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Abstract
Abstract text to be done

1 Introduction

Controller Poles are shown by black crosses ( ). [1]

2 System Under Study

2.1 Rotating Positioning Platform

Consider the rotating X-Y stage of Figure 1.

• k: Actuator’s Stiffness [N/m]

• m: Payload’s mass [kg]

• Ω = θ̇: rotation speed [rad/s]

• Fu, Fv

• du, dv

2.2 Equation of Motion

The system has two degrees of freedom and is thus fully described by the generalized coordinates u and v.

Let’s express the kinetic energy T and the potential energy V of the mass m (neglecting the rotational
energy):
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Figure 1: Figure caption

Figure 2: Figure caption



Dissipation function R Kinetic energy T Potential energy V

T =
1

2
m
(

(u̇− Ωv)2 + (v̇ + Ωu)2
)

(1a)

R =
1

2
c
(
u̇2 + v̇2

)
(1b)

V =
1

2
k
(
u2 + v2

)
(1c)

The Lagrangian is the kinetic energy minus the potential energy:

L = T − V (2)

From the Lagrange’s equations of the second kind, the equation of motion is obtained (q1 = u, q2 = v).

d

dt

(
∂L

∂q̇i

)
+
∂D

∂q̇i
− ∂L

∂qi
= Qi (3)

with Qi is the generalized force associated with the generalized variable qi (Q1 = Fu and Q2 = Fv).

mü+ cu̇+ (k −mΩ)u = Fu + 2mΩv̇ (4a)
mv̈ + cv̇ + (k−mΩ︸ ︷︷ ︸

Centrif.

)v = Fv − 2mΩu̇︸ ︷︷ ︸
Coriolis

(4b)

• Coriolis Forces: coupling

• Centrifugal forces: negative stiffness

Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system
with mass m and stiffness k −mθ̇2. Thus, the term −mθ̇2 acts like a negative stiffness (due to centrifugal
forces).

2.3 Transfer Functions in the Laplace domain

u =
ms2 + cs+ k −mΩ2

(ms2 + cs+ k −mΩ2)2 + (2mΩs)2
Fu +

2mΩs

(ms2 + cs+ k −mΩ2)2 + (2mΩs)2
Fv (5a)

v =
−2mΩs

(ms2 + cs+ k −mΩ2)2 + (2mΩs)2
Fu +

ms2 + cs+ k −mΩ2

(ms2 + cs+ k −mΩ2)2 + (2mΩs)2
Fv (5b)

[
du
dv

]
= Gd

[
Fu

Fv

]
(6)

Where Gd is a 2 × 2 transfer function matrix.

Gd =
1

k

1

Gdp

[
Gdz Gdc

−Gdc Gdz

]
(7)



With:

Gdp =

(
s2

ω0
2

+ 2ξ
s

ω0
+ 1 − Ω2

ω0
2

)2

+

(
2

Ω

ω0

s

ω0

)2

(8a)

Gdz =
s2

ω0
2

+ 2ξ
s

ω0
+ 1 − Ω2

ω0
2

(8b)

Gdc = 2
Ω

ω0

s

ω0
(8c)

• ω0 =
√

k
m : Natural frequency of the mass-spring system in rad/s

• ξ damping ratio

2.4 Constant Rotating Speed

To simplify, let’s consider a constant rotating speed θ̇ = Ω and thus θ̈ = 0.

[
du
dv

]
=

1

(ms2 + (k −mω0
2))2 + (2mω0s)2

[
ms2 + (k −mω0

2) 2mω0s
−2mω0s ms2 + (k −mω0

2)

] [
Fu

Fv

]
(9)

[
du
dv

]
=

1
k(

s2

ω0
2 + (1 − Ω2

ω0
2 )
)2

+
(

2 Ωs
ω0

2

)2

[
s2

ω0
2 + 1 − Ω2

ω0
2 2 Ωs

ω0
2

−2 Ωs
ω0

2
s2

ω0
2 + 1 − Ω2

ω0
2

] [
Fu

Fv

]
(10)

When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to
one degree of freedom mass spring system.[

du
dv

]
=

1
k

s2

ω0
2 + 1

[
1 0
0 1

] [
Fu

Fv

]
(11)

When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conju-
gate poles. As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as
the other one goes to higher frequencies (Figure 3).

Figure 3: Campbell Diagram

The magnitude of the coupling terms are increasing with the rotation speed.



Figure 4: Caption

3 Integral Force Feedback

3.1 Control Schematic

Force Sensors are added in series with the actuators as shown in Figure 5.

3.2 Equations

The sensed forces are equal to: [
fu
fv

]
=

[
Fu

Fv

]
− (cs+ k)

[
du
dv

]
(12)

Which then gives: [
fu
fv

]
= Gf

[
Fu

Fv

]
(13)

[
fu
fv

]
=

1

Gfp

[
Gfz −Gfc

Gfc Gfz

] [
Fu

Fv

]
(14)
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Figure 5: System with Force Sensors in Series with the Actuators. Decentralized Integral Force Feedback is
used

Gfp =

(
s2

ω0
2

+ 2ξ
s

ω0
+ 1 − Ω2

ω0
2

)2

+

(
2

Ω

ω0

s

ω0

)2

(15)

Gfz =

(
s2

ω0
2
− Ω2

ω0
2

)(
s2

ω0
2

+ 2ξ
s

ω0
+ 1 − Ω2

ω0
2

)
+

(
2

Ω

ω0

s

ω0

)2

(16)

Gfc =

(
2ξ

s

ω0
+ 1

)(
2

Ω

ω0

s

ω0

)
(17)

3.3 Plant Dynamics

3.4 Physical Interpretation

At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating
stage. This means that at low frequency, the system is decoupled (the force sensor removed) and thus the
system is unstable.



Figure 6: Root Locus

Figure 7: Figure caption
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Figure 9: Figure caption

Figure 10: Figure caption
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Figure 12: Figure caption
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Figure 14: Figure caption



Figure 15: Figure caption

Figure 16: Figure caption



4 Integral Force Feedback with High Pass Filters

4.1 Modification of the Control Low

4.2 Close Loop Analysis

4.3 Optimal Cut-Off Frequency

5 Integral Force Feedback with Parallel Springs

6 Direct Velocity Feedback

Figure 17: Figure caption

7 Comparison of the Proposed Active Damping Techniques

8 Conclusion
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Figure 18: Figure caption

Figure 19: Figure caption



Figure 20: Figure caption
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