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Dynamics of Rotating Platforms



Model of a Rotating Positioning Platform

Fig.: Schematic of the studied System

N
N



Equations of Motion - Lagrangian Formalism

Lagrangian equations:

G (00y 00 oL _
dt \ 0¢; o4;  dq;

Equations of motion:

mdy, + cdy, + (k — mQQ)du = F, + 2mQd,
mdy + cdy + (k —mQ?)d, = F, — 2mQd,
——

——

Centrif. Coriolis

Centrifugal forces <= Negative Stiffness
Coriolis Forces <= Coupling




Transfer Function Matrix the Laplace domain
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Fig.: Campbell Diagram : Evolution of the complex and real parts of the system’s
poles as a function of the rotational speed ()
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Decentralized Integral Force Feedback



Force Sensors and Decentralized |IFF Control Architecture

Fig.: System with added Force Sensor in series with the actuators, Kp(s) =g - %
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IFF Plant Dynamics
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Fig.: Bode plot of the dynamics from force actuator to force sensor for several
rotational speeds Q2



Decentralized IFF with Pure Integrators
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Fig.: Root Locus for Decentralized IFF for several rotating speeds Q2

For €2 > 0, the closed loop system is unstable




Outline

Integral Force Feedback with High Pass Filter



Modification of the Control Law
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Effect of w; on the attainable damping
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Fig.: Root Locus for several HPF cut-off frequencies w;, 2 = 0.1wo

wo? small w; = increase maximum damping
Gmax = W

il U | . .
02 small w; = reduces maximum gain gmax




Optimal Control Parameters
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Fig.: Attainable damping ratio & as a function of the ratio w;/wg. Corresponding
control gain gopt and gmax are also shown

Controller gain g
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Integral Force Feedback with Parallel Springs



Stiffness in Parallel with the Force Sensor

Fig.: System with additional springs in parallel with the actuators and force sensors
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Effect of the Parallel Stiffness on the Plant Dynamics
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Fig.: Root Locus for IFF

If k, > m$2, the poles of the closed-loop system stay in
the (stable) right half-plane, and hence the unconditional

stability of IFF is recovered.




Optimal Parallel Stiffness
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Fig.: Root Locus for three parallel stiffnesses ki,

Large parallel stiffness &, reduces the attainable damping.




Outline

Comparison and Discussion
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Comparison of the Attainable Damping
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Fig.: Root Locus for the two proposed modifications of decentralized IFF, €2 = 0.1wg



Comparison Transmissibility and Compliance
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Fig.: Comparison of the two proposed Active Damping Techniques, 2 = 0.1wg



Thank you!

Contact: dehaeze.thomas@gmail.com
https://tdehaeze.github.io/dehaeze20_contr_stewa_platf/
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