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1 Introduction

Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold. Ei-
ther the control architecture can be slightly modified or mechanical changes in the system can be performed.
This paper has been published The Matlab code that was use to obtain the results are available in [1].

2 Dynamics of Rotating Positioning Platforms

2.1 Model of a Rotating Positioning Platform

In order to study how the rotation of a positioning platforms does affect the use of force feedback, a simple
model of an X-Y positioning stage on top of a rotating stage is developed.

The model is schematically represented in Figure 1 and forms the simplest system where gyroscopic forces
can be studied.

The rotating stage is supposed to be ideal, meaning it induces a perfect rotation θ(t) = Ωt where Ω is the
rotational speed in rad s−1.

The parallel X-Y positioning stage consists of two orthogonal actuators represented by three elements in
parallel:

• a spring with a stiffness k in N m−1

• a dashpot with a damping coefficient c in N m−1 s

• an ideal force source Fu, Fv
A payload with a mass m in kg is mounted on the rotating X-Y stage.

Two reference frames are used:

• an inertial frame (~ix,~iy,~iz)



• a uniform rotating frame (~iu,~iv,~iw) rigidly fixed on top of the rotating stage. ~iw is aligned with the
rotation axis

The position of the payload is represented by (du, dv) expressed in the rotating frame.
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Figure 1: Schematic of the studied System

2.2 Equations of Motion

To obtain of equation of motion for the system represented in Figure 1, the Lagrangian equations are used:

d

dt

(
∂L

∂q̇i

)
+
∂D

∂q̇i
− ∂L

∂qi
= Qi (1)

with L = T − V the Lagrangian, D the dissipation function, and Qi the generalized force associated with
the generalized variable

[
q1 q2

]
=
[
du dv

]
.

The constant rotation in the (~ix,~iy) plane is here disregarded as it is imposed by the rotating stage.
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ḋv + Ωdu

)2
)

(2a)

V =
1

2
k
(
du

2 + dv
2
)

(2b)

D =
1

2
c
(
ḋu
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Q1 = Fu, Q2 = Fv (2d)

Substituting equations (2) into (1) gives the two coupled differential equations:

md̈u + cḋu + (k −mΩ2)du = Fu + 2mΩḋv (3a)

md̈v + cḋv + (k−mΩ2︸ ︷︷ ︸
Centrif.

)dv = Fv − 2mΩḋu︸ ︷︷ ︸
Coriolis

(3b)



The constant rotation of the system induces two Gyroscopic effects:

• Centrifugal forces: that can been seen as added negative stiffness along~iu and~iv
• Coriolis Forces: that couples the motion in the two orthogonal directions

One can verify that without rotation (Ω = 0) the system becomes equivalent as to two uncoupled one degree
of freedom mass-spring-damper systems:

md̈u + cḋu + kdu = Fu (4a)

md̈v + cḋv + kdv = Fv (4b)

2.3 Transfer Functions in the Laplace domain

To study the dynamics of the system, the differential equations of motions (3) are transformed in the Laplace
domain and the transfer function matrix from

[
Fu Fv

]
to
[
du dv

]
is obtained:[

du
dv

]
= Gd

[
Fu
Fv

]
(5)

with Gd a 2× 2 transfer function matrix

Gd =
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 (6)

To simply the analysis, the following change of variable is performed:

• ω0 =
√

k
m : Undamped natural frequency of the mass-spring system in rad/s

• ξ = c
2
√
km

: Damping ratio

The transfer function matrix (6) becomes equal to
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For all the numerical analysis in this study, ω0 = 1 rad s−1, k = 1 N m−1 and ξ = 0.025 = 2.5 %.

Even tough no system with such parameters will be encountered in practice, conclusions will be drawn
relative to these parameters such that they can be generalized to any other parameter.

2.4 System Dynamics and Campbell Diagram

The poles of Gd are the complex solutions p of(
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Supposing small damping (ξ � 1), two pairs of complex conjugate poles are obtained:

p+ = −ξω0
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)
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(
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)
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(9b)

The real part and complex part of these two pairs of complex conjugate poles are represented in Figure 2 as
a function of the rotational speed Ω. As the rotational speed increases, p+ goes to higher frequencies and p−
to lower frequencies. The system becomes unstable for Ω > ω0 as the real part of p− is positive. Physically,
the negative stiffness term −mΩ2 induced by centrifugal forces exceeds the spring stiffness k.

In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are
used (Ω < ω0).

(a) Real Part (b) Imaginary Part

Figure 2: Campbell Diagram : Evolution of the complex and real parts of the system’s poles as a function of
the rotational speed Ω

Looking at the transfer function matrix Gd in Eq. (7), one can see that the two diagonal (direct) terms are
equal and the two off-diagonal (coupling) terms are opposite. The bode plot of these two distinct terms are
shown in Figure 3 for several rotational speeds Ω.

It is confirmed that the two pairs of complex conjugate poles are further separated as Ω increases. For
Ω > ω0, the low frequency complex conjugate poles p− becomes unstable.

3 Decentralized Integral Force Feedback

3.1 Force Sensors and Control Architecture

In order to apply Decentralized Integral Force Feedback to the system, force sensors are added in series with
the two actuators (Figure 4). Two identical controllers KF are added to feedback each of the sensed forces
to its collocated actuator. The control diagram is shown in Figure 5.



(a) Direct Terms du/Fu, dv/Fv (b) Coupling Terms dv/Fu, −du/Fv

Figure 3: Bode Plots for Gd for several rotational speed Ω
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Figure 4: System with added Force Sensor in series with the
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Figure 5: Control Diagram for decentral-
ized IFF

3.2 Plant Dynamics

The forces measured by the force sensors are equal to:[
fu
fv

]
=

[
Fu
Fv

]
− (cs+ k)

[
du
dv

]
(10)



Re-injecting (7) into (10) yields: [
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= Gf
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]
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with Gf a 2× 2 transfer function matrix
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The zeros of the diagonal terms are equal to (neglecting the damping for simplicity)

zc = ±jω0
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The frequency of the two complex conjugate zeros zc (13a) is between the frequency of the two pairs of
complex conjugate poles p− and p+ (9). This is the expected behavior of a collocated pair of actuator and
sensor.

However for non-null rotational speeds, two real zeros zr (13b) appear in the diagonal terms which represent
a non-minimum phase behavior. This can be seen in the Bode plot of the diagonal terms (Figure 6) where
the magnitude experiences an increase of its slope without any change of phase.

The low frequency gain of Gf is no longer zero, and increases with the rotational speed Ω

lim
ω→0
|Gf (jω)| =

[
−Ω2

ω0
2−Ω2 0

0 −Ω2

ω0
2−Ω2

]
(14)

This low frequency gain can be explained as follows: a constant force induces a small displacement of the
mass, which then increases the centrifugal forces measured by the force sensors.

3.3 Decentralized Integral Force Feedback with Pure Integrators

The two IFF controllers KF are pure integrators

KF (s) =

[
KF (s) 0

0 KF (s)

]
, KF (s) = g · 1

s
(15)

where g is a scalar value representing the gain of the controller.

In order to see how the controller affects the poles of the closed loop system, the Root Locus is constructed
as follows. The poles of the closed-loop system are drawn in the complex plane as the gain g varies from 0
to∞ for the two controllers simultaneously. The closed-loop poles start at the open-loop poles (shown by

) for g = 0 and coincide with the transmission zeros (shown by ) as g →∞. The direction of increasing
gains is shown by the arrows .

Whereas collocated IFF is known for its guaranteed stability, which is the case here for Ω = 0, this property
is lost as soon as the rotational speed in non-null due to gyroscopic effects. This can be seen in the Root
Locus (Figure 7) where the pole corresponding to the controller is bounded to the right half plane implying
closed-loop system instability.



Figure 6: Bode plot of the diagonal terms of Gf for several rotational speeds Ω

Figure 7: Root Locus for the Decentralized Integral Force Feedback



Two system modifications are proposed in the next sections to deal with this stability problem. Either the
control law can be change (Section 4) or the mechanical system slightly modified (Section 5).

4 Integral Force Feedback with High Pass Filters

4.1 Modification of the Control Low

KF (s) = g · 1

s
· s/ωi

1 + s/ωi︸ ︷︷ ︸
HPF

= g · 1

s+ ωi
(16)

4.2 Feedback Analysis

Figure 8: Bode Plot of the Loop Gain for IFF with and without the HPF with ωi = 0.1ω0, g = 2 and
Ω = 0.1ω0

As shown in Figure 9, the poles of the closed loop system are stable for g < gmax

gmax = ωi

(
ω0

2

Ω2
− 1

)
(17)

4.3 Optimal Control Parameters

Two parameters can be tuned for the controller (16), the gain g and the frequency of the pole ωi.

Root Locus plots for several ωi are shown in Figure 10.

The optimal values of ωi and g may be considered as the values for which the closed-loop poles are equally
damped.



Figure 9: Root Locus for IFF with and without the HPF, Ω = 0.1ω0

Figure 10: Root Locus for several HPF cut-off frequencies ωi, Ω = 0.1ω0

Figure 11: Attainable damping ratio ξcl as a function of the HPF cut-off frequency. Corresponding control
gain gopt and gmax are also shown



5 Integral Force Feedback with Parallel Springs

5.1 Stiffness in Parallel with the Force Sensor

Stiffness can be added in parallel to the force sensor to counteract the negative stiffness due to centrifugal
forces. If the added stiffness is higher than the maximum negative stiffness, then the poles of the IFF damped
system will stay in the (stable) right half-plane.
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The forces measured by the force sensors are equal to:[
fu
fv

]
=

[
Fu
Fv

]
− (cs+ ka)

[
du
dv

]
(18)

This could represent a system where

5.2 Plant Dynamics

We define an adimensional parameter α, 0 ≤ α < 1, that describes the proportion of the stiffness in parallel
with the actuator and force sensor:

kp = αk (19a)
ka = (1− α)k (19b)

The overall stiffness k stays constant:
k = ka + kp (20)
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]
= Gk
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Fu
Fv

]
(21)
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5.3 Effect of the Parallel Stiffness on the Plant Dynamics

α >
Ω2

ω0
2

⇔ kp > mΩ2

(23)

Figure 12: Bode Plot of fu/Fu without parallel spring, with parallel springs with stiffness kp < mΩ2 and
kp > mΩ2, Ω = 0.1ω0



Figure 13: Root Locus for IFF without parallel spring, with parallel springs with stiffness kp < mΩ2 and
kp > mΩ2, Ω = 0.1ω0

(a) Three values of kp (b) kp = 5mΩ2, optimal damping is shown

Figure 14: Root Locus for IFF when parallel stiffness is used, Ω = 0.1ω0



Figure 15: Root Locus for the three proposed decentralized active damping techniques: IFF with HFP, IFF
with parallel springs, and relative DVF, Ω = 0.1ω0

(a) Transmissibility (b) Compliance

Figure 16: Comparison of the two proposed Active Damping Techniques, Ω = 0.1ω0



5.4 Optimal Parallel Stiffness

6 Comparison of the Proposed Active Damping Techniques for Ro-
tating Positioning Stages

6.1 Physical Comparison

6.2 Attainable Damping

6.3 Transmissibility and Compliance

7 Conclusion
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