From 955d10f14997a1d410ac2b5708ac5fd29c705264 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Fri, 3 Jul 2020 16:09:37 +0200 Subject: [PATCH] Removed subsections --- paper/paper.org | 98 +++++++++++++++++++----------------------------- paper/paper.pdf | Bin 1466036 -> 1463218 bytes paper/paper.tex | 89 +++++++++++++++++++++---------------------- 3 files changed, 83 insertions(+), 104 deletions(-) diff --git a/paper/paper.org b/paper/paper.org index 7204f69..5429d42 100644 --- a/paper/paper.org +++ b/paper/paper.org @@ -1,4 +1,4 @@ -#+TITLE: Active Damping of Rotating Positioning Platforms using Force Feedback +#+TITLE: Active Damping of Rotating Positioning Platforms using Integral Force Feedback :DRAWER: #+LATEX_CLASS: ISMA_USD2020 #+OPTIONS: toc:nil @@ -35,7 +35,7 @@ #+end_src * Build :noexport: -#+NAME: startblock +#+name: startblock #+BEGIN_SRC emacs-lisp :results none (add-to-list 'org-latex-classes '("ISMA_USD2020" @@ -49,11 +49,19 @@ #+END_SRC * Abstract :ignore: -#+BEGIN_EXPORT latex +#+begin_export latex \abstract{ - Abstract text to be done +#+end_export + +# Get straight to the facts +# Decentralized Integral Force Feedback for rotating => unstable +# Two modifications are proposed +# adding an high pass filter +# adding stiffness in parallel with the force actuators + +#+begin_export latex } -#+END_EXPORT +#+end_export * Introduction <> @@ -84,20 +92,15 @@ The Matlab code that was use to obtain the results are available in cite:dehaeze * Dynamics of Rotating Positioning Platforms <> -** Model of a Rotating Positioning Platform -# Introduce the fact that we need a simple system representing the rotating aspect +** Model of a Rotating Positioning Platform :ignore: In order to study how the rotation of a positioning platforms does affect the use of integral force feedback, a model of an XY positioning stage on top of a rotating stage is developed. -# Simplest system where gyroscopic forces can be studied The model is schematically represented in Figure ref:fig:system and forms the simplest system where gyroscopic forces can be studied. -# Present the system, parameters, assumptions (small displacements, perfect spindle) The rotating stage is supposed to be ideal, meaning it induces a perfect rotation $\theta(t) = \Omega t$ where $\Omega$ is the rotational speed in $\si{\radian\per\second}$. -# X-Y Stage The parallel XY positioning stage consists of two orthogonal actuators represented by three elements in parallel: a spring with a stiffness $k$ in $\si{\newton\per\meter}$, a dashpot with a damping coefficient $c$ in $\si{\newton\per\meter\second}$ and an ideal force source $F_u, F_v$. A payload with a mass $m$ in $\si{\kilo\gram}$ is mounted on the (rotating) XY stage. -# Explain the frames (inertial frame x,y, rotating frame u,v) Two reference frames are used: an inertial frame $(\vec{i}_x, \vec{i}_y, \vec{i}_z)$ and a uniform rotating frame $(\vec{i}_u, \vec{i}_v, \vec{i}_w)$ rigidly fixed on top of the rotating stage with $\vec{i}_w$ aligned with the rotation axis. The position of the payload is represented by $(d_u, d_v, 0)$ expressed in the rotating frame. @@ -106,16 +109,16 @@ The position of the payload is represented by $(d_u, d_v, 0)$ expressed in the r #+attr_latex: :scale 1 [[file:figs/system.pdf]] -** Equations of Motion +** Equations of Motion :ignore: To obtain of equation of motion for the system represented in Figure ref:fig:system, the Lagrangian equations are used: -#+NAME: eq:lagrangian_equations +#+name: eq:lagrangian_equations \begin{equation} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i \end{equation} with $L = T - V$ the Lagrangian, $D$ the dissipation function, and $Q_i$ the generalized force associated with the generalized variable $\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}$. The constant rotation in the $(\vec{i}_x, \vec{i}_y)$ plane is here disregarded as it is imposed by the ideal rotating stage. -#+NAME: eq:energy_functions_lagrange +#+name: eq:energy_functions_lagrange \begin{subequations} \begin{align} T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\ @@ -126,7 +129,7 @@ The constant rotation in the $(\vec{i}_x, \vec{i}_y)$ plane is here disregarded \end{subequations} Substituting equations eqref:eq:energy_functions_lagrange into eqref:eq:lagrangian_equations gives two coupled differential equations -#+NAME: eq:eom_coupled +#+name: eq:eom_coupled \begin{subequations} \begin{align} m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega^2 ) d_u &= F_u + 2 m \Omega \dot{d}_v \\ @@ -134,13 +137,12 @@ Substituting equations eqref:eq:energy_functions_lagrange into eqref:eq:lagrangi \end{align} \end{subequations} -# Explain Gyroscopic effects The uniform rotation of the system induces two Gyroscopic effects as shown in Eq. eqref:eq:eom_coupled: - Centrifugal forces: that can been seen as added negative stiffness $- m \Omega^2$ along $\vec{i}_u$ and $\vec{i}_v$ - Coriolis Forces: that couples the motion in the two orthogonal directions One can verify that without rotation ($\Omega = 0$) the system becomes equivalent as to two uncoupled one degree of freedom mass-spring-damper systems: -#+NAME: eq:oem_no_rotation +#+name: eq:oem_no_rotation \begin{subequations} \begin{align} m \ddot{d}_u + c \dot{d}_u + k d_u &= F_u \\ @@ -148,7 +150,7 @@ One can verify that without rotation ($\Omega = 0$) the system becomes equivalen \end{align} \end{subequations} -** Transfer Functions in the Laplace domain +** Transfer Functions in the Laplace domain :ignore: To study the dynamics of the system, the differential equations of motions eqref:eq:eom_coupled are transformed in the Laplace domain and the $2 \times 2$ transfer function matrix $\bm{G}_d$ from $\begin{bmatrix}F_u & F_v\end{bmatrix}$ to $\begin{bmatrix}d_u & d_v\end{bmatrix}$ is obtained \begin{align} \begin{bmatrix} d_u \\ d_v \end{bmatrix} &= \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gd_mimo_tf} \\ @@ -159,7 +161,6 @@ To study the dynamics of the system, the differential equations of motions eqref \end{bmatrix} \label{eq:Gd_m_k_c} \end{align} -# Change of variables To simplify the analysis, the undamped natural frequency $\omega_0$ and the damping ratio $\xi$ are used \begin{subequations} \begin{align} @@ -179,13 +180,10 @@ The transfer function matrix $\bm{G}_d$ eqref:eq:Gd_m_k_c becomes equal to \end{bmatrix} \end{equation} -# Parameters For all the numerical analysis in this study, $\omega_0 = \SI{1}{\radian\per\second}$, $k = \SI{1}{\newton\per\meter}$ and $\xi = 0.025 = \SI{2.5}{\percent}$. -# Say that these parameters are not realist but will be used to draw conclusions "relatively" Even tough no system with such parameters will be encountered in practice, conclusions will be drawn relative to these parameters such that they can be generalized to any other parameter. -** System Dynamics and Campbell Diagram -# Poles computation +** System Dynamics and Campbell Diagram :ignore: The poles of $\bm{G}_d$ are the complex solutions $p$ of \begin{equation} \left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0 @@ -200,7 +198,6 @@ Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles are \end{align} \end{subequations} -# Campbell Diagram The real part and complex part of these two pairs of complex conjugate poles are represented in Figure ref:fig:campbell_diagram as a function of the rotational speed $\Omega$. As the rotational speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ to lower frequencies. The system becomes unstable for $\Omega > \omega_0$ as the real part of $p_{-}$ is positive. @@ -214,10 +211,8 @@ In the rest of this study, rotational speeds smaller than the undamped natural f | file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf | | <> Real Part | <> Imaginary Part | -# Bode Plots for different ratio W/w0 Looking at the transfer function matrix $\bm{G}_d$ in Eq. eqref:eq:Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and the two off-diagonal (coupling) terms are opposite. The bode plot of these two distinct terms are shown in Figure ref:fig:plant_compare_rotating_speed for several rotational speeds $\Omega$. -# Rapid Analysis of the dynamics It is confirmed that the two pairs of complex conjugate poles are further separated as $\Omega$ increases. For $\Omega > \omega_0$, the low frequency complex conjugate poles $p_{-}$ becomes unstable. @@ -229,8 +224,7 @@ For $\Omega > \omega_0$, the low frequency complex conjugate poles $p_{-}$ becom * Decentralized Integral Force Feedback <> -** Force Sensors and Control Architecture -# Description of the control architecture +** Force Sensors and Control Architecture :ignore: In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure ref:fig:system_iff). As this study focuses on decentralized control, two identical controllers $K_F$ are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system. The control diagram is schematically shown in Figure ref:fig:control_diagram_iff. @@ -251,7 +245,7 @@ The control diagram is schematically shown in Figure ref:fig:control_diagram_iff [[file:figs/control_diagram_iff.pdf]] #+end_minipage -** Plant Dynamics +** Plant Dynamics :ignore: The forces measured by the two force sensors are equal to #+name: eq:measured_force \begin{equation} @@ -287,7 +281,6 @@ It can be easily shown that the frequency of the two complex conjugate zeros $z_ For non-null rotational speeds, two real zeros $z_r$ eqref:eq:iff_zero_real appear in the diagonal terms inducing a non-minimum phase behavior. This can be seen in the Bode plot of the diagonal terms (Figure ref:fig:plant_iff_compare_rotating_speed) where the magnitude experiences an increase of its slope without any change of phase. -# Show that the low frequency gain is no longer zero Similarly, the low frequency gain of $\bm{G}_f$ is no longer zero and increases with the rotational speed $\Omega$ #+name: low_freq_gain_iff_plan \begin{equation} @@ -297,7 +290,6 @@ Similarly, the low frequency gain of $\bm{G}_f$ is no longer zero and increases \end{bmatrix} \end{equation} -# Explain why do we have this low frequency gain This low frequency gain can be explained as follows: a constant force $F_u$ induces a small displacement of the mass $d_u = \frac{F_u}{k - m\Omega^2}$, which increases the centrifugal force $m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u$ which is then measured by the force sensors. #+name: fig:plant_iff_compare_rotating_speed @@ -305,16 +297,15 @@ This low frequency gain can be explained as follows: a constant force $F_u$ indu #+attr_latex: :scale 1 [[file:figs/plant_iff_compare_rotating_speed.pdf]] -** Decentralized Integral Force Feedback with Pure Integrators +** Decentralized Integral Force Feedback with Pure Integrators :ignore: <> The two IFF controllers $K_F$ consist of a pure integrator -#+NAME: eq:Kf_pure_int +#+name: eq:Kf_pure_int \begin{equation} \bm{K}_F(s) = \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix}, \quad K_F(s) = g \cdot \frac{1}{s} \end{equation} where $g$ is a scalar representing the gain of the controller. -# General explanation for the Root Locus Plot In order to see how the IFF affects the poles of the closed loop system, a Root Locus (Figure ref:fig:root_locus_pure_iff) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the gain $g$ varies from $0$ to $\infty$ for the two controllers simultaneously. As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$. The direction of increasing gain is indicated by arrows $\tikz[baseline=-0.6ex] \draw[-{Stealth[round]},line width=2pt] (0,0) -- (0.3,0);$. @@ -324,25 +315,22 @@ The direction of increasing gain is indicated by arrows $\tikz[baseline=-0.6ex] #+attr_latex: :scale 1 [[file:figs/root_locus_pure_iff.pdf]] -# IFF is usually known for its guaranteed stability (add reference) which is not the case anymore due to gyroscopic effects Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost as soon as the rotational speed in non-null due to gyroscopic effects. This can be seen in the Root Locus (Figure ref:fig:root_locus_pure_iff) where the pole corresponding to the controller is bounded to the right half plane implying closed-loop system instability. -# Physical explanation Physically, this can be explained by realizing that below some frequency, the loop gain being very large, the decentralized IFF effectively decouples the payload from the XY stage. Moreover, the payload experiences centrifugal forces, which can be modeled by negative stiffnesses pulling it away from the rotation axis rendering the system unstable, hence the poles in the right half plane. -# Introduce next two sections In order to apply Decentralized IFF on rotating positioning stages, two solutions are proposed to deal with this instability problem. The first one consists of slightly modifying the control law (Section ref:sec:iff_hpf) while the second one consists of adding springs in parallel with the force sensors (Section ref:sec:iff_kp). * Integral Force Feedback with High Pass Filter <> -** Modification of the Control Low +** Modification of the Control Low :ignore: As was just explained, the instability when using IFF with pure integrators comes from the low frequency gain. In order to limit the low frequency controller gain, an high pass filter (HPF) can be added to the controller -#+NAME: eq:IFF_LHF +#+name: eq:IFF_LHF \begin{equation} \bm{K}_F(s) = \begin{bmatrix} K_F(s) & 0 \\ 0 & K_F(s) \end{bmatrix}, \quad K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i} \end{equation} @@ -352,15 +340,13 @@ This is equivalent as to slightly shifting to controller pole to the left along This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator cite:preumont91_activ. This is however not the case in this study as it will become clear in the next section. -** Feedback Analysis -# Explain what do we mean for Loop Gain (loop gain for the decentralized loop) +** Feedback Analysis :ignore: The loop gains for the decentralized controllers $K_F(s)$ with and without the added HPF are shown in Figure ref:fig:loop_gain_modified_iff. -The effect of the added HPF clearly limits the low frequency gain. +The effect of the added HPF limits the low frequency gain as expected. -# Explain how the root locus changes (the pole corresponding to the controller is moved to the left) The Root Loci for the decentralized IFF with and without the HPF are displayed in Figure ref:fig:root_locus_modified_iff. With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain $g_\text{max}$ -#+NAME: eq:gmax_iff_hpf +#+name: eq:gmax_iff_hpf \begin{equation} g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right) \end{equation} @@ -382,15 +368,10 @@ It is interesting to note that this gain $g_{\text{max}}$ also corresponds as to [[file:figs/root_locus_modified_iff.pdf]] #+end_minipage -# Small rotational speeds allows to increase the control gain -# Large wi allows more gain but less damping - -** Optimal Control Parameters -# Controller: two parameters: gain and wi +** Optimal Control Parameters :ignore: Two parameters can be tuned for the controller eqref:eq:IFF_LHF: the gain $g$ and the pole's location $\omega_i$. The optimal values of $\omega_i$ and $g$ are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized. -# Root Loci In order to visualize how $\omega_i$ does affect the attainable damping, the Root Loci for several $\omega_i$ are displayed in Figure ref:fig:root_locus_wi_modified_iff. It is shown that even tough small $\omega_i$ seems to allow more damping to be added to the system resonances, the control gain $g$ may be limited to small values due to Eq. eqref:eq:gmax_iff_hpf. @@ -399,7 +380,6 @@ It is shown that even tough small $\omega_i$ seems to allow more damping to be a #+attr_latex: :scale 1 [[file:figs/root_locus_wi_modified_iff.pdf]] -# Study this trade-off, explain how the figure is obtained In order to study this trade off, the attainable damping ratio $\xi_{\text{cl}}$ is computed as a function of the ratio $\omega_i/\omega_0$. The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also display and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:mod_iff_damping_wi)r. @@ -415,7 +395,7 @@ Three regions can be observed: * Integral Force Feedback with Parallel Springs <> -** Stiffness in Parallel with the Force Sensor +** Stiffness in Parallel with the Force Sensor :ignore: As was explained in section ref:sec:iff_pure_int, the instability when using decentralized IFF for rotating positioning platforms is due to Gyroscopic effects and more precisely to the negative stiffnesses induced by centrifugal forces. In this section additional springs in parallel with the force sensors are added to counteract this negative stiffness. Such springs are schematically shown in Figure ref:fig:system_parallel_springs where $k_a$ is the stiffness of the actuator and $k_p$ the stiffness in parallel with the actuator and force sensor. @@ -440,7 +420,7 @@ An example of such system is shown in Figure ref:fig:cedrat_xy25xs. [[file:figs/cedrat_xy25xs.png]] #+end_minipage -** Effect of the Parallel Stiffness on the Plant Dynamics +** Effect of the Parallel Stiffness on the Plant Dynamics :ignore: The forces measured by the sensors are equal to #+name: eq:measured_force_kp \begin{equation} @@ -476,7 +456,7 @@ with $\bm{G}_k$ a $2 \times 2$ transfer function matrix Comparing $\bm{G}_k$ eqref:eq:Gk with $\bm{G}_f$ eqref:eq:Gf shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed. The two real zeros $z_r$ eqref:eq:iff_zero_real that were inducing non-minimum phase behavior are transformed into complex conjugate zeros is Eq. ref:eq:kp_cond_cc_zeros is verified. -#+NAME: eq:kp_cond_cc_zeros +#+name: eq:kp_cond_cc_zeros \begin{equation} \begin{aligned} \alpha &> \frac{\Omega^2}{{\omega_0}^2} \\ @@ -487,7 +467,6 @@ The two real zeros $z_r$ eqref:eq:iff_zero_real that were inducing non-minimum p Thus, if the added parallel stiffness $k_p$ is higher than the negative stiffness induced by centrifugal forces $m \Omega^2$, the direct dynamics from actuator to force sensor will show minimum phase behavior. This is confirmed by the Bode plot in Figure ref:fig:plant_iff_kp. -# Root Locus plot Figure ref:fig:root_locus_iff_kp shows Root Loci plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator eqref:eq:Kf_pure_int. It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system stay in the (stable) right half-plane, and hence the unconditional stability of IFF is recovered. @@ -507,13 +486,13 @@ It is shown that if the added stiffness is higher than the maximum negative stif [[file:figs/root_locus_iff_kp.pdf]] #+end_minipage -** Optimal Parallel Stiffness +** Optimal Parallel Stiffness :ignore: Even though the parallel stiffness $k_p$ has no impact on the open-loop poles (as the overall stiffness $k$ stays constant), it has a large impact on the transmission zeros. Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is foreseen to have a large impact on the attainable damping. To study this effect, Root Locus plots for several parallel stiffnesses $k_p > m \Omega^2$ are shown in Figure ref:fig:root_locus_iff_kps. The frequencies of the transmission zeros of the system are increasing with the parallel stiffness $k_p$ and the associated attainable damping is reduced. -Therefore the parallel stiffness $k_p$ should not be taken too high while being larger than $m \Omega^2$ for stability reasons. +Therefore, even tough the parallel stiffness $k_p$ should be larger than $m \Omega^2$ for stability reasons, it should not be taken too high as this would limit the attainable bandwidth. For any $k_p > m \Omega^2$, the control gain $g$ can be tuned such that the maximum simultaneous damping $\xi_\text{opt}$ is added to the resonances of the system. An example is shown in Figure ref:fig:root_locus_opt_gain_iff_kp for $k_p = 5 m \Omega^2$ where the damping $\xi_{\text{opt}} \approx 0.83$ is obtained for a control gain $g_\text{opt} \approx 2 \omega_0$. @@ -527,7 +506,6 @@ An example is shown in Figure ref:fig:root_locus_opt_gain_iff_kp for $k_p = 5 m * Comparison of the Proposed Modification to Decentralized Integral Force Feedback for Rotating Positioning Stages <> ** Introduction :ignore: -# Comparison in terms of modification to the system Two modifications to the decentralized IFF for rotating positioning stages have been proposed. The first modification concerns the controller and consists of adding an high pass filter to $K_F$ eqref:eq:IFF_LHF. @@ -539,7 +517,7 @@ It was shown that if springs with a stiffness $k_p > m \Omega^2$ are added in pa These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility. For the following comparisons, the cut-off frequency for the high pass filters is set to $\omega_i = 0.1 \omega_0$ and the parallel springs have a stiffness $k_p = 5 m \Omega^2$. -** Comparison of the Attainable Damping +** Comparison of the Attainable Damping :ignore: Figure ref:fig:comp_root_locus shows to Root Locus plots for the two proposed IFF techniques. While the two pairs of complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not. This means that their closed-loop behavior will differ when large control gains are used. @@ -551,7 +529,7 @@ It is interesting to note that the maximum added damping is very similar for bot #+attr_latex: :scale 1 [[file:figs/comp_root_locus.pdf]] -** Comparison Transmissibility and Compliance +** Comparison Transmissibility and Compliance :ignore: The two proposed techniques are now compared in terms of closed-loop compliance and transmissibility. The compliance is defined as the transfer function from external forces applied to the payload to the displacement of the payload in an inertial frame. diff --git a/paper/paper.pdf b/paper/paper.pdf index 6794586658cd8a6dea527248fc2feb3d56e1d2b3..bd523a0f7ff39e0932b882a5aecc003e049558d4 100644 GIT binary patch delta 61194 zcmZs?V|1lKx2_#_$F^;I#dgxMZQGq>MIC#^wr$(#*d425+o$(F=iTRw@qPd5t~sje z`7xg{YTomzrf%(qQtdiPSO{(|&>Si{Bo_|{$QX(S*sQ%7x88;d-0mHS!r+|BlOv%kkvW^Qd3wPVZejXDVe*~O$l4-^^i zE|}T;h8qSS50dk+3b2JT{O$S*P}F+2GP3N6E;!nXTMD_@**&U_fSHC9_nz#z6Gcti zH~m`R`CVMcBp)|jsiTE6N44(eNylkw5AB@;rzy*voo=VY_TG8e`gTAzAS&GKH<7n0 zcUwb%sy1CIw=5&Jcc2)tGr(zzii1o$N%;WJV-(extg+M4Qk#Rajx(ZU#RgPaJ8=Oq zE}bH2p*jE?wE#=4z4tgr%`Z-9V9J_~j3o%HZvuK)zU!qHpLXn!(k2AOA{$HY0nC#q zMEBr#%NIB=tPya8?^f@M^&d)sS>KfbS2tRCn?b};Gi-O?E@Dr_xH_2-z=_KC2$ z<9$jMTQa0?O)|c$dOZ zT`Ht%-#Ab>UeP~gsq82wNX3tZP(B3|X!o9o2=|+1{!=p^H7#X1AbrqY(g=ttuzIy! zN@uA~eH$1fR3f9}C0_(}Zxwox<#;sv)gUWuVm&BgKk8P`_R*`mjf9H^c{xn_CQ!Eg< zws?qEkWFp(sxs595~>Ji$5odCKg#l>R00vMLXIzkdsxzwWTi*hqlhI3>I};vkMY50 zA^AIBM|J9}9|kKq)9>ZjcdSA}(M_13(!P~HWALC3-ranGrtCikJSb|-5F8pLf0W29 z|E|Y)I5kXqO7eJZ9yr+LC%N7OH~p1QJxrfNX4Yfwc2>MK|H8i+EXr~J0asgVongmQ z5NP*1JF>-|k78O$-rlFeU%H%}wjamm&M3s+$ln$oIzUnMSiSO>5<)r3ARqni3}~}R z@!n}L@bfFXt(H)c78nWK@s@Xbc2C*)y+hM4KmgxM21JXsN|Efmwh2iE8Z|rg@~`GA z#02?y+)1Kd&*OL?EcUq!QbhlKtjBi_g&a#)=xp=V#`o+;^lQqVZT%as=)YPx3J%3i zkInyl8gwK>!xBI{%hSGLfVK2NUao%<2n2b^4mvF%W4^8{4XtfWYRUfX2{f##l!6Fw~ZKs ztL~pFN5#py`;4q^=NgWl#Wwn8_aafs5N&%{F?I83bV-G3&rMC&82!KQSsL=uWZL5F zk^lu_)%~d}cu;|JU`Q99Mwm%Ry|V&0?bnqlbj;u-fEe(U+lta6AYW@<&|)4z^@bpd zTl63y?sa+af^plmczpPS^`+mCp1lZYw;^O`P(lWy08^}b^eqIJ4AMKt5|Yh`GpFH1 z_05Y|8LMEDB2ecgZhsYfHi z?**;Z(5IP>^;K@6HEZ})Orx77dodyz(|fa%)H7f$ngFSo6_59^djvKI_W(+p4sJ3wAi+L zk*s}~=M-0RQ$eHdLlIU#uVrPu@Mo<~DNkSkN;@aCKQhMX9UdydTYjsS#v`QX3Y#Rw zQ6$v@5!dFSgN^7~3#us_oVp(#HpmQ0w>ZBO>AJp8^d4g+#s*-v8mJlO8qA94COfIM z)*wum(f+w~6v7V6OUP&B@eq1ymiAlgMX+KZB}?AU9TlT6)*YB1l^6r?X7C zeS}!rP`x&a2SMm?wYTmdP1}nrSbpr%RBNu7@B55o<**ErI9mJ1)SAqWwSxM_pRrUZ zaRh(!+Y%@shOyTxJ&6m((Ms|l$yjlK*Nxh3*=FKtbQM`$-LIRUxb6^dDJoDM3fT^+ zJ@G$&$kQ3ovrv)#%-z6>wjRiz{W}xbJ_bG4xW+B~e}UX1=NF8onvA6qADm17qcxI2Gx z!7M^;93si;G;pZYxdMJ+f$*jAGuj1x0eh=-BO3qbC(Gf;cJYQ+7AtzdLbQ_4@>zB{ zLg0s*Ie6Fs!mGe*FhK(~*D@~A2knM4E2)@C9A*|8_$mv^o3)aKyhZo-FCv~FX#IP$ z&eTRZ!pu}JGO*~%$e&8NJBD>mz}JnW3?xFPC5!+P8OJxx)C{iW?Hc}WBPFUg%2v{& z08LhgpUht0xWWbUfd*|T1bX<7D^F5&Ks2%}(WKj+?T(%#%0t}EVh7#svoG&}34g=% z-cOcwv-x`{kr-*7cmXpTmj1*&ta!x3h}{Y4Rw2>1^*c*!dSELtBR=oVkOUtDB3tvHgFI98GNCKqBlI zkZdd*sUp_sw7?4;ImdNLl%6-uYb(+vi|tPNc)3g-E9E>GyZb~aXhsz-R5>^CiSoDi zvur;ZIUnm6N{TQ8`2>Q?>1p3>evg>OMg&Vo=e8qaZWIhPAz& zmpJ&uZU>~T7=OVof1u0tyL4l;QIaXnfmx0+1Iqhe29RvR+e5|T3OVky@u4C^zPvB& zVAyN|Mvy-zTQjPl((=-o-E-w~W3qX(qpEU#lfbZ5zd6m9|HYc!or^MyOhlc_oZyh( zQ#Cu}%5tjVBGUZmQbXapE2o^NCUYyOKW!#1JUmsHMgoq=nET*6Lmj$lQL73?NI)i;_)4R1MsLRInfX^{XznYKatv^YDMlj zC|bG#>APsIt~WHTp98&vVTmb=i;e=RbOeSI4dlruVv&LB`yo3}VF1|2QwqRM=dR`) z>CXg(t0vhLwNLPjCp0Dbe4$!WcD>OC)29FK(He(-PKJl9i#o?Swy<7YF=EGzJ6M$~kP;S5Gqw!-ozdDf z07zB(Em+4}HU$;|jv{$9&rQXad3b*gV_wZ7VexzPP1>MSk2!-3o}6~^wclcg>>7Gm z;4U~yL{!WiKfsD8hB^UEp!6G{<7lYo5f0T-$Ko<(wXq0)lMFl@>d0_OTk}Mn<(VPT z=UYgT+akU=dGW)?M!n)1^cd7_ob%{xHxOFW3zJk5YV;#m7@R8Mo(LwZ_#6&3pdCim3$+z*o zsk3Uq7+2L{MKP5WQLd|%W;7&R2|zCc0?OZ|C|v1O3GLEkuJ*+SiX|b^$$AinT;oH* z^Yxswoz)^+j)rEJ{K-0p>%#zxdoj~M$JkkJ#0wNejNL{hL^F~|;MjQ6d}dyXDNPeVK4jyR`JmwW=q?z9d4(Nt;^V^P5z{ua z`<_d98?u$?I+Qhr=NaSXsxSsiW>wmg$Ja2w{?#f%4^Vow5SueCI-@Qa2rR+3M*rM< zHDSnb76){i{&LRL?*A4&WC8T^#aKU-NWV7uSEeed)@7IU&Q0RFliHsn=V_k6<%;}C z4E96$?NE6|ii{5w`x!hwZI!fc}DSvGYjkXO|ec0@L(p9Da)V5asBUpwlT zySO0+01c$yM6iW%n(on)#mi5zhH7JZgJcX6B;p07#}BX*Z}l1Fi9bpbFpyAXIpKc@ zl~00wT1f9*N}g1(4T_Cu6FTmCG(!}4RZQWWztpft*L`#G{r#TVt)ArDAV+@*oI|~* zgNe~W%F|3G!Sr!_&^ZAesM*Ys+_~3%1tNhZd0*^YUaK5{K9PG%nY~=&5PM_C>#N=E zs?)y(4j_OG&OQoA2KGo8sYvyU{UB|f(D3Cxx7#*^6WwC|1R4*Y+ zoUpR`7HWi^mayia<NJ6`Zhh4s zE(xm)_;77LRYVL29e$aTIb1RCRf8g099n6T&~E(ly@EhR2KQOYyesdZg%ZJ=w?9_m z48>e3!wm$q#OlE59L4lXqUcZ^g()h!lE3IAH&koU`ONXlCVOK$rcggy$nC%D>2jQ) zPh|SqYHWJDE;B$5P5MCV!GBcJ3cR_!3=>V=JjQk)t!yIm^Gj7mtx1BPJ_pf)=lnwq+!NSSO!CHBXdqn zxh;wos@ff%!xOgi)sg156ULdiJAqSO^)*7+so12$Ri~8iPQM&>g@XMP4gbHl1@2VR z1Vs6i2$*l6dwg05RyGhZK@=A&CkYFQ3JJ3$I}ZsfE6;xfCkZPX>wg5-Kf&=I!SYXV zH|`MB!{M@WvizIAYt0=1kZjwU}$y?D9} zh2HlsfW-bch^lK>gwC;$ZeMalB`|B*CgGe+Q_p^O*Km_()+8s+6=m~Itonw|WJ%|wuRJ_$$ zMf~sQhQ*xHUbm3f`%O^FC2&%E?pQy0lfc*{dAhtPl+`4YMhAE?Sf;kblAQZWs3uB~ zf_%I@AtZE#Qu+p=+QbV+01 zYddL!+Ib0TPa$du2nQ1dTfwDfD4(i{1>Vu1OyU;q^HI>SFfcRHDGxu|3Be#snW)S^5Rq z9sa^(OPd^;MbkEp0c1PHI4efzqeL~Me@iJz>+0cv$;6dkK^ZwX_B zhY5}2FSEo^u?qI4r>=}#PWI)i4ov74#ytFLqO;J`&HKtDfYfk$34K~iJ+s&RcB!HL zD4T81p9B7g$C>c9IM$Zib@XHF4ya6Cg>+ z1xvI(B_=2Z{xyj!vbhS45_nodlA$@3wj^$}iQrvvPZ)KPS`htrb9jqRf|Ud@YIyc^ z{*Md1$4DBk795$#mV=J&UejcZeOzw*1nsOGA~+*NSJB4Yu!4w&xT=S4 zJb4|H&9-0wM5;uTDG(LE^;gzO-KGA@sS8;jEJFwd$8fA8$hyPzN4%}*F!dU`onPqa z?xv6XYW4mW^6I_W&H|Bk?Y#rTZrc;3e&?AJBA@oaWy5Vv$Ex?uFmJnS1$k{%d@Y?E zhkW8R_=}?scOE5nt64#yIUx^YLYRK~p?e>e07xrhFZCywGf=ve^uqH8^XOukH`7IE z5h3(k1UCf~fsuUQf*fPxY%z97t=JTIiEXCDws%ID@Um9L$vaM!`w_ z^6AO|Evtav(T|aCj|GtsqN2=6ouisx)6+vL0>jUb$qAWvF|Ta(kJ9 zgBFOP_CUuG15H7gdcsDK(RM(G=8G&EMfk1{1Z)rn#My3M)nZS^(SWFb+1xK#Ls>8A zB|Iflej5B?SHV8lT@2Rv!XJTt5bmX4S1Vb?Gj}CU4~$jL(+1Hlk0yOe@MEnpW+0qX ztYsLnDZ~Bq2e)Z|8bNG4G!D*R?ballw)9`RbHJAXC=r9odvUbIz6`A(CWL09v(t-^ z8iP2u2M;<;W)brGGS0yJmb^=k6lTshG)SQe>i!;Zch5Yw>dF~DUY^!GQzW8*V)@># z!a@f8M++PprIihN-nu^%-8I)JBH9v7W}X;CH6ek2eQ?Ukn79A?gQ*{jHw;bk*CS|w zi9qY}?JeB&_fG47L#TJfABpdBG1Ml4-j|N0lOGpGmqI~;rmnzpj8YJ1J(xcIL>aN4@<=T0ggi+XV%ghZnv3!X0+xA6pCB->LntJR z2ZsKBfo?Wdtq?8sf~REG!W8a;2l6h%Bg@2-iR&D&y>7NHNUwW5^$RAZ;%^t1>Ydm_ z9g5oT)OCBWYy0ZwI-#rOC5z_!{VwYTM8iFE9Agi>@*hW|amYGTy$oCIJF_w!`Jo%T zSn6jh3C(3pA#<*w-AS(=s+2%!&>S9q#d^VUwtjLVPM}nuuF|l%?JUO9Sy6A>VQ_Qz z{fo&bMoI%cgM=_eVE0C0iirc$@M}rKrApm!`8b(;}J&#LrOVaaa5Gix=3qB~?A}$zA-x z%4e(9v95ge(&^{gDK& z0D|a-alL4!m4F`j^f{@u$S)th*Fx|titED%DchYx)uEh|kK-ymYa|wvQmAmhm7udg zZlyG)`XpG@7WXO^pUpD+tYL;}lM%8$L*R^iuPu8)lD_^$8IlU>x6cfdBRoV4K^e$k zO)?hWyd-i6hyms!;O`qHe2cB45`pC~D*p7wVk&DNQ}q!F57aZ?ZUDZ zt{_?J({slwm+iYO%EqQQK&kZ4I&PDAvet4<3yK=Boh3I}mEr6pE%pK+|3MLfvh+SR zfx`|zHoJNQ!qMW~m*!L+f3Zb;(i{a<)y96%W!!r&qklFoRcid2q!N@>` zm&>()hF#sHr;$cZ-8`dqkc~5bEV;*F?D{@m?oLcb=V15pj*s500(Efws|#Y`x7+(| z?a}^?5;yhU>8493V^-2xR>~A0G*Z+&{~JYZ4quSWZN?$$rNwiURDjx(mpO0P^KKxg z6n5OC!V+)*(c0WGc0E(y9m+X&&0Lmm#MMZHSlO3|E#9^0Jj4V5m3A z=yY()pWEf{tyQ`@`#`2J1DOdw8 zMqr;UYlDdQQ{dPgoh6>7W~p@XhN!VjsA0LYHX3+J-%=~!|2`A;i_P4h73jF#^ll=C zpgQOvVM^mrVyp#uzQA5(DGWF$%F^Fr89jbLPYaTTfURw~VH?xWp z-DdLOV`L+#i*$J{DZ&?XxPxM&WC?5_2u|6D^Slt>P)IRGyX5K<6!3hr7(vl&V%r=X zPys>;Un0Y^rxRi=+Zj}U+~`i#kGQ~@?zTYUObik}mt^mglcgoXiLoqx`$41wlf$dZ zoc9n!9YP#Tokkc$9k*K_IBK_DBwGj_Ytf@PYJtz`uGdL*ozOnL5o$$aI3as5T;1K*!A2U zzWwQ{n?0=z#SPgXu>7Lmm2YA7cO5c?MaT=GpV*z{H{36lM%wX#rbiTBU+1lr(nDb9 z1+OTN8fA+stab|H=J`O)_RhyyygBBDm9)i(p5%ap2d>NzZwi6?yfIGXE3B!4a{NPN z(8e`sjb0SvYmlitmW~~nLE3kZvxyu;kI$p0yc1&E4ZS}tKP8P)SWF)U>1w%0>5aPj zVI&JQD?=IXn!E?|vhHTaB<&pM31aCb;OSRwJ&r(L1{2 zq3z;5fL4#q9mcs?2i%cTbp|{}mxzAgX4y~8#l_KzsZn-W%&W6LT}W-m^$JfJ|E@)n zj3%wkZwY%iS^WhIRQp%Xg-YUTA;S0uxdSK}`UDX_!-G7YP_RYoe^b3)#Tf(bpXm)X zgcXoyQ{SNM2t)sz1v|C13&QkH)FR(*f7i2myE7xXmb(|CG*nqR(%)0oofCFZNi)=7wI7Qo+H=C*EL5AGJ|hC!$zOoHi&?VQ=Jf5I5iK> z-WvhGz_3PZZ(A`RAg0lqUp{C}w8MH)JommDmAwBE3nWClv?kk1-=$1hqT;qJW(`=Pg#NVznTZIH zK`xo=aX7nhxVRC>KaPNOcJ6y&J~5fuf~yapQoKlVW zd7x!bW|;46P=ALT_hLeYT|W<{UM3#{j!lcqV|UC0*_sa)VW>;ZbD%>csjpiQ0*$wD z#k=}TE{oZegP^QPY3uCNmjdWhwB?nUl?Rpf|Jptz|LGF3a{vFhG+Y2q5Gn*Ma9DlZ zVVwn~`;FeK5=srUtB7?>85MlLh}F|9K+|%L7tf$+F#GN&Re~{DjzKLEFc2W4T*!TA z;Vs@`H0B`1Q|Iz3HG(UJY{j@RALtUP5H(ke>Q$T#&~j@D)4cGU>L1o8U3CY%iuRVy z%0y+m^)XWyM%9CU2Xhb9jb}LnZ3DKf^8@52sn{PGUt{r9U-z90Pz!6dGe#q3ar|Q2 zW9Mz~ztVht+`QPm?`cuNf06KhD{5gR-0!wJ=6CphJSM`+=rIrel^MJEtu0|l3e3g- zz!iAls#z3uNLNjiL;5iPu#-dXb>H=v3&Y&Ut3#Qm*8kJL&p!~yv-8kVh=`a+= ztrRx6Ah#WfxYnz@ux$xBsm|DDGVD8G!K}Tqt~3@vN;HN^!69<96W>d~(-L)(*PFN; z_$(Wz8?--$httj+2C@o)K1+mKYLQWvXS3E^rQ@}xS#%Bzj(BjhGPS`HmO``kHg)TG z*G0iw?0f_BA<8ha0T>;gUNx!eT$`a3@+MKr8km{!Fynk$SmSXHce5pM>EMpVm5dxt zrL<&9J&zU?|$j%d^(uy@3+0*e$iwK9t! zD%4S0sdIerIu4gwvZoUCI$$QgZ~;UyrapKPoDP3GMA<+CmRIbYIlxv?@aRyaz?zS_ z5`|I5=6iA>=rpv-hXMHk5X?UmA>;pM`u`+42TKA9ZE65FDmh3n9R;K-%K*vB%>jy(WrASk zPIY{Qv}`1mn^u5e@aB#GxVt(UaA zWCNAT+_m0eT|G=x->%D&;s(PR&()-hr_jK*U;7AfVo-m{jB8t9%7gIyhuU1` z;bQ7EL)*SDA$m`dQzze`YH{ zuY}-Zs*mCu_2z>oWO(F4HzV?drgYl7vaCC-+#TAjOxr(Ir3>l~@2Yn>v_Sd^US$AN zQTLr&$}$VTZ7Kd;v1{;$xZ>`M^6ZIoO>y>WH?Us^Cd?&;7Mlr2wAHNlaY(Ey*eYU8 z;xe4q18z)SwlCg${Ih=fA%*USU9PO?DfCqB{eE7rM;oQvXt@KwxH5FC_3t*}DZ;F5 zqENY&9bmO0t$f*Edb%QZe{k@7h)cM`u>-mh4bTqQxe;wv_ba}9cTBarC1vQvjp7>7 zvW&(7cC}mBpv7Q+`NE8>zhkC^)K4pZ$6>VWQh`>cORQ^LSeyXi1<0UssRRJZ!DiGZ z)O8>SIwFF;VfcT|JJb;St~k^PwZktCiCEq&3`OEG@3by-4t%Jq{}v&F#pQ9HzAu6+ zp}=Gz!9faFn>+e;7m?*tWvMHT-w%vv`qNwlJl`Z%)OkAfUTN3N`mIy3)GIhe7HG^9 zqsa;h%x5&l*b|<~8fpFzZfiY+Bs^Ib!DDEqXRH9~$LuFFK z%5t#y;A=*)<8B)72TpXTmswD$zOj?`G=o9a#ZY~X7TMq^e@=9Jk7Ag9k8GEz8bX-> zs)d^T^RtmKT_G;@hWqNiMH*`zyR{j~s`A<)t$Q5~I@nO=Vfbogacols^6XYXzB2t{ z>sl$rh-~$)r$&^cg#d9(ZcUTUV9S`;m^OMbLE}3d!M3@!x+cN(Ej;IO{c9TH+NvLP zqfif6g?L3^u#_NtRh3RI_1ZwqE{%==y`LxT+UO+zQ4U|^d%x~#Ctr>06*55Vb!K6F zBGtFWk4Z^sK(xOGeu?2=*G739Z#2Y_S)L=h0m2 z=DytcG#IUyRF;RiQRPxfB;pF>v3M~H{`iVflcCeHiET&E zbENqK1AOBUo3pr(00ybiy*{v79@qiH8#IkQuEB(hiCn zE%HkYz)oWXHIk8z)bG1{jdn2ss|`xc=mt*T%Vr3=q@eVn@mC~92pR6*4OCb@f@)Q= znF~9}Gb6?jV?O=nUyI=X;j+!aDiLy(rwBj8Bz-r6j0@QHe#s0# z*wgx4Ha;wNYQXa31Waokv?+@-)3Cnu% zIz<izdr$yE(k3Fo1n?`ZVX>D}s$HD8u}cO2=(Xq(O|6gWgN*Df5p}`c$qFDCBw@ zQDL9aq1Fb%PBkkX*Hh?MXR()K5EE(t7a`3;+n$9?>$=o|MRM0F1|)re{mne9ST$+q<^?z9b_C-6ZL^arBasyUcnDysh-HQYjxM~Al~2F4tu zs;i?;e&4w~EGJV>meu%M`*It4#fC#Zc}!_yeo|b=*ZF)H1A?0W{8$r>jMTzL4excn zH2U$7l}({yuDv?GtQcZ4jW%_NJN@*a%g43$2QW?gFA>hz2yE&n`0^JVWzE&+9M_rv zTfhZPq>5z9@HJ6$)J7%MZKZ;`KD2qMGWeq2ChNjjC@UDt#)?VMmBY{$(7`!9)A-=w zQx4-Bp@yQdQr^=S7dRQ$Is8GZz+(H_%NL#Szi57H7^M5%jwE*c-Vek_iG*15f}g?ElljX8%_){qGL8uDv5ZH`-^7VZWn- z(~5piFNR0}Rrvzg#gcS%=RF$vsxw(flO0mn&g@6m3}Uh+GY)O5Z*!m1n-fIyI7 z8X*j01(vqJNfw^+rnK5<8JAfNLq~@{X_kpMkgl)^ix*~JA59Xjk{qtNPI)b`egHSh zlUWZzLyNL2SsKWwqNWqJNQFXhin!A;MZhBEj&S$rV8NJa7V3jY zBN{CpwV7%NKS^5IY=R02n=&$nI7W8p21(&DxRxB^b7P;=csV)U2aD<%O*pgb6%2kW+Sn8q7rfZ}g-|v}KDt zmV`0y6yx&kgHH0JA#fiTMS>dYRPpIqirgj%A9yV zkcNZ5L%cAJOZ+6ZY@RLfpprOWL2r(!_!ox;J~X z2Ux(alnds)U+0Ay?yz@fZF%viubTHmJYxILhPnBalk80>ph}oT}OFFb^V`J_TvGW zhQ3CB75Q18WR%d$u>d93RYS4!PjfjeW2kFv5? zhLx7H<`%pA$xj%AJTgd!KW#$Cg%%oM#GLXPCE>1R2u{NQt`Is}dKX3Ys-8#7A665G zEu@m&Kt2v};+Br;Xzz)Q~r zWXMg9YwREM8^9kxvP+bZ*1<_jNj6x;fVWR%nJd@`y!=_u)V%AZj9vIzRspPS_Ei-L zz1ohh0Ihl5mgGNg|E784W(S`7q?}uds=t`Ss<$hNZy~|dOTSkyiTQ8APLYnekuC<` z>{_d0585oVpXiF1cF`s(rSTc4u!vxW_TKWU;_N#{7nd3_13y~9QUem8ZQ(!V1pxwr zTfHF|Eb<&mtcI%x+@#GzG=o${-}DOQG!tzKcarX6fIuHup+^ z;fWOafeGP}9KcxCUQHB2=gE(nUr{?hl>Ny;>r z=_4D5x3mt=!Oo&()0kZo2uV883Z>F9F(b!DXy0yUBnrJM>6W^Uwf*$iZKXMzM2Wh!2CG|TTcD))LGoZQ)+fsqVrYc_1yhcLzn=B6> zXcIW}Ojx|5b@n1g#Pg;%nV42Q_&8##!l!#(k(qRcOo)Q+{zJHH4%ln|JhaPj6kXK7 zlhiJ~qy&V44P>m0kI-gBIO0U}7RL!#9iSNN2WL**79SUnNDRRp7G*?yX)-Nfqg;kg zJz)__Dk&BxqtzLwvgL~qu1LqW6@X9^52T-AFV{K*6j}uX=G2UA*`yd7i^@&8(8>|> zGo?%;*65bz`lV6f?sO>YOpqtnO9*;F1dYv$^uVZ>edy_Mt`Yia?J?JM+F+OJk$MW} z%e6){su^wwJ8^A}cEx6X@@qxo0;->mcWNO?n5Z^l4FStOy+`vY{@()Eo_F#j8TwcE zlNsQLPzztd$Y_Cpa^%Y9>%&A3x|G!jMmkip_Tan{f_eW*R!75>tK-VagIHhhRo)s8va)vz6xrkO&9D16+tO! zV$+v~cT8S=jm1_MwdJls9U^}`S%x@o;^wR*Ri+)v!td(-8@*i!{>_ED$_(c|VE3OsntBDXqAZ`#QMDvR{k3=W(uMY8{5%aSs~S-U$#Yu;BwQ<`a@bg6RXg?ws`!dANBeL^s|rCwRc=YQtMC z%AgJ;m!mX-W&Xmwr6GQ%ri?jejbq!0`ZB7~>WpzLzlUcOy1Pm2oY_-&{(C$NI~Nod zoRB?(lCy{yH}CX1Ta!y&2In&02gJ?R++V%O> z|BB(hU&POegtEnSe&rcRPl*t1nKe(IgxqyAB-i}jj(Ua1A=z@pTY&V{@A1`OZ%emG z*!1;mvTQ@?|&@9UATz-f)?(WvO@GY40rpQnF9y~ zA#!W+PmdnG<236c9@Tri4A6|*H!F$%bjT0)>EzjZWpY5a|MOu|##?VL z`~{gemgM_?tZk(K=cx}XH_v};=zj$7_tf`A2zp3X0PBAQc3Cao_2 z4B107=FW88L`X(w$$Qx%QI#B?UVnV%#5|H1yK-M#mobaNxvN^zECEZNw;QClv!^&u zM`D*0)M$=nil4p{6k-TDG)(bEbU*bhdzpy14?hy&x}GcTGN(7Weq8-|_E4H^)I8>*9gKeob|!kCBCMT;rgTT3JcG@{r@IlLQ^4o8X}4SXORs*7ok(Au{jU4yFG#U^qcC`%5$WcMxd* zIJpVTk{Zn@iY(Bxh*YA$aE?k`EQm!279CsTgx(X?t1DQ9qg5)?PblG_O~4QqP;rNC z=crQbQ&bDke+KmP{4ciNIXKp4`{Rvm+s2OV9ox3KV{2mDw(VrcwrxAvv9WXWzUQ3Z zt-5uq=Bet{J@c&TnLm1UukZRibeSjSGk&zX7TLGSG34bu7JbNW$pCW%#oBZ^h8n$Dg~w+8|g;~ zkX$8uG%pWhO{NI6z1BJ81HqxgU(RT0J}&s_vBWh{IacJzIx?0?psm^>>buD>wQbBu zVuGw71rF|e^c0MHLt}K)j1YFHal_aNS~^L?J|xx)mO6sx*$P`U(YXyj!cE#$|E82W zc>-tv()W6%%&7)4zQ6va7?@8pQ#*yxdT{$AI^!vh*G}yEr|v?by8eQh0XIqu;Lq#V z%j^SXkVIO!tALZ6F|m(RnU!|-kc4=iEE(s`%|2vX3!h|mr`dI!_yxzAWh99;ud*#x z7?ru7Z&x_yzebKjPN^b=N)z4eTr{5;(GDmBvmY&cmF;)hO@^BBfcC3_t~@}w;ZFjR zc+?5VrX~Y0nq0}g)bxaYof)YvULE^b*4QXw=r(^I=D1`Y=R^!eQl4>$5?=8>D#H>L zRjETbyu`veX3X|ZP4EGy9j;gdS!(#*l^)btog;>xc-2#R%3mvJ6bLfrBZ0T}<^q&k z)GTF0%QI4{Ew`F}+Eg~cMx5!7H@MDc$Z8fd2j`ch+lM4!tY4+GCvZB>hP;~VtNekp z7lUy`EP-jzXWL*dCmLr}G6Kr>k|!krzvZ=!7b}f*F=A6Z;)WDgJ!1?k~?7yg&Bhj00oF+Y;O@pRnWzdTPbopHt^fDUiGw`MRwoi;s3pU zGW~tk&E}CPduc#5A?P&!3e{xHl_c}QHQOrtYf`ZV44;=u)xstq>Ufzyu@&l0YOffM7rT6TcwC+~s5QUrtph2Fb#b7hMtY`9v)P-`Pvy^H3`j75x7 zge-)rkMBoOJYL6{c1$i!ZE`#Ge1G?bgCB--V~op2G)&en4jAP^Thx+rW*Lv9FX2`Y zetNe3c@@qO$8+50U(M2&I8U@dEk8qR^PO_pF&bH^^Vm28MTySFh%W$pDsIHc?6P}p z)1gWESp89*W)vyR%2l`$4LUMYCIOV+rGY$qtXyT?U*#|J~`iD&~(QMi^=82y2`aFkJaaplt_VQ_D0WZjEMwE|R&axkwn<>?%` zV&hS1aNNm>A*bR)#^L3X<%e`Lu5_SR!;D$r{UuOXXhMj938521tm%gHF(FP+6?#|) z-&8Sh-GR%-j@U4iQ#E9^rVY;F)F2Nhlj}2*axSkWCxKjvU6BC%&|DjVVbB&xzS}c! zO;9If?9bL*5q^T9Sjsix-E3oqjMjp3UpzZb&3Nu^1``JSq2*EQMv-YdwNKS zXVznnNt2{hEF}SQBh|d?m?Y%N;lxiSSA0XnF&VBW=w-lzJ6C9Tv(~SyrPAnlr9zIX zUa$4@F`@2iFW33CaR2JbnHo5)Fb7 zbv4VU&9efgNeF5?zgUG4e$e4rP+inm^1!x)+<)0eH=?o&TcjvjY$REeZFg@Rt@YqA zK733luM9H4LV?c$wNK>Rqg+=3ci}*jtFVaGjSONCXvugd>f>5)nEZwlKg8_o5@h=j z%VQONEu`Kw#U+zAYW)#S$*Drj?=~+~=p>YPCkzMpxd_@W49qS-QEG8bKoFv+x%2Z~ zq2&x2f&GLX)asq9oSY`x`osZf(p+`?uRAeP`f|~^*)UyaG9+Tz`SvGkA^ls4>{>i1 zS^yaARzUbkqEbKR&-erJ9z8)?g$eJ$bm7z;HUpQHFF&|^9G|lI+4~oW(J0R9L(yvSuq^L! zsh|K0pvt%DkYX&8pq*F-9!7(dyz@gYm( zo6E_8hgr%ITU8raeS>w!ofL%;)E=!&dESFo<8?PsYk**&3a^uoIpvx6T$43VE!pI! zP0T8COUD{qZ^{j$<4Jcfkk74&o)!JC%;L-RSkFVj04Qa9hg*+WP^OD^+P)bAEcL|JZ_z<=?p0=K+sO4ESP+E4 zzFlhXT5K}#w}^>&?_LMOshG$Xn0GH+t4uOEkRHmPGiL2h-R_fYyS$VcQ(vHG3iCRN zbD*e+i5JSLRkt9*z$~dZw;+tbEUm(hgeQ$_eAh}_jrYT;_@Ve6}@EjwL6z*gj%m^_wd>*{VoKn%~>~e)2J`bLSEp}Jk zp1!bKs6WwR6HR-E69IVbz8wn=4cIa0?DJDMu9b%+h1(6*q21OQ6>f`r=L^Ny5iRFG zYCJY6TuECxG$=9!n1z~EUGJ|p(Ok6ugd1%FJaIWpwx>58{rUD7K0 z4WA_1QJOqa^G#XOkLTN29*BSAlc}>lja<&QIytW?&d;src4BP{0*mTKga$pKk)0A3 zHZmGD@U%4 zSg)k4Lq~fCw!uz}Ts)RHthBG31*y(-_OJe}{jiE7$xm!k{U(|nW&=jd*(`FL$paMk zOambowtT6IHg|c^O#>NA1+RUH@Bl{jq`G(hcl0!BI{OJ>u$nKQA950Y3IvXjf&xd?_>64$vJ24YwTKZqs}w=GuuLc$&W&26Q^Coo4RhtvZ9(|$LMX%|zUVzXz2YH8TLvF>5g zFeO9GL6~P3WklZR<~|A17?xS-}D2&DFp7c7!Ai z0Up~dsOqZpxA2wGJfvlYk@+FAomW_?wDZN6PR3mxk?aE{MlrLY@n|l|x;yGuQ4oSi zdwH0Uxg+ruBC)KyrhX?rZkEq_;-g+%m9>O1ppW>G$Gxx|NKW(aKHMC!2L%hG4x#{p z=hKjLw5%(10)Bh=hw{;07LT{u*xedJe9n`Qe(gbdBM{#xGf*s12)`4OeNmi;6Hc(S z(0gewHYyT`I@VTVarxRB9#s*?(@Mf0s@fzouWy|=!J`t~dUS*KI>CtCcKOtA)#L1l zOO5HCF9@V=i5pYCd$xHKgwi(+sGNXhb@70aL`v6G7VwK3Zf0K0SXp((O5vUCuocd~ z&wyD}nL7pG@n}hQz@N7Y;VZiSWeJ8Jyc2S#?y9$nS~u%qNWM28U|a@WpEmbmwnaC= znKMRorm&}WUS@hNEL;mi@0@m@CHH2m?n+`e%P~ySo^rjgQFu1$>gp_5FHS%pBvC9Z z!=vB~i1}+$rTgKp_y(CaxF|ebIC&5C4mO8(7&%pew})Gr^c??40Z`e;D81OS0&owB zu8(ldsN1y%<hA7{LBy$PH$Hx&%V&IH)YB;* zKi*V5EwO|;Q<7_cszl(2d~(S^260RpaMo}G)c1nN_iQF8dTgC>jxYf4pJeWWv-Ctx zKYH_Ihvp!3*IB6WYaAjgwN@S{4JbfdHPD3YM`Omg1~tQnH9%Vs`$ERKMj1Eo2dmL2 z9io!VGPR)sS-F9Hi?N_Px=RVRahtlqj+8Ghenm-!9&ov^sC;V8`$3~!_S(OMiy}R! zIp@3{bwqM>%baiwu|xn|M$4Erd!f_uK8FyhVNFq2i!`9!9k9T3%?XWABAEp7I{E7x zgF1pU4>j$d+Rh(w?hY0v%)yDgk9d8Sk%_&R=a%vLGT&4XVeeyMz33(}5bAJ^LnU#B zd@FZ{VoaD~IXFNhtn6x$<@9}hq(^#L5S*?nk;jSq5pW6IxYhu{t=(g#%ksp9;7dec zHc+o$lbU5QO7W%4Wclo^{Pp8lm95tGt~4f>_pgG%nflV+#Mo@yL5G!w9l>~0I)SbX zyhN|c$0^f}hcZQ)7}T)gkq9hJn%Y>79+_f1X>lX+6Pd8tWM57WrZ!~}BBFhqImR9? z4VjEg^GIlN5NXqpZ`ZSo#0tbrazo49Q$wifSR`Tpr6(nG~rDuKi?brE;uxh z*%YXAF#J{%*kElKCoWa{jWQ3IWUb%yL^vpC)a=~+`x73T zkr@?uvoyDgi-f4|HwVS#3hFX#!n%ycBXU6hk+lnZs&kE+85=rUb@}758)3^aL!zMv zi7OLQfBGu%EOz3T7Bc(XPwQDvGayPm9f7=Ewa~6`jblZ9(a^bsM$vs%3??GV$*0PX z`_g371`R4e6u$2kGZz?NqU@XLUp@#j^&>&EpX+0yIV|{_zSd!}eeFnGmZVit!e>5H z6fkraU+<_8Elb;R0#3tG(?LvY;(~}!s6EGtp>#J|Tqe>prnTt%E*fvg&0!z>RH$u8 zOE?rKdn5+3CBv8slzK|VeU;)o#?4`K0-1O@G9pWWT+2_ae)4H9w&TV)eh0dPWB*CE z+#9=*H~Z>W@C?%;QMQ~V`?7Kb!~7C2hMCJs1)V`S7d8npNwmY;v<-tIHAkaJpER8^ z1+w0dSl4={Ez)kt9|H&J(rkZSt{X7~X7^ZvA8?E=32%F9win`PL!<>XU9=1a-6E>Y z-}8_F8w|X#^(#h)E634!^RSup`80)cL^{QJZd$SA0m~~viFuP?11jpbhwO0RuC{HL zgyoF})BN3Xb=(oEVwb;brSw(%w;ReMa-g-(aWD(Ghk5jN6pzWvlAJNaUIuIe9NPLa zz)NTcPwQ$RrWp?#8iI5eYR9cd;0x+Lv>g8edSd#IPjGd{*c_p;GY%1x6XtiX0xG8O zD?>Pe`zYS5&M!Rd?@UoBUp)z(Lm6OKr|Y~SN{Fq2=b8<~!R%|O;N*7O{jE)k!8m6E zKiG#Sr#|}^e?1M+x)&)_(C%gN?cscI_~7!#4R%}UDieOm5HDgLJj13idBNfxL=kAQ z>D}i?vI0I|{Y<&yYY=U$AzxpO4I~A0>sAoCW~V3GR71 zq;-W5%F=lMVir}X8&pVWSNHj8>vVtq!xXuXY5+T&9Z|6#DG+}Q97RSfljM!h_x`VK z^8QQaQU(lO?E5?&g03!t*%}|+bPK?RBPm#OMc0k7a?cWLVz}ylI|1R{R#fz3RSP5g zwaab9*jIn!@pg9sPS;qTpBlr%hfaWW#uj`;wd1YM>xO3poOVhh}asC zDT+0UKh^PEMqUtkNX6I}+^v=}4N@OAol?^71G6-SndD#=d3;!aGfV$UJ_7(X0Ibs@ z`DHv|b`2AijO98onLNRXpD6W>j6&^6fU!9L+7wD9dYQUE&2y({Z9jAHok~pwSscX# z6mueIZF#5d)zInwHpCBwlLUDH51E8ia+j2Kot>ix(5nb+eoYd^$>_b9BrAf#7(d?? zXxA)8R(l+Ext8HDN0i_`74@79_TRR7Kk8w2xZ6eg=@`fv>rl(5t(50jPD zX*OO<9nfgzamq7>@!hbcgCA>~`6GR>-6_T}ge*yw5G247bJ%~D>Ioo$sbM0Wyy$~z z`{Rl9G20xhN>1nvPw;GdaoAF^NHLVQ725sbPPg$VBJ5?%W(^HINlvJ%n$Ao8PfT1z zlc^*O4w9)ajGoby9bIjsjQ;V)XAF^WYvWS*P*r?X^zm#xC+;6Wh;E&+%rDs z-6QK1xoD84cymHcc@n_EvqP&fXhgtG6g)?=^;N^AnrmT9v1FOM&agRjNz%*Ry=u5i zlUm9Y2rh$#%x3afbWiCcv*VfeCsb0HpD`4~ZRU@Uenb?B6lW>D+GuyyQ!HrCL{c~a zd_cJVL?Brbluta$AoT4*4F+te4}fC%R~Y`PAAKSampsUe;|~Cze6cjB-tD_%h60&9=M&z$-zv&Z&W8ebx4K^&)?-x4#m+O4XCezG?sr zkGjIm;$+R}JDq@f#qHZR5(Oiov3olHL!a#=g_*vUG>{z+YXr0qHQa-G)#>6Eg7$5? zrVgv~8vOT~8fmY*y&x4)_$)mGacIg8^w|64egq-V5-`(Jp6%co2G9p)u7q|TeY7P- z?=BP)f=QvRH9^={GC}UXF=?b)2Gj)!E3sgrWd|I)EET|(VO2(F%PtHOSxSE>kn*!( zJXBGTLLsnSUFy(P!AoFjaG`-=0a~$n@QOLO$F(yd4zJ(K`+RjTM@WU=NI$Q(0)PKlcikBnHUn6e@dRm#uvAZwOy?Ant8+lc4n zMgtGRV1!BCwp&^xoCee zM9jpC=`NfyQ@iiZ0c_CB%f!7!EW|8(??J>YB0))!CPu%>gF3kV=Wjc`)5>;syVj$+tjARn2bVMuI@RFr zEJpxVaZJHj?uUas{2Vto8S9h>P9phnAi;(yy6xeC1>gnhsyB}_XMNwi$#Aw42qZ{b zl4+Cy&$)=-x$_CvFC|FwG{TUUxHNzKu$zdXuT@MBH^0u*uuv-lNtHq)=rjmz>Je|m z#hf|FXXdF5eUpL?>{y>*y29Oa?*kwU#p$toEdVoe*tm-oxExSw)jg8Gl%|d> zNM92Hr7emUhaEeVxWz1twu<-ON%e>Jc;2~964N%a2*IRu92&8!UqmR=KQ`RN%pwF- z7%QfTHBsF5ex?P%m~FDbLhN{O$8~DY!kCpQ4#?H%{>9#=)pgNekp+imh@X~65)2T) zeo0Pn#=?C+x{@CmS|$FQv*)!Kc`+|x>Nl}=HpDy+Th?nKMjKcU)GjX~AHUtn( zRxl$OYHg?!_%x_~4W1R5vki#Cq@wfl_=V1^eMjk7X7#LV2R)vcO&+j=-CF)!=cP^^ z!~~zc=h%2XF%J*+9bgFYYD~AYWv+Bw`BHf$E=OuJJPXp_z5W#{*D#@E;7_7Qf%rko zd?tv78g`>Mb=$7xm!?rTGJ$ECGa-QVETCKdmWe!1^+5ayg{-1G2 zBM1%el0{VvN;u8gB0wtkPM7&u@KQgh2 z14Twh(dbz4t;OuU8O>U?l>HAnnSHiA)-ONZQq?JS2|o%(t>rf>?TuQM_inaXBeCM} z6yp)x2m;`8L#Xo2cdmOw?Zm^TcllhLWXTUv=YLaRkB5+TSJ12i;sP~cj@@_DUv?ru zNFiqB0p%hxe>)1WSQW|iYoO~@P@S-t`OCwBhOS=NYAAp@)q~4bE--&3r?ZZ~QsT(Wmk4G&PbG*~@Kr;Pkz zpo5cR#;+3^r2ld~{4_(&ycvYWI8riWvB;KWMVZhB0Bi+#w`(OfSHM@5yh5a5F5inf zEvQ(dTl9v-qcxoE-p-U* z0#v-1AAgYfj|7)@3@2^R4M+{f)rzWHhDiK0lXXf!Dr23b7*1DiHOcu!$%?y?y3$cB zy)wH_Vqoor#KZ5>159vr^+)P69*PDj8y2hukyXLc174%dn#>YHe z5~wTDs^dd1wcYCuB~~0A;i)B@yLTNQVfRZp74H)@17;gSg|mNCw3@47o=-hjFljbj2vs`D zPJOPOlXD>XF)Esi)5!ed$n81`?*W*lg@?T$+XR@*rO=cPxQu)3E=b(E2B4Kd)Onq5 z_TyUu7PZ<7VBp}u3jt*d|_r@ENGEQRvYV#4>hnIBQ*?Aq1{ z#uZ6MYEg#E1VZp?z*YxL$NQ<;OR4^ySRq8Ay~#+o-~`m;gR>JA%H`LLB?xgSv(-zO zg;He^!>XN=z2|r|4emFUdw}ufiT5uMqM!PZ(9fYjS>5taSx1l z=L4?W&N+_CAU5u~Jq`BxZGC#ybfM2efqT`IU2G{0^qG@NUIN zea741!F!hh>^*S#ttL=i8=qACLf?wfsMf%FX~*mvJRB$I{?Qnd1odu|>@nEWpwg(A z+~a9}PJ$>9U+=A+A*!q)k2K3%?52BQ5m5rqa&Wzs2c%UoVu9Trc<(QTb<%IpwZVXr z{I60P`3qNmI(OF>xnY-(oXn*!hMvvh?xJQoceBaez*U{B7V2IzT5wbsJ`1wj6^Jq|5Voh z^MP-n6bs|OVyS-&=5OPl1?S%pmT%)<<F4o(EJU2qVjX z95esdF*9pww&y>0V*PLbe;qTkr&f7E<$TZR*5!L*%&GtS{a(jAy`i#!8ULLv^M7W` z!uZdZK~3HEfeHs<{O^QW{^OeE|6IeSKKnxXfH3}d;w=C5&%&B|41l`)#$_|7%5;EH zAaOCV{=XGJ-@o5~Dt@%C|Ec)-tmz5Z$=I#w!24^4j3#lwjj0m}A!(nghl176+2SHe zrk=1+1o-S4(OsjRNcp4jOYsoMGF2L3Y-G>=IKCr6)RKIS=797{PxFIZ{HS_2M-@sF zo1W$@tV4B;Ycm@qGtI9qQU>h97!NCAZIW9HyA%~iQUYudFdBF3KUMfs;&O%x6_h(P zOA?w*Bndr|eUQd_wE-v*m4y){=`n{HIy^`#Az4;3&VKwXjD3)b5~C|pEe2^2oJ@yI z=7=r`e2X&{Cjb(&6OPQ|$Y>lUy2FHCN`YEb1wT8M-gIZc?!nN*W>57aU0u73^( zP0QN3LeU8mBOH1h7;6K`?7!qs4OTX* zQTlTcn_igH^B9b*%qUYu0s)3i2B@vizQDfSk69}eqDvKdOBjNS7|BV6341zD(Sia# zs*wizjj1es94^nyk=qGF^^U5PAN5U;q&$fc?I2nTknWx(2I3w!onbFU0?wMHiV-y> zQrK`L@{@SY$(yMRk82+)eQ=sda+dl#zILvrZ)a!4|5G*u)O>6^Eg_?-}t-R~LS|JHCCS{{b>7CeSiq$Jr_mk(al07t-!wJ2}C5V)Yo zqWmm}fS}LH(33KLHh%gZ_%>IC{iB3R=;_XZH~SI}GrGO?K6;Mvt&EHRdSR#ORqCRa z==tDbmpdM_ac@l0Deru1ufqcriJ=>y`6s6v;MFRSB@=cubn9MoW6kub`&pSjHP_sb z%z2BwaNk_sk5cI=8+IOg8yfPLbOq78(3tnTbfCMtb~^_SbL8HvjNdsr2xe-N(EI(D zVsE58CA^;uWu(yOhciHt;9EfM>BgJMK!A^Et}zt&_Dz-r`U8Ish((;WxmDKU!%e~f zxMsXsu=D57i?n}ShunvlmL+dwT~ijG^|?E$c%wMk28%rVzYrj}fydY*hbFV(T|IG< zRa=lf#J$kQ9kP+R!b`UCCA1Zw7<)?eA4x=M3h%GP70t|!!Juq`qSONIulNnZ3Swz; z6V)PR8$8`;bl*XNwT!#9xBO{ZNpm^^sMR36x~8MLfM5S2u@W^9{3P({T`JUD@uXF+2^bwI@zl&`-BuS)eIhuwG*wFq z3c=Ts)TL1?;hesoS8G26_PfYgz^-x{YuU6E0sM&v0T!}5A^!uk?)pqjLN5-NO{@L(9#-~eJ+ooMhhRB6ZIS7_1FjINN=@y(RqKQlII z+UI=*n-%ivv4o*ZfOvaIiZH5MI9Aw6Odro0)`P|$ep7)bp4Cqm>quIbqm){UmYL9`^Ns^))o`3NpEMM!A!JRr zA3#RuD-qALZ}$vYtSJi3YV^+9Gh{F!r-)_a`K84+Fm|fwPc9DRDMzNjth;?9Br9{5W(+qUC*I6C13gEBwFnpC-GCnF z)^?RXV>-KY7L^^#GkE3B<;}CV;{_lq$&IvI{RQ+%?p6+F6g?-Yo-8VL{I+$rb;?flM8Qv$Uk46w1j3$3YbeQ86(M*rk7Y zy<~d2Tb(n=)7c^gFMoJlEZ80EU#n@Jj}+g5--eUa=NocUpy#0hOoy#EqPG5K^pOs!ROdEHd`M6M2|z>x5&U$2Gpabpce%Fr zcILLGanlFxS5wePXhND`-i3ynM2`?YB}d2{xU8ZZKd=)Rp1K}wlxBH0v;A>xs)O- z$gU<~XuZ|_2Y_c9k9{HlOa&Tw{0yvW1!@CI9%XVW2!7crj1dO$7noZ#qbm<~it+BR zBOJ|_=s{8knGPopQMIMmlIxPj6UqU_!gd<@&`431OsWNb-!F&Tm)C&H!Yt%+c8KKg zHQCMSR-=w^$X4C;{*83gbs{Xf1t_?3X;|+f-Q$4~dcX$o&s+24`VM&W>V9*`E^oiq zd)rq*z(%p5d^wmgj`-(Y>F3w{GSu^!mq^a)@1vlA~2^RXBTv$j}Q26v%4$v%C^IcXI{GO#DX)&Kc~N%D5|sD zty3dwvZwqa!3V6yotI#$^6c{T@sohw$9@%$z$!XA4*~w~yOy~2X$eBVvG!&?Dj4Vz z#tZ~A70nDqKHS%7dynnKI`KHd2B57*H$~`20$`tH;n0pFi^-aPx(VzB_=G&$j@hQF)q3$~6P=K=J=6TuR_LhSFzJbF`7R|o`#i@fA{>nH|cB!g;&w$t+ve8 zerWL2*>!7fQqiuFB$0$@(71Qx*J56&2?NvwwjcL*Rd26&^{R(Qd}XxZT~7?{`TB2{ zYC4n^?i(-`b-HC0Shj0L*z8scv`!1uZLVt~t-fE=E^a$pJRYq{^7^)m!sf^FQJxvn zd%W{R>q9n?wYM>)!>c*>OYrOqPfFtKI1Cx*Cd*mfp?zmftwf7mI~i-v-5ik9fVpib z@Ww9vk;sFNwhdU$dcKjC&fP&X4b3-D`W2Auo@@fP`=J}bk*?>`Ym5U#uTWX1x}AVc z68<33H|p8HH2&AzK_he@bYOe)`n98UUIWOpzZe8>FN1UQ{gw^1i;(hOOe372Gfy`{ z%XlCr(r95}*T&wl%HC-y=yZNsavwyzj) zp9UVJO)wqr3#u}##^6sDwi86GU!go|jRKlDZUnp(j@qvnT0^k_OxC)4~ z5~1aBAh7T+{0GyLj@zdL9+wV6r`ysM4h*W)ef~y z#@mDPU5*JDeYF6on@S!V1om+)Oxo_6?(oY5AA`oe+8sctFd&|GhQG$0u+9--o|Hm8 z`>nPScJE}})uWRkfYR;BvE_7kli-zg@#yI^KLJ=Q*1E&?HZjds9oYIjg%9h!Lp`qV3+QKo z)cJoaj#A4WLE(T||Jii?v*r6Y8+)YleL5PeAH}hWKJZ;$MK%?!on&e_n zGX_jS9F7~GBuNwVdGU-32LaaW4-|h>m=y`{A1EgOyt1_eH=CE337!36FU0c~;MI2{ zkX;v^A|l1Fn1uXi)ug-K{qI4<*jNuc=67P{%fsdNqZl1kEW8lQ#f5J!005O0pMv`1 z=+KJk)%4BLU~I?Z{63D@2NgB1~zo#_e~H%p4Vx`1=Mgp2_{EaLbO3 z+fnX?C}-QY&B;-mZuj;pFaT-OvgW#$#tXUz`l!OTt`#$gx?~`1-S8ImAOYDhi%O0Q zxGR0{*3Hfu-NvWRwR4GX+ghzdvmf0-V;)nkf*SP(d|_Hv{|j&W!z~@Kdg%7*-J?7G zNewMv%Hh%9*`p+?|24UEpK0O@!Vx4mQmUu=&L(s%Y1-?)`{?MjfA`>*2Rq!Ky_k#aPpaPK*YwdC-gbR2|^}RX8jEh>CcRgHt-m$y)+C zllo`&Ag5THLg3&TBj7xCkr$1Tk`fR2jDglXzh5G+k{#t-Tfh*ig%{2zz6lOg%E9#4 zru{&t%;X>vjK^ol+@Qq@t4u1VPmW=b4Niz*LE~`{wd@)r9>|iabCDT{gd_pvl$)eb zn3^iIXG+3+=gPHYn8g83%Ba$FLKrt+d2|HwIy*Kqbi;~e3_#!c)ErVY2(9z%g}}il zMjb!K?pV&mx}eCag8+I(6!o=fFuos{lQ?{r9qw&zh5Vo-^AE|+{w#)N3FqTGx$xWA z^+cm+#vLg`dO-IJr8sp5Y|qux#D#QC$;yRytF)0Ii&43af8Lp%cvF+ZU}O=R92PFH zM2Lk!3p-7;Hb5+mRlZ}(XPgg0*>2OeTl4y9&GRd|HOD_D*wpR*@&|49u17!3&H$w( zOPS~Fr&PK`K>!Kdq(cU z)=pb*9zAO#4I6{54py3aYIVPfC#z%Iie<*BFUgp2O@Igj+aZHX{QKEY;SsC~^_=|( z7HiKWvF$dTQOs)y76=To%$l<{Wn%C;%Xa-Gl++p<16O})72Skw_;7u!#YGP$kS zM8&FB3IlAKqr*4Xfh_c2WisM47g@(MDZG^@)|6036qVY@btXU$s@n2LZfce(#uF;4A!&=n)B0m-s913P=^5{lQ)dN2-)HfxR1wSXy{Y?W}@W zT=*85S2$08YH@Z>h*FUcgd+fI6lEDA9=XM7NC}t}6n<6#eV*0Y61V=f&^s{5x7PcI zNC+fIG-egv9NKjN-^$qIfP|D%#~)^}?bIn);`e@8Lm=^@n9D4@X~q7iayhi441Ko3 z_RN}xRBjyzm3UCz^u)f?XI%|?r)mh>eJ=IJWD_||&WI!agLsbLva9<`4`LvJb_KL* z(Gp%hr#mJ?GEt#Ekx*fbn$GTxnKPNyPPS>O0 zsHyh1TcSFqKyY+Yh*~n;6^pLrLk~Gxq6olR?}dRP)F^>7_6TgzmL@7vl{RvpK!npv zMec&bVJHP^UtRS;4Cgl<7q{hxl_i614lspjFMz*N=zW?1lOZ^cER zgLG`@P@0fPdk*Fhz=}`Uo4anK1Vg)u%SeHZw{X*_7~&Q6oh|&x)GQ>>g>fr&?K}W> z1)?MGF#la13W9oh@(62^eb+wJ%S2YNQxloI84VKKjSx;^3lGGQPRk%1Na5tFdZxt) zHinJ+3>;%qN!*3r(uy+g6r@tvdp6-zgoI&K7M3ABrG9MsN^9XJv_c@32pkZZ91t^M z9jcu?;CSGo{_)iS$>@9^G#5vW;yM6v*j{^dbV%ELra_8|>xp_reijFP+)hq0n0^h( z0C03C+f=)rj08zF!+qOqx?VxQuuq-OBk-|7g*HGkTu67HF|5UWIg~2W)0el3Xd>}E zkf4LVO^%4=AQx$k7~&k%kvt+G&ic{hoeZAI(Z^m=X(f<2^kPW@E21I9APnGQ5QbQe z*j~twcLd~>1*(+;)%G}HNkdRe;%R_hA6OA4^SdfJlpG(lJvc4Va6^%gfY@}rLoBAi z1I?xV3HlJOl0fp1wE$JL597j&I5y`x8jfHa=sVN$dZ>xz-dJ`w`mvdHP%4EMmLF69 zzBYP48rczI)kb~)Zh0^(G6vvlT`+FTLvd+u3yD4%5@x3*w4Z2CRhdQ>Y7>eKse|$}L9*TgphiVhOj%Q9?Pkg}$S z$)JKh7|CE#;2`|* zi@^5B66;2)y7&f4;p`Tv*E0D zOwUmP{Q{p@>#U*E8@ejq6$6s|*q4Mxu zymdM_b>R=aKza?QbbqdJvWN{|F(1w04Ev=5eG+Y~h9^aLC^>D;r6FXwLJ9617hCgB zJd+>bNf*P{ZIx4v@ysf;^6<8H6;#i7XyTa^PhbO zC==U%R2f@Z(y<4_$lceqadv2o1@A*<3w7{=^^_Wv5bV=HT&w&FD$+)D@ywDQyni3d z&(BLF5Sm#!;-ZN#>os-H&6m^}8is89FaTZyANQ4^9J$-Lzjx`THHI+}H-b~@!K5k@ zIOEUu4I5vGJy&x#I*z0mQIj{0BFrhypHgsM%>c$6tCI!F+lQg#u?SCsK`pdTK`BWO=*Gh2C-I{q zl&LW*fj96Q=+&eKfPVJP!C*-!hrUTX7y~quNABa><=#7+Mf5j(y3y#~nuCxN$Rbi{ z%h4o^*HDDdR+JZ)Vxz*3!&>+Mz8D267 zKx^hF+^>qe)sq{}p)7G@vGVW*8UR5K@I83RnYX9E#AnG+;qOb0EgXeemS}M+=%kSr zc+LecM9`$c?6Tw7g&aq=mDCxLBuGJ-a1PVHj&GsM)T@KFSM3p+(sXn~xRxLzxfdTTgLHfk{wQy(k@_ob9LXDxo;$$HqqeU=Mp8;OK|CE3+X8Y4TPhcb zYcKJU6=2Io)Pl3&Tx)>TI84=-(Q#M>9@}}7vU7L-faKU+Uw;N@36#=X@uG8Q4BO&G zJ?V+N``+Iir*c@lt_3h;Q76DA*Qa6EQ^nZv`*Sjm(2);96H~ zLf{1euNtjiT{P}QIQ6I&@oJx|mv9zEp&mUhc$f$W$~ak0Sca0sNpnENZv*8}|C6P6 z(McPTW^FWL&v{5edV8fOTH=Iay9rh(h8CKZX%SBUc2G9Zy@eSzFLZMPumnI+9zbuO zk01;WHO+y10QfU;RYs~f8b2bA$+|t>j7<}{bMP24hto8wkb#(K=9TND^uTZp`e-VQ z32ewt!R3K$l1%>si=uG)onT~cwEM&yBcbAU!yHVCf!@)VSujC@R>QneiAzt0O4CBf zGSbkyO8^zTK@3!1)hUV@$uGEJLtTm z2xAMo`9fs#=+KIz#JBP@M-Wf@x`pS$LGOq=?O!_C&N-a%V3EY5f+45SU4R18q_&Go z78Dx)5z+2zX)38K8crNgk8xxjhNx&J3S$1Poz*6vrdIq3 z`T%fVA|V2NE2iaF9-sra+8ylaj8;L12HEW6K*0y5wj9q;=WG?~X{yCnBz5||NDeAe zzmm&E`??+Ru5V6GxXb=ETrI>vlDUJ~{aKAYv&cgo=T9gg`H&iK+2dc39Ivc4FA9Bj z4m~%g8MO-2`W(6}`|W!XywbSmf&CN8v%yFr7URg~G-q4ZD_)*)oliACjNu5W3BxI& zy+34mTAQKsFbm6Vz3S=^p7(tGvWqX$^*2iX!Cn%2yq6mEhW3dAQV`wmU@X`HP^s>S zmgvtTxH}7g)J6f-C0O}6$S4}>l2|NAYlr=FJu8gqLAZ$uE4y9ySLH4*{5QuE|7*h& zb^H)rdoVcgm2zR*>>zk`G?IFUzH!iRkIfaabhotcxPaIs2^fcdo=azGV9~JUU#;-= z8BkMA!nZNfzq5@^{Jc)fdLY7r{7tq&!erruPLaX^f-^Ir@YRJRv6-M#3yqTiT}N?W zV20kB@R&0KMh~F)G#4zXzXv^VK#eVA$a9zdmC$)fYX8PTv1xO@q{=^K>dxEoB&QE8 z6*~G!yrK{6Nr5~Po7h1z2HU``lEgW^tO>kRYswKH_LY2&E_HATD7!_PIur2ayfmno8pA|tK6$s>9XFt-pR_OQ(Hqih zc&bX}1-XBl6ZDnWH8&~>LT7jnS0{QS8IQ|A?>gGrla%9atNENCw=^mNEsqqNaBYp| z%~13oz8llBcWwwkGb?<}!Gg<|(^Q#B7!%w9keGQc4d(S|NIIM^?CJ&sPe|Ugqh+J= zjH&n;=Q%-98%su#JtLR&2M%d3=->DrF>a&QC6jsuVY9@?ld;f>uH-?W1ZD54h>&JZ z312B3g} z|7Am4Oh4^$T}0;x>i+qn%)pX;$|hB7$%!!Ttm0P@2gTno0aa_MiJpajpF29sxHe_D zVwepkfW16P!;@r4d|1gDy5e1JL|UlH2b4^kd<(h12gorFPn)c(qZ87nXN6}2Y(&s4 z(Ef5Uj=xDxiw#xRKJ!M7;r+B-Y1j1GoS$@Xbddx#p|K9+Ntk$l&57c66~u(w$tJwy z(S&N!@^o?q@8rO}x5KB6KGGJD;5xGL(wNDI4IFr#Cdr8rE6~$mWV2 zHn+4Yh?>|DcwbkgLu?r|IjETjNDSH1o2sMXMha@~<_zkuy}H>ZO(xv)KL6%Ekzpb* z+wjJ6_P=nv$_zA)(zb^RLGVW@7arcSIuZ?X1|jCepscU<%rDF_y9dJq^;qbsi99T% z?+a&y#T+=u>;Ik$9}sRbI*(m*fb&M!?zGH+nT;Vf-rd&IK?*vKao&&~C#d{(INETy{F=~pof*(wNaYoq0eAzLK8+an(W&ZVXTAy`(@bSMG zAx12gm&>@N28!9BR91E3n%$$&`Lit%O#0;-(N2IrupqRl@fS@SWhgny<$>z)@9` zWxlB_=)D7;Ij66rWdUbp*KDoLH5h^<&@nabMNTSwE5utNJX(^Udk~9Dsip2Ab8vM~ z6QCMo;^zm2q@!?1H{O@lhHxj>gPUv+pn}}vx1D0ht?3iGTUxb)+`#}z?`cTd!xb@q z^=|G&`i>`Nl`?9w?AlrZcZ*|5lVfhBi%hSqfUj8(EQTnfeo}#^IfJ2>mH2+*VlD?2 zE)AUb_neR!u#npY`$TZ0$|^+wn*W}IY|JJ!RKFS!@(u^f`0H4t*bXd7nHlZ8K{mJA zEOIh$cvIu!`k<$pM;(@$|M=rt?Q_d{Tn3u(-+l?K|kWSbs68I{daO=P~BrZaWQv&pCk) z+^?sq*_>yO;g8PJP&Ytqdl-yT5pQ%3gJMo1Z@BS5*jVIgd4zAcfPxhIhf!%`5$jiv zot-6<(N6Y^_Cj0lu3H6UwFA_9g@toqqXTm)YU*9_;z8NyVy(PDj~AM?3-zQD3F#cN!5r3FYlMNgdEtKGgS7+f1b{R5ZoE ze9*Xf;13}PEcOMU0xCO0M94s?$J_->Sa8AcKnyTL-fgxZ;?I&`)_CIMGqiG^ z1PpU`8CK4>BvumZnUm!3$r3tHlyC zB220-@TH9S8J1~z`$tD0evu2D$fqKD$C@o`h*Y_nVzy?*w9jDup|EB~Zf7U%Tx0co z$l_!EAqQ|c%nBbva|6eH>E}&%ZNE^qH+27U9!&jii}Nhr_PUz$UZ(nOu<03ta;DTC ztIoh_coa3UoLhrfQg!0~#I|}rl#JYOz_ZVXVd&dN;+Lrz}ckfT+7)wQ?@7 zGky6{y0Evx5F*ksJccQ|1a1zJv;Qbox0V1_i9*l3cQmO#=%PIg|Cu&U1$;;y6(=^!SL8|5oWzSwMy z@esQ8$m;6;h`PbEB|r$DMMzU%a>Pd!l{@w@1sZv>ZdF$)%fk_5P91)&e%!m^QZoQN z&yB_zM8DnZEKdVO0%egI#{QCH`Pm`_T^q`)?kb0ed0w7JkI^+9fS=9eWL=s)qf`Aa z+byq*W5EkIq!XL>mf3&K`0Zy5s*7Bzus{p*iB%xzri>%Nrk0GL7n`M|UkCdMMEZub zSM75FT!Yuc_2tC0`2HD^C`xtMHj@BSYp|e1r|G+CV$+`mlXjy9e``U$7%_=`gIc^P z=b%`>b?^ryTIqviw(ZWm6lyBiv^1260W~nic-R5u78ldXqU<9gvFB|N3z_hC1?%mD z60_5X>-p`>i*=D=KF1S?} zQvO;9ih#447O2z2UWhSuH2IN~Ia2;c5?%+_SRgN?^4r(m391oXB!McL%)Ak${-hU6 zG^Ycw3FPNLu;oy;jO=#d5d=V%&o)sIIqkiQaI;o21MpzpGSJkWObvE@U`uV(v`TS< z-~nTE-L<dg?&M zKh?aa7enOcn@iA;6)x7e7tf>)V-8O#jHQM|Hp~9-g(JpH#Hr?g=cfP)!oY{devY1) zMB83oDeTxzdpyMYhj(xkCq2cJbzq`n3n0-=bIkm{nbp~GH}YRov}&B%kSf9G0EW#K zekQjJ5Z`HS&HjCpxxOk|`cyUT4J^pxzjcRH$m_EHl*9?bo{N)%*2{wlZRhcMjdG3n z*268dY3BYId=L$L8y0}eko%Rwy%Yg zt6AWFJ7k(PF&^`$wqO`e8W<3VAPJT*>T};nP>*~>>+71cht#!eH2YOW--{8krPRh=#XPW&Xp}MB}w~G&d$_Pg}zylP?1S!1KHM##``xF~{=h zYZSQYsy)D{^%+6LQzZaUnpxT2dUy+o-FNp5qMKj``#--1Aph--`kx4}|9t9^Qzrlj zG(SrFM*sp72ou+TYy_sE(S8W6(SC>}6re1e{}V&@f9SBOQKg8Sz`t6DOA*UcF@Mzj z|3BwD>;H!FWh=`$E&eBrPc1ByFECkW{OueLGB1sK5PXDVBk+Q=+|-b^9v|!Fku&8d zdX6|aQY~SJ|7!6Xw1Gm9AHtsE8sw4`iHyo$I$x3m8+|IS00x5t9n|qEfYIz^w+Kaov^~L^bsKvtB9vw8$O>|h@M}M;I*)6axAoavt zH^@h#4R={H_%)E7slcP}fHd$+o!v$w?j~~1B&HQ;rcLr6+$s?KrGwh4S}Xo25YHpcsZj$ z-yAp*hJwN+uHD7?;REx$hinUC*_> z&&zyWv6Fo`r%(j;sQ9?gZ<9QXwA2Jz24uP(T28HpL|^!Xkz;Nzx;8dEuQ)V{i0C3i zH?E&dyf#F9g5Nl&zITaz=0)7+MaRie^WEY-^CNvh?>iW`{;vqT)VfDdFc2>G|82!f znF=S4!~(+n<9-lFVg&i|T>Ly}X07YuNV?}g&WrzLX@dMXEVek18UEvW^!m>qDqm|X zC-TMQkE4P(9$q$e6bywQxa*o5g8 zNQ{AltJ%#|R{Qge&y{9j5Xy@A9xo25wz!d)t9jNKbTsCMMia1&C~oi!gpDxnoT)(; zfkx$=AxdTNc-kUPQ`(4O)o>NYDj==&p_oke&wv4cV%06Q6B#ARC9ZZ}E z5(Vdievx$7?!l0RU{0G)U-S3@C6a(?GqAHpB1AXWMm#uEDay4s(hQaUC}0GSOA>(- z_t%8Mrmhh_WDewRv-;ZbR3y|>qTE{eBr;N+Pc59OYZnpK*r*jeuiri!Mw2eA-58ji z{oWdAOoA20`}2w;y{?}R5QBGEOke-VsRWwX+-@g$Y(U9w-R3S{8ut7F7fk`BWmJTa zAMK$ynxbNZAT}E%82->GEP%A&9|VgQvd?h=QHeQy8?w>R?|NBTZrD1ek^u!M0on$} zu%dh=1TR^NM#{*;deqQy)V!EJt9TUfz)=kg!CAi`vnbS*b&kArtl5he}#AJ`775 z=;ikg%yAFs!zYB`^9_gJXD$B>t|Fh6nb|+ZN2Nct8=f6$t2Qk706Z0eh#EdCCLH-3 z_LD@1fBWkPkNL4BivW$#d^1R$_HPU3Pn$n{InAMR?;-3e-IZUOpXz)bg_F}|p7T*W zcO%1Oq%lUU(ikd}nhg<>wiK*_s_-o z(W8I=KK}DZ6Gtx4wrH^472}iGCUE2mAsSi(1Pm@TDt=^9QVj4fF)#?b6E=!HHxLBU z3p`j(dI6KOF36N$Ed3O-D}H{5F7K|$>d?^Dbwl>IJZ|>Wk7Bni{bu#R*0JZ?*OmS1 zDPQNnv^Qr~p7LP3e(IGdk})M?BnIwJ$Y1f2!<)l29q>D}soAX8;4^=Pa zGLxRO^|Q0iO>;nC^6=6HkwJEAfy=yKsYSHvA9>T##wYT1GHZcDk8Kw@9`uslZr;7m zq(VzO_NxhmXC^BgjE%r;xj{Iuy1{X}T6ny%dmMJ&vLkp_AOh1i|IG2h=KLG%nzP+E zU!WS@Z^v7CX}`$t7lL>8L1yoluIy+%b|l1>TW7?T;#a_2xZ4E^K$mcFKp%9vNlS1W zhIs-#Vkst5>~5p@;^f#~Ng&4uNetEdX`wHlywqeO?#?Nr8X-UGX8cE-k}uItU(pPN zF+wCdhE!ztIQKNh2n6!Ax87zk9Qe97UwQnQe7}3v zDvn)Dq786loeLJA{YP2+1=f*k7Mdxk?|<^|7%8eo9&>lhO2*Za57E~d**KMFJ`*>h}Iw~-;6Aduy5xYg60F%t>3f!T|QL4nXB95 z1?9u9Oj2=a$9o+?W!kh73E8*gUWu;rd|c&PK@Nbz^HR^Y{LP9ley*V=@*KLV6FB+I z;kN9lan=!=;%|p;^N4fi1!_J4+0n+q@rSmcn9Fudl9g~m7)VRze6o`lp5gqRlhWOpaNC@G8rPp?Ez!}ykr-| z5Iw-ZYwtDL-y>1fzP5TQ_i=M}@p~kzSnJ*8v~@Bk3<<(tcBl*r?liO>?ntArkt_iw zt9WjGj2GOuB1+s;QQUYf#~{ad>pbGtW=xC8Hm$pqwpVj6U-tsW$P|EnCK+#}&3{!cLkQHi$FI}Z@sr?~%QFl&BvYb>U8%!=#xbXty5kmy+s%f$ zIVze~)e)6@;69o_uD!11XKgrKJtLz;V#-Gh5n^HO@(tRC*~DOiz9Q z7qawM>X=np=kphG{LJlz10c6|x&F>DWRlhny%|i(>LHvvAD^jI*Ug&dO`m#B^bjy^ zIZnhHh$#6v=A1f?9b`&w0cxU@^6$Z`0K zS~hDU#55tY=<*6)IN|tPksK>YC>re@+E0q%WlXg9)Rf9ov+W?BA&5kI1>G~p+>zz& z%N&itNv$6pKCGRJzbW|?A`W?Nx)WWdgVin!mr_CkKJizOkli10javhc$zFwd7GIb>GauXn9-bFRa#QD)dy{U=|tYCSv`4Y$BYjUzk6R!Qqwn4+V zT7feRwAWZW7jHdSbJ!io36~F zrQZ+;n!%d|6vH}MopH=w8m+L^&rshtAgbzQ;HQxgSQ|9153i=#r~wdEQ&vs!VN{YS zsi4@-XsDUr=au5LQ&)1IvA&^b!A9UXxe9~l#o;;a>{<_2JsO-n=3{NxVy--R{ zo+z3gN=dd6mofmY_n-X}&ks|-U6TIOEg9F`-uSPm)vgXJZ2fIsSO=igdZz)Wi+EG7 z5~}L(83D3i56-U`$`jz^<2OIn{MHB01`H8ZPdS8dbnfgH3}pQ1@XuJem`JAYq699a^I@zyUVg~*v#W2mN_xmup#mEkI(92M9|HIDTP({wm`>!Y9rhyw#M6(Jcg#i z6e;ILf!hmVqVT_Mj8&5cve6gtRa;o@8WBdTXW)3nwK5S@Eot5>t6ffM*9?bh>urWnQFAefIsdkJFvzy14e02H0 z-%k<)TdvhDZ#ME5diuCOd3yTIMSGZvHOuJJL+LY8od-Cxl+=TF7TFN@Av?$sJf-!Y@3DaFx;^9X)pr! z+Lb+e_2czui@GwHl{`q3bYP$|tg&f`B#t-9jyviErUsgK#06h1>oPx9Zp>E9n^zKQ zXHhv$uS=S%vPls(BHZ26jX*w-K>~JYyEaLRw0z_masF<9p_Q^?IIaeY%9`^mAtO3O@)8)Vzo4XnF`vP{oUFZ zuJso50=A7K33zk4CAYfGZ{|xXePc5Twc1~aAgkn zJ^A~tCdk);fA`6eZ*;Sji)^!<-szp$CobZ(9=eTBJ+GA$eS8fA0$rz+^)u;KF1fYV z-`re!>jLx{FhhMrqD6E_uq_+EHK8Kcpg%jEX9gA))} z*u`hPKF~n0RN_)ZR7~doNQM6I>i3WRTF3&G8j!5I^V4eu&i6)dPvX2LVP^Y-Sb@Ck6wCuy(q6!6x@9#{94y63MSCqoso@I#ghlRh!;sAAnuG zq4|p;_iAWybirRYk)zPx9D7?Z!e`p3Njp_LK`KWXBPtu2Z=)OcaVM_kUD+G194{K` zo&AG|oV#4>7Mu7wjGXD)OcgPT; zb@>%JQVRwyr^B2wggrFzXDyI?Vt0i#x??kH3Cr^u{F z7E!k8_VDW2^@yh-N=o~}*WF0GrgIgxcTS`-w^kN7g^9e!DpIRm9tp`OPX`Q=^F6nG zGvrt;Zn}8Y+-o0N+l$R6>Cv+TBWING1{Z4Bl=B-F1!RXWhgh) z>_d2afRSAjHAOHY8G1scEd(%{hsE;`W%8=Z!=dC?@{Kiky`Tx(L)+7J8+d62T^z(r zYk@4b0Bgu@8qJ%AXoqAF2}D-(Zv^2nL{f>ti#6B6aF}M{SA2UYqN=k&MnMac0FKL3 z7D;3{Q@n=-U}{o?BCwjV-?-L2;IqjPVCCBJu{Jl=gk8|Rk_0c=px}TO&)YF5qA-1Y zHo;&obWxoouK7-eQ+167*0oqtuore&v8It*^#x9{_%b%-?Y=RcYGvsZUIZM*DNO8n2IW}<(Gsx;x4fJ2-V28 zXSKzk741$Tw`Gcs9YVnScr%-<2A}9FBc#Xn`Xkdm#5Q;i(69 zeu;4a95sR!aBMx)XeHu5G5dP= zM_1nV8KRD&a+D9_)7!*+Q1?QIk)iy;{kgsOd{Bz?f&9UHI!gejiNF+Q|3nhzInUf7 zrcfg2V$Z^E`$r`6^b+yQEELr{68BE*4V<$BD^UPYEkv(muslVTd^y=z$(|GFEiP@? zEFzkB*(l_}x>P})*P0@mif#e{C;6o0l=&WxR_IZ7IeSO+EO1$@vBmGm#bdZAptkqZ z_qsH~eo${_YHZmpH%Kts4)YC=>gGalW}=Ae(9n@5T&93L>6YF+MYjh8m5Q!DqKGd- z2m>ZCvtk+$AE*!GTX*Wg-uxd|L>lD(yl&A_L7bsbT1yvE3@B3D z#gGtEtsu~#TM6G#CU8Mme|l{Ap`o{6pt`Vvu(GE*ETf~hMoFW(5`eO@|0LuZsruK(`k%0fdx0b%`F zXZ_DP>eisWqk^(>{?EW@t@ZeWvBSeqW{@MAzhl%q>=Y{=&|GfZYb|%jM zQ_*53;^h2k_fj8%iU!K{bCUmKXRCHI`J+9bz*Yl{!YV0@O4rue*~yAyo-qRA3>qyH zw~Im~Xb*pVea+BMtR4UfUqd*a$ziwhe!M#MaoT)cUeRc!cEx@2R9vjIY8cNHnjvJI z|74GWpz12*SJ9lE-k69nrkgH?Vrhlo&U~*wzaY&eENE|4*3AlqfD8si3^)d|fWqn< zhu%d(Lh363mlQI%j#)`jweQoymm>m2Mg7-H2M`7_z5agSy>f17X@Z>N<7*SN&S&BY zhr82dS8T(V30+#-E5 zlkd>^4XKq4c*7c7ct|Z^I>8oszBjAYdX7-e4b4rFoTiUWfH)8=B;suEYg2Vq|IO7m zYqr{MEv%v4*UeP!;p=3koV2Qtu2|^Vj@@Ff;<WuR6(O<{!NB#Sc!t>XYH81?7s%kFxw(HBW*6U zQVJq8QgxMMb2sXFms%YgZ9JHHrN$;UAx7QuW~k}{#D49XtZr))&d+(Lx`jSjR;5oO zADkxir*4pMrp6tEgj|4rDLsal9eKcm_=?T^<=;NZo`ikN>Hq5a`-HkQlY1z8mdj)j zEJ((G=k>?I-c5P5(ek#NRwiA4v|M=0)6qnS`NY^2w22RpT<`SDtoz<4lZNhjng z#MX4kYwpN55TBZmf6PvMFqWbV93P_|tGv~8=D^R+mnEgW#N)Px#*mi6?P=n;R^%p^ zBd#H#=88yjHp;7Dv>SxQ4x8hQ1GO-Ax#DjQP_?inh!@j&Ri9gKh^RH=XBOP6cDu*c z{kCi>>I~KDF7^vh`&|jp#EJgp0N1CEwOz_Zs{4wsOkuKdlNk9AZFs3e_BiQ?1>tX( z?kVt1G#5=?Vc)Z+m$n7sb&5Erx%mQ`pgQ}C zy4L_c0hf^=f8>Z3w}I;O@_;fAn@$>3h40f6nRIa7;V)bW?^1DCs^K8HAZ`s2^L=rX ztQg)u$gdb+WfQqYike{X!I$7bW<;MUA^o0;Spg~1zk*7otV9QCH*~>uG=6z+LQ-;h zw8j&!Y>QT|_RA;$Ke-N6N`%f2Ff>NMdt$GM9`n3#P@Ua%!$#w<-r9S7F=8vx2zMCk z26WBX6`68WG!&$&n;~+35bUBuVkyk5r>Vo$%e!NBb#FRjZ?@l*QRSnkWlI-(h@2)- zIXgkKIA?+S4}wf;dwR*UH;Fvers&V|Z?>m?Tehpe=C6lM!ES5?ow1};fWMDSixChL z7pN%qoYgxd>w}6{{HvHD%$s&63^!HwcbWSOWWLuzYCct4UUm(V#N}{4EdYAxd<0xf zlj18Gk(0_76^injnUOR$>^21g2RS@83$->1qeb-bpJkLOa{T2@D+9UOiZGqprF)e0 zZG(PR)a0OfS-Psp4n~h5z$ig5g^uTG^meu_hMgdBtJD!EVGjcelH2nFpq|W_Sf6Dx znNg$)hQ^4A$ZI74jkd8eBiN1h2s^6W`36Q7mBw7>AL=j4+}llDs`*G@v=^o21Jm`iN#%_4#0$^jiG7MPo~CMnhIJRrwFr!zMUqk0A0R72yGy88e|_7 zajF{?yVYxprxAe<^>AF3n}(j24wUIhif2-0 zn>6ebj(_z{YGI2UJv2T=;fB!r_^&dUU%fx9IbLMEJKV(4vA{OD6#kw#L!<0T@Pjn5 znY#7*s`HJApaWY10=#fdNp;n_#23<0u9efFyYV=X&4e6l21k9v9(9_R-$JY9nG_Up zK4%lZn-0p%AS)Adpozh#wa2}s)o&XOqmN>dFdI@syY?oR;$nrp=s`EnBmS%q( z-04ULx=WI2t34T(l1(jm$Y^I`wa5`Dn(#fq7p>0^?LVH??_^H>X2hcSkx1<8`qrwWGP^0Hb9JzEAf^S5ssswrvk}=+#5$5aao1 zk}wu@Eb)gA;@U{P^{Cj+%trveijLY401VB9yTz#m-hWW+IP*(bvrLhMyqh2FBb+D= z)R8b;w|JDXhsiN2?Koe;0T1-xFx&>un-DRH5>ft>fNQ5i5W{a)jfgK4umW@qu+-yq z6zbkPD0=6LY-FR~XNUsf&Wlg$&FoRAtbcM~4dF~7FoA5Az+qOP5qNz&+s->6V2aEKJhv286PEv4@q6)g%Nw+J+jdf>22b3`_s$BHO|0ofQp`vt zk)G$q1L8?A+3MX{kO||@_d3D3uKF4&O{8rBX&f)TJ$wC}s6GAYj*QW!3*8Y|w}(&l7WyppNb zoqq%c8kW|5&D^q(Eh`ne*1HXwn@fB;7YBXSVY07^5#-DjIoAW*qwbO3M1F`j4x=^5 zPprnKgcfaig08z%BOfuynMod0mf}%c0{9?}ztFiS$oVvjWR&5V0};9eU^&t`4Ov1m z*2sLv85=^d6KdouSNU=>>4WWZvb%Z$0Hu78fYfQk5Nbbny1CzjADk_&BE;Y&7 z-37%_a=EJMzi9pLPad;d217WZ*U#UAiLr62fj7iem08;5raGarGm$Y9)=OG90fA@5 zqxi`@^uuHXt}POLZzi3dR|-LyBxn_%)=iFu+7ZY0gX#q>j-y85sCL;IXuUg$4^r7E zsI8EsO8Hs8s*ToVl1<@nw965+OL~rh;2xG8&0!QgP)wx3{@=K;Of2Fk5?f10U&$OKfF{jfLOhx0H!GpfBBVUJGBlhUhY0K#hE{cZBaWxAHAbi61}hX2In;k!DxW z8jLtl0127{zpj1gC1^5W$%j%6Gsa>|i#^CY&$N|X`T3vPSLu=elq)R34a^MWgW@_R zYLu$`GzKZ{Gltp=s!4k(fJ_%rJYk;a!p@uC9vjqH^1LYYs_Ikor07YJCIwkDN17H< zz5J|!uJ3zz9+Rt*5xRD{T_7^ptWla+&pL32bR?Y z%e3r^eO_Bc4Kv{bcey`Yd5mIvjjCHqrQPy~u%l09ioiys^dk5h$bhYIm@MBF`oMcaMOgRJQjzboo59T&}mS-BN! zoZD!}DEQ}{%eyv{V$~IG=3n)4KgYD#c#@mUAl2nhG5D7Xu6QF)AvN>*OC~s|z`04@ z37tYUok38CL^8@Ka!4<42&K@tErNnYmv_2q2V^A?V2<_>rn-oKw;Z8X4jpGy3&D~! zqcQg|Hse+ehl^=PWqz-=7vM~Agz3@7IzuQqBd5ED=Diaf98ZW6(pSTu;~?b>US`pg zo6h}<1->ns8(w1o->rL<9PJWmDD#0&9m-Z`W$3t81Gh#QFb|qw3|)#Fs4lBJo}(zc zT@u#{I70^~OJFEo%qG@#PrN4<&H42TbH+?hW+H^G)8)CA3}ZAC5Re!?W38RjJ>msT ztIlbLGOA)JB|mW)W1G{_BRe^5WmjTYRbPdS$da&Tmj6$39NXg`>9a^Xk&%t7WD>GO zroks}dMkU{Kn*d|rJ^u{hH`v^g`9NGjp6+qV25)1F_&C?-WBwIwBXmj^h+MyK^hhW z>L4lW@vu0{rp|1pErHUGPH+JU?-(O0VXjt4Mz?Tu$!{Zbj!j$lF7=3^p!2@v>Op2?1e^!+tn`~^|X4Q|; z9|jZfn>or@c%1VOYBuoDVwN}HIOg3q0%Wxf$e;c4bP|YHp#rubVYLuCX^buQJFgJL z2!04Ky?zFb-rMM#A6=h-xOc|SC(d7X>Fx_j z&wafSq{@%%8sq)+FnG1Tgd__=#a47$u;HPY67ZGvk&3OA{0_o#FAQEvNeNnN>*=nPZ@e6L+DtT+fZ1YJsu zo;Z5yF{w#?&*5KsS)5QMa~2kk9Tagho`17d9Bv2q zK6u*5_dM+vP5Xyd;Ejx^&USws0DQ#PVb>N69o-)LO4yS!IEq ze4+z&#szOOvBPA?LZyMoZ!G+qe)Iu;k1`aL($@oE@4lXS%A zhJEl_2A+8ajcnw$c73zgq?Sc_N?{tTv%}Q6W`jn0b6B<6HEmF@A1=B*X{Ho1lbJ*Z z%QG5HFd8-^r~@%)5^0GTTP8AMZCnzfEOFJnF)}i(alOgur zWOz>C-!0k&G*4|fiFkk{?7T)_T&L%(aXu@B>3K2=_iH2@dWx+l2abHn)(RAD6|x`< z-n+;#WIS~N;;J1vGUte^N~ldA2itwtUm}G=p0SJ6cDz_xcnNKrnw86tHX^-ScPN_| zyLx;eX~Dnxs0cIKt!cxIT-|`?ITg_eDhglWVQ(^Y*^_W4Di}jByb1FQH$y z7RiuLL8gkxC*!)g&)yTliJtAEFq8qxZ=N&AVv7!oX#uvU%h|zH+X#e z<=PQR?;Bxw`*#img{ddU_t_xPQFFJf-o#CiY8CZ85bEJJR}hAyqlhEV;Yo@fmBQ9{ zSrvCZdZ#=WK%j4AP59bv>Mr=%c}DV{CjRa~F9u3cwta!&$JB$DsobkZ8}RveFB^QF z;2n+oBkmbt;*a^A3+_lQnzUe|a|z;|vs^h3Cmq2NFA&!nI`@RhQid{nvj2-eI$agz$ut zQz3t<&z<6^W>4)IxR}rYGKuB=so_xOb_Y=};{NfinA4MZnB&jq8$T6vjcB4_gQvO% z0K61^pkWo&yvW%#Fnt)#3UZCmx^7CTpQz;Gx`sJ;IXe%ZXR2^W_s^_J+F?u|rn+ii zY428&t_;@<{q8bi$IDleTTL^GVk$57sk{2rJTdsI75q55Ly#i6b8lHYzLW4C(K6RH z-h39%hnCR5RjZrUs7P^=Af%Iu|2ozX@KBzSYCR?ZelG0J+89HAz`x`&tci&8z!}`8 zo!1r=T&w?iyH;ThADw+bVRQXAD;!T9y=4^Bucx?Lif@hX9|#%wk`@>>9EZMz&!-{ z#`7NyFDAy|rB{n|1KYb3Pk}><(j{)q<`(hlglG8H1yUuaRHbEJ(guvSf!XLJc7RpF z?tp#WTlD5@OJj3xW~R%0GLlztY#ms7@A$j(K|9w^((h_#2>Pp&1|3MSehLdsdRgG| z(6UK13W~PLiKNRkt5J@5FL^c*U>QzD*b}^{o3gHSFlsk}ibu$! zrEgJ_Y|rYyynYgXPR49azu(D&NITF{PYWcpjmp8?CZ8e6H3uzEv&u?Q0h9>>G%-OW zBS@^;4j!s{F*p1#Uy3m$c^*1`S3F7Aj~K`mO+(WEPhn>n)Hl%fYv7N&dvSMncP~(i zySuvucPs9$#a)Y2+}&M@wYbB}^PKmbujkutCNn#kWRl(Nbzi@B#+nv6cWRy3$i6~P zNn}oQtpXzJKBcroudbUCY7M4Z+?yzTJ5fkR3*aomu4+1oX(nCqb9Oq1NUZZ-0x1}b>?g*v2W(A{qicwWR~;VNIU{K0BbeQ2EBM&ZNUFQ9DO!qCCA%ewu8{x~yaA>G6As*r)8gR7M zL#wlLbnc(pj#b6)o)O+oG8I0?82@uU%c&v2+yh74b#-gfN)^)p>i}&$teg0FQ@Wo% zsc?8FyGiG6?bx#=8L4u6sWZ+?1as9$n2@c@hBAX)*x}jzSH*T-1Q{&iXNs)M)2J&G z9s*`=wer(rbS`UxFvKJ^A{>7qCorI1U40-3M3z-0S8a@g57NzUj(U{$@-h(jr->!eWDo|4s zeL?EZbZGB^R`vMXyZ5z&^`=WYPNRtc<9XWnfcH|DnL`oWZ(M$uko1^a7>JPgk{B}? z#|9cI=J1H|&Pb*WjYi8>G=~b>T(D$m1gohCWJ3?bCS|ipNh98rj;OrtcBC3cQVG|% zs8z>5ct`FjDWE>s%7rq51z51pa}w_-voBaJRr+Hx!n~a0F3EafA_zd1enV!?vW2W? zDdmh=U>h$6i^kS46;`njz~%d=cSAc*tKR^(V~bvCi0Td`@^jx=?LDCI8Nc>ye*Eg* zPn+UgF`Rd??uu1QtdGhzksU};X-!UQyR{G}sjrVeF}0NvDx}_q+mnn6rWTKY8(TO- zZI3zu7Yw@|v=4n6kNq+vg%!F@t?3ABiR#0I{uD+i%KK_;px8nI;CG-gJ!vx()qSq7 zjtL?!##84G+;b`4o-0Npxg;QfH4BU?#1`M+n@De0~f8D zBlDdcRBF%%|3Kyk_xYpGfBBL2OXwss>-PW_JN%b;0p^-~=2Sx@@k z_e2qrD7ayDAo=A-@a)gZ)`l$NH?;N)_b$xu^hfyUSCpX@7Ov*}B!@o1Qe4ciXhWc;rIT}kGP~fWba}Rl@O3jHFp9ZdkVBU z^epGef7%`I^v|bt@?zekm$N(&l8b*eS0}WGZ4=BqRO=ns@Yd$|$+`2r(yG&#x*~(#_|O9i>CDf`Ar`bj?(rQn$Z4w7 zg(gvLOp+r0Xy9}$a>`UZTkFqZ=|~o8{sa=qKRmwqMfs~hNsZa7v%LzGq1uxfVbx3iEX(n_5E&A153(--)w%Tq1w|?RI3r zP~)Q=Cw*+Xf2ez)OyRC)`WF%;x`Blcbqs@TI*XFDk3OTU=1mh!pdG3(jrSog=(?R( zN=gO+wLjEe$&e5djbS_qN|aF{f6M>_xr<|P4%YkoyN-N#N16tCtzR^OfmQq?Wx2b( zE|8m!AYm~lXPKWGkWu{_ZOM=jPSK%@1yJjqn`iA19Tm{%!e%0-niVXlC1~7nH&IIl zZu#GW?{~D@2Ma&7GZ(tZ^8`XsC7@N!N?m0*w6y<59f!E|$nt|PKqh{3D1Ka1x?(O! zHY(v9WEMzT@Az}cCX1x?914dZZaT2p1fU4Bv%s#&UZjS8f9$bu7&X~asj5@&o-1I6 znrJ?I;ECd_cZ(|B#M!+6Wk0kT-{DIEC8wE?+(q&{ z_3NY0h$XICUWPg*DNQN*hh-`_VKX{BN;ml>Iya%25Ir*&GawY! zy}Ir{lQ1zG>qp;D?yODow0>0+{Q*5h%=wl{dE-;+s+EUgTZ2R@xS>}ITt0}09Q@06 zvb8_0;eHi6!MLjQzTzv)q6C#lxRSl?K@_@lB_AM}CAK|ePOx@AS@e6@7YZ+B?sy8m zXo29Zj#=|os_=hVv*$oau|*0c0xtfoo|JfB@QWgGtcVkN@{{Uz!Q;$NamfSW(;pVY zb)65TCFsmIQ*Yoy;o)uKU5jWqMfxhuSGu%l;qSW$PAHln7QG37A)4!3w}^miMg-?? z>yFRml1P<4%AgAicz{YZ) z%Y`h@9T30DOX@m5;8T7r)uT_x3GI%Vuf8DBjh{nHe03h5czQAYM_GihR(q(G_G=yG z^u{nvL(!CU6g;0%hfh%Kg&C@1Xxdw}Mpvtc#AkqcVLB2@HoRxE1#ymdP&ntXUFU^3YpnQcg% zl#9j8Sb1eQ=x)Dy1x%=kh~TJ-Wx9(imS#C=4-5~LC^9l_tx8|#FN$C>M31F9C1!j! zCh#KTh8fYaULHf!(|&lzB}NbhDxj0u@6K=Sks15e&JnHn{F(`hAdi5|L@AH9x^4Pv z^9$&{JM5qJbPLCN$R1Gc*;guk+T=BW;>glN{5ao03W#601JDSu7dpexl1&p#gI?#)&=0>cSa-rZWa%-dd3h_f z-yfD1dO(yFDuu_w!v@4*cbL{Nxr})(UY)>~Dk^iViZjN`@OcZN+8C6HHF@>m#Vy_Z zcnW$e94Z@Y1%%Ud491ZihUq^37yM)Sgo%XmyYAs_g}hZx=C!Rv-Tgzt~G2COH>MigZDoK8+Pk90rn;1XA<`R7FuGV@UpS}UoMS=lk0zB zv`GOQhxN9G?Hl@Ar(j8iD@A=w7|YDk>88!%KPJ&+j)as~TEq8ia;=*NfJIocf@~^A z*{@zn!>DO57ju~*^?oz2Qs)$>YBow&s?d?-%0m}6B7 zqECU5*m{f$sYi&rGAp*X?{BE%jARxHfCKCvosK9U?&Jr&HlBvM1q2b(G=&ft_0%#1 zYy#MrY-bTgfHQoU8Zs6PDkj4n?}Q2&M$~@7Lc{5iiAskaH*nh6G;VJtam zK}3dxuW_J#ICDrS7CqdHkOPJjlVB`?pIrG`(}gDrepE0npUjf$RE0!eGn|w7b}Dq& zS(=se_N+hCCq*(6q{xRBjzg=|Aq#>;`y^mS*#+^}2uiVtMxoCT7#oWL#y5=kM)`&@gK z+OYCPm5J-ZN`sTIU?#mnId?R?vX%H@Oov4?B2ck;L^(Me4^U&!tf7nZUD%u~+=&F& zjQ#=>(J{XW^s)HQM{TvS=bho2d{!EU`On)lr|fZxjAi+wI^v?DuN;AU!Iwnw@Oy8P z-k9t?&~eWtSn(%Pe`y6g@BeXyM(s%e1rRxd-9m~Z*kP<2y`D`0?@7v1XC5o>woWPx zux9Tmf)>mx7?uG6-DE$C*j^x12{l*dxu#*Dlj&2wfIX1R1@1wV=4|AqfhGPT`ubrU zPb^3Vd45$+I9+-kl0($f`>C=w<286kF~MoPGHhux79h6V<#_>G)2EosL2y~9YV`;b zLNQ7?o#43Qr9bqQf23N2nHS{XTHbv#g`dP?2O(d&O!I#@qJODFd{MATAbG@gtOtR( z%41i{S%dCFpLy}Ua&?ZX*OPp967H)|x6UK;u&DMpSuA%XZ z5*k7OYCc+viA(_l%%Sc57{BLN>cJB5@RlL!$HhMvrq|65H9rh5>Ix7wsXQ}%CZQM) zcGfT1amY>r#BIBmb&)PV)5U%rIS0`H<<_v_>{Zy;cWH-#na|D&oX(!WroP!N9|;l$ zp=hQK8N>6!aOU|l=j9|1G>nXpoAaNeZrI+RsQgAIP1FR4OTR!s51V{J&qWMIXaPg> zX-$t+f@h%&@OMnFe;9gba89ly8((=nb?$ECo9 zi{#h)fIbO4s!7#Detyaa2&zim!8 zj||lONB|ogL`P@Uerq&?$3P!h>HLXz5unN3Yb63$8K%0R`*aZmta_s)>#)GqLe&Iw z;ld0WjJOb9B_Rm*#w;PSbaG_>(+r_PD-GQkBLGzj{DZYqB!dVnMB_O}lOZ@J;T$o! zCLBcYgO-!oHmaF=6X6;wUEqKzLl{#j2P;&t5$=`HC8^H$Oezvnh%-qY3B4uyu7J-9 zjaCT=IPU-OLbwM*;DLxRWGNQMYpTkJVY9_VN}v(_m?~`6v`Q$*HdKaNZ3`Q{BAs0h zWc&%P^%3xpI#ndVDa(0}3O!N=Lv|lPFWMQ@w6R2v21;4168KvAM*xa$p&s!Yei7mK zl>XD?5#H6Va6;)s5hKWCdN!07iJ2)8GN=@wAkL>wuk)+yfkxKz`}ieza@5@~tnTk$ z*}N8&C>z~>*6~eo(9|mPU2_){C+j3>sp6TVR+=8wD?}i!R8ik7TgGbdNHv}m_u``_{!1+Mx*m z@z84Mv5WcJbvs{egBLl?$k-eQK+UDP?T*)GYEf&hu8fbU@FU}LvIMGD#pJ1j;tY&Y z^*Yw!3*l@RX^GFl#t=u!Vo~JAc&&mdqUZGrhNYB{5x>Ka2W@>dr)T|?Gipw6{>3%T zF}6os_NmW?Yf!F``Cra_9hTrubMg-X^!8CW?84qMvhz+#2NHD~nt2*Y{ljk8hJt`r%e^yq+xAsgu6 z5u?gNxMLcVz+G)4d+2^t&!PaLP5da*AY%k*PjRg{?3Lg~q+DUkA{Y3q5!^C>Cc;s((dd4KJ~Ca>;U=2g(s=Ghf+D#1{%iAY9O!hFs@l<&yp( zBG5`I2Z-N^{V7-44XNveNWhT>ycxFM9q05^xemjY>DLm_tj81-l-xyH_E_!avz@h^ z5k&vakvLcqr!$c%jEc`m-RIBv+4PqDxs7d&=o=Z$6_8U@&5Teph7ZGo&7tap|I#k1 zcwZ`pZ0IPkk_k=!quv#n{ZtwHi!3~0mK#0?R;%_2>0^bGU`cZVsgWik0MfgGkC^x7 zW5@Ee=J=tE+Pq?0l}<=W|2)CG@b{aPUs=Ru&!c|+evt>H8*QRv#sPiBJd*vlFju3= zNQ~euy56!3q#S;i&$RV@E}8k^?*}NB>dmg|ne-0YyZDo_? zkY#6TL_k1^5#s{Jg^GiCnK9Hr37o1R|3pIapv>2QL1Kxsma?(|x~mf84`C=@+D5f9 z9Gx3oqsYr3DR$+l72TZ@B8h4e$6Z(JT0?#vc&=1AITr)#f zgq%T3_K)l^#PUWzTR8K6@5JlX1waL%={KTE@CDP%H9E^wGiob#M=52{+uMEuvmKh z(VeU4S5_X}FK5F=-HU519MfM7 z^bEwVtwQX+=wX=$Z#=zLI;1D)lV{871!|cG!3M;cUw$I6hp6}^ zC^7GueJKS-q4eFXH1zIwCAIw`an4--sOw!0Mfct&qE;2v5O`P6+qC!TS2MrN$#7zY zC0hIxaa|aos*fZUOC0+tB_TMz$GdlV;Z!OrfAuYW zyUWz{sMn8Ow)rQ-g=bR%qvzLU)@@SMZe8>pbE|na#Fc)a@n`8zwgXI<$oYznTCVQ4 zqnfYPasi*$rH&H5C%0zv9q*6jcIxs^j+R`F+Gsao2cV_$y_D*Eb%u3t>9pKbN>!y- zv22$_^%mqH$|$v#^lj;NUu>OsNtlBaa@3(EYi?Sjr02J5b59WY*W53Dp3b)~NkwIO zp2(o2-9@%pNk5t z7%`9SngRme0>3gbc|29Ixrs&Y_|L!T7Er)|Ee}9-hdjmRFozZGbr4Q7n|~-!51Fl= zYwcuyU%u$#J#_E>q(xNrcHSRP>Fo02*C)+8>)Rf4TgJQ=$rxx&Ph~_jF4U!0Eo<_> zVf0R4ApynSi#!gT#+77bRynOY8n&!mxbb00Z$NSGJxI15`o!cyrygw0Js65GPSmB` z?KLge2kwus)nT zeL=tn7Ln-J$vT@VSop5}4<#si=vWQf@ZX~$(s9AG@jkkXx>5Q}C@Z8sL;8)vD?ayu zNC5TC87V>i?D>)T2-6B>r?Ez~u_iVGm-&YoP%m4r+d#n8Nm~;Zb6!J;LXEROF3-h` zy}t_elEt{{%%-c~n3%FG$!oeDg%%O$N8AWx6}qfPTppgq4-dmo@HMJC?~DcQgzWXm zI4V8B+Y_4AnYJR8Ds-m^`o8Z!jta4w0n1t9Lzt~SF|=C_H|ME-HVx!0#>aowg@ye{ z+&97kL|*^BYG}2d9Udnj*=YFiqq)KBbFbtRJZqceK$let_N$ULwOTJ z?XgL-{bn$&XuPobX7nO)qM%D36N>&LqaKJJs-orVj6K;R&Lx^t;^7h`C`crHxK5Kn zF1wRq8nF}9@F%E=Gx(D2?;E4L3Lx!fw4v{%Ihws(fInK*89#AV3HUu<-R|Hu%^@L%$gasvb2Pjdx6Vj}%f zwg*0Um0yVN&mHU2-&~x8c=J-03(&q@f96Ym?k%|LzUSYPD-5qqUYulZ0x@MIIa%v) z#aBthtO%k%d&PAVPWofgi@1i$TG6({kG~rD3sGF%ts>f5%PF-Fv_8FS$kc9Iqm!aV zD=t}k3@PP(A$)&&eOQ*39=PVq-+kJ0a&qIxW4g59At1HQ_$|cKlF@~?ZXl|L!YVk) zo~2s8N#Jv}d%GF_294rQ50KhI*6Cf|8=@IfZ7Vo1eSTqO75Ial+?d9Ma=Kq15AaX{ zflfT7RyE-7-W@OaB}CwdUoDTH;9w2zu=<#nWv%AJQ&?C2r(LaTX)4dp*X#9u`T?ui zpI+%@sm4N0mO?9J9LaEq6W5JVN-tPtcA(q=_le(qLTQEiKBIvMn6Rn=CTgQ;HQz!M zR}rT)g)^PYZ`|(RA17ayrDyfO`fp@UQ;joX0WcAEeC1s%SEaZ8|smhc`-3)Ev3QzDUH+X9ubIk@C#h zS?*V(OP|p6QtVPRLY0ueSC1M?t#~w@XO1N0O!PFz4hTj-CHvfa^fL3dpCueP_Xsp8 ztOlHDxdd#>E^EvYl02KA7vL>ja8pWpkwlmq#41Sc;w_sdD1C0nQTcG5>}N{9L?hc=cam0{!t;x}I(7o~T*yzf zBV~HEtgvpN!{0iSUvk7A{i3BaoX^+)*$as6SK;@QgUO@mUw&Vc<5nyoSRO$zTc<}coIrScKoGJx zv70JYt)h(Tk967EhEJ@AeU*|e#f}qu<&R=z6?#=Yph}9%Vz4c()k~`CNlR9tF82f4 z7*59NbCy|=5K3$7=h8lqhoj9Re+Mxg+_5aRgN;A)bko$P-D0gZ6BuLMFD?2JwA+zO z11&(mJ;uS){mA;FAaj)+Ua(k?vyB7}9 zt$nEeGfck2)>F&u8NUQG`qAY53jcDI;_KtZ8Mc4cUTekT_{D6iz0CSVC-TjtV4C$i zc%g$nTT8;aFS+vsruBxg&&FhBFPHu7?`q)1QNC61@@P|!ptVDI`yL$MVY8sQJ}dSU zh&ZZg8Q$s$vL^S)N+?>ca1s_d{RLBsjaAclD7hWCJj?q%67<&5yA)!_7v5xbHb`3H z9f{Es)TVeG%;n@?w4*w{_^L7Eu0gk6IDNw(GMr>*_g9?ceXtK5*x$kaw!4Ue^$5^B zYwRP85C>C_`#wH1qvWCkKS>1!>V+|OAJDpmAcJ95gfaS@%*g68M-$-8=7zSVM<(@n zB#4o_5D|K+cP@hhxrvQ_#Jm295Pl63x4BqfcZPub%Vtd#9T>xrG_*o%}}jc%l&w9vP9nmMqRt3#=Gau!x!2Zmiq|c z!b;l*4PfxB)drH&@vxHBhGU3JhZJ=>sxfLe%QmIdKoE9AD=}Iul3Qr6A)0xrLY+Nb z7;>%g(}qVob0gG~zSwavMfXWM2{ODhO89dTrtCXd;0$Cvd3v{`rwm-%3IRHC1=)z> z;lP*)2WAh?yg)xfkUgp``6xS{y62GF`bPLCOi@; zPWHWD)c3V&1VDMQJ+*c6!uShNJ6@WN^1|#*_y+Hs!JFTZnVo&4n1i}=^spVv;XNJQ zH=NJ!9?f-IC|sCv4b}^hq5<>PBx6KrE<>cF*eEa4Q)rL%RdgU|$Cf8=0Ng*#A1%`I zH;(4WkqF|W{n66xQRmLqLFPLtaycjHm?xhfWQ_BdaBafjs}F{`H0~do#Pnz;N*SZA zL)n^VY@?%_jr;l=Y#szOgYb_(6`cn$=1?LG$jdhGK}A)VA!AVZ;sP6dI1aE(w!G z+m@pi#;Dl)wm9H@#)aqt8@uAND1cZypjMa?BCO%zp@lFT`aN{AQC!kUFOIgCaFPYq zMBO4mY{WF78gAKDiIWyU(k1`HB3aYhBKW8zYC1el6xC5th;m?}jiU!Z=#`!X`9G=N z(hr-xYKyZ%9PA}xM_V~&u%UpMbW#WQXh#dj3+P9jEMJgI_;F}llTc&&qV=bE${C7f z=l3?&5y9Ijn`z1Z+3H4p`dKnbJf&P&xzh?+%M}p5vTn(u>{Ml9{!7Xn3k-_pfG~@D zSO)QoN@3$gKBIr53Lyv1`%8q~bub@t(&X5Lq*ZE0DDpiu*-#_`i>FBQ3&s+6J@t#Q z35yU+qrNJKh|rk1z!uN3vyr6g>&8;ppnKB3dwB-Z;2nJr+f7!2u?cGK>+pJidAom` zU+7kJyEcaRtu*Ic@JbLN#IAx>hpr6L1HO^gGR5dI7>Ypp+*K@!fzO0`k zZBo52miuxEYxIZ_?1%Px^>^mSkqLiur=J1mcEB*&!fkuy(V5j6QjzpjXTQP@$_!xq zn)W8YEO0qo<7GMgel)-GH*7x--<`PQD!5FvDO&OaMAQWy_}@o04gMJ&F^xzQ8ykt0 zM-QI)o0Yd22`4L0ny4l=h8-*Crx8XKo>|u3+~M;m*Z=k;NOS~vdAL})#l<9Rv zLXi{B{IJ|)_NHnwTUsWdoa{ceI3cwV#Fvo8nWkU9rJ#UN4A3w}T76Sse@IFF-Nai; ziIbc<)Wld?A}H6$`mCYS-ri7)`8|DH|GOF1{A(I_2Y{@US26+_tl#j>2 zvg|9>X#lG|nSw&62Z_z@LA-(@umX1r>t2UL2&u)#6)aRoWD7>nM>J#3 zw4G1M9mtqZYzwvC>s|*shXfho%yb0j=PceHy5$F}ZR;TL$@)Zi_pzzEmD}-F+_yrz z24Xc?b#6+mUCIGuNLrG`U#qF+5(f+ib$g;OU;jD075*|@*l=jgS!r`Sqp zpJGK?;yoKasSA$~-~mGpVs(tz0?#MMg9#6mNPV8);ot#LP1yMsa4H4T9-Y3LvU^=a z@>o?++g$~{>6hjhC)9y8&H5~<8svS4QHP7}L!W_24N?d4NgsJ}drwHA{`tv(m?TC5 z z7=<7U7XsuzD0e}n$e!Hi<_{5sOBgA^@cAZukO}-T+DD!AQ*u*470Nm2C9ri4w7lRR z&{-Q4#Mnk zV{Mk#rL04q@I1`$a$UglxS>2aaTlSn6~*(R0t{AqkTY$>w>^3d+QgITe^BnlmZ7EP zN_SbUF@0y=nHR}HOy@LQazx)b4p;}-qqGTTo58F_2V%+uBhrAEvT{{3H$~pOJ&-rl>B1^jeOqu2c7+dV zI9yf`H0dPzLH2Nol;tTWg3IDR0Wij;e~-CBJq!5nNpMcMe z*8Q%1LIaA`Ci}!L8u-&(IZ^UAOR}yBwhNL5Hzlf*2fU))@HlCYfAx!vhdobz8S9OhY2gHn;nL^KPK$NeZV&k7=iV-eS$(Qe!7hdZ(@5K^uW9JjC-@3D4`R z{R2C)*$S2x*Nx%Z8>sSfZyM&|oz%D$xt+mVxUEC)8YxzUloup_LSz`v9l8zn&PbC|W(EW$?j78yo$j9~OM+xvza(rvP(>k9? zlM!T+ARSRawH+_Yp&#{s0zep40)Qv2;c z+T66SBZwZaumUjS(5za<5#ea~QOmrW(x^!FD#7R=j`hW^y>4^zw{(Hm}R zi?s51PCu{Xq7@H7<7dtUW5=x4@^FW&Q83s?+Lmk}Btl_a4)O=ouY#7-(q*U1NFf#+ z%8$(sB0o_LY*rw|W-HnwFrY%v1=);vtLApzqst}4e}^lOTEKjw&5lsSrOFz`EwEYO z8SLIn_qnjJ+oRg7;(5HcQz^uq{^z46Puneghh}G&?TpjoEccmsGRwQc>ZRZ-_&#i4 zls}AX(Aso2HkYOsWr&bHIdTFEgr+0tHKhRKUGYZOT_E6rA^pySa}|apMD9;RsGOs9 z+LeZ0*5-SycpYjxG#q!{eOnFHI~#YU&7lkBO3ipIwDv7l#jyQ=8@f`t_EvjvR~xdU zkMIp~urx5xV`A^=`T_YaQrpdWstRuQt zz=~KyGg1KFHZ=)F=30dRGPmG`t~Ei@1Zq`_r%t#;ORWMie0UurT=Z}~H@jJX{kdY= zw@0{YM-H4)N<@{OF&E{^Eq5%u&eXD`yTTd8+z|6RHc99ZEMyK7%!3ozNN4S>H%wfA zRj*^!A9s^CuxYqs543#9gMy#{F-lX``!<+Te9}}gfCK!qmN`JUZ%pA;&K`%%Q zCTrF&$YzlugrX?Z7Fnv|+z+_Kn)UmDR!3_aRWY(YytmX`m>X z-}JnY@DUem_w(o?>cUYsUVKfiW=9aa{Mg3V4alku7 z`7I8y%y*Q;A*sw1(j+{bYM6Yn-{QjDYsxD%*^`G%Kqdqd$7=LFANh~+8wfC~?Mjrt z1JfnEe&<}Ad)MU46JJ&BtG#5#324*r$O)=w#y9c`H3ifh)8-ddJzQ%oENl zJ#|ylC@C`J6Z>|yxzgVjfutwa?6MTAsMdX@%o9(8Dw2JF`^fzXlk>Zb1a=67iuW0E zj#e(R)H%TQ%(r|DN4B?*P1%~`dY?#>awwIG3j^h}UM$Jq$#-vVmVfa_FAzw?Mr10> z>k(}O83~wDyrKt)2TfM|O6a7?TkM#GxUIGL7{ex6;G<2A%>)-W^NMoNbJb;dSRLnS z`D^O|Syw&J4c96)lx!U%8^h#Jk7PMYg49|T+V~CjriXqFB;7^pg$=n{#sR_bh<2;i z=BfmD4DL+>$$Ix5_itI+7qD{7{0`T^^e6q%!cbBmJcW$j8tI<)DwJX7NGVc)r_}K2 zQm5d6QciP_cY){lj-KZWcR_g9DM?9JzdkD1H2I!4*Mf<+=z~AZqwYCN*5wm-LY>BU zbzuo#Pw30@3}E{E7csrZckoX3RkG|0Z~6IFKuyEg;Z^ifV}24iW*;w0&8@ zTDYR#@Lt0k3&I$Ag3jUXZ16CS(Q9Y7m5lzQ*7)5ZzRwx7FWcW2(h!v86LzMY4y|_G zW6zMu_GWf-tHS496gCdVWX*0Y${Oti%F;*8=JMGERS<-QitNzk@iiQg~u1G3k zYWQ*pkRboQ$C)lnpLnNBl#mo^k4taGK^&K8ro^(cbxMIndO$R8356 zOlOPR zbvoH#SaaCrPKP>Ye06Hqmsv_0FMXUp><_=aWsOA7BBWC--guTxWI+P7{HFEUzc_=x(o% zIXu^r?+e%S!NF1So9@$CZ0TSM`LSb&wA&9UFcS)XJPwksEWF?Vn-DNclO$$s+~2Es z6lnz&P}`gUQVNpjKI8;YRY#)cWuz-oXUj?)NDRQBOxi6W{f%;sw*`%X%a~#;YH?ff zYW_8kO^hO$N}-YEreT_Fb4s*Gsl>H-)Tt#_7EaEXlslkdIw;ISc$BMBx1Tt(g_4iE zkAO%{(FpPlMmv!efsVCVwm5c-$AIR%mWm~7w_F3xN<(6G+Q}FwBH0U7g-wRxZ@JPR z?1)FNoMEeL%k-XYSAqb9a$F8mV(BC9af&IR+gXo_9clAevVvL7Q%D0b3_whU&`I9M z)N)>bu>J@V{?(efUKxZq*NX`LbElAxefF31O~R;8y3Gw(lYv~9f^L89DAYkfF^Kic zz~2`KrZiG4tpYbdn&*1hk2VKifyo4A>HQNN57q?Q=^&9C9qF)@*flB$Jm3s`lqw0- zzA>P3>|JT)YEd=P%{GaQV-eA=8*kkJx%h3vYD@B$fM<0u+vG}-#9 zM4X@<+NcJghoI=XZQ<3fNbs{=QO)~F=`xLyahm5xXxI+|6|eGb%fU6U@dm0LE<=B9 z&X6}2EH9!|9AZ$*Ebug+JMpMEn$aDUg*tgQ0OFU3OF~rN2U=q?iPR6RH%xtT(Qp}& z7e^g&l(N@*M*jp|Py&l^dg(XeGGy!GN~e|A)@A@$!|dahtO*V}*`-#;uFgV!v7`w6 zjjzjfnsa#6T6IuZ{jPdx$Q0uz=zisish{DeiPC}q%gQJyjymR@EFW*jKBAkPB;X64 zMJNXszG&P#rX}`S4wktssG(4y@|W_b1f5v!#ER)=d#a(%8AxDc5M(FHs)9=R%_jjy zPGc?rO;iLH3pNq?2|F~o4~9BJdKwc^B`89jYU?)hdBu=FOM4n?CzNAVE^a0KgzFJe zXj##yfD$bvRU`WrjE^FJH%rJ$A$}sVRC=+>?=8lX5S^?#bwXc2p2Y$(j-ouLX7d(yLpFVUKUfvmQw@CsO{fIW zU@VfJ?d+$aX!zN|0T&z~lm?(&Gr=ODnl%;)fxBSr3@Cv%u&H@R${TmozI_hdpxT~b z^&Laic)Lq&4Eb76$-iL^l>@W#B${_dc+8GjvmsH9ehrES9u0xpK=t@~fM^d>Z8?*j z-d;fu#M!$yJ-ZBBP52J_g{zd!4h{i{gC01Kmk!gJTorHz;RNitsmiClGYg`^N)h~< zws25qx8bP9NM5mlvVQjGUX1%(%Of9}Td7l@DxC>jvjYsK$#stQRRiFj-VJmgME!Z! zjL}z1M-#D+)KD>YKxcg3VAJoXlKLX%H7?5wQY3owbTqs-mIPK*&*5;(Csm+dE0G+k z=<(ZcbW$aOJoe%3R)ZgsD`OWwGc#cdzsw$7>TV2&BDuFztXP+>eLjLc5YlCAm9D_4 zj#hVJMR0vLl_^lyTG2zsgAQt2%6m+MScj~VooVwmkcltH;GdEiJTD~Uyiu9oJXWRn zEZ<7Breol34~FhH+Iz7RTjPOIMFEX%aiXWs@T>4)3a%-vr=ivTO{~kWWJaPjW1%cY zKY3RuU6?nB!F*XP+ggreA%Aw`@7a<004ZgwrGypVuJ2B6jbxbr z=l~rbld}r*76vAcmmn_^>xP=qZ5)=!536ulc!Bk?k#d7QOzhlL&U65RL}v&Y)>9Z7 z-myI(yx+5)w$xE`iw@|0BRpcK<-hO}RqGI=bCUhg<||o9`e^-K=ZSye{O3i#u+NL_ z(DRpZA?MTcb7z&2M%!&ladCAMwql;s{R(#)aA)a`b$`WfE360??Ja0TZA@S}SpvOU zvGW|-N=|rdTSpT&*oa(?aQ=BfoY?XHRQYSHGbLQ|uk&#gO$T7?@kKwL!~C8SeYy8i zjN3wRyIEw<&?;$Y&N`I`w$7L3Q0U%#rt2Cv1<@`f$R`tI@%NbQzOTa1P?R~G(3AGW zFMn^4Hts_M&jwLkSBK2Lytv^>z1y|_Scfp9J!)3NO6-mvTT9(>gS#W;jq<9@7 zBq(&Y&I|NJm`DeELunPIB_O=2^NA`Y{{aaf^yb@=UMQL&!$!k4rsV#dcUbHVajtqo z#(yyz7(06s3T?*CBRE+~JpnTq7f;GAK@1l+>pzlHBVm?e=OJO`=J@Zx`7dz)ci6Z5DT0Qp%KgT6-|{T-(z*nye==oFC%2nVcY;Xp}dxX3MT)v67XWy*#NlZ3LDeFgLkkXF!%yZ5S&O{n3`y>Ze?a*b{;1Y=C0ng z3TOkm6A473;36GGVwWVg!!B4m+{px_f|d*kv@#09iVl@z1 zM-7L8nV?c>kH3FTCoT$xCj%usQT7!_gtGw@UIxD(o`ey>HcEk%#cgrcd~`>$0o+t( zN(~$YDFQERCb>ARn5!wgKNONy%kBk;AmLM6;8zsE1EWHhH?N4hLCBSu#c!YJYqkz~ zc%j3`Jf!q}iY?m4Y&`vAmCQaiuf5csO{CmpIz1oqSDkfo$Nw2^>5PwF&T|~yl|_J8 z0g&2Xa@T0Pgcpo0xpvk<$|7 zhOdJ+pzveK=!u(y-{~><^&KetPOOh%P`^3Ce}&VW;KtD8XX3C5=3&gOAGFTTHah4W z->iI1=KEcWJx`EtxL}i2B6yK_q)2+i+dY% z&dgs|rNAw&rSK)B$PTLG-ThHqQ>dO}XcgR|VbI?T$zkhc3g@h5TJ5YF!*gvesbZ3$ zSsu}KQ&p@#=P$H6c5C@O5H^W72b*XexD+{G?fTqduK{Hu;l=UmfMkauRp+*8FOW8uQ5xr|>9 z`jsWZvdQJvUdW6^E#B1JQ%AAyh-F6lc3v2ygp{K<^(Hyz&S zOxY_^jnWW{%-UpmtNEmVS$_a+HoYeVS(gNOYtB;X@pdQf+nmAB`nMaJtB?3&U0 zd5sYVVz7#*(DWMUJ}ihA$rxuT&S_mt2h((n%iN~>-mVWDQ+1$%tf}V~${`C1r|eVIBSD$5+M@34xl80oqRdFqO%8_W1M)GVR{I!V={$5r1kr=jF4N zMi{99T3PzFWdeNudV%}2y8ZBueILqLa4CqINv4cIixyh}xF z&*dDnymq=CeI-~>w`nuiHOon{)kioVMo{}k{xBZB%Zu`v4T1L?!wemhJpSr zn2Uw3mfcX~2xKjNcbC}XXCFxcb7XQCj?udsl3-wEg_pS4lE^h6-(QZbU?$nm&@jW! zd_h#0#7k)y9t;3Q-%GC;)u#*kR=BTS3DGD;=?9A0JsQf4lH`ScYZe!&N4amQ4E#x@ zMI0GXGIbW=6r-qgyZ|-7|-> zjWSD5(e(hSa~;Gh>WhrbZgF%+O+jaR0!etqpARlFlK(m&9OZgai%D27x*eBG=HfY? zH5Pg~1Gj~K+n}b|KHu5b;g)W%#T^>cZ2;#z7~>3uvfk-PyqjahSX)AO1L`62^&n6B z0-4?G!EJ}#S|D^ZdWSIfTHMI2;TDe-QbYV@a_W;+&OTJRbxR>%k+WOaPD z?Ihvlv4(I~C6dAIF;OWKvZ;s{@-yv@`S|G+bAO`b5n$1xDf{6T4ZAAgT)Xt7Ln2l`uxq#1)8l#Q`Q6J(@J4;rJ>4UYAevz9dv++nxRY~Zkq z$@?8;CQVxe^kHoMb47*1@3rGYgV_?*^QlHDrCuR5l0UukjIHQ(C&OL(%X!{7aNPt1 zEl5kn^?GcB%H@UCYLu)`%O5fx+ z^zKU^Qg$guTMBh|XmvS6eGI4k7Wdob*9!%^3${|9>G5iRY7Bm4+*iK1E3|blu+^Tl zdakQXCvE5Y=eb2RVFa`U8k6)%)+k}1$;3g@1b07I9+(R0!pnM@oYS-a)$fTgZJwXhUYD_t|8S0q!96iL4f})#e zzc+}e<;>1lJ(&eP2=9pkO9K!4N#9Q`y4(Y(%7%BoXLbv+9YBIm)fCj6vV44w+<(nS z7tVD5Dl6Em5JX!4g3f^LrTS0t%FFwY!~dWAT@Ds*-v3SAglq8!Tz6eP{qGHd__*x9 z6F}}8q^WwzbWD;0<3ra*I9_aOqSBepUIUItODD~NwYhS!_c#MAQ~9dQi0daEY9F?2$G z!Th-w$07`DvDyE;X1EGw850(|W7z*ZxKwDk$OT0F7leOMq6IABJo52VI-><>Prp*J z=a6DRS(M3Brr1I!8o2deR}{M&0wZ+1`o{5+5ms}f>3w}o(yQtw{PrlH< zka&MQ1-v>>EIoj#STC6Q>r5B)V-G2hd`PE8kL zBX2kkmpF_-%>y>vap%fuO2OafS@qWg;GZnyLMBML2dXUIv^Y&au;JNFjF~GJ}S?pE6{_=z_k|k&hsyY8DdUo1>*EC9z5b$phbF zeO4Xi*kRIJSWz~czN8XkYWxFeVBCdCYPzQdJR3H=uAKQYA29lpvjUC=_{ibP1|a+dk750g7b; zP8OJWAi2WJRM;6{x z-|UmyUSeJ85}h4xN`ef<;{E}_1sl|fA%{%TKqb|g+N*s+ji%#)!jmR(MX=W*Y35E= z_0&UKX)P9FUkFAV8HH+$JhrgI6&)de0b)pX$7F5iooph zwR4oo8`VA?^1uzcLiIh9}ZcjVMTUAaYXWA+_M@HJnC90A%2QzlO76zLkot- zl6Qz?@-@JNYXnCf)$GaG5+`b6A+9+O$6B8h!-A7Kr5qkjbmkN|IS258ntHMrMMbfZ zluRpORp)%`DNpfzLGy+<5(kvG-;3x;n(xF<{@C74P4$R{=k98N4(zIMl(LN&^oxR? zqO?*4FAQlqed;LqW2xfVnxJd#29faLO);4esF&I;T92ybPiUGjp!>sHWMP(R^kb%* zyG{nn)DX=!b8rad$uA^6_cnCrx?$z=f<$8zC#_JYW#ur3wzKQS;yW~WRC3EC= z+i^>99aIR%9{3UI`gklOx#m4RpYR>xGJ?~FT;ta@Gjm{vh`HUqI}^X5DIJ=-&Ee)~ z2lye7tAoEw#7%yqX8>N>rNRXVMn`vAlWZ|1LODn}Lf2h0Wul=iSt<3&8jJ1%Ej(+m zya-YI31P(ILjh5$+m5HAwKB|}B57xgurH4H|{&n7b z6%1?;{JYSo!|arm9Wbhy+#YNoq5b<+o$HR3X$z+KmF$N`oi2csKtI&f56NOxB|DbGbY?!&ecE|}yZLlQ@uOL&K;hL4E|CtspotOhhf3 zgstk%FwmIJm-@-8Rs{y}y8fMnA|NTF7zOpR6#6w~a>N68TR~@n0zuNpp*pCFYu`zk zf;d?Q^6c`l8RFCIHxXRph#>A;ZJo~-Nty8`2#IVuG#i#TY3iltq^)@I`^L;=lXodmD_vHLG+>cMMn{rC z(0(;A-5?i0kAh2AmEcX2GKiY<=*1FDB6!Fw!20~Yxi@?J;|V{s{Q9BLg~=&+Fb-l4 zhKoW1-$bEzYQiS^c`Xy7<|g$0s;VwCH^gmMO7s&PwSjkz8MLl#p4lYs`9#r-Yp%*f zHPTICA0GX8=?<3!tV`1#{KTko%Z+1}0YVWA8731T6|pvoLRM&nMHFWp%p6@fFv+P|SEYV%akoC>mGhAWqBu)D z{;C|XE)*B0NqIPg^@f$38Eh~BJ6c>%?ga@iE_pn?kdqhv$2pDD$Z`sY&c3U(!znGy zvcw&MM5TUQN(CjlI2xfSL7=|L$|21IH|lSW#i2(PVS{ii+ z#xC;ZF876MS1dI|_W>7xC2ckL#JC`@h)H9n77fH&A(u%s?Z!bGm%CgNz{Z*vk7L3R zNc_2?QVYh}8`31oa4g7xt%O=~Ni!;~lJV=y^OvrVpVaLGXM<_C5yIVL@rV-qXloo` zQL=gpw~WF+Re$^FBVc^(| zEH2nZIJa;fl)oK+cuHwQ@xu(^v{uCMioU@9iE`LqBO%xy!sB}`TV1*G1}{%rp*a(Q zrTN?ICBgT#2I~@$pbn^`8JvEC&bliAMbt$suD$ST78Nr4ibh4%xPut{9d6Nb_1F~% zvUI8&9{mV|3U_7Yc=i%^1-1&_Lzoe!VrL8pyr63YH2SL{$GJaHzTbhw?4_NdCvl{`afELzA?Z@8qXnFnvDK<>R8Lx zL$^Bhb(L1GgFX}2Iq%Mz#W@pwj_r6DNLNHXd9Em6W6G z-*7@$mnjU;C}swv80ka^LoF8uj$U4nh+o~iVC(z4xc0W*5BCgTpW0~(TJN{~Gzp@& zgyKaN2fuA&?I|`IImFxJ1S#IU3^nCCcIGf6O-SCJc|xh)y9157%=z)}&R>WD0Nhys zx3v3CeM*kwxP*naz!b9lZzt-SO1r^WPgCP=yW$JY9cC(oY+^h1{f)bi@*zLM4Z(q( z5i`S!Bjt&&!QoFHM1&fk6_loPIk!y?GQ8zltoTws(c(MoJU1n@itDG5u^2>w7`m{) zU&rqCZpPoRgMjD+uTjPW410d(^Jt5nV_Q!7>S)LJQIGmy)T1}aY`bc9u(U@b2dxe2 znP6i%D#!fzJ*UzOL@l(o4%-s&w+98V`k8{k$DdagbITdNBK47JkKMXjhN5@v56|7R zI025$rfDrvMH8(FU^+5%Jdoy|Tp0@}-j&T$Ym_uc2tZ`AZ(SSRNALspPY&=1baq%a zcnWL=sC@S6@7r}hT50r*P%vTpfUV+Od;N@d+A`?bFjS9jao%7&i40I_1u#egQ%x)k znqF7NH-=3=w`7E$N?L)5A_m&(r9!q#d~r*zd24tT_prA(Xqv$tsjfz)-cqIOjTHwp zt%ZRekbsy)S>uT|X-n;yvH-CaYiwXpS#UE4FI!g5*gU+Ocf{<$;8YT+c36A=4Z?=r zT2&~e4SzU;vYf5PF zhpe5pu3Xo@#cy0%83TkrH|nc4DS3lec)~aCJPIi^tmqV) z*i*wqn|{Ou=XL0>Vc@}C%pVx2KOSVaZlGKV(|y zzT}X1qFQ-62`xviUhwqIIXV{<_?6=&k}NRgJQ1{q#ZIn^L# z&KBFZ1-Clk*5+u1;G#>vAP~*)^PB5)7)};}h{xaLBJZZKtSt;8^e0nw2k*=qFPXJ_dY-$W9@!SfzFI=rKDv-6j5KosjuSv z)c7gn=pkX^5zM=p`RR4OE4V`SM$4sw-bmqFmHe&5oa1)cS350Pdd|)B)*Y+H-^B34 zOQH#$ifR@{5sECwJ+J+t`LB7BGk3&CVfDeD!j3QSQ_v^vlsRzpjKm`_3d}9ANSWPDOn1rB{Xz){gtE9 z$udl;ImPP&o|1IK%~4u}zlpAc2fAvxY1WrMBAcA@T$OD5F=D1KgQGLODP?|4O#+o( zsZ<|q611$3)vy7V9YwhK8L97*w65n1h4*b<@JYf5Q%&0rL|AHnGN$dcoQEP&F>A&m zp^jO832}+uFZ1EI-Pj8Lj7k|;t;uuPS~nG$vw3%fsm}iKBUOUUW6}u0u3HqZA6wNn zCpd^y>~uzyMZPvzL}8eeA;jlG!3>}b1s3hrmjZ0HaYm=Wg)&+R->tfy^&3QSN!)G4 zdjkL=##+N6!bpAYi?^~a#Y+t`XDS@pCD5&FbtHK)&?wOmlP5a3L@--bvDx5*%^WPX z=@9zdjKEn_3Dn(r`C)!&Y--%$54zo=T`>1fRJE<2Ogh3n1FM_b16aKWN&uf;{f5nC zvCU51+2yoj5qjHW`*lf{4)&&};I6=%SVF-F*dEpS_8W{Xh!rmKPQ%VHL03s|8H<{z z+Uo+`P(lI*T$Ht%f02rYgiE?&OK;bF`KgND!Tr)>m^|lHu5`G{54JuY(@l$s%b^H( zGdj@WykU!z@_jGSn~SM*OMtmEW@i_>RyvJror!AL+=F{ihRWYh4$aUKEU^?(xLwKq z_^TKt^{8h9=A(@Xs2f)t$POK#g-m6GDW|X;Gvk@Z!RqHlmx=HRpW&gTJ)6CbQLQ(#TxMqdbdVg~+xo~tgF6iONLnec zHs+m=dgn2{oYc zLw>yrbSK21IR`V-gQ%@~goJA=e#;;)-l-N(AnMl&qtj0v22=&utwB{9y9j@PRcTlV zIyviL81Y>=4OzG(b_``~1+)b%h8`9T4^ z?TV8%bU`*8%!r|;s;8Tc-SKJYYVVWQj}`;xark!Ogpt{yYH;wBzFtzw z76f;J4tPSCVhHfjeYmGJXr`+adyKC#h*(c5#2Hd))kN}c|Cr%rvbNu%o+9ZexOn+6 zhnWANV*jZLf|{T{8ubbh_Ggy`l9)~rLRozjyQp3e32jPt=+9UC%CShXI!UFHNPn{S z(-Y#Ap~n^F(7&Nwuj)3yeFjbYJT6mz`_y`Nsb`M!?uu{zn~A5)=eyW9LkX7i9YP zX3GeA0=H_W6q;59XJcdizgD59sKqjXv9YJH?w~iP#Dc43*xZ6?q?~O_{`;6wa}0_b zBDd2fw*xu^4aUZnfqD#@^=}?eTkSDu>k=*-$Nx_-=Hz7kPtUz&An$e1in;yoAme{k z2;2QQ;Webl;j&8O1M3T6^EFz|bZj2>Q! zfYaVF+`DkQ&Wt>>`@Ia<>FD$ zAi9yFS>f;g{-&jmLu%Ig2>wW?@O6oo+EjdA*thaIY_D?LeVHx!++y3m*hGed>mZY> zMmpWHbwa$8W4)Ap++fV{BA~bn z9*0hMZ?6w+ETKiWz=dC3>9=Q~@@{x4Pgn!r+l&Mp@ww})&eMnuu3ES393rrm|C~eX z(3?AyX96EphQZFA4Gya*el}eCJ&>^%-#`b@o{WNAl`4CnarI~|Fg(eiRB1)LD1JVv zasQeMl}8%fLU$``XKvXrHO}{Fh!D8Ep#wIxy+jI>^S)XUaS|SzZncSw^o?eg zm3Lk7d*Ru4ptHCT+Rm4_;t?bSoeqQWc?stE$*%IO( zX%K%tx2Llz&=zI;t5_3izgMQXNB#M+ak<2-4Z-9hNjHXi++wy)GU@))`}f<~R!Plv zT|My08>!!QiR=<18%arZp`MMmI`(DukvzHGdHCMAYaU8r9omPFZx(#t&rN#KUcZ@a z!tiQ~Ozt|2mqyyBXkzNRxH;cUWfDvV8FR8B61N^GI;$md6bE9$4l0Fm^SsgC<9Xw_ zY5cx7-H6VVyfEVybC=ZXREZez4v!!16$waTh$ez)?-%CAtLBH(d?iHqEWI{-Jbl*` zZjHGNRmsad+hlgWYpiT*SS(zf2}(D_*b1BRHr{oFo4F~9*KiE@UKIi!c<@?L>T@e) zC(!`b=`7KBRmjh@w zc7sQagfUXRAy$~D3(cS~Ge%pCSmmPzsSzK2v0vtZfb~7j-((#)$v1UkqgRDNXYFG_ zqpf@o&w}!5GR3*Z5APK_{(v;kZ7%AGeVs15+>{GcLjey_d58o>k<_3l3qL8j8Ts(G)eNcp+@d zN@MIpBif(pt+wkv5izYh-*!VHx)eJ*#k4M#JDI`q-~VoMAx}6i=f#34bFrXjYUZ9P zXF%bpa?D1;gCl0{Sr)=Rd@$(?$PLxl$yI)W`Bc$Xuoii06c)XjL)Cx|Z~_myq1HG` z># z^ibRv=b8>1y2HZqJ8?E7Q2>9~(n>)gnLSB-&iY}yNyM0hH-bUT^OU?y5UPd~PUi>$ zvC%4+Hh7qoXkU;voCha~EV9~n;!JyX5G$q?CCsVc#E$-iIG}$Cts5c^6`c9&LW0k^~vr!H|I@=t=N1UA$3M{nD0vlU*Iu?ch=i2e=(~lsUaLWT(qOv5ai%5U8RF=f& z*RiKDJg}B%(`&@B7hq!+rGD2THB6`iBm!-@nm@;H&p{X8+!)ff<_&RFh~N*LOqs73 ze;c7_NmiO@OAz6t!*K5z+DVKhs+m*;?H~oO+0!n`X|Pahw`#^}k`;_IEI;c7?cs@-s*Dmr&ofOruWBgq4xw2S zoT5(O4mcpshBWtNgjCdTF3{AhVKYz1w=`svllJLXfFiC*GCBnBqohhiVLg2rFy{_7Bc36#P}_iQibilMUKI=j!6!7l2Ap8X89Acnw4p2l5w6CC+vJtsoFEK|g?YfaFPSkaM%S zW6u;HOH-zsS^ah?t0;ikncEF(2j@Rl`k5F1aDA##6ZnLB=5XBk5*SBJMZwXUNJmw$Tcms_GJYA`Joy#B7a2o)#pzRno>-7BvNQcXj>SaJC@>w?7LE~~aD@gz{S<9ny7WG+=bcx8?zFTnIl&#`w6I$QkWOqUbBBOL`q2FK$7C4!gPGX@eR0k5_1qfT z?Pk_EmiR4WS7nfHst8uNMDPbSPjj_j9EBMb;hVA24unU5vFDxop0}E@$UBT?UG;B@ zID{SLhMAf@sQ2ECn->7e=yyRO+cjauKb$ zGfg*jY~imGONM>>qb>rtA>JaI9R!p8Yu|Hl7Eb>{pRc>X(Z zk+5<7Uv@Ja7h6gZAwyf*5|}GIC|e4spi+j`9vD9;S4Q$4SS-Q+5vKobf5ow+}g2E+iCyl5h=m*N0+6#pwl{FhsnIs z`6%)_@v*bLEz55dK^q^2FnA;X7sUpG8KE)U2Ti^uX($)fyqF|Ooz6uzb8jfJYF#qv zY$qT2&Y}O-y2?g>hmF(MU@69bK}cz-VtHd=DPoE#*L}*T(++Fu6CJ04h8|y@^>}vV z#Egj+RSjBJ$ht)>6mPF(zUw=H9TZ*3DlDEEmJPntmXx7TGaA|NHWw+ZUgg%5CXo(Z zjNImCX$8QzZ^l!Av&&CNaNwfe>_#adw19FuIZWC{q$O^ zD}_)O6V+0!ua`U8TyGa&(l_n!?4|>-*F>S15h>}6YMF3O)3beZ2QYZ9Ipf4}S+ksx zQ>p2JC0-8df81{;(WXnNTehLlP4H+(tE=h8m9Xe+mHJrvl&%*JlYO@#oZXa>`G1&;^;{ms1CW~6eF76JXSGfU!V zg-bFYP}N{1Th)sbPxa(De-UvV$^8MStrOC z*-lX5BJJ1ZP_)4#r%N(2O7K3!g!kibr`(RHlvQ}dI@Afey_zZkt6a5Zhe=H%y$ zWCVeh7|hI`a>_Ji3F^8^;g+g&y8)JEEDXCfvFA5ty194J#g*!ViXI?p4!ttp(^)Q{ zkVaQSn>~WwH(u4wMqlgSTH)fS7#; zkC%QLy48Id1Fwi`4|&NBXz3;%fh095%A=G2cu|d(yJV{+h*7ACeA_ab8nfTghd2V^ zI4z_jS_*ZXrG`$xNF|Hi>RSP2LKY`*PKsGHFE3d`b`r8m&Qn1LtdQngv`+U+Cv?u- z7i1A9EFk1a9?a!K)9*=(h*D(QOKUf*y4I7l`67o3uaz}NF0U}Em!fZ**-|GV#G*3m zEJQn@sC;{zc|9Xz%#d>7r?!5af}&3vTh&YTq*yA{U`<`DMhE_$ar&OeYx_ufjC&}W|7s>WqB|Q z;~WPg8?yH~b9D>k{vXtzh(!;%XNvnpYvm%Q(C$j2*06eqxJy^e?353lA52H6WMe?y zPTz!F_b^X%#RGnMgrU$A1vni6*&nV2EEr-;Qd1k!T{ncQzHV>Y)m1&nL!JNLv_17) z_Srot#Cz&dUJ&{zz8fmff<;E}byTj)i+HI!T^g9)kG6noTae3*~n8 zL`cR@sN4Xb5qXNk!Z~ib8kMN^Jr!Dw0k(9RtaS!~H1}rWWo@$|xgmL^H4bk>m~~9= z^gdj4g1j(GY`w>!wT;Z{eT?XY!0^{<20A3es6GWdsX=G|am9nek@8RYpOkdy^n1Y{ z*2-zFK#Es7JGuV2z-azVb<7?tJL|*GpJ>xD?MS7-D$<<45=)zsrS&nIuQbp?)-c?2 zN-1cDrUM)xlWUGvSn|&_S6T>vMFo)f|Kf$jkX;jIcZ4FJu?Msd8es&o87sC3>9Xh_ zR%d}$DH9Lg7mchaz_}&xo8?bs9*UR@{R~nzp-Ig$NJZ!1fb7N1%dDIXr5Bs=zgO(< zizT$2=5if?M@r2xgt?PDYw}3ZWZb*hp(kd|>QWo1>FTDNuTQQlC0Bt+c7{k759)0( zWp=I+{1ND2->|C*&WrkX)4utYsBshu9qMG`j4UK)SDnyVVDB9*BxQ3~q>u4i))z0j zps5TUATc^d04*KXaWoU8z;Fn1*zt5)&${W+-5+v>IRxy#sUBdZUJ!wOHg7x{Ea!!d ztVcmi=V-`~;SkT6`PH)$jVtGr1h0^f{XMqFW(Gwkk@Eo*m83@tR(o8eLYg+vs}fm9U#5Ck02gCK(Y^Fy3U#eVoT?T zHEm!fAKK`EWYOG9GM!0G(x}~)W)cHeCh=O~sJG-pYYrzjW>T0gkrd8j)ttm&pD%6 z!#CkJMu3QPisM7&`eKZj@SnE8JEEobXdwCe%eQToSAt4O(eOGTlp-?IgFDWsD<1&- zmjvm2%**5QuMRgiw-Dm?R}?4tj$EYIi$}kE~VI^oVS>|I~X9U3P4-Xk2yL@Rw&<}(aGt2`xtscQNOb9&uYTq zU$XJTqZnU5oNcZ-{!!5(l{L_g&?OqSoc9vjC$)7)q=?04*#t1&sS;ZM&0J##MFFVS zpXq4k;j>&?Q8~N41J;to>pmiWa`sva;imS)ikebad@j?eOOVfBpAUCU8nzhCmCXSzO z9&)W3J_FJI^t;@*3ag)(kcLM*Tqag$IP<09w)PtKZd`>C<3-N1QA>9hN_TxM&v0Qq zdz2w8BxcmTHl2gH|ymlG6MfyDsS zT8&?8MEBXO%Goq$pa>#lmHCYNJ)_WCxjW zlah?)Z`3<8md-y>31IO^)};lXAA(;l7u|Ri?Qc0TGVtvrott7*2GlC^?QB&AwA$fJAohGEfWm2!% zTz|PD$7!z;Jp&u);z9MVPla|M?bh9r5~aPs>{@#5OoOb@mvQ-`Hu-D5~_eTe_8KCZ{XgqiZw#mQ08MDCn=wvbrBT*Z2LGGLsl zab$fX1sAI|mQPobJM>U$x5 zP5amij}Kz>{T2wmw%8Fri&8>UueT>F7Uyg<2ec5J-31_}IMO}$NZV-Qt!9>T+cg>o zLZS!OxY-9wR>@JX^{hO#A z3nXk=2ll0Mcwh)gE)jV`0Y1^>s0A}?2kW|q_yJ2F|?!$wg<%N zphwU;R`u#$Ew;V~wtc_i$>ME~-w2w}>{ZoFPQ*W6OrC*YVHUSCJCqra>s;cwWd<8i zD-hdT#_4JA#LPEMl?^ZjPG49a)RwK*Zm45ThIsNSwFSa+Bl}FRnAqB`H_YAFoCti$ z{30WISrj`JJ6k6QWT&F>N6K~k&hCLi+n>jvnRdnGT_~QbE1rS7er@b5NUXuH>)!JL zz{OKE*L+~bW}@L8*Y$FN)-l=^4rH!C9wS55@4?AG;j-*0J+<)%R(KdYFA+#}QrJ`+ zNTmjNh@r)6kN!G90o$t$4w8n zaUx=tfIVS{YR_8e5AMd(+%bZ4wb*ugY5CR>bK0{B*vPFb&>`ehs9t4^`D-X zdT|#i!x~04m?;03{6LZyO*c+l#0Jc*^g1D2WCz4WP0iJ$d#M##H@Zw6GTJr*9y0zP z^4(Y)3-Ut0fi+cJH%QR+4!m=|52~n%xu_Vq*h@ob2e+lIl^vhHCEX!GA=bzC1SclP zhc_Qzue#ch7M z8n$3U74`YhQrk1Hp2@q&o2&uchz~T~BLDiIseAR1 zl@3ImUzzXTM4*ZL=Ypzdetk$l`OiAUIo`{YSKuWW{ zj&0zKTlH@>&l+|2{c2yibtH9Q4OlUkqh+lqL9$GY+pnOeZCE&Bm`ThpUq*euU0azC@FnSLPcbtikl{h8l%HA`eqxOP~Um)l`+XaR0wH(BQk zo9MQ<1(N+3tkSFAp7HYV(Cr|la=@Jft@=BW`xd=FpK3a&!qpkBcYBT~Q35Pes_c)Q zlSyHlH-SrNfCnU-;$_IzzXQRJmGhTNyJ9z*)!r@6N+SX^w+GT8ej# zZ6^}N)Bu|CBZ#km{2^on<)D`h2+f1~VZ#^gua196$0C9oSlw+&#%%d1TyfQh>94ov zONR|q;pB{UpX+TEWJD}$Gez;}1{(1%eu2e7jN_=h?}vUlD{D}Lf&hkn-$v>RnrG~! z;rr4LYA(IX_;uJhp}~EW)*6nUW@CA|B9#B2%>_gK#W%uab!P7>2H7IcfPopy*q%$>#a>jnn20 zx8iu0)unzto)Q51QIV|imNSTQxV|g6S~Cyz;Icf3)ZQCrCH%!mqi_wB|A4p+o& zvhCUO-C+4QUmA$K6$uj*WetZMM@aHF?bd??uycWw9w1ph3LH%z2!@q@2zFl31P2Zc z8ZY1fFJ}P&aQ&-j_E*k=kO$|r(xAs)zFG%mGlqh0YR-jw2@4tHL(YPS&D6ujIzdKT zRw3c-SttZhD;>{FU!!dk2VL&rz%tV3#d;Z-@1h_MpP4zuy?yZ`4E&KS!?l-=y8TcO z5%u%WNVtg|J1H6E-&A>A?)MafQvil=Q_hV98SvY5(2a=V&r$`=}2Ic$oWYAd56tLw!1!}Jbe&f}d_BuTw*p^+5(^I>P2g7)E0koLP(^Y==! z8B7v^Q>%^sj{DjZoXS*3Z!V=0jWW!}*F+BgBC*o|B2lH)F3G6| zZs4WnR*j69u2=9*gy3q-YNI?Sz{ul{`SUIe7VPqyu*|4{IzC7IP z)u;Sa>2dy)ogZklA#>Klwp3-A5F~8>^WKn!DNAc{yL|DJF)sMB`4y`Se}SGma9cgGzEt44mpbspT-%lm&Yd{oDg9N!2Eaa= z(O9i%LSW8sOB``xdk}QXF;z%CuG|qdq&*^sdJf4@aNdt|0Y{_Ky1xyd($chhJSGcN zLR?kz*vOtdJ(fv1xDP?SrDZ*Q^^|yy8o+&U(hKn)hXCJ2Stsk(EIXXN z-ZDcL@B=3y3O^}+V>94tVhrBYZ20yYALJdq4dfs;kpG-ge+G+(g-&jgNBx4@Y@re8 z$v}ei+;^;L2~S+R1A+zJKAAoM<<*mRBCLRpd_?1W?w;3UeIeb#6)(5fYJ&V#laon~ zS|v)mZl!FP-wzdcwYD#?*J@R8E@3!-t8Hu_sduxsJ`|<3HpbW={$jPU25pMMN(3n( zUOuhj5F#CeyBzoQ@C2_zL+SO9XS_sk7|`E4Xp#M}6(ZRGX$9m=k1Y!X#&n#Nq$pO= zF?jP8Z=%B9N6^M}sV$^pFZi(UN}J+hx4z^Jk*asPoOru-Cnw3Jfv3es&Z0+uq4_jn zjc>DtQ(f>1ZL`uF*hfqD%6vg0qBUbA!D{OYzkK$2cyPR7*MXYoJ(GMDmsK_Fc`FeMT!Rgu zUZ$j>%Q|olcczy-VITPtW!qBv$E3@h06uiWTw%Tniac*82?jj_GajTVjrm%MCZOI3 z9{U1oX2Ij7%iO{dL^=Y|WAlZI<|Gcv$+97T zMy!?Y4E=u0OI<6Fu2G>P1&D_{`0>q`(lRz0p(R(=BkK(8TaTtp<0ATw9P;i=#LxVl z$~pG8K9+HV}k@@^VO-es>nyOdlIOrN+GE>P^gZ%$Xu~yrVz=7 zdijfmK>qpCwI*hriw#yqErS^aI;|92;%w8&lGJf&g!utL2g>06sRO0X9=9>7cm$h* zspaB0Ldq!Ch8FL!k8?UH0r?KQnBj|9>7V+mo)Q|B+S@<%84wDtSqN7wV#aF=w2W2q zbx{451*QCI<<_dYxaSIxz;s`-Dvj2axHnsF4ibkF2EdFDzX1FWT67I0?9gSM8A_bL zWut>t2%S3urN9b4WB*yIMcm82M{f7?_sE}j*a}bE;mBE$`6Q_}4P9(ADhhvU6`?9? zSVC(e)CFUr)b~TFvz7`wxULg9cy2>>)=;Y@WkTi^c`nn}91+y6J||K&8W4XNUblAw zoc^31UZ_?2nc~Kjt8&8pst1y_|Coa>0qZkIqNId1ka^W=Q1W&B4~|c6;P8mNbTpL; zXU4CI2BK@TecHq-v86=6pI#l?;k%A1shGbY$PaiSP93RhYs^H~PJMlYb(&9)XG zQj5Fjb{*^pt;!H}X%N*psi_ZE(xJk;*i0pAG1W39D!+UR(~76}dMN+FeA5WOTc0sd z@l8rK1(;lHxQvmfVQM1^m()YSMvSx#Wh;}IpzD4(Y(-Dz&%vcaC#ZhLC8=SmWBS9Q zGE7=y1+^Flfzx+TDS#f#zEXR&cmCiY?UQq=Pw63Fu%fl6EsPjX-IMy|)|Fi>7~XPPHC*Ajw{RCjtNWvqTE@*A%u zRqrDqY;E;PXhF!~Ay54Ih=sQqK@PyI{5= zexQ_tCSdB5UM-2ygvKO!{R#9Ki~25CHYCt5(e#H0?v}3x_)fV z_a>+UpSz7=S?kR=3DY~%eL4)x^n~b>9_ty;a-pY8vvA`ku-7LAC%|k6_SWmO4j!6H zE%1MmUn8P~j|lM;o9r!6m?KiO%hUZKS;RpP2)Zx(Tk!vxlG zUeo=8fUo0hBSae)>S*n5(L7l-QuGXK)T?L0w?Ju|HtuD-N<6Y zSGtSUva8jYvxmp;3zyAwy_xyf*$ZIS=?sITg^!1i2j0^X#N(`+*{5}DblxiaoeI@u+6>;UTX`J0cVMEZ>1o?U{^4 zFM&ITjF|1ohq-u5au%8OFywUNOna7XXLBv;(#gU`MRs90{>-#bdLd=Wp}0eqdAW?U zt6?6IG=_-_L%;fEE~zI8If4%0`=k0R0D-^xopJt zcvRR428ii_>f23PoNp|wUL1iV)GnFoLwc2MRO3;57rQ^owFSV#tM66Y(LhrI`okv; zfug^-HTim0*3yYTpC~x-oUb>!EpEJmP79_|pEj>m*aUkLqfm&Qmi-O?;I+USxv~2{ zezwOtJc>#e&mshfJ7+p5_EKPSqnNYEX4*Zb1a7w{Cs_I1qi9#njAQ`41)eIhqAh3v zY_<*@-66*#ReewUB>og3TU}gemVU>zIJ$wO_EP*_fX-rz+qcwk+RMs~iI7XhiPPt^ zda)L1zpGNtT-`;#UihL|&c0Z_{3`u{^YZcMd=aqrR}Y;^_yVOy(M0oS7EGI5iBE)m zmsOUGpC=PXZ`g#1=mXf%h8no=bS^T3yuGkEBz|#$fQoo4y@cF4Vhj{u{%;mXB1k;7 zr_JbtTs&`xH>66x|Jifl0sdbgZcYHlzhWg?UlMj3(K{!r3>6AXneY@L)@o5b+~cD% zNBL7riEK!DDWr{mpjOD7oBlancUOk`5ohjZVb2!^rH!03y}5|GW17CTSH-jR`gVMA zkghX;DXzo>AZ`My06L&-oW%616hU6_N)pBkqp`-lh(Zgy6Io41 zpREyvJ_O;q#o6?dlQ4g;w(0P=IwbT}8YssJyME2NIJ>g#5DI`h17`^}(bVwgqf?1r zna9?y!0)*jgiwdtOh>1`gkbiND< zk+^@;bRpbTb{%ek<~EnpJ6>JY5jc!u zZm$_wTUwS4tE;}kfoZs}whyPRn$gyDM@&D|CB%%l6Jd;2ZJLoQYRC}TI>Wd#Mkq31 zwQ0Oe|K@&x!!0lJ+uDIFuxJ}-g;%z)KHC#Ep(jyxbbi^9O%m}kC`9_0J3iH9cM$kh znRDnQ^|kpWA^--lf14$<%br#;!vSH=zom!X326rBJ>pnfwGsEddm`v zn+Nj`OCy^@5gDfWJKA;{(ukmDwW~PC9&9P7U(zEyhqIA{4Hx=A1O? zBm7ABr{^pAo6GcU8$tLAIQkmy2%0&!rVA{$l4wiBy=(JbV$gn?kzm@k!`9- z`Lparjs|YkIQIK<9)#cfPK zIBoMkXA(EoA(26m03@lJezyErQ9?w{xH8K;KHeOq@4VkBfU`tfiQm7&&?+SQCnU2w z%s_IZ&Pl|=lE4aB_U!Gm1dbf)d}peWd)w^jiuEch3!ySt=mI5OX}3{<7s7H&<4bC2 zAObWH-uLak= zkhezVXdk64fV9rhm9T>*MLrs+sh-jzc$|30C320JG&*to<`9KY5Akeude`-u$8%Jk zBBPr7f*o)(D$%qeT-0jS*m^bI4Hzp(=6T1&(IzaY^gp-uR8>wK6vwH)0qBc+bGWO` zer~8=R!$w*;nmvH_ad2;+Ue#&Mq)CWZjqkN78_~31D()emwP1cL*YOQeiZEag0=t(mX zw3yEULeS$#i{@25*boxyBJjJk#FdxI7v zgA0U1sv}-zT8`~CR%3$P<0P%NDrrdr6T3ZC3q|D}Gd1hWtJh+@p!)hSb_i0fLLdGY z7@%M1F1{!)%#@g=V6vj!@WLV+FG+ZfOEM1E~WV*Lgn5ZqPO#J-%EbO%>Yh7T3 zOkiZ5)}?8f11p5jo=FNara)I$QOX530{Fv!o#PA4qezQzDo+?Ij}os~_?Y!8CQd9F z73wrcsu(!d%@!VfM%JhtmOx`1+X?lv*SQPHv+vzp;`g(Y;I^5eN1S-+ch*J46xBg! z>uMqi=0TAOqRIM%h1e-D=A#%yC}kRR8gLn}gmHMQjndAlEut*6==F9=A#1c$H=sBt zIgxYp(|A*Wg!+?yTr`?aci^ne%n6^y{iB3S_4j;lOf~pe&mW$^Ts5YXP%zRJ9DGO+ zcIV5na({PtOJZtW(JP5mSV|8aQ?1jL3OG-}mS^`U?sIKy6efP7S>L3ALV~GM18d_C z+||*$Mz~~f5{VGy!sC&+(KU-&d*II`qbd3!jW6?M^DNPiB>|O}goGT%q$TEeQN&R! zd2_F`y*!GR^QGQYk2|c$1+6_S{a=o0{(NR<)sV=kksFF#bEh?Xs@uR{0Z6OOusYC2 z@b)SRUyn4!(Lq39MQDh@`-c;Zi#jj;2)Y9(?Qp^SvlUbYU_5ElZL`{gB!SAcQ%0h- z=U#^+QmdqG18y5&EEbV`eMv0B#=@~ql9TPie;P44f0C7{tP&9$kx=bRO0w@ zjb3b6wlHH;6FK1Hr(oPy{r3*R|My5DpR%8B0u#A&`S{*$wPaPj_!rUv!*K?y?w zIN3qa{ZJpT$^pE8$$nBGmNq1TrpA7#heAjI$Nw~?nL*Gt(3~HwIhq7*pyl@P0Gxm2 zqyI0ZIxYZP0y+deut06hZj}wK{e^Lf5PHs=uU4KF93U@7TPU7}HkEQd%qTdthMh!mHIb0B4>H@EXr2iv{7LZ+m^rHGk9}0mg&l2tKrkl4SB#l zaIXC1#Hh#dvf3k)uZiaCc86Ex2w3L+U^>Tc#LBq20JmG_jQW`SJRX(wDMvl|-G3F} z)g4(Xxw+iJ-`CwiME@R+QoPp;0mGu5;ND6X;QgKYK{& z?8C76d~?CZ4~3ZMhv#cLH@;H>J2W4kT!_$|E_oMd_Z_6g&M|$+Tj9^)ez321MM$Nf z%n)jK!g5`2-KO_)c>Qu;)cH{M3MunNapAw^$MfIvV+L(2!SFx;xIhHTFsvU7i|_C1 z(*ix&K+}f2E5kIsE5km09E}714>c8J)&$EB3E*M}wfWFy4d;MLjY#^CtSTrDj zi{md;AA!}KhwS56=f5)VNBJL$z(+mbNBQrD8ywh!YUy1-w9{loZ24E?Xc@nQVK z9r$YiK8(L`t$+G(k^%lD68!aWeHi~ptN%5)$%p~m|BKK5F#zuW4S@Y)1l*iWcg?T{ z>>-n+DC`0>D2!fd4!^|9N;pZ5D8|AC3=T*gswP{&n!M zHGx~fdH?Og^^XUf2V`IYrwzfw0lNAImkGhe{ci^zz<(V$LGRXo>v{gG|1UNVHweWR zE*+c;6l)2G1;O)QU>;r&p&eWn1lI?_;cr}?|Kjqpff()KGC}^bn3#}cAHNm<1m)!b z@jHC9=4Su5HSd2xKj3VizkdYf{%^v({{`jc25C9MWk7KMH(lQUqVoO|l?3#|3C;(C z`@bpk{ui2$4dm<$cZLt(`}?{4Uq3nQd>>@xe{LoEKk64(GV+vAVBi5qoFVmLf7LG( zyk%%c{AtM3F~ihkN-J+q+dj6N$U}|^$9Gf?;Ae=NEW&WK8t@AGnMRKg;oOtv||pag__}{jn1wlX0{Y>>f$`++WQT9SV4Nwc$?x ziX5muUH?cgLO@cbKDXRdN-SzzaR}cdV=UY5!WLH2@J1AA#{0$oD^z3(YFa7w_VMP6 z?Q(r-t^QkU(X|!ltKA^BteBw#a$b+vER)?@>npk;nF|=BuCumjq$ebSZXjSvfL?PZH$^@ZTYVjz zp_H|3+SiM;WOAM#XM@5EsCHoV;Jigty04_ywoFe(pCO{Htye~TR7zHP^o=nYW zCbap|m@)#~fL~7>HjF3S5nQor5_~J#iVOICp;N|jO5KiB7%F5Bz+v8p8eXVk`h)M9 zn_HpDZ-K*mM7|d8fvh1sc=BFF&1WDMX`w5&xfR=(T|p@p_bY#R2TihVotN8n-&ODa z6apLZorkFBl@jJTnW~8FQHV9BT=CM$hcQCe5alEk>V4Ovv+yrw)FC~LTtZ{TjyX^Q zAtc(#X+K9w-Db^1fGcrA%A2E??s)WQR~iCiTceiU*F7i|Jf5a2&50!sYu<__b2I6u z=4EF=wt8fz^KAS-?Cd4eU!7rdLN36@&tTu+PgERI_1z1GD7hmbnIyM{Yl%j5GvH*d zkwrh#`I|Oc&S}Jo!RPC@fC}a%mz_W} z;T)+&GLms<5b%2Tl-9h-6L@jzi3rH&(@*qANAVsoHRs5}ox%eK^QM9&I~Ef{ddDin z?O`(d$F(^B0Y?4QkVobRadV&%xD&C0v5i&CtG4!DDe2(lrKXvUA2LEx(8&lZE`b1& zyd&q~%Tsdbqi~}^AGEDB(t2i=n66wScp0i51r*1xp?toNSvPL>dMD2lV%I$Cz{h>dAzVgqrOL`xyH&mQUJ?u{ z=Mk&>f@m@ZVoF`u8C9K=;`6azpD^XjQoycMRWY632#lu42`^UmqivV@ZCUMB9T(O5 z;JqJvDM#Yz1U5<>{r32otSE5&E{5GW_q@4ESwkEJxR6%MB^|mB93r0?%tLqRpArYs zNXz%Cf%T#Un#p@oF9w4$Q|~D3X4cWwrq$74eOt68PCSnWHN0eA8Pr(MkTj}TYn4#d zu#umz_zjhGo4rLM%!5UzyC;@gXEB{f!X(L%o=FtsP}U8C!&(&e-h9GFG*j>({44wX z*rWHSP+pmfBe*=ZC`OA7_WZk)B+>U1^0M=gfNa(GbPR+m#xkSc3gA9{nuSc#cxlI7 z0>7V0-oq0Z0zPum->`E+&R2i30#VygbxA@2or0dxVR!U1L1Cmf&h!q3l_z)axaYqmEfn!;QBsMwkhNMRrs~a#w$up~A+vGU zrR8er7}yg1n{{@LSU4OQZzCMaD`bKqekQvUL(`fNK|I72b@el;AV>|p8e=#SBZSqZ z9`>6Lcb&|vEOr^@0^zzyeIj{pPrjDk|{_`WW{)ox@~f0ibJjn@J}D4!4V^; z{BE9HU@DFJ-dS@m%J5~MT^1I$WM68KHW8j+Wihqm>{H8tVfod2NW|08d5eq>}HIoIDyYq-fcKa#Nj4Bijp zpA7D=hwZ~i$RTEKl8%MjMu7NWiK0@06w=`oAvrk!Avx)A9}oP;gV2A!q zvZ*o|X$uFE6Yy_(1Ifew@7wBq-Ld44x7F*D8f*d&HB!6CQ$r8EVYEXY8NA;wiCB3t z+R|$zNAnY}f1j%UfR(Dv#i=+DKaZHyCrDC? z-=``XIoHc`A4FEHk4@d-!bc1bjLx7!L8lAEVnP8+iae*PZri<<;q8 zu2N1W9*l&WYkO&lwCL}KoQ%U|B6(t0;wJ6ttIS?;9%R$dI69Mf{z*r}!Q5q`bsT(7 zi6p@BBwES4xEOsfAE1)GjJ|(X;%azlWJIyO|1!?aXx8n=sU;h)OrFIZ7n*8W&Q(km zg7Z8RG4nHbT27pY1t1Q*?fGp;$Cze;lpPwyz*#DXfN!N*_q=aNwMx^@Va~>q0B?qo zD~gRn6NJ7QM~lJ#ZJ+-D%Ny#CynCj=W(1PwwcMVdQ7ToRf5-2Ghk;4fDS8=kqu+v* zEuT4e@qhPtKJJ8&%GUaO%9QA1&8KqsKEI(& ze=+^cF5r`sb#68Ucdn)~2*jz1}XSx0pfE12*pkd5ZWckV;gL$<>b z=ML5(k$N0MlGzp~S#dls#Qcd0gJ&xqt=^|xmE>A16+SC45I@fgH{W6njYe>>ZcRzI zwki09%nRNNR@vzcC=aURiNGUr7-aLT<&DuoM_WqCEpm-H?}HnwHw2tP0;HcX500so zA?Zea>pb#Y(fp)0G_$8QhgI{X+)-chn)uvAt;^L*;^qH;X8wLU}T+uYw-hXj#LxWc4T1Wk3+_v z3CD7Al!Rqk`3sG+z_r=A?jz%PML?qTVZ5jnlKzgCT5y!Z5((cCDiz}50(ojjL_^Y) zSvZW?2I|HgzQ_HnP8|V95}$uUhl{t8`AqN$g7>O?Z%e8~5cd9n+T^>sqtYb{pAxe3 z*A)DRmc3zGpsY;nF}5;ZO`m`a%Aa`H9_KGDk+2@hb%LQ;*JRwZe8qr~ZFH!VAvCsB zxWfh|U(4QX1@dp^2<&w#p(%0VP+HyJGZU>dADW6#!T^-XO6?%$h8y&*R1kljF91P) z7o2ABDqh?1 zvg}k_?s?5DKZUxJ^ql^%N}%uExZcT{nVLK@1Acu>9Pg&G|6X=3RDSV`ZE9^_r~nI( z?ENVD5$8IW%sLu1bM=o0!7}ZM)fTREd{Dv6c_4c98ss90%Zjuwh zWygxZTc~Mwzs4jjSQ(}Tp2%l0);uM<(97a{QGt04-sN&*I{%S~14?nP$MomSx^#oJ z;QBavjwnVS^D2=_oxBikp6oLnLWPZxfnF^f9d`?1n;z~>E>>N7)uQs#W6vokGu1}b zU{V)SKBgbFM%8|(_qE9nxtmsc1dT{I4x9ROj`zoF>mk(jsCmLE&(6-mff9x(f^niR zC6_}chXCijwI9(Llg(3ABH837A-ZgzQ*DoZzF-V)RS_H2LhK}qF@xd5ouMTIv)-4^ z9;9^UA8RC79eNHj1@m>jP>{AxT~Gjrl;S?oAQ*`MITsj&ZZ92{T2<`vgj zCEI4K;fny0%kX`-Ugp+^r(L}VHmS;_f_nx;PjF!BAFQhl_^9IQ2=?aBNGxCQyFDqb zvBkeV29IKyeMzk(4S()jGv#5Nkn^-A4eRoVI^n8R)PYe}z_f7W=coGw&gFz(xW71D zFABvsq_igBMwpGmaz&)JIi?WdzJCbq;)DsVQ8l)J`m>a0i0irBwkq8d*id%z&26nE z_*G*1DXxQ|1HH7+g~k*K0uwhPn8x{*DoliEp}x&=m!R}{s=16y5`h;2?-n$r^nU0L zq@3N^0umRZ01rjFp75iP7tFl9`{cjqY}asS#HFO-Lo$B+p(RAZvuhS=vP;ZX86S?~ zRbvNY_R!*+$5&lh64w?3b+beoyTib5#xREcQj-;LO`-X0Tm1n9a;$Qc%~6a2app(b zltb`XVu67@1}0g&?9C9vy&Cr#SP;}_EA#tN43y)A2H5}88vZ3UqH*hqO6r$3I29PgJhJ`Wm~JXGiWoTVZV0RT8?V# zav0!sx&nr^U`B)tL>}3rm;Xdd@_|ZR&G5($-kW2?gWcK;w99@T`AX&&#$Mf0o<~O& z)~HJv%aClhF*i`D?RGJtw|b`QRU=FkAu-$P8sRnd4fZ0fwf17o76#v|?Y=_Tsr3O9 zqp!lRe@a-~xZ5E}ioBbUnM^!n^c1o>JmrWS5BOAgs21}H2qXIJQg^NKV(SD~d@gM8 z^>GO7T+OtDs5U`GtO6?x=LL_;jzt5>lJqx*(vP4FQ+q9pr)$wzaR})N zqwek{w4}*pfMPuuSx<{}U(7$R#0B3yaXj=3Vq)N;JnJVtUiW(WkTP^f5Y04_u#@pK zxv8f3vNglYcM0)Y?qD4G&j|Y+i*lm>e{8*DbSF{QJs8_g$LZL%t&VNm_Aj<=+eXK> zZ5tgMljnKg`OmCb^R0H(tyA@(R^5BfJ$rATI)hOZ>=*pa-pfNxsg>PE)RsSSo38&h ztK$gkrbxr$<8*E#N65{2Gij>~2h8+`i}p##lz|8b8=U8N0H7&dHh&!(*V(4{LbQGS zf$|pdBG`>a&mG{ap0mL{{q|)VGvh zauIMlT4Q}xYO5=Kzh}a4I1OXi&~L$Bpat@LJkA>J z+>}WHmVUTD(z15wGUrkDoZ#m0SYMpl0&Guth<|oCXU$qrBJ+WOJGr|`Trq=z=}yBE za1Yujq3{$F==Fw|8RCJ5f_N*${gL224Zt^XKjmp&HD5DgsR*1opg#(hesx42w>jmR7K4)QWrsnUn%0rY76^GqQEU|5+|pzZ-#l-dpt zVQ8|sQ1~<>h)wI!uY)9wQD2Y~CyeE|hOEwcW+38EYZks^&rpU1@&k?(enlCE(cNLJ zle^`V*pN5~4uYh9(ei`${MH~}ZkIQT8p~!IH2V9Z1br_@X#Ov>K^CJBr4k5xqhgHG zp^Os{fNZ*98vEaV^38tqnNbYP(Hdo-Gp|f~5!-t;!<}g=gPqa-zDH^iK<*CYo?roH zl^x#5ymZF!}mnxQva;+MtQf_@6>8&CX!p&O2}r za7z)9&0p~i4Uiy>goTnAB|Z#5FL6e6Ef0$&0FfC7pMg$h((!c;NC4aB1I0XGZ>R2F zMaVZjz9JBL7VhNpVM?W|Cvc2^tES&7OY;9r^_F9-)?MXfZV{Ly&{(heb{)Y}ZdO;f z1iAnQy)uDL31{omO}_dbJD}}0Co5z@4l%rkeZ3O-(mn#7k#NIhO z0PD!7kc@|J=hi^po0R6zC(yx6S7;l(?(qL6)_*bmm8iGN^jUbS(qe9{2*|xAqS;b54{H8?s^ICQ zn^?bXmp2mV`2B2;oRYS82l;qV`a4>j6Cg4pfuUVTQ@TPLNoi@t7c@J50j1G!`QaxU zm}@Q5D-Y{-z%t{r1$E}6$R0A5%7+!=GHpJ-+mYLFIzDq1U7v}M%Wi`(GKJGAVpMRq zs?K$hd;z+e?t~l$vunH!5NRQ$4FG2} zl5E$J#CibHrGny4oLDQoyi;akm-{~8)o-g5Wbat$hkUnbW|mdyIL`6wV^tBwz$Kbt z$-MMxzoMp{?`ZjWg%Y(pDiCec#OORn@|0l|%-W}Tz$o4J@sEjFdmFCMZ8e#DeZllk zga@!k@%eJTfeqN0cFR13BM08v1Bhg~L*0k9(#C4kR#-18ICcwQ%$(79vg%Q{_x|9Z z&90`n_Tla-Gii6zZlDBiZaHf}cp{$t!zDC?SkwdwlYuC{nnl|+8@U=jQ{cvz12)|{ z$+yR8Y*y>B(B`fo@|Xb)8!V1O1`DP&07_FU-U%fkzp(_RKzH#L4cJ(j!AaSmXK0k# zt>fKpngb_%upJ#WQ*--*9P^|MNWJ}y{NwKW|LoiO|Ak`#Wnp1UZTkyH2g1UV>h}aH z*7~y*vbFY;*#0-kws%EfPPI&ir}!Di-kO{Y-?jR~h2i{P3JeF!|I5*p^M3@4t~57n zaX3+YR@8263@;IChc*bI;szbq1R#tChiy$02~S6Dw76r6EF`y$dwk{UwHk~k?*5EP zL&W{{piBrIGE}KwmG#OGX4b@VbjLAJL>q&-h>{RoJyjTI)!@Jjh9$}Ry~nH>kIa}q zO={3I!7Gjto+W@C z%MYEaS~0&OMj2!!yoDA<{^@Bj>*p>2vcRGBBx0F{Zu3be5|BTpQ#fLz(O7T-UVx21 z2|ka5I|+(xIgGP6|20d+L{M-Hb|R3rK4+U-IMdv|+MfM_9q8|>@*oUMKwKh-W*}}tV zj{xl~QAWix#FcnI$>|)X5HAoak`E~#0D@{*OlcvO8oc5^!q~4hg_L#EIcwZ`GuZnF zjc->_;H=OrgC?La04XmBkY9e%KU7#tfPeMk7S$ zg$!-=k1#o2-5fV8aG^IULESVW;WDjRgCshKC~OR0Ys)tJ_5m&_g$5E-qCCTfaJ{?T~i zBC5x!x#jiIR*KLQW0jwS5L##ayCDsf}ESb-O5{>Ad!peTGk{5e*( zbm8_8vsmg@QYl&v@-rNlmHeNZE5k}jO-Z2`4_{4eY;#GKOWEyrQ9jr0agU(p0sOte zZ3xjU21^;0N2Yuzpy;}Gqoqb@%i$f7{c*x2Z{T0O@8|JRBSE|i1Z78x zOY2Hei7`gTq7+-9LgHe&O;QlL-{UPxra?6wFMif!hGvP$<0}K)Vb{YfO_d<+6Be*? z$d8R3fWk>CQ~vNO|C9r{DL&~c3$;(Z^Niae;0na4U*pvGC5$bRq)f&=i|O#OrTWWB zHAu8ydFV=zaUIhMLJOf0=8s*1vEAq}N%dnU)_m=F*YW|cMgkfT~ z@itAXRcbgMtT<*2IJW?U<_ee4L{s(v3NHy+=u}h7E^6Ni@hOf)bcoRNB_(9~?z0_< zt9>dB?yVNGTbM&XFzUT(SBVMYsVAo85T52^DV_K4W=OZbIK2~#TZ0)I&jE$Hdx@Gi zfKtdz4j!qa=orsvS3n?Ot&8{@={aJ&$d{!9-@a~!BmL_LWh>T&j=N`&>qKX-Z|L|? zyLjT_Rms3JjW?%yd|+nKxfKHGgF8lli``EDdfl&^v&fD=;B#2J;VmZan9a0i-VRkt zy(BvnC656gdLq0r{ml?ThY9gB=x)HfwPF4X*XojCueUKurT$ zHh9tJ0T0=4{MdAsOU#|+p2rVsf=SecBCzwDF_|5osE#aswXhgXrtzJV||GYake*QvA zc>Ig-2}XJ!ozNMP&=WgM7sPM{RPq=`d=s6}0O1gC$8(g>x_?jA{lM6Fw(+XeXE=+r zng{yGRu`o?ig-Ot6&Xt&!2zKdK{iH)_^h`JjjLP#mQ7MgQwv!t5{`Eh@VL;Tg&&Wo z(=X2audA3^4)+MutyvjO>SV(DbbdRKmv#y!k>ev)S2498yYh54ay{j55-^aJmbO{hZQ&?QH6i0F0n}o)t$)D(k%`I`xt#l2<9YiwQ)W-{%|TdXrm6J)3NF zo^28yr5aK^M7ce#p0E) zr5bG%jEWKUTH@kS=}~8=PpW4G;^?y$#&FS95ZNUsO01Q(js?-HL-OdnLs)| z>xv{#&f#PBc3;|#jfgh$+%zTK8N?qMfy#IIR>+q~)y^|qhb!f72zEoU$93*fXcIGX zmKR`@)V$)@Rc?a|4S{swIou1skcQP+hnXwVxzxT@^cK|~0sJl9=eV}}Wv?;9(2?ye zTk3Ldzj8adKDqd+Ls#W32`Wprca3urJS%;32j^W7on)k@<2jYdH4bEgsA8>c7JvCR`fdDV5zvCm z92Br>XrIao1ju?2xFRhXa5efw0(sD1$FgL5B4SXbPsU5aZQ-%AJk|Uv%L79K9g(Hc z0n|qQ9@XIO4PiVp0)RS%XgFpWhw zVcq=j;5Ht~Go2LSnx>c9}n zyFJQn=`QiR03)6A0q0$#0-XyHErR2gb>!wfT?7-{q5{Lh$5p*k1HpEnMyA|qS9x6{Q|G-2uBSjEXxRg=UFA0uuHN~-Q@*`ZfnQP3 zF#rFApO`q=|LfhNu@n2V|Kz*V)9;b!&m7Ayq5v}sWKpA~y#QkISAZacZD?z;Q5(H zGG&QlGgG;#X8O{C?_=$u1FiGC>qYcF870o8kM{Tb8ND5VAUUi@B}CFl-}HGYmV{U> z1U-ZsdWuP@iY>r|>Rz$5INVXS=!`1i4Q6>-#qptEXry0}DgC_e98p_>o;1?jV8Bsb zyaS)5!l1fyJF7be6c?=vCTe~<58Zih4ig)%eysy>(W>ONTDyPn`OUa)j_Y$ckYDQp6uC$N)IRFPAJc%^xMD12a6De+bB z$>~Ny)lhB613H-+2S2MS`jwf-D_&_(5?7!61q7SPGbcR}5rwXStg0izpOsH}4FvE- z{isVpX1)P%s58u>I6J1C4B?F`OpFRJ6i$uc0Ik zNjfwZblM2;M2Frs6ZBXJ(4*<41ci!RYk9da{w2wn^vg)j{p;)uST3-3kSZ{}Sli-y zX$_CS*Hgcps>l^YVWA5qcdmEiSv6;id&oA%rw74`h>A(O6Qb<&@QcH zp-&r+(3hB!ej#7Jp_J>kh%IfX^vi{Uo%!O#<+AcY-A;9}fd>AR=l%W8!`|}GhX0qh zrgB=;8Koa`E7Ucv;?b9ci0$mYMZDN%gR$@s=fQU-a->=`7TI?bdNPpW{PB8>me~jZ z9M%uGX7mvsl*3u>9!MNVWRt>qsCq5~=)PZD$qEd@v;>Neu`;~HB#nXvNs6pN+A#ZA zQUgY8RYcJain}!bM@BtyLIBUA_@K&CtYtw~vBa5?Ssu6KcQg1)X_yU~x=loaw65oc z$50+s@RVTDhQy(kXt*&{dtJ_GcMuvt^ycur1@B{4Z)2;yM}O%#HntnMudMw{KeA8C zga&;myMAMGmsM@Nj%CJ347SB-Y%-Iy`;WifD-R#H1PT+TaN5J|+cg#$ANfy_F~d+1 z5|YwKM&u;44YV&_Qq(rPnms`8#*ixNK-Bwh5-qyMola{C)N9K~Z+Pw3@^vME;HTlw zv8>-L4QBs7drJeV&_w4m0+wVi^La|2ovt#dN{ z%>|&M;~AJMlyv%o|9*HLrA*d#QbXW<;_l$g0pT$-?OGNug}y}Yi?xuy?%J)#_I@j> z_bB|&D-845v&Rj_U4efk-;?ttUTN)l!S$R-2Ifi2-apAq=A4G3uN4*$gQ%iel8t&O zTIP~!i8C#eQccVVXV$OJ6G$a;GK@X0#*L!t(nnR{>fI+K5@JqKtL_F7RE;-dueA~B zR9ci^%8@%Pm)aHtx@Y!UO~aghbSAGvrwNS3OMC3WrB3v$YCkTW&O|hX62e3=NQ29T z4@ikAySJ+W0!Km4W2yjr+P|2)g*KGCo}Syz%fp&-{nmJ^*wB@DO~@=1|K8px~2S@JKAT$73w z*T9QPKJb5hM+OS^g36A<&yhz_Q5; z&DLVzzffKyFxiKA=f?UMU&ZE&C%cpdieEgzg!ffVMQvb&HS5_5Z1q4<;9y|%V3u=z zZ}!@2=N2MB>>xe_QU%D5k&Fv{H<=l0+OXrd&v8U(R;=mN2n!M|a8X0$oG6>iM$U&- zRzuB=Wl*>EDK`T^ZGoV&yOvG5EIN5pATFckp$MTA{Q4eFhp-5ne&xnGhIZz76~0&-;MY7xE+xrI;Q=n^wxPzj!g> zSs+0DbV52^o4(X6&0*7F$ex*dp|zoLt^2j1(vok3eZLPNP6U6%zNpNM7Iiix3W0ZO z$Eif|Z?Z9XIcn$c=hVLrBGm6toQ54o-bo1>m*C`OKBW{~=Ux=33e|ZcBSRu3v1VN8 z-UR{#mTvqT&+<*;wMCXEx*CL&Oc1$Lq<&!=&J=Yq^8ObyD8H_MTnQoM=(=Qhu=H3w zOIHGa{&kQ6Ug+4wAVkI(1B_;vS;hstZK-zs@yp5N5&`%X>%NW!4d>>Pc5qi7(|V_L zbJ#yJ=F@cWzwGu%=p@Zr8JJ6fKn9I{LB)J9;?9q|CJvw4jJtR;>2jqEJ!r1WHG*6rN# zCH4k@cgALX><0SS#W(C~tz|PWk3F*!wayyUoF@7vPwbtyp-B}e3e>6W=boM!_`e@` zMhniLnLY{BM0(5eMLKoG-odmwyu6;o#jMxS{PyPF%tsQfXLppi2S}J_$jugfp{kd( zN-d=xSy!S0P;0tDS=9e>NL{!{T)0ZIB1v4J&QLyk@Rdzq{<~5F{;$)}PZ3k+N0oir z6@lSD4aWa*A__HiLufU1Lo6W!WnullE26ZiCOL>4z-+BKIf&({SnU7l>;C_C39~Z) zkF`*;+Mn1TkG!sbweoVw{%K^C=hOlSnMHIh6!I(@53^gm_N41%#Nja_W*x7O*+k{d zMI4l##AYnGj@xiM@+|A(EN_nyzGffZL;6L?k?LZSDaY{?iv3RbDpyO#B}Xitb~Rrg z*KbEJPfwPOv<+bjit`DgtsP}FlA2`kqly5<8mF{bj(shUa`UQ!;U)oeO9`mVlJD#ctI6Jh|o zE4!8r6~P0w%FvA+Hmwxd*zBStdm=(Aw|%d14w~`EmuP}Ay`;J`;+#Zc`VrPz`ZoY6 z3pV^JDFG$21()W>A+0<1QPE^M^C*;cy(x(_ligv=T|xlqmsOv1!W=P3oFMk{CUKTz z!cekBY;=kax-sudy=s_osC+&};Cjpj(3tIN`L=Y2k{Z#m;Q5~mGs~g*7lO(+S+=q< z#{8v-Ac_g_S)xnU13#YodORGBa*PD{bd*g@KM5gl z|NS9qOP3Szwb$6cN?l9tnv2(-(4jWy{&*I93Qpag@}NM~_z<6EI5xR~9eo}3g(jby zW2$O`SMllD5Cv&?9DSg2h5LL|1Z-0W+v;WiY-1HM5LK@SAR&=rwwbirhUEZZLxUu4 z>H-u%kUo{yxnowm|Z8ON|2fLcYK!csOcJydD_+?B$f+gj@-kp%l1@>EVI9qz(=+@^CIKX_uH_ zAw|QEgC!PAdFhFpMC}DLpv)CQc>_U&L}I>xYYCH5B=OJ3HTrhsKI?(@%Mt*{i0tVH ze0ec={yvo12rKSAX{!n66S8yVbyE;3Yy``4*kk_;vSG8OCrwjA;FihI zk!rUuK3Akrluh6P{Qv?`VJN<=L@@5&;)lg1oA8{fvNt?~9NsOi_Q75Y?G5s1mg{uo z9ddEYYWr>(ccxU)kY(fX(`K+&)OmD_vFi{dOI%Eso^Rv{-Ss)l-_qI7UJiq7)C+}h zODpMrtXqL1{~04_x^Jee@)>OIt?Hb_Z7f(;p;m|V6%=E|gO~-h*5vgK;upc=;4LD_ zI-1g=l~jRKQ?2yW5uEy9?w(q=1x9|k@7=-A1gc!kRI)^e4!PhSYyZ;sbSoL`Z-v0^ zAsr;ffxbmAK;lBInAyt}$RF^0TJwHq673jfCJI)%Tcv z56q=Sh^4Y4F|;}HMV0tKGVP|%Ut+hgH-q&#>#@YoJv7?#tUwxd4IkxD1Q!+Ke_q7B zMk_`;2cDj=*vx{sd@@K35X2y;!Fe1L8L{8A6Q!PB zIt9)YT&|BLakmS!xGtR|;^AjAqW$M{!X-6uHOV^S?h~HA z?^G*y&ly02PSJ@P6rIxyoxH4WOdh!B(rB8Q=x^FONA6C|BeX8qo*8kc^UB@l>~amL;;>XlUlDacik8?AHyobFi$1Nmy~G)jBmAWWNn4z>=a{ieqtPJOxI3fqG9tan zBqdP*fvrKQAtlQqIeNPM$6S>@9gNAb>bdMrgHocVC6y3)e2MttRql!6B8QL!P|x~9 zuaW~WuX4&Dk5mx~8jczdqK+uW7&A=Y%%@Kug?S-56EVi-vTNxW$8fQjuZ_I;6eYlX z?@&+Ki<;kseCM~FW#7Vbk;_T$aSc2IVJ;59iQw;W_`Vz_HUViC-LkP+S@Y6b`#KxV zC(!xaA{pRX7}Vj*57@`W2w}$f*WGlH&q@iXV-i_>ckY*fGM-znDF-do2yWgH8T->jsmQU&fjigMLWSQw6gi{$n zK$5webtFi|ot~*ye?l^nWnYFGf}Iq~?aSw#thR~ZQKl7JK(4#p21>>amz;#%g(UH@o%T57NZ$Ls9} zl2NE*phW>j0m~3OG8kXjiB#fH^PJx9D$6dc<+UIXTq{pC=UFF>2qd4g%Va{Lp6wV{ zOH2v|ElZnwZfG?@r|pr&P=JOJ70o_e7)u%axAy0&2_sihW{(#t+_c4n&Y}X?Q=LS; zNrgTr1^3Nk5&UXepiz2hLm@N5rR<9+SEs);?s_qH3O+{crd=tyh%_Mt*E4WJH?hsE zsg>!u#nWEh?&QY1(Kbk5nES*@Z4&Pd+V5r(oHL=y@0+^orqGec2YLM9Tt|>$iZ+ca zDxG$vziem7)>$bfmeYt?a;gFJ*;b?dwPkbRcvTx`HtvH1N-Jf-G>@uEz_Nc-F+M^R zP3c(+511H`oum|9ad*rV8k9HIgQG4JGgCvmvE`cfNNS^`x(8~cywf2lIcL@6nmY=1NFr@k-aNw%}q}%T!s4y!2m{8b>2^& zG(Qez<51L7g(kLp2GrG5i>3#e1*#fm1e9ST=%gV4KBiqz`S-$x|AEY#>&E^9jFVta-N0PjKQgsRM`_vzJK#wFY=^xUo8b|tQmk&#e53j!i;9q9)3Pz^=*Al z8dQcw{JD_RZM{die=%GR%K;p9PhpRsH2m;se%SIe+=afI0js-|3wVWU~S1 zf)PGO3%lt^_`WPD5&i~(EZ8r&p(OBoS84+C7m zP5ud=Jbz{HDdWP03D}oAR0j5oqdtwuqnIbwX$!r+Lj64n{q3!-S^K$25I1DjVT(=~~frJobaZ5#YCwS^Ik4J!fFH4|X3&?&! zZ0?tS^%DvLFy5JKTdj2~FcE`PBBNjqrr_Z3uthsUsH8oB01}9>eMK?MP2VQ*?rp(9 zYmxGafwWw=$sR!&0BDrX8zz;A814U=8x%;8IY2mBQzJ=`=|EXH|C@yTmm$s5YEO!M zIq}1~{6BQ+@>^s+5KgxLj3sP^zC*U224!VrZOxxYaU}aWVo&wgMnh|*dPNz>`GG%l z*Z)9RbW|4>P*$d&$p3+@}gn1lA5F1;{6BtY5$CW z4ZfAW5tR||=iJY%^`G0_W>If{qA@f44+MatHR1li9~amET>ZI2^ykscEdK*bc+pmW zp2eIhn2wIwnyQU9K>Ty@eT( zPZEUXzY445h>VQ?r@Mref$@L4OSG(%HpTvaP1nx0qN>42`uy8=EFNcr;0{NH)Y~7- zbc7G|TLTZlgBTgB-8u2lnm70B3pAL?smKC({Jh(K>uO?A4K1LniV1F*RLU2osuI-D zIIOT|BWw+h#c!uBa0?z%S6Ml&g8?stqlI$zZV-v+b6P;)Dpli)1pPmo4qKvDo_Ji6o??P8%N?1x|_YVS`6 zms<^FD-a^k<;5{@wDn{8Srk%6Em#gfz##w|b<)eQfPn_0W>k+9vJio_ts6ZHY}PfP z%d{bwK_~_mK^H+dz~+Sj=GCcD`bNnem7K}**;Qr1_*VOuid>_>d;5Nkp-+R!fVWNK zSi{V7$nF0An*fi)mflZ259xi&Wsi|&Ol!6j{7hwUh9;m{$UwH(i&M>~ZwC7IB4B9Q zkV3H$BqV{uW+(%)ri`2fQ64Xd5666sqCj{~iSBQtqf;mlXEkXLAj|jTMDTVZRI2LQ zuy3Xy>@Ut+11VS}bKt{L_wqZV;C2BM#*+tk1FlyB`a>O7q;yyt z>oDN&4TK`inHRxl-%p8bISu}eW{k@mmg2Gr>K+KLKH)D8Q>XMmlqVb5_iIxOy2vGi z6z4G{a8SXrKD4hJ&!Z8tJ+hQw>GC! zO>wQvHS@O99r28wb@zTf1qQ_+i4t%3W;odo;{YEWkpN=}P+72^-kpQ7qS1b@)|M9Sc};CLio5z-v|5ONU=TVjBrjc@u}nIEfz+@U2M@!Z0U&eqU{{F;6=C(OOkIM|#e* z%EygE13S(Xf0RO|4_5R^Vl2V*Nn_+~XyDn9^;iB{F4DDE5k83+999_?dTa+>Ggijm zs)cA7+}P=$5C^C!)!XfiFk08h^DX)w!!9NPFK}3FfImKO7YE;$&60ZV_^%4?#rnlG zrvvpg!QIN4%FZW5t>%l=_*#HNgl#u-VK)5<4^}EmO>IynaA{Z^O+=du#E;wI=yum}1JWucbL}U)QhJiiG2V zwbM&;CO-Po#(^L81|V(IDRaJTbVS6Az`(yD!bbg1#Ro%O(WF;51Or<;!Q87;IVlv=Mu1T7ZR3gk@DxNdCPG z&2Kp!es$BhIETPrdym%6p1xvKvEQp@IhgXw#(17B8L^2DjUD$dwPJsP_+j|+?p6}6 zrJI}lyH@HfZfd1KTW3YqJzh#N=)z%J0n77lfe^MO6n#ZEzVGEbSJwH4j?~8)zd!{6&t!_)F*^2b504TRX)!qx>9RR?vpVuMd05{^kPu+0u_Y5GkdzJyxET>Qp*U$sgWOYC@tD3f6-MJDlYO?u$M8z`lMK&5m`kz z2#+(y=pdWuK$LWgcgfLbr&`f+0M>`-_TT6Q4wQAowrM>m-ZNSm>w{t=oHUoe061xA zNIe4Oz+l5UZ)4siH18{@mnv7Dhs0B)^tZAh1U z_2DeCzBT)bhq2mb1~`+ki(Z%E3M{E@#u`?P5S7a25Hghz>B{X=Xk7%s&?ooirLMWQ zJJ0o3?(_wBR@10Gx?>idaBL&7D9n|Fk>yUZcTBciRjd1N#ska*+2TyY;h9QZHQ^JX zNe^*bi{L0)qHM7a#qf?Bz|k9~K~S}ON9Lkw#91F^W+;@-G&={YBPeV*(vVg_l{DVL zH#`5&BmO<@8us~PzFVw3bg%_H5Muxi0Z_hMK`ii)%wLS@223nP{aNP6R9tL zSgPtjouWa%4&GGRbusg~)E}EeesKiDxh?;?P{iK!G-B1RT(4$d1X#VCf7@hI(<>+H znwY&dv>+O??ts@~4$>tQluaWbPMd~$4ZY*12NQosOLv7{Xkh7b-8Z*rV=h_oW(|mM z*Eb_>pyGldP96%fz|LJ>(A@9wba$BbfO`F2!H&9eT!a18(HXACv+>@whMAl+*z|1U z!fF>!MRYJqms`PK2eeDS7);rI+QRpb;?CIN{L7XrHo`X=E9+148}Cg&)>>1%4-84D z?Z?v!C`kO=7S_s-rnDp?nT~?mj_^YwMB~V;ID}R1Zi6+UA$DQlr}2a7=3`bLY%OP3 zFx_Frt4Z&)(845*1tRuak|&ek6&o^NP1p^@WF!^9Cqx>v089&S-EJU6-6-6Y8$5x0 zaK-NZlyl#~YE0Wq!;nb+F;WAIcb{RRC>#kx5o@s+9N5^7JwLOKMzRg2o}Td4$QElz zrIrsr$DwITLqHirt=HFt;yDC&4%Unz={3?rwJmcssB`S|vbVSllOewXdGvw}fv=lj z*%D1@w~+R%0&Ym)1w^nu_?RAqrcm=Wm*bR|5F89r8S}y&YYFG|Dv~W^ib_!{T4)=D z16-GFA}c_TV34Iwz1HzauEdre>o{=D`h-?WJVq63i7P{_bR@&uN4+C5ZjSL8)G(n> zL?*@v<22{BQ|S5Wl9wgHKd$9#`E8;_N!z=dH|*w^09c)6h?GuO^1had;-2%=r3w#! zWJ#qQiBl4ekpn8iJTejdCOd*j_Ww~t%iiaKTT&#M6z$)-hKK&vqz+vfcZktF;I}iOsEXPGuDXiXPDhY{VAWo? znh%D-1n7{JUyF`B2F;WRG*vM=5?24lwV~o@vLM8+Eulks%R<vWR!_*^Kt zs!wG}?D_*~g`k8LRxG|0V4VrR{k!SRewhlMAedTBsaWd~iR+^9FIvOs3G+ugaRGbj z)r;$uZ*0CIswP#kM$Q;rkWHrYG6DOtWqMpg6krs^V@aiaJYZ4Lz@r1F!Fh^?bFNxj z*FqzqI3Esfo=AtDGMvpK70>iagFxoUEHW^(8>)%kufKlD5QMUy)uPIx=9R49AM3*~ zYBjz|&O$y;JN~7dplDc4qNp2SrIU7?r+ig<}+tPm9?Bqz< zI{^Kz{!ubA%8T~tCL?MmubjyQw_Ql0?H z2MmYk+FP!-R^rHSo@zid(ig)`;#ZY~K5Yvb< zPI)J02S`d8|20J>Nc)g7-coE+L`V`d3SR=rTsxuwB6~D*iqFpskirT{$!PQIH}83t zDLytMF8e);Qw6VOyXZ2(9ZR?tEMmARqnkE*ZRc$r4=yLki@dp}fS{#MW8FOGFTkWa zsc(Cy?E0No+uU2?iss)b)u*^rPklPbuW|V^(`Ji?4*NfYl7+1dH^MVw`?9{);qd6O zeX~B=>R+8x1uVF%59ph{-wEBo?iV2=uscF}4kn?RJuXw`3m2E5l9j0gxT36F#25ur zf(5ujq$5=Wi91SUOAzronUgkZGXOp@HaL&Z?a*8N$*bMX^ou`H~1vU4n^QyWqXeL_s8`a`dSct5SAxLqPp;) z6^4d_AriHBOMKj2DoXkfy(|E;QkfgUa4a^@fT>XARg*8lbk&%o;>HjSJ4RD3a5krn zuygW6o--Z=I%tUERvbvI&E`cIN;rHRWmQL&@@ulNt2aTq@(HB6tKrU@d5BM!VJtYy zo5b;x;9aFE^7?Li85VnwR0FGOM=$I)_ybe-$pzC?yU+{DZ2rmw53tqK2d?X8v7+;I zOI+PEXf@$@wybmAjOjlhEhHhXXX+)6+P6~r)nMm7wsJHe-HZR!f?Lzq5$GV1xL2H~ z{T9FN^5qhp*s&dhx)nzH_?xC;16D@WP)3@^njYnqQJb35tt$e3YLVB`Lg{(&ijp$s zFA7!A(>cpU2!#*t5#SQiukzy+?Y$X-<|TqA2b$kKnx(J=>edmaY& zVIz0IeI+eJC9*kvErIfouao!QGz3Wc zotpF_q87cYuR9eAx*C*no&e{_&Z&a+l0e?(6*yHDMp-4v)oDwVej9wi%#P3V<%kX8 z%l>P{ZzC3lNw-K8bQ+|GF$BhkIXHXeOWggoa_iV)-S8vTW*r|jAH7fIu9|Jt!h^;_ z1=gD31wdk=LbD#8a_ABf|ERg?Qqi0EF4?PB0>cXs;ria zTu`Jf=^hy^{B&g`X;IVPWS)<^h3mwT0OdAaTmV;*avOWmqGft5T}AA~X_{94{lkdf zP8YiKK0Jirjl!dkq?>m5j4SK8Nya>nKNx+Go7k}mLFG=R9NIKLU3lrWirV98>dLFF`(+oD$`2++d2AHn3SP#hN;MQ=N@kK?*~cv=+17bgJAD4FZ4YQ% zSAd#<{)Mc@(iz?5C3=G#b^5FDVa(?x-G*@K=Sf)fQmXTVy_uCx(|+W4&UeN z)H1>kN4Grcp9uHjb6~_bT%c+s<96@&zni{Ku*M;+ZA*bMSE(M z`M0<9m@k-4aWk{Vvr=zU@y4}>A1C&MuCoscHO*9Su$_YkeMheJZ=!2){OS3zA;3!+ zS9(?e7dhsL{Xy)vc^8rpID9>Q(Zp{}0+)2}FSbLk_sg@^9&6ZF)iF4PW{y&-I~(7> zi09QQ8Nl&iLne!!E-GDXYwKT+Yb!fF?u;1(M>fh`?HjndxUr@e(9_Y>oAc41h8xEh zCL3RPRh}(BKLV$4m=-m=rTbPpUG{FD&LH77bYxrYUDxgn%tXJOj|MNNxNJ5DLpm>p zmS@pQH@oi7*D(aYo$Q<_S;)zE_GSU>n^gZl7^weYnEkhYcngCbrw#HWNcU5YL~l(q zL+6405Bez|Vx(R=qQil5{?rF!!O_sc85x+E*%Rv_$N|-^CdyfJ2{!hy*V}C!;PBTN zoB93_zfy-;IfB6cV=xO5U_~e}t1lQp+II1~o!QB3i@nG6I#&0BTgAooszRq!bwQ!r zszFknD?QLS8<)sh`!Y)iNTn{Yy(5!sRw4b*{Ma_ijp3niabcn(I53euxwr)(7zx-c zxCTg(AOHi%))pu=FYiZ$Nnm_zZ3Erf1{9dV((06{zOL?T;f@?k|N1jGCpFVn-%1?l zb0QRSbbD+K_z=p&|3y!45zHS52?wbc#u^bsqP+Zqx@;U6>qxm7*pW~?j(Qe9@7mTD zu?2`CkX9hZmXORZIgz^eivZFuII)oQMb5(Z5>i8x-y0&yi+P^pS3{rA^2;tCZ z56&$NM6a<_Z1UZQY6u$iF?I#v>j0WnrAthkO|$u(^sw>_a=#x8)E8q51T_kKN1n^bxWc5(&(F5bI_aBcb`2UYc>9{qJ{X@ThIScZPFTLR6_ zzUunkc74Nn)WhvXVvp-W=cdAZmX?JbmA192`%N{HE2v=KII zA%E-b-1i7g{N3271i{mV*d>64xM?uh1RD3_=RW?91n2Vmd6m#p0Q@5OXW-s9SOE}l zcavcM+?yzjtm`xYtIxJUpFXab3(L>|v<_sw=i#(gXJZcK&=S!VtjqkhH5!NwK*!e& zxV2dGqrJraX35sOsf9f>f32O=JA9qU6jqcK6c_eC(rZ22p?JhxBGTNRrXTz&L_jB> z_~!cPi%W9819@q1fW84*b>{%r#m6B>{HZ<6egj6IF~cr$&Cm%4(J#RnyeTshFYL~~ zZ{JVGUi9>hacQ$?z9+-Uz)sBpuS}ZXCNBpq_HHgd3J?FR0FZ+l^nena{m~if9F4Bzwx{04jJi6+=cxf*O689y8?3KLY&$L{gno$5IQED1GH?jVDrPbUzZGKHap1X3z4C~$#AU%=ho$+?kz<0_O zlXEl(mEN;$L0pvlA+7QaRLj*A6{RQZ^peR!?6gke*Un=rVIi!Mrbzwxe)_>A3< zPQc{ByjKGB;Z{s*ME;plh1_87+_W@of4D2vcS3FuHDAnd2Ba=haX9d6;@VK~ZC5#F`YrnIE-UJ-Uqac>ay7HqeP)+EpitWl- zr$=46*SB!E97!8`j=`Qb5sQsJwOzEB3>!GH2d|)ZnjumP(7P%GH)3*pgV*8xNs-sY zxN(P_DOUd6)Bir}slLQJ>s3`JPCSewjh{?Mv%?D}KMbkY9q*Ek=%~INDJYuz*ZqrY zfMAh1Vi#MOhTs_k9AcuKTZ=~;j_-p)fRmv&`bJw<2F3Mv!v*~RRoFQNR|0I|I<}1+ zCllMYlL;oaZF>h3+qN~aZQHhuiE-zgd+NU4x9+Z9-PI3W)mY#E`*%oQg7~r=3a>^y zwCl+J@)AL{(gDH@kL7Bx?6M0s%+C! z{tqoXk_O0_8kqr(xV-mRZZIsDmG;SWl4twF$f{jncY!`H3?xQ0I&Sm7bh|#>ZqAvx z+#_XN(cBJJC1gqkzzJ(UXw?pjw&7|}H3PL0#a;M}GDsi7Z0t6}8IarGJ~W-XG+S*; zGV3y}qmK-I`(;ia*Vatey=)K40}|Li>2zav9**FmlJLCBet;7!HxNau{hZ1BxM2Pi z)!7@%kpy~jH2(YmjVF=ZdCX4$*NNVS7oEF(7(m*-zlKvkFvUciJq zW0!guz(1?enq}HuY5%q1HI}%dS@h<$almOp+)n`^FU>aSOT?DOYX`%K8f*IJtQ^N) zob3b8=;^cGs?y|XB)DE)Rk`~xzd*00Ca83uIC* z#zv-sFR&7~pTM;sN?0_uhN-2Ti!mb}BM*G8?IVoL-}PVqMsfVP}PF_KPhJ6l!j za{+^O&SVw`Ad2J^1uC}f`Q{1bAnmFte3fp%ceHZ9Lu@IOGUvI>Lt#h%p*>bBKbNUP z8-t(Z)_Pl3;nQ5<dd3u}S!qIqA z?k>2;RrGO&|2cd|jC4Ylbh%#3AiV%Nz1 zpcVw4fh6aAzHFd$X)kp+5TIFtHrOfYVwGYRqufVyZv9=p2raGhJHsVV)5@DojuQ<$ zZ%Jw)m$s`^cR}ZeQ{lQ{z@62U4+An@IOZ=sfqDrmzCRzL?IN1t=N@QHJwrgesro2C zzIE;liz}FY7n&n~X)hyvvK>A?}-sWe-d5I>$$Zcu2h2YDEj~uhX)P z4Mv781S`biGqjU#j)fHBWUhsRRi@_f7Z=SDv$U>UAgWpnq<6|IWm(p?x&v{lJ{A;# zJ_dMiJi?7tUv3=@d*D280|(URCvCI4H$<~GgweUo7SgJMlh&TC!TQlHe_n+C{N1UK zk?Z0qGq_K3Qf&Bax}g@3nJJ+^SD$$=nsZB8VQSf|aV=l?IK$~_N!>4(lVsth&fceF zq3*|HM5M51!ZK1_QCMeJ4glKNCd)SS@{?z2MK^jOVQ4e}{_qLrM``e`hZpsOK=m0W z0^*q-)si=xpMQWZV3Y_)w?%l#z=rKTcp5*#2keuEJ%rdv^Cu1H6NnM?IuOCTsDoe) zokD9eFO<;?_8coDF-R^I6LCUvTQv)OaJdM%8QG2DQT-BVu8BC9=>q;ht#t3iCoavo zRw_8Oi!+M3M=rm-?PWozkZ3`vwUlKYd!#-~-YxSDHtcrUo=&&at9(h0WS^?=;@eXE zGYYw+Fb2GIWHHdWMR(ZDgT(uM!8tsgL*d#T`vm3E!0FEJk0?ERBcH2L8qTRzkERSJ zQ9;=;fGKnT2EZN+PXU25P<_oj%~XR8Q09d@o@`En1L{!sfz3(cr_@nR0I4&}_Ed?$ z&lO$^E&oOkfiK6GP&n#6I_R~ynW$l};1ATFfGd%ZN*bfSwbY2d*q7v+v_IxNR9C)> ztDBogI0-wg$o}tq&F$Dc_u77>vn))P@-AJ#1tiu=EUdOWejr=WUENlD^Cy~?Cpr=_ z&OX-HR#!M?h8DFoAG&H(`FwMetHE=_xfc_L@o*?EJ43S3yRT@>#h&xyx$x~)XastA z9(YDL<`{BLA~m{MD*pqCH7CzY5tmNuGWfXEE=!7X5uN|+8I{6yZF#fyS)WV0)xZYX zrHJoN5T&$y5HQUe2dTkamHnwgpkd&A7U8hzWogf_RdKIm1Zn&CXu|v0iWF}N{#ckB zMLqU4ncqXNXc{F}S~nbNA%sA6re{ysD`mOGXD{!i(ti1}gm%sWBod`wr>3t2L!Z^N z7;j{_ue{MK3iC&#fB5t>Kv|DU9XTy`qM4^OmO$TG8d&gaNb)6h#?-UPmGFm+{bLgX z^6@1e0U5JyvPBj1>#b{r_rUf1Xgw6E6G)}N5n|9DE0pHXC`RF@i;62Uit_!$8t1LxSuHFomMBoLPo=~JtN|^A;r!h>pDCe z;XRX*S~UTH89hePZ#B7kT?|%YlO~Zods6G`nCj$nMfBa<&14g+S_3db&pD4sfuVJ+BKLwQcSZiIxN1m&n|g zqr6Y=Z4_>*NC&L!xL=5E7Jqj?ggn3g(RUW`BXOV=v}Affh(r6zc%(W{?b|=Bbm83q z1wMYL3JlCr9nx_j(@Qz{m9n~?-$w(>ZBUxYy*L4k1lGUKK^LT_HrhROOBCT_DoX7G zTPts_{3HtX?H5<=1o{%^Uxwb!VeP31kLsrCa5RlnqZ`1gW%M5mbBHwjXO+x!>=^_& z4zzJ|5mdJO@tAKRQp|3w{P}`y__uhBfn=Y8QC{i4np=-87ZFIiWM)F@WNmsg5Lu3i zVeJ?)(|C9Q+oEdr<8@m@!Ug%Ld_WC{aP?i>3()SNN%~E(LHG=d=MP%|?d;Fbp9=N@ zO;UPqRlqj^9!GDas$_ds6vnZR=C#t3N+_|q>hzA%{BZ5Ov4Uk4-g=eImX%@~U{{TY zxm5!@y-Ry2POG~7_4prs$kLbd-eq%?{4h>LkFUo)S=C!V?RQLU6DJILv$NueN`; zsEu!P@@*v|L7!qx{dfr8D6OKvE!`VtCAtlhbxSjzKg?Mzd`uAlu#5J^9iPA9jpjGs zFnry=tN`GRHl*e|>-T8_8x~yUQClXp>*lm=#!~yA=^zv~SO$ce@hYSV=ygfRd;^g6 z1WY^`EWJtT_{7ai)*^;ICSQLNYWqpTaSSz5lYb7@xv>_T7ZIB!CfBB;;)!b2K>&px z&?Vk0H2TsWXJ4E^K^;6IUu^-<2MKK_GWK{pVY{9SSGLA|39w2)>qfq#c#dd6ZWEfS zQ3Bt0l16>3E`WDuo$T{{vRQm*cBCqJE8+ZC(%MH7d7R}P2}eB0w`%p;W=Q)`M!`2b z(~lz~VwKKRz_wN9=Sbol8*`-eL%ro16Fgo1@^J%G7I%Q!5}Z}>kR78Jb-^WPE?LFh zN~Y({fhE!$%&$XW=h!mohI2$U4%`#AU61b2Za%DewOK=(D>AWs+Bb;nYJ| zL^IrTMaxs_lY(CND;n8b(@J*o=TFUoCf*A-@FmVxl|(d(;($JG`>V{^;RjJvw1W~4 zw5~sARAQd%lV#rQo7p47=xAPrD2zK{uMC$zh93qy!C(4;aX|67Ry(wjKw6&a9Zac_ zWS_@yxSeAoc-9nt^Y=X@{z;KnRh9J}$-b$Nheth@%E7~CSa;3M+$7G&#QNz3Fwx)V z;=BjM(RFp?V6O*1+$tKTX4VkCYTABbaBdL-*ibhgr0Yg(FbEa!vmA zAl!<9Vubh$46b)bO)Q2wPt@3pN9O*gj&UET+AcVUe}sj&Xa58V-(O5ZoT5Lk)8;y; zbEwB`NbjV(qIkZfi0514$Cy5L0Gi9O-(7BJ#$St)k<{2!MmT)@3b3HSlP`M5zi`z| zVkjjfQA=S%KNjDsE!_>ZmwawH7Ma&2$?U;!rMR>CW+!zB@g0^t=8xd;hTnEqEfe zrfJ3>WiXdGH~V!6gZGS~QHZ{JBwI%w<@37nwL4Wnbs}`kz-p=Fx$$G$Es$P(usura zB{MHv)>sIdnpM6m7hEM@=KYUFwr|NlOPygl5`53v2eH>D+zAPBd_J@@*ef9jPCI z!2NpFk!waA2qZJoxL82gvKNNH+g5)CY{YD~faatfk-A0+1%d1IxCwUFF3S08NjOc} z3P_Rv%4<#c7;Xr&oR5;_mS@W~T~r0h_&gWzW}w*m@kXg=#_9K=~54iqjRN9QMUzx;*6vKL{Pww zB`U@(Banu)n9}~!n08anJFnhT`Z@^fJ-+`G(l~nlQwQ_@u;huy<-v!|;jb>zcc#)h z83P-=(bD`~0uN988k1)Ejg0fJ(G&x-`h((Jm?$A15L+27?u+y==_&+pRyrQrfrmnL z>97x#?*%Yhu;lt+VWTRde;CzR^oC?8nB!>g46m_IxkV1vMolSlI#+2MOyOP!c z>NWRB#p?Dy8RQFS!3ro*QUyvRi*`s$^jBX=SP}}EX;)va@$McX~15Y49Ta zgfFd<--M2v zLl!E79G;|y^GvY^#Ju!3@qMrlQSS`ekphW9Og#+qC@j_}Uoulait=1I{6jYw^&X{+ ze)Bpr0Y>QnV@A_6=L3%(NrSg7Fhk~{KZ@Bq7c{#_T%<;mKFuJ^zL%GfVy8wlE8v$s!)y> z$}e3^57<7V4mWi`9TG|&`u2x#L(q%Of1fZI)b?DlLmKUgVx*%6-CM6|?EGQHU=W#l z#k82HoLJtD$_XonX(Ss!kcD+`?@SuvqH^41l2D4AkZ$nri0E|@+vIo4=8VwD?N;tR zw-QDLGx0`?URNX4WR>{u;XzDo(YH@Le_psm@89`{kd-{p)--B+lS~Ccp23ZmM1;n; z!Pl0g(jAT-ACrz+CI+s7W_ZU4L}Xfom&KZbOJQ71XfwSd%*ObRkh#j_SLl2Z<+B#` zU$@1}2{-zv5pn~aZ0+aTm!LW_$C*5(u~Ls>=G+@uHPtGWa@NlWeZ#oRX9Z=XB0++` z+CXcMe_8eY)(^I{87=w%@xV4b+fbAKZHj|yJxaqm@dioq9rtS57J8Nfg@MtVfMM|G zr;lS^Lq)tBc*L|K9c>j;qsC>G-G%H|=!~F*1`6-UrNouTqr~}l`pb8Lu2Lrj8N-3N z{`{q1&JCi@22=1g_KW$<#}vdcXFX}EQNS0(_{yHgz~Z>zD5O`IRyDY+gzxQL?l$qS z?HWYTq4TO@iM~m5EG#~xs$eu#8UsG3V%?uFi{>uSL#>Spx~hjxxWNy-V@4oPJ)dT0 zgEWW8hL*Dt9>(N9rrxiGkaHXjC4yqZ$QtN$6pUfH$x&P_<5ty@N`4#blM4~YmjTbQ z96XLraqQ9(&VSiUbM5Cq_H30v7oz1oxDEIPZ300{vK-5%*om!h{EjNdANhj;Iamu$ zK8Cc#YqxFHr+2h9LvgX*uwo?*JETRorYYG2*fl|62nxHV7MkEB$!e3rR|}bxd+Cu) zQqwxwd2S+n_P35O%z!E^e-;TDI-nLPBb>#0s{#V%ZDU|=gM6yCw1^I^)$Xf{1v8+l z1F}OO>+IbJRgA%_;GpT?`@rittG>8{VL21e+Kxfti`o^50m9^nG^D0%Zg=~hmSc#* zoMfhO{_`Ch?88b|Z66{_6nEB;Tif)rC8GNyyB8A!s^9n~R7#z@l{0;2YBl+i&@BP91}caLuKxvd1eU$QieOzj{Up;luH|6m0V)f)_O*%y zOOFR_(|7Z&@d9!LcPWjGHh{V3^~bjbQG|e`q59xO$CMr0U#uEcmEIA<02i!Zz4gm< zIdbAFpcDz$&2-=}7`S?`dX^uthK*5Yds4ZDB7j>4@P>NN{6UEGC-K624Dx)* zX?U0F41897JA?@d6nRe$^1yXBa0hFvu)%FAmVgzke@Olb1<)xeKJUI&oy7&^qBADe z%wdIYE>S_>a?tSLAg~8eLlJxb5`cF8CMuM}bsN5Nz{h||KX=QPt}D-!Ve)1#^Ug0W<<995Q0F^&gY%K>F?4gUxak*O;}I-I68WWr9hQ@NIp~L zp3juNPR$A#2?1@ZRJ3-+NR)MD z^e>lUW^Nqyvey;z8ccB-c~o0*$h6+^#y@XbzZE8uUu@WKs5tv=?uK}wd!>E!EKCG| z)U++P%2#b-rl^l!(3`J6Q&j0bQ9K)ms3bfqAV0Wp$rj z&Qie#r-4S0lS^2eq~Y|>x9PZL>b%V9~I@roBYmA1l}@W$y~pbDyMmn$n5D zd>_cj!Agt5*kvMVkM!aVwN+bOBGytn!Mp!XPrg+j50sVe8vok~p-g>Q9B|GK4x@me z3?lrP^->i!U>ay(6UF53yt8fff691eIx5GoV_*9=V_9$z2Pz}@iB9R&S+NJ?3g6D6m^GG4@CJ%V(Hg>S}Jgq>hFlbh|*d1nO%8-M1 zo*d%fv^fDL#EQ)(>js8u)r<{4nOTC9Z_IqpI@F*cAa+A@``61QL=3pksko7HV>V+P zV(~_hw?Zw;j%;_S)Q(Mv3`o5L0Q8m=V3Jz7P4xz{Dk`eG@jDtlzyw;d?kYp`~fcvapvHhq~nAFTj zka*R=q)$&gUJFyf1Tb4mZ5Hqm-X9L|Ki1v_iWIUXb*&=K&^7%%*1CHM^|Z?QtC^;i zSoske<`B3uCPw3(D_Shluy}uG%7Bd_tr3su)Fw53Dqbg8HvsHIjMw%flzovf4id~t z%?!)_TTR?#!D5m&yZh|dPJW!-DI6-=x5w$blV&De=Bds&kiw(}p|4xgnb7W=2H*n% z$s}#jGdzRR1_lF?Q}4x=`ga*}46p;ryN?lxBRho9sVm%$0wr_iw&0|$c*M9asGXCdF4Ow;O>1RK3+ zJ3Ax^xHQc;ICxMWy0hr0p{xcgUD%0%i@QiRTwZm}3+mS8wsyTyO3DEXzm5|-2PyGb zSK6pnP#L?<>w3pyST>14&oLqsD(o4*Mjf&BvF@Z}cZqhsg-rNR4k~M}d5g z+;GCT=P0|PV&6Y|&J zp>DSbC_Je&=KcN5!1kL!$;w^2tMvsanZQ z8qnIHuT`*q^yX=8xx< z@|cYw$wUg7%vS;?U$t9Y%`7!&jbMfuYIz%Ut$FzfyQW(>!LRj!*f3K708J)X-b^Lt45H zaN;IXchk(>} z1=}6{29^fB+=K;S^Ts;U!4AE%gua5ggN@AjG|q{g!w?Xg&4M`8tF zRon`$HE8j|WWgXHc7V+RPAK{h^HSPN-I~%)IlL5V>#D1Q7q$qoFh!i~4xY^}=Y&N^ z(+067eeV4Lr&&-fCR9%Q^d-}(%uqkhZb#I4paCh!2A)^UuCPLmvZaw1H+#f*okM3J zNohAN;#Vyf<;IU6J|a5LxNM8OSh)nvTC-=!Fg=;0*}jy(G|a)vgiR9`6Zw73Cs!>v ztul7r82hmPJW+!D??qF$BWtFnO9BJ;FRpYegcFbhN_zsz+w8mK6NxnH8w7B!!;0ah03H7*Ju$WjdUta4j zmRuvAdkHGQl_6klFVY;^#rRs35SK(F>Bv)c^QZ=YBiD3YR7!j)$oVB;MmOhuA>79| zrtq-1y=EnBNbk5}sjWp)koM)M7xcNq#SAOiQILu@){#VD2^Sb{nn86c0!6z3JRuCwKH94C8Q6 z-tMhhGNz^ERB~<13U6=&Z?;vWR2ANwSd}}4qobE$M$%(%xHFPsTYc3jg8S$Ls*70l zNA7Bi3fi$P(9101n)Yt@p~~NB=o+0_yiiCMCNOO_dhlu)hsZ98?-KtpFg_WzIWF99 zr=m>L2)0&ZO`%j4AC6X#8$wx7&w>n6<)a9Sw+t^7lcMF!Xl*fGKyhUF`WtjfIC%Ph z$%y|2l(AYg(lIe9z}eaV3n*i@1b1T!N&Kt+k4WBvz`Fj&O8+yhWst^NgkWW2V^4*W z!6N#T_vejDF_M6RUpWQto zLgvO<7;`0k`_Rd ze;9$K1b2j$Ye=fp0>dnkz7=0~M!|wKL5fAhvkJJeP|Y{}gC(J3{qQOi+^_Kl1s{)l92jdN7`XD{vh68Zo67h~<5a5QnG2@xI=7{Z4k&AxE z?XL=Pp(rEJD3*{(O_HpQDH^g&Mcu~QZ2!Au7b1B-?5nB`LPVuRZv#sY%N z@d^T&`~xF|)Gd=@5GEUliDs3V!}2LUz?9_4#7UUa3UGq(TMzj{#%`?eN;Il_WO=67k3;JwU=O7por&H0fh}}$0i8${Pq)cM?2=6v36M-40 z92AGekWCUESla@|$o8Ae5oUj%Sq#cc6Es~6x{?Y(7@($&f`!$z?4$y^XviD`+sTs0 z1rlI%4TpwhJSTqO*5Mcz{`F6y5le^`bx)pGjDRAOZ)#1QV$a8r z&fKEdF|`1%q&~hf+*Rk)pdCN_xXgu#XP}O{jjjBXIqB9RJ`#ou1eNG3TzK(>9GT(* z+#(wo&=em`9CA6pk2v)(Vl!ceoP;bPLGu35_$%qBw8XH9j2StlU`3yEo}0w{FsqXheh+VaHwQtNnlCOC z;p-hrys!GDC{by<2zYGou25~K59mGpG-HJK(}DeWSQ<8x<8hSWhrytV{Rf2 z?2hjlL%vt|rTiC7+WyJTEf!hkAG5AIdAauF$urJT2DfFGIUowDGQ@ygqpE6$zgW?} z(Ns~lRc6(xrb=~Q8Ie)oC;c;|VT_zw+{a0IiY8n!uaiE|Q%N^FE8Fj75e?K`E*54| zg_LP8JP)5zbY5UJdsyB@mCl;`HUPe$M8GCpT4?gRs9o}11Miw4oV~o1K{sDM;H(a*rQ5Hs-oQt& z6}$EOyd>@5I%2{spK(O0So?aXZg))Z%xGDPi!WS1?slQDg-GxQ5-nzJEy=|Kn1Dcd z#a41vRB1M!{Jol&(vn$JH6JsiT&g?kAj%!AqAwg6$ua+PbD)HQh4ESZSI=>xWc?qD z(1kslBzYo|-P%9l#K$y~OBu55 zvOuM%KixX54yyxLwT_g%cZi&#KoboEK@V@xY0KyG#KN%5abxD3{XHk~sa zmJNxyw5R-DnY>-S(pTf)fwza~W4=Bhi%1{96;M`f;+u`1}lLN6L$|yQ~7W z=X-gv)bh@5@1F1Zd_t1RX6kGFIfz25D-Rkb) z@&UTb805MFS~|slVw%$p6nVQSjFtTPHX*d;xDFpf8O-DK<#ajW4ozh5hRUnxlGRdo z1Z87*HBpC*Y%f3vAal#xZ~b^}ouXy=dOANpbnoqc1ITc%bm^wN9Wm&~e4SnGot=<{ z62fgg1sJcC*XifK4Re-Z!Oz9}+pga=+WcJV>+=QoX0Gdgj^k(n#)yd6kdJ)BJNe!~ z(>oa{NP!z)G8QMpseX|~ns3AsWz5bf8X7ZSWH%P>=zS~#DiK&ipBllotDDp%Kvh7FF z!m>^?U+Ik{F})oEx;f?Qz?)+^`1OpBI2`MyjP=!|BjF?-bPu+77}@G}m^m~?-=bIJ zZw-kWIBGuBTw|YcJ})iL7@W~BZ#VAgPSteUj`IHLDo66xFWPZ_Mr^y#C9s^!d}du`Gi+F8F-78wgtD4bHdd!{B)r9J^Q7eIJLCII z;buTUe_hyE#Hv*E^#X?%53>|0+7Nltc^KQ%Q>{Ehi@`z9wG5}c`N~I>p_>c;9I0`% z%I)D2=UD{>Imz<;c?oFPLX@BZ}-9dJDmx&*FO$@!VSLmxzfxdnu=^UhoO zpD^n%U#5Huu^qlf?|eTrsE^)6kJ;_VbfQw#&5ugvKW}j*h3{a{<`?^I^3(OwDJ{Up z*K+pm#v%GFvr5N|=n?AQP!Azzod{NeYn|HDiH2UOlP3o@FwB^-7pL-XuE_>zyf&eM zgF|i>83)y2n7Tct3JyY$P}h!m9cbYGMklXxJy|}^Q!#j77J+e%6NiLXRn|lW+3r_l zjqVf&7S}QZ1XWg&>!i!~r;$Ot-MT<=NEib50ra%=R{Wga!NILt@{A5cDz=LpsyMZU zd`6h)iFBk0Hxt{H>k6vtRm6-AW^J|>)%Cw^aZHf+#90uDc`Gy5&j? zbv>QING&}wg25&S3anW<7Z(H>b!!u!muTO|x|_%#($Z?N#|qN8^EQJ>nbmma2&aqXRRohq}NjWYDWrm?>B| z)N_{sb+1>*mSjMAPp>=&$Jt}SeciE(1Q2V;-hnP>2%X;6^wqBMs@e?)zg%ghQG4C^ zM6cnxoEwB}yB6O8RsAE_(h$!W$Sy}%n$x#bagXqa`ju6O^M1vl2>>)3Y&qvP6!{Z2 zQC%k&N_G7WS1z~NT%Z%eQI%F*!K?D4)M^2OO(l(Z`NT^t)R-NDB^?U^#x!$KiAIb6 zo(8{6TvOcKRXK#9n?!6#89l|OTu7njqH?vpI=RQ$y zEA!6<_pJ?GtbV8To!DIGsz&)Q=+8)AH4LMuWq$OIZ`r&v`gS{ z_7&6c(B~sKmUwsRsOUql2Q>K8{q1#g_y?zmV~O_N*h>Jv_z>(nWS=fwpqo2OAg1AH z0n1}%;p`6?Sd%ia>;?Oj!Qh{W(tofjF6Pt}c`Onj7mF?&<1b4uQ(|^57C1(AVr^z( zR$}IVjmq}+F2wAd{}CZnhGUerGqeBKh3S7aF=A~#2`+ICCT?+IPHuKlW-caSQ6?4< z4t7y7j(@ioQFbl~0pkCE7o>j^$(h=jyI2r2v$3)M_tHa+c4=H>O zhX~cB-h4Pf33^b>*eJ>s_>2(rkO$`oQ<2W^Zl zq7{N)mu^HXsx~mC6IcG-oYRO{B_dns8s8kWWZ~K9T4dd;)p%r)T||(Feg%=CytNt3 z5#F4lf^I9cp!G;a?}Xk=C8;f6fxQ`6!rh4An`LW(Xi+Kk*RZ9Kz2FQ}B`Mn?+k#fw zyBEkX3-1;r;4E)nIZxT^-!^Yp?A@z3ybN9~^vlYZJrC(Lu}ngKvcx?TG|>P~F6hBv zR%fck>qDApq}EjENC5I@kf#F_oqxkFKm$TFN(z+#`dxZKY@`=7B_9>tAWdZ;CJ@zb z87{^@$N*z1Y&a|;Y#6s>3>nq(en6~Kau;~q3kSvt?aBFM?=Gl-R7HUigg~{I-zZE) z(f?tHO9lR@l;rXczE1YsH zUr%UHv~P1(UN;XB%ojr|JuC$AoTUkK3ImV+?|`m(d9L14m@hGCVcwLoKK-ePAPx}h zy^je8)Mvq;8QctUm1DLC^cS=oL9I`oIyfRK6EIKr-#Dk~LMM=$7^h3b69<*E(6v6j zy#d)jc2E3|g6Lw~!0eD)`2kQ#yaoYGhUJ20k8rDW1`R^R19UhIi;V2;5t(2}@Qo6^ zGoXUd9{?m!dW+47uQx?92i;y8P~brDLt`trsgPM(L%|MIF>YMwPjt**$hKOg9>IjQ z@Q+$Y2iR-{02Ph5KHlkw8c56JJUA6?vpQid#ImM@_XU|)|H3@bB#pO;(DpcRNJY4F zA^y=o(>&};DBrv}7Wikjlwyi0|7Ha>ji>pO>3RiUw7aOt)(@)vaUkl98cz#$|AJK9P*>YGpC1;mP3|&Bk01~dy)YbW2$Nd~=H2FGyz?6rF4=6ALo53Bq@zZQ zt(&;Sos)0(LkfhKD(2vMjvr9Rmh$O^M#rR~3PJKi{#{(TK$&~ZFAS1+WGl$6T@SUl zfE=lM%B?CmNTL0xI0gPb8fKu)XxucW7XOvv{hCr>IpK?ePxt(pG_N^fevCP#+1>SP zj(Xz8TYAoNVy3d?qw~m~P}ODl-oDx?1;~g;4g@Z1ZoL#Vh+G7PU8s}ky{_LK52<+o zg_MTj1O>{=2G29P6^rznu<{a3C{IBi+SR3U>A%<*K8^pQBMo=fzESLT+xeS^aW2BW5i{lX%G|L6P20Y^b0t{?&Te*l`R BTyp>b diff --git a/paper/paper.tex b/paper/paper.tex index 64d1e8b..2153a87 100644 --- a/paper/paper.tex +++ b/paper/paper.tex @@ -1,4 +1,4 @@ -% Created 2020-07-02 jeu. 16:30 +% Created 2020-07-02 jeu. 11:48 % Intended LaTeX compiler: pdflatex \documentclass{ISMA_USD2020} \usepackage[utf8]{inputenc} @@ -53,7 +53,7 @@ } \section{Introduction} -\label{sec:org7ce36f4} +\label{sec:org2b4a2e8} \label{sec:introduction} Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold. Either the control architecture can be slightly modified or mechanical changes in the system can be performed. @@ -61,10 +61,10 @@ This paper has been published The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}. \section{Dynamics of Rotating Positioning Platforms} -\label{sec:org1767f3e} +\label{sec:org96ff785} \label{sec:dynamics} \subsection{Model of a Rotating Positioning Platform} -\label{sec:org3d795b1} +\label{sec:orgcceb66c} In order to study how the rotation of a positioning platforms does affect the use of integral force feedback, a model of an XY positioning stage on top of a rotating stage is developed. The model is schematically represented in Figure \ref{fig:system} and forms the simplest system where gyroscopic forces can be studied. @@ -84,7 +84,7 @@ The position of the payload is represented by \((d_u, d_v, 0)\) expressed in the \end{figure} \subsection{Equations of Motion} -\label{sec:orgeda87e3} +\label{sec:org69c2427} To obtain of equation of motion for the system represented in Figure \ref{fig:system}, the Lagrangian equations are used: \begin{equation} \label{eq:lagrangian_equations} @@ -128,7 +128,7 @@ One can verify that without rotation (\(\Omega = 0\)) the system becomes equival \end{subequations} \subsection{Transfer Functions in the Laplace domain} -\label{sec:org133b2f9} +\label{sec:orgb638120} To study the dynamics of the system, the differential equations of motions \eqref{eq:eom_coupled} are transformed in the Laplace domain and the \(2 \times 2\) transfer function matrix \(\bm{G}_d\) from \(\begin{bmatrix}F_u & F_v\end{bmatrix}\) to \(\begin{bmatrix}d_u & d_v\end{bmatrix}\) is obtained \begin{align} \begin{bmatrix} d_u \\ d_v \end{bmatrix} &= \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix} \label{eq:Gd_mimo_tf} \\ @@ -163,7 +163,7 @@ For all the numerical analysis in this study, \(\omega_0 = \SI{1}{\radian\per\se Even tough no system with such parameters will be encountered in practice, conclusions will be drawn relative to these parameters such that they can be generalized to any other parameter. \subsection{System Dynamics and Campbell Diagram} -\label{sec:orgd6473a3} +\label{sec:orge52a4e9} The poles of \(\bm{G}_d\) are the complex solutions \(p\) of \begin{equation} \left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0 @@ -218,10 +218,10 @@ For \(\Omega > \omega_0\), the low frequency complex conjugate poles \(p_{-}\) b \end{figure} \section{Decentralized Integral Force Feedback} -\label{sec:org9704fad} +\label{sec:org96f0657} \label{sec:iff} \subsection{Force Sensors and Control Architecture} -\label{sec:orgf2a5a4d} +\label{sec:org5b40356} In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure \ref{fig:system_iff}). As this study focuses on decentralized control, two identical controllers \(K_F\) are used to feedback each of the sensed force to its associated actuator and no attempt is made to counteract the interactions in the system. The control diagram is schematically shown in Figure \ref{fig:control_diagram_iff}. @@ -241,7 +241,7 @@ The control diagram is schematically shown in Figure \ref{fig:control_diagram_if \end{minipage} \subsection{Plant Dynamics} -\label{sec:org5e54ed9} +\label{sec:org1a3334e} The forces measured by the two force sensors are equal to \begin{equation} \label{eq:measured_force} @@ -295,7 +295,7 @@ This low frequency gain can be explained as follows: a constant force \(F_u\) in \end{figure} \subsection{Decentralized Integral Force Feedback with Pure Integrators} -\label{sec:org8461ad2} +\label{sec:org62e8d62} \label{sec:iff_pure_int} The two IFF controllers \(K_F\) consist of a pure integrator \begin{equation} @@ -324,10 +324,10 @@ In order to apply Decentralized IFF on rotating positioning stages, two solution The first one consists of slightly modifying the control law (Section \ref{sec:iff_hpf}) while the second one consists of adding springs in parallel with the force sensors (Section \ref{sec:iff_kp}). \section{Integral Force Feedback with High Pass Filter} -\label{sec:orgcd3018b} +\label{sec:org0394efe} \label{sec:iff_hpf} \subsection{Modification of the Control Low} -\label{sec:org256e76b} +\label{sec:orgd5972ba} As was just explained, the instability when using IFF with pure integrators comes from the low frequency gain. In order to limit the low frequency controller gain, an high pass filter (HPF) can be added to the controller @@ -342,7 +342,7 @@ This modification of the IFF controller is typically done to avoid saturation as This is however not the case in this study as it will become clear in the next section. \subsection{Feedback Analysis} -\label{sec:org6765624} +\label{sec:org51db5d4} The loop gains for the decentralized controllers \(K_F(s)\) with and without the added HPF are shown in Figure \ref{fig:loop_gain_modified_iff}. The effect of the added HPF clearly limits the low frequency gain. @@ -369,7 +369,7 @@ It is interesting to note that this gain \(g_{\text{max}}\) also corresponds as \end{minipage} \subsection{Optimal Control Parameters} -\label{sec:org122256a} +\label{sec:org77a266b} Two parameters can be tuned for the controller \eqref{eq:IFF_LHF}: the gain \(g\) and the pole's location \(\omega_i\). The optimal values of \(\omega_i\) and \(g\) are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized. @@ -399,10 +399,10 @@ Three regions can be observed: \end{figure} \section{Integral Force Feedback with Parallel Springs} -\label{sec:orgb9e95b0} +\label{sec:orgfe69ffb} \label{sec:iff_kp} \subsection{Stiffness in Parallel with the Force Sensor} -\label{sec:org3fd6edd} +\label{sec:org02dc3a4} As was explained in section \ref{sec:iff_pure_int}, the instability when using decentralized IFF for rotating positioning platforms is due to Gyroscopic effects and more precisely to the negative stiffnesses induced by centrifugal forces. In this section additional springs in parallel with the force sensors are added to counteract this negative stiffness. Such springs are schematically shown in Figure \ref{fig:system_parallel_springs} where \(k_a\) is the stiffness of the actuator and \(k_p\) the stiffness in parallel with the actuator and force sensor. @@ -426,7 +426,7 @@ An example of such system is shown in Figure \ref{fig:cedrat_xy25xs}. \end{minipage} \subsection{Effect of the Parallel Stiffness on the Plant Dynamics} -\label{sec:org6d160ef} +\label{sec:orgb29f2a0} The forces measured by the sensors are equal to \begin{equation} \label{eq:measured_force_kp} @@ -491,16 +491,19 @@ It is shown that if the added stiffness is higher than the maximum negative stif \end{minipage} \subsection{Optimal Parallel Stiffness} -\label{sec:org1c9ca29} -Even though the parallel stiffness \(k_p\) has no impact on the open-loop poles (as the overall stiffness \(k\) stays constant), it has a large impact on the transmission zeros. -Moreover, as the attainable damping is generally proportional to the distance between poles and zeros \cite{preumont18_vibrat_contr_activ_struc_fourt_edition}, the parallel stiffness \(k_p\) is foreseen to have a large impact on the attainable damping. +\label{sec:orgbcc4bb0} +The parallel stiffness \(k_p\) -To study this effect, Root Locus plots for several parallel stiffnesses \(k_p > m \Omega^2\) are shown in Figure \ref{fig:root_locus_iff_kps}. -The frequencies of the transmission zeros of the system are increasing with the parallel stiffness \(k_p\) and the associated attainable damping is reduced. -Therefore the parallel stiffness \(k_p\) should not be taken too high while being larger than \(m \Omega^2\) for stability reasons. +Figure \ref{fig:root_locus_iff_kps} shows Root Loci plots for several parallel stiffnesses \(k_p > m \Omega^2\). +It is shown that large parallel stiffness \(k_p\) reduces the attainable damping. +This can be explained by the fact that as the parallel stiffnesses increases, the transmission zeros gets closer to the poles. +As explained in \cite{preumont18_vibrat_contr_activ_struc_fourt_edition}, the attainable damping is generally proportional to the distance between the poles and zeros. +The frequency of the transmission zeros of the system are increasing with the fraction used as parallel stiffness \(k_p\). -For any \(k_p > m \Omega^2\), the control gain \(g\) can be tuned such that the maximum simultaneous damping \(\xi_\text{opt}\) is added to the resonances of the system. -An example is shown in Figure \ref{fig:root_locus_opt_gain_iff_kp} for \(k_p = 5 m \Omega^2\) where \(\xi_{\text{opt}} \approx 0.83\) is obtained for a control gain \(g_\text{opt} \approx 2 \omega_0\). +For any \(k_p > m \Omega^2\), the control gain \(g\) can be tuned such that the maximum simultaneous damping is added to the resonances of the system as shown in Figure \ref{fig:root_locus_opt_gain_iff_kp} for \(k_p = 5 m \Omega^2\). + +\(g_{\text{opt}} \approx 2\) +\(\xi_{\text{opt}} \approx 0.83\) \begin{figure}[htbp] \begin{subfigure}[c]{0.49\linewidth} @@ -516,25 +519,23 @@ An example is shown in Figure \ref{fig:root_locus_opt_gain_iff_kp} for \(k_p = 5 \end{figure} \section{Comparison of the Proposed Modification to Decentralized Integral Force Feedback for Rotating Positioning Stages} -\label{sec:org3dedf99} +\label{sec:org1e5f410} \label{sec:comparison} -Two modifications to the decentralized IFF for rotating positioning stages have been proposed. +Two modification to the decentralized IFF for rotating positioning stages have been proposed. -The first modification concerns the controller and consists of adding an high pass filter to \(K_F\) \eqref{eq:IFF_LHF}. -The system was shown to be stable for gains up to \(g_\text{max}\) \eqref{eq:gmax_iff_hpf}. +The first modification concerns the controller. +It consists of adding an high pass filter to \(K_F\) \eqref{eq:IFF_LHF}. +This allows the system to be stable for gains up to \(g_\text{max}\) \eqref{eq:gmax_iff_hpf}. The second proposed modification concerns the mechanical system. -It was shown that if springs with a stiffness \(k_p > m \Omega^2\) are added in parallel to the actuators and force sensors, decentralized IFF can be applied with unconditional stability. +If springs are added in parallel to the actuators and force sensors with a stiffness \(k_p > m \Omega^2\), decentralized IFF can be applied with unconditional stability. These two methods are now compared in terms of added damping, closed-loop compliance and transmissibility. -For the following comparisons, the cut-off frequency for the high pass filters is set to \(\omega_i = 0.1 \omega_0\) and the parallel springs have a stiffness \(k_p = 5 m \Omega^2\). +For the following comparisons, the high pass cut-off frequency is set to \(\omega_i = 0.1 \omega_0\) and the parallel stiffness is \(k_p = 5 m \Omega^2\). \subsection{Comparison of the Attainable Damping} -\label{sec:org173dfab} +\label{sec:org29462c9} Figure \ref{fig:comp_root_locus} shows to Root Locus plots for the two proposed IFF techniques. -While the two pairs of complex conjugate open-loop poles are identical for both techniques, the transmission zeros are not. -This means that their closed-loop behavior will differ when large control gains are used. - -It is interesting to note that the maximum added damping is very similar for both techniques and are reached for the same value of the gain in both cases \(g_\text{opt} \approx 2 \omega_0\). +The maximum added damping is very similar for both techniques and are reached for \(g_\text{opt} \approx 2\) in both cases. \begin{figure}[htbp] \centering @@ -543,23 +544,23 @@ It is interesting to note that the maximum added damping is very similar for bot \end{figure} \subsection{Comparison Transmissibility and Compliance} -\label{sec:org411478b} +\label{sec:orgbff6e4e} The two proposed techniques are now compared in terms of closed-loop compliance and transmissibility. The compliance is defined as the transfer function from external forces applied to the payload to the displacement of the payload in an inertial frame. The transmissibility is the dynamics from the displacement of the rotating stage to the displacement of the payload. It is used to characterize how much vibration of the rotating stage is transmitted to the payload. -The two techniques are also compared with passive damping (Figure \ref{fig:system}) where \(c = c_\text{crit}\) is tuned to critically damp the resonance when the rotating speed is null +The two techniques are also compared with passive damping (Figure \ref{fig:system}) with \(c\) tuned to critically damp the resonance when \(\Omega = 0\) \begin{equation} c_\text{crit} = 2 \sqrt{k m} \end{equation} -Very similar results are obtained for the two proposed decentralized IFF modifications in terms of compliance (Figure \ref{fig:comp_compliance}) and transmissibility (Figure \ref{fig:comp_transmissibility}). -It is also confirmed that these two techniques can significantly damp the system's resonances. +Very similar results are obtained for both techniques as shown in Figures \ref{fig:comp_compliance} and \ref{fig:comp_transmissibility}. +It is also confirmed that these techniques can significantly damp the system's resonances. Compared to passive damping, the two techniques degrades the compliance at low frequency (Figure \ref{fig:comp_compliance}). -They however do not degrades the transmissibility as high frequency as its the case with passive damping (Figure \ref{fig:comp_transmissibility}). +They however do not degrades the transmissibility as high frequency as its the case with passive damping (Figure \ref{fig:comp_transmissibility}) \begin{figure}[htbp] \begin{subfigure}[c]{0.45\linewidth} @@ -575,11 +576,11 @@ They however do not degrades the transmissibility as high frequency as its the c \end{figure} \section{Conclusion} -\label{sec:orgf8a3da6} +\label{sec:orgb954137} \label{sec:conclusion} \section*{Acknowledgment} -\label{sec:orgee9adb1} +\label{sec:orge7698ad} This research benefited from a FRIA grant from the French Community of Belgium. \bibliography{ref.bib}