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Abstract
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects. To
overcome this issue, two modifications of the classical IFF control scheme are proposed. The first consists of slightly
modifying the control law while the second consists of adding springs in parallel with the force sensors. Conditions
for stability and optimal parameters are derived. The results reveal that, despite their different implementations, both
modified IFF control scheme have almost identical damping authority on suspension modes.
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Introduction
There is an increasing need to reduce the undesirable
vibration of many sensitive equipment. A common method
to reduce vibration is to mount the sensitive equipment on
a suspended platform which attenuates the vibrations above
the frequency of the suspension modes. In order to further
decrease the residual vibrations, active damping can be used
for reducing the magnification of the response in the vicinity
of the resonances.

In1, the Integral Force Feedback (IFF) control scheme
has been proposed, where a force sensor, a force actuator
and an integral controller are used to directly augment the
damping of a mechanical system. When the force sensor is
collocated with the actuator, the open-loop transfer function
has alternating poles and zeros which facilitate to guarantee
the stability of the closed loop system2.

However, when the platform is rotating, gyroscopic effects
alter the system dynamics and IFF cannot be applied as is.
The purpose of this paper is to study how the IFF strategy
can be adapted to deal with these Gyroscopic effects.

The paper is structured as follows. Section presents a
simple model of a rotating suspended platform that will
be used throughout this study. Section explains how the
unconditional stability of IFF is lost due to Gyroscopic
effects induced by the rotation. Section suggests a simple
modification of the control law such that damping can be
added to the suspension modes in a robust way. Section
proposes to add springs in parallel with the force sensors to
regain the unconditional stability of IFF. Section compares
both proposed modifications to the classical IFF in terms of
damping authority and closed-loop system behavior.

Dynamics of Rotating Platforms
In order to study how the rotation does affect the use of IFF,
a model of a suspended platform on top of a rotating stage is
used. Figure 1 represents the model schematically which is
the simplest in which gyroscopic forces can be studied.
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Figure 1. Schematic of the studied System

The rotating stage is supposed to be ideal, meaning it
induces a perfect rotation θ(t) = Ωt where Ω is the rotational
speed in rad/s.

The suspended platform consists of two orthogonal
actuators represented by three elements in parallel: a spring
with a stiffness k in N/m, a dashpot with a damping
coefficient c in N/(m/s) and an ideal force source Fu, Fv .
A payload with a mass m in kg, representing the sensitive
equipment, is mounted on the (rotating) suspended platform.

Two reference frames are used: an inertial frame
(⃗ix, i⃗y, i⃗z) and a uniform rotating frame (⃗iu, i⃗v, i⃗w) rigidly
fixed on top of the rotating stage with i⃗w aligned with the
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rotation axis. The position of the payload is represented by
(du, dv, 0) expressed in the rotating frame.

To obtain the equations of motion for the system
represented in Figure 1, the Lagrangian equations are used:

d

dt

(
∂L

∂q̇i

)
+

∂D

∂q̇i
− ∂L

∂qi
= Qi (1)

with L = T − V the Lagrangian, T the kinetic coenergy,
V the potential energy, D the dissipation function, and
Qi the generalized force associated with the generalized
variable

[
q1 q2

]
=

[
du dv

]
. The equation of motion

corresponding to the constant rotation in the (⃗ix, i⃗y) plane
is disregarded as the motion is considered to be imposed by
the rotation stage.

T =
1

2
m

((
ḋu − Ωdv

)2

+
(
ḋv +Ωdu

)2
)
,

V =
1

2
k
(
du

2 + dv
2
)
,

D =
1

2
c
(
ḋu

2 + ḋv
2
)
, Q1 = Fu, Q2 = Fv

(2)

Substituting equations (2) into (1) for both generalized
coordinates gives two coupled differential equations

md̈u + cḋu + (k −mΩ2)du = Fu + 2mΩḋv (3a)

md̈v + cḋv + (k−mΩ2︸ ︷︷ ︸
Centrif.

)dv = Fv − 2mΩḋu︸ ︷︷ ︸
Coriolis

(3b)

The uniform rotation of the system induces two
Gyroscopic effects as shown in (3):

• Centrifugal forces: that can been seen as added
negative stiffness −mΩ2 along i⃗u and i⃗v

• Coriolis Forces: that couples the motion in the two
orthogonal directions

One can verify that without rotation (Ω = 0) the system
becomes equivalent to two uncoupled one degree of freedom
mass-spring-damper systems:

md̈u + cḋu + kdu = Fu (4a)

md̈v + cḋv + kdv = Fv (4b)

To study the dynamics of the system, the differential
equations of motions (3) are transformed in the Laplace
domain and the 2× 2 transfer function matrix Gd from[
Fu Fv

]
to

[
du dv

]
is obtained[
du
dv

]
= Gd

[
Fu

Fv

]
(5)

Gd(1, 1) =
ms2 + cs+ k −mΩ2

(ms2 + cs+ k −mΩ2)
2
+ (2mΩs)

2 (6a)

= Gd(2, 2)

Gd(1, 2) =
2mΩs

(ms2 + cs+ k −mΩ2)
2
+ (2mΩs)

2 (6b)

= −Gd(1, 2)

To simplify the analysis, the undamped natural frequency
ω0 and the damping ratio ξ are used

ω0 =

√
k

m
in rad/s, ξ =

c

2
√
km

(7)

The elements of the transfer function matrix Gd become
equal to

Gd(1, 1) =
1
k

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
(

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0
)
2

(8a)

Gd(1, 2) =
1
k (2 Ω

ω0
s
ω0
)(

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0
)
2

(8b)

For all further numerical analysis in this study, we
consider ω0 = 1 rad/s, k = 1N/m and ξ = 0.025 = 2.5%.
Even though no system with such parameters will be
encountered in practice, conclusions can be drawn relative
to these parameters such that they can be generalized to any
other set of parameters.

The poles of Gd are the complex solutions p of(
p2

ω0
2
+ 2ξ

p

ω0
+ 1− Ω2

ω0
2

)2

+

(
2
Ω

ω0

p

ω0

)2

= 0 (9)

Supposing small damping (ξ ≪ 1), two pairs of complex
conjugate poles are obtained:

p+ = −ξω0

(
1 +

Ω

ω0

)
± jω0

(
1 +

Ω

ω0

)
(10a)

p− = −ξω0

(
1− Ω

ω0

)
± jω0

(
1− Ω

ω0

)
(10b)

The real part and complex part of these two pairs of
complex conjugate poles are represented in Figure 2 as a
function of the rotational speed Ω. As the rotational speed
increases, p+ goes to higher frequencies and p− to lower
frequencies. The system becomes unstable for Ω > ω0 as the
real part of p− is positive. Physically, the negative stiffness
term −mΩ2 induced by centrifugal forces exceeds the spring
stiffness k.

In the rest of this study, rotational speeds smaller than
the undamped natural frequency of the system are assumed
(Ω < ω0).
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Figure 2. Campbell Diagram : Evolution of the complex and
real parts of the system’s poles as a function of the rotational
speed Ω
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Looking at the transfer function matrix Gd in Eq. (8),
one can see that the two diagonal (direct) terms are equal
and the two off-diagonal (coupling) terms are opposite.
The bode plot of these two terms are shown in Figure 3
for several rotational speeds Ω. These plots confirm the
expected behavior: the frequency of the two pairs of complex
conjugate poles are further separated as Ω increases. For
Ω > ω0, the low frequency pair of complex conjugate poles
p− becomes unstable.
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(a) Direct Terms du/Fu and
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Figure 3. Bode Plots for Gd for several rotational speed Ω

Decentralized Integral Force Feedback
In order to apply IFF to the system, force sensors are added in
series with the two actuators (Figure 4). As this study focuses
on decentralized control, two identical controllers KF are
used to feedback each of the sensed force to its associated
actuator and no attempt is made to counteract the interactions
in the system. The control diagram is schematically shown in
Figure 5.
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Figure 4. System with added Force Sensor in series with the
actuators
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Figure 5. Control Diagram for decentralized IFF

The forces
[
fu fv

]
measured by the two force sensors

represented in Figure 4 are equal to[
fu
fv

]
=

[
Fu

Fv

]
− (cs+ k)

[
du
dv

]
(11)

Inserting (8) into (11) yields[
fu
fv

]
= Gf

[
Fu

Fv

]
(12)

Gf (1, 1) =

(
s2

ω0
2 − Ω2

ω0
2

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+(2 Ω

ω0
s
ω0
)
2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0
)
2

(13a)

Gf (1, 2) =
−(2ξ s

ω0
+1)(2 Ω

ω0
s
ω0
)(

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0
)
2

(13b)

The zeros of the diagonal terms of Gf are equal to
(neglecting the damping for simplicity)

zc = ±jω0

√√√√1

2

√
8
Ω2

ω0
2
+ 1 +

Ω2

ω0
2
+

1

2
(14a)

zr = ±ω0

√√√√1

2

√
8
Ω2

ω0
2
+ 1− Ω2

ω0
2
− 1

2
(14b)

The frequency of the pair of complex conjugate zeros zc
(14a) always lies between the frequency of the two pairs of
complex conjugate poles p− and p+ (10).

For non-null rotational speeds, two real zeros zr (14b)
appear in the diagonal terms inducing a non-minimum phase
behavior. This can be seen in the Bode plot of the diagonal
terms (Figure 6) where the low frequency gain is no longer
zero while the phase stays at 180 deg.

The low frequency gain of Gf increases with the
rotational speed Ω

lim
ω→0

|Gf (jω)| =

[
Ω2

ω0
2−Ω2 0

0 Ω2

ω0
2−Ω2

]
(15)

This can be explained as follows: a constant force Fu

induces a small displacement of the mass du = Fu

k−mΩ2 ,

which increases the centrifugal force mΩ2du = Ω2

ω0
2−Ω2Fu

which is then measured by the force sensors.
The two IFF controllers KF consist of a pure integrator

KF (s) =

[
KF (s) 0

0 KF (s)

]
, KF (s) = g · 1

s
(16)
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Figure 6. Bode plot of the dynamics from a force actuator to its
collocated force sensor (fu/Fu, fv/Fv) for several rotational
speeds Ω

where g is a scalar representing the gain of the controller.
In order to see how the IFF affects the poles of the closed

loop system, a Root Locus plot (Figure 7) is constructed as
follows: the poles of the closed-loop system are drawn in the
complex plane as the controller gain g varies from 0 to ∞ for
the two controllers KF simultaneously. As explained in3,4,
the closed-loop poles start at the open-loop poles (shown by
crosses) for g = 0 and coincide with the transmission zeros
(shown by circles) as g → ∞. The direction of increasing
gain is indicated by arrows.

Figure 7. Root Locus: evolution of the closed-loop poles with
increasing controller gains g

Whereas collocated IFF is usually associated with
unconditional stability5, this property is lost as soon as the
rotational speed in non-null due to gyroscopic effects. This
can be seen in the Root Locus plot (Figure 7) where the poles
corresponding to the controller are bound to the right half
plane implying closed-loop system instability.

Physically, this can be explain like so: at low frequency,
the loop gain is very large due to the pure integrators in KF .
The control system is thus canceling the spring forces which
makes the suspended platform no able to hold the payload
against centrifugal forces, hence the instability.

In order to apply decentralized IFF on rotating platforms,
two solutions are proposed to deal with this instability
problem. The first one consists of slightly modifying the
control law (Section ) while the second one consists of
adding springs in parallel with the force sensors (Section ).

Integral Force Feedback with High Pass
Filter
As was explained in the previous section, the instability
comes in part from the high gain at low frequency caused
by the pure integrators.

In order to limit this low frequency controller gain, an high
pass filter (HPF) can be added to the controller

KF (s) = g · 1
s
· s/ωi

1 + s/ωi︸ ︷︷ ︸
HPF

= g · 1

s+ ωi
(17)

This is equivalent to slightly shifting the controller pole to
the left along the real axis.

This modification of the IFF controller is typically done to
avoid saturation associated with the pure integrator5. This is
however not the case in this study as it will become clear in
the next section.

The loop gains, KF (s) times the direct dynamics fu/Fu,
with and without the added HPF are shown in Figure 8. The
effect of the added HPF limits the low frequency gain as
expected.

The Root Loci for the decentralized IFF with and without
the HPF are displayed in Figure 9. With the added HPF, the
poles of the closed loop system are shown to be stable up to
some value of the gain gmax

gmax = ωi

(
ω0

2

Ω2
− 1

)
(18)

It is interesting to note that gmax also corresponds to the gain
where the low frequency loop gain (Figure 8) reaches one.
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Figure 8. Modification of the loop gain with the added HFP,
g = 2, ωi = 0.1ω0 and Ω = 0.1ω0

Two parameters can be tuned for the modified controller
(17): the gain g and the pole’s location ωi. The optimal values
of ωi and g are here considered as the values for which
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Figure 9. Modification of the Root Locus with the added HPF,
ωi = 0.1ω0 and Ω = 0.1ω0

the damping of all the closed-loop poles are simultaneously
maximized.

In order to visualize how ωi does affect the attainable
damping, the Root Loci for several ωi are displayed in Figure
10. It is shown that even though small ωi seem to allow more
damping to be added to the suspension modes, the control
gain g may be limited to small values due to (18).

Figure 10. Root Locus for several HPF cut-off frequencies ωi,
Ω = 0.1ω0

In order to study this trade off, the attainable closed-loop
damping ratio ξcl is computed as a function of ωi/ω0. The
gain gopt at which this maximum damping is obtained is
also displayed and compared with the gain gmax at which the
system becomes unstable (Figure 11).

Three regions can be observed:

• ωi/ω0 < 0.02: the added damping is limited by the
maximum allowed control gain gmax

• 0.02 < ωi/ω0 < 0.2: the attainable damping ratio is
maximized and is reached for g ≈ 2

• 0.2 < ωi/ω0: the added damping decreases as ωi/ω0

increases
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Figure 11. Attainable damping ratio ξcl as a function of ωi/ω0.
Corresponding control gain gopt and gmax are also shown

Integral Force Feedback with Parallel
Springs
In this section additional springs in parallel with the force
sensors are added to counteract the negative stiffness induced
by the rotation. Such springs are schematically shown in
Figure 12 where ka is the stiffness of the actuator and kp
the stiffness in parallel with the actuator and force sensor.

Amplified piezoelectric stack actuators can also be used
for such purpose where a part of the piezoelectric stack
is used as an actuator while the rest is used as a force
sensor6. The parallel stiffness kp then corresponds to the
amplification structure. An example of such system is shown
in Figure 13.
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Figure 12. Studied system with additional springs in parallel
with the actuators and force sensors

The forces
[
fu fv

]
measured by the two force sensors

represented in Figure 12 are equal to[
fu
fv

]
=

[
Fu

Fv

]
− (cs+ ka)

[
du
dv

]
(19)

In order to keep the overall stiffness k = ka + kp constant,
thus not modifying the open-loop poles as kp is changed,
a scalar parameter α (0 ≤ α < 1) is defined to describe the
fraction of the total stiffness in parallel with the actuator and
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Figure 13. XY Piezoelectric Stage (XY25XS from Cedrat
Technology)

force sensor

kp = αk, ka = (1− α)k (20)

The equations of motion are derived and transformed in
the Laplace domain [

fu
fv

]
= Gk

[
Fu

Fv

]
(21)

Gk(1, 1) =

(
s2

ω0
2 − Ω2

ω0
2 +α

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+(2 Ω

ω0
s
ω0
)
2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0
)
2

(22a)

Gk(1, 2) =
−(2ξ s

ω0
+1−α)(2 Ω

ω0
s
ω0
)(

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+(2 Ω

ω0
s
ω0
)
2

(22b)

Comparing Gk (22) with Gf (13) shows that while
the poles of the system are kept the same, the zeros of
the diagonal terms have changed. The two real zeros zr
(14b) that were inducing non-minimum phase behavior are
transformed into complex conjugate zeros if the following
condition hold

α >
Ω2

ω0
2

⇔ kp > mΩ2 (23)

Thus, if the added parallel stiffness kp is higher than the
negative stiffness induced by centrifugal forces mΩ2, the
direct dynamics from actuator to force sensor will show
minimum phase behavior. This is confirmed by the Bode plot
of the direct dynamics in Figure 14.

Figure 15 shows Root Loci plots for kp = 0, kp < mΩ2

and kp > mΩ2 when KF is a pure integrator (16). It is
shown that if the added stiffness is higher than the maximum
negative stiffness, the poles of the closed-loop system stay
in the (stable) right half-plane, and hence the unconditional
stability of IFF is recovered.

Even though the parallel stiffness kp has no impact on the
open-loop poles (as the overall stiffness k stays constant),
it has a large impact on the transmission zeros. Moreover,
as the attainable damping is generally proportional to the
distance between poles and zeros7, the parallel stiffness kp
is foreseen to have a large impact on the attainable damping.

To study this effect, Root Locus plots for several
parallel stiffnesses kp > mΩ2 are shown in Figure 16. The
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Figure 14. Bode Plot of fu/Fu without parallel spring, with
parallel springs with stiffness kp < mΩ2 and kp > mΩ2,
Ω = 0.1ω0

Figure 15. Root Locus for IFF without parallel spring, with
parallel springs with stiffness kp < mΩ2 and kp > mΩ2,
Ω = 0.1ω0

frequencies of the transmission zeros of the system are
increasing with the parallel stiffness kp and the associated
attainable damping is reduced. Therefore, even though the
parallel stiffness kp should be larger than mΩ2 for stability
reasons, it should not be taken too high as this would limit
the attainable bandwidth.

This is confirmed in Figure 17 where the attainable closed-
loop damping ratio ξcl and the associated control gain gopt are
computed as a function of α.

Comparison and Discussion
Two modifications to adapt the IFF control strategy to
rotating platforms have been proposed in Sections and .
These two methods are now compared in terms of added
damping, closed-loop compliance and transmissibility.

For the following comparisons, the cut-off frequency for
the HPF is set to ωi = 0.1ω0 and the stiffness of the parallel
springs is set to kp = 5mΩ2.

Figure 18 shows the Root Loci for the two proposed IFF
modifications. While the two pairs of complex conjugate
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Figure 16. Comparison the Root Locus for three parallel
stiffnessses kp
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Figure 17. Optimal Damping Ratio ξopt and the corresponding
optimal gain gopt as a function of α

open-loop poles are identical for both techniques, the
transmission zeros are not. This means that the closed-loop
behavior of both systems will differ when large control gains
are used.

One can observe that the closed loop poles of the system
with added springs (in red) are bounded to the left half plane
implying unconditional stability. This is not the case for the
system where the controller is augmented with an HPF (in
blue).

It is interesting to note that the maximum added damping
is very similar for both techniques and is reached for the
same control gain gopt ≈ 2ω0.

The two proposed techniques are now compared in terms
of closed-loop transmissibility and compliance.

The transmissibility is defined as the transfer function
from the displacement of the rotating stage to the
displacement of the payload. It is used to characterize
how much vibration is transmitted through the suspended
platform to the payload.

The compliance describes the displacement response of
the payload to external forces applied to it. This is a useful
metric when disturbances are directly applied to the payload.

The two techniques are also compared with passive
damping (Figure 1) where the damping coefficient c is tuned
to critically damp the resonance when the rotating speed is
null.

ccrit = 2
√
km (24)

Figure 18. Root Locus for the two proposed modifications of
decentralized IFF, Ω = 0.1ω0

Very similar results are obtained for the two proposed IFF
modifications in terms of transmissibility (Figure 19) and
compliance (Figure 20). It is also confirmed that these two
techniques can significantly damp the suspension modes.
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Figure 19. Comparison of the two proposed Active Damping
Techniques - Transmissibility
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Figure 20. Comparison of the two proposed Active Damping
Techniques - Compliance

On can see in Figure 19 that the problem of the
degradation of the transmissibility at high frequency when
using passive damping techniques is overcome by the use of
IFF.

The addition of the HPF or the use of the parallel
stiffness permit to limit the degradation of the compliance
as compared with classical IFF (Figure 20).
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Conclusion
Due to gyroscopic effects, decentralized IFF with pure
integrators was shown to be unstable when applied to
rotating platforms. Two modifications of the classical IFF
control have been proposed to overcome this issue.

The first modification concerns the controller and consists
of adding an high pass filter to the pure integrators. This is
equivalent as to moving the controller pole to the left along
the real axis. This renders the closed loop system stable up
to some value of the controller gain gmax.

The second proposed modification concerns the mechani-
cal system. Additional springs are added in parallel with the
actuators and force sensors. It was shown that if the stiffness
kp of the additional springs is larger than the negative
stiffness mΩ2 induced by centrifugal forces, the classical
decentralized IFF regains its unconditional stability property.

While having very different implementations, both
proposed modifications are very similar when it comes to
the attainable damping and the obtained closed loop system
behavior.

Future work will focus on the experimental validation of
the proposed active damping techniques.

The Matlab code that was used for this study is available
under a MIT License and archived in Zenodo8.
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