6}qz}0H`dx;0[fԘIxa0vy;"RhOaCF̉DTySI{g Wh&iVx ;3kk!׃[Q%p۱Qav^+F^!v6aae 7a60UdS6tiJ17W`&'5\`m?bwKEaٝ4]'3(f{#AW1=`[uٶXjjF6-|#!M&:k {W6b'ꊌ-8v G +'mi܃Q}xʜ&W I>/F଑>7RY=KiP^j rh&jvn̶}32Vcf8K5Lj_, N뜱6iɖ73Vmx^^3sfMmb8fXJ6"..^zml +W 6Wk('rͫ55k{H̉SX!9;slں@ҹF*<;7pP5;)nuPW ZICڜ/EODi.gPԩHy -z~۱[;wX*!h7bI_3v/gW٨0X~Pk;Q}R}3'Qk+`` Qk$nj|&d:_qrHPοgTЖ"+-v"#l?9%9C-a9еIv)j đ2bY:aƞ"Q%znv^ 0&LNE";g*.bq9at,9.ʟ4VoUt9<%b愱Fi F|a4HvR%8YػhޓXnvF*Niь&Ř/sd|cFuGfَEPD "W>B^hϷ!J8?}J2L`}RpU([tj}#hg ܲsN F~4N>H_HzXH^*S6#if; /髑~D*GƳiĸ#g/[H #LKɔIV;SF5 =HG7~)YVE؅1ԞNVְ!!q]o "֧ }I\s1+`Œ Fԑ3!oVabJc#8²0oGFHu}a1>[k"l3cd"+v50#Y`8U5hGiS(~LTR5V^za͚ֈ Y.OSs,@;2O[i_1uĢ&y}nւ$]!cabXXj)#vWC\6E0$ +vn9bv& [D@n%z6CIc _K7P9 S;߯jQM2#ljVBRI#̀5$ܿNitwal3[) +>DU&k-^:R`Pb۬=Yfh+ZfaPI?4.Sb/[ :=rd\آa Pky6m-dY#h{FZła^Dq}P8o)G\lL(ԔEFzo[|,2۾ o'aX;Ε5߉X +҆* +U$WMoT顼.3BGXte[Qh>~ d?F&~WNocXyfˆju7ˌYi, cVE_GF͞eNRNMEwRFioEn3/3aCcEho(,zΧأ!S1 +bFW=Q0銍4ϓKj4U`-ghUl' +VeOP}[5=Lg c]Zwd1a +Ne=vK-!kXn.v`]x!KI@9P !~Cr]1 UƮrPa\9!k,32rPͦ=S=/ۃO{WZũ# +R,/fGhmaw ÞZ+&Ʋأu<{un3hݭvFXLwuZiIq;vzw/aJqRY05bvD&mFt|} DZ P8mBrȴ oߜtMg [IYNƿ9#=Hib7 -}=I B#3d`{g OWMoHt\icl Fz2&;aL:4p'b-Xh`'hd/{IYQҥfoLoP{)>˴(]_SSc3_;_V{` 'YJ1'pﳜr͸ga8B`}ѐAU4,^\ؐ gъE]I1k[fsOcF(t@E;QQ֑qĩ/luqd4K8@LKLZl3 ^yg1w}Y@/.3In' n) O`50CX˘OQaX: izYU;&d_E-&q5 ٨X%2WHY>㲪 #c@7F[ɼ6Ŏ2fO>/Nel ~g;eX==;\c$6EN/ަ3a1dZJ5^RUEh/A*4!}sEZ1B"β.:rXrW}oCl_b<=(qzۜi0sG4ͤ*FoM3bȼ%V)xj\BӄB?XG1/{5C'dtU3 +_N"-M}_ z+j7wZ(dlW*´foL;> ndlt3ݼ͹%z(P,a՛Dakr3w'j(=]`޾4<ƅkFԼ8zmz?J(Ѣ0Od(H<Ԭ>/}3oM'0D\pLC'KX +Pʽo b'.24@Vbs?f`egBDDPإG&\C'-U9HC,;s`>7 b X!721|\b`=Lj0v2>Ni޾y+y uY.7 TE_4zM4bF#3?q'/ؕ-9/;ojvҡ'8jܬzs* :N)ύT`{uh5$7 ՜db.~+e}mP1V^G&{m4Zk|1Fx']V]-Eu'QR&6YEKz]w-#L8rɨt:Z,MVzoZ8Nxn%iQb3N=P_a5cu}%'ƃ1D5OT|-վ4΍5!mZMdc53J㹋_[2ZBM]vn/ST'(jj2Tۭ dC ۴~Wb@^z5C "3/zư&XbZq>,-|wu* {ܹ=)5[^Y]BŇed/&lF0Ok~mdi'^$CQsFq<4k(1bJݷݩ+!JKށ'EiIѱmo`Oy,մX5t3HViՊH6;x$H㘻_fE-~S-?'_p,3Tv!h*d,o'tz.[Nb~^fxe\JTOՇCbjXF/-Ui=Pq ͦSql53 }#37Ol^lJG"ىAIDCPrpcþlj>FrI2bº{\Lnٱt+* $L4vGs%N1gwkfm/D'ŹhAk1iJfEW01u+< T?!Hgur\69"CJg9 5KT~E{mUA]K(+dU> Hf@aE/uؒ!3EņГݟ~+M*H;کzAywP;YG،"I~K_-̮7yp̿H5pI?-XCQN +0*7{BQqr*F+x'!{E^2=PH){J +։_`d!6uzUo\h-c'UwzF90|oJ.M>P +{aWqq F{ľB){Pͤ%o01)=-@@f,/yXO 0Q{ܮa4SR:˟es4:'WNh(k8@3ښ=YU vd2JxmZe|6t81k5!TG biKPl˿I??2Vƣ %G`ekZN7{XU{g+&\U%_hV ,қ饇lB +7:bm/YyZ F{j2/:FԷ .]*fa}^_z*ͬZxays{ous1É 0\2%_x<,l`[gV7`<Ytp[-J)ĸ!pA\̐FWMe_*ij ًa +6eQ'~~cQSƸj[7Y<DilcQm>n_xĿ^J5 '-%*j\],R6ӁT LT!cJ'#<:VG>k#8z0U4iZ"Dś׊/b/8AY}k/>ۖb ]dZ8dy FGٶr~-U{pdUg6$Cq|9L #ot}xr=J6ohGO|0v@TbZ$Q[tXuCJm1n7Й˔mm*<;ẕ=5.#d 34ІxͼWQ)fŰ4#4[:D,V]jof#1;+4ܸx627va=1s? G +fm/ +c E^^fd\lJ*XK$t +`1m$V@q4_*EhO8Լr?[~8D9,oFe"N rEÄf׌߮|U ~ZdQnuzAg7Ô\oT -H}g~}_l~|a=>Xa,m3$v4Ɔc+t%%.#$UXK;߸.Xet"@Wmk+>,+8 .?Z#2,~"ۖi +ϛDZs_U +Fv&܃#R<<,*ն ;)sTېĔU16FBQıpٹ`(j{/2mtR@j=P*: oz+Z-Ѹ"$~_`̝M1[?ɰ+loHCn`|.mn]5YXn °Tr{ho>[XeFF$ǩ$[ .hl8Owb& piyH,Ch\r"֗,XBOgc|Yf;~2 dU[(iz aBmbd2VCf4}V|a.ukh,klݖʄf3{V{(??~v Ē*3%M3;kX1VH*75R;Ȼ΃tJCS]AH,CA* +ѪY'JL=Yam0pDAݢqz d-e-|iҡ@]DQok[B|f%Ir{GGlƻ"73ErSkfacύ*3oc8L>{ͺDFbG0[VO&/1@4ceǤx~R"fyN0;E\݈Fvِ?O| #;O̽Z2mg)DՁ%Jd_3*74z5qo!~c#:v؄!Z5}Kh 1HȚrl_WFe`5-̞`%qLx7cf'Maz0/%ba%nmG]1+4xpԀo \j[ <ߔ؋D(HXx& )&vz 7tnx|%DCr_+ /JC,m$|NnآtNb'٨آ󾗇rE USnf^91eϝ/(MfHwE­T*Z9Dҳuiy+ +$Uqkà qTTܞ24H\ + +ØBcbᰗ `j"_l@TNc/SiӢSj 26 +䋍s+` {c';#Ysk`.GbIq۠1Yj8pc#j8^#;OwE5_l-74ְ>x+m|WDx3glD:%TpR$5wDM +y;AxCa&#d3<]+<G6ÿH +7zwraVH*ʣbxŬh۹K~sz!9}ɦ4L`s('^O~5U#^#J"F ݹD$P>]5KOE)d/ !06ʰ8o +hyo< +<7tɶƍŢE" b^2aQ *nCmxw܆d6J,}gdAz3Wd3;֬OO~Cs (i+ؘ|QS)7BЪ2Y'+;qDyω3@MWzxe~Oryku :74^a[zC#zݡr^ld2Sdƨ ٖ fFYw ~0qaAj2bt$Yq|\Txl=5372+U?X##6*F!&!<q1L~(Dķ/4bg t+=ܭĘ, 7V_ ,fhc.ȻjHv#NVp{/_Ȃv!pK#z70 #z 6;]] #KGae1;Ne1;eѾX%gdİlh\J%WGլ8el V3( 4{I)7\~26,SciFГx^wm]tRo`+dؓ$(l7aCvbIN +hyޠᆴH/Ƣ͹fp݉"ntZ0h2!P|2]Qeibz{xV7wz<9# +nNJ!_TZͼ#~] (/%vq"Pp+*+e3g+GWAφ1AM*>RGVA1tUD]^xM9ܸ@Yg{>?fFAJN%?Y0Xkyz7oXFkF] -$Eފ=i{U K^{.za(^ hľO8qOa5Aks0~=|ͬG.61*!g' +pV-Wnf~!}o;JmRNj~ȷgb9_*p6.{cw 7&6dzS\F Q]tgqb-HΛg(=x˗*ɳ||A1R>]nO:1Ll򧿉#3zzOaR~fdU/y;WhdLqQp/E t]6F ً-|32>lhfٹO(U`U6m$xxySlyfyyؤzC 6/EStYY<ޑƟl{Po+| )ךEa3C 'xxk%#Ig`=nɧBnas +nۈ\F3IB&/.<ã1:{˅ 3 +0_l]gl(]lȷ6BFf[Xɔ dޗWaY}Hf; l+r'fz~HA5f1Xv +7c|0nլ" xCra'| HhqҾꕅ[qo{/y6ىNlèT{;" &{Yg3)';f#܏o3cG5[ Bh H-nt$X WBU1 +3rVF}׌]56y3lnbeq 57cKjMU 9XcF/aw`f6CB=R =TQzT5FtXcqDKS%ߚgnTYXflb,!nlDc9$|haTv~Ft 982aKU\zWtb l6|z|w苹%$|I!߆gi^e0?wlh(LE}vs40v_" +b6yKd8p , 24bf<U`d<<u_戟x5乙ٜ}ovM;:1}/4#Omȷ?vCc4kD <~f4 +&72d &!r#dl/i7-$odDK +z0޾u0lQ|YR2-|Śsd{哰.?A?߼0fz~a{F Ԑi_hL] ժI /4b10Oo&l0KMj6kހ켗~vz4:[Hq;'!AGwݡM% n +`8xʝ0zހ %eI34"6B;OP^kԚxǝ!\ Ƙ ^,̌O~!(H62OJlm\DB­g;/9$-غ}:bGt1c}#5⍗[*w5ƒJȣoBp78Z.F Sی +CMf(t6b@Loo /媢 +)עlB[.wMvޣ!7 g3" DW R;$"(^d+}Ym-ӑo{/od;eҟ/o|!RMlwb~/,Əfl}aq_IػKʰ8s&C_Xp';cb\^}݌ U(\c.Q*!vn(^^[}o`LErsᾤޘC:&?];n ]֒QLaf3kFS:|2勯3(GBhV҄*!2vV>72"ͅAYeFAb-N@qƖ1UR0d?Qqxkhov".2D+H~DDUt[]_xAiG#`nli>ân'?m=5$7,ZcCWoEIG Cym +kQq0ˆaʂ$F % IԌ iYh&+H,^PoÛd^7px^~0722[ cFF`ȰHJ$mgb^j~Xaj!ofD{ ]+=59&F]Ӭ||Gyq` <;!$'C3};7:H+ TVXw?n1H $qO!4A X譆zVhxs9Eɗ+q}"xN嬭5 h.Yn3m@ m'ӔCJg җ22h93N4cV쓄tS)HXlRq޼t۬_CVuKI@~I.缡&T<0t"FZڃzL.k|,+y{mugëq6qeQ0WshJT:ϳ7mϻnlDgJfD-l8'ӽ yϯ'֋ m@n֟d+JHu&k9O./lJ?h$5^1vwR~#>K'0TnxdʧdEo`'YZcnx<7flGW  03J^N{/Bhx6nNzRpXic1/#v؏L/3q[G,ol\+5 F!X.&0U쥺rN Sa4Ҳ,tc]m'h"tf۬ +c+EZ7/W/.n͂ p6Z7'-#'!^L3DQ +/6<=_#LDm<g !96TgmxEJa_؈itCÁh\fN80p 1tԈmcS4hfYFͫ +t`d.wFDUo^kT=3d$6̉v_62x5֧ 6Îհ>SCm̼es?J ǒB#kg&Ⱕ/v/݂-H#j\) hNz nˤCloh!V{f#t0<_M1|eqF Cܘ gcĭ +gJHs᫢;m5u Kyy=-Gǽv v~n@pJo18UrC[b mpۢV|"`n|3ֶ6uԘk.F'#4+:06hjW@W7 Ŗ3j\ v^&`ܿđst+WBS"GM^2>dt>i5h>cMq(h4<s|99tq؈4P FGmŦf8<r+Qhi#VgC;f-SDQr*"߆KM]1=^AeȻki#ቪ +:MJհ.}o584#s r!ЈBd'n6ߧdH A׿38%^ÈwYo/yjv62Xs'$Mu+ t}Az +4anC#sWlɾ +RWxG dFY}zXupgWBs›omvG&{O[ +t#8q!}P_n,2c#;8*|[tNg *7RX]L3Cc4?nLlx>A uI$ E06Xc{IA6`^~_2Н AߦwcmtR$)Ǒ'$h+dudaff؊P?t^#< np,k*n"(f{UbɊmI..:yK&Ļ_?Qq,0;vTıDYqHC銿6?P˔=QW3z/a]:[4aϝ{⼈dfCg{WCm<3R(O3'|?S:7 i]$(/н+*an~_7rt[E_!+B%#."9{k()MbX8-DSmxM28N("[GM} SFtl֛L!Ɔt=:;aJ'VPT\$bAêZA-WFaqEq{ [iU7hq_=%J˔qːr[ffND=8bDkYP8GXܡaEgUsjS:p[l~o' a-eOXwql*x|Zy52aDZъ*06z&B'u7+G)2n&ȈC:3 |xԂj!`*vn%{%I!A3BS((X5Ylq.'(vdD\ڡqSw2F$h8ĺgY R`bcw:@}lUK:hi OHFr_,v^ڲ"B#o;7# %7$mLqFl< BRL=, VӨAib#B#Z-*>o"&EПܨ`|9ٔ(fEIF}u 7JlhƃQr[X'$;Q.F!֪ssx۬tD0k*X8W}Ȏ̿@d1lPY@}νU(9-f6ԏyn "ym%&Ѩ5Zn'_Cςt##MFk82RhYՑ16f`ݛ׬u({/*"#-w+_DZx;):Y͋-kTbse8mT=:.R@N1ZȘ&Aw" d 8W(b_u>J͉/Z$I6*F jڌ)p%xWxRxrQ>_@FOØ2#}b[bQ`+^kBbb8"u +;ҽG˒}/ +[ e,ϯ= ͰRYQ:ߦ0Y'9:Hv,fYe]H q3SfBtaiQs.%9lP hM6E5*`1tG/#lT4fHٙt]ӝ7y%Ē/3ب? ƎNh[#;%Pumͻ#<1L>.śU +zpOqw~wl?H"X܄b#V7#0]?b¹q7 M_}`Gk +E13G9ZG f5[2Kο>c +Wg+3dzx;~10^:cybccGҦy%tnFcQFܭ_.4$~aϢM`Ry>//`|sF/1Hlc#7A%0pN|p%CfpF6v3jFhNJHYqojxm`={6G4\*+,+EF;o9-<#tq WDq)a/DsD5#l?Y?˶ng/Q]6Ʀ2Xym c)yŪ&úԽ0*9(].g-e0P FSGC)d%"t>VwctE|H?g1 7#:b'?f)-XbV| ;wJ܀am-Usǧcm}`32^QqNsDd5Td {C((aXDmȉa[::61F=5>3}冒F$?U +r][yGgr3wrq:3bcY`P G\BN u/v1*FE U OaHv-b|5U1c∿_nf&Ha8èg׏[ URa89(TRnѨLG FEbT̐p\< Qd[q p؛ݾ5)GqZ|J³EیXLy1+f€!$b5kVf0pbHˁ]toG\o٨l0Iv{ @+{9W!ڙ۹yѢbaszT`]Kl#4`q{ء6T-rtH'[ +nѣqфm1+8*JJ J4rt։g&\D*aEf }!h eU5)vhmkcGNdJ/}.3*([5->D6Ã.Q +EOVTTGLؼ+3N^pN5l#8qG|͊~g%jFBy*aͮ^~M}IǾ%#}1确 zڥ#NNuv_^Q [mϓ5J*5lV[Ctѧ[v%1ڈOxa 7gaHVtKm %f^%<w؍U4IDk +S5tgqv0 u*4"(D@h$4r;0 17i2NoCOבuma(%2Ҡ0}y%iЁEDքҙz}Vo`!ކm㢼:qka%.2HFaK=tpS)=ay,b" x.?'ouX$E팗^nfEI\a%.r|Őo{ܗ}.flU750r[9 +6I;s25n6fNQoô_5K*5êfuߏ$ܰz;*枛0Yn2O( 4Y4j&& ֓2JI,agvJlcm£ + q՟/& E^˿a x c :E2JYV" J鋅1mH")W%<#*\M~d6qI]0.$ ?zn4Tvy{Ҋd+$,6iKKHQCsS =Qnnoݰ%(Svo7-Az?MYߎv؎vR +[ 8آߡsОf~XBt>e%,vzBɱyҠ/wn';TY2ZKXԬyuyU, 2Y[dU^5\HO6% +CMޙO QqYLXRm:ၶ:zJQ-MX$+F"Y[rgM7Ta M~X2ƀJ0:whdG5zhaG>1WNn9R,= ƲK [:~OD㣝ö߅ʺ'引&Tn÷qJ[y:K"J<:uE栄;'0D}? &6t-i㼒iQ¼F +L4 GXqثvݹMLHc@Jm1ߡHJYs2F)::z Nȷ922vdw [_muʹJa4$4n%@O*t跽gQ>ygW])iN?&HNQޛ1=:2- ejgkIݣ65F{.p# pa *mgpp%έhDž"iceHǣ~ "d޾<ά-[-#Ffaɜ<5$/6Y 4ܤ +slTVo&lۚooٹmP f86Ve_0p!ҟq SX ×$sv(=9IeU*8c*Y."IHÞ0NQ`aE*2J̓8dEv P"@:0L'!Na85rqAzm)cDeDaش;0*8LuaT.sr`$9Ou`}-un =[ȣX>}X,$ȿ0Odbs?/$0׸/y!}:K0F@!FfH4e!&.V0V3 +ΥVɱ mw֐6z Ǣ+#/v!p3|ya#Ulqp^;6YCnCvBg50h븈&M~ncq# "}uٽ8.vf~99%K};a[půs +L(, 6FcWJ0ww:s̛CJbwqT5YId3% +,a8.Jӹ:*,I]S0.u\DBƑ(=%Uع!#G kVV"f!0:OrLRFvY& @- XK +mln`L}Ȇ|)Ui#"Zlᆝ@Xn٪{~܌G -LLM2M:|%0I2O^a1$0JgǏjn̴[ BI˭ߣv~ET6> B]D";3UCWX\c9O"of6Y*54klb{ͳx +SE$wvdsTfpD+FɊ@YQ#"#"%2aY#)aAʀ nʾǘT^&lu6kt$50pR~Xqa&2nyҔ5.S\G^%% Tl2Sk1w(itdM⤘Ƭ!B{p@xL`dZȤ_d,Cb[Ѷf")r(Ătdɶ6PoFfݪv; qy W>C{ '+#m)v|vBBE6p[A=)J_m\g#Ƿ>#dn-ܥS 6ȅ&/@CkΩuaJ#l<6~/Fچk##4Pm\HU/l2`Ȧ }NU6b-lq!o@YҀR-bJH՝|ݸ8?^ҁ?aSm l3"NݿmGvTd _s<w)|5cG=$_]6XSbwґUrȏlNT^vC"[VL&hm^~F2.@Ώֿ(DGEvq|6eQ1wTlbvnĎVb(q*r|зrT3\))$~yPs!7f Y0K{!TgT8oߛ J?7= +zM{}}E0)bK\k DEwUnEEg%R{G`çUͤl(\~F{X̪f7ok93ʗLJsA3Ղ\c\dI f"b׸;Odr_޳smEىZ4uH _g!pQ`DDDJj;"d~nq;XdCqtiYч$a:~ lPkR!|J>?6(h7*0^$ U}͓$SDPXFķEUe0mseTeB|TaUH)ՆMCT/a1,TF`z2 ;/]K2[TE>8s_rcRYN Jq2WR۹stm9 ޏvIHs0R[͈f} nüR ّyq؉,]NXaOuE&whIulDQiaL8#֦<GځI~LSp97Z<9j- MBPPk+k> ){Qh5:2v+Aue9Me hH{$i%E/_rU[8nR^G$K&ޖȬz $.˙H7|?&OQ'.(o JBmLCxBS/8g6BmVA:`7MaNMEw +6LJu/ׄE QH5\}uEh贡2(6\%`t~Aɒ؉V6#æp(vr&n1"fezNlǛ'V[ѐj{RRakr)\ "] fEej¦n|G+UD 6J1Js¬~ >%F#Hb#hKn 9;͠ƠB#'ry.syƅߗdC+?)LNbMasl[f32QZ"8ˮ#-&ft;8rQ2">iwEb-FXc'Þw*69(G–dK_JO a +mgkȉ+6hV\YqfU/BWBپwQw.3.UfXz9aRE|sЛό"mmVTuæ^svŬliãԁ$bX hf֖Gx/W4+Hr]3ŦW40)u\lx0!ia~ɦD褍#1,2<]~M$sJfiS:jkW*ZᴈsOMq0 :hgzSg-@1a%2JXCFJA;剱~IʦL@߭~j#lLK% MoG.ojּ)a8¾K9i20"#GoJw@RoxʞMfٕ̈Gut $:@m +pEH`pt4;1;2'=Rjg%2&cD̚zE΂EQ;®`y^TKҸd`3s%i\ +JX]Ҹ'3u Lr3XenQJ/ .3@9#Ɖg}nh{I7Ha3i6 +c$kO''a-:..: +'-Lz1/<9.:++s!ueQ8a*nI%mĩ% q;GF5;}kViyؘwr*Sh\:ҲΈY-X%Č~_s`Z%lޤ _gE5xyHOBǑkH1AAopmQh)4.u#߃NҙQ6X0 +ظ4#0 3@C#MJ *U]cX@N /I,G|(ɁCӴ6͐l[iw@ӑ8=5+Jpt]3YŤ-Y= G9ZZ14E,wf5!"ZF|/Z!wR,5S蒃#U\| +Pt@Y|F,(\ɢFLYw3axJu+Wvz &'=7㍰R$l*9CAnBU?qlDA(/Sإl^ub 啮1L>Y\o vp6-6-3RCI~(F>z9508GXŨԡqNC͚LTmrs +}dj6Aؒ$BhqJW5ҝV&؛( 53πruzz8Ѩ-;'stIa>~6=(o"Qu>x$sV7O3~a^,Vj7;9Ϲu<? +1g+v4kܿ[gLpDB63ޏ +Du_nȈ5|'8bmmEɼo~dr#w5Zf[#4ީQ~FoUZǪkⳔ96Jfult7- 1R?oqiGlIldI-l[lׯ㾦.5|:=T@dYiЎޕ iG**3W}؈Aa +rb_3Gchf^GGW{s'ܸ(B& /k:z̚-l`H$fr^Y qꌏZ(2CizMLaSm$oY}?6WcN Nq,ΘJ]tH)KލVeb| d:LT4N"s-=sOߝ\2G'yB`pǘ#ƸXF`!QƸ:3emsGpH,R?n. ! %Bu E˗6_5Ք_2Uhɹ1< Ldv_h*ҭIw[@o7ZkfgOv+fRl:uoεڟ0 3(vƔi~t<2ȘId֔6nA[yۄѓw"(0gڂW:2KZO4tfH4K꾊#Nd搝160f23q +Z[j(7j*vGFFπ##&k脝_q:2һ1\Pn;,i/B*$ڧȸ eszJe\ͷ*{-R-f뎷 ;! ZZT7n^YP'LqK⡖Pٮ-=OV6ZtV/y՞cu"<Ms?]K nR`h-#HwP0w~+q5Wqs3OKMH.#Gy]%K5~j04[4d?2VEm!k٦$kn|90 +W^RgjDgPV{ |r>J,<54Y&9I#h%$Aaul`ؔ*iFݼ[&[hA LLklm`aR[}K.%-M;3ؿ˵kX22E]oюR Ƙ%:)#Nj9s-5۾0_ +\#f5ywDzg5X2pE:S v*ۂeiKBӟFM73lPޤ2G& +-5nx0n2ȂJbI͗mw.2NkVлqdD{'АH"_c=K7PUUnn?| 7eDʂ&<&C͵3:]+F̹YX +=Iװ$3-Bˆ-oZ{2&F`j#oCohIXҮ9vsFfug_3}Z57;KL׉~TMKdrCحlܛ5QMg(s?EE ԰H\oްnQ.1?2kqpzGd2&֮GMi|kR%ZQN*6l>lH%4H C%G¤u^a96p~fg@ 6,$6fwaV%PI433HpЦr"púd-A|Z#iXO ڨTa4oq4iiź9cæsa9ȇ\p q;<"Gu;<0`'r>6mn¨Ѥo]#:I:Sjuc! tND[hjz<%sFES۝c8 ï#l^oΧ7pW)HM#DsDVԬ\otov~и598ޓfĽeY(QEs5jBM¸WZ :22-ˑȈ bYJ?7gTm@$)='`t}SFIEa \ujkڐ?ptzt0 ydaztQI+`6Kʌ0f!߻nd4~5y}RfYXɷ4= Ţn?H +Qp>{vv_:w^W13SQVTbZ*<ձٹ3*PIJޡ$l*./}J5Lk0 ;$̣=.*a8tq:j,D"#jy_c;GƗƓ[ ӽ;HfKQ @ӡy4GFFN x 3UFcԳw 922v³Uav>e/ W%UMa[ta:?LX2ʭx Tu$gd *a%ҹt9̔%*45Ѝ{^Ih s_b̨ܪ%kdox_TȾ3J4_gwl4밥Y],3xfF'C(4:<}&{:"#CZiorFIoxԐG@X| 5IˎսOF + Ť(SV[* +6Ckݿk_CY'([r֚-%~NRFNlSXaO3Z-26MY$|e;#l*a%ҝSwYObi-iTXAt2m `ϭ12ddagm/].=uu{y-q"'6][&cdLeƭnXH#&R12&y~nծr>[fgԚ@?w ]Y 2 )EO_RpCɩ1we&4~0)b'0$hź}}bM|w:*lɉja(*. ԭX]͖qF%Ff1xLl[b,0zy{pCRLWk=G#N&4hs_31Jo^PhL5V ќ# PqH]F@NI[3`swn1GRXUa;2pn벵JRFfI=yAdQ+AoUAz!y0ֺ)L G3~J؞l O`d Iev_##lors?0,W)5EF&+jѥ7Ca[Q3/頸=Jddr~߾7u~Y"c#W58:lN@V,C5̅EF ՐEDFJLv"G2Fd!PgP%iWa6I#0^rulE:Sۀ$at)Uk}|.sw"{M\TǫÐ]S]d;7bR;..̧d(޿ko~`vagը q+Ȣ[q̶; :tY"Lg +b/3HSLH_oa'&[Ok\}Vm]`25 H4F`e=E"y)mqʭ.A{rF$a'LoAyf~ʴ;Xv3rT#J0t#*5(?JK";MRgz850<;y&FHɖ=fd49i ma* +|fhȄ|x#*m~5K`DeWo}!I l5vq +90iQ^XUocT|݄Q,~okFREތK"[͂Mqи~ | RQf9*OT\BNubQ5n( {" +C拴&Iοe2LQnпς-0JeOcJddNRS#LzH81uy%ވ;C#{OU6W7$ȈŹ/(z1S`82"qJ`gtQ4=,MG"'7?ޔY`=ga$*KUڌn*I2ظj{F~!"l+[Q`;?sCIo15tJZaKxklt`Dc-|#XYz!9?GF{{arKPdLh\AXŨa xʴkⅢ.bz_C!$aD0I0&Rw~bВj"ɰ>8K\b씶aNƈȯH +%AZ`ZC~e`B%0Aa Uǚ>"CH! Il`[c\`|G0̪KFdMaPiM0Q<_vkc)+XSr~;.b6zV_jEƪfYVǎu)bTTO:&ݘG_SރU%4"4_fIC!zK hZ;:42ƈhs}<%N8JX>Mw1"2T[p:~W ï>YCDQv~SWľAVPk5:uKU;hu޿['IhDc< lo3֦޾7NhD՛4v~`]5ʑYdIeLUkk ++ ѝ9!3]֪-vBx +ʭ2Jq'Ic`LuM$Bka#*fH$ugs.g\vۥAlb" ?DHl c'B,8OhԄ`, l.ՓIW\Ř_xr(;.&/Cj-qDͨ$8LxҒgLXe+G>p^_ЫIp嫇RoCR!w!$WX9EA3+ӑ_%$6pW<Q~ 6 3G_ hA{*#h)IZ_y] /ő}*/|JR`8-5 i+220wUQQ#lOn=$|-2–N{ 96k]2.}0xX7kYCK%s{<@Qy ZȈ@*NI˂'NW0<oŃܾr7'9E"#5Yt_<a&,9#mp +LL1HY b~ܜCOF;CVn5LH.X7̻ M 漮[U 1˴T-Mi-%QZɈ8cߴ'ofs ;@PPvMUWw {-cƨ_\aHGUeMqBnOȲUF@?W 4"|l`7CKխ3J$14R%fgMV|i}qY{`+bh<@[ilUD|J#̆5 ZЈ(չǚ;F4Ё!Sj1'es v~7uR#BT|g9&)bSwKfh:.²cJq\%eEZ0U\Ma)&"T$NnKT}PlZU? !]1mP$b#J<:_$`X@ ɺ8Aĵ.a}17 +u~m WQBs5*W2TJPDk|03E,8-N1-,mvTȓ=nat''*r@o[3"ev#a,4fauf_4s-\JAoIOjeŻs%9x f-&.v5S55'_l9/ܿ. I)ym- xcbR/67%$]Da񡆵k,Ћ5q,1 +%"I*7u ΄r؟as\GMhȭ;yu֞[cn?/]݄qS1ǘЈ! o >>a?}Ejmߙh>@8&..U;\z 9BE;˷¾QzXkt44|j_⒝3ɍ-&4obo≥-&PuΙLa]}r=0lPi{o{~vbFbf[12YkWPc3(/;$2/igˣ>0K)ГQcP=j*+t6-J6oiKPj{2. ֠vomrk2$q*iAM9b ~5s* ?(]"(`YΛF!7mz䌰VnbکPj39#IJm"%v~s\v 5`k`dDqLk!.S\YٚQjHeX#|#O$:m%g)eh[HGMouimNX{E424-[F +#lj=,izV̮Hlf$S`-zc=>1 䌰,>p2.+*bg9OӣΔNΈ>ӦFbc-voQ'C)~L|#վB U⻦f T[>G ڑh''bD-†eV>þs169(9-ۑ}zH2:g$nhˣ&C?-1*ò\0nL7aT#,:VfqMpOUl^GāP+-L䆌FB#uʁ ;=Vy5̚FU5Ĭ[b$襇{DUt`F+3c*3̽-7j̑Yl{F`Rb$էȀPyzuY_Pהt2σ 5в/@|VLB'#67dw_aҡrp(%06E8ơwcOu 6m*2þg"$"rY;6L0Г 2s ;zC|jվN3voWws jbwn6vNz?fQ`6[(ܟ}XdK9ǽFزTn _eSUs¸U]w\2Sz=dS83 &F~{n>8aٓH2Zَ~? +}lY#9NVnF_ẘVѾFuWU0H/N-+bwv+J' +鸓Sm ;M%G{a:Oe`+oo5 6nG 5QEbwoGv3e]n#fcE<<3JHr=CKshd3i7gO lfr)4"N[> y3"f;4bs2#O{I8xNTc=WgϏqˌ] +yx̰o^4f5a7[*5Ӟ!1yZmI#s;Bm4i ;'̩8chәqg.ӆ-Y7C:G6תּ߳"Lga$MITW!k9b[ė}_7rmu$kGF +4% +l5d 5iNTuk!=<ȵᥤ8؎188_\Sf$q8B 8GÚKO '0i*4I"= +!|gHev~QP' 3'D +6O8wd__̱857\/:I[]jUȮa.2]g93K\dEnV3 z%1Oو}k$ڞmzzٕV&Z#;Qϵ~7ݘlD=h֫u +!XY E4Þ&qQh0G9=qMً oy&J askC/IL2nsݜh0,v_o*oB,a3D3~Dƥ.aS?;qQR:%V6]ٍ~K"#YaX֨Ye2Lt6ZMQ'1Ԛh POh:78Y )?_g]}Ykm:tL?xBRjt08[ANvz3K8IArvlTC )Aʕ:7;uTX"a}:6Rpxg-iRG펍Sn'5SvhKgXL+6RמMM*{[a^8$#)Ը0ЫVt֋r=0vǽkMrL-M +oq`t+$JAjiVn0o۟+0d%BmS/=,Ξ~qZF2!IIHV&wixFmλ;cbmRC-fZߠnqTTo2#FqqJpP콊SZ*PqI")l&`:a Gyn|~ꝙn"# nHaZLc +_zpZۉ_b@w\)oυ^"lsdܭ3Rb:^@mNq 8[(AjTzgUj0)rΗC],i[3hL9< o"#;Ŀv1ҟ>a~V{Kd?ae*#6P C&3Qgq2-.PEna'cj,?) N7_8&w1N9Ċe&2!kE-\fheUG֌e*MeJ~zF'JƸtqa70;L\d#jعOnH w3qYntM#e;#Ҡ\9Mim> VrRam +qEE \׸=7D"#US!>\Xh#a֮DI}?]iQ]a2s`d'*ߜQ~+'bsqt J#ké'qA% vu[`'rQ|=WsIu6sn- +hAJ0t>r\L> CHl''YTL1 +kq2Q];;FՎ'aC0 Wz} 1Z8#UIatcNLHUia0*jOuwW\&r=tb4~[A31m ; ^rFlr#1maH?AD +o&A;cɭ2rzɤME v/m-⢈8v.El}ɳOE>sq4_-&_<4$ŬY rD6Nm~TgEN13l0Pst3ƙhy?%eEzgV]3压K}5 ]'E?QՄEDKrm{q}oVk}+jm$] B VaGD<Fg"fx'f".?¨a'.݂s꓄:$0T'0نW L< ǹ{Xfk?J閅g 7adpF5@oK赯[cɜkX'itoSYEpd:V5F/1},cV4MΖ(ama Sԁqʦ1X׀@R3 2>F$pݝ>ofkQ&-<1NVEF\)aę1)~k[JJ:* +3(LɜGM! MKD3ґ`4uP#' 7 BhY# ,(yZnYXLvH8e.S@R$w_Kوzؼrf=I-( Q%FbEFq]79uY~XxԊ +;\uO5H- +S//æ{ ]OQetbp}؉ϓsaȯˈlajleq)_V|?_N0%v6a =+_]Z9 ;E1t/I9ηW2 ~9 OOv 2crI3Qڏ%`8䙨AcSs};'FBu +(6ljK`\}%ŘI(LE5F|>l{}ľ!#1>i3ϯؾAfw(ƀa/vÁ)2a,v=)2J4`*2aT(:ѩV#!|Q$PO4mcEdZ-^"i C:WF2#5ʞUж!D=X +?9\57E'{gPfTun`Hd t>¸DF;,+68%0">99wEd6wJ0LUa{6 Sˆ<'B(>D.T 2rp5>-t ߠZ"酹^o'':S2m&0"\݉x0[txYcRh8F㹩0*F3ٗ':f$تH<FM ,Ե-&0R0)Zq$2;#u@NZU6>d5YRsԈJt^+SDDFfa'hRhD2_g3Fnvm4O4h׉r1^Xge4S E&6B\) JN]恰|) 4(TE0@*GFI!i#bex,>8upyplds;<'CuQl˅y{B jX y +=c#M6Q#'c݌ta+쬊l w5#O8bKߊXѳ3#3cS[Pdž5,ӂ!Ho,T0О]nj7y޺G(x:uI{mB؎XmfOQ?kH)zk,gYʯIbz CQ*%-E۠VE;R`݂` qJ7ܗv<*7XHϚ(7ݒĪ;SdžjlNjy吥ݩdq +B,wOvM}O45Ϸ(2m~4kc#|(HNw7,Qd7ҁz aI0'v "CMCqCJ#f D{5D^A^;Kؼ{Eϫr#*fUUڸ^N1jfbjb<+m\T`ځB1߳*vPi7 +fd̊]ioQ 6"9H3F}dҫDx%!h5Xy2.;M&"gKv,GE kIV[{42[W.޵"B UuLCh ؕ1Xd˯=.ie$.k`1ptUim%,־Q`*2r Ulţ<y؈Ԕ:%"Hs+L-F]A\R,2b ӬWH3+Jy(6 A 8"Ӡs s#H0DN=L o. 1j; =`qcTHŋӨg_TX_fΫJ(FP(: .")MUt9uo$AqkҢt!%"R=6pI/sk؜F;v<#BpnfroQ\/VF*3,UE*񹯜ШUj,k]5;n#v3,JزJ-b !o8!T\ŗy-XhI]öaM\*Xdaa֑(0rhxB |kO$f.l8[ eIfE6vWPM?{gEo4íbӢa 1ĸN$rB#ҜGM.\ӧNhDp!峰uh0YTNafJ;t< faӥ/~]cԭQEpU%P]gTw!q1(+r$;{Cf݉ݏ*,ҏmQꌝқuH\gDwFhux0nYlQB#gi^H%)lc>ΩvDlU4})n]s=/g3:%GFb:s|zs*>0٢O-Dvv;[Dǻ{ KF>`1rUώEdSӦ0i_!Iv"#~uHҥ&_Kj-ȈjЌqE<^-8aZftAv"6<&mӌoKI /]GFZs 5GTl!aޑ悑A##gf\G; hT:af[X]{ՌG<΅Dxyx\OڰٯcγiKSetP [j]2I20^j۪ew+X#<cAVx 1v&]i95n2֗9C(^("㜌׏\#nwWQr)G:hwŽnza==QK$^*1_;d~WoHK.zYLmޣsu 닚 ;0/j.^UbK581a՗B +#z *^tQh˽]Jފ.tv{+0^ӗ*)(2ƥMa]äY;yyUZ-0EEGj @f+SfUKVvg2cJ`]""1.n5z&ScEy[efMd6*6cIVL#X4n.}0$lS5f0fd7(G#isxr GgKvUdDc@Ǿ3& Vbl>!v2>!0Sߺ눑UΈ!^9mHŴDrZf94b;47q%7eV\?1wp_M@ ;k܌װ;lb؈rf3-XϾ:&/ C>EǐSl0DG1 -%_eF3o{œ6ꌈ+kR`2lI38*}IX|5Jxi)W"Ik'f\=azg6#5L4b# a߇4Kf|QrSbUcDه͖C ^7ckVMSԕ_䅗V[OY#P9A24"z# 7K54boEX'b>XdmwF9w%BC[sj@9—q`1HƐH5Ԛ0k1k?#rjI&.*T\9NqӪzXDɸ84"Q4f%Q`r[79JLV}xAv]i;Ժ51Z^l GI9j^28dš~t[UfDA(Ȇd͌0Rbo / S ]} PhB#^C7;&nVS.YfW5i]`wJzLw#.b<#jW |A[^G7ug513K2y mLs2,jwi{ԯ[Wl3,ʅ<7MR ?Tәe+l8qYTXJN +cK _l곑Q1⫭CLdp]/A"bdJUA9gX~ezfv9`6|\TX^Ɲs:,vx!X y@&MG:g¶-):/ɑrrO揉q8p!CPsO?>g'Q_?aA(^ ߧH71c1Y$\:gOH\3>~~hM5Y~胷O֯r +)|S _rGm]տz +,QJKnk{dO*F#jI{IZܰC.*Xb>5k茨7[7[y +S:~JBLs6jD; ܲc9/rݲ[uRQ ׸ey +-Sʧ)|qˎHb1k<6:lK0'+Q#_WO;['ҘiNtNBOrT9'O w< +endstream +endobj +168 0 obj +168198 +endobj +169 0 obj +[167 0 R] +endobj +170 0 obj +<< + /Resources 171 0 R + /Type /Page + /MediaBox [0 0 309 279] + /CropBox [0 0 309 279] + /BleedBox [0 0 309 279] + /TrimBox [0 0 309 279] + /Parent 172 0 R + /Contents 169 0 R +>> +endobj +173 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 174 0 R + /CIDSet 175 0 R +>> +endobj +174 0 obj +<< + /Length1 2360 + /Length 176 0 R + /Filter /FlateDecode +>> +stream +xV}Le`3iw#b΀X|$3p{1DVEUPeڪhʦUM]e([UU4mU"eRȤ̞;Le={[9d{h$ٕeyiX| 1~7^;HFwNPNm7Jzs2|uWtw:;kעmEƸ 7./ïEC-o?JJ/.J(*'$A#4 ]zક>Jߊo?/cGG0_-~:_˝ڹ{#"׸m[x)~B~Qbx^KX9pa>1 }7R]U[SVZR\vIs &{T^YSSDO\;Vq[bGLꧯŵi΅XP Ʒ4BRbȉHdDGc y$iZ c:K~9^g$OƔv峺vF #}$|昼z5l0ڰGдò+&JT)EJR1d5XG؆H5[S )StFS䐦ނHlzER78~MW,f#a1+2TrEQ4XmvF$ē$`ht Wڐ?oAlY͛.i>^ qrO'?cHx3 l*#IzFVec=8a4\ZO)L;yI\|wTw{vw(M0{ U{uĪ*%@W"$/UU:9},D} 0괍ҍf=2STuoґrrzjTE>eP7*OW_w1pg#S@o_o6w)+_?}lxTc#<&c&c%[LJO7FG[}L96D@~jG +/c+.x3?E9Bݝ_ڙ=^ߝxcWn=#٪nMyXqwp} שtg9vz_H&tP?;(fŎ0/\E +X"'Ʉ"Ҷ,3T29x`hb(Y,"EKHaI,CA >auaSHCdISfL8A$i+tMPd95h~L:Bʮd>/S-cwf2ɣQv:tvqu)5\F[`ooXu#JcyHJ@LI;,'O9siL:!NHvl:m. > +stream +xk`, +endstream +endobj +177 0 obj +12 +endobj +178 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 179 0 R + /DescendantFonts [180 0 R] +>> +endobj +180 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 173 0 R +/DW 0 +/W [ 0 [365 570 ] ] +>> +endobj +179 0 obj +<< /Length 181 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t=,NC{X%e!>hpl9khl8}m%P# D۽tFUup )G늪mUjIܯsĩsKؙ3}H+ MFnw~ 'tJU79!t:l\/IZB͸2(qR!I7bq-S5pjyI0*'쒷qDT QJX9uxl5U|~b} +endstream +endobj +181 0 obj +237 +endobj +182 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAB+mwb_cmsy10 + /FontBBox [11 -215 942 727] + /Flags 33 + /CapHeight 0 + /Ascent 727 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 183 0 R + /CIDSet 184 0 R +>> +endobj +183 0 obj +<< + /Length1 1992 + /Length 185 0 R + /Filter /FlateDecode +>> +stream +xUmle=Ҏ{`3^wLz׭s%["AZC[خueAM/CD%:_r4!HBb  m >s/^:jxiZ |'T~lTvvSdg҆70$\qm#U7s3lxl~b{gUg +l;"9I=g,Q!_^~uK_2 +y'.zWJYN,1qPo~eev2EcQw)8fg33 uk5Uuen(H",͍!UYl3&񆞄Mzmb'LHU3vUYy1VMHi=iD%S˺\> 5'- JnML1DIO&^S|r]O>Rl͹-6Wl0ȹAсQMU%EƉRXɤ0Yk4+R%nH+0EYL2&'kQU􀪜EX􊰨$-p&L"aMXTTao BUrIU̺vua7YKn-&#*ĸ9 Ony}-4h"'\YxkC%B5nń`9U;[ֽq_.|[_ޮٰT]ɚ` +U;͞6c%Z!_FΈghyF'ʌ +hR}Bfp'ޥ.Kd km ѽwBxc[EwqrSaw0/;`l>pJv.BLXG uLr0*`-,`l^sMtFS 4ioh:F֠SO KxzGI;MJ$El-Z (;Iˎ9DHu<&*+qdlU;Aԡ٩L*=-m InEb&+ -R@feVbFј*@gKӇQ]'Igt&?H{U5JQ#TG*;Ixtld> +stream +xk +endstream +endobj +186 0 obj +9 +endobj +187 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 188 0 R + /DescendantFonts [189 0 R] +>> +endobj +189 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 182 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +188 0 obj +<< /Length 190 0 R /Filter /FlateDecode >> +stream +x]Pj0+l CԒX}q z0h[lE^X gBpjV& +:G:g} +endstream +endobj +190 0 obj +234 +endobj +191 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 192 0 R + /CIDSet 193 0 R +>> +endobj +192 0 obj +<< + /Length1 7144 + /Length 194 0 R + /Filter /FlateDecode +>> +stream +xY tוߴZ.]%yeaˋd [l1X 6X $Ґ&iZ9LI$I4$II 9&͙LCLI,dJi?<~ *k ElڽU$?IF>G姣@q綌 t-ԑ^Q;Jmזɝ{O*?1i{ڇ'fQ ϩm649p@>5/OOussr6^gG̿10L?eJ:!D7V||V}.%x . ppVI8 A6 30E:m$}D]" j6 z6WV)rs,?Of;usO{6^K}T5JUJYޗ6_t>bnLV[mpuSmKqm!hDws`/[+ +־%%s/J^5ŷ- uV:?V:ھ=|w\[>tzK}m *ybam/XgydmζNHqּJ+͖p,IzbVE1nM%R@gXqymx耿b+)q^ǃXlD3Cdhwo*O\/ৡ6][ E9oIyz\JR8`Xȿ i*TWP%t;ņʏrXͥsoh Socp>f_M( sej 6g+vbyf#ٔήsu8cKTz ƹ+$?vMrEȡC&@!W`<rYW B: k&nOr1.LQ>%D15,͟ 6pF 25ȵ^PV.dA`@5xk5uP-q:j3 |Kg=o]ƎUxEݣWs$v述];^iiHG#eylO29W#>u+CIQ5UrB[\˲ S+ZQf6T[NQp:-?xg]/Kgt:T:hi1Q)Re*JMf~@%Ξ +L<:˒mw;bf羮G"9>]8iUQe Dl+PԧB5ڲӂ8/2pe^7\T=/X)eei_{C᩽}&mԇ1|dzZ񬿖CUepb%k+*_]UoO]#PƮZYsצsg/חW8:o4t_6_P\v2=K#RWHuܳA I egUD]):2]R<א5ՙhU(ZEcMb: bŦ C >ʻW 1<+g' +LDlYTɥzLD1~5仍DC/NulZ䩵Zi`%qEKJQP@p2Qˣ" :ɩ >ļ?M 3]e"ZЫjPzU4jE14kކ+"(KG:V%Z!!P ^c|sK\ˀq"b_7V)lJ$ad e\%Xܠ@"@TV,+MHOB +.:Q&A_]a k/G,YE7w镾="yiVnn_]9J {t(|&lmwA;Jv% bf +uW_4t>9X!4bFh6TU v*n*E Fܜ7GdZah|;(R^L(djQ gq\0 eM yg6ݵrӞW&^7=/_EǛg۲0-uo| w/ =~Ᶎ{2ޥx;͔9ٷp&Z>rt+FX(p+DE[q)3,B |@ \]qAoM3ZLLp虵=TU><ֽD:j/[!2oY5^ 6}#$$4:]#O̾s8ؓy˭c{/p:˴o3]C+p43Үl7[bv2q3z՟1V.ѯN|kd *]퓽lm=B/JᵟuѼGssl #(i^_kco[vնc˳BQĥ Z9JTa[C*DT eEX +d8 LeEOYV5^K"Ï +X˓ɫXxuxibg$ٳ2.(L5ǎgO%ӏce_z֮YH.3Os7gF\"\W:2%n5WӈZsH]O)9t6EmEX f\}ރ߯_lP%X}Xg@G2E!o 4CGY +NX FzQ0uJ*˕)GЏV4$BFьeEj\dwAw>I$Q׋l(-kxe.jee/<5:]{k{kLu4Ee ecG{ҶȑUk*6-OllVYh +zt%={63zrC牂gD@,ny3G.,Y{(Kݯ<3_zzd_·uR=S܀8p +*0v@=$jǩe!"oz.UϿ +nfJ +q qQ6%8Ƞ6n&꧁u^/ޗk2C7ά̂g2/rV!/eeAo"E+QFУ-+3̂ {2G<W@W ``N/KmPFu51z%~n#>3Kbe3!R_z7n6#F5v0YEsHs.řlNҶVL#zƤQJ#4+ڦ;F촕٪k֡ ے +۲̖ĄK|m523cpEUuMВeCm46511i6m@+-0 {H$_M䞡&wT(lv>C4 +]#&H2p˦hNMR2[:iTՕ5Ω݁os>.yYDyjrd[keڵ> +stream +xk`Z@u1$ +endstream +endobj +195 0 obj +20 +endobj +196 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 197 0 R + /DescendantFonts [198 0 R] +>> +endobj +198 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 191 0 R +/DW 0 +/W [ 0 [365 500 500 500 651 391 443 526 555 555 443 526 276 750 443 276 500 500 500 680 500 722 555 555 388 500 276 763 394 276 500 ] ] +>> +endobj +197 0 obj +<< /Length 199 0 R /Filter /FlateDecode >> +stream +x]n0E +/ED"U*CQxϝa.V>DU$hG0;E{gv2SS'W8Q_v)Tz"/CCBS9M3wUn5[C=IaR׺':R{Q7-\,$Dj4Z͝vد> +endobj +201 0 obj +<< + /Length1 2280 + /Length 203 0 R + /Filter /FlateDecode +>> +stream +xU]lU>ܙv]vVvwMV.RjvNwW- UA#T⃄hɴJ$hA@H| nDι|;w;<Q(P u`4;#mѷD^T|:h1S۾a?J3g.a $H8[W&&f {QTzhULhH)KڄNj#'Q~oL33KSTZmF+@JKK5H q5gux N p ,d`aDa+lڡ 3:qK +}Ym3|[.ruWr|J*bG=Xw0ZF`[`ޕf5"UB{-?OQ|!indNVB@%:,ab Ťx=7h]dupU+%1B)|H֤`pЍcm&૤ބ!Vhlt,)Vv ee=6v[OVv]GpYTҦx?e]01G28Y] !94'jQ`J{FP2&4zˌͱd)& *TJ=NXĂ)%irslM ᘙOTrx}2\uA o#L ;hf5*xXSk'mZZ[ +AtASk'Nxf.*$EƀbT@bAt EGHݰ#|LJ}rsKg]U9ʩ!so--xd׾~zגgso9J=Q[SXS@kbma&lqVGka Y!#aH-ndtbnsѽ}t1}r )<0'Ö"ֈ kעBr˗v{Vu3zsE.ͻ!}YCNKgw&ʠ +ƚpOeǾ(ZS9_!8}30la`j3($_䰀_ГLLE 9A0>0,c i~: ICf@hEǎME=7 )}{-)'@eFɖ49xCX}da2aVe205cVqI}ؽSxbFmmM^I2ɔ"Zj6г>;[F}:UKG47=t*$ӓ^^=L~nf4׆F'2~KpRD,i̼d\k?q~Oo_C}z@ٚ*mM:EXzˋV*X+ Y R"p$qOvj +endstream +endobj +203 0 obj +1608 +endobj +202 0 obj +<< /Length 204 0 R /Filter /FlateDecode >> +stream +xk`& +endstream +endobj +204 0 obj +12 +endobj +205 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAD+mwa_cmsy10 + /Encoding /Identity-H + /ToUnicode 206 0 R + /DescendantFonts [207 0 R] +>> +endobj +207 0 obj +<< /Type /Font +/BaseFont /EAAAAD+mwa_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 200 0 R +/DW 0 +/W [ 0 [365 844 ] ] +>> +endobj +206 0 obj +<< /Length 208 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t=,NzX%e!>hpl9khl8}m%P# D۽tFUup )G늪mUjIܯsĩsKؙ3}H+ MFnw~ 'tJU79!t:l\/IZB͸2(qR!I7bq-S5pjyI0*'쒷qDT QJX9uxl5U|~~} +endstream +endobj +208 0 obj +237 +endobj +209 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAE+mwb_cmr10 + /FontBBox [-43 -205 984 740] + /Flags 33 + /CapHeight 0 + /Ascent 740 + /Descent -205 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 210 0 R + /CIDSet 211 0 R +>> +endobj +210 0 obj +<< + /Length1 2164 + /Length 212 0 R + /Filter /FlateDecode +>> +stream +xUkLWx〘AEȐ3ñs#Y7XN3b0"]?FԥǍ{H'~dw"; + +hb{_Zn'yp  /ԦTr+bN.4=8xGqDZтfB4,R,FngyO+^Mq@+-!OwcW6qelv]e~g%GoQo)MZ5\.">0>7*e{Drj|\Rn 0`J+ornNv֤ CxA JUUivUb-I6aR/MΣ*nBֆ_IRD4)e] +7Ԇ~mmBT1%uu!w)o+;ևrAq|b{ήw>uXɕ?ZUҲh$L>GܦJd68129LA֊,kVT5dmY_l6ɚ)R.RU.qFI DXR8_Mka !3͊* +SQU1 <*uEmtbN9<Ȅbseavm,\saBMmvZ \z&=éA2;q27<,ll;]N}R]WdiɚӘG۝9"rص4v'ɄLFYfgRse+ҘZX1\;%T^ 0^ydOҏjUB!AG#>z6%fW ٶZX#Z%m iP>zv]aszB]VVDmE J}T%{zH4/8_WWW*'1iOjc{'bR5,)I-WhD.'LbFGo4ѥHFS5 +.:׭GSjVNG'/ZΘN`b-M k_W+dS+l,IS=;m*} }8 +9ѧVWml 5Yɚ1Y(ےܑŹQ\'lTE~^/h +endstream +endobj +212 0 obj +1510 +endobj +211 0 obj +<< /Length 213 0 R /Filter /FlateDecode >> +stream +xk` +endstream +endobj +213 0 obj +10 +endobj +214 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAE+mwb_cmr10 + /Encoding /Identity-H + /ToUnicode 215 0 R + /DescendantFonts [216 0 R] +>> +endobj +216 0 obj +<< /Type /Font +/BaseFont /EAAAAE+mwb_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 209 0 R +/DW 0 +/W [ 0 [750 722 ] ] +>> +endobj +215 0 obj +<< /Length 217 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t'驰JB}i?԰k+! +if$s6"z`ӄ_H! 8ZWT5hV H~#N37^#pz~'hr4u#~KwE(N+w> Dq='{ 5jˠ9H$݈ťL嚪tMQPY/Y%o㈨r j!<1} +endstream +endobj +217 0 obj +236 +endobj +172 0 obj +<< /Type /Pages +/Count 1 +/Kids [170 0 R ] >> +endobj +218 0 obj +<< + /Type /Catalog + /Pages 172 0 R + /Lang (x-unknown) +>> +endobj +171 0 obj +<< + /Font << + /F1361 178 0 R + /F1360 187 0 R + /F1358 196 0 R + /F1357 205 0 R + /F1359 214 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R + /GS96 97 0 R + /GS97 98 0 R + /GS98 99 0 R + /GS99 100 0 R + /GS100 101 0 R + /GS101 102 0 R + /GS102 103 0 R + /GS103 104 0 R + /GS104 105 0 R + /GS105 106 0 R + /GS106 107 0 R + /GS107 108 0 R + /GS108 109 0 R + /GS109 110 0 R + /GS110 111 0 R + /GS111 112 0 R + /GS112 113 0 R + /GS113 114 0 R + /GS114 115 0 R + /GS115 116 0 R + /GS116 117 0 R + /GS117 118 0 R + /GS118 119 0 R + /GS119 120 0 R + /GS120 121 0 R + /GS121 122 0 R + /GS122 123 0 R + /GS123 124 0 R + /GS124 125 0 R + /GS125 126 0 R + /GS126 127 0 R + /GS127 128 0 R + /GS128 129 0 R + /GS129 130 0 R + /GS130 131 0 R + /GS131 132 0 R + /GS132 133 0 R + /GS133 134 0 R + /GS134 135 0 R + /GS135 136 0 R + /GS136 137 0 R + /GS137 138 0 R + /GS138 139 0 R + /GS139 140 0 R + /GS140 141 0 R + /GS141 142 0 R + /GS142 143 0 R + /GS143 144 0 R + /GS144 145 0 R + /GS145 146 0 R + /GS146 147 0 R + /GS147 148 0 R + /GS148 149 0 R + /GS149 150 0 R + /GS150 151 0 R + /GS151 152 0 R + /GS152 153 0 R + /GS153 154 0 R + /GS154 155 0 R + /GS155 156 0 R + /GS156 157 0 R + /GS157 158 0 R + /GS158 159 0 R + /GS159 160 0 R + /GS160 161 0 R + /GS161 162 0 R + /GS162 163 0 R + /GS163 164 0 R + /GS164 165 0 R + /GS165 166 0 R +>> +>> +endobj +xref +0 219 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000667 00000 n +0000000720 00000 n +0000000773 00000 n +0000000826 00000 n +0000000879 00000 n +0000000932 00000 n +0000000985 00000 n +0000001038 00000 n +0000001091 00000 n +0000001144 00000 n +0000001197 00000 n +0000001250 00000 n +0000001303 00000 n +0000001356 00000 n +0000001409 00000 n +0000001462 00000 n +0000001515 00000 n +0000001568 00000 n +0000001621 00000 n +0000001674 00000 n +0000001727 00000 n +0000001780 00000 n +0000001833 00000 n +0000001887 00000 n +0000001941 00000 n +0000001995 00000 n +0000002049 00000 n +0000002103 00000 n +0000002156 00000 n +0000002209 00000 n +0000002262 00000 n +0000002315 00000 n +0000002368 00000 n +0000002421 00000 n +0000002474 00000 n +0000002527 00000 n +0000002580 00000 n +0000002633 00000 n +0000002686 00000 n +0000002739 00000 n +0000002792 00000 n +0000002845 00000 n +0000002898 00000 n +0000002951 00000 n +0000003004 00000 n +0000003057 00000 n +0000003110 00000 n +0000003163 00000 n +0000003216 00000 n +0000003269 00000 n +0000003322 00000 n +0000003375 00000 n +0000003428 00000 n +0000003481 00000 n +0000003534 00000 n +0000003587 00000 n +0000003640 00000 n +0000003693 00000 n +0000003746 00000 n +0000003799 00000 n +0000003852 00000 n +0000003905 00000 n +0000003958 00000 n +0000004011 00000 n +0000004064 00000 n +0000004117 00000 n +0000004170 00000 n +0000004223 00000 n +0000004276 00000 n +0000004329 00000 n +0000004382 00000 n +0000004435 00000 n +0000004488 00000 n +0000004541 00000 n +0000004594 00000 n +0000004647 00000 n +0000004700 00000 n +0000004753 00000 n +0000004806 00000 n +0000004859 00000 n +0000004912 00000 n +0000004965 00000 n +0000005018 00000 n +0000005071 00000 n +0000005124 00000 n +0000005177 00000 n +0000005230 00000 n +0000005283 00000 n +0000005336 00000 n +0000005390 00000 n +0000005444 00000 n +0000005498 00000 n +0000005552 00000 n +0000005606 00000 n +0000005660 00000 n +0000005714 00000 n +0000005768 00000 n +0000005822 00000 n +0000005876 00000 n +0000005930 00000 n +0000005984 00000 n +0000006038 00000 n +0000006092 00000 n +0000006146 00000 n +0000006200 00000 n +0000006254 00000 n +0000006308 00000 n +0000006362 00000 n +0000006416 00000 n +0000006470 00000 n +0000006524 00000 n +0000006578 00000 n +0000006632 00000 n +0000006686 00000 n +0000006740 00000 n +0000006794 00000 n +0000006848 00000 n +0000006902 00000 n +0000006956 00000 n +0000007010 00000 n +0000007064 00000 n +0000007118 00000 n +0000007172 00000 n +0000007226 00000 n +0000007280 00000 n +0000007334 00000 n +0000007388 00000 n +0000007442 00000 n +0000007496 00000 n +0000007550 00000 n +0000007604 00000 n +0000007658 00000 n +0000007712 00000 n +0000007766 00000 n +0000007820 00000 n +0000007874 00000 n +0000007928 00000 n +0000007982 00000 n +0000008036 00000 n +0000008090 00000 n +0000008144 00000 n +0000008198 00000 n +0000008252 00000 n +0000008306 00000 n +0000008360 00000 n +0000008414 00000 n +0000008468 00000 n +0000008522 00000 n +0000008577 00000 n +0000008632 00000 n +0000008687 00000 n +0000008742 00000 n +0000008797 00000 n +0000008852 00000 n +0000008907 00000 n +0000008962 00000 n +0000177238 00000 n +0000177262 00000 n +0000177289 00000 n +0000195328 00000 n +0000195189 00000 n +0000177487 00000 n +0000177743 00000 n +0000179533 00000 n +0000179511 00000 n +0000179623 00000 n +0000179643 00000 n +0000180034 00000 n +0000179803 00000 n +0000180349 00000 n +0000180370 00000 n +0000180622 00000 n +0000182066 00000 n +0000182044 00000 n +0000182153 00000 n +0000182172 00000 n +0000182563 00000 n +0000182332 00000 n +0000182875 00000 n +0000182896 00000 n +0000183151 00000 n +0000188570 00000 n +0000188548 00000 n +0000188668 00000 n +0000188688 00000 n +0000189193 00000 n +0000188847 00000 n +0000189633 00000 n +0000189654 00000 n +0000189910 00000 n +0000191638 00000 n +0000191616 00000 n +0000191728 00000 n +0000191748 00000 n +0000192139 00000 n +0000191908 00000 n +0000192454 00000 n +0000192475 00000 n +0000192727 00000 n +0000194357 00000 n +0000194335 00000 n +0000194445 00000 n +0000194465 00000 n +0000194854 00000 n +0000194624 00000 n +0000195168 00000 n +0000195251 00000 n +trailer +<< + /Root 218 0 R + /Info 1 0 R + /ID [ ] + /Size 219 +>> +startxref +198100 +%%EOF diff --git a/matlab/figs/robert12_psd_estimation.png b/matlab/figs/robert12_psd_estimation.png new file mode 100644 index 0000000..11c511d Binary files /dev/null and b/matlab/figs/robert12_psd_estimation.png differ diff --git a/matlab/index_old.html b/matlab/index_old.html new file mode 100644 index 0000000..c189b81 --- /dev/null +++ b/matlab/index_old.html @@ -0,0 +1,3686 @@ + + + + + + +Robust and Optimal Sensor Fusion - Matlab Computation + + + + + + + + + + + + +
+ UP + | + HOME +
+

Robust and Optimal Sensor Fusion - Matlab Computation

+
+

Table of Contents

+
+ +
+
+ +

+In this document, the optimal and robust design of complementary filters is studied. +

+ +

+Two sensors are considered with both different noise characteristics and dynamical uncertainties represented by multiplicative input uncertainty. +

+ +
    +
  • in section 2: the \(\mathcal{H}_2\) synthesis is used to design complementary filters such that the RMS value of the super sensor’s noise is minimized
  • +
  • in section 3: the \(\mathcal{H}_\infty\) synthesis is used to design complementary filters such that the super sensor’s uncertainty is bonded to acceptable values
  • +
  • in section 4: the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis is used to both limit the super sensor’s uncertainty and to lower the RMS value of the super sensor’s noise
  • +
  • in section 6: the \(\mathcal{H}_\infty\) synthesis is used for both limiting the noise and uncertainty of the super sensor
  • +
  • in section 7: we try to find the characteristics of the super sensor from the characteristics of the individual sensors and of the complementary filters
  • +
  • in section 8: a methodology is proposed to apply optimal and robust sensor fusion in practice
  • +
  • in section 9: methods of complementary filter synthesis are proposed
  • +
+ +
+

1 Comparison with Bibliographic example

+
+
+
+

1.1 Bendat, J., Optimum filters for independent measurements of two related perturbed messages (1957)

+
+

+(Bendat 1957) +

+ +
+
freqs = logspace(-1, 2, 1000);
+
+
+ +

+Weights to shape the noise of both sensors: +

+
+
K1 = 100;
+K2 = 1;
+b = 10;
+b1 = b;
+b2 = b;
+
+N1 = sqrt(K1)*b1/(b1+s)/(s + 1e-2);
+N2 = sqrt(K2)*b2/(b2+s);
+
+
+ + +
+

bendat57_noise_weights.png +

+

Figure 1: Weights

+
+ +

+\(\mathcal{H}_2\) synthesis: +

+
+
P = [0   N2  1;
+     N1 -N2  0];
+[H1, ~, gamma] = h2syn(P, 1, 1);
+H2 = 1 - H1;
+
+
+ +

+The optimal obtained filter (from the paper) is: +

+
+
a = sqrt(K2/K1);
+G = (a*s + 1 + a*b)/(1 + a*b)/(a*s + 1);
+
+
+ + +
+

bendat57_optimal_filters.png +

+

Figure 2: Obtain Filters

+
+ + +
+

bendat57_psd_estimation.png +

+

Figure 3: PSD of the individual sensors + super sensor

+
+ + + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 RMS
Sensor 122.93
Sensor 22.37
H2 Synthesis1.74
Paper1.74
+
+
+ +
+

1.2 Plummer, A. R., Optimal complementary filters and their application in motion measurement (2006)

+
+

+(Plummer 2006) +

+ +

+Weights +

+
+
N1 = 24.3e-6*(s + 2*pi*0.1)*(s + 1220)/1220*(1/(1 + s/2/pi/1e4)/(1 + s/2/pi/1e4));
+N2 = 0.363/(s + 0.01)*(s + 12.2)/(s + 0.01);
+
+
+ + +
+

plummer06_noise_weights.png +

+

Figure 4: Weights

+
+ +

+\(\mathcal{H}_2\) synthesis: +

+
+
P = [0   N2  1;
+     N1 -N2  0];
+
+[H1, ~, gamma] = h2syn(P, 1, 1);
+
+H2 = 1 - H1;
+
+
+ +

+The optimal obtained filter (from the paper) is: +

+
+
G = (0.0908*s + 1)/(5.51e-7*s^3 + 7.47e-4*s^2 + 0.0908*s + 1);
+
+
+ + +
+

plummer06_optimal_filters.png +

+

Figure 5: Obtain Filters

+
+ + +
+

plummer06_psd_estimation.png +

+

Figure 6: PSD of the individual sensors + super sensor

+
+ + + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 RMS
Sensor 1130.0
Sensor 20.00753
H2 Synthesis0.00091
Paper0.0107
+ +

+Parameters of the time domain simulation. +

+
+
Fs = 2.5e3; % Sampling Frequency [Hz]
+Ts = 1/Fs; % Sampling Time [s]
+
+t = 0:Ts:2; % Time Vector [s]
+
+
+ +

+Generate noises in velocity corresponding to sensor 1 and 2: +

+
+
n1 = lsim(N1, sqrt(Fs/2)*randn(length(t), 1), t);
+n2 = lsim(N2, sqrt(Fs/2)*randn(length(t), 1), t);
+
+
+ + +
+

plummer06_time_domain_signals.png +

+

Figure 7: Time domain signals

+
+
+
+ +
+

1.3 Robert Grover Brown, P. Y. C. H., Introduction to random signals and applied kalman filtering with matlab exercises (2012)

+
+

+(Robert Grover Brown 2012) Section 8.6 +

+ +
+
w0 = 1; % [rad/s]
+wc = 20*w0; % [rad/s]
+
+k1 = sqrt(200*sqrt(2)*w0^3); % [m]
+k2 = sqrt(100*pi/wc); % [m]
+
+N1 = k1/(s^2 + sqrt(2)*s + 1);
+N2 = k2/(1 + s/(wc*(2/pi)));
+
+
+ + +
+

robert12_noise_weights.png +

+

Figure 8: Weights

+
+ +

+And we do the \(\mathcal{H}_2\) synthesis using the h2syn command. +

+
+
P = [0   N2  1;
+     N1 -N2  0];
+
+[H1, ~, gamma] = h2syn(P, 1, 1);
+
+H2 = 1 - H1;
+
+
+ + +
+

robert12_optimal_filters.png +

+

Figure 9: Obtain Filters

+
+ + +
+

robert12_psd_estimation.png +

+

Figure 10: PSD of the individual sensors + super sensor

+
+ +

+We can see that the optimal \(\mathcal{H}_2\) control gives similar results as Kalman filtering. +

+ + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + +
MethodMean Square Error
Kalman Filter21.47
Euristic35.32
Optimal H220.96
+ + + + + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + + +
MethodMean Square Error
Kalman Filter21.47
Euristic35.32
Optimal H221.40
+
+
+
+ +
+

2 Optimal Sensor Fusion - Minimize the Super Sensor Noise

+
+

+ +

+

+The idea is to combine sensors that works in different frequency range using complementary filters. +

+ +

+Doing so, one “super sensor” is obtained that can have better noise characteristics than the individual sensors over a large frequency range. +

+ +

+The complementary filters have to be designed in order to minimize the effect noise of each sensor on the super sensor noise. +

+
+

+The Matlab scripts is accessible here. +

+ +
+
+ +
+

2.1 Architecture

+
+

+Let’s consider the sensor fusion architecture shown on figure 11 where two sensors (sensor 1 and sensor 2) are measuring the same quantity \(x\) with different noise characteristics determined by \(N_1(s)\) and \(N_2(s)\). +

+ +

+\(\tilde{n}_1\) and \(\tilde{n}_2\) are normalized white noise: +

+\begin{equation} +\label{org800b631} + \Phi_{\tilde{n}_1}(\omega) = \Phi_{\tilde{n}_2}(\omega) = 1 +\end{equation} + + +
+

fusion_two_noisy_sensors_weights.png +

+

Figure 11: Fusion of two sensors

+
+ +

+We consider that the two sensor dynamics \(G_1(s)\) and \(G_2(s)\) are ideal: +

+\begin{equation} +\label{orgc324337} + G_1(s) = G_2(s) = 1 +\end{equation} + +

+We obtain the architecture of figure 12. +

+ + +
+

sensor_fusion_noisy_perfect_dyn.png +

+

Figure 12: Fusion of two sensors with ideal dynamics

+
+ +

+\(H_1(s)\) and \(H_2(s)\) are complementary filters: +

+\begin{equation} +\label{org8e22dff} + H_1(s) + H_2(s) = 1 +\end{equation} + +

+The goal is to design \(H_1(s)\) and \(H_2(s)\) such that the effect of the noise sources \(\tilde{n}_1\) and \(\tilde{n}_2\) has the smallest possible effect on the estimation \(\hat{x}\). +

+ +

+We have that the Power Spectral Density (PSD) of \(\hat{x}\) is: +\[ \Phi_{\hat{x}}(\omega) = |H_1(j\omega) N_1(j\omega)|^2 \Phi_{\tilde{n}_1}(\omega) + |H_2(j\omega) N_2(j\omega)|^2 \Phi_{\tilde{n}_2}(\omega), \quad \forall \omega \] +

+ +

+And the goal is the minimize the Root Mean Square (RMS) value of \(\hat{x}\): +

+\begin{equation} +\label{orgeef7d07} + \sigma_{\hat{x}} = \sqrt{\int_0^\infty \Phi_{\hat{x}}(\omega) d\omega} +\end{equation} +
+
+ +
+

2.2 Noise of the sensors

+
+

+Let’s define the noise characteristics of the two sensors by choosing \(N_1\) and \(N_2\): +

+
    +
  • Sensor 1 characterized by \(N_1(s)\) has low noise at low frequency (for instance a geophone)
  • +
  • Sensor 2 characterized by \(N_2(s)\) has low noise at high frequency (for instance an accelerometer)
  • +
+ +
+
omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4;
+N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100);
+
+omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8;
+N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2;
+
+
+ + +
+

noise_characteristics_sensors.png +

+

Figure 13: Noise Characteristics of the two sensors (png, pdf)

+
+
+
+ +
+

2.3 H-Two Synthesis

+
+

+As \(\tilde{n}_1\) and \(\tilde{n}_2\) are normalized white noise: \(\Phi_{\tilde{n}_1}(\omega) = \Phi_{\tilde{n}_2}(\omega) = 1\) and we have: +\[ \sigma_{\hat{x}} = \sqrt{\int_0^\infty |H_1 N_1|^2(\omega) + |H_2 N_2|^2(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \] +Thus, the goal is to design \(H_1(s)\) and \(H_2(s)\) such that \(H_1(s) + H_2(s) = 1\) and such that \(\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2\) is minimized. +

+ +

+For that, we use the \(\mathcal{H}_2\) Synthesis. +

+ +

+We use the generalized plant architecture shown on figure 14. +

+ + +
+

h_infinity_optimal_comp_filters.png +

+

Figure 14: \(\mathcal{H}_2\) Synthesis - Generalized plant used for the optimal generation of complementary filters

+
+ +\begin{equation*} +\begin{pmatrix} + z \\ v +\end{pmatrix} = \begin{pmatrix} + 0 & N_2 & 1 \\ + N_1 & -N_2 & 0 +\end{pmatrix} \begin{pmatrix} + w_1 \\ w_2 \\ u +\end{pmatrix} +\end{equation*} + +

+The transfer function from \([n_1, n_2]\) to \(\hat{x}\) is: +\[ \begin{bmatrix} N_1 H_1 \\ N_2 (1 - H_1) \end{bmatrix} \] +If we define \(H_2 = 1 - H_1\), we obtain: +\[ \begin{bmatrix} N_1 H_1 \\ N_2 H_2 \end{bmatrix} \] +

+ +

+Thus, if we minimize the \(\mathcal{H}_2\) norm of this transfer function, we minimize the RMS value of \(\hat{x}\). +

+ +

+We define the generalized plant \(P\) on matlab as shown on figure 14. +

+
+
P = [0   N2  1;
+     N1 -N2  0];
+
+
+ +

+And we do the \(\mathcal{H}_2\) synthesis using the h2syn command. +

+
+
[H1, ~, gamma] = h2syn(P, 1, 1);
+
+
+ +

+Finally, we define \(H_2(s) = 1 - H_1(s)\). +

+
+
H2 = 1 - H1;
+
+
+ +

+The complementary filters obtained are shown on figure 15. +

+ +

+The PSD of the noise of the individual sensor and of the super sensor are shown in Fig. 16. +

+ +

+The Cumulative Power Spectrum (CPS) is shown on Fig. 17. +

+ +

+The obtained RMS value of the super sensor is lower than the RMS value of the individual sensors. +

+ + +
+

htwo_comp_filters.png +

+

Figure 15: Obtained complementary filters using the \(\mathcal{H}_2\) Synthesis (png, pdf)

+
+ +
+
PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2;
+PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2;
+PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2;
+
+
+ + +
+

psd_sensors_htwo_synthesis.png +

+

Figure 16: Power Spectral Density of the estimated \(\hat{x}\) using the two sensors alone and using the optimally fused signal (png, pdf)

+
+ +
+
CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1);
+CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2);
+CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2);
+
+
+ + +
+

cps_h2_synthesis.png +

+

Figure 17: Cumulative Power Spectrum of individual sensors and super sensor using the \(\mathcal{H}_2\) synthesis (png, pdf)

+
+
+
+ +
+

2.4 Alternative H-Two Synthesis

+
+

+An alternative Alternative formulation of the \(\mathcal{H}_2\) synthesis is shown in Fig. 18. +

+ + +
+

h_infinity_optimal_comp_filters_bis.png +

+

Figure 18: Alternative formulation of the \(\mathcal{H}_2\) synthesis

+
+ +\begin{equation*} +\begin{pmatrix} + z_1 \\ z_2 \\ v +\end{pmatrix} = \begin{pmatrix} + N_1 & -N_1 \\ + 0 & N_2 \\ + 1 & 0 +\end{pmatrix} \begin{pmatrix} + w \\ u +\end{pmatrix} +\end{equation*} +
+
+ + +
+

2.5 H-Infinity Synthesis - method A

+
+

+Another objective that we may have is that the noise of the super sensor \(n_{SS}\) is following the minimum of the noise of the two sensors \(n_1\) and \(n_2\): +\[ \Gamma_{n_{ss}}(\omega) = \min(\Gamma_{n_1}(\omega),\ \Gamma_{n_2}(\omega)) \] +

+ +

+In order to obtain that ideal case, we need that the complementary filters be designed such that: +

+\begin{align*} + & |H_1(j\omega)| = 1 \text{ and } |H_2(j\omega)| = 0 \text{ at frequencies where } \Gamma_{n_1}(\omega) < \Gamma_{n_2}(\omega) \\ + & |H_1(j\omega)| = 0 \text{ and } |H_2(j\omega)| = 1 \text{ at frequencies where } \Gamma_{n_1}(\omega) > \Gamma_{n_2}(\omega) +\end{align*} + +

+Which is indeed impossible in practice. +

+ +

+We could try to approach that with the \(\mathcal{H}_\infty\) synthesis by using high order filters. +

+ +

+As shown on Fig. 13, the frequency where the two sensors have the same noise level is around 9Hz. +We will thus choose weighting functions such that the merging frequency is around 9Hz. +

+ +

+The weighting functions used as well as the obtained complementary filters are shown in Fig. 19. +

+ +
+
n = 5; w0 = 2*pi*10; G0 = 1/10; G1 = 10000; Gc = 1/2;
+W1a = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+n = 5; w0 = 2*pi*8; G0 = 1000; G1 = 0.1; Gc = 1/2;
+W2a = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+
+ +
+
P = [W1a -W1a;
+     0    W2a;
+     1    0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[H2a, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[H2a, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Resetting value of Gamma min based on D_11, D_12, D_21 terms
+
+Test bounds:      0.1000 <  gamma  <=  10500.0000
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+1.050e+04   2.1e+01 -3.0e-07   7.8e+00   -1.3e-15    0.0000    p
+5.250e+03   2.1e+01 -1.5e-08   7.8e+00   -5.8e-14    0.0000    p
+2.625e+03   2.1e+01   2.5e-10   7.8e+00   -3.7e-12    0.0000    p
+1.313e+03   2.1e+01 -3.2e-11   7.8e+00   -7.3e-14    0.0000    p
+  656.344   2.1e+01 -2.2e-10   7.8e+00   -1.1e-15    0.0000    p
+  328.222   2.1e+01 -1.1e-10   7.8e+00   -1.2e-15    0.0000    p
+  164.161   2.1e+01 -2.4e-08   7.8e+00   -8.9e-16    0.0000    p
+   82.130   2.1e+01   2.0e-10   7.8e+00   -9.1e-31    0.0000    p
+   41.115   2.1e+01 -6.8e-09   7.8e+00   -4.1e-13    0.0000    p
+   20.608   2.1e+01   3.3e-10   7.8e+00   -1.4e-12    0.0000    p
+   10.354   2.1e+01 -9.8e-09   7.8e+00   -1.8e-15    0.0000    p
+    5.227   2.1e+01 -4.1e-09   7.8e+00   -2.5e-12    0.0000    p
+    2.663   2.1e+01   2.7e-10   7.8e+00   -4.0e-14    0.0000    p
+    1.382   2.1e+01 -3.2e+05#  7.8e+00   -3.5e-14    0.0000    f
+    2.023   2.1e+01 -5.0e-10   7.8e+00    0.0e+00    0.0000    p
+    1.702   2.1e+01 -2.4e+07#  7.8e+00   -1.6e-13    0.0000    f
+    1.862   2.1e+01 -6.0e+08#  7.8e+00   -1.0e-12    0.0000    f
+    1.942   2.1e+01 -2.8e-09   7.8e+00   -8.1e-14    0.0000    p
+    1.902   2.1e+01 -2.5e-09   7.8e+00   -1.1e-13    0.0000    p
+    1.882   2.1e+01 -9.3e-09   7.8e+00   -2.0e-15    0.0001    p
+    1.872   2.1e+01 -1.3e+09#  7.8e+00   -3.6e-22    0.0000    f
+    1.877   2.1e+01 -2.6e+09#  7.8e+00   -1.2e-13    0.0000    f
+    1.880   2.1e+01 -5.6e+09#  7.8e+00   -1.4e-13    0.0000    f
+    1.881   2.1e+01 -1.2e+10#  7.8e+00   -3.3e-12    0.0000    f
+    1.882   2.1e+01 -3.2e+10#  7.8e+00   -8.5e-14    0.0001    f
+
+ Gamma value achieved:     1.8824
+
+ +
+
H1a = 1 - H2a;
+
+
+ + +
+

weights_comp_filters_Hinfa.png +

+

Figure 19: Weights and Complementary Fitlers obtained (png, pdf)

+
+ +

+We then compute the Power Spectral Density as well as the Cumulative Power Spectrum. +

+ +
+
PSD_Ha = abs(squeeze(freqresp(N1*H1a, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2a, freqs, 'Hz'))).^2;
+CPS_Ha = 1/pi*cumtrapz(2*pi*freqs, PSD_Ha);
+
+
+
+
+ +
+

2.6 H-Infinity Synthesis - method B

+
+

+We have that: +\[ \Phi_{\hat{x}}(\omega) = \left|H_1(j\omega) N_1(j\omega)\right|^2 + \left|H_2(j\omega) N_2(j\omega)\right|^2 \] +

+ +

+Then, at frequencies where \(|H_1(j\omega)| < |H_2(j\omega)|\) we would like that \(|N_1(j\omega)| = 1\) and \(|N_2(j\omega)| = 0\) as we discussed before. +Then \(|H_1 N_1|^2 + |H_2 N_2|^2 = |N_1|^2\). +

+ +

+We know that this is impossible in practice. A more realistic choice is to design \(H_2(s)\) such that when \(|N_2(j\omega)| > |N_1(j\omega)|\), we have that: +\[ |H_2 N_2|^2 = \epsilon |H_1 N_1|^2 \] +

+ +

+Which is equivalent to have (by supposing \(|H_1| \approx 1\)): +\[ |H_2| = \sqrt{\epsilon} \frac{|N_1|}{|N_2|} \] +

+ +

+And we have: +

+\begin{align*} + \Phi_{\hat{x}} &= \left|H_1 N_1\right|^2 + |H_2 N_2|^2 \\ + &= (1 + \epsilon) \left| H_1 N_1 \right|^2 \\ + &\approx \left|N_1\right|^2 +\end{align*} + +

+Similarly, we design \(H_1(s)\) such that at frequencies where \(|N_1| > |N_2|\): +\[ |H_1| = \sqrt{\epsilon} \frac{|N_2|}{|N_1|} \] +

+ +

+For instance, is we take \(\epsilon = 1\), then the PSD of \(\hat{x}\) is increased by just by a factor \(\sqrt{2}\) over the all frequencies from the idea case. +

+ +

+We use this as the weighting functions for the \(\mathcal{H}_\infty\) synthesis of the complementary filters. +

+ +

+The weighting function and the obtained complementary filters are shown in Fig. 20. +

+ +
+
epsilon = 2;
+
+W1b = 1/epsilon*N1/N2;
+W2b = 1/epsilon*N2/N1;
+
+W1b = W1b/(1 + s/2/pi/1000); % this is added so that it is proper
+
+
+ +
+
P = [W1b -W1b;
+     0    W2b;
+     1    0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[H2b, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[H2b, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Test bounds:      0.0000 <  gamma  <=     32.8125
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+   32.812   1.8e+01   3.4e-10   6.3e+00   -2.9e-13    0.0000    p
+   16.406   1.8e+01   3.4e-10   6.3e+00   -1.2e-15    0.0000    p
+    8.203   1.8e+01   3.3e-10   6.3e+00   -2.6e-13    0.0000    p
+    4.102   1.8e+01   3.3e-10   6.3e+00   -2.1e-13    0.0000    p
+    2.051   1.7e+01   3.4e-10   6.3e+00   -7.2e-16    0.0000    p
+    1.025   1.6e+01 -1.3e+06#  6.3e+00   -8.3e-14    0.0000    f
+    1.538   1.7e+01   3.4e-10   6.3e+00   -2.0e-13    0.0000    p
+    1.282   1.7e+01   3.4e-10   6.3e+00   -7.9e-17    0.0000    p
+    1.154   1.7e+01   3.6e-10   6.3e+00   -1.8e-13    0.0000    p
+    1.089   1.7e+01 -3.4e+06#  6.3e+00   -1.7e-13    0.0000    f
+    1.122   1.7e+01 -1.0e+07#  6.3e+00   -3.2e-13    0.0000    f
+    1.138   1.7e+01 -1.3e+08#  6.3e+00   -1.8e-13    0.0000    f
+    1.146   1.7e+01   3.2e-10   6.3e+00   -3.0e-13    0.0000    p
+    1.142   1.7e+01   5.5e-10   6.3e+00   -2.8e-13    0.0000    p
+    1.140   1.7e+01 -1.5e-10   6.3e+00   -2.3e-13    0.0000    p
+    1.139   1.7e+01 -4.8e+08#  6.3e+00   -6.2e-14    0.0000    f
+    1.139   1.7e+01   1.3e-09   6.3e+00   -8.9e-17    0.0000    p
+
+ Gamma value achieved:     1.1390
+
+ +
+
H1b = 1 - H2b;
+
+
+ + +
+

weights_comp_filters_Hinfb.png +

+

Figure 20: Weights and Complementary Fitlers obtained (png, pdf)

+
+ +
+
PSD_Hb = abs(squeeze(freqresp(N1*H1b, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2b, freqs, 'Hz'))).^2;
+CPS_Hb = 1/pi*cumtrapz(2*pi*freqs, PSD_Hb);
+
+
+
+
+ +
+

2.7 H-Infinity Synthesis - method C

+
+
+
Wp = 0.56*(inv(N1)+inv(N2))/(1 + s/2/pi/1000);
+
+W1c = N1*Wp;
+W2c = N2*Wp;
+
+
+ +
+
P = [W1c -W1c;
+     0    W2c;
+     1    0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[H2c, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[H2c, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Test bounds:      0.0000 <  gamma  <=     36.7543
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+   36.754   5.7e+00 -1.0e-13   6.3e+00   -6.2e-25    0.0000    p
+   18.377   5.7e+00 -1.4e-12   6.3e+00   -1.8e-13    0.0000    p
+    9.189   5.7e+00 -4.3e-13   6.3e+00   -4.7e-15    0.0000    p
+    4.594   5.7e+00 -9.4e-13   6.3e+00   -4.7e-15    0.0000    p
+    2.297   5.7e+00 -1.3e-16   6.3e+00   -6.8e-14    0.0000    p
+    1.149   5.7e+00 -1.6e-17   6.3e+00   -1.5e-15    0.0000    p
+    0.574   5.7e+00 -5.2e+02#  6.3e+00   -5.9e-14    0.0000    f
+    0.861   5.7e+00 -3.1e+04#  6.3e+00   -3.8e-14    0.0000    f
+    1.005   5.7e+00 -1.6e-12   6.3e+00   -1.1e-14    0.0000    p
+    0.933   5.7e+00 -1.1e+05#  6.3e+00   -7.2e-14    0.0000    f
+    0.969   5.7e+00 -3.3e+05#  6.3e+00   -5.6e-14    0.0000    f
+    0.987   5.7e+00 -1.2e+06#  6.3e+00   -4.5e-15    0.0000    f
+    0.996   5.7e+00 -6.5e-16   6.3e+00   -1.7e-15    0.0000    p
+    0.992   5.7e+00 -2.9e+06#  6.3e+00   -6.1e-14    0.0000    f
+    0.994   5.7e+00 -9.7e+06#  6.3e+00   -3.0e-16    0.0000    f
+    0.995   5.7e+00 -8.0e-10   6.3e+00   -1.9e-13    0.0000    p
+    0.994   5.7e+00 -2.3e+07#  6.3e+00   -4.3e-14    0.0000    f
+
+ Gamma value achieved:     0.9949
+
+ +
+
H1c = 1 - H2c;
+
+
+ + +
+

weights_comp_filters_Hinfc.png +

+

Figure 21: Weights and Complementary Fitlers obtained (png, pdf)

+
+ +
+
PSD_Hc = abs(squeeze(freqresp(N1*H1c, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2c, freqs, 'Hz'))).^2;
+CPS_Hc = 1/pi*cumtrapz(2*pi*freqs, PSD_Hc);
+
+
+
+
+ +
+

2.8 Comparison of the methods

+
+

+The three methods are now compared. +

+ +

+The Power Spectral Density of the super sensors obtained with the complementary filters designed using the three methods are shown in Fig. 22. +

+ +

+The Cumulative Power Spectrum for the same sensors are shown on Fig. 23. +

+ +

+The RMS value of the obtained super sensors are shown on table 1. +

+ + + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1: RMS value of the estimation error when using the sensor individually and when using the two sensor merged using the optimal complementary filters
 rms value
Sensor 11.3e-03
Sensor 21.3e-03
H2 Fusion1.2e-04
H-Infinity a2.4e-04
H-Infinity b1.4e-04
H-Infinity c2.2e-04
+ + + +
+

comparison_psd_noise.png +

+

Figure 22: Comparison of the obtained Power Spectral Density using the three methods (png, pdf)

+
+ + +
+

comparison_cps_noise.png +

+

Figure 23: Comparison of the obtained Cumulative Power Spectrum using the three methods (png, pdf)

+
+
+
+ +
+

2.9 Obtained Super Sensor’s noise uncertainty

+
+

+We would like to verify if the obtained sensor fusion architecture is robust to change in the sensor dynamics. +

+ +

+To study the dynamical uncertainty on the super sensor, we defined some multiplicative uncertainty on both sensor dynamics. +Two weights \(w_1(s)\) and \(w_2(s)\) are used to described the amplitude of the dynamical uncertainty. +

+ +
+
omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
+w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+
+omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1;
+w2 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+omegac = 5000*2*pi; G0 = 1; Ginf = 50;
+w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1);
+
+
+ +

+The sensor uncertain models are defined below. +

+
+
G1 = 1 + w1*ultidyn('Delta',[1 1]);
+G2 = 1 + w2*ultidyn('Delta',[1 1]);
+
+
+ +

+The super sensor uncertain model is defined below using the complementary filters obtained with the \(\mathcal{H}_2\) synthesis. +The dynamical uncertainty bounds of the super sensor is shown in Fig. 24. +Right Half Plane zero might be introduced in the super sensor dynamics which will render the feedback system unstable. +

+ +
+
Gss = G1*H1 + G2*H2;
+
+
+ + +
+

uncertainty_super_sensor_H2_syn.png +

+

Figure 24: Uncertianty regions of both individual sensors and of the super sensor when using the \(\mathcal{H}_2\) synthesis (png, pdf)

+
+
+
+ +
+

2.10 Conclusion

+
+

+From the above complementary filter design with the \(\mathcal{H}_2\) and \(\mathcal{H}_\infty\) synthesis, it still seems that the \(\mathcal{H}_2\) synthesis gives the complementary filters that permits to obtain the minimal super sensor noise (when measuring with the \(\mathcal{H}_2\) norm). +

+ +

+However, the synthesis does not take into account the robustness of the sensor fusion. +

+
+
+
+ +
+

3 Optimal Sensor Fusion - Minimize the Super Sensor Dynamical Uncertainty

+
+

+ +

+

+We initially considered perfectly known sensor dynamics so that it can be perfectly inverted. +

+ +

+We now take into account the fact that the sensor dynamics is only partially known. +To do so, we model the uncertainty that we have on the sensor dynamics by multiplicative input uncertainty as shown in Fig. 25. +

+ + +
+

sensor_fusion_dynamic_uncertainty.png +

+

Figure 25: Sensor fusion architecture with sensor dynamics uncertainty

+
+ +

+The objective here is to design complementary filters \(H_1(s)\) and \(H_2(s)\) in order to minimize the dynamical uncertainty of the super sensor. +

+
+

+The Matlab scripts is accessible here. +

+ +
+
+ +
+

3.1 Super Sensor Dynamical Uncertainty

+
+

+In practical systems, the sensor dynamics has always some level of uncertainty. +Let’s represent that with multiplicative input uncertainty as shown on figure 25. +

+ + +
+

sensor_fusion_dynamic_uncertainty.png +

+

Figure 26: Fusion of two sensors with input multiplicative uncertainty

+
+ +

+The dynamics of the super sensor is represented by +

+\begin{align*} + \frac{\hat{x}}{x} &= (1 + w_1 \Delta_1) H_1 + (1 + w_2 \Delta_2) H_2 \\ + &= 1 + w_1 H_1 \Delta_1 + w_2 H_2 \Delta_2 +\end{align*} +

+with \(\Delta_i\) is any transfer function satisfying \(\| \Delta_i \|_\infty < 1\). +

+ +

+We see that as soon as we have some uncertainty in the sensor dynamics, we have that the complementary filters have some effect on the transfer function from \(x\) to \(\hat{x}\). +

+ +

+The uncertainty set of the transfer function from \(\hat{x}\) to \(x\) at frequency \(\omega\) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\) (figure 27). +

+ +

+We then have that the angle introduced by the super sensor is bounded by \(\arcsin(\epsilon)\): +\[ \angle \frac{\hat{x}}{x}(j\omega) \le \arcsin \Big(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\Big) \] +

+ + +
+

uncertainty_gain_phase_variation.png +

+

Figure 27: Maximum phase variation

+
+
+
+ +
+

3.2 Dynamical uncertainty of the individual sensors

+
+

+Let say we want to merge two sensors: +

+
    +
  • sensor 1 that has unknown dynamics above 10Hz: \(|w_1(j\omega)| > 1\) for \(\omega > 10\text{ Hz}\)
  • +
  • sensor 2 that has unknown dynamics below 1Hz and above 1kHz \(|w_2(j\omega)| > 1\) for \(\omega < 1\text{ Hz}\) and \(\omega > 1\text{ kHz}\)
  • +
+ +

+We define the weights that are used to characterize the dynamic uncertainty of the sensors. +

+ +
+
omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
+w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+
+omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1;
+w2 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+omegac = 5000*2*pi; G0 = 1; Ginf = 50;
+w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1);
+
+
+ +

+From the weights, we define the uncertain transfer functions of the sensors. Some of the uncertain dynamics of both sensors are shown on Fig. 28 with the upper and lower bounds on the magnitude and on the phase. +

+
+
G1 = 1 + w1*ultidyn('Delta',[1 1]);
+G2 = 1 + w2*ultidyn('Delta',[1 1]);
+
+
+ + +
+

uncertainty_dynamics_sensors.png +

+

Figure 28: Dynamic uncertainty of the two sensors (png, pdf)

+
+
+
+ +
+

3.3 Synthesis objective

+
+

+The uncertainty region of the super sensor dynamics is represented by a circle in the complex plane as shown in Fig. 27. +

+ +

+At each frequency \(\omega\), the radius of the circle is \(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\). +

+ +

+Thus, the phase shift \(\Delta\phi(\omega)\) due to the super sensor uncertainty is bounded by: +\[ |\Delta\phi(\omega)| \leq \arcsin\big( |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| \big) \] +

+ +

+Let’s define some allowed frequency depend phase shift \(\Delta\phi_\text{max}(\omega) > 0\) such that: +\[ |\Delta\phi(\omega)| < \Delta\phi_\text{max}(\omega), \quad \forall\omega \] +

+ + +

+If \(H_1(s)\) and \(H_2(s)\) are designed such that +\[ |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big) \] +

+ +

+The maximum phase shift due to dynamic uncertainty at frequency \(\omega\) will be \(\Delta\phi_\text{max}(\omega)\). +

+
+
+ +
+

3.4 Requirements as an \(\mathcal{H}_\infty\) norm

+
+

+We now try to express this requirement in terms of an \(\mathcal{H}_\infty\) norm. +

+ +

+Let’s define one weight \(w_\phi(s)\) that represents the maximum wanted phase uncertainty: +\[ |w_{\phi}(j\omega)|^{-1} \approx \sin(\Delta\phi_{\text{max}}(\omega)), \quad \forall\omega \] +

+ +

+Then: +

+\begin{align*} + & |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big), \quad \forall\omega \\ + \Longleftrightarrow & |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| < |w_\phi(j\omega)|^{-1}, \quad \forall\omega \\ + \Longleftrightarrow & \left| w_1(j\omega) H_1(j\omega) w_\phi(j\omega) \right| + \left| w_2(j\omega) H_2(j\omega) w_\phi(j\omega) \right| < 1, \quad \forall\omega +\end{align*} + +

+Which is approximately equivalent to (with an error of maximum \(\sqrt{2}\)): +

+\begin{equation} +\label{org6b95a9d} + \left\| \begin{matrix} w_1(s) w_\phi(s) H_1(s) \\ w_2(s) w_\phi(s) H_2(s) \end{matrix} \right\|_\infty < 1 +\end{equation} + +

+One should not forget that at frequency where both sensors has unknown dynamics (\(|w_1(j\omega)| > 1\) and \(|w_2(j\omega)| > 1\)), the super sensor dynamics will also be unknown and the phase uncertainty cannot be bounded. +Thus, at these frequencies, \(|w_\phi|\) should be smaller than \(1\). +

+
+
+ +
+

3.5 Weighting Function used to bound the super sensor uncertainty

+
+

+Let’s define \(w_\phi(s)\) in order to bound the maximum allowed phase uncertainty \(\Delta\phi_\text{max}\) of the super sensor dynamics. +The magnitude \(|w_\phi(j\omega)|\) is shown in Fig. 29 and the corresponding maximum allowed phase uncertainty of the super sensor dynamics of shown in Fig. 30. +

+ +
+
Dphi = 20; % [deg]
+
+n = 4; w0 = 2*pi*900; G0 = 1/sin(Dphi*pi/180); Ginf = 1/100; Gc = 1;
+wphi = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/Ginf)^(2/n)))*s + (G0/Gc)^(1/n))/((1/Ginf)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/Ginf)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+W1 = w1*wphi;
+W2 = w2*wphi;
+
+
+ + +
+

magnitude_wphi.png +

+

Figure 29: Magnitude of the weght \(w_\phi(s)\) that is used to bound the uncertainty of the super sensor (png, pdf)

+
+ + +
+

maximum_wanted_phase_uncertainty.png +

+

Figure 30: Maximum wanted phase uncertainty using this weight (png, pdf)

+
+ +

+The obtained upper bounds on the complementary filters in order to limit the phase uncertainty of the super sensor are represented in Fig. 31. +

+ + +
+

upper_bounds_comp_filter_max_phase_uncertainty.png +

+

Figure 31: Upper bounds on the complementary filters set in order to limit the maximum phase uncertainty of the super sensor to 30 degrees until 500Hz (png, pdf)

+
+
+
+ +
+

3.6 \(\mathcal{H}_\infty\) Synthesis

+
+

+The \(\mathcal{H}_\infty\) synthesis architecture used for the complementary filters is shown in Fig. 32. +

+ + +
+

h_infinity_robust_fusion.png +

+

Figure 32: Architecture used for \(\mathcal{H}_\infty\) synthesis of complementary filters

+
+ +

+The generalized plant is defined below. +

+
+
P = [W1 -W1;
+     0   W2;
+     1   0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Resetting value of Gamma min based on D_11, D_12, D_21 terms
+
+Test bounds:      0.0447 <  gamma  <=      1.3318
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+    1.332   1.3e+01 -1.0e-14   1.3e+00   -2.6e-18    0.0000    p
+    0.688   1.3e-11# ********   1.3e+00   -6.7e-15  ********    f
+    1.010   1.1e+01 -1.5e-14   1.3e+00   -2.5e-14    0.0000    p
+    0.849   6.9e-11# ********   1.3e+00   -2.3e-14  ********    f
+    0.930   5.2e-12# ********   1.3e+00   -6.1e-18  ********    f
+    0.970   5.6e-11# ********   1.3e+00   -2.3e-14  ********    f
+    0.990   5.0e-11# ********   1.3e+00   -1.7e-17  ********    f
+    1.000   2.1e-10# ********   1.3e+00    0.0e+00  ********    f
+    1.005   1.9e-10# ********   1.3e+00   -3.7e-14  ********    f
+    1.008   1.1e+01 -9.1e-15   1.3e+00    0.0e+00    0.0000    p
+    1.006   1.2e-09# ********   1.3e+00   -6.9e-16  ********    f
+    1.007   1.1e+01 -4.6e-15   1.3e+00   -1.8e-16    0.0000    p
+
+ Gamma value achieved:     1.0069
+
+ +

+And \(H_1(s)\) is defined as the complementary of \(H_2(s)\). +

+
+
H1 = 1 - H2;
+
+
+ +

+The obtained complementary filters are shown in Fig. 33. +

+ +
+

comp_filter_hinf_uncertainty.png +

+

Figure 33: Obtained complementary filters (png, pdf)

+
+
+
+ +
+

3.7 Super sensor uncertainty

+
+

+We can now compute the uncertainty of the super sensor. The result is shown in Fig. 34. +

+ +
+
Gss = G1*H1 + G2*H2;
+
+
+ + +
+

super_sensor_uncertainty_bode_plot.png +

+

Figure 34: Uncertainty on the dynamics of the super sensor (png, pdf)

+
+ +

+The uncertainty of the super sensor cannot be made smaller than both the individual sensor. Ideally, it would follow the minimum uncertainty of both sensors. +

+ +

+We here just used very wimple weights. +For instance, we could improve the dynamical uncertainty of the super sensor by making \(|w_\phi(j\omega)|\) smaller bellow 2Hz where the dynamical uncertainty of the sensor 1 is small. +

+
+
+ +
+

3.8 Super sensor noise

+
+

+We now compute the obtain Power Spectral Density of the super sensor’s noise. +The noise characteristics of both individual sensor are defined below. +

+ +
+
omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4;
+N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100);
+
+omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8;
+N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2;
+
+
+ +

+The PSD of both sensor and of the super sensor is shown in Fig. 35. +The CPS of both sensor and of the super sensor is shown in Fig. 36. +

+ + +
+

psd_sensors_hinf_synthesis.png +

+

Figure 35: Power Spectral Density of the obtained super sensor using the \(\mathcal{H}_\infty\) synthesis (png, pdf)

+
+ + +
+

cps_sensors_hinf_synthesis.png +

+

Figure 36: Cumulative Power Spectrum of the obtained super sensor using the \(\mathcal{H}_\infty\) synthesis (png, cps)

+
+
+
+ +
+

3.9 Conclusion

+
+

+Using the \(\mathcal{H}_\infty\) synthesis, the dynamical uncertainty of the super sensor can be bounded to acceptable values. +

+ +

+However, the RMS of the super sensor noise is not optimized as it was the case with the \(\mathcal{H}_2\) synthesis +

+
+
+
+ +
+

4 Optimal Sensor Fusion - Mixed Synthesis

+
+

+ +

+
+

+The Matlab scripts is accessible here. +

+ +
+
+
+

4.1 Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis - Introduction

+
+

+The goal is to design complementary filters such that: +

+
    +
  • the maximum uncertainty of the super sensor is bounded
  • +
  • the RMS value of the super sensor noise is minimized
  • +
+ +

+To do so, we can use the Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis. +

+ +

+The Matlab function for that is h2hinfsyn (doc). +

+
+
+ +
+

4.2 Noise characteristics and Uncertainty of the individual sensors

+
+

+We define the weights that are used to characterize the dynamic uncertainty of the sensors. This will be used for the \(\mathcal{H}_\infty\) part of the synthesis. +

+
+
omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
+w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+
+omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1;
+w2 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+omegac = 5000*2*pi; G0 = 1; Ginf = 50;
+w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1);
+
+
+ +

+We define the noise characteristics of the two sensors by choosing \(N_1\) and \(N_2\). This will be used for the \(\mathcal{H}_2\) part of the synthesis. +

+
+
omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4;
+N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100);
+
+omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8;
+N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2;
+
+
+ +

+Both dynamical uncertainty and noise characteristics of the individual sensors are shown in Fig. 37. +

+ + +
+

mixed_synthesis_noise_uncertainty_sensors.png +

+

Figure 37: Noise characteristsics and Dynamical uncertainty of the individual sensors (png, pdf)

+
+
+
+ +
+

4.3 Weighting Functions on the uncertainty of the super sensor

+
+

+We design weights for the \(\mathcal{H}_\infty\) part of the synthesis in order to limit the dynamical uncertainty of the super sensor. +The maximum wanted multiplicative uncertainty is shown in Fig. 38. The idea here is that we don’t really need low uncertainty at low frequency but only near the crossover frequency that is suppose to be around 300Hz here. +

+ +
+
n = 4; w0 = 2*pi*900; G0 = 9; G1 = 1; Gc = 1.1;
+H = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+wphi = 0.2*(s+3.142e04)/(s+628.3)/H;
+
+
+ + +
+

mixed_syn_hinf_weight.png +

+

Figure 38: Wanted maximum module uncertainty of the super sensor (png, pdf)

+
+ +

+The equivalent Magnitude and Phase uncertainties are shown in Fig. 39. +

+ + +
+

mixed_syn_objective_hinf.png +

+

Figure 39: \(\mathcal{H}_\infty\) synthesis objective part of the mixed-synthesis (png, pdf)

+
+
+
+ +
+

4.4 Mixed Synthesis Architecture

+
+

+The synthesis architecture that is used here is shown in Fig. 40. +

+ +

+The controller \(K\) is synthesized such that it: +

+
    +
  • Keeps the \(\mathcal{H}_\infty\) norm \(G\) of the transfer function from \(w\) to \(z_\infty\) bellow some specified value
  • +
  • Keeps the \(\mathcal{H}_2\) norm \(H\) of the transfer function from \(w\) to \(z_2\) bellow some specified value
  • +
  • Minimizes a trade-off criterion of the form \(W_1 G^2 + W_2 H^2\) where \(W_1\) and \(W_2\) are specified values
  • +
+ + +
+

mixed_h2_hinf_synthesis.png +

+

Figure 40: Mixed H2/H-Infinity Synthesis

+
+ +

+Here, we define \(P\) such that: +

+\begin{align*} + \left\| \frac{z_\infty}{w} \right\|_\infty &= \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty \\ + \left\| \frac{z_2}{w} \right\|_2 &= \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 +\end{align*} + +

+Then: +

+
    +
  • we specify the maximum value for the \(\mathcal{H}_\infty\) norm between \(w\) and \(z_\infty\) to be \(1\)
  • +
  • we don’t specify any maximum value for the \(\mathcal{H}_2\) norm between \(w\) and \(z_2\)
  • +
  • we choose \(W_1 = 0\) and \(W_2 = 1\) such that the objective is to minimize the \(\mathcal{H}_2\) norm between \(w\) and \(z_2\)
  • +
+ +

+The synthesis objective is to have: +\[ \left\| \frac{z_\infty}{w} \right\|_\infty = \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty < 1 \] +and to minimize: +\[ \left\| \frac{z_2}{w} \right\|_2 = \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 \] +which is what we wanted. +

+ +

+We define the generalized plant that will be used for the mixed synthesis. +

+
+
W1u = ss(w1*wphi); W2u = ss(w2*wphi); % Weight on the uncertainty
+W1n = ss(N1); W2n = ss(N2); % Weight on the noise
+
+P = [W1u -W1u;
+     0    W2u;
+     W1n -W1n;
+     0    W2n;
+     1    0];
+
+
+
+
+ +
+

4.5 Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis

+
+

+The mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis is performed below. +

+
+
Nmeas = 1; Ncon = 1; Nz2 = 2;
+
+[H2,~,normz,~] = h2hinfsyn(P, Nmeas, Ncon, Nz2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 0.01, 'DISPLAY', 'on');
+
+H1 = 1 - H2;
+
+
+ +

+The obtained complementary filters are shown in Fig. 41. +

+ + +
+

comp_filters_mixed_synthesis.png +

+

Figure 41: Obtained complementary filters after mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis (png, pdf)

+
+
+
+ +
+

4.6 Obtained Super Sensor’s noise

+
+

+The PSD and CPS of the super sensor’s noise are shown in Fig. 42 and Fig. 43 respectively. +

+ + +
+

psd_super_sensor_mixed_syn.png +

+

Figure 42: Power Spectral Density of the Super Sensor obtained with the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis (png, pdf)

+
+ + + +
+

cps_super_sensor_mixed_syn.png +

+

Figure 43: Cumulative Power Spectrum of the Super Sensor obtained with the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis (png, pdf)

+
+
+
+ +
+

4.7 Obtained Super Sensor’s Uncertainty

+
+

+The uncertainty on the super sensor’s dynamics is shown in Fig. 44. +

+ + +
+

super_sensor_dyn_uncertainty_mixed_syn.png +

+

Figure 44: Super Sensor Dynamical Uncertainty obtained with the mixed synthesis (png, pdf)

+
+
+
+ +
+

4.8 Conclusion

+
+

+This synthesis methods allows both to: +

+
    +
  • limit the dynamical uncertainty of the super sensor
  • +
  • minimize the RMS value of the estimation
  • +
+
+
+
+ +
+

5 Mixed Synthesis - LMI Optimization

+
+
+
+

5.1 Introduction

+
+

+The following matlab scripts was written by Mohit. +

+
+
+ +
+

5.2 Noise characteristics and Uncertainty of the individual sensors

+
+

+We define the weights that are used to characterize the dynamic uncertainty of the sensors. This will be used for the \(\mathcal{H}_\infty\) part of the synthesis. +

+
+
omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
+w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+
+omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1;
+w2 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+omegac = 5000*2*pi; G0 = 1; Ginf = 50;
+w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1);
+
+
+ +

+We define the noise characteristics of the two sensors by choosing \(N_1\) and \(N_2\). This will be used for the \(\mathcal{H}_2\) part of the synthesis. +

+
+
omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4;
+N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100);
+
+omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8;
+N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2;
+
+
+
+
+ +
+

5.3 Weights

+
+

+The weights for the \(\mathcal{H}_2\) and \(\mathcal{H}_\infty\) part are defined below. +

+ +
+
n = 4; w0 = 2*pi*900; G0 = 9; G1 = 1; Gc = 1.1;
+H = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+wphi = 0.2*(s+3.142e04)/(s+628.3)/H;
+
+W1u = ss(w1*wphi); W2u = ss(w2*wphi); % Weight on the uncertainty
+W1n = ss(N1); W2n = ss(N2); % Weight on the noise
+
+
+ +
+
P = [W1u -W1u;
+     0    W2u;
+     W1n -W1n;
+     0    W2n;
+     1    0];
+
+
+
+
+ +
+

5.4 LMI Optimization

+
+

+We are using the CVX toolbox to solve the optimization problem. +

+ +

+We first put the generalized plant in a State-space form. +

+
+
A = P.A;
+Bw = P.B(:,1);
+Bu = P.B(:,2);
+Cz1 = P.C(1:2,:); Dz1w = P.D(1:2,1); Dz1u = P.D(1:2,2); % Hinf
+Cz2 = P.C(3:4,:); Dz2w = P.D(1:2,1); Dz2u = P.D(1:2,2); % H2
+Cy = P.C(5,:); Dyw = P.D(5,1); Dyu = P.D(5,2);
+
+n = size(P.A,1);
+ny = 1; % number of measurements
+nu = 1; % number of control inputs
+nz = 2;
+nw = 1;
+
+Wtinf = 0;
+Wt2 = 1;
+
+
+ +

+We Define all the variables. +

+
+
cvx_startup;
+
+cvx_begin sdp
+cvx_quiet true
+cvx_solver sedumi
+variable X(n,n) symmetric;
+variable Y(n,n) symmetric;
+variable W(nz,nz) symmetric;
+variable Ah(n,n);
+variable Bh(n,ny);
+variable Ch(nu,n);
+variable Dh(nu,ny);
+variable eta;
+variable gam;
+
+
+ +

+We define the minimization objective. +

+
+
minimize Wt2*eta+Wtinf*gam % mix objective
+subject to:
+
+
+ +

+The \(\mathcal{H}_\infty\) constraint. +

+
+
gam<=1; % Keep the Hinf norm less than 1
+
+[ X, eye(n,n) ;
+  eye(n,n), Y ] >= 0 ;
+
+[ A*X + Bu*Ch + X*A' + Ch'*Bu', A+Bu*Dh*Cy+Ah', Bw+Bu*Dh*Dyw, X*Cz1' + Ch'*Dz1u' ;
+  (A+Bu*Dh*Cy+Ah')', Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw, (Cz1+Dz1u*Dh*Cy)' ;
+  (Bw+Bu*Dh*Dyw)', Bw'*Y + Dyw'*Bh', -eye(nw,nw), (Dz1w+Dz1u*Dh*Dyw)' ;
+  Cz1*X + Dz1u*Ch, Cz1+Dz1u*Dh*Cy, Dz1w+Dz1u*Dh*Dyw, -gam*eye(nz,nz)] <= 0 ;
+
+
+ +

+The \(\mathcal{H}_2\) constraint. +

+
+
trace(W) <= eta ;
+
+[ W, Cz2*X+Dz2u*Ch, Cz2*X+Dz2u*Ch;
+  X*Cz2'+Ch'*Dz2u', X, eye(n,n) ;
+  (Cz2*X+Dz2u*Ch)', eye(n,n), Y ] >= 0 ;
+
+[ A*X + Bu*Ch + X*A' + Ch'*Bu', A+Bu*Dh*Cy+Ah', Bw+Bu*Dh*Dyw ;
+  (A+Bu*Dh*Cy+Ah')', Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw ;
+  (Bw+Bu*Dh*Dyw)', Bw'*Y + Dyw'*Bh', -eye(nw,nw)] <= 0 ;
+
+
+ +

+And we run the optimization. +

+
+
cvx_end
+cvx_status
+
+
+ +

+Finally, we can compute the obtained complementary filters. +

+
+
M = eye(n);
+N = inv(M)*(eye(n,n)-Y*X);
+Dk = Dh;
+Ck = (Ch-Dk*Cy*X)*inv(M');
+Bk = inv(N)*(Bh-Y*Bu*Dk);
+Ak = inv(N)*(Ah-Y*(A+Bu*Dk*Cy)*X-N*Bk*Cy*X-Y*Bu*Ck*M')*inv(M');
+
+H2 = tf(ss(Ak,Bk,Ck,Dk));
+H1 = 1 - H2;
+
+
+
+
+ +
+

5.5 Result

+
+

+The obtained complementary filters are compared with the required upper bounds on Fig. 45. +

+ + +
+

LMI_obtained_comp_filters.png +

+

Figure 45: Obtained complementary filters using the LMI optimization (png, pdf)

+
+
+
+ +
+

5.6 Comparison with the matlab Mixed Synthesis

+
+

+The Mixed \(\mathcal{H}_2\) / \(\mathcal{H}_\infty\) Synthesis is performed below. +

+
+
Nmeas = 1; Ncon = 1; Nz2 = 2;
+
+[H2m,~,normz,~] = h2hinfsyn(P, Nmeas, Ncon, Nz2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 0.01, 'DISPLAY', 'on');
+
+H1m = 1 - H2m;
+
+
+ +

+The obtained filters are compare with the one obtained using the CVX toolbox in Fig. [[]]. +

+ + +
+

compare_cvx_h2hinf_comp_filters.png +

+

Figure 46: Comparison between the complementary filters obtained with the CVX toolbox and with the h2hinfsyn command (png, pdf)

+
+
+
+ +
+

5.7 H-Infinity Objective

+
+

+In terms of the \(\mathcal{H}_\infty\) objective, both synthesis method are satisfying the requirements as shown in Fig. 47. +

+ + +
+

comp_cvx_h2i_hinf_norm.png +

+

Figure 47: H-Infinity norm requirement and results (png, pdf)

+
+
+
+ +
+

5.8 Obtained Super Sensor’s noise

+
+

+The PSD and CPS of the super sensor’s noise obtained with the CVX toolbox and h2hinfsyn command are compared in Fig. 48 and 49. +

+ + +
+

psd_compare_cvx_h2i.png +

+

Figure 48: Power Spectral Density of the Super Sensor obtained with the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis (png, pdf)

+
+ + + +
+

cps_compare_cvx_h2i.png +

+

Figure 49: Cumulative Power Spectrum of the Super Sensor obtained with the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis (png, pdf)

+
+
+
+ +
+

5.9 Obtained Super Sensor’s Uncertainty

+
+

+The uncertainty on the super sensor’s dynamics is shown in Fig. [[]]. +

+ + +
+

super_sensor_uncertainty_compare_cvx_h2i.png +

+

Figure 50: Super Sensor Dynamical Uncertainty obtained with the mixed synthesis (png, pdf)

+
+
+
+
+ +
+

6 H-Infinity synthesis to ensure both performance and robustness

+
+

+ +

+
+

+The Matlab scripts is accessible here. +

+ +
+
+ +
+

6.1 Introduction

+
+

+The idea is to use only the \(\mathcal{H}_\infty\) norm to express both the maximum wanted super sensor uncertainty and the fact that we want to minimize the super sensor’s noise. +

+ +

+For performance, we may want to obtain a super sensor’s noise that is close to the minimum of the individual sensor noises. +

+ +

+The noise of the super sensor is: +\[ |N_{ss}(j\omega)|^2 = | H_1(j\omega) N_1(j\omega) |^2 + | H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \] +

+ +

+The minimum noise that we can obtain follows the minimum noise of the individual sensor: +

+\begin{align*} + & |N_{ss}(j\omega)| \approx |N_1(j\omega)| \quad \text{when} \quad |N_1(j\omega)| < |N_2(j\omega)| \\ + & |N_{ss}(j\omega)| \approx |N_2(j\omega)| \quad \text{when} \quad |N_2(j\omega)| < |N_1(j\omega)| +\end{align*} + +

+To do so, we want to design the complementary filters such that: +

+\begin{align*} + & |H_2(j\omega)| \ll 1 \quad \text{when} \quad |N_1(j\omega)| < |N_2(j\omega)| \\ + & |H_1(j\omega)| \ll 1 \quad \text{when} \quad |N_2(j\omega)| < |N_1(j\omega)| +\end{align*} + + + + +

+For the uncertainty of the super sensor. +The equivalent super sensor uncertainty is: +\[ |w_{ss}(j\omega)| = |H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|, \quad \forall\omega \] +

+ +

+The minimum uncertainty that we can obtain follows the minimum uncertainty of the individual sensor: +

+\begin{align*} + & |w_{ss}(j\omega)| \approx |w_1(j\omega)| \quad \text{when} \quad |w_1(j\omega)| < |w_2(j\omega)| \\ + & |w_{ss}(j\omega)| \approx |w_2(j\omega)| \quad \text{when} \quad |w_2(j\omega)| < |w_1(j\omega)| +\end{align*} + +

+To do so, we want to design the complementary filters such that: +

+\begin{align*} + & |H_2(j\omega)| \ll 1 \quad \text{when} \quad |w_1(j\omega)| < |w_2(j\omega)| \\ + & |H_1(j\omega)| \ll 1 \quad \text{when} \quad |w_2(j\omega)| < |w_1(j\omega)| +\end{align*} + + +

+Of course, the conditions for performance and uncertainty may not be compatible. +

+ +

+We may not want to follow the minimum uncertainty. +

+
+
+ +
+

6.2 Dynamical uncertainty and Noise level of the individual sensors

+
+

+Uncertainty on the individual sensors: +

+
+
omegac = 100*2*pi; G0 = 0.1; Ginf = 10;
+w1 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+
+omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1;
+w2 = (Ginf*s/omegac + G0)/(s/omegac + 1);
+omegac = 5000*2*pi; G0 = 1; Ginf = 50;
+w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1);
+
+
+ +

+Noise level of the individual sensors: +

+
+
omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4;
+N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100);
+
+omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8;
+N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2;
+
+
+ + +
+

noise_uncertainty_sensors_hinf.png +

+

Figure 51: Noise and Uncertainty characteristics of the sensors (png, pdf)

+
+
+
+ +
+

6.3 Weights for uncertainty and performance

+
+

+We design weights that are used to describe the wanted upper bound on the super sensor’s noise and super sensor’s uncertainty. +

+ +

+Weight on the uncertainty: +

+
+
n = 4; w0 = 2*pi*500; G0 = 6; G1 = 1; Gc = 1.1;
+H = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+Wu = 0.2*(s+3.142e04)/(s+628.3)/H;
+
+
+ +

+Weight on the performance: +

+
+
n = 1; w0 = 2*pi*9; A = 6;
+a = sqrt(2*A^(2/n) - 1 + 2*A^(1/n)*sqrt(A^(2/n) - 1));
+G = ((1 + s/(w0/a))*(1 + s/(w0*a))/(1 + s/w0)^2)^n;
+
+n = 2; w0 = 2*pi*9; G0 = 1e-2; G1 = 1; Gc = 5e-1;
+G2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+Wp = inv(G2)*inv(G)*inv(N2);
+
+
+ +

+The noise and uncertainty weights of the individual sensors and the asked noise/uncertainty of the super sensor are displayed in Fig. 52. +

+ +
+

charac_sensors_weights.png +

+

Figure 52: Upper bounds on the super sensor’s noise and super sensor’s uncertainty (png, pdf)

+
+ + +

+The corresponding maximum norms of the filters to have the perf/robust asked are shown in Fig. 53. +

+ +
+

upper_bound_complementary_filters_perf_robust.png +

+

Figure 53: Upper bounds on the complementary filters (png, pdf)

+
+
+
+ +
+

6.4 H-infinity synthesis with 4 outputs corresponding to the 4 weights

+
+

+We do the \(\mathcal{H}_\infty\) synthesis with 4 weights and 4 outputs. +

+ +\begin{equation*} + \left\| \begin{matrix} + W_{1p}(s) (1 - N_2(s)) \\ + W_{2p}(s) N_2(s) \\ + W_{1u}(s) (1 - N_2(s)) \\ + W_{2u}(s) N_2(s) + \end{matrix} \right\|_\infty < 1 +\end{equation*} + + +
+
W1p = N1*Wp/(1+s/2/pi/1000); % Used to render W1p proper
+W2p = N2*Wp;
+W1u = w1*Wu;
+W2u = w2*Wu;
+
+
+ +
+
P = [W1p -W1p;
+     0    W2p;
+     W1u -W1u;
+     0    W2u;
+     1    0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Resetting value of Gamma min based on D_11, D_12, D_21 terms
+
+Test bounds:      1.4139 <  gamma  <=     65.6899
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+   65.690   1.3e+00 -6.7e-15   1.3e+00   -4.5e-13    0.0000    p
+   33.552   1.3e+00 -9.4e-15   1.3e+00   -3.7e-14    0.0000    p
+   17.483   1.3e+00 -5.6e-16   1.3e+00   -4.8e-13    0.0000    p
+    9.448   1.3e+00 -3.2e-15   1.3e+00   -1.2e-13    0.0000    p
+    5.431   1.3e+00 -2.3e-16   1.3e+00   -3.6e-13    0.0000    p
+    3.422   1.3e+00 -7.3e-16   1.3e+00   -2.6e-15    0.0000    p
+    2.418   1.3e+00   9.3e-17   1.3e+00   -3.0e-14    0.0000    p
+    1.916   1.3e+00   2.4e-17   1.3e+00   -2.2e-14    0.0000    p
+    1.665   1.3e+00 -2.5e-16   1.3e+00   -2.1e-14    0.0000    p
+    1.539   1.3e+00 -6.9e-15   1.3e+00   -5.3e-14    0.0000    p
+    1.477   1.3e+00 -2.1e-14   1.3e+00   -2.3e-13    0.0000    p
+    1.445   1.3e+00 -1.3e-16   1.3e+00   -2.6e-15    0.0000    p
+    1.430   1.3e+00 -4.9e-13   1.3e+00   -2.2e-13    0.0000    p
+    1.422   1.3e+00 -1.2e+08#  1.3e+00   -2.6e-13    0.0000    f
+    1.426   1.3e+00 -6.3e-13   1.3e+00   -3.3e-14    0.0000    p
+    1.424   1.3e+00 -3.4e+08#  1.3e+00   -4.5e-14    0.0000    f
+    1.425   1.3e+00 -1.7e+09#  1.3e+00   -5.2e-13    0.0000    f
+
+ Gamma value achieved:     1.4256
+
+ +
+
H1 = 1 - H2;
+
+
+ +

+The obtained complementary filters with the upper bounds are shown in Fig. 54. +

+ +
+

hinf_result_comp_filters_4_outputs.png +

+

Figure 54: caption (png, pdf)

+
+ + + + +
+

upper_bounds_perf_robust_result_4_outputs.png +

+

Figure 55: Obtained PSD and uncertainty with the corresponding upper bounds (png, pdf)

+
+ + +
+

4outputs_hinf_psd_cps2svg.png +

+

Figure 56: PSD and CPS (png, pdf)

+
+ + + +
+

4outputs_uncertainty.png +

+

Figure 57: Dynamical uncertainty (png, pdf)

+
+
+
+ +
+

6.5 Conclusion

+
+

+The \(\mathcal{H}_\infty\) synthesis has been used to design complementary filters that permits to robustly merge sensors while ensuring a maximum noise level. +However, no guarantee is made that the RMS value of the super sensor’s noise is minimized. +

+
+
+
+ +
+

7 Equivalent Super Sensor

+
+

+ +

+

+The goal here is to find the parameters of a single sensor that would best represent a super sensor. +

+
+
+

7.1 Sensor Fusion Architecture

+
+

+Let consider figure 58 where two sensors are merged. +The dynamic uncertainty of each sensor is represented by a weight \(w_i(s)\), the frequency characteristics each of the sensor noise is represented by the weights \(N_i(s)\). +The noise sources \(\tilde{n}_i\) are considered to be white noise: \(\Phi_{\tilde{n}_i}(\omega) = 1, \ \forall\omega\). +

+ + +
+

sensor_fusion_full.png +

+

Figure 58: Sensor fusion architecture (png, pdf).

+
+ + +\begin{align*} + \hat{x} &= H_1(s) N_1(s) \tilde{n}_1 + H_2(s) N_2(s) \tilde{n}_2 \\ + &\quad \quad + \Big(H_1(s) \big(1 + w_1(s) \Delta_1(s)\big) + H_2(s) \big(1 + w_2(s) \Delta_2(s)\big)\Big) x \\ + &= H_1(s) N_1(s) \tilde{n}_1 + H_2(s) N_2(s) \tilde{n}_2 \\ + &\quad \quad + \big(1 + H_1(s) w_1(s) \Delta_1(s) + H_2(s) w_2(s) \Delta_2(s)\big) x +\end{align*} + +

+To the dynamics of the super sensor is: +

+\begin{equation} + \frac{\hat{x}}{x} = 1 + H_1(s) w_1(s) \Delta_1(s) + H_2(s) w_2(s) \Delta_2(s) +\end{equation} + +

+And the noise of the super sensor is: +

+\begin{equation} + n_{ss} = H_1(s) N_1(s) \tilde{n}_1 + H_2(s) N_2(s) \tilde{n}_2 +\end{equation} +
+
+ +
+

7.2 Equivalent Configuration

+
+

+We try to determine \(w_{ss}(s)\) and \(N_{ss}(s)\) such that the sensor on figure 59 is equivalent to the super sensor of figure 58. +

+ + +
+

sensor_fusion_equivalent.png +

+

Figure 59: Equivalent Super Sensor (png, pdf).

+
+
+
+ +
+

7.3 Model the uncertainty of the super sensor

+
+

+At each frequency \(\omega\), the uncertainty set of the super sensor shown on figure 58 is a circle centered on \(1\) with a radius equal to \(|H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|\) on the complex plane. +The uncertainty set of the sensor shown on figure 59 is a circle centered on \(1\) with a radius equal to \(|w_{ss}(j\omega)|\) on the complex plane. +

+ +

+Ideally, we want to find a weight \(w_{ss}(s)\) so that: +

+
+

+\[ |w_{ss}(j\omega)| = |H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|, \quad \forall\omega \] +

+ +
+
+
+ +
+

7.4 Model the noise of the super sensor

+
+

+The PSD of the estimation \(\hat{x}\) when \(x = 0\) of the configuration shown on figure 58 is: +

+\begin{align*} + \Phi_{\hat{x}}(\omega) &= | H_1(j\omega) N_1(j\omega) |^2 \Phi_{\tilde{n}_1} + | H_2(j\omega) N_2(j\omega) |^2 \Phi_{\tilde{n}_2} \\ + &= | H_1(j\omega) N_1(j\omega) |^2 + | H_2(j\omega) N_2(j\omega) |^2 +\end{align*} + +

+The PSD of the estimation \(\hat{x}\) when \(x = 0\) of the configuration shown on figure 59 is: +

+\begin{align*} + \Phi_{\hat{x}}(\omega) &= | N_{ss}(j\omega) |^2 \Phi_{\tilde{n}} \\ + &= | N_{ss}(j\omega) |^2 +\end{align*} + +

+Ideally, we want to find a weight \(N_{ss}(s)\) such that: +

+
+

+\[ |N_{ss}(j\omega)|^2 = | H_1(j\omega) N_1(j\omega) |^2 + | H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \] +

+ +
+
+
+ +
+

7.5 First guess

+
+

+We could choose +

+\begin{align*} + w_{ss}(s) &= H_1(s) w_1(s) + H_2(s) w_2(s) \\ + N_{ss}(s) &= H_1(s) N_1(s) + H_2(s) N_2(s) +\end{align*} + +

+But we would have: +

+\begin{align*} + |w_{ss}(j\omega)| &= |H_1(j\omega) w_1(j\omega) + H_2(j\omega) w_2(j\omega)|, \quad \forall\omega \\ + &\neq |H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|, \quad \forall\omega +\end{align*} +

+and +

+\begin{align*} + |N_{ss}(j\omega)|^2 &= | H_1(j\omega) N_1(j\omega) + H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \\ + &\neq | H_1(j\omega) N_1(j\omega)|^2 + |H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \\ +\end{align*} +
+
+
+ +
+

8 Optimal And Robust Sensor Fusion in Practice

+
+

+ +

+

+Here are the steps in order to apply optimal and robust sensor fusion: +

+ +
    +
  • Measure the noise characteristics of the sensors to be merged (necessary for “optimal” part of the fusion)
  • +
  • Measure/Estimate the dynamic uncertainty of the sensors (necessary for “robust” part of the fusion)
  • +
  • Apply H2/H-infinity synthesis of the complementary filters
  • +
+
+
+

8.1 Measurement of the noise characteristics of the sensors

+
+
+
+

8.1.1 Huddle Test

+
+

+The technique to estimate the sensor noise is taken from (Barzilai, VanZandt, and Kenny 1998). +

+ +

+Let’s consider two sensors (sensor 1 and sensor 2) that are measuring the same quantity \(x\) as shown in figure 60. +

+ + +
+

huddle_test.png +

+

Figure 60: Huddle test block diagram

+
+ +

+Each sensor has uncorrelated noise \(n_1\) and \(n_2\) and internal dynamics \(G_1(s)\) and \(G_2(s)\) respectively. +

+ +

+We here suppose that each sensor has the same magnitude of instrumental noise: \(n_1 = n_2 = n\). +We also assume that their dynamics is ideal: \(G_1(s) = G_2(s) = 1\). +

+ +

+We then have: +

+\begin{equation} +\label{orgdad26a1} + \gamma_{\hat{x}_1\hat{x}_2}^2(\omega) = \frac{1}{1 + 2 \left( \frac{|\Phi_n(\omega)|}{|\Phi_{\hat{x}}(\omega)|} \right) + \left( \frac{|\Phi_n(\omega)|}{|\Phi_{\hat{x}}(\omega)|} \right)^2} +\end{equation} + +

+Since the input signal \(x\) and the instrumental noise \(n\) are incoherent: +

+\begin{equation} +\label{org320aa52} + |\Phi_{\hat{x}}(\omega)| = |\Phi_n(\omega)| + |\Phi_x(\omega)| +\end{equation} + +

+From equations \eqref{eq:coh_bis} and \eqref{eq:incoherent_noise}, we finally obtain +

+
+\begin{equation} +\label{org57c4428} + |\Phi_n(\omega)| = |\Phi_{\hat{x}}(\omega)| \left( 1 - \sqrt{\gamma_{\hat{x}_1\hat{x}_2}^2(\omega)} \right) +\end{equation} + +
+
+
+ +
+

8.1.2 Weights that represents the noises’ PSD

+
+

+For further complementary filter synthesis, it is preferred to consider a normalized noise source \(\tilde{n}\) that has a PSD equal to one (\(\Phi_{\tilde{n}}(\omega) = 1\)) and to use a weighting filter \(N(s)\) in order to represent the frequency dependence of the noise. +

+ +

+The weighting filter \(N(s)\) should be designed such that: +

+\begin{align*} + & \Phi_n(\omega) \approx |N(j\omega)|^2 \Phi_{\tilde{n}}(\omega) \quad \forall \omega \\ + \Longleftrightarrow & |N(j\omega)| \approx \sqrt{\Phi_n(\omega)} \quad \forall \omega +\end{align*} + +

+These weighting filters can then be used to compare the noise level of sensors for the synthesis of complementary filters. +

+ +

+The sensor with a normalized noise input is shown in figure 61. +

+ + +
+

one_sensor_normalized_noise.png +

+

Figure 61: One sensor with normalized noise

+
+
+
+ +
+

8.1.3 Comparison of the noises’ PSD

+
+

+Once the noise of the sensors to be merged have been characterized, the power spectral density of both sensors have to be compared. +

+ +

+Ideally, the PSD of the noise are such that: +

+\begin{align*} + \Phi_{n_1}(\omega) &< \Phi_{n_2}(\omega) \text{ for } \omega < \omega_m \\ + \Phi_{n_1}(\omega) &> \Phi_{n_2}(\omega) \text{ for } \omega > \omega_m +\end{align*} +
+
+ +
+

8.1.4 Computation of the coherence, power spectral density and cross spectral density of signals

+
+

+The coherence between signals \(x\) and \(y\) is defined as follow +\[ \gamma^2_{xy}(\omega) = \frac{|\Phi_{xy}(\omega)|^2}{|\Phi_{x}(\omega)| |\Phi_{y}(\omega)|} \] +where \(|\Phi_x(\omega)|\) is the output Power Spectral Density (PSD) of signal \(x\) and \(|\Phi_{xy}(\omega)|\) is the Cross Spectral Density (CSD) of signal \(x\) and \(y\). +

+ +

+The PSD and CSD are defined as follow: +

+\begin{align} + |\Phi_x(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} \left| X_k(\omega, T) \right|^2 \\ + |\Phi_{xy}(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} [ X_k^*(\omega, T) ] [ Y_k(\omega, T) ] +\end{align} +

+where: +

+
    +
  • \(n_d\) is the number for records averaged
  • +
  • \(T\) is the length of each record
  • +
  • \(X_k(\omega, T)\) is the finite Fourier transform of the \(k^{\text{th}}\) record
  • +
  • \(X_k^*(\omega, T)\) is its complex conjugate
  • +
+
+
+
+ +
+

8.2 Estimate the dynamic uncertainty of the sensors

+
+

+Let’s consider one sensor represented on figure 62. +

+ +

+The dynamic uncertainty is represented by an input multiplicative uncertainty where \(w(s)\) is a weight that represents the level of the uncertainty. +

+ +

+The goal is to accurately determine \(w(s)\) for the sensors that have to be merged. +

+ + +
+

one_sensor_dyn_uncertainty.png +

+

Figure 62: Sensor with dynamic uncertainty

+
+
+
+ +
+

8.3 Optimal and Robust synthesis of the complementary filters

+
+

+Once the noise characteristics and dynamic uncertainty of both sensors have been determined and we have determined the following weighting functions: +

+
    +
  • \(w_1(s)\) and \(w_2(s)\) representing the dynamic uncertainty of both sensors
  • +
  • \(N_1(s)\) and \(N_2(s)\) representing the noise characteristics of both sensors
  • +
+ +

+The goal is to design complementary filters \(H_1(s)\) and \(H_2(s)\) shown in figure 58 such that: +

+
    +
  • the uncertainty on the super sensor dynamics is minimized
  • +
  • the noise sources \(\tilde{n}_1\) and \(\tilde{n}_2\) has the lowest possible effect on the estimation \(\hat{x}\)
  • +
+ + +
+

sensor_fusion_full.png +

+

Figure 63: Sensor fusion architecture with sensor dynamics uncertainty

+
+
+
+
+ +
+

9 Methods of complementary filter synthesis

+
+

+ +

+
+
+

9.1 Complementary filters using analytical formula

+
+

+ +

+
+

+All the files (data and Matlab scripts) are accessible here. +

+ +
+
+ +
+

9.1.1 Analytical 1st order complementary filters

+
+

+First order complementary filters are defined with following equations: +

+\begin{align} + H_L(s) = \frac{1}{1 + \frac{s}{\omega_0}}\\ + H_H(s) = \frac{\frac{s}{\omega_0}}{1 + \frac{s}{\omega_0}} +\end{align} + +

+Their bode plot is shown figure 64. +

+ +
+
w0 = 2*pi; % [rad/s]
+
+Hh1 = (s/w0)/((s/w0)+1);
+Hl1 = 1/((s/w0)+1);
+
+
+ + +
+

comp_filter_1st_order.png +

+

Figure 64: Bode plot of first order complementary filter (png, pdf)

+
+
+
+ +
+

9.1.2 Second Order Complementary Filters

+
+

+We here use analytical formula for the complementary filters \(H_L\) and \(H_H\). +

+ +

+The first two formulas that are used to generate complementary filters are: +

+\begin{align*} + H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)} +\end{align*} +

+where: +

+
    +
  • \(\omega_0\) is the blending frequency in rad/s.
  • +
  • \(\alpha\) is used to change the shape of the filters: +
      +
    • Small values for \(\alpha\) will produce high magnitude of the filters \(|H_L(j\omega)|\) and \(|H_H(j\omega)|\) near \(\omega_0\) but smaller value for \(|H_L(j\omega)|\) above \(\approx 1.5 \omega_0\) and for \(|H_H(j\omega)|\) below \(\approx 0.7 \omega_0\)
    • +
    • A large \(\alpha\) will do the opposite
    • +
  • +
+ +

+This is illustrated on figure 65. +The slope of those filters at high and low frequencies is \(-2\) and \(2\) respectively for \(H_L\) and \(H_H\). +

+ + +
+

comp_filters_param_alpha.png +

+

Figure 65: Effect of the parameter \(\alpha\) on the shape of the generated second order complementary filters (png, pdf)

+
+ +

+We now study the maximum norm of the filters function of the parameter \(\alpha\). As we saw that the maximum norm of the filters is important for the robust merging of filters. +

+
+
figure;
+plot(alphas, infnorms)
+set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
+xlabel('$\alpha$'); ylabel('$\|H_1\|_\infty$');
+
+
+ + +
+

param_alpha_hinf_norm.png +

+

Figure 66: Evolution of the H-Infinity norm of the complementary filters with the parameter \(\alpha\) (png, pdf)

+
+
+
+ +
+

9.1.3 Third Order Complementary Filters

+
+

+The following formula gives complementary filters with slopes of \(-3\) and \(3\): +

+\begin{align*} + H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)} +\end{align*} + +

+The parameters are: +

+
    +
  • \(\omega_0\) is the blending frequency in rad/s
  • +
  • \(\alpha\) and \(\beta\) that are used to change the shape of the filters similarly to the parameter \(\alpha\) for the second order complementary filters
  • +
+ +

+The filters are defined below and the result is shown on figure 67. +

+ +
+
alpha = 1;
+beta = 10;
+w0 = 2*pi*14;
+
+Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1));
+
+
+ + +
+

complementary_filters_third_order.png +

+

Figure 67: Third order complementary filters using the analytical formula (png, pdf)

+
+
+
+
+ +
+

9.2 H-Infinity synthesis of complementary filters

+
+

+ +

+
+

+All the files (data and Matlab scripts) are accessible here. +

+ +
+
+ +
+

9.2.1 Synthesis Architecture

+
+

+We here synthesize the complementary filters using the \(\mathcal{H}_\infty\) synthesis. +The goal is to specify upper bounds on the norms of \(H_L\) and \(H_H\) while ensuring their complementary property (\(H_L + H_H = 1\)). +

+ +

+In order to do so, we use the generalized plant shown on figure 68 where \(w_L\) and \(w_H\) weighting transfer functions that will be used to shape \(H_L\) and \(H_H\) respectively. +

+ + +
+

sf_hinf_filters_plant_b.png +

+

Figure 68: Generalized plant used for the \(\mathcal{H}_\infty\) synthesis of the complementary filters

+
+ +

+The \(\mathcal{H}_\infty\) synthesis applied on this generalized plant will give a transfer function \(H_L\) (figure 69) such that the \(\mathcal{H}_\infty\) norm of the transfer function from \(w\) to \([z_H,\ z_L]\) is less than one: +\[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \] +

+ +

+Thus, if the above condition is verified, we can define \(H_H = 1 - H_L\) and we have that: +\[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \] +Which is almost (with an maximum error of \(\sqrt{2}\)) equivalent to: +

+\begin{align*} + |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\ + |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega +\end{align*} + +

+We then see that \(w_L\) and \(w_H\) can be used to shape both \(H_L\) and \(H_H\) while ensuring (by definition of \(H_H = 1 - H_L\)) their complementary property. +

+ + +
+

sf_hinf_filters_b.png +

+

Figure 69: \(\mathcal{H}_\infty\) synthesis of the complementary filters

+
+
+
+ +
+

9.2.2 Weights

+
+
+
omegab = 2*pi*9;
+wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2;
+omegab = 2*pi*28;
+wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3;
+
+
+ + +
+

weights_wl_wh.png +

+

Figure 70: Weights on the complementary filters \(w_L\) and \(w_H\) and the associated performance weights (png, pdf)

+
+
+
+ +
+

9.2.3 H-Infinity Synthesis

+
+

+We define the generalized plant \(P\) on matlab. +

+
+
P = [0   wL;
+     wH -wH;
+     1   0];
+
+
+ +

+And we do the \(\mathcal{H}_\infty\) synthesis using the hinfsyn command. +

+
+
[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+
+ +
+[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+Test bounds:      0.0000 <  gamma  <=      1.7285
+
+  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
+    1.729   4.1e+01   8.4e-12   1.8e-01    0.0e+00    0.0000    p
+    0.864   3.9e+01 -5.8e-02#  1.8e-01    0.0e+00    0.0000    f
+    1.296   4.0e+01   8.4e-12   1.8e-01    0.0e+00    0.0000    p
+    1.080   4.0e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.972   3.9e+01 -4.2e-01#  1.8e-01    0.0e+00    0.0000    f
+    1.026   4.0e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.999   3.9e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.986   3.9e+01 -1.2e+00#  1.8e-01    0.0e+00    0.0000    f
+    0.993   3.9e+01 -8.2e+00#  1.8e-01    0.0e+00    0.0000    f
+    0.996   3.9e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.994   3.9e+01   8.5e-12   1.8e-01    0.0e+00    0.0000    p
+    0.993   3.9e+01 -3.2e+01#  1.8e-01    0.0e+00    0.0000    f
+
+ Gamma value achieved:     0.9942
+
+ +

+We then define the high pass filter \(H_H = 1 - H_L\). The bode plot of both \(H_L\) and \(H_H\) is shown on figure 71. +

+
+
Hh_hinf = 1 - Hl_hinf;
+
+
+
+
+ +
+

9.2.4 Obtained Complementary Filters

+
+

+The obtained complementary filters are shown on figure 71. +

+ + +
+

hinf_filters_results.png +

+

Figure 71: Obtained complementary filters using \(\mathcal{H}_\infty\) synthesis (png, pdf)

+
+
+
+
+ +
+

9.3 Feedback Control Architecture to generate Complementary Filters

+
+

+ +

+

+The idea is here to use the fact that in a classical feedback architecture, \(S + T = 1\), in order to design complementary filters. +

+ +

+Thus, all the tools that has been developed for classical feedback control can be used for complementary filter design. +

+
+

+All the files (data and Matlab scripts) are accessible here. +

+ +
+
+ +
+

9.3.1 Architecture

+
+ +
+

complementary_filters_feedback_architecture.png +

+

Figure 72: Architecture used to generate the complementary filters

+
+ +

+We have: +\[ y = \underbrace{\frac{L}{L + 1}}_{H_L} y_1 + \underbrace{\frac{1}{L + 1}}_{H_H} y_2 \] +with \(H_L + H_H = 1\). +

+ +

+The only thing to design is \(L\) such that the complementary filters are stable with the wanted shape. +

+ +

+A simple choice is: +\[ L = \left(\frac{\omega_c}{s}\right)^2 \frac{\frac{s}{\omega_c / \alpha} + 1}{\frac{s}{\omega_c} + \alpha} \] +

+ +

+Which contains two integrator and a lead. \(\omega_c\) is used to tune the crossover frequency and \(\alpha\) the trade-off “bump” around blending frequency and filtering away from blending frequency. +

+
+
+ +
+

9.3.2 Loop Gain Design

+
+

+Let’s first define the loop gain \(L\). +

+
+
wc = 2*pi*1;
+alpha = 2;
+
+L = (wc/s)^2 * (s/(wc/alpha) + 1)/(s/wc + alpha);
+
+
+ + +
+

loop_gain_bode_plot.png +

+

Figure 73: Bode plot of the loop gain \(L\) (png, pdf)

+
+
+
+ +
+

9.3.3 Complementary Filters Obtained

+
+

+We then compute the resulting low pass and high pass filters. +

+
+
Hl = L/(L + 1);
+Hh = 1/(L + 1);
+
+
+ + +
+

low_pass_high_pass_filters.png +

+

Figure 74: Low pass and High pass filters \(H_L\) and \(H_H\) for different values of \(\alpha\) (png, pdf)

+
+
+
+
+ +
+

9.4 Analytical Formula found in the literature

+
+

+ +

+
+ +
+

9.4.1 Analytical Formula

+
+

+(Min and Jeung 2015) +

+\begin{align*} + H_L(s) = \frac{K_p s + K_i}{s^2 + K_p s + K_i} \\ + H_H(s) = \frac{s^2}{s^2 + K_p s + K_i} +\end{align*} + +

+(Corke 2004) +

+\begin{align*} + H_L(s) = \frac{1}{s/p + 1} \\ + H_H(s) = \frac{s/p}{s/p + 1} +\end{align*} + +

+(Jensen, Coopmans, and Chen 2013) +

+\begin{align*} + H_L(s) = \frac{2 \omega_0 s + \omega_0^2}{(s + \omega_0)^2} \\ + H_H(s) = \frac{s^2}{(s + \omega_0)^2} +\end{align*} + +\begin{align*} + H_L(s) = \frac{C(s)}{C(s) + s} \\ + H_H(s) = \frac{s}{C(s) + s} +\end{align*} + +

+(Shaw and Srinivasan 1990) +

+\begin{align*} + H_L(s) = \frac{3 \tau s + 1}{(\tau s + 1)^3} \\ + H_H(s) = \frac{\tau^3 s^3 + 3 \tau^2 s^2}{(\tau s + 1)^3} +\end{align*} + +

+(Baerveldt and Klang 1997) +

+\begin{align*} + H_L(s) = \frac{2 \tau s + 1}{(\tau s + 1)^2} \\ + H_H(s) = \frac{\tau^2 s^2}{(\tau s + 1)^2} +\end{align*} +
+
+ +
+

9.4.2 Matlab

+
+
+
omega0 = 1*2*pi; % [rad/s]
+tau = 1/omega0; % [s]
+
+% From cite:corke04_inert_visual_sensin_system_small_auton_helic
+HL1 = 1/(s/omega0 + 1); HH1 = s/omega0/(s/omega0 + 1);
+
+% From cite:jensen13_basic_uas
+HL2 = (2*omega0*s + omega0^2)/(s+omega0)^2; HH2 = s^2/(s+omega0)^2;
+
+% From cite:shaw90_bandw_enhan_posit_measur_using_measur_accel
+HL3 = (3*tau*s + 1)/(tau*s + 1)^3; HH3 = (tau^3*s^3 + 3*tau^2*s^2)/(tau*s + 1)^3;
+
+
+ + +
+

comp_filters_literature.png +

+

Figure 75: Comparison of some complementary filters found in the literature (png, pdf)

+
+
+
+ +
+

9.4.3 Discussion

+
+

+Analytical Formula found in the literature provides either no parameter for tuning the robustness / performance trade-off. +

+
+
+
+ +
+

9.5 Comparison of the different methods of synthesis

+
+

+ +The generated complementary filters using \(\mathcal{H}_\infty\) and the analytical formulas are very close to each other. However there is some difference to note here: +

+
    +
  • the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters \(\alpha\) and \(\omega_0\). However, these formula have the property that \(|H_H|\) and \(|H_L|\) are symmetrical with the frequency \(\omega_0\) which may not be desirable.
  • +
  • while the \(\mathcal{H}_\infty\) synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters
  • +
+
+
+
+ +
+

10 Real World Example of optimal sensor fusion

+ + + +
+

10.1 Matlab Code

+
+

+Take an Accelerometer and a Geophone both measuring the absolute motion of a structure. +

+ +

+Parameters of the inertial sensors. +

+
+
m_acc = 0.01;
+k_acc = 1e6;
+c_acc = 20;
+
+m_geo = 1;
+k_geo = 1e3;
+c_geo = 10;
+
+
+ +

+Transfer function from motion to measurement +

+ +

+For the accelerometer. +The measurement is the relative motion structure/inertial mass: +\[ \frac{d}{\ddot{w}} = \frac{-m}{ms^2 + cs + k} \] +

+ +

+For the geophone. +The measurement is the relative velocity structure/inertial mass: +\[ \frac{\dot{d}}{\dot{w}} = \frac{-ms^2}{ms^2 + cs + k} \] +

+ +
+
G_acc = -m_acc/(m_acc*s^2 + c_acc*s + k_acc); % [m/(m/s^2)]
+G_geo = -m_geo*s^2/(m_geo*s^2 + c_geo*s + k_geo); % [m/s/m/s]
+
+
+ +

+Suppose the measure of the relative motion for the accelerometer (capacitive sensor for instance) has a white noise characteristic: +Suppose the measure of the relative velocity (current flowing through the coil) has a white noise characteristic: +

+ +

+Define the noise characteristics +

+
+
n = 1; w0 = 2*pi*5e3; G0 = 5e-12; G1 = 1e-15; Gc = G0/2;
+L_acc = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+n = 1; w0 = 2*pi*5e3; G0 = 1e-6; G1 = 1e-8; Gc = G0/2;
+L_geo = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
+
+
+ +

+Transfer function of the conversion to obtain the velocity: +

+
+
C_acc = (-k_acc/m_acc/(2*pi + s));
+C_geo = tf(-1);
+
+
+ +

+Let’s plot the noise of both sensors: +Dynamics of both sensors +

+
+
+
+

10.2 Time domain signals

+
+
+
Fs = 1e4; % Sampling Frequency [Hz]
+Ts = 1/Fs; % Sampling Time [s]
+
+t = 0:Ts:10; % Time Vector [s]
+
+
+ +
+
n_acc = lsim(L_acc*C_acc, sqrt(Fs/2)*randn(length(t), 1), t); % [m/s]
+n_geo = lsim(L_geo*C_geo, sqrt(Fs/2)*randn(length(t), 1), t); % [m/s]
+
+
+ +
+
figure;
+hold on;
+plot(t, n_geo)
+plot(t, n_acc)
+hold off;
+
+
+
+
+ +
+

10.3 H2 Synthesis

+
+
+
N1 = L_acc*C_acc;
+N2 = L_geo*C_geo;
+
+
+ +
+
bodeFig({N1, N2}, logspace(-1, 5, 1000))
+
+
+ +
+
P = [0   N2  1;
+     N1 -N2  0];
+
+
+ +

+And we do the \(\mathcal{H}_2\) synthesis using the h2syn command. +

+
+
[H1, ~, gamma] = h2syn(P, 1, 1);
+
+
+ +

+Finally, we define \(H_2(s) = 1 - H_1(s)\). +

+
+
H2 = 1 - H1;
+
+
+ +
+
bodeFig({H1, H2}, struct('phase', true))
+
+
+ +
+
n_acc_filt = lsim(H1, n_acc, t);
+n_geo_filt = lsim(H2, n_geo, t);
+
+
+ + + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + +
 RMS
Accelerometer9.7e-05
Geophone5.9e-05
Super Sensor1.5e-05
+ +
+
figure;
+hold on;
+plot(t, n_geo)
+plot(t, n_acc)
+plot(t, n_acc_filt + n_geo_filt)
+hold off;
+
+
+
+
+ +
+

10.4 Signal and Noise

+
+

+Velocity Signal: +

+
+
v = lsim(1/(1 + s/2/pi/2), 1e-4*sqrt(Fs/2)*randn(length(t), 1), t);
+v = 1e-4 * sin(2*pi*100*t);
+
+
+ +
+
v_acc = lsim(s*G_acc*C_acc, v, t) + n_acc;
+v_geo = lsim(G_geo*C_geo,   v, t) + n_geo;
+
+
+ +
+
v_ss = lsim(H1, v_acc, t) + lsim(H2, v_geo, t);
+
+
+ +
+
figure;
+hold on;
+plot(t, v_geo)
+plot(t, v_acc)
+plot(t, v_ss)
+plot(t, v, 'k--')
+hold off;
+xlim([1, 1+0.1])
+
+
+
+
+ +
+

10.5 PSD and CPS

+
+
+
nx = length(n_acc);
+na = 16;
+win = hanning(floor(nx/na));
+
+[p_acc, f] = pwelch(n_acc, win, 0, [], Fs);
+[p_geo, ~] = pwelch(n_geo, win, 0, [], Fs);
+[p_ss,  ~] = pwelch(n_acc_filt + n_geo_filt, win, 0, [], Fs);
+
+
+
+
+ +
+

10.6 Transfer function of the super sensor

+
+
+
bodeFig({s*C_acc*G_acc, C_geo*G_geo, s*C_acc*G_acc*H1+C_geo*G_geo*H2}, struct('phase', true))
+
+
+
+
+
+ +

+ +

+ +

Bibliography

+
+
Baerveldt, A.-J., and R. Klang. 1997. “A Low-Cost and Low-Weight Attitude Estimation System for an Autonomous Helicopter.” In Proceedings of IEEE International Conference on Intelligent Engineering Systems, nil. https://doi.org/10.1109/ines.1997.632450.
+
Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” Review of Scientific Instruments 69 (7):2767–72. https://doi.org/10.1063/1.1149013.
+
Bendat, J. 1957. “Optimum Filters for Independent Measurements of Two Related Perturbed Messages.” IRE Transactions on Circuit Theory, --. https://doi.org/10.1109/tct.1957.1086345.
+
Corke, Peter. 2004. “An Inertial and Visual Sensing System for a Small Autonomous Helicopter.” Journal of Robotic Systems 21 (2):43–51. https://doi.org/10.1002/rob.10127.
+
Jensen, Austin, Cal Coopmans, and YangQuan Chen. 2013. “Basics and Guidelines of Complementary Filters for Small UAS Navigation.” In 2013 International Conference on Unmanned Aircraft Systems (ICUAS), nil. https://doi.org/10.1109/icuas.2013.6564726.
+
Min, Hyung Gi, and Eun Tae Jeung. 2015. “Complementary Filter Design for Angle Estimation Using Mems Accelerometer and Gyroscope.” Department of Control and Instrumentation, Changwon National University, Changwon, Korea, 641–773.
+
Moore, Steven Ian, Andrew J. Fleming, and Yuen Kuan Yong. 2019. “Capacitive Instrumentation and Sensor Fusion for High-Bandwidth Nanopositioning.” IEEE Sensors Letters 3 (8):1–3. https://doi.org/10.1109/lsens.2019.2933065.
+
Plummer, A. R. 2006. “Optimal Complementary Filters and Their Application in Motion Measurement.” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 220 (6):489–507. https://doi.org/10.1243/09596518JSCE229.
+
Robert Grover Brown, Patrick Y. C. Hwang. 2012. Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises. 4th ed. Wiley.
+
Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” Mechanical Systems and Signal Processing 4 (1):23–38. https://doi.org/10.1016/0888-3270(90)90038-m.
+
+
+
+

Author: Thomas Dehaeze

+

Created: 2020-09-28 lun. 17:27

+
+ + diff --git a/matlab/index_old.org b/matlab/index_old.org new file mode 100644 index 0000000..9a5704b --- /dev/null +++ b/matlab/index_old.org @@ -0,0 +1,4914 @@ +#+TITLE: Robust and Optimal Sensor Fusion - Matlab Computation +:DRAWER: +#+HTML_LINK_HOME: ../index.html +#+HTML_LINK_UP: ../index.html + +#+LATEX_CLASS: cleanreport +#+LATEX_CLASS_OPTIONS: [tocnp, secbreak, minted] + +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: +#+HTML_HEAD: + +#+PROPERTY: header-args:matlab :session *MATLAB* +#+PROPERTY: header-args:matlab+ :tangle no +#+PROPERTY: header-args:matlab+ :comments org +#+PROPERTY: header-args:matlab+ :exports both +#+PROPERTY: header-args:matlab+ :results none +#+PROPERTY: header-args:matlab+ :eval no-export +#+PROPERTY: header-args:matlab+ :noweb yes +#+PROPERTY: header-args:matlab+ :mkdirp yes +#+PROPERTY: header-args:matlab+ :output-dir figs +:END: + +* Introduction :ignore: +In this document, the optimal and robust design of complementary filters is studied. + +Two sensors are considered with both different noise characteristics and dynamical uncertainties represented by multiplicative input uncertainty. + +- in section [[sec:optimal_comp_filters]]: the $\mathcal{H}_2$ synthesis is used to design complementary filters such that the RMS value of the super sensor's noise is minimized +- in section [[sec:comp_filter_robustness]]: the $\mathcal{H}_\infty$ synthesis is used to design complementary filters such that the super sensor's uncertainty is bonded to acceptable values +- in section [[sec:mixed_synthesis_sensor_fusion]]: the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is used to both limit the super sensor's uncertainty and to lower the RMS value of the super sensor's noise +- in section [[sec:hinf_syn_perf_robust]]: the $\mathcal{H}_\infty$ synthesis is used for both limiting the noise and uncertainty of the super sensor +- in section [[sec:equi_super_sensor]]: we try to find the characteristics of the super sensor from the characteristics of the individual sensors and of the complementary filters +- in section [[sec:opti_robust_practice]]: a methodology is proposed to apply optimal and robust sensor fusion in practice +- in section [[sec:comp_filter_synthesis]]: methods of complementary filter synthesis are proposed + +* Comparison with Bibliographic example +** Bendat, J., Optimum filters for independent measurements of two related perturbed messages (1957) +cite:bendat57_optim_filter_indep_measur_two + +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 2, 1000); +#+end_src + +Weights to shape the noise of both sensors: +#+begin_src matlab + K1 = 100; + K2 = 1; + b = 10; + b1 = b; + b2 = b; + + N1 = sqrt(K1)*b1/(b1+s)/(s + 1e-2); + N2 = sqrt(K2)*b2/(b2+s); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$N_1$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$N_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/bendat57_noise_weights.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:bendat57_noise_weights +#+caption: Weights +#+RESULTS: +[[file:figs/bendat57_noise_weights.png]] + +$\mathcal{H}_2$ synthesis: +#+begin_src matlab + P = [0 N2 1; + N1 -N2 0]; + [H1, ~, gamma] = h2syn(P, 1, 1); + H2 = 1 - H1; +#+end_src + +The optimal obtained filter (from the paper) is: +#+begin_src matlab + a = sqrt(K2/K1); + G = (a*s + 1 + a*b)/(1 + a*b)/(a*s + 1); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k--', 'DisplayName', '$G_2$'); + plot(freqs, abs(squeeze(freqresp(1-G, freqs, 'Hz'))), 'k--', 'DisplayName', '$1-G_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/bendat57_optimal_filters.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:bendat57_optimal_filters +#+caption: Obtain Filters +#+RESULTS: +[[file:figs/bendat57_optimal_filters.png]] + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; + PSD_G = abs(squeeze(freqresp(N1*(1-G), freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*G, freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + plot(freqs, PSD_G, 'k--', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/bendat57_psd_estimation.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:bendat57_psd_estimation +#+caption: PSD of the individual sensors + super sensor +#+RESULTS: +[[file:figs/bendat57_psd_estimation.png]] + +#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) + data2orgtable([trapz(freqs, PSD_S1), trapz(freqs, PSD_S2), trapz(freqs, PSD_H2), trapz(freqs, PSD_G)]', {'Sensor 1', 'Sensor 2', 'H2 Synthesis', 'Paper'}, {'RMS'}, ' %.2f '); +#+end_src + +#+RESULTS: +| | RMS | +|--------------+-------| +| Sensor 1 | 22.93 | +| Sensor 2 | 2.37 | +| H2 Synthesis | 1.74 | +| Paper | 1.74 | + +** Plummer, A. R., Optimal complementary filters and their application in motion measurement (2006) +cite:plummer06_optim_compl_filter_their_applic_motion_measur + +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab :exports none + freqs = logspace(0, 3, 1000); +#+end_src + +Weights +#+begin_src matlab + N1 = 24.3e-6*(s + 2*pi*0.1)*(s + 1220)/1220*(1/(1 + s/2/pi/1e4)/(1 + s/2/pi/1e4)); + N2 = 0.363/(s + 0.01)*(s + 12.2)/(s + 0.01); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$N_1$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$N_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/plummer06_noise_weights.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:plummer06_noise_weights +#+caption: Weights +#+RESULTS: +[[file:figs/plummer06_noise_weights.png]] + +$\mathcal{H}_2$ synthesis: +#+begin_src matlab + P = [0 N2 1; + N1 -N2 0]; + + [H1, ~, gamma] = h2syn(P, 1, 1); + + H2 = 1 - H1; +#+end_src + +The optimal obtained filter (from the paper) is: +#+begin_src matlab + G = (0.0908*s + 1)/(5.51e-7*s^3 + 7.47e-4*s^2 + 0.0908*s + 1); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + set(gca,'ColorOrderIndex',1); + plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), '--', 'DisplayName', '$G$'); + plot(freqs, abs(squeeze(freqresp(1-G, freqs, 'Hz'))), '--', 'DisplayName', '$1-G$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/plummer06_optimal_filters.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:plummer06_optimal_filters +#+caption: Obtain Filters +#+RESULTS: +[[file:figs/plummer06_optimal_filters.png]] + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; + PSD_G = abs(squeeze(freqresp(N1*G, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*(1-G), freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + plot(freqs, PSD_G, 'k--', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/plummer06_psd_estimation.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:plummer06_psd_estimation +#+caption: PSD of the individual sensors + super sensor +#+RESULTS: +[[file:figs/plummer06_psd_estimation.png]] + +#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) + data2orgtable([trapz(freqs, PSD_S1), trapz(freqs, PSD_S2), trapz(freqs, PSD_H2), trapz(freqs, PSD_G)]', {'Sensor 1', 'Sensor 2', 'H2 Synthesis', 'Paper'}, {'RMS'}, ' %.2e '); +#+end_src + +#+RESULTS: +| | RMS | +|--------------+---------| +| Sensor 1 | 130.0 | +| Sensor 2 | 0.00753 | +| H2 Synthesis | 0.00091 | +| Paper | 0.0107 | + +Parameters of the time domain simulation. +#+begin_src matlab + Fs = 2.5e3; % Sampling Frequency [Hz] + Ts = 1/Fs; % Sampling Time [s] + + t = 0:Ts:2; % Time Vector [s] +#+end_src + +Generate noises in velocity corresponding to sensor 1 and 2: +#+begin_src matlab + n1 = lsim(N1, sqrt(Fs/2)*randn(length(t), 1), t); + n2 = lsim(N2, sqrt(Fs/2)*randn(length(t), 1), t); +#+end_src + +#+begin_src matlab :exports none + figure; + ax1 = subplot(3,1,1); + plot(t, n1, 'DisplayName', 'Differentiated Position'); + ylabel('Velocity [m/s]'); + legend(); + ax2 = subplot(3,1,2); + plot(t, n2, 'DisplayName', 'Integrated Acceleration'); + ylabel('Velocity [m/s]'); + legend(); + ax3 = subplot(3,1,3); + hold on; + plot(t, lsim(G, n1, t)+lsim((1-G), n2, t), 'DisplayName', 'Hinf'); + plot(t, lsim(H1, n1, t)+lsim(H2, n2, t), 'DisplayName', 'H2'); + ylabel('Velocity [m/s]'); + legend(); + hold off; + + linkaxes([ax1,ax2,ax3],'x'); + xlim([0.4,0.6]); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/plummer06_time_domain_signals.pdf', 'width', 'wide', 'height', 'full'); +#+end_src + +#+name: fig:plummer06_time_domain_signals +#+caption: Time domain signals +#+RESULTS: +[[file:figs/plummer06_time_domain_signals.png]] + +** Robert Grover Brown, P. Y. C. H., Introduction to random signals and applied kalman filtering with matlab exercises (2012) +cite:robert12_introd_random_signal_applied_kalman Section 8.6 + +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab :exports none + freqs = logspace(-2, 2, 5000); % [rad/s] +#+end_src + +#+begin_src matlab + w0 = 1; % [rad/s] + wc = 20*w0; % [rad/s] + + k1 = sqrt(200*sqrt(2)*w0^3); % [m] + k2 = sqrt(100*pi/wc); % [m] + + N1 = k1/(s^2 + sqrt(2)*s + 1); + N2 = k2/(1 + s/(wc*(2/pi))); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs))), '-', 'DisplayName', '$N_1$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs))), '-', 'DisplayName', '$N_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [rad/s]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/robert12_noise_weights.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:robert12_noise_weights +#+caption: Weights +#+RESULTS: +[[file:figs/robert12_noise_weights.png]] + +And we do the $\mathcal{H}_2$ synthesis using the =h2syn= command. +#+begin_src matlab + P = [0 N2 1; + N1 -N2 0]; + + [H1, ~, gamma] = h2syn(P, 1, 1); + + H2 = 1 - H1; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(H1, freqs))), '-', 'DisplayName', '$H_1$'); + plot(freqs, abs(squeeze(freqresp(H2, freqs))), '-', 'DisplayName', '$H_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [rad/s]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/robert12_optimal_filters.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:robert12_optimal_filters +#+caption: Obtain Filters +#+RESULTS: +[[file:figs/robert12_optimal_filters.png]] + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace + exportFig('figs/robert12_psd_estimation.pdf', 'width', 'wide', 'height', 'tall'); +#+end_src + +#+name: fig:robert12_psd_estimation +#+caption: PSD of the individual sensors + super sensor +#+RESULTS: +[[file:figs/robert12_psd_estimation.png]] + +We can see that the optimal $\mathcal{H}_2$ control gives similar results as Kalman filtering. +#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) + data2orgtable([21.47, 35.32, 2*trapz(freqs, PSD_H2)]', {'Kalman Filter', 'Euristic', 'Optimal H2'}, {'Method', 'Mean Square Error'}, ' %.2f '); +#+end_src + +#+RESULTS: +| Method | Mean Square Error | +|---------------+-------------------| +| Kalman Filter | 21.47 | +| Euristic | 35.32 | +| Optimal H2 | 20.96 | + + + +| Method | Mean Square Error | +|---------------+-------------------| +| Kalman Filter | 21.47 | +| Euristic | 35.32 | +|---------------+-------------------| +| Optimal H2 | 21.40 | + +* Optimal Sensor Fusion - Minimize the Super Sensor Noise +:PROPERTIES: +:header-args:matlab+: :tangle matlab/optimal_comp_filters.m +:header-args:matlab+: :comments org :mkdirp yes +:END: +<> + +** Introduction :ignore: +The idea is to combine sensors that works in different frequency range using complementary filters. + +Doing so, one "super sensor" is obtained that can have better noise characteristics than the individual sensors over a large frequency range. + +The complementary filters have to be designed in order to minimize the effect noise of each sensor on the super sensor noise. + +** ZIP file containing the data and matlab files :ignore: +#+begin_note + The Matlab scripts is accessible [[file:matlab/optimal_comp_filters.m][here]]. +#+end_note + +** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +** Architecture +Let's consider the sensor fusion architecture shown on figure [[fig:fusion_two_noisy_sensors_weights]] where two sensors (sensor 1 and sensor 2) are measuring the same quantity $x$ with different noise characteristics determined by $N_1(s)$ and $N_2(s)$. + +$\tilde{n}_1$ and $\tilde{n}_2$ are normalized white noise: +#+name: eq:normalized_noise +\begin{equation} + \Phi_{\tilde{n}_1}(\omega) = \Phi_{\tilde{n}_2}(\omega) = 1 +\end{equation} + +#+name: fig:fusion_two_noisy_sensors_weights +#+caption: Fusion of two sensors +[[file:figs-tikz/fusion_two_noisy_sensors_weights.png]] + +We consider that the two sensor dynamics $G_1(s)$ and $G_2(s)$ are ideal: +#+name: eq:idea_dynamics +\begin{equation} + G_1(s) = G_2(s) = 1 +\end{equation} + +We obtain the architecture of figure [[fig:sensor_fusion_noisy_perfect_dyn]]. + +#+name: fig:sensor_fusion_noisy_perfect_dyn +#+caption: Fusion of two sensors with ideal dynamics +[[file:figs-tikz/sensor_fusion_noisy_perfect_dyn.png]] + +$H_1(s)$ and $H_2(s)$ are complementary filters: +#+name: eq:comp_filters_property +\begin{equation} + H_1(s) + H_2(s) = 1 +\end{equation} + +The goal is to design $H_1(s)$ and $H_2(s)$ such that the effect of the noise sources $\tilde{n}_1$ and $\tilde{n}_2$ has the smallest possible effect on the estimation $\hat{x}$. + +We have that the Power Spectral Density (PSD) of $\hat{x}$ is: +\[ \Phi_{\hat{x}}(\omega) = |H_1(j\omega) N_1(j\omega)|^2 \Phi_{\tilde{n}_1}(\omega) + |H_2(j\omega) N_2(j\omega)|^2 \Phi_{\tilde{n}_2}(\omega), \quad \forall \omega \] + +And the goal is the minimize the Root Mean Square (RMS) value of $\hat{x}$: +#+name: eq:rms_value_estimation +\begin{equation} + \sigma_{\hat{x}} = \sqrt{\int_0^\infty \Phi_{\hat{x}}(\omega) d\omega} +\end{equation} + +** Noise of the sensors +Let's define the noise characteristics of the two sensors by choosing $N_1$ and $N_2$: +- Sensor 1 characterized by $N_1(s)$ has low noise at low frequency (for instance a geophone) +- Sensor 2 characterized by $N_2(s)$ has low noise at high frequency (for instance an accelerometer) + +#+begin_src matlab + omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4; + N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100); + + omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8; + N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$N_1$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$N_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/noise_characteristics_sensors.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:noise_characteristics_sensors +#+CAPTION: Noise Characteristics of the two sensors ([[./figs/noise_characteristics_sensors.png][png]], [[./figs/noise_characteristics_sensors.pdf][pdf]]) +[[file:figs/noise_characteristics_sensors.png]] + +** H-Two Synthesis +As $\tilde{n}_1$ and $\tilde{n}_2$ are normalized white noise: $\Phi_{\tilde{n}_1}(\omega) = \Phi_{\tilde{n}_2}(\omega) = 1$ and we have: +\[ \sigma_{\hat{x}} = \sqrt{\int_0^\infty |H_1 N_1|^2(\omega) + |H_2 N_2|^2(\omega) d\omega} = \left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2 \] +Thus, the goal is to design $H_1(s)$ and $H_2(s)$ such that $H_1(s) + H_2(s) = 1$ and such that $\left\| \begin{matrix} H_1 N_1 \\ H_2 N_2 \end{matrix} \right\|_2$ is minimized. + +For that, we use the $\mathcal{H}_2$ Synthesis. + +We use the generalized plant architecture shown on figure [[fig:h_infinity_optimal_comp_filters]]. + +#+name: fig:h_infinity_optimal_comp_filters +#+caption: $\mathcal{H}_2$ Synthesis - Generalized plant used for the optimal generation of complementary filters +[[file:figs-tikz/h_infinity_optimal_comp_filters.png]] + +\begin{equation*} +\begin{pmatrix} + z \\ v +\end{pmatrix} = \begin{pmatrix} + 0 & N_2 & 1 \\ + N_1 & -N_2 & 0 +\end{pmatrix} \begin{pmatrix} + w_1 \\ w_2 \\ u +\end{pmatrix} +\end{equation*} + +The transfer function from $[n_1, n_2]$ to $\hat{x}$ is: +\[ \begin{bmatrix} N_1 H_1 \\ N_2 (1 - H_1) \end{bmatrix} \] +If we define $H_2 = 1 - H_1$, we obtain: +\[ \begin{bmatrix} N_1 H_1 \\ N_2 H_2 \end{bmatrix} \] + +Thus, if we minimize the $\mathcal{H}_2$ norm of this transfer function, we minimize the RMS value of $\hat{x}$. + +We define the generalized plant $P$ on matlab as shown on figure [[fig:h_infinity_optimal_comp_filters]]. +#+begin_src matlab + P = [0 N2 1; + N1 -N2 0]; +#+end_src + +And we do the $\mathcal{H}_2$ synthesis using the =h2syn= command. +#+begin_src matlab + [H1, ~, gamma] = h2syn(P, 1, 1); +#+end_src + +Finally, we define $H_2(s) = 1 - H_1(s)$. +#+begin_src matlab + H2 = 1 - H1; +#+end_src + +The complementary filters obtained are shown on figure [[fig:htwo_comp_filters]]. + +The PSD of the noise of the individual sensor and of the super sensor are shown in Fig. [[fig:psd_sensors_htwo_synthesis]]. + +The Cumulative Power Spectrum (CPS) is shown on Fig. [[fig:cps_h2_synthesis]]. + +The obtained RMS value of the super sensor is lower than the RMS value of the individual sensors. + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/htwo_comp_filters.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:htwo_comp_filters +#+CAPTION: Obtained complementary filters using the $\mathcal{H}_2$ Synthesis ([[./figs/htwo_comp_filters.png][png]], [[./figs/htwo_comp_filters.pdf][pdf]]) +[[file:figs/htwo_comp_filters.png]] + +#+begin_src matlab + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/psd_sensors_htwo_synthesis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:psd_sensors_htwo_synthesis +#+CAPTION: Power Spectral Density of the estimated $\hat{x}$ using the two sensors alone and using the optimally fused signal ([[./figs/psd_sensors_htwo_synthesis.png][png]], [[./figs/psd_sensors_htwo_synthesis.pdf][pdf]]) +[[file:figs/psd_sensors_htwo_synthesis.png]] + +#+begin_src matlab + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + xlim([2e-1, freqs(end)]); + ylim([1e-10 1e-5]); + legend('location', 'southeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/cps_h2_synthesis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:cps_h2_synthesis +#+CAPTION: Cumulative Power Spectrum of individual sensors and super sensor using the $\mathcal{H}_2$ synthesis ([[./figs/cps_h2_synthesis.png][png]], [[./figs/cps_h2_synthesis.pdf][pdf]]) +[[file:figs/cps_h2_synthesis.png]] + +** Alternative H-Two Synthesis +An alternative Alternative formulation of the $\mathcal{H}_2$ synthesis is shown in Fig. [[fig:h_infinity_optimal_comp_filters_bis]]. + +#+name: fig:h_infinity_optimal_comp_filters_bis +#+caption: Alternative formulation of the $\mathcal{H}_2$ synthesis +[[file:figs-tikz/h_infinity_optimal_comp_filters_bis.png]] + +\begin{equation*} +\begin{pmatrix} + z_1 \\ z_2 \\ v +\end{pmatrix} = \begin{pmatrix} + N_1 & -N_1 \\ + 0 & N_2 \\ + 1 & 0 +\end{pmatrix} \begin{pmatrix} + w \\ u +\end{pmatrix} +\end{equation*} + + +** H-Infinity Synthesis - method A +Another objective that we may have is that the noise of the super sensor $n_{SS}$ is following the minimum of the noise of the two sensors $n_1$ and $n_2$: +\[ \Gamma_{n_{ss}}(\omega) = \min(\Gamma_{n_1}(\omega),\ \Gamma_{n_2}(\omega)) \] + +In order to obtain that ideal case, we need that the complementary filters be designed such that: +\begin{align*} + & |H_1(j\omega)| = 1 \text{ and } |H_2(j\omega)| = 0 \text{ at frequencies where } \Gamma_{n_1}(\omega) < \Gamma_{n_2}(\omega) \\ + & |H_1(j\omega)| = 0 \text{ and } |H_2(j\omega)| = 1 \text{ at frequencies where } \Gamma_{n_1}(\omega) > \Gamma_{n_2}(\omega) +\end{align*} + +Which is indeed impossible in practice. + +We could try to approach that with the $\mathcal{H}_\infty$ synthesis by using high order filters. + +As shown on Fig. [[fig:noise_characteristics_sensors]], the frequency where the two sensors have the same noise level is around 9Hz. +We will thus choose weighting functions such that the merging frequency is around 9Hz. + +The weighting functions used as well as the obtained complementary filters are shown in Fig. [[fig:weights_comp_filters_Hinfa]]. + +#+begin_src matlab + n = 5; w0 = 2*pi*10; G0 = 1/10; G1 = 10000; Gc = 1/2; + W1a = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; + + n = 5; w0 = 2*pi*8; G0 = 1000; G1 = 0.1; Gc = 1/2; + W2a = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; +#+end_src + +#+begin_src matlab + P = [W1a -W1a; + 0 W2a; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2a, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2a, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Resetting value of Gamma min based on D_11, D_12, D_21 terms + +Test bounds: 0.1000 < gamma <= 10500.0000 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f +1.050e+04 2.1e+01 -3.0e-07 7.8e+00 -1.3e-15 0.0000 p +5.250e+03 2.1e+01 -1.5e-08 7.8e+00 -5.8e-14 0.0000 p +2.625e+03 2.1e+01 2.5e-10 7.8e+00 -3.7e-12 0.0000 p +1.313e+03 2.1e+01 -3.2e-11 7.8e+00 -7.3e-14 0.0000 p + 656.344 2.1e+01 -2.2e-10 7.8e+00 -1.1e-15 0.0000 p + 328.222 2.1e+01 -1.1e-10 7.8e+00 -1.2e-15 0.0000 p + 164.161 2.1e+01 -2.4e-08 7.8e+00 -8.9e-16 0.0000 p + 82.130 2.1e+01 2.0e-10 7.8e+00 -9.1e-31 0.0000 p + 41.115 2.1e+01 -6.8e-09 7.8e+00 -4.1e-13 0.0000 p + 20.608 2.1e+01 3.3e-10 7.8e+00 -1.4e-12 0.0000 p + 10.354 2.1e+01 -9.8e-09 7.8e+00 -1.8e-15 0.0000 p + 5.227 2.1e+01 -4.1e-09 7.8e+00 -2.5e-12 0.0000 p + 2.663 2.1e+01 2.7e-10 7.8e+00 -4.0e-14 0.0000 p + 1.382 2.1e+01 -3.2e+05# 7.8e+00 -3.5e-14 0.0000 f + 2.023 2.1e+01 -5.0e-10 7.8e+00 0.0e+00 0.0000 p + 1.702 2.1e+01 -2.4e+07# 7.8e+00 -1.6e-13 0.0000 f + 1.862 2.1e+01 -6.0e+08# 7.8e+00 -1.0e-12 0.0000 f + 1.942 2.1e+01 -2.8e-09 7.8e+00 -8.1e-14 0.0000 p + 1.902 2.1e+01 -2.5e-09 7.8e+00 -1.1e-13 0.0000 p + 1.882 2.1e+01 -9.3e-09 7.8e+00 -2.0e-15 0.0001 p + 1.872 2.1e+01 -1.3e+09# 7.8e+00 -3.6e-22 0.0000 f + 1.877 2.1e+01 -2.6e+09# 7.8e+00 -1.2e-13 0.0000 f + 1.880 2.1e+01 -5.6e+09# 7.8e+00 -1.4e-13 0.0000 f + 1.881 2.1e+01 -1.2e+10# 7.8e+00 -3.3e-12 0.0000 f + 1.882 2.1e+01 -3.2e+10# 7.8e+00 -8.5e-14 0.0001 f + + Gamma value achieved: 1.8824 +#+end_example + +#+begin_src matlab + H1a = 1 - H2a; +#+end_src + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1a, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2a, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1a, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2a, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([5e-4, 20]); + legend('location', 'northeast'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1a, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2a, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/weights_comp_filters_Hinfa.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:weights_comp_filters_Hinfa +#+CAPTION: Weights and Complementary Fitlers obtained ([[./figs/weights_comp_filters_Hinfa.png][png]], [[./figs/weights_comp_filters_Hinfa.pdf][pdf]]) +[[file:figs/weights_comp_filters_Hinfa.png]] + +We then compute the Power Spectral Density as well as the Cumulative Power Spectrum. + +#+begin_src matlab + PSD_Ha = abs(squeeze(freqresp(N1*H1a, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2a, freqs, 'Hz'))).^2; + CPS_Ha = 1/pi*cumtrapz(2*pi*freqs, PSD_Ha); +#+end_src + +** H-Infinity Synthesis - method B +We have that: +\[ \Phi_{\hat{x}}(\omega) = \left|H_1(j\omega) N_1(j\omega)\right|^2 + \left|H_2(j\omega) N_2(j\omega)\right|^2 \] + +Then, at frequencies where $|H_1(j\omega)| < |H_2(j\omega)|$ we would like that $|N_1(j\omega)| = 1$ and $|N_2(j\omega)| = 0$ as we discussed before. +Then $|H_1 N_1|^2 + |H_2 N_2|^2 = |N_1|^2$. + +We know that this is impossible in practice. A more realistic choice is to design $H_2(s)$ such that when $|N_2(j\omega)| > |N_1(j\omega)|$, we have that: +\[ |H_2 N_2|^2 = \epsilon |H_1 N_1|^2 \] + +Which is equivalent to have (by supposing $|H_1| \approx 1$): +\[ |H_2| = \sqrt{\epsilon} \frac{|N_1|}{|N_2|} \] + +And we have: +\begin{align*} + \Phi_{\hat{x}} &= \left|H_1 N_1\right|^2 + |H_2 N_2|^2 \\ + &= (1 + \epsilon) \left| H_1 N_1 \right|^2 \\ + &\approx \left|N_1\right|^2 +\end{align*} + +Similarly, we design $H_1(s)$ such that at frequencies where $|N_1| > |N_2|$: +\[ |H_1| = \sqrt{\epsilon} \frac{|N_2|}{|N_1|} \] + +For instance, is we take $\epsilon = 1$, then the PSD of $\hat{x}$ is increased by just by a factor $\sqrt{2}$ over the all frequencies from the idea case. + +We use this as the weighting functions for the $\mathcal{H}_\infty$ synthesis of the complementary filters. + +The weighting function and the obtained complementary filters are shown in Fig. [[fig:weights_comp_filters_Hinfb]]. + +#+begin_src matlab + epsilon = 2; + + W1b = 1/epsilon*N1/N2; + W2b = 1/epsilon*N2/N1; + + W1b = W1b/(1 + s/2/pi/1000); % this is added so that it is proper +#+end_src + +#+begin_src matlab + P = [W1b -W1b; + 0 W2b; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2b, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2b, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Test bounds: 0.0000 < gamma <= 32.8125 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 32.812 1.8e+01 3.4e-10 6.3e+00 -2.9e-13 0.0000 p + 16.406 1.8e+01 3.4e-10 6.3e+00 -1.2e-15 0.0000 p + 8.203 1.8e+01 3.3e-10 6.3e+00 -2.6e-13 0.0000 p + 4.102 1.8e+01 3.3e-10 6.3e+00 -2.1e-13 0.0000 p + 2.051 1.7e+01 3.4e-10 6.3e+00 -7.2e-16 0.0000 p + 1.025 1.6e+01 -1.3e+06# 6.3e+00 -8.3e-14 0.0000 f + 1.538 1.7e+01 3.4e-10 6.3e+00 -2.0e-13 0.0000 p + 1.282 1.7e+01 3.4e-10 6.3e+00 -7.9e-17 0.0000 p + 1.154 1.7e+01 3.6e-10 6.3e+00 -1.8e-13 0.0000 p + 1.089 1.7e+01 -3.4e+06# 6.3e+00 -1.7e-13 0.0000 f + 1.122 1.7e+01 -1.0e+07# 6.3e+00 -3.2e-13 0.0000 f + 1.138 1.7e+01 -1.3e+08# 6.3e+00 -1.8e-13 0.0000 f + 1.146 1.7e+01 3.2e-10 6.3e+00 -3.0e-13 0.0000 p + 1.142 1.7e+01 5.5e-10 6.3e+00 -2.8e-13 0.0000 p + 1.140 1.7e+01 -1.5e-10 6.3e+00 -2.3e-13 0.0000 p + 1.139 1.7e+01 -4.8e+08# 6.3e+00 -6.2e-14 0.0000 f + 1.139 1.7e+01 1.3e-09 6.3e+00 -8.9e-17 0.0000 p + + Gamma value achieved: 1.1390 +#+end_example + +#+begin_src matlab + H1b = 1 - H2b; +#+end_src + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1b, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2b, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1b, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2b, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([5e-4, 20]); + legend('location', 'northeast'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1b, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2b, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/weights_comp_filters_Hinfb.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:weights_comp_filters_Hinfb +#+CAPTION: Weights and Complementary Fitlers obtained ([[./figs/weights_comp_filters_Hinfb.png][png]], [[./figs/weights_comp_filters_Hinfb.pdf][pdf]]) +[[file:figs/weights_comp_filters_Hinfb.png]] + +#+begin_src matlab + PSD_Hb = abs(squeeze(freqresp(N1*H1b, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2b, freqs, 'Hz'))).^2; + CPS_Hb = 1/pi*cumtrapz(2*pi*freqs, PSD_Hb); +#+end_src + +** H-Infinity Synthesis - method C +#+begin_src matlab + Wp = 0.56*(inv(N1)+inv(N2))/(1 + s/2/pi/1000); + + W1c = N1*Wp; + W2c = N2*Wp; +#+end_src + +#+begin_src matlab + P = [W1c -W1c; + 0 W2c; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2c, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2c, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Test bounds: 0.0000 < gamma <= 36.7543 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 36.754 5.7e+00 -1.0e-13 6.3e+00 -6.2e-25 0.0000 p + 18.377 5.7e+00 -1.4e-12 6.3e+00 -1.8e-13 0.0000 p + 9.189 5.7e+00 -4.3e-13 6.3e+00 -4.7e-15 0.0000 p + 4.594 5.7e+00 -9.4e-13 6.3e+00 -4.7e-15 0.0000 p + 2.297 5.7e+00 -1.3e-16 6.3e+00 -6.8e-14 0.0000 p + 1.149 5.7e+00 -1.6e-17 6.3e+00 -1.5e-15 0.0000 p + 0.574 5.7e+00 -5.2e+02# 6.3e+00 -5.9e-14 0.0000 f + 0.861 5.7e+00 -3.1e+04# 6.3e+00 -3.8e-14 0.0000 f + 1.005 5.7e+00 -1.6e-12 6.3e+00 -1.1e-14 0.0000 p + 0.933 5.7e+00 -1.1e+05# 6.3e+00 -7.2e-14 0.0000 f + 0.969 5.7e+00 -3.3e+05# 6.3e+00 -5.6e-14 0.0000 f + 0.987 5.7e+00 -1.2e+06# 6.3e+00 -4.5e-15 0.0000 f + 0.996 5.7e+00 -6.5e-16 6.3e+00 -1.7e-15 0.0000 p + 0.992 5.7e+00 -2.9e+06# 6.3e+00 -6.1e-14 0.0000 f + 0.994 5.7e+00 -9.7e+06# 6.3e+00 -3.0e-16 0.0000 f + 0.995 5.7e+00 -8.0e-10 6.3e+00 -1.9e-13 0.0000 p + 0.994 5.7e+00 -2.3e+07# 6.3e+00 -4.3e-14 0.0000 f + + Gamma value achieved: 0.9949 +#+end_example + +#+begin_src matlab + H1c = 1 - H2c; +#+end_src + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1c, freqs, 'Hz'))), '--', 'DisplayName', '$w_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2c, freqs, 'Hz'))), '--', 'DisplayName', '$w_2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1c, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2c, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([5e-4, 20]); + legend('location', 'northeast'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1c, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2c, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/weights_comp_filters_Hinfc.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:weights_comp_filters_Hinfc +#+CAPTION: Weights and Complementary Fitlers obtained ([[./figs/weights_comp_filters_Hinfc.png][png]], [[./figs/weights_comp_filters_Hinfc.pdf][pdf]]) +[[file:figs/weights_comp_filters_Hinfc.png]] + +#+begin_src matlab + PSD_Hc = abs(squeeze(freqresp(N1*H1c, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2c, freqs, 'Hz'))).^2; + CPS_Hc = 1/pi*cumtrapz(2*pi*freqs, PSD_Hc); +#+end_src + +** Comparison of the methods +The three methods are now compared. + +The Power Spectral Density of the super sensors obtained with the complementary filters designed using the three methods are shown in Fig. [[fig:comparison_psd_noise]]. + +The Cumulative Power Spectrum for the same sensors are shown on Fig. [[fig:comparison_cps_noise]]. + +The RMS value of the obtained super sensors are shown on table [[tab:rms_results]]. + +#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) + data2orgtable([norm([N1], 2) ; norm([N2], 2) ; norm([N1*H1, N2*H2], 2) ; norm([N1*H1a, N2*H2a], 2) ; norm([N1*H1b, N2*H2b], 2) ; norm([N1*H1c, N2*H2c], 2)], {'Sensor 1', 'Sensor 2', 'H2 Fusion', 'H-Infinity a', 'H-Infinity b', 'H-Infinity c'}, {'rms value'}, ' %.1e'); +#+end_src + +#+name: tab:rms_results +#+caption: RMS value of the estimation error when using the sensor individually and when using the two sensor merged using the optimal complementary filters +#+RESULTS: +| | rms value | +|--------------+-----------| +| Sensor 1 | 1.3e-03 | +| Sensor 2 | 1.3e-03 | +| H2 Fusion | 1.2e-04 | +| H-Infinity a | 2.4e-04 | +| H-Infinity b | 1.4e-04 | +| H-Infinity c | 2.2e-04 | + + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'r-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + plot(freqs, PSD_Ha, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty},a}$'); + plot(freqs, PSD_Hb, 'k--', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty},b}$'); + plot(freqs, PSD_Hc, 'k-.', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_\infty},c}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comparison_psd_noise.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comparison_psd_noise +#+CAPTION: Comparison of the obtained Power Spectral Density using the three methods ([[./figs/comparison_psd_noise.png][png]], [[./figs/comparison_psd_noise.pdf][pdf]]) +[[file:figs/comparison_psd_noise.png]] + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'r-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end)))); + plot(freqs, CPS_Ha, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_\\infty, a}} = %.1e$', sqrt(CPS_Ha(end)))); + plot(freqs, CPS_Hb, 'k--', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_\\infty, b}} = %.1e$', sqrt(CPS_Hb(end)))); + plot(freqs, CPS_Hc, 'k-.', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_\\infty, c}} = %.1e$', sqrt(CPS_Hc(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + xlim([2e-1, freqs(end)]); + ylim([1e-10 1e-5]); + legend('location', 'southeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comparison_cps_noise.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comparison_cps_noise +#+CAPTION: Comparison of the obtained Cumulative Power Spectrum using the three methods ([[./figs/comparison_cps_noise.png][png]], [[./figs/comparison_cps_noise.pdf][pdf]]) +[[file:figs/comparison_cps_noise.png]] + +** Obtained Super Sensor's noise uncertainty +We would like to verify if the obtained sensor fusion architecture is robust to change in the sensor dynamics. + +To study the dynamical uncertainty on the super sensor, we defined some multiplicative uncertainty on both sensor dynamics. +Two weights $w_1(s)$ and $w_2(s)$ are used to described the amplitude of the dynamical uncertainty. + +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +The sensor uncertain models are defined below. +#+begin_src matlab + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); +#+end_src + +#+begin_src matlab :exports none + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +The super sensor uncertain model is defined below using the complementary filters obtained with the $\mathcal{H}_2$ synthesis. +The dynamical uncertainty bounds of the super sensor is shown in Fig. [[fig:uncertainty_super_sensor_H2_syn]]. +Right Half Plane zero might be introduced in the super sensor dynamics which will render the feedback system unstable. + +#+begin_src matlab + Gss = G1*H1 + G2*H2; +#+end_src + +#+begin_src matlab :exports none + Gsss = usample(Gss, 20); +#+end_src + +#+begin_src matlab :exports none + % We here compute the maximum and minimum phase of the super sensor + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1, freqs, 'Hz'))) + abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - SS'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1, freqs, 'Hz'))) - abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Gsss(1, 1, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'DisplayName', 'SS Dynamics'); + for i = 2:length(Gsss) + plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + for i = 1:length(Gsss) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/uncertainty_super_sensor_H2_syn.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:uncertainty_super_sensor_H2_syn +#+CAPTION: Uncertianty regions of both individual sensors and of the super sensor when using the $\mathcal{H}_2$ synthesis ([[./figs/uncertainty_super_sensor_H2_syn.png][png]], [[./figs/uncertainty_super_sensor_H2_syn.pdf][pdf]]) +[[file:figs/uncertainty_super_sensor_H2_syn.png]] + +** Conclusion +From the above complementary filter design with the $\mathcal{H}_2$ and $\mathcal{H}_\infty$ synthesis, it still seems that the $\mathcal{H}_2$ synthesis gives the complementary filters that permits to obtain the minimal super sensor noise (when measuring with the $\mathcal{H}_2$ norm). + +However, the synthesis does not take into account the robustness of the sensor fusion. + +* Optimal Sensor Fusion - Minimize the Super Sensor Dynamical Uncertainty +:PROPERTIES: +:header-args:matlab+: :tangle matlab/comp_filter_robustness.m +:header-args:matlab+: :comments org :mkdirp yes +:END: +<> + +** Introduction :ignore: +We initially considered perfectly known sensor dynamics so that it can be perfectly inverted. + +We now take into account the fact that the sensor dynamics is only partially known. +To do so, we model the uncertainty that we have on the sensor dynamics by multiplicative input uncertainty as shown in Fig. [[fig:sensor_fusion_dynamic_uncertainty]]. + +#+name: fig:sensor_fusion_dynamic_uncertainty +#+caption: Sensor fusion architecture with sensor dynamics uncertainty +[[file:figs-tikz/sensor_fusion_dynamic_uncertainty.png]] + +The objective here is to design complementary filters $H_1(s)$ and $H_2(s)$ in order to minimize the dynamical uncertainty of the super sensor. + +** ZIP file containing the data and matlab files :ignore: +#+begin_note + The Matlab scripts is accessible [[file:matlab/comp_filter_robustness.m][here]]. +#+end_note + +** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +** Super Sensor Dynamical Uncertainty +In practical systems, the sensor dynamics has always some level of uncertainty. +Let's represent that with multiplicative input uncertainty as shown on figure [[fig:sensor_fusion_dynamic_uncertainty]]. + +#+name: fig:sensor_fusion_dynamic_uncertainty +#+caption: Fusion of two sensors with input multiplicative uncertainty +[[file:figs-tikz/sensor_fusion_dynamic_uncertainty.png]] + +The dynamics of the super sensor is represented by +\begin{align*} + \frac{\hat{x}}{x} &= (1 + w_1 \Delta_1) H_1 + (1 + w_2 \Delta_2) H_2 \\ + &= 1 + w_1 H_1 \Delta_1 + w_2 H_2 \Delta_2 +\end{align*} +with $\Delta_i$ is any transfer function satisfying $\| \Delta_i \|_\infty < 1$. + +We see that as soon as we have some uncertainty in the sensor dynamics, we have that the complementary filters have some effect on the transfer function from $x$ to $\hat{x}$. + +The uncertainty set of the transfer function from $\hat{x}$ to $x$ at frequency $\omega$ is bounded in the complex plane by a circle centered on 1 and with a radius equal to $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$ (figure [[fig:uncertainty_gain_phase_variation]]). + +We then have that the angle introduced by the super sensor is bounded by $\arcsin(\epsilon)$: +\[ \angle \frac{\hat{x}}{x}(j\omega) \le \arcsin \Big(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\Big) \] + +#+name: fig:uncertainty_gain_phase_variation +#+caption: Maximum phase variation +[[file:figs-tikz/uncertainty_gain_phase_variation.png]] + +** Dynamical uncertainty of the individual sensors +Let say we want to merge two sensors: +- sensor 1 that has unknown dynamics above 10Hz: $|w_1(j\omega)| > 1$ for $\omega > 10\text{ Hz}$ +- sensor 2 that has unknown dynamics below 1Hz and above 1kHz $|w_2(j\omega)| > 1$ for $\omega < 1\text{ Hz}$ and $\omega > 1\text{ kHz}$ + +We define the weights that are used to characterize the dynamic uncertainty of the sensors. + +#+begin_src matlab :exports none + freqs = logspace(-1, 3, 1000); +#+end_src + +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +From the weights, we define the uncertain transfer functions of the sensors. Some of the uncertain dynamics of both sensors are shown on Fig. [[fig:uncertainty_dynamics_sensors]] with the upper and lower bounds on the magnitude and on the phase. +#+begin_src matlab + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); +#+end_src + +#+begin_src matlab :exports none + % Few random samples of the sensor dynamics are computed + G1s = usample(G1, 10); + G2s = usample(G2, 10); +#+end_src + +#+begin_src matlab :exports none + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--'); + for i = 1:length(G1s) + plot(freqs, abs(squeeze(freqresp(G1s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0.4470 0.7410 0.4]); + plot(freqs, abs(squeeze(freqresp(G2s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0.8500 0.3250 0.0980 0.4]); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + ylim([1e-1, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + for i = 1:length(G1s) + plot(freqs, 180/pi*angle(squeeze(freqresp(G1s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0.4470 0.7410 0.4]); + plot(freqs, 180/pi*angle(squeeze(freqresp(G2s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0.8500 0.3250 0.0980 0.4]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/uncertainty_dynamics_sensors.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:uncertainty_dynamics_sensors +#+CAPTION: Dynamic uncertainty of the two sensors ([[./figs/uncertainty_dynamics_sensors.png][png]], [[./figs/uncertainty_dynamics_sensors.pdf][pdf]]) +[[file:figs/uncertainty_dynamics_sensors.png]] + +** Synthesis objective +The uncertainty region of the super sensor dynamics is represented by a circle in the complex plane as shown in Fig. [[fig:uncertainty_gain_phase_variation]]. + +At each frequency $\omega$, the radius of the circle is $|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|$. + +Thus, the phase shift $\Delta\phi(\omega)$ due to the super sensor uncertainty is bounded by: +\[ |\Delta\phi(\omega)| \leq \arcsin\big( |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| \big) \] + +Let's define some allowed frequency depend phase shift $\Delta\phi_\text{max}(\omega) > 0$ such that: +\[ |\Delta\phi(\omega)| < \Delta\phi_\text{max}(\omega), \quad \forall\omega \] + + +If $H_1(s)$ and $H_2(s)$ are designed such that +\[ |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big) \] + +The maximum phase shift due to dynamic uncertainty at frequency $\omega$ will be $\Delta\phi_\text{max}(\omega)$. + +** Requirements as an $\mathcal{H}_\infty$ norm +We now try to express this requirement in terms of an $\mathcal{H}_\infty$ norm. + +Let's define one weight $w_\phi(s)$ that represents the maximum wanted phase uncertainty: +\[ |w_{\phi}(j\omega)|^{-1} \approx \sin(\Delta\phi_{\text{max}}(\omega)), \quad \forall\omega \] + +Then: +\begin{align*} + & |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| < \sin\big( \Delta\phi_\text{max}(\omega) \big), \quad \forall\omega \\ + \Longleftrightarrow & |w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)| < |w_\phi(j\omega)|^{-1}, \quad \forall\omega \\ + \Longleftrightarrow & \left| w_1(j\omega) H_1(j\omega) w_\phi(j\omega) \right| + \left| w_2(j\omega) H_2(j\omega) w_\phi(j\omega) \right| < 1, \quad \forall\omega +\end{align*} + +Which is approximately equivalent to (with an error of maximum $\sqrt{2}$): +#+name: eq:hinf_conf_phase_uncertainty +\begin{equation} + \left\| \begin{matrix} w_1(s) w_\phi(s) H_1(s) \\ w_2(s) w_\phi(s) H_2(s) \end{matrix} \right\|_\infty < 1 +\end{equation} + +One should not forget that at frequency where both sensors has unknown dynamics ($|w_1(j\omega)| > 1$ and $|w_2(j\omega)| > 1$), the super sensor dynamics will also be unknown and the phase uncertainty cannot be bounded. +Thus, at these frequencies, $|w_\phi|$ should be smaller than $1$. + +** Weighting Function used to bound the super sensor uncertainty +Let's define $w_\phi(s)$ in order to bound the maximum allowed phase uncertainty $\Delta\phi_\text{max}$ of the super sensor dynamics. +The magnitude $|w_\phi(j\omega)|$ is shown in Fig. [[fig:magnitude_wphi]] and the corresponding maximum allowed phase uncertainty of the super sensor dynamics of shown in Fig. [[fig:maximum_wanted_phase_uncertainty]]. + +#+begin_src matlab + Dphi = 20; % [deg] + + n = 4; w0 = 2*pi*900; G0 = 1/sin(Dphi*pi/180); Ginf = 1/100; Gc = 1; + wphi = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/Ginf)^(2/n)))*s + (G0/Gc)^(1/n))/((1/Ginf)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/Ginf)^(2/n)))*s + (1/Gc)^(1/n)))^n; + + W1 = w1*wphi; + W2 = w2*wphi; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(wphi, freqs, 'Hz'))), '-', 'DisplayName', '$w_\phi(s)$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/magnitude_wphi.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:magnitude_wphi +#+CAPTION: Magnitude of the weght $w_\phi(s)$ that is used to bound the uncertainty of the super sensor ([[./figs/magnitude_wphi.png][png]], [[./figs/magnitude_wphi.pdf][pdf]]) +[[file:figs/magnitude_wphi.png]] + +#+begin_src matlab :exports none + % We here compute the wanted maximum and minimum phase of the super sensor + Dphimax = 180/pi*asin(1./abs(squeeze(freqresp(wphi, freqs, 'Hz')))); + Dphimax(1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, Dphimax, 'k--'); + plot(freqs, -Dphimax, 'k--'); + set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([-180 180]); + yticks(-180:45:180); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/maximum_wanted_phase_uncertainty.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:maximum_wanted_phase_uncertainty +#+CAPTION: Maximum wanted phase uncertainty using this weight ([[./figs/maximum_wanted_phase_uncertainty.png][png]], [[./figs/maximum_wanted_phase_uncertainty.pdf][pdf]]) +[[file:figs/maximum_wanted_phase_uncertainty.png]] + +The obtained upper bounds on the complementary filters in order to limit the phase uncertainty of the super sensor are represented in Fig. [[fig:upper_bounds_comp_filter_max_phase_uncertainty]]. + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '-', 'DisplayName', '$1/|w_1w_\phi|$'); + plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '-', 'DisplayName', '$1/|w_2w_\phi|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/upper_bounds_comp_filter_max_phase_uncertainty.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:upper_bounds_comp_filter_max_phase_uncertainty +#+CAPTION: Upper bounds on the complementary filters set in order to limit the maximum phase uncertainty of the super sensor to 30 degrees until 500Hz ([[./figs/upper_bounds_comp_filter_max_phase_uncertainty.png][png]], [[./figs/upper_bounds_comp_filter_max_phase_uncertainty.pdf][pdf]]) +[[file:figs/upper_bounds_comp_filter_max_phase_uncertainty.png]] + +** $\mathcal{H}_\infty$ Synthesis +The $\mathcal{H}_\infty$ synthesis architecture used for the complementary filters is shown in Fig. [[fig:h_infinity_robust_fusion]]. + +#+name: fig:h_infinity_robust_fusion +#+caption: Architecture used for $\mathcal{H}_\infty$ synthesis of complementary filters +[[file:figs-tikz/h_infinity_robust_fusion.png]] + +The generalized plant is defined below. +#+begin_src matlab + P = [W1 -W1; + 0 W2; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Resetting value of Gamma min based on D_11, D_12, D_21 terms + +Test bounds: 0.0447 < gamma <= 1.3318 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 1.332 1.3e+01 -1.0e-14 1.3e+00 -2.6e-18 0.0000 p + 0.688 1.3e-11# ******** 1.3e+00 -6.7e-15 ******** f + 1.010 1.1e+01 -1.5e-14 1.3e+00 -2.5e-14 0.0000 p + 0.849 6.9e-11# ******** 1.3e+00 -2.3e-14 ******** f + 0.930 5.2e-12# ******** 1.3e+00 -6.1e-18 ******** f + 0.970 5.6e-11# ******** 1.3e+00 -2.3e-14 ******** f + 0.990 5.0e-11# ******** 1.3e+00 -1.7e-17 ******** f + 1.000 2.1e-10# ******** 1.3e+00 0.0e+00 ******** f + 1.005 1.9e-10# ******** 1.3e+00 -3.7e-14 ******** f + 1.008 1.1e+01 -9.1e-15 1.3e+00 0.0e+00 0.0000 p + 1.006 1.2e-09# ******** 1.3e+00 -6.9e-16 ******** f + 1.007 1.1e+01 -4.6e-15 1.3e+00 -1.8e-16 0.0000 p + + Gamma value achieved: 1.0069 +#+end_example + +And $H_1(s)$ is defined as the complementary of $H_2(s)$. +#+begin_src matlab + H1 = 1 - H2; +#+end_src + +The obtained complementary filters are shown in Fig. [[fig:comp_filter_hinf_uncertainty]]. +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$W_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$W_2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + legend('location', 'northeast'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filter_hinf_uncertainty.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filter_hinf_uncertainty +#+CAPTION: Obtained complementary filters ([[./figs/comp_filter_hinf_uncertainty.png][png]], [[./figs/comp_filter_hinf_uncertainty.pdf][pdf]]) +[[file:figs/comp_filter_hinf_uncertainty.png]] + +** Super sensor uncertainty +We can now compute the uncertainty of the super sensor. The result is shown in Fig. [[fig:super_sensor_uncertainty_bode_plot]]. + +#+begin_src matlab + Gss = G1*H1 + G2*H2; +#+end_src + +#+begin_src matlab :exports none + Gsss = usample(Gss, 20); +#+end_src + +#+begin_src matlab :exports none + % We here compute the maximum and minimum phase of the super sensor + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - SS'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Gsss(1, 1, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'DisplayName', 'SS Dynamics'); + for i = 2:length(Gsss) + plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + for i = 1:length(Gsss) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/super_sensor_uncertainty_bode_plot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:super_sensor_uncertainty_bode_plot +#+CAPTION: Uncertainty on the dynamics of the super sensor ([[./figs/super_sensor_uncertainty_bode_plot.png][png]], [[./figs/super_sensor_uncertainty_bode_plot.pdf][pdf]]) +[[file:figs/super_sensor_uncertainty_bode_plot.png]] + +The uncertainty of the super sensor cannot be made smaller than both the individual sensor. Ideally, it would follow the minimum uncertainty of both sensors. + +We here just used very wimple weights. +For instance, we could improve the dynamical uncertainty of the super sensor by making $|w_\phi(j\omega)|$ smaller bellow 2Hz where the dynamical uncertainty of the sensor 1 is small. + +** Super sensor noise +We now compute the obtain Power Spectral Density of the super sensor's noise. +The noise characteristics of both individual sensor are defined below. + +#+begin_src matlab + omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4; + N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100); + + omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8; + N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2; +#+end_src + +The PSD of both sensor and of the super sensor is shown in Fig. [[fig:psd_sensors_hinf_synthesis]]. +The CPS of both sensor and of the super sensor is shown in Fig. [[fig:cps_sensors_hinf_synthesis]]. + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/psd_sensors_hinf_synthesis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:psd_sensors_hinf_synthesis +#+CAPTION: Power Spectral Density of the obtained super sensor using the $\mathcal{H}_\infty$ synthesis ([[./figs/psd_sensors_hinf_synthesis.png][png]], [[./figs/psd_sensors_hinf_synthesis.pdf][pdf]]) +[[file:figs/psd_sensors_hinf_synthesis.png]] + +#+begin_src matlab :exports none + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + xlim([2e-1, freqs(end)]); + ylim([1e-10 1e-5]); + legend('location', 'southeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/cps_sensors_hinf_synthesis.cps" :var figsize="full-tall" :post cps2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:cps_sensors_hinf_synthesis +#+CAPTION: Cumulative Power Spectrum of the obtained super sensor using the $\mathcal{H}_\infty$ synthesis ([[./figs/cps_sensors_hinf_synthesis.png][png]], [[./figs/cps_sensors_hinf_synthesis.cps][cps]]) +[[file:figs/cps_sensors_hinf_synthesis.png]] + +** Conclusion +Using the $\mathcal{H}_\infty$ synthesis, the dynamical uncertainty of the super sensor can be bounded to acceptable values. + +However, the RMS of the super sensor noise is not optimized as it was the case with the $\mathcal{H}_2$ synthesis + +** First Basic Example with gain mismatch :noexport: +Let's consider two ideal sensors except one sensor has not an expected unity gain but a gain equal to $0.6$: +\begin{align*} + G_1(s) &= 1 \\ + G_2(s) &= 0.6 +\end{align*} + +#+begin_src matlab + G1 = 1; + G2 = 0.6; +#+end_src + +Two pairs of complementary filters are designed and shown on figure [[fig:comp_filters_robustness_test]]. +The complementary filters shown in blue does not present a bump as the red ones but provides less sensor separation at high and low frequencies. + +#+begin_src matlab :exports none + freqs = logspace(-1, 1, 1000); +#+end_src + +#+begin_src matlab :exports none + w0 = 2*pi; + alpha = 2; + + H1a = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + H2a = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + + w0 = 2*pi; + alpha = 0.1; + + H1b = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + H2b = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(H1a, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(H2a, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(H1b, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(H2b, freqs, 'Hz')))); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + hold off; + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(H1a, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(H2a, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(H1b, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(H2b, freqs, 'Hz')))); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filters_robustness_test.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filters_robustness_test +#+CAPTION: The two complementary filters designed for the robustness test ([[./figs/comp_filters_robustness_test.png][png]], [[./figs/comp_filters_robustness_test.pdf][pdf]]) +[[file:figs/comp_filters_robustness_test.png]] + +We then compute the bode plot of the super sensor transfer function $H_1(s)G_1(s) + H_2(s)G_2(s)$ for both complementary filters pair (figure [[fig:tf_super_sensor_comp]]). + +We see that the blue complementary filters with a lower maximum norm permits to limit the phase lag introduced by the gain mismatch. + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(H1a*G1 + H2a*G2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(H1b*G1 + H2b*G2, freqs, 'Hz')))); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + ylim([1e-1, 1e1]); + hold off; + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(H1a*G1 + H2a*G2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(H1b*G1 + H2b*G2, freqs, 'Hz')))); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/tf_super_sensor_comp.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:tf_super_sensor_comp +#+CAPTION: Comparison of the obtained super sensor transfer functions ([[./figs/tf_super_sensor_comp.png][png]], [[./figs/tf_super_sensor_comp.pdf][pdf]]) +[[file:figs/tf_super_sensor_comp.png]] + +* Optimal Sensor Fusion - Mixed Synthesis +:PROPERTIES: +:header-args:matlab+: :tangle matlab/mixed_synthesis_sensor_fusion.m +:header-args:matlab+: :comments org :mkdirp yes +:END: +<> +** ZIP file containing the data and matlab files :ignore: +#+begin_note + The Matlab scripts is accessible [[file:matlab/mixed_synthesis_sensor_fusion.m][here]]. +#+end_note + +** Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis - Introduction +The goal is to design complementary filters such that: +- the maximum uncertainty of the super sensor is bounded +- the RMS value of the super sensor noise is minimized + +To do so, we can use the Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis. + +The Matlab function for that is =h2hinfsyn= ([[https://fr.mathworks.com/help/robust/ref/h2hinfsyn.html][doc]]). + +** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +** Noise characteristics and Uncertainty of the individual sensors +We define the weights that are used to characterize the dynamic uncertainty of the sensors. This will be used for the $\mathcal{H}_\infty$ part of the synthesis. +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +We define the noise characteristics of the two sensors by choosing $N_1$ and $N_2$. This will be used for the $\mathcal{H}_2$ part of the synthesis. +#+begin_src matlab + omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4; + N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100); + + omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8; + N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2; +#+end_src + +Both dynamical uncertainty and noise characteristics of the individual sensors are shown in Fig. [[fig:mixed_synthesis_noise_uncertainty_sensors]]. + +#+begin_src matlab :exports none + figure; + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2(j\omega)|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, abs(squeeze(freqresp(w1, freqs, 'Hz'))), '-', 'DisplayName', '$|w_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(w2, freqs, 'Hz'))), '-', 'DisplayName', '$|w_2(j\omega)|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/mixed_synthesis_noise_uncertainty_sensors.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:mixed_synthesis_noise_uncertainty_sensors +#+CAPTION: Noise characteristsics and Dynamical uncertainty of the individual sensors ([[./figs/mixed_synthesis_noise_uncertainty_sensors.png][png]], [[./figs/mixed_synthesis_noise_uncertainty_sensors.pdf][pdf]]) +[[file:figs/mixed_synthesis_noise_uncertainty_sensors.png]] + +** Weighting Functions on the uncertainty of the super sensor +We design weights for the $\mathcal{H}_\infty$ part of the synthesis in order to limit the dynamical uncertainty of the super sensor. +The maximum wanted multiplicative uncertainty is shown in Fig. [[fig:mixed_syn_hinf_weight]]. The idea here is that we don't really need low uncertainty at low frequency but only near the crossover frequency that is suppose to be around 300Hz here. + +#+begin_src matlab + n = 4; w0 = 2*pi*900; G0 = 9; G1 = 1; Gc = 1.1; + H = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; + wphi = 0.2*(s+3.142e04)/(s+628.3)/H; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(w1, freqs, 'Hz'))), '-', 'DisplayName', '$|w_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(w2, freqs, 'Hz'))), '-', 'DisplayName', '$|w_2(j\omega)|$'); + plot(freqs, 1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))), 'k--', 'DisplayName', '$|w_u(j\omega)|^{-1}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/mixed_syn_hinf_weight.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:mixed_syn_hinf_weight +#+CAPTION: Wanted maximum module uncertainty of the super sensor ([[./figs/mixed_syn_hinf_weight.png][png]], [[./figs/mixed_syn_hinf_weight.pdf][pdf]]) +[[file:figs/mixed_syn_hinf_weight.png]] + +The equivalent Magnitude and Phase uncertainties are shown in Fig. [[fig:mixed_syn_objective_hinf]]. + +#+begin_src matlab :exports none + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); + + % Few random samples of the sensor dynamics are computed + G1s = usample(G1, 10); + G2s = usample(G2, 10); + + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; + + % We here compute the wanted maximum and minimum phase of the super sensor + Dphimax = 180/pi*asin(1./abs(squeeze(freqresp(wphi, freqs, 'Hz')))); + Dphimax(1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))) > 1) = 190; + + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + 1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))), 'k--', 'DisplayName', 'Synthesis Obj.'); + plot(freqs, max(1 - 1./abs(squeeze(freqresp(wphi, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + for i = 1:length(G1s) + plot(freqs, abs(squeeze(freqresp(G1s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0.4470 0.7410 0.4], 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(G2s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0.8500 0.3250 0.0980 0.4], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + ylim([1e-1, 10]); + hold off; + legend('location', 'southwest'); + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + for i = 1:length(G1s) + plot(freqs, 180/pi*angle(squeeze(freqresp(G1s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0.4470 0.7410 0.4]); + plot(freqs, 180/pi*angle(squeeze(freqresp(G2s(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0.8500 0.3250 0.0980 0.4]); + end + plot(freqs, Dphimax, 'k--'); + plot(freqs, -Dphimax, 'k--'); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/mixed_syn_objective_hinf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:mixed_syn_objective_hinf +#+CAPTION: $\mathcal{H}_\infty$ synthesis objective part of the mixed-synthesis ([[./figs/mixed_syn_objective_hinf.png][png]], [[./figs/mixed_syn_objective_hinf.pdf][pdf]]) +[[file:figs/mixed_syn_objective_hinf.png]] + +** Mixed Synthesis Architecture +The synthesis architecture that is used here is shown in Fig. [[fig:mixed_h2_hinf_synthesis]]. + +The controller $K$ is synthesized such that it: +- Keeps the $\mathcal{H}_\infty$ norm $G$ of the transfer function from $w$ to $z_\infty$ bellow some specified value +- Keeps the $\mathcal{H}_2$ norm $H$ of the transfer function from $w$ to $z_2$ bellow some specified value +- Minimizes a trade-off criterion of the form $W_1 G^2 + W_2 H^2$ where $W_1$ and $W_2$ are specified values + +#+name: fig:mixed_h2_hinf_synthesis +#+caption: Mixed H2/H-Infinity Synthesis +[[file:figs-tikz/mixed_h2_hinf_synthesis.png]] + +Here, we define $P$ such that: +\begin{align*} + \left\| \frac{z_\infty}{w} \right\|_\infty &= \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty \\ + \left\| \frac{z_2}{w} \right\|_2 &= \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 +\end{align*} + +Then: +- we specify the maximum value for the $\mathcal{H}_\infty$ norm between $w$ and $z_\infty$ to be $1$ +- we don't specify any maximum value for the $\mathcal{H}_2$ norm between $w$ and $z_2$ +- we choose $W_1 = 0$ and $W_2 = 1$ such that the objective is to minimize the $\mathcal{H}_2$ norm between $w$ and $z_2$ + +The synthesis objective is to have: +\[ \left\| \frac{z_\infty}{w} \right\|_\infty = \left\| \begin{matrix}W_1(s) H_1(s) \\ W_2(s) H_2(s)\end{matrix} \right\|_\infty < 1 \] +and to minimize: +\[ \left\| \frac{z_2}{w} \right\|_2 = \left\| \begin{matrix}N_1(s) H_1(s) \\ N_2(s) H_2(s)\end{matrix} \right\|_2 \] +which is what we wanted. + +We define the generalized plant that will be used for the mixed synthesis. +#+begin_src matlab + W1u = ss(w1*wphi); W2u = ss(w2*wphi); % Weight on the uncertainty + W1n = ss(N1); W2n = ss(N2); % Weight on the noise + + P = [W1u -W1u; + 0 W2u; + W1n -W1n; + 0 W2n; + 1 0]; +#+end_src + +** Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis +The mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is performed below. +#+begin_src matlab + Nmeas = 1; Ncon = 1; Nz2 = 2; + + [H2,~,normz,~] = h2hinfsyn(P, Nmeas, Ncon, Nz2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 0.01, 'DISPLAY', 'on'); + + H1 = 1 - H2; +#+end_src + +The obtained complementary filters are shown in Fig. [[fig:comp_filters_mixed_synthesis]]. + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1u, freqs, 'Hz'))), '--', 'DisplayName', '$W_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2u, freqs, 'Hz'))), '--', 'DisplayName', '$W_2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([1e-3, 2]); + legend('location', 'southwest'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filters_mixed_synthesis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filters_mixed_synthesis +#+CAPTION: Obtained complementary filters after mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis ([[./figs/comp_filters_mixed_synthesis.png][png]], [[./figs/comp_filters_mixed_synthesis.pdf][pdf]]) +[[file:figs/comp_filters_mixed_synthesis.png]] + +** Obtained Super Sensor's noise +The PSD and CPS of the super sensor's noise are shown in Fig. [[fig:psd_super_sensor_mixed_syn]] and Fig. [[fig:cps_super_sensor_mixed_syn]] respectively. + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/psd_super_sensor_mixed_syn.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:psd_super_sensor_mixed_syn +#+CAPTION: Power Spectral Density of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis ([[./figs/psd_super_sensor_mixed_syn.png][png]], [[./figs/psd_super_sensor_mixed_syn.pdf][pdf]]) +[[file:figs/psd_super_sensor_mixed_syn.png]] + + +#+begin_src matlab :exports none + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + xlim([2e-1, freqs(end)]); + ylim([1e-10 1e-5]); + legend('location', 'southeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/cps_super_sensor_mixed_syn.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:cps_super_sensor_mixed_syn +#+CAPTION: Cumulative Power Spectrum of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis ([[./figs/cps_super_sensor_mixed_syn.png][png]], [[./figs/cps_super_sensor_mixed_syn.pdf][pdf]]) +[[file:figs/cps_super_sensor_mixed_syn.png]] + +** Obtained Super Sensor's Uncertainty +The uncertainty on the super sensor's dynamics is shown in Fig. [[fig:super_sensor_dyn_uncertainty_mixed_syn]]. + +#+begin_src matlab :exports none + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); + + Gss = G1*H1 + G2*H2; + Gsss = usample(Gss, 20); + + % We here compute the maximum and minimum phase of the super sensor + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; + + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - SS'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Gsss(1, 1, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'DisplayName', 'SS Dynamics'); + for i = 2:length(Gsss) + plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + for i = 1:length(Gsss) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/super_sensor_dyn_uncertainty_mixed_syn.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:super_sensor_dyn_uncertainty_mixed_syn +#+CAPTION: Super Sensor Dynamical Uncertainty obtained with the mixed synthesis ([[./figs/super_sensor_dyn_uncertainty_mixed_syn.png][png]], [[./figs/super_sensor_dyn_uncertainty_mixed_syn.pdf][pdf]]) +[[file:figs/super_sensor_dyn_uncertainty_mixed_syn.png]] + +** Conclusion +This synthesis methods allows both to: +- limit the dynamical uncertainty of the super sensor +- minimize the RMS value of the estimation + +* Mixed Synthesis - LMI Optimization +** Introduction +The following matlab scripts was written by Mohit. + +** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +** Noise characteristics and Uncertainty of the individual sensors +We define the weights that are used to characterize the dynamic uncertainty of the sensors. This will be used for the $\mathcal{H}_\infty$ part of the synthesis. +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +We define the noise characteristics of the two sensors by choosing $N_1$ and $N_2$. This will be used for the $\mathcal{H}_2$ part of the synthesis. +#+begin_src matlab + omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4; + N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100); + + omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8; + N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2; +#+end_src + +** Weights +The weights for the $\mathcal{H}_2$ and $\mathcal{H}_\infty$ part are defined below. + +#+begin_src matlab + n = 4; w0 = 2*pi*900; G0 = 9; G1 = 1; Gc = 1.1; + H = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; + wphi = 0.2*(s+3.142e04)/(s+628.3)/H; + + W1u = ss(w1*wphi); W2u = ss(w2*wphi); % Weight on the uncertainty + W1n = ss(N1); W2n = ss(N2); % Weight on the noise +#+end_src + +#+begin_src matlab + P = [W1u -W1u; + 0 W2u; + W1n -W1n; + 0 W2n; + 1 0]; +#+end_src + +** LMI Optimization +We are using the [[http://cvxr.com/cvx/][CVX toolbox]] to solve the optimization problem. + +We first put the generalized plant in a State-space form. +#+begin_src matlab + A = P.A; + Bw = P.B(:,1); + Bu = P.B(:,2); + Cz1 = P.C(1:2,:); Dz1w = P.D(1:2,1); Dz1u = P.D(1:2,2); % Hinf + Cz2 = P.C(3:4,:); Dz2w = P.D(1:2,1); Dz2u = P.D(1:2,2); % H2 + Cy = P.C(5,:); Dyw = P.D(5,1); Dyu = P.D(5,2); + + n = size(P.A,1); + ny = 1; % number of measurements + nu = 1; % number of control inputs + nz = 2; + nw = 1; + + Wtinf = 0; + Wt2 = 1; +#+end_src + +We Define all the variables. +#+begin_src matlab + cvx_startup; + + cvx_begin sdp + cvx_quiet true + cvx_solver sedumi + variable X(n,n) symmetric; + variable Y(n,n) symmetric; + variable W(nz,nz) symmetric; + variable Ah(n,n); + variable Bh(n,ny); + variable Ch(nu,n); + variable Dh(nu,ny); + variable eta; + variable gam; +#+end_src + +We define the minimization objective. +#+begin_src matlab + minimize Wt2*eta+Wtinf*gam % mix objective + subject to: +#+end_src + +The $\mathcal{H}_\infty$ constraint. +#+begin_src matlab + gam<=1; % Keep the Hinf norm less than 1 + + [ X, eye(n,n) ; + eye(n,n), Y ] >= 0 ; + + [ A*X + Bu*Ch + X*A' + Ch'*Bu', A+Bu*Dh*Cy+Ah', Bw+Bu*Dh*Dyw, X*Cz1' + Ch'*Dz1u' ; + (A+Bu*Dh*Cy+Ah')', Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw, (Cz1+Dz1u*Dh*Cy)' ; + (Bw+Bu*Dh*Dyw)', Bw'*Y + Dyw'*Bh', -eye(nw,nw), (Dz1w+Dz1u*Dh*Dyw)' ; + Cz1*X + Dz1u*Ch, Cz1+Dz1u*Dh*Cy, Dz1w+Dz1u*Dh*Dyw, -gam*eye(nz,nz)] <= 0 ; +#+end_src + +The $\mathcal{H}_2$ constraint. +#+begin_src matlab + trace(W) <= eta ; + + [ W, Cz2*X+Dz2u*Ch, Cz2*X+Dz2u*Ch; + X*Cz2'+Ch'*Dz2u', X, eye(n,n) ; + (Cz2*X+Dz2u*Ch)', eye(n,n), Y ] >= 0 ; + + [ A*X + Bu*Ch + X*A' + Ch'*Bu', A+Bu*Dh*Cy+Ah', Bw+Bu*Dh*Dyw ; + (A+Bu*Dh*Cy+Ah')', Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw ; + (Bw+Bu*Dh*Dyw)', Bw'*Y + Dyw'*Bh', -eye(nw,nw)] <= 0 ; +#+end_src + +And we run the optimization. +#+begin_src matlab + cvx_end + cvx_status +#+end_src + +#+begin_src matlab :exports none + if(strcmp(cvx_status,'Inaccurate/Solved')) + display('The solver was unable to make a determination to within the default numerical tolerance.'); + display('However, it determined that the results obtained satisfied a “relaxed” tolerance leve'); + display('and therefore may still be suitable for further use.'); + end +#+end_src + +Finally, we can compute the obtained complementary filters. +#+begin_src matlab + M = eye(n); + N = inv(M)*(eye(n,n)-Y*X); + Dk = Dh; + Ck = (Ch-Dk*Cy*X)*inv(M'); + Bk = inv(N)*(Bh-Y*Bu*Dk); + Ak = inv(N)*(Ah-Y*(A+Bu*Dk*Cy)*X-N*Bk*Cy*X-Y*Bu*Ck*M')*inv(M'); + + H2 = tf(ss(Ak,Bk,Ck,Dk)); + H1 = 1 - H2; +#+end_src + +** Result +The obtained complementary filters are compared with the required upper bounds on Fig. [[fig:LMI_obtained_comp_filters]]. + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1u, freqs, 'Hz'))), '--', 'DisplayName', '$W_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2u, freqs, 'Hz'))), '--', 'DisplayName', '$W_2$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([1e-3, 2]); + legend('location', 'southwest'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + ylim([-180, 180]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/LMI_obtained_comp_filters.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:LMI_obtained_comp_filters +#+CAPTION: Obtained complementary filters using the LMI optimization ([[./figs/LMI_obtained_comp_filters.png][png]], [[./figs/LMI_obtained_comp_filters.pdf][pdf]]) +[[file:figs/LMI_obtained_comp_filters.png]] + +** Comparison with the matlab Mixed Synthesis +The Mixed $\mathcal{H}_2$ / $\mathcal{H}_\infty$ Synthesis is performed below. +#+begin_src matlab + Nmeas = 1; Ncon = 1; Nz2 = 2; + + [H2m,~,normz,~] = h2hinfsyn(P, Nmeas, Ncon, Nz2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 0.01, 'DISPLAY', 'on'); + + H1m = 1 - H2m; +#+end_src + +The obtained filters are compare with the one obtained using the CVX toolbox in Fig. [[]]. + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1m, freqs, 'Hz'))), '--', 'DisplayName', '$H_{1,\mathcal{H}_2/\mathcal{H}_\infty}$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2m, freqs, 'Hz'))), '--', 'DisplayName', '$H_{2,\mathcal{H}_2/\mathcal{H}_\infty}$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_{1, CVX}$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_{2, CVX}$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([1e-3, 2]); + legend('location', 'southwest'); + + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1m, freqs, 'Hz'))), '--'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2m, freqs, 'Hz'))), '--'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-'); + hold off; + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + yticks([-360:90:360]); + ylim([-180, 180]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/compare_cvx_h2hinf_comp_filters.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:compare_cvx_h2hinf_comp_filters +#+CAPTION: Comparison between the complementary filters obtained with the CVX toolbox and with the =h2hinfsyn= command ([[./figs/compare_cvx_h2hinf_comp_filters.png][png]], [[./figs/compare_cvx_h2hinf_comp_filters.pdf][pdf]]) +[[file:figs/compare_cvx_h2hinf_comp_filters.png]] + +** H-Infinity Objective +In terms of the $\mathcal{H}_\infty$ objective, both synthesis method are satisfying the requirements as shown in Fig. [[fig:comp_cvx_h2i_hinf_norm]]. + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1u, freqs, 'Hz'))), '-.', 'DisplayName', '$1/W_{1u}$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2u, freqs, 'Hz'))), '-.', 'DisplayName', '$1/W_{2u}$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1m, freqs, 'Hz'))), '--', 'DisplayName', '$H_{1,\mathcal{H}_2/\mathcal{H}_\infty}$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2m, freqs, 'Hz'))), '--', 'DisplayName', '$H_{2,\mathcal{H}_2/\mathcal{H}_\infty}$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_{1, CVX}$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_{2, CVX}$'); + + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + ylabel('Magnitude'); + set(gca, 'XTickLabel',[]); + ylim([1e-3, 2]); + legend('location', 'southwest'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_cvx_h2i_hinf_norm.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_cvx_h2i_hinf_norm +#+CAPTION: H-Infinity norm requirement and results ([[./figs/comp_cvx_h2i_hinf_norm.png][png]], [[./figs/comp_cvx_h2i_hinf_norm.pdf][pdf]]) +[[file:figs/comp_cvx_h2i_hinf_norm.png]] + +** Obtained Super Sensor's noise +The PSD and CPS of the super sensor's noise obtained with the CVX toolbox and =h2hinfsyn= command are compared in Fig. [[fig:psd_compare_cvx_h2i]] and [[fig:cps_compare_cvx_h2i]]. + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_cvx = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; + PSD_h2i = abs(squeeze(freqresp(N1*H1m, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2m, freqs, 'Hz'))).^2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_cvx, 'k-', 'DisplayName', '$\Phi_{\hat{x}, CVX}$'); + plot(freqs, PSD_h2i, 'k--', 'DisplayName', '$\Phi_{\hat{x}, \mathcal{H}_2/\mathcal{H}_\infty}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/psd_compare_cvx_h2i.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:psd_compare_cvx_h2i +#+CAPTION: Power Spectral Density of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis ([[./figs/psd_compare_cvx_h2i.png][png]], [[./figs/psd_compare_cvx_h2i.pdf][pdf]]) +[[file:figs/psd_compare_cvx_h2i.png]] + + +#+begin_src matlab :exports none + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_cvx = 1/pi*cumtrapz(2*pi*freqs, PSD_cvx); + CPS_h2i = 1/pi*cumtrapz(2*pi*freqs, PSD_h2i); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_cvx, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{CVX}} = %.1e$', sqrt(CPS_cvx(end)))); + plot(freqs, CPS_h2i, 'k--', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2/\\mathcal{H}_\\infty}} = %.1e$', sqrt(CPS_h2i(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + xlim([2e-1, freqs(end)]); + ylim([1e-10 1e-5]); + legend('location', 'southeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/cps_compare_cvx_h2i.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:cps_compare_cvx_h2i +#+CAPTION: Cumulative Power Spectrum of the Super Sensor obtained with the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis ([[./figs/cps_compare_cvx_h2i.png][png]], [[./figs/cps_compare_cvx_h2i.pdf][pdf]]) +[[file:figs/cps_compare_cvx_h2i.png]] + +** Obtained Super Sensor's Uncertainty +The uncertainty on the super sensor's dynamics is shown in Fig. [[]]. + +#+begin_src matlab :exports none + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); + + % We here compute the maximum and minimum phase of the super sensor + Dphiss_cvx = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss_cvx(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; + + Dphiss_h2i = 180/pi*asin(abs(squeeze(freqresp(w1*H1m, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2m, freqs, 'Hz')))); + Dphiss_h2i(abs(squeeze(freqresp(w1*H1m, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2m, freqs, 'Hz'))) > 1) = 190; + + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - CVX'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1m+w2*H2m, freqs, 'Hz'))), 'k-', 'DisplayName', 'Bounds - $\mathcal{H}_2/\mathcal{H}_\infty$'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1m+w2*H2m, freqs, 'Hz'))), 0), 'k-', 'HandleVisibility', 'off'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss_cvx, 'k--'); + plot(freqs, -Dphiss_cvx, 'k--'); + plot(freqs, Dphiss_h2i, 'k-'); + plot(freqs, -Dphiss_h2i, 'k-'); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/super_sensor_uncertainty_compare_cvx_h2i.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:super_sensor_uncertainty_compare_cvx_h2i +#+CAPTION: Super Sensor Dynamical Uncertainty obtained with the mixed synthesis ([[./figs/super_sensor_uncertainty_compare_cvx_h2i.png][png]], [[./figs/super_sensor_uncertainty_compare_cvx_h2i.pdf][pdf]]) +[[file:figs/super_sensor_uncertainty_compare_cvx_h2i.png]] + +* H-Infinity synthesis to ensure both performance and robustness +:PROPERTIES: +:header-args:matlab+: :tangle matlab/hinf_syn_perf_robust.m +:header-args:matlab+: :comments org :mkdirp yes +:END: +<> + +** ZIP file containing the data and matlab files :ignore: +#+begin_note + The Matlab scripts is accessible [[file:matlab/hinf_syn_perf_robust.m][here]]. +#+end_note + +** Introduction +The idea is to use only the $\mathcal{H}_\infty$ norm to express both the maximum wanted super sensor uncertainty and the fact that we want to minimize the super sensor's noise. + +For *performance*, we may want to obtain a super sensor's noise that is close to the minimum of the individual sensor noises. + +The noise of the super sensor is: +\[ |N_{ss}(j\omega)|^2 = | H_1(j\omega) N_1(j\omega) |^2 + | H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \] + +The minimum noise that we can obtain follows the minimum noise of the individual sensor: +\begin{align*} + & |N_{ss}(j\omega)| \approx |N_1(j\omega)| \quad \text{when} \quad |N_1(j\omega)| < |N_2(j\omega)| \\ + & |N_{ss}(j\omega)| \approx |N_2(j\omega)| \quad \text{when} \quad |N_2(j\omega)| < |N_1(j\omega)| +\end{align*} + +To do so, we want to design the complementary filters such that: +\begin{align*} + & |H_2(j\omega)| \ll 1 \quad \text{when} \quad |N_1(j\omega)| < |N_2(j\omega)| \\ + & |H_1(j\omega)| \ll 1 \quad \text{when} \quad |N_2(j\omega)| < |N_1(j\omega)| +\end{align*} + + + + +For the *uncertainty* of the super sensor. +The equivalent super sensor uncertainty is: +\[ |w_{ss}(j\omega)| = |H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|, \quad \forall\omega \] + +The minimum uncertainty that we can obtain follows the minimum uncertainty of the individual sensor: +\begin{align*} + & |w_{ss}(j\omega)| \approx |w_1(j\omega)| \quad \text{when} \quad |w_1(j\omega)| < |w_2(j\omega)| \\ + & |w_{ss}(j\omega)| \approx |w_2(j\omega)| \quad \text{when} \quad |w_2(j\omega)| < |w_1(j\omega)| +\end{align*} + +To do so, we want to design the complementary filters such that: +\begin{align*} + & |H_2(j\omega)| \ll 1 \quad \text{when} \quad |w_1(j\omega)| < |w_2(j\omega)| \\ + & |H_1(j\omega)| \ll 1 \quad \text{when} \quad |w_2(j\omega)| < |w_1(j\omega)| +\end{align*} + + +Of course, the conditions for performance and uncertainty may not be compatible. + +We may not want to follow the minimum uncertainty. + +** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +** Dynamical uncertainty and Noise level of the individual sensors +Uncertainty on the individual sensors: +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +Noise level of the individual sensors: +#+begin_src matlab + omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4; + N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100); + + omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8; + N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2; +#+end_src + +#+begin_src matlab :exports none + figure; + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2(j\omega)|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, abs(squeeze(freqresp(w1, freqs, 'Hz'))), '-', 'DisplayName', '$|w_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(w2, freqs, 'Hz'))), '-', 'DisplayName', '$|w_2(j\omega)|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/noise_uncertainty_sensors_hinf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:noise_uncertainty_sensors_hinf +#+CAPTION: Noise and Uncertainty characteristics of the sensors ([[./figs/noise_uncertainty_sensors_hinf.png][png]], [[./figs/noise_uncertainty_sensors_hinf.pdf][pdf]]) +[[file:figs/noise_uncertainty_sensors_hinf.png]] + +** Weights for uncertainty and performance +We design weights that are used to describe the wanted upper bound on the super sensor's noise and super sensor's uncertainty. + +Weight on the uncertainty: +#+begin_src matlab + n = 4; w0 = 2*pi*500; G0 = 6; G1 = 1; Gc = 1.1; + H = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; + + Wu = 0.2*(s+3.142e04)/(s+628.3)/H; +#+end_src + +Weight on the performance: +#+begin_src matlab + n = 1; w0 = 2*pi*9; A = 6; + a = sqrt(2*A^(2/n) - 1 + 2*A^(1/n)*sqrt(A^(2/n) - 1)); + G = ((1 + s/(w0/a))*(1 + s/(w0*a))/(1 + s/w0)^2)^n; + + n = 2; w0 = 2*pi*9; G0 = 1e-2; G1 = 1; Gc = 5e-1; + G2 = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; + + Wp = inv(G2)*inv(G)*inv(N2); +#+end_src + +The noise and uncertainty weights of the individual sensors and the asked noise/uncertainty of the super sensor are displayed in Fig. [[fig:charac_sensors_weights]]. +#+begin_src matlab :exports none + figure; + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2(j\omega)|$'); + plot(freqs, 1./abs(squeeze(freqresp(Wp, freqs, 'Hz'))), 'k--', 'DisplayName', '$|w_r(j\omega)|^{-1}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, abs(squeeze(freqresp(w1, freqs, 'Hz'))), '-', 'DisplayName', '$|w_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(w2, freqs, 'Hz'))), '-', 'DisplayName', '$|w_2(j\omega)|$'); + plot(freqs, 1./abs(squeeze(freqresp(Wu, freqs, 'Hz'))), 'k--', 'DisplayName', '$|w_u(j\omega)|^{-1}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/charac_sensors_weights.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:charac_sensors_weights +#+CAPTION: Upper bounds on the super sensor's noise and super sensor's uncertainty ([[./figs/charac_sensors_weights.png][png]], [[./figs/charac_sensors_weights.pdf][pdf]]) +[[file:figs/charac_sensors_weights.png]] + + +The corresponding maximum norms of the filters to have the perf/robust asked are shown in Fig. [[fig:upper_bound_complementary_filters_perf_robust]]. +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(N1*Wp, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1| - perf$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(N2*Wp, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2| - perf$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(w1*Wu, freqs, 'Hz'))), '--', 'DisplayName', '$|N_1| - robu$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(w2*Wu, freqs, 'Hz'))), '--', 'DisplayName', '$|N_2| - robu$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/upper_bound_complementary_filters_perf_robust.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:upper_bound_complementary_filters_perf_robust +#+CAPTION: Upper bounds on the complementary filters ([[./figs/upper_bound_complementary_filters_perf_robust.png][png]], [[./figs/upper_bound_complementary_filters_perf_robust.pdf][pdf]]) +[[file:figs/upper_bound_complementary_filters_perf_robust.png]] + +** H-infinity synthesis with 4 outputs corresponding to the 4 weights +We do the $\mathcal{H}_\infty$ synthesis with 4 weights and 4 outputs. + +\begin{equation*} + \left\| \begin{matrix} + W_{1p}(s) (1 - N_2(s)) \\ + W_{2p}(s) N_2(s) \\ + W_{1u}(s) (1 - N_2(s)) \\ + W_{2u}(s) N_2(s) + \end{matrix} \right\|_\infty < 1 +\end{equation*} + + +#+begin_src matlab + W1p = N1*Wp/(1+s/2/pi/1000); % Used to render W1p proper + W2p = N2*Wp; + W1u = w1*Wu; + W2u = w2*Wu; +#+end_src + +#+begin_src matlab + P = [W1p -W1p; + 0 W2p; + W1u -W1u; + 0 W2u; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Resetting value of Gamma min based on D_11, D_12, D_21 terms + +Test bounds: 1.4139 < gamma <= 65.6899 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 65.690 1.3e+00 -6.7e-15 1.3e+00 -4.5e-13 0.0000 p + 33.552 1.3e+00 -9.4e-15 1.3e+00 -3.7e-14 0.0000 p + 17.483 1.3e+00 -5.6e-16 1.3e+00 -4.8e-13 0.0000 p + 9.448 1.3e+00 -3.2e-15 1.3e+00 -1.2e-13 0.0000 p + 5.431 1.3e+00 -2.3e-16 1.3e+00 -3.6e-13 0.0000 p + 3.422 1.3e+00 -7.3e-16 1.3e+00 -2.6e-15 0.0000 p + 2.418 1.3e+00 9.3e-17 1.3e+00 -3.0e-14 0.0000 p + 1.916 1.3e+00 2.4e-17 1.3e+00 -2.2e-14 0.0000 p + 1.665 1.3e+00 -2.5e-16 1.3e+00 -2.1e-14 0.0000 p + 1.539 1.3e+00 -6.9e-15 1.3e+00 -5.3e-14 0.0000 p + 1.477 1.3e+00 -2.1e-14 1.3e+00 -2.3e-13 0.0000 p + 1.445 1.3e+00 -1.3e-16 1.3e+00 -2.6e-15 0.0000 p + 1.430 1.3e+00 -4.9e-13 1.3e+00 -2.2e-13 0.0000 p + 1.422 1.3e+00 -1.2e+08# 1.3e+00 -2.6e-13 0.0000 f + 1.426 1.3e+00 -6.3e-13 1.3e+00 -3.3e-14 0.0000 p + 1.424 1.3e+00 -3.4e+08# 1.3e+00 -4.5e-14 0.0000 f + 1.425 1.3e+00 -1.7e+09# 1.3e+00 -5.2e-13 0.0000 f + + Gamma value achieved: 1.4256 +#+end_example + +#+begin_src matlab + H1 = 1 - H2; +#+end_src + +The obtained complementary filters with the upper bounds are shown in Fig. [[fig:hinf_result_comp_filters_4_outputs]]. +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1p, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1| - perf$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2p, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2| - perf$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1u, freqs, 'Hz'))), '--', 'DisplayName', '$|N_1| - robu$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2u, freqs, 'Hz'))), '--', 'DisplayName', '$|N_2| - robu$'); + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), 'k--', 'DisplayName', '$|H_1|$'); + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), 'k--', 'DisplayName', '$|H_2|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/hinf_result_comp_filters_4_outputs.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:hinf_result_comp_filters_4_outputs +#+CAPTION: caption ([[./figs/hinf_result_comp_filters_4_outputs.png][png]], [[./figs/hinf_result_comp_filters_4_outputs.pdf][pdf]]) +[[file:figs/hinf_result_comp_filters_4_outputs.png]] + + + +#+begin_src matlab :exports none + figure; + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, abs(squeeze(freqresp(N1, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(N2, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2(j\omega)|$'); + plot(freqs, 1./abs(squeeze(freqresp(Wp, freqs, 'Hz'))), 'k--', 'DisplayName', '$|w_r(j\omega)|^{-1}$'); + plot(freqs, sqrt(abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2), 'k-', 'DisplayName', '$|N_{ss}(j\omega)|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, abs(squeeze(freqresp(w1, freqs, 'Hz'))), '-', 'DisplayName', '$|w_1(j\omega)|$'); + plot(freqs, abs(squeeze(freqresp(w2, freqs, 'Hz'))), '-', 'DisplayName', '$|w_2(j\omega)|$'); + plot(freqs, 1./abs(squeeze(freqresp(Wu, freqs, 'Hz'))), 'k--', 'DisplayName', '$|w_u(j\omega)|^{-1}$'); + plot(freqs, abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))), 'k-', 'DisplayName', '$|w_{ss}(j\omega)|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/upper_bounds_perf_robust_result_4_outputs.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:upper_bounds_perf_robust_result_4_outputs +#+CAPTION: Obtained PSD and uncertainty with the corresponding upper bounds ([[./figs/upper_bounds_perf_robust_result_4_outputs.png][png]], [[./figs/upper_bounds_perf_robust_result_4_outputs.pdf][pdf]]) +[[file:figs/upper_bounds_perf_robust_result_4_outputs.png]] + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; + + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2); +#+end_src + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + legend('location', 'northeast'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}} = %.1e$', sqrt(CPS_H2(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + ylim([1e-10 1e-5]); + legend('location', 'southeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/4outputs_hinf_psd_cps2svg.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:4outputs_hinf_psd_cps2svg +#+CAPTION: PSD and CPS ([[./figs/4outputs_hinf_psd_cps2svg.png][png]], [[./figs/4outputs_hinf_psd_cps2svg.pdf][pdf]]) +[[file:figs/4outputs_hinf_psd_cps2svg.png]] + + +#+begin_src matlab :exports none + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); + + Gss = G1*H1 + G2*H2; + Gsss = usample(Gss, 20); + + % We here compute the maximum and minimum phase of the super sensor + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; + + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - SS'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Gsss(1, 1, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'DisplayName', 'SS Dynamics'); + for i = 2:length(Gsss) + plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + for i = 1:length(Gsss) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/4outputs_uncertainty.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:4outputs_uncertainty +#+CAPTION: Dynamical uncertainty ([[./figs/4outputs_uncertainty.png][png]], [[./figs/4outputs_uncertainty.pdf][pdf]]) +[[file:figs/4outputs_uncertainty.png]] + +** TODO Weight for both :noexport: +:PROPERTIES: +:header-args:matlab+: :tangle no +:END: +We may want to weights that capture both requirements. +We then have one weight for H1 and one weight for H2 (2 weights in total instead of 1). + +#+begin_src matlab + W1 = w1*Wu*(1+s/2/pi/40)^2/(1 + s/2/pi/1000)^2; + W2 = N2*Wp; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(N1*Wp, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1| - perf$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(N2*Wp, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2| - perf$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(w1*Wu, freqs, 'Hz'))), '--', 'DisplayName', '$|N_1| - robu$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(w2*Wu, freqs, 'Hz'))), '--', 'DisplayName', '$|N_2| - robu$'); + plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), 'k--', 'DisplayName', '$|W_1| - robu$'); + plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), 'k--', 'DisplayName', '$|W_2| - robu$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); +#+end_src + +The generalized plant $P$ is then: +#+begin_src matlab + P = [W1 -W1; + 0 W2; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Resetting value of Gamma min based on D_11, D_12, D_21 terms + +Test bounds: 0.8000 < gamma <= 1312.5112 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f +1.313e+03 1.3e+01 -1.7e-16 6.3e+00 -1.4e-19 0.0000 p + 656.656 1.3e+01 -3.4e-17 6.3e+00 -1.9e-13 0.0000 p + 328.728 1.3e+01 7.7e-17 6.3e+00 -1.3e-24 0.0000 p + 164.764 1.3e+01 2.6e-17 6.3e+00 -1.1e-13 0.0000 p + 82.782 1.3e+01 -2.0e-16 6.3e+00 -1.1e-13 0.0000 p + 41.791 1.3e+01 1.0e-16 6.3e+00 -8.9e-16 0.0000 p + 21.295 1.3e+01 -8.4e-17 6.3e+00 -6.3e-15 0.0000 p + 11.048 1.3e+01 8.5e-17 6.3e+00 -8.6e-14 0.0000 p + 5.924 1.3e+01 -2.5e-16 6.3e+00 -7.5e-14 0.0000 p + 3.362 1.3e+01 -1.7e-17 6.3e+00 -1.2e-13 0.0000 p + 2.081 1.2e+01 -5.1e-17 6.3e+00 -1.3e-13 0.0000 p + 1.440 1.1e+01 -2.4e+09# 6.3e+00 -3.4e-13 0.0000 f + 1.761 1.2e+01 -7.9e-17 6.3e+00 -3.3e-13 0.0000 p + 1.601 1.1e+01 -1.0e+10# 6.3e+00 -1.4e-13 0.0000 f + 1.681 1.2e+01 -3.1e+10# 6.3e+00 -1.5e-13 0.0000 f + 1.721 1.2e+01 -1.5e+11# 6.3e+00 -3.2e-13 0.0000 f + 1.741 1.2e+01 -4.6e-17 6.3e+00 -1.3e-13 0.0000 p + 1.731 1.2e+01 -1.3e+12# 6.3e+00 -1.6e-13 0.0000 f + 1.736 1.2e+01 1.4e-16 6.3e+00 -1.0e-13 0.0000 p + 1.733 1.2e+01 -1.7e-09 6.3e+00 -1.3e-13 0.0000 p + 1.732 1.2e+01 -1.3e+13# 6.3e+00 -1.4e-13 0.0000 f + 1.733 1.2e+01 5.3e-18 6.3e+00 -1.3e-13 0.0000 p + + Gamma value achieved: 1.7326 +#+end_example + +#+begin_src matlab + H1 = 1 - H2; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(N1*Wp, freqs, 'Hz'))), '-', 'DisplayName', '$|N_1| - perf$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(N2*Wp, freqs, 'Hz'))), '-', 'DisplayName', '$|N_2| - perf$'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(w1*Wu, freqs, 'Hz'))), '--', 'DisplayName', '$|N_1| - robu$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(w2*Wu, freqs, 'Hz'))), '--', 'DisplayName', '$|N_2| - robu$'); + plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), 'k--', 'DisplayName', '$|H_1|$'); + plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), 'k--', 'DisplayName', '$|H_2|$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; + + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2); +#+end_src + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2, 1, 1); + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + legend('location', 'northeast'); + + ax2 = subplot(2, 1, 2); + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}} = %.1e$', sqrt(CPS_H2(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + ylim([1e-10 1e-5]); + legend('location', 'southeast'); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+begin_src matlab :exports none + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); + + Gss = G1*H1 + G2*H2; + Gsss = usample(Gss, 20); + + % We here compute the maximum and minimum phase of the super sensor + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; + + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - SS'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Gsss(1, 1, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'DisplayName', 'SS Dynamics'); + for i = 2:length(Gsss) + plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + for i = 1:length(Gsss) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +** TODO Try to obtain better weight for the dynamical uncertainty :noexport: +:PROPERTIES: +:header-args:matlab+: :tangle no +:END: +Maybe we are asking too much for the limiting of the uncertainty. In reality, we should only limit the uncertainty around the merging frequency so that no RHP zero is introduced, and around the wanted crossover frequency. + +Weights about the uncertainty of the sensors. +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +We make one guess about a nice weight that is just above the minimum of both uncertainty weights +#+begin_src matlab + bodeFig({w1, w2, 0.5*inv(inv(w1)+inv(w2))}) +#+end_src + +#+begin_src matlab :exports none + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +Weight that is used to bound the uncertainty of the super sensor. +#+begin_src matlab + wu = inv(inv(w1)+inv(w2)); + + W1 = w1/wu; + W2 = w2/wu; +#+end_src + +#+begin_src matlab + bodeFig({1/W1, 1/W2}) +#+end_src + +The wanted shape of complementary filters: +#+begin_src matlab + H1w = 1/W1; + H2w = 1/W2; +#+end_src + +The maximum wanted uncertainty. +#+begin_src matlab + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1w, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2w, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1w, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2w, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--'); + plot(freqs, 1 + (abs(squeeze(freqresp(w1*H1w, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2w, freqs, 'Hz')))), 'k--'); + plot(freqs, max(1 - (abs(squeeze(freqresp(w1*H1w, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2w, freqs, 'Hz')))), 0), 'k--'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + ylim([1e-1, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + + + +** TODO New idea about weighting function for robustness :noexport: +:PROPERTIES: +:header-args:matlab+: :tangle no +:END: +Trying to limit the phase is too complicated, it is much easier to limit the radius of the uncertainty circle. +This is of course linked to the gain and phase uncertainty, but it is easier to work with. + +Ideally, we want to have: +\begin{align*} + & |w_{ss}(j\omega)| \approx |w_1(j\omega)| \quad \text{when} \quad |w_1(j\omega)| < |w_2(j\omega)| \\ + & |w_{ss}(j\omega)| \approx |w_2(j\omega)| \quad \text{when} \quad |w_2(j\omega)| < |w_1(j\omega)| +\end{align*} + +It is thus very similar to what is done for limiting the super sensor noise. + +#+begin_src matlab + omegac = 100*2*pi; G0 = 0.1; Ginf = 10; + w1 = (Ginf*s/omegac + G0)/(s/omegac + 1); + + omegac = 0.2*2*pi; G0 = 5; Ginf = 0.1; + w2 = (Ginf*s/omegac + G0)/(s/omegac + 1); + omegac = 5000*2*pi; G0 = 1; Ginf = 50; + w2 = w2*(Ginf*s/omegac + G0)/(s/omegac + 1); +#+end_src + +Weights on the Robustness: +#+begin_src matlab + epsilon = 1; + + W1r = 1/epsilon*w1/w2; + W2r = 1/epsilon*w2/w1; +#+end_src + +#+begin_src matlab + omegac = 100*2*pi; G0 = 1e-5; Ginf = 1e-4; + N1 = (Ginf*s/omegac + G0)/(s/omegac + 1)/(1 + s/2/pi/100); + + omegac = 1*2*pi; G0 = 1e-3; Ginf = 1e-8; + N2 = ((sqrt(Ginf)*s/omegac + sqrt(G0))/(s/omegac + 1))^2/(1 + s/2/pi/4000)^2; +#+end_src + +Weights on the Noise: +#+begin_src matlab + epsilon = 1; + + W1n = 1/epsilon*N1/N2; + W2n = 1/epsilon*N2/N1; + + W1n = W1n/(1 + s/2/pi/1000); % this is added so that it is proper +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1r, freqs, 'Hz'))), '-', 'DisplayName', 'W1 - Robust.'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2r, freqs, 'Hz'))), '-', 'DisplayName', 'W2 - Robust.'); + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(W1n, freqs, 'Hz'))), '--', 'DisplayName', 'W1 - Noise'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(W2n, freqs, 'Hz'))), '--', 'DisplayName', 'W2 - Noise'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab + P = [W1n -W1n; + 0 W2r; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Resetting value of Gamma min based on D_11, D_12, D_21 terms + +Test bounds: 0.5000 < gamma <= 65.6270 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 65.627 1.4e+01 -4.7e-13 1.3e+00 -2.7e-12 0.0000 p + 33.063 1.4e+01 3.7e-13 1.3e+00 -1.1e-17 0.0000 p + 16.782 1.4e+01 -9.5e-13 1.3e+00 -6.9e-15 0.0000 p + 8.641 1.4e+01 5.6e-13 1.3e+00 -2.0e-13 0.0000 p + 4.570 1.4e+01 2.6e-13 1.3e+00 -4.3e-14 0.0000 p + 2.535 1.4e+01 4.6e-13 1.3e+00 -1.7e-13 0.0000 p + 1.518 1.4e+01 -5.7e-13 1.3e+00 -8.2e-14 0.0000 p + 1.009 1.3e+01 7.9e-14 1.3e+00 -2.5e-14 0.0000 p + 0.754 1.3e+01 -2.1e-12 1.3e+00 -4.9e-15 0.0000 p + 0.627 1.2e+01 -2.1e+04# 1.3e+00 -1.8e-14 0.0000 f + 0.691 1.3e+01 -1.1e+05# 1.3e+00 -3.5e-16 0.0000 f + 0.723 1.3e+01 -5.5e+05# 1.3e+00 -2.0e-14 0.0000 f + 0.738 1.3e+01 -8.4e-12 1.3e+00 -2.7e-14 0.0000 p + 0.731 1.3e+01 -2.3e+06# 1.3e+00 -3.3e-13 0.0000 f + 0.735 1.3e+01 -9.9e-11 1.3e+00 -2.1e-14 0.0000 p + 0.733 1.3e+01 -8.9e+06# 1.3e+00 -5.0e-13 0.0000 f + 0.734 1.3e+01 -2.2e-10 1.3e+00 -1.9e-14 0.0000 p + + Gamma value achieved: 0.7335 +#+end_example + +#+begin_src matlab + H1 = 1 - H2; +#+end_src + +#+begin_src matlab + G1 = 1 + w1*ultidyn('Delta',[1 1]); + G2 = 1 + w2*ultidyn('Delta',[1 1]); + % We here compute the maximum and minimum phase of both sensors + Dphi1 = 180/pi*asin(abs(squeeze(freqresp(w1, freqs, 'Hz')))); + Dphi2 = 180/pi*asin(abs(squeeze(freqresp(w2, freqs, 'Hz')))); + Dphi1(abs(squeeze(freqresp(w1, freqs, 'Hz'))) > 1) = 190; + Dphi2(abs(squeeze(freqresp(w2, freqs, 'Hz'))) > 1) = 190; + Gss = G1*H1 + G2*H2; + Gsss = usample(Gss, 20); + % We here compute the maximum and minimum phase of the super sensor + Dphiss = 180/pi*asin(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz')))); + Dphiss(abs(squeeze(freqresp(w1*H1, freqs, 'Hz')))+abs(squeeze(freqresp(w2*H2, freqs, 'Hz'))) > 1) = 190; +#+end_src + +#+begin_src matlab :exports none + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, 1 + abs(squeeze(freqresp(w1, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S1'); + set(gca,'ColorOrderIndex',1); + plot(freqs, max(1 - abs(squeeze(freqresp(w1, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + set(gca,'ColorOrderIndex',2); + plot(freqs, 1 + abs(squeeze(freqresp(w2, freqs, 'Hz'))), '--', 'DisplayName', 'Bounds - S2'); + set(gca,'ColorOrderIndex',2); + plot(freqs, max(1 - abs(squeeze(freqresp(w2, freqs, 'Hz'))), 0), '--', 'HandleVisibility', 'off'); + plot(freqs, 1 + abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 'k--', 'DisplayName', 'Bounds - SS'); + plot(freqs, max(1 - abs(squeeze(freqresp(w1*H1+w2*H2, freqs, 'Hz'))), 0), 'k--', 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(Gsss(1, 1, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'DisplayName', 'SS Dynamics'); + for i = 2:length(Gsss) + plot(freqs, abs(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2], 'HandleVisibility', 'off'); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + legend('location', 'southwest'); + ylabel('Magnitude'); + ylim([5e-2, 10]); + hold off; + + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); + plot(freqs, Dphi1, '--'); + set(gca,'ColorOrderIndex',1); + plot(freqs, -Dphi1, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, Dphi2, '--'); + set(gca,'ColorOrderIndex',2); + plot(freqs, -Dphi2, '--'); + plot(freqs, Dphiss, 'k--'); + plot(freqs, -Dphiss, 'k--'); + for i = 1:length(Gsss) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gsss(:, :, i, 1), freqs, 'Hz'))), '-', 'color', [0 0 0 0.2]); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); +#+end_src + +#+begin_src matlab :exports none + PSD_S1 = abs(squeeze(freqresp(N1, freqs, 'Hz'))).^2; + PSD_S2 = abs(squeeze(freqresp(N2, freqs, 'Hz'))).^2; + PSD_H2 = abs(squeeze(freqresp(N1*H1, freqs, 'Hz'))).^2+abs(squeeze(freqresp(N2*H2, freqs, 'Hz'))).^2; + + figure; + hold on; + plot(freqs, PSD_S1, '-', 'DisplayName', '$\Phi_{\hat{x}_1}$'); + plot(freqs, PSD_S2, '-', 'DisplayName', '$\Phi_{\hat{x}_2}$'); + plot(freqs, PSD_H2, 'k-', 'DisplayName', '$\Phi_{\hat{x}_{\mathcal{H}_2}}$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Power Spectral Density'); + hold off; + xlim([freqs(1), freqs(end)]); + legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :exports none + CPS_S1 = 1/pi*cumtrapz(2*pi*freqs, PSD_S1); + CPS_S2 = 1/pi*cumtrapz(2*pi*freqs, PSD_S2); + CPS_H2 = 1/pi*cumtrapz(2*pi*freqs, PSD_H2); + + figure; + hold on; + plot(freqs, CPS_S1, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_1} = %.1e$', sqrt(CPS_S1(end)))); + plot(freqs, CPS_S2, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_2} = %.1e$', sqrt(CPS_S2(end)))); + plot(freqs, CPS_H2, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{\\mathcal{H}_2}} = %.1e$', sqrt(CPS_H2(end)))); + set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); + hold off; + xlim([2e-1, freqs(end)]); + ylim([1e-10 1e-5]); + legend('location', 'southeast'); +#+end_src + +** Conclusion +The $\mathcal{H}_\infty$ synthesis has been used to design complementary filters that permits to robustly merge sensors while ensuring a maximum noise level. +However, no guarantee is made that the RMS value of the super sensor's noise is minimized. + +* Equivalent Super Sensor +<> +** Introduction :ignore: +The goal here is to find the parameters of a single sensor that would best represent a super sensor. + +** Sensor Fusion Architecture +Let consider figure [[fig:sensor_fusion_full]] where two sensors are merged. +The dynamic uncertainty of each sensor is represented by a weight $w_i(s)$, the frequency characteristics each of the sensor noise is represented by the weights $N_i(s)$. +The noise sources $\tilde{n}_i$ are considered to be white noise: $\Phi_{\tilde{n}_i}(\omega) = 1, \ \forall\omega$. + +#+name: fig:sensor_fusion_full +#+caption: Sensor fusion architecture ([[./figs/sensor_fusion_full.png][png]], [[./figs/sensor_fusion_full.pdf][pdf]]). +#+RESULTS: +[[file:figs-tikz/sensor_fusion_full.png]] + + +\begin{align*} + \hat{x} &= H_1(s) N_1(s) \tilde{n}_1 + H_2(s) N_2(s) \tilde{n}_2 \\ + &\quad \quad + \Big(H_1(s) \big(1 + w_1(s) \Delta_1(s)\big) + H_2(s) \big(1 + w_2(s) \Delta_2(s)\big)\Big) x \\ + &= H_1(s) N_1(s) \tilde{n}_1 + H_2(s) N_2(s) \tilde{n}_2 \\ + &\quad \quad + \big(1 + H_1(s) w_1(s) \Delta_1(s) + H_2(s) w_2(s) \Delta_2(s)\big) x +\end{align*} + +To the dynamics of the super sensor is: +\begin{equation} + \frac{\hat{x}}{x} = 1 + H_1(s) w_1(s) \Delta_1(s) + H_2(s) w_2(s) \Delta_2(s) +\end{equation} + +And the noise of the super sensor is: +\begin{equation} + n_{ss} = H_1(s) N_1(s) \tilde{n}_1 + H_2(s) N_2(s) \tilde{n}_2 +\end{equation} + +** Equivalent Configuration +We try to determine $w_{ss}(s)$ and $N_{ss}(s)$ such that the sensor on figure [[fig:sensor_fusion_equivalent]] is equivalent to the super sensor of figure [[fig:sensor_fusion_full]]. + +#+name: fig:sensor_fusion_equivalent +#+caption: Equivalent Super Sensor ([[./figs/sensor_fusion_equivalent.png][png]], [[./figs/sensor_fusion_equivalent.pdf][pdf]]). +#+RESULTS: +[[file:figs-tikz/sensor_fusion_equivalent.png]] + +** Model the uncertainty of the super sensor +At each frequency $\omega$, the uncertainty set of the super sensor shown on figure [[fig:sensor_fusion_full]] is a circle centered on $1$ with a radius equal to $|H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|$ on the complex plane. +The uncertainty set of the sensor shown on figure [[fig:sensor_fusion_equivalent]] is a circle centered on $1$ with a radius equal to $|w_{ss}(j\omega)|$ on the complex plane. + +Ideally, we want to find a weight $w_{ss}(s)$ so that: +#+begin_important +\[ |w_{ss}(j\omega)| = |H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|, \quad \forall\omega \] +#+end_important + +** Model the noise of the super sensor +The PSD of the estimation $\hat{x}$ when $x = 0$ of the configuration shown on figure [[fig:sensor_fusion_full]] is: +\begin{align*} + \Phi_{\hat{x}}(\omega) &= | H_1(j\omega) N_1(j\omega) |^2 \Phi_{\tilde{n}_1} + | H_2(j\omega) N_2(j\omega) |^2 \Phi_{\tilde{n}_2} \\ + &= | H_1(j\omega) N_1(j\omega) |^2 + | H_2(j\omega) N_2(j\omega) |^2 +\end{align*} + +The PSD of the estimation $\hat{x}$ when $x = 0$ of the configuration shown on figure [[fig:sensor_fusion_equivalent]] is: +\begin{align*} + \Phi_{\hat{x}}(\omega) &= | N_{ss}(j\omega) |^2 \Phi_{\tilde{n}} \\ + &= | N_{ss}(j\omega) |^2 +\end{align*} + +Ideally, we want to find a weight $N_{ss}(s)$ such that: +#+begin_important +\[ |N_{ss}(j\omega)|^2 = | H_1(j\omega) N_1(j\omega) |^2 + | H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \] +#+end_important + +** First guess +We could choose +\begin{align*} + w_{ss}(s) &= H_1(s) w_1(s) + H_2(s) w_2(s) \\ + N_{ss}(s) &= H_1(s) N_1(s) + H_2(s) N_2(s) +\end{align*} + +But we would have: +\begin{align*} + |w_{ss}(j\omega)| &= |H_1(j\omega) w_1(j\omega) + H_2(j\omega) w_2(j\omega)|, \quad \forall\omega \\ + &\neq |H_1(j\omega) w_1(j\omega)| + |H_2(j\omega) w_2(j\omega)|, \quad \forall\omega +\end{align*} +and +\begin{align*} + |N_{ss}(j\omega)|^2 &= | H_1(j\omega) N_1(j\omega) + H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \\ + &\neq | H_1(j\omega) N_1(j\omega)|^2 + |H_2(j\omega) N_2(j\omega) |^2 \quad \forall\omega \\ +\end{align*} + +* Optimal And Robust Sensor Fusion in Practice +<> +** Introduction :ignore: +Here are the steps in order to apply optimal and robust sensor fusion: + +- Measure the noise characteristics of the sensors to be merged (necessary for "optimal" part of the fusion) +- Measure/Estimate the dynamic uncertainty of the sensors (necessary for "robust" part of the fusion) +- Apply H2/H-infinity synthesis of the complementary filters + +** Measurement of the noise characteristics of the sensors +*** Huddle Test +The technique to estimate the sensor noise is taken from cite:barzilai98_techn_measur_noise_sensor_presen. + +Let's consider two sensors (sensor 1 and sensor 2) that are measuring the same quantity $x$ as shown in figure [[fig:huddle_test]]. + +#+NAME: fig:huddle_test +#+CAPTION: Huddle test block diagram +[[file:figs-tikz/huddle_test.png]] + +Each sensor has uncorrelated noise $n_1$ and $n_2$ and internal dynamics $G_1(s)$ and $G_2(s)$ respectively. + +We here suppose that each sensor has the same magnitude of instrumental noise: $n_1 = n_2 = n$. +We also assume that their dynamics is ideal: $G_1(s) = G_2(s) = 1$. + +We then have: +#+NAME: eq:coh_bis +\begin{equation} + \gamma_{\hat{x}_1\hat{x}_2}^2(\omega) = \frac{1}{1 + 2 \left( \frac{|\Phi_n(\omega)|}{|\Phi_{\hat{x}}(\omega)|} \right) + \left( \frac{|\Phi_n(\omega)|}{|\Phi_{\hat{x}}(\omega)|} \right)^2} +\end{equation} + +Since the input signal $x$ and the instrumental noise $n$ are incoherent: +#+NAME: eq:incoherent_noise +\begin{equation} + |\Phi_{\hat{x}}(\omega)| = |\Phi_n(\omega)| + |\Phi_x(\omega)| +\end{equation} + +From equations eqref:eq:coh_bis and eqref:eq:incoherent_noise, we finally obtain +#+begin_important +#+NAME: eq:noise_psd +\begin{equation} + |\Phi_n(\omega)| = |\Phi_{\hat{x}}(\omega)| \left( 1 - \sqrt{\gamma_{\hat{x}_1\hat{x}_2}^2(\omega)} \right) +\end{equation} +#+end_important + +*** Weights that represents the noises' PSD + +For further complementary filter synthesis, it is preferred to consider a normalized noise source $\tilde{n}$ that has a PSD equal to one ($\Phi_{\tilde{n}}(\omega) = 1$) and to use a weighting filter $N(s)$ in order to represent the frequency dependence of the noise. + +The weighting filter $N(s)$ should be designed such that: +\begin{align*} + & \Phi_n(\omega) \approx |N(j\omega)|^2 \Phi_{\tilde{n}}(\omega) \quad \forall \omega \\ + \Longleftrightarrow & |N(j\omega)| \approx \sqrt{\Phi_n(\omega)} \quad \forall \omega +\end{align*} + +These weighting filters can then be used to compare the noise level of sensors for the synthesis of complementary filters. + +The sensor with a normalized noise input is shown in figure [[fig:one_sensor_normalized_noise]]. + +#+name: fig:one_sensor_normalized_noise +#+caption: One sensor with normalized noise +[[file:figs-tikz/one_sensor_normalized_noise.png]] + +*** Comparison of the noises' PSD +Once the noise of the sensors to be merged have been characterized, the power spectral density of both sensors have to be compared. + +Ideally, the PSD of the noise are such that: +\begin{align*} + \Phi_{n_1}(\omega) &< \Phi_{n_2}(\omega) \text{ for } \omega < \omega_m \\ + \Phi_{n_1}(\omega) &> \Phi_{n_2}(\omega) \text{ for } \omega > \omega_m +\end{align*} + +*** Computation of the coherence, power spectral density and cross spectral density of signals +The coherence between signals $x$ and $y$ is defined as follow +\[ \gamma^2_{xy}(\omega) = \frac{|\Phi_{xy}(\omega)|^2}{|\Phi_{x}(\omega)| |\Phi_{y}(\omega)|} \] +where $|\Phi_x(\omega)|$ is the output Power Spectral Density (PSD) of signal $x$ and $|\Phi_{xy}(\omega)|$ is the Cross Spectral Density (CSD) of signal $x$ and $y$. + +The PSD and CSD are defined as follow: +\begin{align} + |\Phi_x(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} \left| X_k(\omega, T) \right|^2 \\ + |\Phi_{xy}(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} [ X_k^*(\omega, T) ] [ Y_k(\omega, T) ] +\end{align} +where: +- $n_d$ is the number for records averaged +- $T$ is the length of each record +- $X_k(\omega, T)$ is the finite Fourier transform of the $k^{\text{th}}$ record +- $X_k^*(\omega, T)$ is its complex conjugate + +** Estimate the dynamic uncertainty of the sensors + +Let's consider one sensor represented on figure [[fig:one_sensor_dyn_uncertainty]]. + +The dynamic uncertainty is represented by an input multiplicative uncertainty where $w(s)$ is a weight that represents the level of the uncertainty. + +The goal is to accurately determine $w(s)$ for the sensors that have to be merged. + +#+name: fig:one_sensor_dyn_uncertainty +#+caption: Sensor with dynamic uncertainty +[[file:figs-tikz/one_sensor_dyn_uncertainty.png]] + +** Optimal and Robust synthesis of the complementary filters +Once the noise characteristics and dynamic uncertainty of both sensors have been determined and we have determined the following weighting functions: +- $w_1(s)$ and $w_2(s)$ representing the dynamic uncertainty of both sensors +- $N_1(s)$ and $N_2(s)$ representing the noise characteristics of both sensors + +The goal is to design complementary filters $H_1(s)$ and $H_2(s)$ shown in figure [[fig:sensor_fusion_full]] such that: +- the uncertainty on the super sensor dynamics is minimized +- the noise sources $\tilde{n}_1$ and $\tilde{n}_2$ has the lowest possible effect on the estimation $\hat{x}$ + +#+name: fig:sensor_fusion_full +#+caption: Sensor fusion architecture with sensor dynamics uncertainty +[[file:figs-tikz/sensor_fusion_full.png]] + +* Methods of complementary filter synthesis +<> +** Complementary filters using analytical formula + :PROPERTIES: + :header-args:matlab+: :tangle matlab/comp_filters_analytical.m + :header-args:matlab+: :comments org :mkdirp yes + :END: + <> + +*** Introduction :ignore: +*** ZIP file containing the data and matlab files :ignore: +#+begin_src bash :exports none :results none + if [ matlab/comp_filters_analytical.m -nt data/comp_filters_analytical.zip ]; then + cp matlab/comp_filters_analytical.m comp_filters_analytical.m; + zip data/comp_filters_analytical \ + comp_filters_analytical.m + rm comp_filters_analytical.m; + fi +#+end_src + +#+begin_note + All the files (data and Matlab scripts) are accessible [[file:data/comp_filters_analytical.zip][here]]. +#+end_note + +*** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +*** Analytical 1st order complementary filters +First order complementary filters are defined with following equations: +\begin{align} + H_L(s) = \frac{1}{1 + \frac{s}{\omega_0}}\\ + H_H(s) = \frac{\frac{s}{\omega_0}}{1 + \frac{s}{\omega_0}} +\end{align} + +Their bode plot is shown figure [[fig:comp_filter_1st_order]]. + +#+begin_src matlab + w0 = 2*pi; % [rad/s] + + Hh1 = (s/w0)/((s/w0)+1); + Hl1 = 1/((s/w0)+1); +#+end_src + +#+begin_src matlab :exports none + freqs = logspace(-2, 2, 1000); + + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hh1, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Hl1, freqs, 'Hz')))); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + hold off; + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hh1, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Hl1, freqs, 'Hz')))); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filter_1st_order.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filter_1st_order +#+CAPTION: Bode plot of first order complementary filter ([[./figs/comp_filter_1st_order.png][png]], [[./figs/comp_filter_1st_order.pdf][pdf]]) +[[file:figs/comp_filter_1st_order.png]] + +*** Second Order Complementary Filters +We here use analytical formula for the complementary filters $H_L$ and $H_H$. + +The first two formulas that are used to generate complementary filters are: +\begin{align*} + H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)} +\end{align*} +where: +- $\omega_0$ is the blending frequency in rad/s. +- $\alpha$ is used to change the shape of the filters: + - Small values for $\alpha$ will produce high magnitude of the filters $|H_L(j\omega)|$ and $|H_H(j\omega)|$ near $\omega_0$ but smaller value for $|H_L(j\omega)|$ above $\approx 1.5 \omega_0$ and for $|H_H(j\omega)|$ below $\approx 0.7 \omega_0$ + - A large $\alpha$ will do the opposite + +This is illustrated on figure [[fig:comp_filters_param_alpha]]. +The slope of those filters at high and low frequencies is $-2$ and $2$ respectively for $H_L$ and $H_H$. + +#+begin_src matlab :exports none + freqs_study = logspace(-2, 2, 10000); + alphas = [0.1, 1, 10]; + w0 = 2*pi*1; + + figure; + ax1 = subplot(2,1,1); + hold on; + for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, abs(squeeze(freqresp(Hh2, freqs_study, 'Hz')))); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, abs(squeeze(freqresp(Hl2, freqs_study, 'Hz')))); + end + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + hold off; + ylim([1e-3, 20]); + % Phase + ax2 = subplot(2,1,2); + hold on; + for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hh2, freqs_study, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %g$', alpha)); + set(gca,'ColorOrderIndex',i); + plot(freqs_study, 180/pi*angle(squeeze(freqresp(Hl2, freqs_study, 'Hz'))), 'HandleVisibility', 'off'); + end + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); + legend('Location', 'northeast'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs_study(1), freqs_study(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filters_param_alpha.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filters_param_alpha +#+CAPTION: Effect of the parameter $\alpha$ on the shape of the generated second order complementary filters ([[./figs/comp_filters_param_alpha.png][png]], [[./figs/comp_filters_param_alpha.pdf][pdf]]) +[[file:figs/comp_filters_param_alpha.png]] + +We now study the maximum norm of the filters function of the parameter $\alpha$. As we saw that the maximum norm of the filters is important for the robust merging of filters. +#+begin_src matlab :exports none + alphas = logspace(-2, 2, 100); + w0 = 2*pi*1; + infnorms = zeros(size(alphas)); + + for i = 1:length(alphas) + alpha = alphas(i); + Hh2 = (s/w0)^2*((s/w0)+1+alpha)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + Hl2 = ((1+alpha)*(s/w0)+1)/(((s/w0)+1)*((s/w0)^2 + alpha*(s/w0) + 1)); + infnorms(i) = norm(Hh2, 'inf'); + end +#+end_src + +#+begin_src matlab + figure; + plot(alphas, infnorms) + set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); + xlabel('$\alpha$'); ylabel('$\|H_1\|_\infty$'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/param_alpha_hinf_norm.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:param_alpha_hinf_norm +#+CAPTION: Evolution of the H-Infinity norm of the complementary filters with the parameter $\alpha$ ([[./figs/param_alpha_hinf_norm.png][png]], [[./figs/param_alpha_hinf_norm.pdf][pdf]]) +[[file:figs/param_alpha_hinf_norm.png]] + +*** Third Order Complementary Filters +The following formula gives complementary filters with slopes of $-3$ and $3$: +\begin{align*} + H_L(s) &= \frac{\left(1+(\alpha+1)(\beta+1)\right) (\frac{s}{\omega_0})^2 + (1+\alpha+\beta)(\frac{s}{\omega_0}) + 1}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^3 \left( (\frac{s}{\omega_0})^2 + (1+\alpha+\beta) (\frac{s}{\omega_0}) + (1+(\alpha+1)(\beta+1)) \right)}{\left(\frac{s}{\omega_0} + 1\right) \left( (\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1 \right) \left( (\frac{s}{\omega_0})^2 + \beta (\frac{s}{\omega_0}) + 1 \right)} +\end{align*} + +The parameters are: +- $\omega_0$ is the blending frequency in rad/s +- $\alpha$ and $\beta$ that are used to change the shape of the filters similarly to the parameter $\alpha$ for the second order complementary filters + +The filters are defined below and the result is shown on figure [[fig:complementary_filters_third_order]]. + +#+begin_src matlab + alpha = 1; + beta = 10; + w0 = 2*pi*14; + + Hh3_ana = (s/w0)^3 * ((s/w0)^2 + (1+alpha+beta)*(s/w0) + (1+(alpha+1)*(beta+1)))/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); + Hl3_ana = ((1+(alpha+1)*(beta+1))*(s/w0)^2 + (1+alpha+beta)*(s/w0) + 1)/((s/w0 + 1)*((s/w0)^2+alpha*(s/w0)+1)*((s/w0)^2+beta*(s/w0)+1)); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - Analytical'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh3_ana, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - Analytical'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/complementary_filters_third_order.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:complementary_filters_third_order +#+CAPTION: Third order complementary filters using the analytical formula ([[./figs/complementary_filters_third_order.png][png]], [[./figs/complementary_filters_third_order.pdf][pdf]]) +[[file:figs/complementary_filters_third_order.png]] + +** H-Infinity synthesis of complementary filters + :PROPERTIES: + :header-args:matlab+: :tangle matlab/h_inf_synthesis_complementary_filters.m + :header-args:matlab+: :comments org :mkdirp yes + :END: + <> + +*** Introduction :ignore: +*** ZIP file containing the data and matlab files :ignore: +#+begin_src bash :exports none :results none + if [ matlab/h_inf_synthesis_complementary_filters.m -nt data/h_inf_synthesis_complementary_filters.zip ]; then + cp matlab/h_inf_synthesis_complementary_filters.m h_inf_synthesis_complementary_filters.m; + zip data/h_inf_synthesis_complementary_filters \ + h_inf_synthesis_complementary_filters.m + rm h_inf_synthesis_complementary_filters.m; + fi +#+end_src + +#+begin_note + All the files (data and Matlab scripts) are accessible [[file:data/h_inf_synthesis_complementary_filters.zip][here]]. +#+end_note + +*** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-1, 3, 1000); +#+end_src + +*** Synthesis Architecture +We here synthesize the complementary filters using the $\mathcal{H}_\infty$ synthesis. +The goal is to specify upper bounds on the norms of $H_L$ and $H_H$ while ensuring their complementary property ($H_L + H_H = 1$). + +In order to do so, we use the generalized plant shown on figure [[fig:sf_hinf_filters_plant_b]] where $w_L$ and $w_H$ weighting transfer functions that will be used to shape $H_L$ and $H_H$ respectively. + +#+name: fig:sf_hinf_filters_plant_b +#+caption: Generalized plant used for the $\mathcal{H}_\infty$ synthesis of the complementary filters +[[file:figs-tikz/sf_hinf_filters_plant_b.png]] + +The $\mathcal{H}_\infty$ synthesis applied on this generalized plant will give a transfer function $H_L$ (figure [[fig:sf_hinf_filters_b]]) such that the $\mathcal{H}_\infty$ norm of the transfer function from $w$ to $[z_H,\ z_L]$ is less than one: +\[ \left\| \begin{array}{c} H_L w_L \\ (1 - H_L) w_H \end{array} \right\|_\infty < 1 \] + +Thus, if the above condition is verified, we can define $H_H = 1 - H_L$ and we have that: +\[ \left\| \begin{array}{c} H_L w_L \\ H_H w_H \end{array} \right\|_\infty < 1 \] +Which is almost (with an maximum error of $\sqrt{2}$) equivalent to: +\begin{align*} + |H_L| &< \frac{1}{|w_L|}, \quad \forall \omega \\ + |H_H| &< \frac{1}{|w_H|}, \quad \forall \omega +\end{align*} + +We then see that $w_L$ and $w_H$ can be used to shape both $H_L$ and $H_H$ while ensuring (by definition of $H_H = 1 - H_L$) their complementary property. + +#+name: fig:sf_hinf_filters_b +#+caption: $\mathcal{H}_\infty$ synthesis of the complementary filters +[[file:figs-tikz/sf_hinf_filters_b.png]] + +*** Weights + +#+begin_src matlab + omegab = 2*pi*9; + wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2; + omegab = 2*pi*28; + wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3; +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '-', 'DisplayName', '$w_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '-', 'DisplayName', '$w_H$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/weights_wl_wh.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:weights_wl_wh +#+CAPTION: Weights on the complementary filters $w_L$ and $w_H$ and the associated performance weights ([[./figs/weights_wl_wh.png][png]], [[./figs/weights_wl_wh.pdf][pdf]]) +[[file:figs/weights_wl_wh.png]] + +*** H-Infinity Synthesis +We define the generalized plant $P$ on matlab. +#+begin_src matlab + P = [0 wL; + wH -wH; + 1 0]; +#+end_src + +And we do the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command. +#+begin_src matlab :results output replace :exports both + [Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +#+end_src + +#+RESULTS: +#+begin_example +[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on'); +Test bounds: 0.0000 < gamma <= 1.7285 + + gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f + 1.729 4.1e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p + 0.864 3.9e+01 -5.8e-02# 1.8e-01 0.0e+00 0.0000 f + 1.296 4.0e+01 8.4e-12 1.8e-01 0.0e+00 0.0000 p + 1.080 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.972 3.9e+01 -4.2e-01# 1.8e-01 0.0e+00 0.0000 f + 1.026 4.0e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.999 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.986 3.9e+01 -1.2e+00# 1.8e-01 0.0e+00 0.0000 f + 0.993 3.9e+01 -8.2e+00# 1.8e-01 0.0e+00 0.0000 f + 0.996 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.994 3.9e+01 8.5e-12 1.8e-01 0.0e+00 0.0000 p + 0.993 3.9e+01 -3.2e+01# 1.8e-01 0.0e+00 0.0000 f + + Gamma value achieved: 0.9942 +#+end_example + +We then define the high pass filter $H_H = 1 - H_L$. The bode plot of both $H_L$ and $H_H$ is shown on figure [[fig:hinf_filters_results]]. +#+begin_src matlab + Hh_hinf = 1 - Hl_hinf; +#+end_src + +*** Obtained Complementary Filters + +The obtained complementary filters are shown on figure [[fig:hinf_filters_results]]. + +#+begin_src matlab :exports none + figure; + hold on; + set(gca,'ColorOrderIndex',1) + plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$'); + + set(gca,'ColorOrderIndex',1) + plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$'); + set(gca,'ColorOrderIndex',2) + plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$'); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + hold off; + xlim([freqs(1), freqs(end)]); + ylim([1e-3, 10]); + xticks([0.1, 1, 10, 100, 1000]); + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/hinf_filters_results.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:hinf_filters_results +#+CAPTION: Obtained complementary filters using $\mathcal{H}_\infty$ synthesis ([[./figs/hinf_filters_results.png][png]], [[./figs/hinf_filters_results.pdf][pdf]]) +[[file:figs/hinf_filters_results.png]] + +** Feedback Control Architecture to generate Complementary Filters + :PROPERTIES: + :header-args:matlab+: :tangle matlab/feedback_generate_comp_filters.m + :header-args:matlab+: :comments org :mkdirp yes + :END: + <> + +*** Introduction :ignore: +The idea is here to use the fact that in a classical feedback architecture, $S + T = 1$, in order to design complementary filters. + +Thus, all the tools that has been developed for classical feedback control can be used for complementary filter design. + +*** ZIP file containing the data and matlab files :ignore: +#+begin_src bash :exports none :results none + if [ matlab/feedback_generate_comp_filters.m -nt data/feedback_generate_comp_filters.zip ]; then + cp matlab/feedback_generate_comp_filters.m feedback_generate_comp_filters.m; + zip data/feedback_generate_comp_filters \ + feedback_generate_comp_filters.m + rm feedback_generate_comp_filters.m; + fi +#+end_src + +#+begin_note + All the files (data and Matlab scripts) are accessible [[file:data/feedback_generate_comp_filters.zip][here]]. +#+end_note + +*** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +#+begin_src matlab + freqs = logspace(-2, 2, 1000); +#+end_src + +*** Architecture +#+name: fig:complementary_filters_feedback_architecture +#+caption: Architecture used to generate the complementary filters +[[file:figs-tikz/complementary_filters_feedback_architecture.png]] + +We have: +\[ y = \underbrace{\frac{L}{L + 1}}_{H_L} y_1 + \underbrace{\frac{1}{L + 1}}_{H_H} y_2 \] +with $H_L + H_H = 1$. + +The only thing to design is $L$ such that the complementary filters are stable with the wanted shape. + +A simple choice is: +\[ L = \left(\frac{\omega_c}{s}\right)^2 \frac{\frac{s}{\omega_c / \alpha} + 1}{\frac{s}{\omega_c} + \alpha} \] + +Which contains two integrator and a lead. $\omega_c$ is used to tune the crossover frequency and $\alpha$ the trade-off "bump" around blending frequency and filtering away from blending frequency. + +*** Loop Gain Design +Let's first define the loop gain $L$. +#+begin_src matlab + wc = 2*pi*1; + alpha = 2; + + L = (wc/s)^2 * (s/(wc/alpha) + 1)/(s/wc + alpha); +#+end_src + +#+begin_src matlab :exports none + figure; + + ax1 = subplot(2,1,1); + plot(freqs, abs(squeeze(freqresp(L, freqs, 'Hz'))), '-'); + ylabel('Magnitude'); + set(gca, 'XScale', 'log'); + set(gca, 'YScale', 'log'); + + ax2 = subplot(2,1,2); + plot(freqs, 180/pi*phase(squeeze(freqresp(L, freqs, 'Hz'))), '--'); + xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); + set(gca, 'XScale', 'log'); + ylim([-180, 0]); + yticks([-360:90:360]); + + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); + xticks([0.1, 1, 10, 100, 1000]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/loop_gain_bode_plot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:loop_gain_bode_plot +#+CAPTION: Bode plot of the loop gain $L$ ([[./figs/loop_gain_bode_plot.png][png]], [[./figs/loop_gain_bode_plot.pdf][pdf]]) +[[file:figs/loop_gain_bode_plot.png]] + +*** Complementary Filters Obtained +We then compute the resulting low pass and high pass filters. +#+begin_src matlab + Hl = L/(L + 1); + Hh = 1/(L + 1); +#+end_src + +#+begin_src matlab :exports none + alphas = [1, 2, 10]; + + figure; + hold on; + for i = 1:length(alphas) + alpha = alphas(i); + L = (wc/s)^2 * (s/(wc/alpha) + 1)/(s/wc + alpha); + Hl = L/(L + 1); + Hh = 1/(L + 1); + set(gca,'ColorOrderIndex',i) + plot(freqs, abs(squeeze(freqresp(Hl, freqs, 'Hz'))), 'DisplayName', sprintf('$\\alpha = %.0f$', alpha)); + set(gca,'ColorOrderIndex',i) + plot(freqs, abs(squeeze(freqresp(Hh, freqs, 'Hz'))), 'HandleVisibility', 'off'); + end + set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Amplitude') + legend('location', 'northeast'); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/low_pass_high_pass_filters.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:low_pass_high_pass_filters +#+CAPTION: Low pass and High pass filters $H_L$ and $H_H$ for different values of $\alpha$ ([[./figs/low_pass_high_pass_filters.png][png]], [[./figs/low_pass_high_pass_filters.pdf][pdf]]) +[[file:figs/low_pass_high_pass_filters.png]] + +** Analytical Formula found in the literature + <> + +*** Analytical Formula +cite:min15_compl_filter_desig_angle_estim +\begin{align*} + H_L(s) = \frac{K_p s + K_i}{s^2 + K_p s + K_i} \\ + H_H(s) = \frac{s^2}{s^2 + K_p s + K_i} +\end{align*} + +cite:corke04_inert_visual_sensin_system_small_auton_helic +\begin{align*} + H_L(s) = \frac{1}{s/p + 1} \\ + H_H(s) = \frac{s/p}{s/p + 1} +\end{align*} + +cite:jensen13_basic_uas +\begin{align*} + H_L(s) = \frac{2 \omega_0 s + \omega_0^2}{(s + \omega_0)^2} \\ + H_H(s) = \frac{s^2}{(s + \omega_0)^2} +\end{align*} + +\begin{align*} + H_L(s) = \frac{C(s)}{C(s) + s} \\ + H_H(s) = \frac{s}{C(s) + s} +\end{align*} + +cite:shaw90_bandw_enhan_posit_measur_using_measur_accel +\begin{align*} + H_L(s) = \frac{3 \tau s + 1}{(\tau s + 1)^3} \\ + H_H(s) = \frac{\tau^3 s^3 + 3 \tau^2 s^2}{(\tau s + 1)^3} +\end{align*} + +cite:baerveldt97_low_cost_low_weigh_attit +\begin{align*} + H_L(s) = \frac{2 \tau s + 1}{(\tau s + 1)^2} \\ + H_H(s) = \frac{\tau^2 s^2}{(\tau s + 1)^2} +\end{align*} + +*** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +*** Matlab +#+begin_src matlab + omega0 = 1*2*pi; % [rad/s] + tau = 1/omega0; % [s] + + % From cite:corke04_inert_visual_sensin_system_small_auton_helic + HL1 = 1/(s/omega0 + 1); HH1 = s/omega0/(s/omega0 + 1); + + % From cite:jensen13_basic_uas + HL2 = (2*omega0*s + omega0^2)/(s+omega0)^2; HH2 = s^2/(s+omega0)^2; + + % From cite:shaw90_bandw_enhan_posit_measur_using_measur_accel + HL3 = (3*tau*s + 1)/(tau*s + 1)^3; HH3 = (tau^3*s^3 + 3*tau^2*s^2)/(tau*s + 1)^3; +#+end_src + +#+begin_src matlab :exports none + freqs = logspace(-1, 1, 1000); + + figure; + % Magnitude + ax1 = subplot(2,1,1); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(HH1, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(HL1, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(HH2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(HL2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(HH3, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(HL3, freqs, 'Hz')))); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + set(gca, 'XTickLabel',[]); + ylabel('Magnitude'); + hold off; + ylim([1e-2 2]); + % Phase + ax2 = subplot(2,1,2); + hold on; + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(HH1, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(HL1, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(HH2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',2); plot(freqs, 180/pi*angle(squeeze(freqresp(HL2, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(HH3, freqs, 'Hz')))); + set(gca,'ColorOrderIndex',3); plot(freqs, 180/pi*angle(squeeze(freqresp(HL3, freqs, 'Hz')))); + set(gca,'xscale','log'); + yticks(-180:90:180); + ylim([-180 180]); + xlabel('Relative Frequency $\frac{\omega}{\omega_0}$'); ylabel('Phase [deg]'); + hold off; + linkaxes([ax1,ax2],'x'); + xlim([freqs(1), freqs(end)]); +#+end_src + +#+HEADER: :tangle no :exports results :results none :noweb yes +#+begin_src matlab :var filepath="figs/comp_filters_literature.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:comp_filters_literature +#+CAPTION: Comparison of some complementary filters found in the literature ([[./figs/comp_filters_literature.png][png]], [[./figs/comp_filters_literature.pdf][pdf]]) +[[file:figs/comp_filters_literature.png]] + +*** Discussion +Analytical Formula found in the literature provides either no parameter for tuning the robustness / performance trade-off. + +** Comparison of the different methods of synthesis + <> +The generated complementary filters using $\mathcal{H}_\infty$ and the analytical formulas are very close to each other. However there is some difference to note here: +- the analytical formula provides a very simple way to generate the complementary filters (and thus the controller), they could even be used to tune the controller online using the parameters $\alpha$ and $\omega_0$. However, these formula have the property that $|H_H|$ and $|H_L|$ are symmetrical with the frequency $\omega_0$ which may not be desirable. +- while the $\mathcal{H}_\infty$ synthesis of the complementary filters is not as straightforward as using the analytical formula, it provides a more optimized procedure to obtain the complementary filters + +* Real World Example of optimal sensor fusion +** Introduction :ignore: +cite:moore19_capac_instr_sensor_fusion_high_bandw_nanop + + +** Matlab Init :noexport:ignore: +#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) + <> +#+end_src + +#+begin_src matlab :exports none :results silent :noweb yes + <> +#+end_src + +** Sensor Noise :noexport: +#+begin_src matlab + A1 = 19.13; % [uV2/Hz] + A2 = 0.1632; % [uV2/Hz] + A3 = 6.847; % [uV2/Hz] + wnc = 3057; % [rad] + wx = 7929; % [rad/s] + + Fx = 1/(1 - s/wx)/(1 - s/wx); + [A B C D] = butter(2, 0.5, 'low'); + Fx = ss(A, B, C, D); + + Sq = A3*wnc/s + A3; + Sx = A1*Fx + A2; +#+end_src + +#+begin_src matlab :exports none + freqs = logspace(1, 5, 1000); + + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(Sq, freqs, 'Hz')))); + plot(freqs, abs(squeeze(freqresp(Sx, freqs, 'Hz')))); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); +#+end_src + +** Matlab Code +Take an Accelerometer and a Geophone both measuring the absolute motion of a structure. + +Parameters of the inertial sensors. +#+begin_src matlab + m_acc = 0.01; + k_acc = 1e6; + c_acc = 20; + + m_geo = 1; + k_geo = 1e3; + c_geo = 10; +#+end_src + +Transfer function from motion to measurement + +For the accelerometer. +The measurement is the relative motion structure/inertial mass: +\[ \frac{d}{\ddot{w}} = \frac{-m}{ms^2 + cs + k} \] + +For the geophone. +The measurement is the relative velocity structure/inertial mass: +\[ \frac{\dot{d}}{\dot{w}} = \frac{-ms^2}{ms^2 + cs + k} \] + +#+begin_src matlab + G_acc = -m_acc/(m_acc*s^2 + c_acc*s + k_acc); % [m/(m/s^2)] + G_geo = -m_geo*s^2/(m_geo*s^2 + c_geo*s + k_geo); % [m/s/m/s] +#+end_src + +Suppose the measure of the relative motion for the accelerometer (capacitive sensor for instance) has a white noise characteristic: +Suppose the measure of the relative velocity (current flowing through the coil) has a white noise characteristic: + +Define the noise characteristics +#+begin_src matlab + n = 1; w0 = 2*pi*5e3; G0 = 5e-12; G1 = 1e-15; Gc = G0/2; + L_acc = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; + + n = 1; w0 = 2*pi*5e3; G0 = 1e-6; G1 = 1e-8; Gc = G0/2; + L_geo = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n; +#+end_src + +Transfer function of the conversion to obtain the velocity: +#+begin_src matlab + C_acc = (-k_acc/m_acc/(2*pi + s)); + C_geo = tf(-1); +#+end_src + +Let's plot the noise of both sensors: +#+begin_src matlab :exports none + freqs = logspace(-1, 4, 1000); + + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(L_acc*C_acc, freqs, 'Hz'))), 'DisplayName', 'Acc'); + plot(freqs, abs(squeeze(freqresp(L_geo*C_geo, freqs, 'Hz'))), 'DisplayName', 'Geo'); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Noise ASD [$m/s/\sqrt{Hz}$]'); + legend('location', 'northeast') +#+end_src + +Dynamics of both sensors +#+begin_src matlab :exports none + freqs = logspace(-1, 4, 1000); + + figure; + hold on; + plot(freqs, abs(squeeze(freqresp(s*G_acc*C_acc, freqs, 'Hz'))), 'DisplayName', 'Acc'); + plot(freqs, abs(squeeze(freqresp(G_geo*C_geo, freqs, 'Hz'))), 'DisplayName', 'Geo'); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlabel('Frequency [Hz]'); ylabel('Magnitude'); + legend('location', 'northeast') +#+end_src + +** Time domain signals +#+begin_src matlab + Fs = 1e4; % Sampling Frequency [Hz] + Ts = 1/Fs; % Sampling Time [s] + + t = 0:Ts:10; % Time Vector [s] +#+end_src + +#+begin_src matlab + n_acc = lsim(L_acc*C_acc, sqrt(Fs/2)*randn(length(t), 1), t); % [m/s] + n_geo = lsim(L_geo*C_geo, sqrt(Fs/2)*randn(length(t), 1), t); % [m/s] +#+end_src + +#+begin_src matlab + figure; + hold on; + plot(t, n_geo) + plot(t, n_acc) + hold off; +#+end_src + +** H2 Synthesis +#+begin_src matlab + N1 = L_acc*C_acc; + N2 = L_geo*C_geo; +#+end_src + +#+begin_src matlab + bodeFig({N1, N2}, logspace(-1, 5, 1000)) +#+end_src + +#+begin_src matlab + P = [0 N2 1; + N1 -N2 0]; +#+end_src + +And we do the $\mathcal{H}_2$ synthesis using the =h2syn= command. +#+begin_src matlab + [H1, ~, gamma] = h2syn(P, 1, 1); +#+end_src + +Finally, we define $H_2(s) = 1 - H_1(s)$. +#+begin_src matlab + H2 = 1 - H1; +#+end_src + +#+begin_src matlab + bodeFig({H1, H2}, struct('phase', true)) +#+end_src + +#+begin_src matlab + n_acc_filt = lsim(H1, n_acc, t); + n_geo_filt = lsim(H2, n_geo, t); +#+end_src + +#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) + data2orgtable([rms(n_acc), rms(n_geo), rms(n_acc_filt + n_geo_filt)]', {'Accelerometer', 'Geophone', 'Super Sensor'}, {'RMS'}, ' %.1e '); +#+end_src + +#+RESULTS: +| | RMS | +|---------------+---------| +| Accelerometer | 9.7e-05 | +| Geophone | 5.9e-05 | +| Super Sensor | 1.5e-05 | + +#+begin_src matlab + figure; + hold on; + plot(t, n_geo) + plot(t, n_acc) + plot(t, n_acc_filt + n_geo_filt) + hold off; +#+end_src + +** Signal and Noise +Velocity Signal: +#+begin_src matlab + v = lsim(1/(1 + s/2/pi/2), 1e-4*sqrt(Fs/2)*randn(length(t), 1), t); + v = 1e-4 * sin(2*pi*100*t); +#+end_src + +#+begin_src matlab + v_acc = lsim(s*G_acc*C_acc, v, t) + n_acc; + v_geo = lsim(G_geo*C_geo, v, t) + n_geo; +#+end_src + +#+begin_src matlab + v_ss = lsim(H1, v_acc, t) + lsim(H2, v_geo, t); +#+end_src + +#+begin_src matlab + figure; + hold on; + plot(t, v_geo) + plot(t, v_acc) + plot(t, v_ss) + plot(t, v, 'k--') + hold off; + xlim([1, 1+0.1]) +#+end_src + +** PSD and CPS +#+begin_src matlab + nx = length(n_acc); + na = 16; + win = hanning(floor(nx/na)); + + [p_acc, f] = pwelch(n_acc, win, 0, [], Fs); + [p_geo, ~] = pwelch(n_geo, win, 0, [], Fs); + [p_ss, ~] = pwelch(n_acc_filt + n_geo_filt, win, 0, [], Fs); +#+end_src + +#+begin_src matlab :exports none + figure; + hold on; + plot(f, p_acc, 'DisplayName', 'Accelerometer'); + plot(f, p_geo, 'DisplayName', 'Geophone'); + plot(f, p_ss, 'DisplayName', 'Super Sensor'); + hold off; + set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); + xlabel('Frequency [Hz]'); + ylabel('Power Spectral Density $\left[\frac{(m/s)^2}{Hz}\right]$'); + legend('location', 'southwest'); +#+end_src + +** Transfer function of the super sensor +#+begin_src matlab + bodeFig({s*C_acc*G_acc, C_geo*G_geo, s*C_acc*G_acc*H1+C_geo*G_geo*H2}, struct('phase', true)) +#+end_src + +* Bibliography :ignore: +bibliographystyle:unsrt +bibliography:ref.bib