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Model of a Rotating Positioning Platform
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Fig.: Schematic of the studied System

Simplest model to study the
gyroscopic effects on
Decentralized IFF

Assumptions:
• Perfect Rotating Stage
• θ̇(t) = Ω = cst
• Small displacements
• Position of the mass
described by [du dv]

Two frames:
• Inertial frame (~ix,~iy,~iz)
• Uniform rotating frame

(~iu,~iv,~iw)
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Equations of Motion - Lagrangian Formalism
d

dt

(
∂L

∂q̇i

)
+ ∂D

∂q̇i
− ∂L

∂qi
= Qi

with L = T − V the Lagrangian, D the dissipation function, and Qi
the generalized force associated with the generalized variable.

T = 1
2m

((
ḋu − Ωdv

)2
+
(
ḋv + Ωdu

)2
)
, V = 1

2k
(
du

2 + dv
2
)

D = 1
2c
(
ḋu

2 + ḋv
2
)
, Q1 = Fu, Q2 = Fv

md̈u + cḋu + (k −mΩ2)du = Fu + 2mΩḋv
md̈v + cḋv + (k−mΩ2︸ ︷︷ ︸

Centrif.

)dv = Fv − 2mΩḋu︸ ︷︷ ︸
Coriolis

Centrifugal forces ⇐⇒ Negative Stiffness
Coriolis Forces ⇐⇒ Coupling
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Transfer Function Matrix the Laplace domain[
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(a) Real Part (b) Imaginary Part

Fig.: Campbell Diagram : Evolution of the complex and real parts of the system’s
poles as a function of the rotational speed Ω
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Bode Plots of the System’s Dynamics

(a) Direct Terms du/Fu, dv/Fv (b) Coupling Terms dv/Fu, −du/Fv

Fig.: Bode Plots for Gd for several rotational speed Ω

For all the numerical analysis, ω0 = 1 rad s−1, k = 1 N m−1 and
ξ = 0.025 = 2.5 %.
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Force Sensors and Control Architecture
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Fig.: System with added Force Sensor in series with
the actuators
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Fig.: Control Diagram for
decentralized IFF

KF (s) =
[
KF (s) 0

0 KF (s)

]

KF (s) = g · 1
s
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Plant Dynamics [
fu
fv

]
=
[
Fu
Fv

]
− (cs+ k)

[
du
dv

]

Fig.: Bode plot of the diagonal terms of Gf for several rotational speeds Ω
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Decentralized IFF with Pure Integrators

Fig.: Root Locus for Decentralized IFF for several rotating speeds Ω

For Ω > 0, the closed loop system is unstable
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Modification of the Control Low

KF (s) = g · 1
s
· s/ωi

1 + s/ωi︸ ︷︷ ︸
HPF

= g · 1
s+ ωi

Fig.: Loop Gain Fig.: Root Locus

Added HPF⇐⇒ limit the low frequency gain
⇐⇒ shift the pole to the left along the real axis
=⇒ stable system for small values of the gain
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Effect of ωi on the attainable damping

Fig.: Root Locus for several HPF cut-off frequencies ωi, Ω = 0.1ω0

gmax = ωi

(
ω0

2

Ω2 − 1
)

small ωi =⇒ increase maximum damping
small ωi =⇒ reduces maximum gain gmax
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Optimal Control Parameters

Fig.: Attainable damping ratio ξcl as a function of the ratio ωi/ω0. Corresponding
control gain gopt and gmax are also shown
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Stiffness in Parallel with the Force Sensor
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Fig.: Studied system with additional springs in
parallel with the actuators and force sensors

Intuitive Idea

kp is used to counter-
act the negative stiff-
ness −mΩ2 when
high control gains
are used.

kp = αk

ka = (1− α)k

with 0 < α < 1.

The overall stiffness
k = ka + kp = cst =⇒ the
open-loop poles remains
unchanged
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Effect of the Parallel Stiffness on the Plant Dynamics

Fig.: Bode Plot of fu/Fu for
kp = 0, kp < mΩ2 and kp > mΩ2,
Ω = 0.1ω0

Fig.: Root Locus for IFF without parallel spring,
with parallel springs with stiffness kp < mΩ2

and kp > mΩ2, Ω = 0.1ω0

If kp > mΩ2, the poles of the closed-loop system stay in
the (stable) right half-plane, and hence the unconditional
stability of IFF is recovered.
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Optimal Parallel Stiffness

(a) Comparison of three parallel stiffnesses kp (b) kp = 5mΩ2, optimal damping ξopt is shown

Fig.: Root Locus for IFF when parallel stiffness kp is added, Ω = 0.1ω0

Large parallel stiffness kp reduces the attainable damping.
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Comparison of the Attainable Damping

Fig.: Root Locus for the two proposed modifications of decentralized IFF, Ω = 0.1ω0
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Comparison Transmissibility and Compliance

(a) Compliance (b) Transmissibility

Fig.: Comparison of the two proposed Active Damping Techniques, Ω = 0.1ω0
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Conclusion & Further work
The two proposed techniques gives almost identical results but are
very different when it comes to their implementations

The best technique depends on the application

Actuator Force Sensor

Parallel Stiffness
Amplified Piezoelectric Actuators
are a nice way to have an actuator,
a force sensors and a parallel
stiffness in a compact manner

Will be tested on the nano-hexapod
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