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Abstract

Abstract text to be done

1 Introduction

(1]

2 System Under Study

2.1 Rotating Positioning Platform

Consider the rotating X-Y stage of Figure 1.
e k: Actuator’s Stiffness [N/m]
* m: Payload’s mass [kg]
+ O = 6: rotation speed [rad/s]
* Py, Fy
¢ dy, dy

2.2 Equation of Motion

The system has two degrees of freedom and is thus fully described by the generalized coordinates v and v.

Let’s express the kinetic energy 7' and the potential energy V' of the mass m (neglecting the rotational
energy):
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Figure 1: Figure caption

Figure 2: Figure caption
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The Lagrangian is the kinetic energy minus the potential energy:

L=T-V (2)

From the Lagrange’s equations of the second kind (10), the equation of motion (11) is obtained (q; = u,
q2 = V).
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with @); is the generalized force associated with the generalized variable g; (¥, and F3).

mii + cu + (k — mQ)u = F, + 2mQo (5a)
mi + cv + (k—mQ)v = F, —2mOa (5b)
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Where G4 is a 2 x 2 transfer function matrix.
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* wy =4/ %: Natural frequency of the mass-spring system in rad/s

* ¢ damping ratio
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dt \dq;)  9dqj
ma + kx = F, cosf — F,sinf (11a)
my + ky = F,sinf + F, cos (11b)

Performing the change coordinates from (z,y) to (d,, dy, 6):

z =dy,cosl —d,sinf (12a)
y = dysinf + d, cos (12b)
Gives
mdy, + (k — mb?)d, = F, + 2md,0 + md,0 (13a)
md, + (k — m#*)d, = F, — 2md,0 — md,0 (13b)
—— N — N —
Centrif. Coriolis Euler

We obtain two differential equations that are coupled through:
¢ Euler forces: mdvé
¢ Coriolis forces: 2mdvé

Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system
with mass m and stiffness k& — m#?. Thus, the term —m#? acts like a negative stiffness (due to centrifugal
forces).

2.3 Constant Rotating Speed

To simplify, let’s consider a constant rotating speed 6 = Q and thus 6 = 0.

dy| 1 ms? + (k — mwg?) 2mwps F, (14)
dy|  (ms? + (k — mwp?))? + (2mwps)? —2muwos ms? + (k — mwo?) | | Fy
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When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to
one degree of freedom mass spring system.

&) f 1 0] [F,
2 ==l 3 [F] 1o

When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conju-
gate poles. As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as
the other one goes to higher frequencies (Figure 3).

The magnitude of the coupling terms are increasing with the rotation speed.
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Figure 3: Campbell Diagram
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Figure 4: Caption



3 Integral Force Feedback

3.1 Control Schematic
3.2 Equations
3.3 Plant Dynamics
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Figure 5: Figure caption
3.4 Physical Interpretation

4 Integral Force Feedback with Low Pass Filters

5 Integral Force Feedback with Parallel Springs

6 Direct Velocity Feedback

7 Comparison of the Proposed Active Damping Techniques
8 Conclusion
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Figure 7: Figure caption
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Figure 8: Figure caption
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Figure 9: Figure caption
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Figure 11: Figure caption
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Figure 12: Figure caption
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Figure 13: Figure caption
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Figure 14: Figure caption
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Figure 15: Figure caption
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Figure 16: Figure caption
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Figure 17: Figure caption
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Figure 18: Figure caption
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