
ESRF Double Crystal Monochromator -
Compensating Repeatable Positioning

Errors of Fast Jacks

Dehaeze Thomas

January 28, 2022



Contents

1 Hardware and Software Implementation 6
1.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 LUT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Initial and proposed LUT computations 9
2.1 Patterns in the Fast Jack motion errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Experimental Data - Current Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Experimental Data - Proposed method (BLISS first implementation) . . . . . . . . . . . 17
2.5 Comparison of the errors in the reciprocal length space . . . . . . . . . . . . . . . . . . . 18
2.6 Period of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 LUT creation from experimental data 23
3.1 Load Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 IcePAP generated Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Bragg and Fast Jack Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Bragg Angle Errors / Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Errors in the Frame of the Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Errors in the Frame of the Fast Jacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Analysis of the obtained error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Filtering of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 LUT creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 Cubic Interpolation of the LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Position Repeatability 41
4.1 Repeatability over several minutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Repeatability over several days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Which error is repeatable and which is not? . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Estimation of the errors in mode B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 LUT Software Implementation 51
5.1 Matlab implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 LUT Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Compare Mode A and Mode B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 Analysis of the remaining errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Python implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Load Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Convert Data in the frame of the fast jack . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Filter Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 Get Only Interesting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 LUT creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2



6 Optimal Trajectory 63
6.1 Filtering Disturbances and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 First Estimation of the optimal trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Constant Fast Jack Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Constant Bragg Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Mixed Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Constant Fast Jack velocity 76
7.1 Analysis of measured motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 LUT Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Comparison of errors in mode A and mode B . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Test LUT just after making it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 Make a LUT based on mode B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Effect of the number of points in the trajectory in mode B 84
8.1 LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2 Trajectory with increment of 1µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Trajectory with increment of 0.4µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Spatial Errors - Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 LUT for energy scans (XANES) 87
9.1 Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3



This document summarizes the studies done on the compensation of repeatable errors of the Fast
Jacks.

Each Fast Jack is composed of one stepper motor directly driving (i.e. without any reducer) a ball
screw with a pitch of 1mm (i.e. 1 stepper motor turn makes a 1mm linear motion).

When scanning using the fast jack without any sort of control (i.e. in mode A ), rather large positioning
errors can be measured by the interferometers. Some of these errors are repeatable while other are not
repeatable (see Section 4).

It is here studied how to measure these repeatable positioning errors and how to compensate them using
a Lookup Table (LUT). This functioning mode is called mode B .

Then there is a piezoelectric stack in series with the fast-jack which is working in closed-loop with the
interferometer signals and that is used to compensate the remaining (mostly non-repeatable) errors
induced by the stepper motor and other disturbances. This is called mode C .

The compensation of repeatable errors using the Lookup Tables has several goals:

• Reducing the positioning errors below the stroke of the piezoelectric stack actuator. Otherwise
the stroke of the piezoelectric stack in mode C (feedback control) could be too small and errors
cannot be further controlled.

• Reducing the errors above the bandwidth of the feedback controller. The bandwidth of the
feedback controller is limited by the mechanical behavior of the DCM, and therefore vibrations
outside this bandwidth can only be compensated using calibration / lookup tables.

The general procedure to compute and use the LUT is shown in Figure 0.1. Note that there is some
exchange of information between each step indicated by the arrow and some .dat file containing the
data. It can separated into four main steps:

1. Perform a scan in mode A in order to properly measure the Fast Jack motion errors. The scan
should be done in such a way that the motion errors of the Fast Jack can be separated from the
other disturbances and non-repeatable errors by the use of filtering. This is the subject of Sections
6 and 7

2. Compute the LUT from the measured errors. For each Fast Jack, the LUT associates the wanted
position with the corresponding IcePAP step at which the Fast Jack is effectively at the correct
position (as measured during the previous scan). This is discussed in Section 2 and the software
implementation is described in Section 5. The LUT data is stored in a lut.dat file and can be
further loaded in the next step.

3. Generate a trajectory. The trajectory links several motors for synchronization (mainly bragg with
fast jacks). The LUT data is included in this trajectory such that the measured repeatable errors
that are included in the LUT are compensated. This is discussed in Section 8.

4. Make a scan in mode B. The IcePAP is moving all motors in a synchronized way and tries to
follow the trajectory data with included compensation of repeatable errors.

The Hardware and Software setup used for the measurement and tests of the lookup table is described
in Section 1.

For each of these steps, several problems can lead to inaccuracies in the computed LUT and trajectory

4



which will result in non optimal compensation of repeatable errors during a scan in mode B. In order
to have the best possible mode B positioning accuracy, each of these problems are studied in this
document.

A comparison between the way the LUT was built before December 2021 and after is performed in
Section 2. Complete process from measurement of Fast-Jack errors to the tests in mode B is described
in Section 3.

As the DCM will be used for X-ray absorption techniques such as XANES, recommended scan param-
eters are given in Section 9.

Measure of FJ errors
Goal:
• Make scan that will al-

low the separation of the
FJ errors from distur-
bances and noise

Possible issues:
• Measurement of non-

repeatable errors
• Disturbances at the

same frequency as FJ
errors → no separation
possible

LUT Computation
Goal:
• Extract FJ repeatable

errors (filtering)
• Associate wanted FJ po-

sition to IcePAP step

Possible issues:
• Inclusion of other data

than repeatable errors
• Non smooth lookup ta-

ble

Trajectory Generation
Goal:
• Associate FJ steps with

other motors (for in-
stance Bragg)

• Integrate LUT data in
the FJ steps

Possible issues:
• Interpolation errors due

to limited number of
points in the LUT

IcePAP FJ Control
Goal:
• Control the position of

the FJ motors based on
the trajectory data

Possible issues:
• Interpolation errors due

to limited number of
points in the trajectory

err.dat lut.dat traj.dat

Figure 0.1: Overview of the process to make the LUT and associated possible issues.

5



1 Hardware and Software Implementation

In this section, a brief description of the experimental setup required to computed the Lookup Tables
is given (Section 1.2).

It is important also to see how the trajectories and Lookup Tables are computed and implemented in
terms of software in order to understand the possible limitations. This is described in Section 1.1.

1.1 Measurement setup

In order to measure the errors induced by the fast jacks, scans have to be made, and the following
signals have to be measured simultaneously:

• The wanted fast jack position: step sent by the IcePAP

• The actual (measured) position

The experimental setup is schematically shown in Figure 1.1.

The procedure is the following:

• A Bragg angle trajectory θ is generated from Bliss and loaded in the IcePAP as a kind of lookup
table. This lookup table is only used to synchronize all the motors, and no compensation of errors
are implemented.

• The IcePAP generates some steps [uur , uuh
, ud] that are sent to the fast jacks.

• The motion of the crystals [dz, ry, rx] is measured with the interferometers. The transformation
from interferometers values to position and orientation errors of crystals is performed inside the
Speedgoat.

• Finally, the corresponding motion [dur , ruh
, rd] of the each fast jack is computed afterwards in

BLISS.

In order to create the LUT, the measured motion of the fast jacks [dur
, ruh

, rd] and the IcePAP steps
[uur

, uuh
, ud] have to be measured simultaneously.

1.2 LUT Implementation

The computation of the LUT consists of generating an array with 4 columns. The first column cor-
responds to the position (in mm) where it is wanted to position the Fast Jack. The remaining three

6



DCM SpeedgoatIcePAPBLISS BLISS

doff
2 cos θ

Lo
ok

up
Ta

bl
e

FJ ur

FJ uh

FJ d In
te

rfe
ro

m
et

er
s

Fo
rw

ar
d

K
in

em
at

ic
s

In
ve

rs
e

K
in

em
at

ic
s

θ Tr
aj

ec
to

ry uur

uuh

ud

dz

ry

rx

dur

duh

dd

Figure 1.1: Block diagram of the experiment to create the Lookup Table

columns are corresponding (for each motor: fjpur , fjpuh and fjpd ) to the position (i.e. step) where
the IcePAP should position the motors such that the real position is corresponding to the first column.
This array lut.dat can have as many lines as wanted.

In BLISS, it is specified where the LUT is stored using the following command:
Python

dcm.lut.load(data_file="lut.dat", data_dir="directory_where_lut_are_stored")

Then, to use the LUT, a trajectory has to be loaded with the use_lut=True parameter:
Python

dcm.trajectory.load_bragg(12, 18, 1000, use_lut=True)

To perform the trajectory (synchronization of several motors), a “trajectory motor” is used in the
IcePAP. This motor is virtual and is used to synchronize the following motors: mbrag , msafe , mcoil ,
fjsur , fjsuh and fjsd . To specify how to do the trajectory, an array with 7 columns is used. The
first column corresponds to the “trajectory motor” (i.e. Bragg, FJS, Energy, . . . ). The remaining 6
columns are the 6 real motors that have to be synchronized. Values are computed based on theoretical
positions.

The lines of this array are separated with an constant fjs increment which is specified by the parameter
1000 when loading the trajectory. The parameter 1000 indicates that the trajectory should contains
1000 points every millimeter of the Fast Jack motion. In that case, the trajectory will be specific for
every micrometer of fast jack motion. Note that the loaded points of the trajectory are always with
constant Fast Jack motion increment even though the trajectory is made over Bragg angle or energy.

Then, if use_lut=True is used, the LUT data will be integrated in the motor trajectory by modifying
the columns corresponding to the fjsur , fjsuh and fjsd motors. For every point in the trajectory:

• the data in the LUT corresponding to the wanted position of the fast-jack is found

• a linear interpolation between the two adjacent points is performed, and the result is loaded in
the array

Then, when performing a trajectory, the IcePAP will use the loaded data (including the LUT infor-
mation) to control the position of each motor. Spline interpolation is performed between the specified
points in the LUT.

7



Important

Therefore, several errors can be introduced even though the LUT is computed from perfect data:

• Linear interpolation of the LUT when computing the trajectory points can result in large
errors if not enough points are used in the LUT

• Spline interpolation in the IcePAP can introduce errors

8



2 Initial and proposed LUT computations

2.1 Patterns in the Fast Jack motion errors

In order to understand what should be the “sampling distance” for the lookup table of the stepper
motor, we have to analyze the displacement errors induced by the stepper motor.

Let’s load the measurements of one bragg angle scan without any LUT.

Matlab
%% Load Data of the new LUT method
ol_bragg = (pi/180)*1e-5*double(h5read('Qutools_test_0001.h5','/33.1/instrument/trajmot/data')); % Bragg angle [rad]
ol_dzw = 10.5e-3./(2*cos(ol_bragg)); % Wanted distance between crystals [m]

ol_dz = 1e-9*double(h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_dz_filter/data')); % Dz distance between
crystals [m]↪→

ol_dry = 1e-9*double(h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_dry_filter/data')); % Ry [rad]
ol_drx = 1e-9*double(h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_drx_filter/data')); % Rx [rad]

ol_t = 1e-6*double(h5read('Qutools_test_0001.h5','/33.1/instrument/time/data')); % Time [s]

ol_ddz = ol_dzw-ol_dz; % Distance Error between crystals [m]

5 10 15 20 25

Bragg Angle [deg]

0

5

10

15

20

25

30

35

A
n
g
le

E
rr

o
r
[7

ra
d
]

0.5

1

1.5

2

2.5

3

3.5

4

D
is
ta

n
ce

E
rr

o
r
[7

m
]

Rx

Ry

0Dz

Figure 2.1: Orientation and Distance error of the Crystal measured by the interferometers

Now let’s convert the errors from the frame of the crystal to the frame of the fast jacks (inverse kinematics
problem) using the Jacobian matrix.

Matlab
%% Compute Fast Jack position errors
% Jacobian matrix for Fast Jacks and 111 crystal
J_a_111 = [1, 0.14, -0.1525

1, 0.14, 0.0675

9



1, -0.14, 0.0425];

ol_de_111 = [ol_ddz'; ol_dry'; ol_drx'];

% Fast Jack position errors
ol_de_fj = J_a_111*ol_de_111;

ol_fj_ur = ol_de_fj(1,:);
ol_fj_uh = ol_de_fj(2,:);
ol_fj_d = ol_de_fj(3,:);

5 10 15 20 25

Bragg Angle [deg]

-2

0

2

4

6

8

10

D
is
ta

n
ce

E
rr

o
r
[7

m
]

0ur

0uh

0d

Figure 2.2: Estimated motion errors of the fast jacks during the scan

Let’s now identify this pattern as a function of the fast-jack position.

As we want to done frequency Fourier transform, we need to have uniform sampling along the fast jack
position. To do so, the function resample is used.

Matlab
Xs = 0.1e-6; % Sampling Distance [m]

%% Re-sampled data with uniform spacing [m]
ol_fj_ur_u = resample(ol_fj_ur, ol_dzw, 1/Xs);
ol_fj_uh_u = resample(ol_fj_uh, ol_dzw, 1/Xs);
ol_fj_d_u = resample(ol_fj_d, ol_dzw, 1/Xs);

ol_fj_u = Xs*[1:length(ol_fj_ur_u)]; % Sampled Jack Position

The result is shown in Figure 2.3.

Let’s now perform a Power Spectral Analysis of the measured displacement errors of the Fast Jack.

Matlab
% Hanning Windows with 250um width
win = hanning(floor(400e-6/Xs));

% Power Spectral Density [m2/(1/m)]
[S_fj_ur, f] = pwelch(ol_fj_ur_u-mean(ol_fj_ur_u), win, 0, [], 1/Xs);
[S_fj_uh, ~] = pwelch(ol_fj_uh_u-mean(ol_fj_uh_u), win, 0, [], 1/Xs);
[S_fj_d, ~] = pwelch(ol_fj_d_u -mean(ol_fj_d_u ), win, 0, [], 1/Xs);

10



0 0.1 0.2 0.3 0.4 0.5

Fast Jack Position [mm]

-2

0

2

4

6

8

10

D
is
ta

n
ce

E
rr

o
r
[7

m
]

0ur

0uh

0d

Figure 2.3: Position error of fast jacks as a function of the fast jack motion

As shown in Figure 2.4, we can see a fundamental “reciprocal length” of 5 · 104 [1/m] and its harmonics.
This corresponds to a length of 1

5·104 = 20 [µm].

104 105 106

Reciprocal Length [1/m]

10!12

10!10

A
S
D

[
m

1
=
p

m
]

ur

uh

d

Figure 2.4: Spectral content of the error as a function of the reciprocal length

Instead of looking at that as a function of the reciprocal length, we can look at it as a function of the
spectral distance (Figure 2.5).

We see that the errors have a pattern with “spectral distances” equal to 5 [µm], 10 [µm], 20 [µm] and
smaller harmonics.

Let’s try to understand these results. One turn of the stepper motor corresponds to a vertical motion
of 1mm. The stepper motor has 50 pairs of poles, therefore one pair of pole corresponds to a motion of
20 [µm] which is the fundamental “spectral distance” we observe.

Matlab
CPS_ur = flip(-cumtrapz(flip(f), flip(S_fj_ur)));
CPS_uh = flip(-cumtrapz(flip(f), flip(S_fj_uh)));
CPS_d = flip(-cumtrapz(flip(f), flip(S_fj_d)));

11



100 101 102

Spectral Distance [7m]

10!12

10!11

10!10

10!9

10!8

S
p
ec

tr
a
l
C
o
n
te

n
t
[

m
1
=
p

m
] ur

uh

d

Figure 2.5: Spectral content of the error as a function of the spectral distance

From Figure 2.6, we can see that if the motion errors with a period of 5 [µm] and 10 [µm] can be dealt
with the lookup table, this will reduce a lot the positioning errors of the fast jack.

Matlab
%% Cumulative Spectrum
figure;
hold on;
plot(1e6./f, sqrt(CPS_ur), 'DisplayName', '$u_r$');
plot(1e6./f, sqrt(CPS_uh), 'DisplayName', '$u_j$');
plot(1e6./f, sqrt(CPS_d), 'DisplayName', '$d$');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Spectral Distance [$\mu m$]'); ylabel('Cumulative Spectrum [$m$]')
xlim([1, 500]); ylim([1e-9, 1e-5]);
legend('location', 'northwest');

100 101 102

Spectral Distance [7m]

10!9

10!8

10!7

10!6

10!5

C
u
m

u
la

ti
v
e

S
p
ec

tr
u
m

[m
] ur

uj

d

Figure 2.6: Cumulative spectrum from small spectral distances to large spectral distances

12



2.2 Experimental Data - Current Method

The current used method is an iterative one.

Matlab
%% Load Experimental Data
ol_bragg = double(h5read('first_beam_0001.h5','/31.1/instrument/trajmot/data'));
ol_drx = h5read('first_beam_0001.h5','/31.1/instrument/xtal_111_drx_filter/data');

lut_1_bragg = double(h5read('first_beam_0001.h5','/32.1/instrument/trajmot/data'));
lut_1_drx = h5read('first_beam_0001.h5','/32.1/instrument/xtal_111_drx_filter/data');

lut_2_bragg = double(h5read('first_beam_0001.h5','/33.1/instrument/trajmot/data'));
lut_2_drx = h5read('first_beam_0001.h5','/33.1/instrument/xtal_111_drx_filter/data');

lut_3_bragg = double(h5read('first_beam_0001.h5','/34.1/instrument/trajmot/data'));
lut_3_drx = h5read('first_beam_0001.h5','/34.1/instrument/xtal_111_drx_filter/data');

lut_4_bragg = double(h5read('first_beam_0001.h5','/36.1/instrument/trajmot/data'));
lut_4_drx = h5read('first_beam_0001.h5','/36.1/instrument/xtal_111_drx_filter/data');

The relative orientation of the two 111 mirrors in the x directions are compared in Figure 2.7 for several
iterations. We can see that after the first iteration, the orientation error has an opposite sign as for the
case without LUT.

5 10 15 20 25

Bragg Angle [deg]

-12

-10

-8

-6

-4

-2

0

2

4

6

R
x

er
ro

r
[7

ra
d
]

i = 0, /Rx
= 2296 [nrad rms]

i = 1, /Rx
= 880 [nrad rms]

i = 2, /Rx
= 674 [nrad rms]

i = 4, /Rx
= 181 [nrad rms]

Figure 2.7: Rx error with the current LUT method

13



2.3 Simulation

In this section, we suppose that we are in the frame of one fast jack (all transformations are already
done), and we wish to create a LUT for one fast jack.

Let’s say with make a Bragg angle scan between 10deg and 60deg during 100s.

Matlab
Fs = 10e3; % Sample Frequency [Hz]
t = 0:1/Fs:10; % Time vector [s]
theta = linspace(10, 40, length(t)); % Bragg Angle [deg]

The IcePAP steps are following the theoretical formula:

dz =
doff

2 cos θ
(2.1)

with θ the bragg angle and doff = 10mm.

The motion to follow is then:

Matlab
perfect_motion = 10e-3./(2*cos(theta*pi/180)); % Perfect motion [m]

And the IcePAP is generated those steps:

Matlab
icepap_steps = perfect_motion; % IcePAP steps measured by Speedgoat [m]

10 15 20 25 30 35 40

Bragg Angle [deg]

5

5.5

6

6.5

Ic
eP

A
P

S
te

p
s
[m

]

#10!3

Figure 2.8: IcePAP Steps as a function of the Bragg Angle

Then, we are measuring the motion of the Fast Jack using the Interferometer. The motion error is
larger than in reality to be angle to see it more easily.

14



Matlab
motion_error = 100e-6*sin(2*pi*perfect_motion/1e-3); % Error motion [m]

measured_motion = perfect_motion + motion_error; % Measured motion of the Fast Jack [m]

5 5.5 6 6.5

IcePAP Steps [m] #10!3

5

5.5

6

6.5
M

ea
su

re
d

M
o
ti
o
n

[m
]

#10!3

Measured Motion
Ideal Motion

Figure 2.9: Measured motion as a function of the IcePAP Steps

Let’s now compute the lookup table. For each micrometer of the IcePAP step, another step is associated
that correspond to a position closer to the wanted position.

Matlab
%% Get range for the LUT
% We correct only in the range of tested/measured motion
lut_range = round(1e6*min(icepap_steps)):round(1e6*max(icepap_steps)); % IcePAP steps [um]

%% Initialize the LUT
lut = zeros(size(lut_range));

%% For each um in this range
for i = 1:length(lut_range)

% Get points indices where the measured motion is closed to the wanted one
close_points = measured_motion > 1e-6*lut_range(i) - 500e-9 & measured_motion < 1e-6*lut_range(i) + 500e-9;
% Get the corresponding closest IcePAP step
lut(i) = round(1e6*mean(icepap_steps(close_points))); % [um]

end

The current LUT implementation is the following:
Matlab

motion_error_lut = zeros(size(lut_range));
for i = 1:length(lut_range)

% Get points indices where the icepap step is close to the wanted one
close_points = icepap_steps > 1e-6*lut_range(i) - 500e-9 & icepap_steps < 1e-6*lut_range(i) + 500e-9;
% Get the corresponding motion error
motion_error_lut(i) = lut_range(i) + (lut_range(i) - round(1e6*mean(measured_motion(close_points)))); % [um]

end

Let’s compare the two Lookup Table in Figure 2.11.

If we plot the “corrected steps” for all steps for both methods, we clearly see the difference (Figure
2.12).

15



5000 5500 6000 6500

IcePAP input step [um]

5000

5500

6000

6500

L
o
o
k
u
p

T
a
b
le

o
u
tp

u
t
[u

m
]

Figure 2.10: Generated Lookup Table

5000 5500 6000 6500

IcePAP input step [um]

5000

5500

6000

6500

L
o
o
k
u
p

T
a
b
le

o
u
tp

u
t
[u

m
]

New LUT
Old LUT

Figure 2.11: Comparison of the two lookup tables

5000 5500 6000 6500

IcePAP Steps [um]

-100

-50

0

50

100

C
o
rr

ec
te

d
m

o
ti
o
n

[u
m

]

New LUT
Old LUT

Figure 2.12: LUT correction and motion error as a function of the IcePAP steps

16



Let’s now implement both LUT to see which implementation is correct.

Matlab
motion_new = zeros(size(icepap_steps_output_new));
motion_old = zeros(size(icepap_steps_output_old));

for i = 1:length(icepap_steps_output_new)
[~, i_step] = min(abs(icepap_steps_output_new(i) - 1e6*icepap_steps));
motion_new(i) = measured_motion(i_step);

[~, i_step] = min(abs(icepap_steps_output_old(i) - 1e6*icepap_steps));
motion_old(i) = measured_motion(i_step);

end

The output motion with both LUT are shown in Figure 2.13. It is confirmed that the new LUT is the
correct one. Also, it is interesting to note that the old LUT gives an output motion that is above the
ideal one, as was seen during the experiments.

5 5.5 6 6.5

IcePAP Steps [m] #10!3

5

5.2

5.4

5.6

5.8

6

6.2

M
ea
su
re
d
M
o
ti
o
n
[m
]

#10!3

Motion (new LUT)
Motion (old LUT)
Ideal Motion

Figure 2.13: Comparison of the obtained motion with new and old LUT

2.4 Experimental Data - Proposed method (BLISS first
implementation)

The new proposed method has been implemented and tested.

The result is shown in Figure 2.14. After only one iteration, the result is close to the previous method.

Matlab
%% Load Data of the new LUT method
ol_new_bragg = double(h5read('Qutools_test_0001.h5','/33.1/instrument/trajmot/data'));
ol_new_drx = h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_drx_filter/data');

lut_new_bragg = double(h5read('Qutools_test_0001.h5','/34.1/instrument/trajmot/data'));
lut_new_drx = h5read('Qutools_test_0001.h5','/34.1/instrument/xtal_111_drx_filter/data');

17



5 10 15 20 25

Bragg Angle [deg]

-2

0

2

4

6

8

10

12

14

R
x

er
ro

r
[7

ra
d
]

i = 0, /Rx
= 2188 [nrad rms]

New LUT i = 1, /Rx
= 185 [nrad rms]

Old LUT i = 4, /Rx
= 181 [nrad rms]

Figure 2.14: Comparison of the Rx error for the current LUT method and the proposed one

If we zoom on the 20deg to 25deg bragg angles, we can see that the new method has much less “periodic
errors” as compared to the previous one which shows some patterns.

2.5 Comparison of the errors in the reciprocal length space

Matlab
%% Load Data of the new LUT method
ol_bragg = (pi/180)*1e-5*double(h5read('Qutools_test_0001.h5','/33.1/instrument/trajmot/data'));
ol_dz = 1e-9*double(h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_dz_filter/data'));
ol_dry = 1e-9*double(h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_dry_filter/data'));
ol_drx = 1e-9*double(h5read('Qutools_test_0001.h5','/33.1/instrument/xtal_111_drx_filter/data'));
ol_dzw = 10.5e-3./(2*cos(ol_bragg)); % Wanted distance between crystals [m]
ol_t = 1e-6*double(h5read('Qutools_test_0001.h5','/33.1/instrument/time/data')); % Time [s]
ol_ddz = ol_dzw-ol_dz; % Distance Error between crystals [m]

lut_bragg = (pi/180)*1e-5*double(h5read('Qutools_test_0001.h5','/34.1/instrument/trajmot/data'));
lut_dz = 1e-9*double(h5read('Qutools_test_0001.h5','/34.1/instrument/xtal_111_dz_filter/data'));
lut_dry = 1e-9*double(h5read('Qutools_test_0001.h5','/34.1/instrument/xtal_111_dry_filter/data'));
lut_drx = 1e-9*double(h5read('Qutools_test_0001.h5','/34.1/instrument/xtal_111_drx_filter/data'));
lut_dzw = 10.5e-3./(2*cos(lut_bragg)); % Wanted distance between crystals [m]
lut_t = 1e-6*double(h5read('Qutools_test_0001.h5','/34.1/instrument/time/data')); % Time [s]
lut_ddz = lut_dzw-lut_dz; % Distance Error between crystals [m]

Matlab
%% Compute Fast Jack position errors
% Jacobian matrix for Fast Jacks and 111 crystal
J_a_111 = [1, 0.14, -0.1525

1, 0.14, 0.0675

18



20 21 22 23 24 25

Bragg Angle [deg]

-800

-600

-400

-200

0

200

400

600

R
x

er
ro

r
[n

ra
d
]

New LUT
Old LUT

Figure 2.15: Comparison of the residual motion after old LUT and new LUT

1, -0.14, 0.0425];

ol_de_111 = [ol_ddz'; ol_dry'; ol_drx'];

% Fast Jack position errors
ol_de_fj = J_a_111*ol_de_111;

ol_fj_ur = ol_de_fj(1,:);
ol_fj_uh = ol_de_fj(2,:);
ol_fj_d = ol_de_fj(3,:);

lut_de_111 = [lut_ddz'; lut_dry'; lut_drx'];

% Fast Jack position errors
lut_de_fj = J_a_111*lut_de_111;

lut_fj_ur = lut_de_fj(1,:);
lut_fj_uh = lut_de_fj(2,:);
lut_fj_d = lut_de_fj(3,:);

Matlab
Xs = 0.1e-6; % Sampling Distance [m]

%% Re-sampled data with uniform spacing [m]
ol_fj_ur_u = resample(ol_fj_ur, ol_dzw, 1/Xs);
ol_fj_uh_u = resample(ol_fj_uh, ol_dzw, 1/Xs);
ol_fj_d_u = resample(ol_fj_d, ol_dzw, 1/Xs);

ol_fj_u = Xs*[1:length(ol_fj_ur_u)]; % Sampled Jack Position

% Only take first 500um
ol_fj_ur_u = ol_fj_ur_u(ol_fj_u<0.5e-3);
ol_fj_uh_u = ol_fj_uh_u(ol_fj_u<0.5e-3);
ol_fj_d_u = ol_fj_d_u (ol_fj_u<0.5e-3);
ol_fj_u = ol_fj_u (ol_fj_u<0.5e-3);

Matlab
%% Re-sampled data with uniform spacing [m]
lut_fj_ur_u = resample(lut_fj_ur, lut_dzw, 1/Xs);
lut_fj_uh_u = resample(lut_fj_uh, lut_dzw, 1/Xs);
lut_fj_d_u = resample(lut_fj_d, lut_dzw, 1/Xs);

lut_fj_u = Xs*[1:length(lut_fj_ur_u)]; % Sampled Jack Position

19



% Only take first 500um
lut_fj_ur_u = lut_fj_ur_u(lut_fj_u<0.5e-3);
lut_fj_uh_u = lut_fj_uh_u(lut_fj_u<0.5e-3);
lut_fj_d_u = lut_fj_d_u (lut_fj_u<0.5e-3);
lut_fj_u = lut_fj_u (lut_fj_u<0.5e-3);

Matlab
% Hanning Windows with 250um width
win = hanning(floor(400e-6/Xs));

% Power Spectral Density [m2/(1/m)]
[S_ol_ur, f] = pwelch(ol_fj_ur_u-mean(ol_fj_ur_u), win, 0, [], 1/Xs);
[S_ol_uh, ~] = pwelch(ol_fj_uh_u-mean(ol_fj_uh_u), win, 0, [], 1/Xs);
[S_ol_d, ~] = pwelch(ol_fj_d_u -mean(ol_fj_d_u ), win, 0, [], 1/Xs);

[S_lut_ur, ~] = pwelch(lut_fj_ur_u-mean(lut_fj_ur_u), win, 0, [], 1/Xs);
[S_lut_uh, ~] = pwelch(lut_fj_uh_u-mean(lut_fj_uh_u), win, 0, [], 1/Xs);
[S_lut_d, ~] = pwelch(lut_fj_d_u -mean(lut_fj_d_u ), win, 0, [], 1/Xs);

As seen in Figure 2.16, the LUT as an effect only on spatial errors with a period of at least few µm.
This is very logical considering the 1µm sampling of the LUT in the IcePAP.

100 101 102

Spectral Distance [7m]

10!12

10!10

10!8

S
p
ec

tr
a
l
C
o
n
te

n
t
[

m
1
=
p

m
] ur - OL

ur - LUT

Figure 2.16: Effect of the LUT on the spectral content of the positioning errors

Let’s now look at it in a cumulative way.
Matlab

CPS_ol_ur = flip(-cumtrapz(flip(f), flip(S_ol_ur)));
CPS_ol_uh = flip(-cumtrapz(flip(f), flip(S_ol_uh)));
CPS_ol_d = flip(-cumtrapz(flip(f), flip(S_ol_d)));

CPS_lut_ur = flip(-cumtrapz(flip(f), flip(S_lut_ur)));
CPS_lut_uh = flip(-cumtrapz(flip(f), flip(S_lut_uh)));
CPS_lut_d = flip(-cumtrapz(flip(f), flip(S_lut_d)));

Matlab
%% Cumulative Spectrum
figure;
hold on;
plot(1e6./f, sqrt(CPS_ol_ur) , 'DisplayName', '$u_r$ - OL');
plot(1e6./f, sqrt(CPS_lut_ur), 'DisplayName', '$u_r$ - LUT');
hold off;

20



set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Spectral Distance [$\mu m$]'); ylabel('Cumulative Spectrum [$m$]')
xlim([1, 500]); ylim([1e-9, 1e-5]);
legend('location', 'northwest');

100 101 102

Spectral Distance [7m]

10!9

10!8

10!7

10!6

10!5
C
u
m

u
la

ti
v
e

S
p
ec

tr
u
m

[m
] ur - OL

ur - LUT

Figure 2.17: Cumulative Spectrum with and without the LUT

2.6 Period of errors

The positioning errors of the fast jacks have different origins with different spatial periods:

• 1mm due to non-perfect planetary roller screw system

• 20µm, 10µm and 5µm periods due non-perfect magnetic poles of the stepper motor.

In this section, we wish to see which of these errors are repeatable from one scan to the other. This
could help to determine which errors should be included in the LUT.

Load Test Data

A scan in mode A is performed at constant Fast Jack velocity.
Matlab

fj_vel = 0.125e-3; % Fast Jack Velocity [m/s]

FIR Filters

Filtered Data

Now the same data is filtered with each filter.

21



0 10 20 30 40 50

Frequency [Hz]

10!4

10!2

100

A
m

p
li
tu

d
e

1m
m

er
ro

r

20
u
m

E
rr

or

10
u
m

E
rr

or

5u
m

E
rr

or

1mm FIR
207m FIR
107m FIR
57m FIR

Figure 2.18: Amplitude response of FIR filters to only keep certain errors

The filtered data are shown in Figure 2.19.

10 12 14

Fast Jack Motion [mm]

-2

-1

0

1

2

3

M
ea
su
re
d
E
rr
o
r
[7
m
]

Raw Data
57m errors
107m errors
207m errors
1mm errors

11.98 11.99 12 12.01 12.02

Fast Jack Motion [mm]

1

1.2

1.4

1.6

1.8

2
M
ea
su
re
d
E
rr
o
r
[7
m
]

Figure 2.19: Fast Jack measured error and filtered data

Discussion

22



3 LUT creation from experimental data

In this section, the full process from measurement, filtering of data to generation of the LUT is de-
tailed.

The computation is performed with Matlab.

3.1 Load Data

A Bragg scan is performed using thtraj and data are acquired using the fast_DAQ .

Matlab
%% Load Raw Data
load("scan_10_70_lut_1.mat")

Measured data are:

• bragg : Bragg angle in deg

• dz : distance between crystals in nm

• dry , drx : orientation errors between crystals in nrad

• fjur , fjuh , fjd : generated steps by the IcePAP in tens of nm

All are sampled at 10kHz with no filtering.

First, convert all the data to SI units (rad, and m).

Matlab
%% Convert Data to Standard Units
% Bragg Angle [rad]
bragg = pi/180*bragg;
% Rx rotation of 1st crystal w.r.t. 2nd crystal [rad]
drx = 1e-9*drx;
% Ry rotation of 1st crystal w.r.t. 2nd crystal [rad]
dry = 1e-9*dry;
% Z distance between crystals [m]
dz = 1e-9*dz;
% Z error between second crystal and first crystal [m]
ddz = 10.5e-3./(2*cos(bragg)) - dz;
% Steps for Ur motor [m]
fjur = 1e-8*fjur;
% Steps for Uh motor [m]
fjuh = 1e-8*fjuh;
% Steps for D motor [m]
fjd = 1e-8*fjd;

23



3.2 IcePAP generated Steps

Here is how the steps of the IcePAP ( fjsur , fjsuh and fjsd ) are computed in mode A:fjsurfjsuh
fjsd

 (θ) = fjs0 + Ja,111 ·

 0
fjsry
fjsrx

− 10.5 · 10−3

2 cos(θ)
(3.1)

There is a first offset fjs0 that is initialized once, and a second offset which is a function of fjsry and
fjsrx .

Let’s compute the offset which is a function of fjsry and fjsrx :
Matlab

fjsry = 0.53171e-3; % [rad]
fjsrx = 0.144e-3; % [rad]

J_a_111 = [1, 0.14, -0.0675
1, 0.14, 0.1525
1, -0.14, 0.0425];

fjs_offset = J_a_111*[0; fjsry; fjsrx]; % ur,uh,d offsets [m]

6.4719e-05
9.6399e-05
-6.8319e-05

Let’s now compute fjs0 using first second of data where there is no movement and bragg axis is fixed
at θ0:

fjs0 =

fjsurfjsuh
fjsd

 (θ0) +
10.5 · 10−3

2 cos(θ0)
− Ja,111 ·

 0
fjsry
fjsrx

 (3.2)

Matlab
FJ0 = ...

mean([fjur(time < 1), fjuh(time < 1), fjd(time < 1)])' ...
+ ones(3,1)*10.5e-3./(2*cos(mean(bragg(time < 1)))) ...
- fjs_offset; % [m]

0.030427
0.030427
0.030427

Values are very close for all three axis. Therefore we take the mean of the three values for fjs0.
Matlab

FJ0 = mean(FJ0);

This approximately corresponds to the distance between the crystals for a Bragg angle of 80 degrees:

24



Matlab
10.5e-3/(2*cos(80*pi/180))

Results
0.030234

The measured IcePAP steps are compared with the theoretical formulas in Figure 3.1.

If we were to zoom a lot, we would see a small delay between the estimation and the steps sent by the
IcePAP. This is due to the fact that the estimation is performed based on the measured Bragg angle
while the IcePAP steps are based on the “requested” Bragg angle. As will be shown in the next section,
there is a small delay between the requested and obtained bragg angle which explains this delay.

64.2 64.4 64.6 64.8 65 65.2

Bragg Angle [deg]

14.2

14.3

14.4

14.5

14.6

14.7

14.8

F
a
st

J
a
ck

P
o
s
[m

m
]

ur

uh

d
Estimation

Figure 3.1: Measured IcePAP Steps and estimation from theoretical formula

3.3 Bragg and Fast Jack Velocities

In order to estimate velocities from measured positions, a filter is used which approximate a pure
derivative filter.

Matlab
%% Filter to compute velocities
G_diff = (s/2/pi/10)/(1 + s/2/pi/10);
% Make sure the gain w = 2pi is equal to 2pi
G_diff = 2*pi*G_diff/(abs(evalfr(G_diff, 1j*2*pi)));

Only the high frequency amplitude is reduced to not amplified the measurement noise (Figure 3.2).

Using the filter, the Bragg velocity is estimated (Figure 3.3).

25



10!1 100 101 102 103

Frequency [Hz]

100

102

104

A
m

p
li
tu

d
e

[m
/N

]

Gd s

Figure 3.2: Magnitude of filter used to approximate the derivative

Matlab
%% Bragg Velocity
bragg_vel = lsim(G_diff, bragg, time);

2 2.5 3 3.5 4

Time [s]

0

0.2

0.4

0.6

0.8

1

B
ra

gg
V
el
o
ci
ty

[d
eg

/s
]

Figure 3.3: Estimated Bragg Velocity curing acceleration phase

Now, the Fast Jack velocity is estimated (Figure 3.4).

Matlab
%% Fast Jack Velocity
fjur_vel = lsim(G_diff, fjur, time);
fjuh_vel = lsim(G_diff, fjuh, time);
fjd_vel = lsim(G_diff, fjd , time);

26



0 20 40 60 80

Time [s]

-0.8

-0.6

-0.4

-0.2

0

F
as

t
J
ac

k
V
el
o
ci
ty

[m
m

/s
]

ur

uh

d

Figure 3.4: Estimated velocity of fast jacks

14 16 18 20 22 24 26

Fast Jack Position [s]

-0.8

-0.6

-0.4

-0.2

0

F
as

t
J
ac

k
V
el
o
ci
ty

[m
m

/s
]

ur

uh

d

Figure 3.5: Fast Jack Velocity as a function of its position

27



3.4 Bragg Angle Errors / Delays

From the measured fjur steps generated by the IcePAP, we can estimate the steps generated corre-
sponding to the Bragg angle.

Matlab
%% Estimated Bragg angle requested by IcePAP
bragg_icepap = acos(10.5e-3./(2*(FJ0 + fjs_offset(1) - fjur)));

The generated steps by the IcePAP and the measured angle are compared in Figure 3.6. There is clearly
a lag of the Bragg angle compared to the generated IcePAP steps.

3.18 3.182 3.184 3.186 3.188 3.19

Time [s]

9.562

9.564

9.566

9.568

9.57

9.572

9.574

B
ra
g
g
A
n
g
le
[d
eg
]

IcePAP Steps
Encoder Measurement

Figure 3.6: Estimated generated steps by the IcePAP and measured Bragg angle

If we plot the error between the measured and the requested bragg angle as a function of the bragg
velocity (Figure 3.7), we can see an almost linear relationship.

This corresponds to a “time lag” of approximately:
Results

2.4 ms

Important

There is a “lag” between the Bragg steps sent by the IcePAP and the measured angle by the
encoders. This is probably due to the single integrator in the “Aerotech” controller. Indeed, two
integrators are required to have no tracking error during ramp reference signals.

3.5 Errors in the Frame of the Crystals

The dz , dry and drx measured relative motion of the crystals are defined as follows:

28



0 0.2 0.4 0.6 0.8 1 1.2

Bragg Velocity [deg/s]

0

0.5

1

1.5

2

2.5

3

B
ra

gg
E
rr

or
[d

eg
]

#10!3

Figure 3.7: Bragg Error as a function fo the Bragg Velocity

• An increase of dz means the crystals are moving away from each other

• An positive dry means the second crystals has positive rotation around y

• An positive drx means the second crystals has positive rotation around x

The error in crystals’ distance ddz is defined as:

ddz(θ) =
10.5 · 10−3

2 cos(θ)
− dz(θ) (3.3)

Therefore, a positive ddz means that the second crystal is too high (fast jacks have to move down).

The errors measured in the frame of the crystals are shown in Figure 3.8.

15 20 25

Fast Jack Position [mm]

-20

-10

0

10

20

30

40

O
ri
en

ta
ti
on

E
rr

or
s
[7

ra
d
] dry

drx

15 20 25

Fast Jack Position [mm]

0

1

2

3

4

5

6

D
is
ta

n
ce

E
rr

or
s
[7

m
]

dz

Figure 3.8: Measured errors in the frame of the crystals as a function of the fast jack position

29



3.6 Errors in the Frame of the Fast Jacks

From ddz,dry,drx , the motion errors of the jast-jacks ( fjur_e , fjuh_e and jfd_e ) as measured by
the interferometers are computed.

Matlab
%% Actuator Jacobian
J_a_111 = [1, 0.14, -0.0675

1, 0.14, 0.1525
1, -0.14, 0.0425];

%% Computation of the position of the FJ as measured by the interferometers
error = J_a_111 * [ddz, dry, drx]';

fjur_e = error(1,:)'; % [m]
fjuh_e = error(2,:)'; % [m]
fjd_e = error(3,:)'; % [m]

The result is shown in Figure 3.9.

14 16 18 20 22 24 26

IcePAP Steps [mm]

-2

0

2

4

6

8

10

P
os

it
io

n
E
rr

or
[7

m
]

ur

uh

d

Figure 3.9: Position error of the Fast jacks

3.7 Analysis of the obtained error

The measured position of the fast jacks are displayed as a function of the IcePAP steps (Figure 3.11).

Important

From Figure 3.11, it seems the position as a function of the IcePAP steps is not a bijection
function. Therefore, a measured position can corresponds to several IcePAP Steps. This is very
problematic for building a LUT that will be used to compensated the measured errors.

Also, it seems that the (spatial) period of the error depends on the actual position of the Fast Jack
(and therefore of its velocity). If we compute the equivalent temporal period, we find a frequency of
around 370 Hz.

30



14.99 14.995 15 15.005 15.01

IcePAP Steps [mm]

0

1

2

3

4

5

6

7

P
os
it
io
n
E
rr
o
r
[7
m
]

ur

uh

d

19.99 19.995 20 20.005 20.01

IcePAP Steps [mm]

1

2

3

4

5

6

7

8

M
ea
su
re
d
P
os
it
io
n
[7
m
]

ur

uh

d

Figure 3.10: Position error of the Fast jacks - Zoom near two positions

14
.9
9

14
.9
95 15

15
.0
05

15
.0
1

IcePAP Steps [mm]

1
4
.9

9
1
4
.9

9
5

1
5

1
5
.0

0
5

1
5
.0

1

M
ea

su
re

d
P
os

it
io

n
[m

m
]

ur

uh

d
Ref

19
.9
9

19
.9
95 20

20
.0
05

20
.0
1

IcePAP Steps [mm]

1
9
.9

9
1
9
.9

9
5

2
0

2
0
.0

0
5

2
0
.0

1

M
ea

su
re

d
P
os

it
io

n
[m

m
]

ur

uh

d
Ref

Figure 3.11: Measured Fast Jack position as a function of the IcePAP steps

31



In order to better investigate what is going on, a spectrogram is computed (Figure 3.12).

We clearly observe:

• Some rather constant vibrations with a frequency at around 363Hz and 374Hz. This corresponds
to the clear periods in Figure 3.11. These are due to the mcoil stepper motor (magnetic period).

• Several frequencies which are increasing with time. These corresponds to (spatial) periodic errors
of the stepper motor. The frequency of these errors are increasing because the velocity of the fast
jack is also increasing with time (see Figure 3.4). The black dashed line in Figure 3.12 shows the
frequency of errors with a period of 5µm. We can also see lower frequencies corresponding to
periods of 10µm and 20µm and lots of higher frequencies with are also exciting resonances of the
system (second crystal) at around 200Hz

0.2 0.4 0.6 0.8 1

Time (minutes)

50

100

150

200

250

300

350

400

F
re

q
u
en

cy
(H

z)

-160

-155

-150

-145

-140

-135

-130

P
ow

er
 (

dB
)

Figure 3.12: Spectrogram of the uh errors. The black dashed line corresponds to an error with a
period of 5µm

Important

As we would like to only measure the repeatable mechanical errors of the fast jacks and not the
vibrations of natural frequencies of the system, we have to filter the data.

3.8 Filtering of Data

As seen in Figure 3.12, the errors we wish to calibrate are below 160Hz while the vibrations we wish to
ignore are above 200Hz. We have to use a low pass filter that does not affects frequencies below 160Hz
while having good rejection above 200Hz.

The filter used for current LUT is a moving average filter with a length of 100:

Matlab
%% Moving Average Filter
B_mov_avg = 1/101*ones(101,1); % FIR Filter coeficients

32



We may also try a second order low pass filter:
Matlab

%% 2nd order Low Pass Filter
G_lpf = 1/(1 + 2*s/(2*pi*80) + s^2/(2*pi*80)^2);

And a FIR filter with linear phase:
Matlab

%% FIR with Linear Phase
Fs = 1e4; % Sampling Frequency [Hz]
B_fir = firls(1000, ... % Filter's order

[0 140/(Fs/2) 180/(Fs/2) 1], ... % Frequencies [Hz]
[1 1 0 0]); % Wanted Magnitudes

Filters’ responses are computed and compared in the Bode plot of Figure 3.13.
Matlab

%% Computation of filters' responses
[h_mov_avg, f] = freqz(B_mov_avg, 1, 10000, Fs);
[h_fir, ~] = freqz(B_fir, 1, 10000, Fs);
h_lpf = squeeze(freqresp(G_lpf, f, 'Hz'));

10!4

10!2

100

A
m
p
li
tu
d
e

Moving Average
FIR
2nd order LPF

0 100 200 300 400 500

Frequency [Hz]

-180

-90

0

90

180

P
h
as
e
[d
eg
]

Figure 3.13: Bode plot of filters that could be used before making the LUT

Clearly, the currently used moving average filter is filtering too much below 160Hz and too little above
200Hz. The FIR filter seems more suited for this case.

33



Let’s now compare the filtered data.

Matlab
fjur_e_cur = filter(B_mov_avg, 1, fjur_e);
fjur_e_fir = filter(B_fir, 1, fjur_e);
fjur_e_lpf = lsim(G_lpf, fjur_e, time);

As the FIR filter introduce some delays, we can identify this relay and shift the filtered data:

Matlab
%% Compensate the FIR delay
delay = mean(grpdelay(B_fir));

Results
500

Matlab
fjur_e_fir(1:end-delay) = fjur_e_fir(delay+1:end);

The same is done for the moving average filter

Matlab
%% Compensate the Moving average delay
delay = mean(grpdelay(B_mov_avg));
fjur_e_cur(1:end-delay) = fjur_e_cur(delay+1:end);

The raw and filtered motion errors are displayed in Figure 3.14.

Important

It is shown that while the moving average average filter is working relatively well for low speeds
(at around 20mm) it is not for high speeds (near 15mm). This is because the frequency of the
error is above 100Hz and the moving average is flipping the sign of the filtered data.
The IIR low pass filter has some phase issues.
Finally the FIR filter is perfectly in phase while showing good attenuation of the disturbances.

If we now look at the measured position as a function of the IcePAP steps (Figure 3.15), we can see
that we obtain a monotonous function for the FIR filtered data which is great to make the LUT.

If we subtract the raw data with the FIR filtered data, we obtain the remaining motion shown in Figure
3.16 that only contains the high frequency motion not filtered.

3.9 LUT creation

The procedure used to make the Lookup Table is schematically represented in Figure 3.17.

34



14.99 14.995 15 15.005 15.01

IcePAP Steps [mm]

0.5

1

1.5

2

M
ea
su
re
d
E
rr
or
[7
m
]

Raw Data
Mov Avg

FIR
LPF

19.99 19.995 20 20.005 20.01

IcePAP Steps [mm]

3.8

4

4.2

4.4

4.6

4.8

5

M
ea
su
re
d
E
rr
or
[7
m
]

Raw Data
Mov Avg

FIR
LPF

Figure 3.14: Raw measured error and filtered data

14
.9
9

14
.9
95 15

15
.0
05

15
.0
1

IcePAP Steps [mm]

1
4
.9

9
1
4
.9

9
5

1
5

1
5
.0

0
5

1
5
.0

1

M
ea

su
re

d
P
os

it
io

n
[m

m
]

Raw Data
FIR

19
.9
9

19
.9
95 20

20
.0
05

20
.0
1

IcePAP Steps [mm]

1
9
.9

9
1
9
.9

9
5

2
0

2
0
.0

0
5

2
0
.0

1

M
ea

su
re

d
P
os

it
io

n
[m

m
]

Raw Data
FIR

Figure 3.15: Raw measured motion and filtered motion as a function of the IcePAP Steps

35



14 16 18 20 22 24 26

IcePAP Steps [mm]

-1

-0.5

0

0.5

1

M
ea

su
re

d
E
rr

o
r
[7

m
]

Figure 3.16: Remaining motion error after removing the filtered part

For each IcePAP step separated by a constant value (typically 1µm) a point of the LUT is computed:

• Points where the measured position is close to the wanted ideal position (i.e. the current IcePAP
step) are found

• The corresponding IcePAP step at which the Fast Jack is at the wanted position is stored in the
LUT

Therefore the LUT gives the IcePAP step for which the fast jack is at the wanted position as measured
by the metrology, which is what we want.

Let’s first initialize the LUT which is table with 4 columns and 26001 rows. The columns are:

1. IcePAP Step indices from 0 to 26mm with a step of 1µm (thus the 26001 rows)

2. IcePAP step for fjur at which point the fast jack is at the wanted position

3. Same for fjuh

4. Same for fjd

All the units of the LUT are in mm. We will work in meters and convert to mm at the end.

Let’s initialize the Lookup table:
Matlab

%% Initialization of the LUT
lut = [0:1e-6:26e-3]'*ones(1,4);

And verify that it has the wanted size:
Results

size(lut)
ans =

26001 4

36



IcePAP Steps

M
ea

su
re

d
P
o
si
ti
o
n

L
U

T
In

d
ic
e

Measured Position

S
te

p
st

or
ed

in
th

e
L
U

T

Figure 3.17: Schematic of the principle used to make the Lookup Table

The measured Fast Jack position are filtered using the FIR filter:

Matlab
%% FIR Filter
Fs = 1e4; % Sampling Frequency [Hz]
fir_order = 1000; % Filter's order
delay = fir_order/2; % Delay induced by the filter
B_fir = firls(fir_order, ... % Filter's order

[0 140/(Fs/2) 180/(Fs/2) 1], ... % Frequencies [Hz]
[1 1 0 0]); % Wanted Magnitudes

%% Filtering all measured Fast Jack Position using the FIR filter
fjur_e_filt = filter(B_fir, 1, fjur_e);
fjuh_e_filt = filter(B_fir, 1, fjuh_e);
fjd_e_filt = filter(B_fir, 1, fjd_e);

%% Compensation of the delay introduced by the FIR filter
fjur_e_filt(1:end-delay) = fjur_e_filt(delay+1:end);
fjuh_e_filt(1:end-delay) = fjuh_e_filt(delay+1:end);
fjd_e_filt( 1:end-delay) = fjd_e_filt( delay+1:end);

The indices where the LUT will be populated are initialized.

Matlab
%% Vector of Fast Jack positions [unit of lut_inc]
fjur_pos = floor(min(1e6*fjur)):floor(max(1e6*fjur));
fjuh_pos = floor(min(1e6*fjuh)):floor(max(1e6*fjuh));
fjd_pos = floor(min(1e6*fjd )):floor(max(1e6*fjd ));

And the LUT is computed and shown in Figure 3.18.

37



Matlab
%% Build the LUT
for i = fjur_pos

% Find indices where measured motion is close to the wanted one
indices = fjur + fjur_e_filt > lut(i,1) - 500e-9 & ...

fjur + fjur_e_filt < lut(i,1) + 500e-9;
% Poputate the LUT with the mean of the IcePAP steps
lut(i,2) = mean(fjur(indices));

end

for i = fjuh_pos
% Find indices where measuhed motion is close to the wanted one
indices = fjuh + fjuh_e_filt > lut(i,1) - 500e-9 & ...

fjuh + fjuh_e_filt < lut(i,1) + 500e-9;
% Poputate the LUT with the mean of the IcePAP steps
lut(i,3) = mean(fjuh(indices));

end

for i = fjd_pos
% Poputate the LUT with the mean of the IcePAP steps
indices = fjd + fjd_e_filt > lut(i,1) - 500e-9 & ...

fjd + fjd_e_filt < lut(i,1) + 500e-9;
% Poputate the LUT
lut(i,4) = mean(fjd(indices));

end

Input IcePAP Step

O
u
tp

u
t
Ic

eP
A

P
S
te

p

ur

uh

d

Figure 3.18: Lookup Table correction

3.10 Cubic Interpolation of the LUT

Once the LUT is built and loaded to the IcePAP, generated steps are taking the step values in the LUT
and cubic spline interpolation is performed.

38



Matlab
%% Estimation of the IcePAP output steps after interpolation
fjur_out_steps = spline(lut(:,1), lut(:,2), fjur);

The LUT data points as well as the spline interpolation values and the ideal values are compared in
Figure 3.19. It is shown that the spline interpolation seems to be quite accurate.

14.99 14.995 15 15.005 15.01

Input IcePAP Step

14.99

14.992

14.994

14.996

14.998

15

15.002

15.004

15.006

15.008

15.01

O
u
tp
u
t
Ic
eP
A
P
S
te
p

LUT Data Points
Spline Interpolation
Ideal Value

Figure 3.19: Output IcePAP Steps avec spline interpolation compared with the ideal steps

The difference between the perfect step generation and the step generated after spline interpolation is
shown in Figure 3.20. The remaining position error is in the order of 100nm peak to peak which is
acceptable here.

Important

In order to limit the errors due to spline interpolation, more points in the LUT should be included
(ideally one point every 100nm). This only makes the computation of the LUT a little bit longer.

39



14.99 14.995 15 15.005 15.01

Input IcePAP Step [mm]

-150

-100

-50

0

50

100

150

O
u
tp

u
t
S
te

p
E
rr

o
r
[n

m
]

Figure 3.20: Errors on the computed IcePAP output steps after LUT generation and spline interpo-
lation

40



4 Position Repeatability

In this section, the repeatability of the Fast Jacks over time is studied.

The goal is to determine:

1. How good the positioning accuracy can be when using the Lookup Table to correct the non-
repeatability of the fast jack motion (i.e. mode B)?

2. During how long the lookup table are remaining valid?

3. Which errors are repeatable and which are not?

The trajectories to test the repeatability is the following:

Python
tdh.lut_constant_fj_vel(15, 22, pts_per_mm=1000, use_lut=False)

The Fast Jack are scanned at constant velocity from 22mm to 15mm in mode A (no LUT). The velocity
is set to 0.125mm/s.

4.1 Repeatability over several minutes

10 scans are done one after the other in mode A.

Matlab
%% Filenames for the measurements
data_files_min = {

"lut_const_fj_vel_14012022_1517.dat",
"lut_const_fj_vel_14012022_1519.dat",
"lut_const_fj_vel_14012022_1521.dat",
"lut_const_fj_vel_14012022_1523.dat",
"lut_const_fj_vel_14012022_1525.dat",
"lut_const_fj_vel_14012022_1527.dat",
"lut_const_fj_vel_14012022_1528.dat",
"lut_const_fj_vel_14012022_1530.dat",
"lut_const_fj_vel_14012022_1532.dat",
"lut_const_fj_vel_14012022_1534.dat"

};

The data are filtered such that most of the disturbances and noise are filtered out. There is only the
motion errors induced by the fast jack left in the data. The measured position errors of fjur are shown
in Figure 4.1 for the 10 scans.

41



16 18 20

IcePAP Steps [mm]

2

3

4

5

6
P
o
si
ti
o
n

E
rr

o
r
[7

m
]

Scans
First Scan

15.98 15.99 16 16.01 16.02

IcePAP Steps [mm]

2

2.2

2.4

2.6

2.8

3

P
o
si
ti
o
n

E
rr

o
r
[7

m
]

Scans
First Scan

Figure 4.1: Repeatability of fjur over several minutes

The non-repeatable part (measured motion of scan i minus the measured motion of the first scan) is
shown in Figure 4.2. Visually, we see that we cannot expect the positioning errors to be less than several
hundreds of nanometers in mode B.

16 18 20

IcePAP Steps [mm]

-0.4

-0.2

0

0.2

0.4

N
o
n
-R

ep
ea

ta
b
le

P
a
rt

[7
m

]

15.98 15.99 16 16.01 16.02

IcePAP Steps [mm]

-0.4

-0.2

0

0.2

0.4

N
o
n
-R

ep
ea

ta
b
le

P
a
rt

[7
m

]

Figure 4.2: Non Repeatable part over several minutes

The RMS value of the non repeatable part is computed for each scan and summarized in Table 4.1. It
is visually shown in Figure 4.3.

Clearly, the error is getting worse as more scan are performed and/or as elapse time is longer.

4.2 Repeatability over several days

The same scan is done with approximately 8 hours of time interval over three days.

42



Table 4.1: RMS value of the Non-repeatable part when during several identical scans within few min-
utes

Elapse Time [m] fjur [nm] fjuh [nm] fjd [nm]

2.0 47.9 32.4 38.1
4.0 62.5 42.0 54.1
6.0 74.7 50.4 66.0
8.0 85.8 53.7 81.3
10.0 95.0 59.9 90.4
11.0 104.6 65.3 98.0
13.0 115.7 68.6 105.6
15.0 126.8 68.4 112.6
17.0 138.4 70.8 123.2

0 5 10 15 20

Elapse Time [min]

0

20

40

60

80

100

120

140

N
o
n
-r
ep
ea
t.

p
a
rt

[n
m

R
M
S
]

fjpur
fjpuh
fjpd

Figure 4.3: Remaining motion as a function of the elapse time / number of iteration

43



Matlab
%% Filenames for the measurements
data_files_day = {

"lut_const_fj_vel_14012022_1824.dat",
"lut_const_fj_vel_15012022_0234.dat",
"lut_const_fj_vel_15012022_1043.dat",
"lut_const_fj_vel_15012022_1852.dat",
"lut_const_fj_vel_16012022_0302.dat",
"lut_const_fj_vel_16012022_1111.dat",
"lut_const_fj_vel_16012022_1920.dat"

};

The measured position errors of fjur during all the scans are shown in Figure 4.4. Clearly, the
repeatability is worse than when the scans where only spaced by few minutes (Figure 4.1).

16 18 20

IcePAP Steps [mm]

2

3

4

5

6

7

P
o
si
ti
o
n

E
rr

o
r
[7

m
]

Scans
First Scan

15.98 15.99 16 16.01 16.02

IcePAP Steps [mm]

2.2

2.4

2.6

2.8

3

3.2

P
o
si
ti
o
n

E
rr

o
r
[7

m
]

Scans
First Scan

Figure 4.4: Repeatability of fjur over several hours

The non-repeatable part is computed, summarized in Table 4.2 and visually shown in Figure 4.5.

Table 4.2: RMS value of the Non-repeatable part when during several identical scans within few days

Elapse Time [days] fjur [nm] fjuh [nm] fjd [nm]

0.3 102.9 65.4 76.0
0.7 147.3 75.1 91.5
1.0 188.8 86.9 106.2
1.4 220.8 97.2 107.2
1.7 244.2 106.6 104.3
2.0 252.7 117.6 106.1

4.3 Which error is repeatable and which is not?

In the previous section, it was shown that the non-repeatable part of the fast jack motion is in the order
of several hundreds of nano-meters.

44



0 10 20 30 40 50

Elapse Time [hours]

0

50

100

150

200

250

N
o
n
-r
ep

ea
t.

p
a
rt

[n
m

R
M

S
]

Figure 4.5: RMS value of the non-repeatable part for scans spaced by 8 hours

In this section, we wish to see if this non-repeatable error is due to:

• Thermal drifts?

• non-repeatability of the ball-screw mechanism (1mm error period)

• non-repeatability of the 20µm/10µm/5µm period errors

To do so, a spectral analysis of the non-repeatable part is performed.

First, we look at the errors with small spatial periods in Figure 4.6. It is clear that:

• errors with periods of 5µm and 20µm are very repeatable over several days

• errors with periods of 10µm are well repeatable over several minutes but less over not hours/days
(Figure 4.6, right)

The errors related to large spatial periods are shown in Figure 4.7. Two errors can be observed:

• 1mm error period with good repeatability. This repeatability degrades with time / number of
scans. Still well after several days.

• 0.37mm error period. Well repeatable for the first scan after 2 minutes. Degrades quickly.

Important

The repeatability is very good for the 5µm and 20µm period errors (Figure 4.6), a little bit less
for the 10µm error period (Figure 4.6, right). What can be the physical cause of that?
The non-repeatability with large spatial periods are degrading over time (Figure 4.7). They are
however more easily compensated with the feedback control (mode C).
The cause of the error with a period of 0.37mm is still unknown.

45



5 10 15 20 25

Spatial Period [7m]

0

1

2

3

4

5

A
S
D
[n
m
/
1
=
p

m
]

Mode A Errors
Non-Rep. Part - hours
Non-Rep. Part - min

9.8 10 10.2

Spatial Period [7m]

0

0.5

1

1.5

2

2.5

3

A
S
D
[n
m
/
1
=
p

m
]

Figure 4.6: ASD of the non-repeatable motion part for scans spaced by several minutes and by several
hours

10!1 100

Spatial Period [mm]

0

5

10

15

20

25

A
S
D

[n
m

/
1
=
p

m
]

Initial Scan
2 [min]
4 [min]
6 [min]
8 [min]
10 [min]
11 [min]
13 [min]

15 [min]
17 [min]
8 [h]
16 [h]
24 [h]
33 [h]
41 [h]
49 [h]

Figure 4.7: (Spatial) Spectral Density of the non-repeatability with large spatial periods

46



4.4 Estimation of the errors in mode B

In this section, the expected errors in mode B are estimated.

In order to do so the LUT for the initial scan is computed and then applied to the following scans.

Matlab
%% Filenames for the measurements
data_files_min = {

"lut_const_fj_vel_14012022_1517.dat",
"lut_const_fj_vel_14012022_1519.dat",
"lut_const_fj_vel_14012022_1521.dat",
"lut_const_fj_vel_14012022_1523.dat",
"lut_const_fj_vel_14012022_1525.dat",
"lut_const_fj_vel_14012022_1527.dat",
"lut_const_fj_vel_14012022_1528.dat",
"lut_const_fj_vel_14012022_1530.dat",
"lut_const_fj_vel_14012022_1532.dat",
"lut_const_fj_vel_14012022_1534.dat"

};

Let’s first do this analysis for the first two scans and for the fjur fast jack.

The measured motion errors are shown in Figure 4.8 (left) and the difference between the measured
motion in Figure 4.8 (right).

19.9 19.95 20 20.05 20.1

Input IcePAP Step [mm]

4.2

4.4

4.6

4.8

5

M
ea
su
re
d
M
o
ti
o
n
E
rr
o
r
[7
m
]

19.9 19.95 20 20.05 20.1

Input IcePAP Step [mm]

-100

-50

0

50

100

M
o
ti
o
n
D
i,
er
en
ce
[n
m
]

Figure 4.8: Measured motion error for fjur during both scans (left) and difference in the measured
motion (right)

Let’s now compare the LUT that are computed from both scans (Figure 4.9). The two LUT corrections
are differing by about 50 nm RMS.

Let’s now estimate the motion error in mode B is the LUT computed with the first scan were used.

The RMS value of the remaining error in mode B for fjur are computed and summarized in Table 4.3.
The error is increasing over first half hour and seems to stabilize after several hours.

47



19.9 19.95 20 20.05 20.1

Input IcePAP Step [mm]

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

L
U

T
co

rr
ec

ti
o
n

[7
m

]

19.9 19.95 20 20.05 20.1

Input IcePAP Step [mm]

-100

-50

0

50

100

D
i,

er
en

ce
[n

m
]

Figure 4.9: Generated fjur LUT for both scans (left) and differences between the LUT (right)

16 18 20

IcePAP Step [mm]

-2000

-1500

-1000

-500

0

500

1000

E
st
im

a
te
d
E
rr
o
r
[n
m
]

Initial
2 [m]
4 [m]
6 [m]
8 [m]
10 [m]

11 [m]
13 [m]
15 [m]
17 [m]
0 [h]
8 [h]

16 [h]
24 [h]
33 [h]
41 [h]
49 [h]

17.98 17.99 18 18.01 18.02

IcePAP Step [mm]

-100

0

100

200

300

400

500

E
st
im

a
te
d
E
rr
o
r
[n
m
]

Figure 4.10: Estimated error on fjur using LUT made based on the first scan

48



Table 4.3: RMS value of the estimated errors in mode B for fjur as a function of the time between
the creation of the LUT and the scan

Elapse Time [h] fjur [nm RMS]

0.0 48.1
0.1 62.9
0.1 75.1
0.1 86.1
0.2 95.4
0.2 105.0
0.2 115.7
0.2 126.8
0.3 138.3
8.2 247.4
16.3 240.9
24.5 234.2
32.6 232.9
40.8 249.0
48.9 270.7

The (spatial) spectral density of the estimated errors in mode B are computed and shown in Figure
4.11 for short spatial periods and in Figure 4.12 for large spatial errors.

5 10 15 20 25

Spatial Period [7m]

0

1

2

3

4

5

A
S

D
[n

m
/
1
=
p

m
]

Mode A Errors
Mode B Erros - days
Mode B Erros - min

9.8 10 10.2

Spatial Period [7m]

0

0.5

1

1.5

2

2.5

3

3.5
A

S
D

[n
m

/
1
=
p

m
]

Figure 4.11: Estimated spectral density of the fjur errors in mode B for several scans. Focus on
short spatial periods.

Important

Using the LUT, most of the errors can be compensated. This includes the errors of the stepper
motor (with periods of 5µm, 10µm and 20µm) and the errors of the ball-screw mechanism
(periods of 1mm).
The “quality” of the LUT is degrading over time, especially for periods of 10µm and 1mm.
While the errors with a period of 1mm are not an issue as they will be easily compensated using
feedback control, errors with a period of 10µm could be more problematic.

49



10!1 100

Spatial Period [7m]

0

5

10

15

20

25

A
S
D

[n
m
/
1
=
p

m
]

Mode A Errors
2 [min]
4 [min]
6 [min]
8 [min]
10 [min]

11 [min]
13 [min]
15 [min]
17 [min]
8 [h]
16 [h]

24 [h]
33 [h]
41 [h]
49 [h]

Figure 4.12: Estimated spectral density of the fjur errors in mode B for several scans. Focus on
large spatial periods.

4.5 Conclusion

Important

Repeatability of the Fast Jack motion has been studied.
Even though the repeatability degrades over time, the main errors with a period of 5µm are well
repeatable over many scans and time spans of several days. The degradation of the repeatability
is mostly problematic of the errors with a period of 10µm.
It was shown that the use of a Lookup Table can eliminate most of the repeatable errors. The
remaining motion error on each fast jack is expected to be in the order of 100nmRMS (see
Figure 4.10).

50



5 LUT Software Implementation

5.1 Matlab implementation

In this section, the computation of the LUT is implemented using Matlab and tested experimentally.

5.1.1 LUT Creation

A scan in mode A is performed using the thtraj motor. The scan is performed from 10 to 70 degrees.
Matlab

%% Extract measurement Data make from BLISS
data_A = extractDatData(sprintf("%s/21Nov/blc13420/id21/LUT_Matlab/lut_matlab_22122021_1610.dat", data_directory), ...

{"bragg", "dz", "dry", "drx", "fjur", "fjuh", "fjd"}, ...
[pi/180, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]);

A LUT is generated from this Data.
Matlab

%% Generate LUT
data_lut = createLUT(data_A, "./matlab/lut/lut_matlab_22122021_1610_10_70_table.dat");

The generated LUT is shown in Figure 5.1.

15 20 25

IcePAP Step [mm]

0

2

4

6

8

S
te

p
O
,
se

t
[7

m
]

ur

uh

d

Figure 5.1: Generated LUT

51



5.1.2 Compare Mode A and Mode B

The LUT is loaded into the IcePAP and a new scan in mode B is performed over the same stroke.
Matlab

%% Load mode B scan data
data_B = extractDatData(sprintf("%s/21Nov/blc13420/id21/LUT_Matlab/lut_matlab_result_22122021_1616.dat", data_directory), ...

{"bragg", "dz", "dry", "drx", "fjur", "fjuh", "fjd"}, ...
[pi/180, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]);

The raw (unfiltered, 10kHz) measured motion for fjur , fjuh and fjd are displayed in Figure 5.2.

20 40 60

Bragg Angle [deg]

-2

0

2

4

6

8

10

E
rr

o
r
fo

r
fj
u
r
[u

m
]

Mode A - ur

Mode B - ur

20 40 60

Bragg Angle [deg]

Mode A - uh

Mode B - uh

20 40 60

Bragg Angle [deg]

Mode A - d
Mode B - d

Figure 5.2: Comparison of the Raw measurement of fast jack motion errors for mode A and mode B

As the raw measured data is quite noisy and affected by disturbances, the data is filtered to obtain the
motion errors of the fast jack. The filtered measured errors are shown in Figure 5.3.

5.1.3 Analysis of the remaining errors

Let’s now analyze the remaining errors.

The spectral content of the errors are shown in Figure 5.4. The following can be observed:

• errors with periods of 5µm, 10µm and 20µm are reduced

52



20 40 60

Bragg Angle [deg]

-1

0

1

2

3

4

5

6

7

8

E
rr

o
r
fo

r
fj
u
r
[u

m
]

Mode A - ur

Mode B - ur

20 40 60

Bragg Angle [deg]

Mode A - uh

Mode B - uh

20 40 60

Bragg Angle [deg]

Mode A - d
Mode B - d

Figure 5.3: Comparison of the Raw measurement of fast jack motion errors for mode A and mode B

53



• errors with period of 0.37mm and 1mm are almost totally reduced

• additional motion are added in mode B with periods from 15µm to 25µm

5 10 15 20 25

Spatial Period [7m]

0

0.5

1

1.5

2

2.5

3

3.5

A
S
D

[n
m

/
1
=
p

m
]

Mode A Errors
Mode B Errors

10!1 100

Spatial Period [mm]

0

5

10

15

20

25

30

35

A
S
D

[n
m

/
1
=
p

m
]

Figure 5.4: Spectral density of the fjur measured errors in mode A and mode B

Important

Even though the errors in mode B are well reduced as compared to mode A, the LUT is not
working as well as expected from Section 4.4.
This can be due to several factors:

• limited number of points taken in the LUT (original 1 point every µm) which leads to
errors when interpolating the LUT

• limited number of points taken in the mode B trajectory leading to interpolation errors

Further tests will be performed with in more ideal conditions:

• better trajectory used to build the LUT

• more points in the LUT as well as in the trajectory

5.2 Python implementation

In this section, the LUT is computed using Python.
Matlab

%% FIR with Linear Phase
Fs = 1e4; % Sampling Frequency [Hz]
fir_order = 10000;
B_fir = firls(fir_order, ... % Filter's order

[0 5/(Fs/2) 10/(Fs/2) 1], ... % Frequencies [Hz]
[1 1 0 0]); % Wanted Magnitudes

delay = fir_order/2; % Delay induced by the filter

%% Computation of filters' responses
[h_fir, f] = freqz(B_fir, 1, 10000, Fs);

54



%% Bode plot of different filters that could be used
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

ax1 = nexttile([2,1]);
hold on;
plot(f, abs(h_fir));
hold off;
set(gca, 'YScale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
ylim([2e-5, 2e0]);

ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(h_fir));
hold off;
set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
yticks(-360:90:360);

linkaxes([ax1,ax2],'x');
set(gca, 'XScale', 'lin');
xlim([0, 5e2]);

%% Filtering of data
vph_filtered = filter(B_fir, 1, vph);
vpv_filtered = filter(B_fir, 1, vpv);

%% Compensation of the delay introduced by the FIR filter
vph_filtered(1:end-delay) = vph_filtered(delay+1:end);
vpv_filtered(1:end-delay) = vpv_filtered(delay+1:end);

%% Plot data
figure;
hold on;
plot(vph, vpv, '.')
plot(vph_filtered, vpv_filtered, '.')
hold off;

5.2.1 Load Data

A scan in mode A is performed and loaded.

Python
data = np.loadtxt("/home/thomas/mnt/data_id21/21Nov/blc13420/id21/LUT_constant_fj_vel/lut_const_fj_vel_17012022_1749.dat")

Useful data are extracted and converted to SI units.

Python
bragg = np.pi/180*data[:,0] # Bragg Angle [rad]
dz = 1e-9*data[:,1] # Distance between crystals [m]
dry = 1e-9*data[:,2] # dry [rad]
drx = 1e-9*data[:,3] # drx [rad]
fjur = 1e-8*data[:,4] # ur Fast Jack Step in [m]
fjuh = 1e-8*data[:,5] # uh Fast Jack Step in [m]
fjd = 1e-8*data[:,6] # d Fast Jack Step in [m]
time = 1e-4*np.arange(0, np.size(bragg), 1) # Time vector [s]
ddz = 10.5e-3/(2*np.cos(bragg)) - dz; # Z error between the two crystals [m]

Python
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]

55



plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
plt.savefig('figs/test.pdf')

The Bragg angle as a function of time is shown in Figure 5.5 and the fast jack displacements are shown
in Figure 5.6.

0 2 4 6 8 10 12 14
Time [s]

20

21

22

23

24

25

26

27

B
ra

gg
 A

ng
le

 [d
eg

]

bragg

Figure 5.5: Bragg angle during the mode A scan

5.2.2 Convert Data in the frame of the fast jack

The measured motion of the crystals using the interferometers are converted to the motion of the three
jacks using the Jacobian matrix.

Python
# Actuator Jacobian
J_a_111 = np.array([[1, 0.14, -0.0675], [1, 0.14, 0.1525], [1, -0.14, 0.0425]])

# Computation of the position of the FJ as measured by the interferometers
error = J_a_111 @ [ddz, dry, drx]

fjur_e = error[0,:] # [m]
fjuh_e = error[1,:] # [m]
fjd_e = error[2,:] # [m]

The obtained motion error of the fast jack as a function of time are shown in Figure 5.7.

56



0 2 4 6 8 10 12 14
Time [s]

24.5

24.6

24.7

24.8

24.9
Fa

st
 J

ac
k 

M
ot

io
n 

[m
m

]
fjur
fjuh
fjd

Figure 5.6: Fast Jack motion during the mode A scan

0 2 4 6 8 10 12 14
Time [s]

6000

5000

4000

3000

2000

1000

0

1000

2000

Fa
st

 J
ac

k 
E

rr
or

s 
[n

m
]

fjur
fjuh
fjd

Figure 5.7: Measured fast jack motion errors as a function of time

57



5.2.3 Filter Data

In order to get rid of external disturbances and noise, the measured fast jack displacement errors are
low pass filtered.

The filter parameters are defined below.

Python
# Generate Low pass FIR Filter
sample_rate = 10000.0 # Sample Rate [Hz]
nyq_rate = sample_rate / 2.0 # Nyquist Rate [Hz]

cutoff_hz = 27 # The cutoff frequency of the filter [Hz]

# Window with specific ripple [dB] and width [Nyquist Fraction]
N, beta = kaiserord(60, 4/nyq_rate)

# Delay expressed in number of sample
N_delay = int((N-1)/2)

# Delay expressed in seconds
delay = N_delay / sample_rate

The filter is generated using the following command:

Python
# Fitler generation
taps = firwin(N, cutoff_hz/nyq_rate, window=('kaiser', beta))

This filter will introduce a constant delay that is a function of its length:

Python
print("Length of the filter is %i\nDelay is %i samples (i.e. %.3f seconds)" % (N, N_delay, delay))

Results
Length of the filter is 9065
Delay is 4532 samples (i.e. 0.453 seconds)

The measured data is then filtered using the lfilter command. The obtained raw and filtered data
are displayed in Figure 5.8.

Python
# Filtering of data, compensation of the delay introduced by the FIR filter
fjur_e_filt = lfilter(taps, 1.0, fjur_e)[N:]
fjuh_e_filt = lfilter(taps, 1.0, fjuh_e)[N:]
fjd_e_filt = lfilter(taps, 1.0, fjd_e)[N:]
time_filt = time[N_delay+1:-N_delay]

The measured fast jack motion (filtered) as a function of the IcePAP steps (desired position) is shown
in Figure 5.9 for the three fast jacks.

58



0 2 4 6 8 10 12 14
Time [s]

6000

5000

4000

3000

2000

1000

0

1000

2000
Fa

st
 J

ac
k 

E
rr

or
s 

[n
m

]

fjur - raw
fjuh - raw
fjd - raw
fjur - filtered
fjuh - filtered
fjd - filtered

Figure 5.8: Raw and filtered measured errors of the fast jack motion

24.680 24.685 24.690 24.695 24.700 24.705 24.710 24.715 24.720
IcePAP Step [mm]

24.680

24.685

24.690

24.695

24.700

24.705

24.710

24.715

24.720

M
ea

su
re

d 
M

ot
io

n 
[m

m
]

fjur
fjuh
fjd
Ideal

Figure 5.9: Measured fast jack motion as a function of the IcePAP step

59



5.2.4 Get Only Interesting Data

Now the data corresponding to the acceleration phase are removed.
Python

# Remove the extreme part of the data corresponding to the acceleration phase
filt_array = np.where(np.logical_or(fjd[N_delay+1:-N_delay] > fjd[0] - 0.05e-3, fjd[N_delay+1:-N_delay] < fjd[-1] + 0.05e-3))

fjur_e_filt = np.delete(fjur_e_filt, filt_array)
fjuh_e_filt = np.delete(fjuh_e_filt, filt_array)
fjd_e_filt = np.delete(fjd_e_filt, filt_array)
time_filt = np.delete(time_filt, filt_array)

fjur_filt = np.delete(fjur[N_delay+1:-N_delay], filt_array)
fjuh_filt = np.delete(fjuh[N_delay+1:-N_delay], filt_array)
fjd_filt = np.delete(fjd[ N_delay+1:-N_delay], filt_array)

5.2.5 LUT creation

Now the LUT is initialized and computed.
Python

# Distance bewteen LUT points in [m]
lut_inc = 100e-9

Python
# Lut Initialization - First column is pos in [m]
lut_start = lut_inc*np.floor(np.min([[fjur_filt + fjur_e_filt], [fjuh_filt + fjuh_e_filt], [fjd_filt + fjd_e_filt]])/lut_inc)
lut_end = lut_inc*np.ceil(np.max([[fjur_filt + fjur_e_filt], [fjuh_filt + fjuh_e_filt], [fjd_filt + fjd_e_filt]])/lut_inc)

lut = np.arange(lut_start,lut_end,lut_inc)[:, np.newaxis] @ np.ones((1,4))

Python
# Build the LUT
for i in range(0, lut.shape[0]):

idx = (np.abs(fjur_filt + fjur_e_filt - lut[i,0])).argmin()
if idx > 3 and idx < np.size(fjur_filt) - 1:

lut[i,1] = fjur_filt[idx];
idx = (np.abs(fjuh_filt + fjuh_e_filt - lut[i,0])).argmin()
if idx > 3 and idx < np.size(fjuh_filt) - 1:

lut[i,2] = fjuh_filt[idx];
idx = (np.abs(fjd_filt + fjd_e_filt - lut[i,0])).argmin()
if idx > 3 and idx < np.size(fjd_filt) - 1:

lut[i,3] = fjd_filt[idx];

Python
# Add points at both extremities of the LUT to make sure larger scans can be performed
lut = np.append(lut, np.arange(lut_end+5e-6, lut_end+50e-6, 5e-6)[:, np.newaxis] @ np.ones((1,4)), axis=0)
lut = np.insert(lut, 0, np.arange(lut_start-50e-6, lut_start-1e-6, 5e-6)[:, np.newaxis] @ np.ones((1,4)), axis=0)

Python
# Convert from [m] to [mm]
lut = 1e3*lut;

The computed LUT is shown in Figure 5.10.

60



There is a “step” at the extremities that will slow down the scans is the steps are within the trajectories.

24.5 24.6 24.7 24.8 24.9
IcePAP Step [mm]

1

0

1

2

3

4

5
O

ut
pu

t S
te

p 
[u

m
]

fjur
fjuh
fjd

Figure 5.10: LUT before “normalization” of ends

In order to deal with this issue, both ends of the LUT are shifted in order to compensate this step.
Python

# Step compensation of the start of the LUT
i = np.argmax(np.abs(lut[:,1] - lut[:,0]) > 100e-6)
ur_offset = lut[i,1] - lut[i,0]
lut[0:i,1] = lut[0:i,1] + ur_offset

i = np.argmax(np.abs(lut[:,2] - lut[:,0]) > 100e-6)
uh_offset = lut[i,2] - lut[i,0]
lut[0:i,2] = lut[0:i,2] + uh_offset

i = np.argmax(np.abs(lut[:,3] - lut[:,0]) > 100e-6)
d_offset = lut[i,3] - lut[i,0]
lut[0:i,3] = lut[0:i,3] + d_offset

# Step compensation of the end of the LUT
i = np.argmax(np.abs(lut[::-1,1] - lut[::-1,0]) > 100e-6)
ur_offset = lut[-i-1,1] - lut[-i-1,0]
lut[-i:,1] = lut[-i:,1] + ur_offset

i = np.argmax(np.abs(lut[::-1,2] - lut[::-1,0]) > 100e-6)
uh_offset = lut[-i-1,2] - lut[-i-1,0]
lut[-i:,2] = lut[-i:,2] + uh_offset

i = np.argmax(np.abs(lut[::-1,3] - lut[::-1,0]) > 100e-6)
d_offset = lut[-i-1,3] - lut[-i-1,0]
lut[-i:,3] = lut[-i:,3] + d_offset

The final LUT is displayed in Figure 5.11. The LUT is now smooth and trajectories larger than the
LUT will be possible.

The LUT is saved as a .dat file that will be loaded into BLISS.

61



24.5 24.6 24.7 24.8 24.9
IcePAP Step [mm]

1

0

1

2

3

4

5

O
ut

pu
t S

te
p 

[u
m

]

fjur
fjuh
fjd

Figure 5.11: Figure caption

Python
filename = "test_lut_python.dat"
print(f"Save LUT Table in {filename}")
np.savetxt(filename, lut)

62



6 Optimal Trajectory

In this section, the problem of generating an adequate trajectory to make the LUT is studied.

The problematic is the following:

1. the positioning errors of the fast jack should be measured

2. all external disturbances and measurement noise should be filtered out.

The main difficulty is that the frequency of both the positioning errors errors and the disturbances are
a function of the scanning velocity.

First, the frequency of the disturbances as well as the errors to be measured are described and a filter is
designed to optimally separate disturbances from positioning errors (Section 6). The relation between
the Bragg angular velocity and fast jack velocity is studied in Section 6.2. Next, a trajectory with
constant fast jack velocity (Section 6.3) and with constant Bragg angular velocity (Section 6.4) are
simulated to understand their limitations. Finally, it is proposed to perform a scan in two parts (one
part with constant fast jack velocity and the other part with constant bragg angle velocity) in Section
6.5.

6.1 Filtering Disturbances and Noise

Based on measurements made in mode A (without LUT or feedback control), several disturbances could
be identified:

• vibrations coming from from the mcoil motor

• vibrations with constant frequencies at 29Hz (pump), 34Hz (air conditioning) and 45Hz (un-
identified)

These disturbances as well as the noise of the interferometers should be filtered out, and only the fast
jack motion errors should be left untouched.

Therefore, the goal is to make a scan such that during all the scan, the frequencies of the errors induced
by the fast jack have are smaller than the frequencies of all other disturbances. Then, it is easy to use
a filter to separate the disturbances and noise from the positioning errors of the fast jack.

63



Errors induced by the Fast Jack

The Fast Jack is composed of one stepper motor, and a planetary roller screw with a pitch of 1mm/turn.
The stepper motor as 50 pairs of magnetic poles, and therefore positioning errors are to be expected
every 1/50th of turn (and its harmonics: 1/100th of turn, 1/200th of turn, etc.).

One pair of magnetic pole corresponds to an axial motion of 20µm. Therefore, errors are to be expected
with a period of 20µm and harmonics at 10µm, 5µm, 2.5µm, etc.

As the LUT has one point every 1µm, we wish to only measure errors with a period of 20µm, 10µm
and 5µm. Indeed, errors with smaller periods are small in amplitude (i.e. not worth to compensate)
and are difficult to model with the limited number of points in the LUT.

The frequency corresponding to errors with a period of 5µm at 1mm/s is:
Results

Frequency or errors with period of 5um/s at 1mm/s is: 200.0 [Hz]

We wish that the frequency of the error corresponding to a period of 5µm to be smaller than the
smallest disturbance to be filtered.

As the main disturbances are at 34Hz and 45Hz, we constrain the the maximum axial velocity of the
Fast Jack such that the positioning error has a frequency bellow 25Hz:

Matlab
max_fj_vel = 25*1e-3/(1e-3/5e-6); % [m/s]

Results
Maximum Fast Jack velocity: 0.125 [mm/s]

Important

Therefore, the Fast Jack scans should be scanned at rather low velocity for the positioning errors
to be at sufficiently low frequency.

Vibrations induced by mcoil

The mcoil system is composed of one stepper motor and a reducer such that one stepper motor turns
makes the mcoil axis to rotate 0.2768 degrees. When scanning the mcoil motor, periodic vibrations
can be measured by the interferometers.

It has been identified that the period of these vibrations are corresponding to the period of the magnetic
poles (50 per turn as for the Fast Jack stepper motors).

Therefore, the frequency of these periodic errors are a function of the angular velocity. With an angular
velocity of 1deg/s, the frequency of the vibrations are expected to be at:

64



Results
Fundamental frequency at 1deg/s: 180.6 [Hz]

We wish the frequency of these errors to be at minimum 34Hz (smallest frequency of other disturbances).
The corresponding minimum mcoil velocity is:

Matlab
min_bragg_vel = 34/(50/0.2768); % [deg/s]

Results
Min mcoil velocity is 0.19 [deg/s]

Important

Regarding the mcoil motor, the problematic is to not scan too slowly. It should however be
checked whether the amplitude of the induced vibrations is significant of not.

Note that the maximum bragg angular velocity is:

Matlab
max_bragg_vel = 1; % [deg/s]

Measurement noise of the interferometers

The motion of the fast jacks are measured by interferometers which have some measurement noise. It
is wanted to filter this noise to acceptable values to have a clean measured position.

As the interferometer noise has a rather flat spectral density, it is easy to estimate its RMS value as a
function of the cut-off frequency of the filter.

The RMS value of the filtered interferometer signal as a function of the cutoff frequency of the low pass
filter is computed and shown in Figure 6.1.

Important

As the filter will have a cut-off frequency between 25Hz (maximum frequency of the positioning
errors) and 34Hz (minimum frequency of disturbances), a filtered measurement noise of 0.1nm
RMS is to be expected.

Note

Figure 6.1 is a rough estimate. Precise estimation can be done by measuring the spectral density
of the interferometer noise experimentally.

65



100 101 102 103

Filter Cuto, Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

F
il
te
re
d
N
o
is
e
[n
m
,
R
M
S
]

Figure 6.1: Filtered noise RMS value as a function of the low pass filter cut-off frequency

Interferometer - Periodic non-linearity

Interferometers can also show periodic non-linearity with a (fundamental) period equal to half the
wavelength of its light (i.e. 765nm for Attocube) and with unacceptable amplitudes (up to tens of
nanometers).

The minimum frequency associated with these errors is therefore a function of the fast jack velocity.
With a velocity of 1mm/s, the frequency is:

Results
Fundamental frequency at 1mm/s: 1307.2 [Hz]

We wish these errors to be at minimum 34Hz (smallest frequency of other disturbances). The corre-
sponding minimum velocity of the Fast Jack is:

Matlab
min_fj_vel = 34*1e-3/(1e-3/765e-9); % [m/s]

Results
Minimum Fast Jack velocity is 0.026 [mm/s]

Important

The Fast Jack Velocity should not be too low or the frequency of the periodic non-linearity of
the interferometer would be too small to be filtered out (i.e. in the pass-band of the filter).

66



Implemented Filter

Let’s now verify that it is possible to implement a filter that keep everything untouched below 25Hz
and filters everything above 34Hz.

To do so, a FIR linear phase filter is designed:
Matlab

%% FIR with Linear Phase
Fs = 1e4; % Sampling Frequency [Hz]
B_fir = firls(5000, ... % Filter's order

[0 25/(Fs/2) 34/(Fs/2) 1], ... % Frequencies [Hz]
[1 1 0 0]); % Wanted Magnitudes

Its amplitude response is shown in Figure 6.2. It is confirmed that the errors to be measured (below
25Hz) are left untouched while the disturbances above 34Hz are reduced by at least a factor 104.

0 10 20 30 40 50

Frequency [Hz]

10!4

10!2

100

A
m
p
li
tu
d
e

M
ax
.
E
rr
or

M
in
.
D
is
t.

Figure 6.2: FIR filter’s response

To have such a steep change in gain, the order of the filter is rather large. This has the negative effect
of inducing large time delays:

Results
Induced time delay is 0.25 [s]

This time delay is only requiring us to start the acquisition 0.25 seconds before the important part of
the scan is performed (i.e. the first 0.25 seconds of data cannot be filtered).

6.2 First Estimation of the optimal trajectory

Based on previous analysis (Section 6.1), minimum and maximum fast jack velocities and bragg angular
velocities could be determined. These values are summarized in Table 6.1. Therefore, if during the scan
the velocities are within the defined bounds, it will be very easy to filter the data and extract only the
relevant information (positioning error of the fast jack).

67



Table 6.1: Minimum and Maximum estimated velocities

Min Max

Bragg Angular Velocity [deg/s] 0.188 1.0
Fast Jack Velocity [mm/s] 0.026 0.125

We now wish to see if it is possible to perform a scan from 5deg to 75deg of bragg angle while keeping
the velocities within the bounds in Table 6.1.

To study that, we can compute the relation between the Bragg angular velocity and the Fast Jack
velocity as a function of the Bragg angle.

To do so, we first look at the relation between the Bragg angle θb and the Fast Jack position dFJ:

dFJ(t) = d0 −
10.5 · 10−3

2 cos θb(t)
(6.1)

with d0 ≈ 0.030427m.

Then, by taking the time derivative, we obtain the relation between the Fast Jack velocity ḋFJ and the
Bragg angular velocity θ̇b as a function of the bragg angle θb:

ḋFJ(t) = −θ̇b(t) ·
10.5 · 10−3

2
· tan θb(t)
cos θb(t)

(6.2)

The relation between the Bragg angular velocity and the Fast Jack velocity is computed for several
angles starting from 5degrees up to 75 degrees and this is shown in Figure 6.3.

Important

From Figure 6.3, it is clear that only Bragg angles from apprimately 15 to 70 degrees can be
scanned by staying in the “perfect” zone (defined by the dashed black lines).
To scan smaller bragg angles, either the maximum bragg angular velocity should be increased or
the minimum fast jack velocity decreased (accepting some periodic non-linearity to be measured).
To scan higher bragg angle, either the maximum fast jack velocity should be increased or the
minimum bragg angular velocity decreased (taking the risk to have some disturbances from the
mcoil motion in the signal).

For Bragg angles between 15 degrees and 70 degrees, several strategies can be chosen:

• Constant Fast Jack velocity (Figure 6.4 - Left):

1. Go from 15 degrees to 44 degrees at minimum fast jack velocity

2. Go from 44 degrees to 70 degrees at maximum fast jack velocity

• Constant Bragg angular velocity (Figure 6.4 - Right):

1. Go from 15 degrees to 44 degrees at maximum angular velocity

68



0 0.02 0.04 0.06 0.08 0.1 0.12

Fast Jack Velocity [mm/s]

0

0.2

0.4

0.6

0.8

1

B
ra

g
g

A
n
g
u
la

r
V
el
o
ci
ty

[d
eg

/
s]

10

10

15

15

20

20

25

25

30

30

35

35

40

40

45

45

45

50

50

55

55

60

60

65

65

70

70
75

75

1.

2.

Figure 6.3: Bragg angular velocity as a function of the fast jack velocity for several bragg angles (indi-
cated by the colorful lines in degrees). Black dashed lines indicated minimum/maximum
bragg angular velocities as well as minimum/maximum fast jack velocities

69



2. Go from 44 to 70 degrees at minimum angular velocity

• A mixed of constant bragg angular velocity and constant fast jack velocity (Figure 6.3 - Red line)

1. from 15 to 44 degrees with maximum Bragg angular velocity

2. from 44 to 70 degrees with maximum Bragg angular velocity

The third option is studied in Section 6.4

0 0.05 0.1

Fast Jack Velocity [mm/s]

0

0.2

0.4

0.6

0.8

1

A
n
g
u
la
r
V
el
o
ci
ty
[d
eg
/
s]

Constant Fast Jack Velocity

1. 2.

0 0.05 0.1

Fast Jack Velocity [mm/s]

0

0.2

0.4

0.6

0.8

1

A
n
g
u
la
r
V
el
o
ci
ty
[d
eg
/
s]

Constant Bragg Angular Velocity

1.

2.

Figure 6.4: Angular velocity and fast jack velocity during two scans from 5 to 75 degrees. On the left
for a scan with constant fast jack velocity. On the right for a scan with constant Bragg
angular velocity.

6.3 Constant Fast Jack Velocity

In this section, a scan with constant fast jack velocity is studied.

It was shown in Section 6 that the maximum Fast Jack velocity should be 0.125mm/s in order for the
frequency corresponding to the period of 5µm to be smaller than 25Hz.

Let’s generate a trajectory between 5deg and 75deg Bragg angle with constant Fast Jack velocity at
0.125mm/s.

Matlab
%% Compute extreme fast jack position
fj_max = 0.030427 - 10.5e-3/(2*cos(pi/180*5)); % Smallest FJ position [m]
fj_min = 0.030427 - 10.5e-3/(2*cos(pi/180*75)); % Largest FJ position [m]

%% Compute Fast Jack Trajectory
t = 0:0.1:(fj_max - fj_min)/max_fj_vel; % Time vector [s]
fj_pos = fj_max - t*max_fj_vel; % Fast Jack Position [m]

%% Compute corresponding Bragg trajectory
bragg_pos = acos(10.5e-3./(2*(0.030427 - fj_pos))); % [rad]

70



The Fast Jack position as well as the Bragg angle are shown as a function of time in Figure 6.5.

0 50 100

Time [s]

10

15

20

25

F
a
st

J
a
ck

P
o
si
ti
o
n

[m
m

]

0 50 100

Time [s]

0

20

40

60

80

B
ra

g
g

A
n
g
le

[d
eg

]
Figure 6.5: Trajectory with constant Fast Jack Velocity

Let’s now compute the Bragg angular velocity for this scan (Figure 6.6). It is shown that for large Fast
Jack positions / small bragg angles, the bragg angular velocity is too large.

0 20 40 60 80

Bragg Angle [deg]

0

1

2

3

4

5

B
ra
g
g
A
n
g
u
la
r
V
el
o
ci
ty
[d
eg
/
s]

10 15 20 25

Fast Jack Position [mm]

0

1

2

3

4

5

B
ra
g
g
A
n
g
u
la
r
V
el
o
ci
ty
[d
eg
/
s]

Figure 6.6: Bragg Velocity as a function of the bragg angle or fast jack position

Important

Between 45 and 70 degrees, the scan can be performed with constant Fast Jack velocity
equal to 0.125 mm/s.

71



6.4 Constant Bragg Angular Velocity

Let’s now study a scan with a constant Bragg angular velocity of 1deg/s.

Matlab
%% Time vector for the Scan with constant angular velocity
t = 0:0.1:(75 - 5)/max_bragg_vel; % Time vector [s]

%% Bragg angle during the scan
bragg_pos = 5 + t*max_bragg_vel; % Bragg Angle [deg]

%% Computation of the Fast Jack Position
fj_pos = 0.030427 - 10.5e-3./(2*cos(pi/180*bragg_pos)); % FJ position [m]

0 20 40 60

Time [s]

10

15

20

25

F
a
st

J
a
ck

P
o
si
ti
o
n

[m
m

]

0 20 40 60

Time [s]

0

20

40

60

80

B
ra

g
g

A
n
g
le

[d
eg

]

Figure 6.7: Trajectory with constant Bragg angular velocity

0 20 40 60

Time [s]

0

0.2

0.4

0.6

0.8

1

F
a
st

J
a
ck

V
el
o
ci
ty

[m
m

/
s]

20 40 60

Bragg Position [deg]

0

0.2

0.4

0.6

0.8

1

F
a
st

J
a
ck

V
el
o
ci
ty

[m
m

/
s]

Figure 6.8: Fast Jack Velocity with a constant bragg angular velocity

72



Important

Between 15 and 45 degrees, the scan can be performed with a constant Bragg angular ve-
locity equal to 1 deg/s.

6.5 Mixed Trajectory

Let’s combine a scan with constant Bragg angular velocity for small bragg angles (< 44.3 deg) with a
scan with constant Fast Jack velocity for large Bragg angle (> 44.3 deg). The scan is performed from
5 degrees to 75 degrees.

Parameters for the scan are defined below:

Matlab
%% Bragg Positions
bragg_start = 5; % Start Bragg angle [deg]
bragg_mid = 44.3; % Transition between constant FJ vel and constant Bragg vel [deg]
bragg_end = 75; % End Bragg angle [deg]

%% Fast Jack Positions
fj_start = 0.030427 - 10.5e-3/(2*cos(pi/180*bragg_start)); % Start FJ position [m]
fj_mid = 0.030427 - 10.5e-3/(2*cos(pi/180*bragg_mid)); % Mid FJ position [m]
fj_end = 0.030427 - 10.5e-3/(2*cos(pi/180*bragg_end)); % End FJ position [m]

%% Time vectors
Ts = 0.1; % Sampling Time [s]
t_c_bragg = 0:Ts:(bragg_mid-bragg_start)/max_bragg_vel; % Time Vector for constant bragg velocity [s]
t_c_fj = Ts+[0:Ts:(fj_mid-fj_end)/max_fj_vel]; % Time Vector for constant Fast Jack velocity [s]

Positions for the first part of the scan at constant Bragg angular velocity are computed:

Matlab
%% Constant Bragg Angular Velocity
bragg_c_bragg = bragg_start + t_c_bragg*max_bragg_vel; % [deg]
fj_c_bragg = 0.030427 - 10.5e-3./(2*cos(pi/180*bragg_c_bragg)); % FJ position [m]

And positions for the part of the scan with constant Fast Jack Velocity are computed:

Matlab
%% Constant Bragg Angular Velocity
fj_c_fj = fj_mid - t_c_fj*max_fj_vel; % FJ position [m]
bragg_c_fj = 180/pi*acos(10.5e-3./(2*(0.030427 - fj_c_fj))); % [deg]

Fast Jack position as well as Bragg angle are displayed as a function of time in Figure 6.9.

The Fast Jack velocity as well as the Bragg angular velocity are shown as a function of the Bragg angle
in Figure 6.10.

73



0 50 100

Time [s]

10

15

20

25

F
a
st

J
a
ck

P
o
si
ti
o
n

[m
m

]

T
ra

n
si
ti
on

0 50 100

Time [s]

0

20

40

60

80

B
ra

g
g

A
n
g
le

[d
eg

]

T
ra

n
si
ti
on

Figure 6.9: Fast jack trajectories and Bragg angular velocity during the scan

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Bragg Angle [deg]

0

0.05

0.1

0.15

F
a
st

J
a
ck

V
el
o
ci
ty

[m
m
/
s]

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Bragg Angle [deg]

0

0.2

0.4

0.6

0.8

1

1.2

B
ra
g
g
V
el
o
ci
ty

[d
eg
/
s]

Figure 6.10: Fast jack velocity and Bragg angular velocity during the scan

74



Important

From Figure 6.10, it is shown that the fast jack velocity as well as the bragg angular velocity
are within the bounds except:

• Below 15 degrees where the fast jack velocity is too small. The frequency of the non-linear
periodic errors of the interferometers would be at too low frequency (in the pass-band of
the filter, see Figure 6.11). One easy option is to use an interferometer without periodic
non-linearity. Another option is to increase the maximum Bragg angular velocity to 3
deg/s.

• Above 70 degrees where the Bragg angular velocity is too small. This may introduce low
frequency disturbances induced by the mcoil motor that would be in the pass-band of the
filter (see Figure 6.11). It should be verified if this is indeed problematic of not. An other
way would be to scan without the mcoil motor at very high bragg angle.

In order to better visualize the filtering problem, the frequency of all the signals are shown as a function
of the Bragg angle during the scan in Figure 6.11.

20 40 60

Bragg Angle [deg]

0

50

100

150

200

F
re
q
u
en
cy
[H
z]

10 15 20 25

Fast Jack Position [mm]

0

50

100

150

200
F
re
q
u
en
cy
[H
z]

FJ - 57m
FJ - 107m
FJ - 207m
mcoil
Int. Non-Lin
Ext. Dist.
Filter Cut-o,

Figure 6.11: Frequency of signals as a function of the Bragg angle and Fast Jack position

75



7 Constant Fast Jack velocity

A new trajectory motor fjstraj has been created to be able to perform scans with constant Fast Jack
velocity.

As explained in Section 6, this can help with the filtering of the data as positioning errors with periods
of 5µm, 10µm and 20µm will be seen with a constant frequency in the time domain. The frequency
of these errors can be tuned by properly choosing the fast jack velocity.

7.1 Analysis of measured motion

In this section, a scan with constant fast jack velocity is performed and the measurements are ana-
lyzed.

The measurements data are loaded and converted to SI units (mostly meters and radians). Bragg and
Fast Jack velocity are computed and shown in Figure 7.1. We can see that during the scan, the fast
jack velocity is constant and equal to 0.125mm/s while the bragg velocity is increasing.

0 20 40 60

Time [s]

0

0.2

0.4

0.6

0.8

B
ra

g
g

V
el
o
ci
ty

[d
eg

/
s]

0 20 40 60

Time [s]

0

0.05

0.1

0.15

F
a
st

J
a
ck

V
el
o
ci
ty

[m
m

/
s]

Figure 7.1: Bragg and Fast Jack velocity

The frequency of the measured motion errors on fjur are computed as a function a time (spectrogram)
and shown in Figure 7.2. The vibrations linked to the motion of the bragg angle (more precisely due to
mcoil motor) are clearly observed (purple lines). The motion errors of the fast jacks have a constant
frequency. The frequency corresponding to the error period of 5µm is indicated by the dashed black
line.

76



10 20 30 40 50

Time (s)

0

50

100

150

200

250

300

350

400

F
re
q
u
en
cy
(H
z)

-160

-158

-156

-154

-152

-150

-148

-146

-144

-142

-140

P
ow

er
 (

dB
)

FJ - 57m
Interf. Non-Lin.
Bragg

Figure 7.2: Spectrogram of fjsuh during the constant Fast Jack velocity scan. Bragg ( mcoil motor)
disturbances can clearly by seen above 150Hz and they not seems to be a problem at low
Bragg velocity.

77



The (raw) measured positions of each fast jack are displayed as a function of the wanted position (i.e.
IcePAP steps) in Figure 7.3. It is clear that there are some high frequency vibrations/disturbances that
are making the relation between the measured position and the wanted position not bijective.

15
.9
9

15
.9
95 16

16
.0
05

16
.0
1

IcePAP Steps [mm]

15
.9

9
15

.9
95

16
16

.0
05

16
.0

1

M
ea

su
re

d
P
o
si
ti
o
n

[m
m

]

ur

uh

d
Ref

19
.9
9

19
.9
95 20

20
.0
05

20
.0
1

IcePAP Steps [mm]

19
.9

9
19

.9
95

20
20

.0
05

20
.0

1

M
ea

su
re

d
P
o
si
ti
o
n

[m
m

]

ur

uh

d
Ref

Figure 7.3: IcePAP steps and measured position during the scan with constant Fast Jack velocity

The data is then filtered with a sharp low pass filter that filters everything above 30Hz such that the
motion errors of the fast jacks are left untouched and all other disturbances are well attenuated. The
results are shown in Figure 7.4 where it is clear that the relation between the measured motion and the
wanted motion is now a bijective function.

If we only look at the measured position error of the fast jack (i.e. measured position minus the wanted
position/IcePAP steps), we obtain the data of Figure 7.5.

The errors with a period of 5µm can be clearly observed.

7.2 LUT Creation

A Lookup Table is now computed from the filtered data with a point every 100nm of fast jack motion.

Matlab
%% Generate LUT
createLUT(data_A, "lut/lut_const_fj_vel_12012022_1139.dat", "lut_inc", 100e-9);

The obtained lookup table is displayed in Figure 7.6.

78



15
.9
9

15
.9
95 16

16
.0
05

16
.0
1

IcePAP Steps [mm]

15
.9

9
15

.9
95

16
16

.0
05

16
.0

1

M
ea

su
re

d
P
o
si
ti
o
n

[m
m

]

Raw
ur

uh

d
Ref

19
.9
9

19
.9
95 20

20
.0
05

20
.0
1

IcePAP Steps [mm]
19

.9
9

19
.9

95
20

20
.0

05
20

.0
1

M
ea

su
re

d
P
o
si
ti
o
n

[m
m

]

Raw
ur

uh

d
Ref

Figure 7.4: IcePAP steps and measured position during the scan with constant Fast Jack velocity.
Comparison of the raw and filtered data.

15.99 15.995 16 16.005 16.01

IcePAP Steps [mm]

1

2

3

4

5

6

7

8

P
o
si
ti
o
n
E
rr
o
r
[7
m
]

Raw
ur

uh

d

19.99 19.995 20 20.005 20.01

IcePAP Steps [mm]

2

3

4

5

6

7

8

9

M
ea
su
re
d
P
o
si
ti
o
n
[7
m
]

Raw
ur

uh

d

Figure 7.5: Raw and filtered measured position errors during the scan with constant Fast Jack velocity

79



15 16 17 18 19 20 21 22

IcePAP Step [mm]

-10

-8

-6

-4

-2

0
S
te

p
O
,
se

t
[7

m
]

ur

uh

d

19.99 20 20.01

IcePAP Step [mm]

-8

-7

-6

-5

-4

-3

-2

S
te

p
O
,
se

t
[7

m
]

Figure 7.6: Obtained Lookup Table data

7.3 Comparison of errors in mode A and mode B

The Lookup Table is loaded in the IcePAP and a new scan is performed.

The measured position errors of the fast jacks are compared for the scan in mode A and in mode B in
Figure 7.7.

18 18.5 19 19.5

IcePAP Steps [mm]

0

2

4

6

8

P
o
si
ti
o
n
E
rr
o
r
[7
m
]

FJUR

Mode A
Mode B

18 18.5 19 19.5

IcePAP Steps [mm]

FJUH

18 18.5 19 19.5

IcePAP Steps [mm]

FJD

Figure 7.7: Comparison of the measured fast jack position errors in mode A and mode B

7.4 Test LUT just after making it

Matlab
%% Generate LUT
createLUT(data_A, "matlab/lut/lut_data_const_fj_vel_14012022_1720.dat", "lut_inc", 100e-9);

80



Bash
scp matlab/lut/lut_data_const_fj_vel_14012022_1720.dat

opid21@lid21nano:/users/blissadm/local/beamline_configuration/DCM/CALIB/LUT/↪→

Matlab
%% Load the generated LUT
data_lut = importdata("lut_data_const_fj_vel_14012022_1720.dat");

Matlab
data_files = {

"lut_const_fj_vel_14012022_1725.dat",
"lut_const_fj_vel_14012022_1726.dat",
"lut_const_fj_vel_14012022_1727.dat",
"lut_const_fj_vel_14012022_1728.dat",
"lut_const_fj_vel_14012022_1730.dat"

};

Matlab
data_400nm = {};

for i = 1:length(data_files)
data_400nm{i} = extractDatData(sprintf("%s/21Nov/blc13420/id21/LUT_constant_fj_vel/%s", data_directory, data_files{i}), ...

{"bragg", "dz", "dry", "drx", "fjur", "fjuh", "fjd"}, ...
[pi/180, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]);

data_400nm{i}.ddz = 10.5e-3./(2*cos(data_400nm{i}.bragg)) - data_400nm{i}.dz;
data_400nm{i}.time = 1e-4*[1:1:length(data_400nm{i}.bragg)];

%% Computation of the position of the FJ as measured by the interferometers
error = J_a_111 * [data_400nm{i}.ddz, data_400nm{i}.dry, data_400nm{i}.drx]';

data_400nm{i}.fjur_e = error(1,:)'; % [m]
data_400nm{i}.fjuh_e = error(2,:)'; % [m]
data_400nm{i}.fjd_e = error(3,:)'; % [m]

%% Filtering all measured Fast Jack Position using the FIR filter
data_400nm{i}.fjur_e_filt = filter(B_fir, 1, data_400nm{i}.fjur_e);
data_400nm{i}.fjuh_e_filt = filter(B_fir, 1, data_400nm{i}.fjuh_e);
data_400nm{i}.fjd_e_filt = filter(B_fir, 1, data_400nm{i}.fjd_e);

%% Compensation of the delay introduced by the FIR filter
data_400nm{i}.fjur_e_filt(1:end-delay) = data_400nm{i}.fjur_e_filt(delay+1:end);
data_400nm{i}.fjuh_e_filt(1:end-delay) = data_400nm{i}.fjuh_e_filt(delay+1:end);
data_400nm{i}.fjd_e_filt( 1:end-delay) = data_400nm{i}.fjd_e_filt( delay+1:end);

end

Matlab
%% Re-sample data to have same data points in FJUR
for i = 1:length(data_files)

[data_400nm{i}.fjur_e_resampl, data_400nm{i}.fjur_resampl] = resample(data_400nm{i}.fjur_e_filt, data_400nm{i}.fjur,
1/100e-9);↪→
[data_400nm{i}.fjuh_e_resampl, data_400nm{i}.fjuh_resampl] = resample(data_400nm{i}.fjuh_e_filt, data_400nm{i}.fjuh,
1/100e-9);↪→
[data_400nm{i}.fjd_e_resampl, data_400nm{i}.fjd_resampl] = resample(data_400nm{i}.fjd_e_filt, data_400nm{i}.fjd, 1/100e-9);

end

Matlab
%% Mean Motion
fjur_400nm_e_mean = mean(cell2mat(cellfun(@(x) x.fjur_e_resampl, data_400nm, "UniformOutput", false)), 2);
fjuh_400nm_e_mean = mean(cell2mat(cellfun(@(x) x.fjuh_e_resampl, data_400nm, "UniformOutput", false)), 2);
fjd_400nm_e_mean = mean(cell2mat(cellfun(@(x) x.fjd_e_resampl, data_400nm, "UniformOutput", false)), 2);

81



Matlab
%% Compute RMS error in mode B with LUT every 400nmm
fjur_400nm_rms = 1e9*mean(cellfun(@(x) rms(detrend(x.fjur_e_resampl - fjur_e_mean, 0)), data_400nm))

Results
FJUR = 76.2 [nm, RMS] in mode B after several minutes (1 um LUT increment)

Repeatable Part:

7.5 Make a LUT based on mode B

Matlab
%% Generate LUT
createLUT(data_A, "matlab/lut/lut_data_bis_const_fj_vel_14012022_1720.dat", "lut_inc", 100e-9);

Matlab
data_lut_1 = importdata("lut_data_const_fj_vel_14012022_1720.dat");
data_lut_2 = importdata("lut_data_bis_const_fj_vel_14012022_1720.dat");

Update the LUT:

Matlab
fj_start = max([data_lut_1(1,1), data_lut_2(1,1)]);
fj_end = min([data_lut_1(end,1), data_lut_2(end,1)]);

fj_i_1 = data_lut_1(:,1) >= fj_start & data_lut_1(:,1) <= fj_end;
fj_i_2 = data_lut_2(:,1) >= fj_start & data_lut_2(:,1) <= fj_end;

sum(fj_i_1) == sum(fj_i_2)

Matlab
data_lut_merge = data_lut_1(fj_i_1, :);
data_lut_merge(:, 2) = data_lut_merge(:, 2) + (data_lut_2(fj_i_2, 2) - data_lut_2(fj_i_2, 1));
data_lut_merge(:, 3) = data_lut_merge(:, 3) + (data_lut_2(fj_i_2, 3) - data_lut_2(fj_i_2, 1));
data_lut_merge(:, 4) = data_lut_merge(:, 4) + (data_lut_2(fj_i_2, 4) - data_lut_2(fj_i_2, 1));

Matlab
%% Save lut as a .dat file
formatSpec = '%.18e %.18e %.18e %.18e\n';

fileID = fopen("matlab/lut/lut_data_merge_const_fj_vel_14012022_1720.dat", 'w');
fprintf(fileID, formatSpec, data_lut_merge');
fclose(fileID);

Matlab
data_lut_merge = importdata("lut_data_merge_const_fj_vel_14012022_1720.dat");

82



Verify if it makes things better

Matlab
data_files = {

"lut_const_fj_vel_14012022_1816.dat"
};

Matlab
data_it = {};

for i = 1:length(data_files)
data_it{i} = extractDatData(sprintf("%s/21Nov/blc13420/id21/LUT_constant_fj_vel/%s", data_directory, data_files{i}), ...

{"bragg", "dz", "dry", "drx", "fjur", "fjuh", "fjd"}, ...
[pi/180, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]);

data_it{i}.ddz = 10.5e-3./(2*cos(data_it{i}.bragg)) - data_it{i}.dz;
data_it{i}.time = 1e-4*[1:1:length(data_it{i}.bragg)];

%% Computation of the position of the FJ as measured by the interferometers
error = J_a_111 * [data_it{i}.ddz, data_it{i}.dry, data_it{i}.drx]';

data_it{i}.fjur_e = error(1,:)'; % [m]
data_it{i}.fjuh_e = error(2,:)'; % [m]
data_it{i}.fjd_e = error(3,:)'; % [m]

%% Filtering all measured Fast Jack Position using the FIR filter
data_it{i}.fjur_e_filt = filter(B_fir, 1, data_it{i}.fjur_e);
data_it{i}.fjuh_e_filt = filter(B_fir, 1, data_it{i}.fjuh_e);
data_it{i}.fjd_e_filt = filter(B_fir, 1, data_it{i}.fjd_e);
%% Compensation of the delay introduced by the FIR filter
data_it{i}.fjur_e_filt(1:end-delay) = data_it{i}.fjur_e_filt(delay+1:end);
data_it{i}.fjuh_e_filt(1:end-delay) = data_it{i}.fjuh_e_filt(delay+1:end);
data_it{i}.fjd_e_filt( 1:end-delay) = data_it{i}.fjd_e_filt( delay+1:end);

end

Matlab
%% Re-sample data to have same data points in FJUR
for i = 1:length(data_files)

[data_it{i}.fjur_e_resampl, data_it{i}.fjur_resampl] = resample(data_it{i}.fjur_e_filt, data_it{i}.fjur, 1/100e-9);
[data_it{i}.fjuh_e_resampl, data_it{i}.fjuh_resampl] = resample(data_it{i}.fjuh_e_filt, data_it{i}.fjuh, 1/100e-9);
[data_it{i}.fjd_e_resampl, data_it{i}.fjd_resampl] = resample(data_it{i}.fjd_e_filt, data_it{i}.fjd, 1/100e-9);

end

Matlab
%% Mean Motion
fjur_it_e_mean = mean(cell2mat(cellfun(@(x) x.fjur_e_resampl, data_it, "UniformOutput", false)), 2);
fjuh_it_e_mean = mean(cell2mat(cellfun(@(x) x.fjuh_e_resampl, data_it, "UniformOutput", false)), 2);
fjd_it_e_mean = mean(cell2mat(cellfun(@(x) x.fjd_e_resampl, data_it, "UniformOutput", false)), 2);

83



8 Effect of the number of points in the
trajectory in mode B

The goal here is to see if the taken distance between points of the trajectory can affect the positioning
accuracy of mode B.

To do so, a LUT is computed, and then several scans are performed with different distances between
trajectory points.

8.1 LUT

A first trajectory is performed to compute the Lookup Table.

Matlab
%% Generate LUT
createLUT(data_A, "lut/lut_const_fj_vel_14012022_1645.dat", "lut_inc", 250e-9);

The obtained lookup table is displayed in Figure 8.1.

15 16 17 18 19 20 21 22

IcePAP Step [mm]

-10

-8

-6

-4

-2

0

S
te

p
O
,
se

t
[7

m
]

ur

uh

d

19.99 20 20.01

IcePAP Step [mm]

-9

-8

-7

-6

-5

-4

-3

S
te

p
O
,
se

t
[7

m
]

Figure 8.1: Computed LUT that will be used for further tests about the effect of the number of points
taken in the trajectory

84



8.2 Trajectory with increment of 1µm

A trajectory is loaded with 1000 points every millimeter of fast jack motion:
Python

tdh.lut_constant_fj_vel(15.5, 21.5, pts_per_mm=1000, use_lut=True)

Several scans in mode B are performed and the results are shown in Figure

16 17 18 19 20 21 22

IcePAP Steps [mm]

-400

-200

0

200

400

P
o
si
ti
o
n

E
rr

o
r
[n

m
]

Figure 8.2: Measured position errors of the fast jacks

8.3 Trajectory with increment of 0.4µm

A trajectory is loaded with 2500 points every millimeter of fast jack motion:
Python

tdh.lut_constant_fj_vel(15.5, 21.5, pts_per_mm=2500, use_lut=True)

The obtained errors on fjur are shown in Figure 8.3.

8.4 Spatial Errors - Comparison

The spatial periods of errors for the two trajectories are compared in Figure 8.4. Even though the
trajectory with an increment of 0.4µm was done after the trajectory with an increment of 1µm (and
therefore the errors in mode B should be higher), the errors for a period of 5µm are reduced.

It should be further investigated whether using small increments for the trajectory could help reducing
the 5µm period errors.

85



16 17 18 19 20 21 22

IcePAP Steps [mm]

-400

-200

0

200

400

P
o
si
ti
o
n

E
rr

o
r
[7

m
]

Figure 8.3: Measured position errors of the fast jacks

5 10 15 20 25

Spatial Period [7m]

0

1

2

3

4

5

A
S
D

[n
m

/
1
=
p

m
]

mode A
17m inc.
400nm inc.

4.98 5 5.02

Spatial Period [7m]

0

0.5

1

1.5

A
S
D

[n
m

/
1
=
p

m
]

Figure 8.4: Spectral density of the fjur measured position errors for both trajectories. For the errors
with a spatial periods of 5µm, taking smaller steps in the trajectory helps reducing the
errors.

86



9 LUT for energy scans (XANES)

In this section,

9.1 Velocities

Matlab
%% Scan parameters
scan_name = {'P', 'S', 'Cl', 'Cd', 'Ca', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Cu'}; % Element Name
start_ene = 1e3*[2.14, 2.45, 2.895, 3.52, 3.95, 4.94, 5.45, 5.98, 6.52, 7.1 , 8.98]; % [ev]
end_ene = 1e3*[2.19, 2.55, 2.995, 3.65, 4.15, 5.1 , 5.57, 6.14, 6.75, 7.25, 9.12]; % [ev]
step_ene = [0.25, 0.25, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5]; % Scan Steps [ev]

dwell_time_min = 0.01; % corresponds to max velocity [s]
dwell_time_max = 0.1; % corresponds to min velocity [s]

Matlab
dspacing = 3.13501196169967; % [Angstrom]

Matlab
%% Scan objects
scans = {};
for i = 1:length(start_ene)

scans{i}.name = scan_name{i};

scans{i}.traj_ene = start_ene(i):step_ene(i):end_ene(i); % [eV]
scans{i}.traj_bragg = asin(12398.4./scans{i}.traj_ene/2/dspacing); % [rad]
scans{i}.traj_fjs = 0.030427 - (10.5e-3)./(2*cos(scans{i}.traj_bragg)); % [m]

scans{i}.time_slow = dwell_time_max*0:1:length(scans{i}.traj_ene)-1; % [s]
scans{i}.time_fast = dwell_time_min*0:1:length(scans{i}.traj_ene)-1; % [s]

scans{i}.vel_fast_bragg = abs([scans{i}.traj_bragg(2:end) - scans{i}.traj_bragg(1:end-1), 0]/dwell_time_min); % [rad/s]
scans{i}.vel_fast_fjs = abs([scans{i}.traj_fjs(2:end) - scans{i}.traj_fjs(1:end-1), 0]/dwell_time_min); % [m/s]

end

Based on Table 9.2.

• To work without mcoil , the maximum bragg stroke should be 16 degrees. Therefore, all the scans
can be performed without mcoil .

Frequency of 5µm errors:

87



Table 9.1: Fast Jack Stroke and Velocity for typical experiments

Scan Name FJ min [mm] FJ max [mm] FJ stroke [mm] Max FJ vel [mm/s]

P 16.696 18.212 1.516 0.936
S 21.535 22.112 0.577 0.169
Cl 23.239 23.437 0.198 0.065
Cd 24.081 24.181 0.1 0.025
Ca 24.362 24.456 0.093 0.021
Ti 24.698 24.731 0.033 0.009
V 24.793 24.811 0.018 0.008
Cr 24.864 24.882 0.017 0.006
Mn 24.918 24.936 0.019 0.004
Fe 24.961 24.97 0.009 0.003
Cu 25.045 25.049 0.004 0.002

Table 9.2: Bragg Stroke and Velocity for typical experiments

Scan Name Bragg min [deg] Bragg max [deg] Bragg stroke [deg] Max bragg vel
[deg/s]

P 64.545 67.521 2.976 0.719
S 50.846 53.814 2.968 0.355
Cl 41.32 43.082 1.762 0.247
Cd 32.804 34.178 1.374 0.147
Ca 28.456 30.04 1.584 0.149
Ti 22.813 23.596 0.783 0.09
V 20.794 21.274 0.48 0.091
Cr 18.787 19.309 0.522 0.075
Mn 17.035 17.655 0.62 0.062
Fe 15.828 16.171 0.343 0.052
Cu 12.522 12.721 0.198 0.032

88



Scan Name Max freq. [Hz]
P 187.2
S 33.9
Cl 13.0
Cd 5.0
Ca 4.1
Ti 1.8
V 1.6
Cr 1.1
Mn 0.9
Fe 0.6
Cu 0.3

Estimation of maximum velocity such that the 5µm errors are reduced by a factor 50 (i.e. the frequency
of this 5µm should be below 2Hz, see sensitivity function).

Scan Name Min time [s] - 2Hz Min time [s] - 10Hz
P 0.9358 0.1872
S 0.1695 0.0339
Cl 0.0651 0.013
Cd 0.0249 0.005
Ca 0.0205 0.0041
Ti 0.0088 0.0018
V 0.0078 0.0016
Cr 0.0057 0.0011
Mn 0.0043 0.0009
Fe 0.0032 0.0006
Cu 0.0015 0.0003

89


	Hardware and Software Implementation
	Measurement setup
	LUT Implementation

	Initial and proposed LUT computations
	Patterns in the Fast Jack motion errors
	Experimental Data - Current Method
	Simulation
	Experimental Data - Proposed method (BLISS first implementation)
	Comparison of the errors in the reciprocal length space
	Period of errors

	LUT creation from experimental data
	Load Data
	IcePAP generated Steps
	Bragg and Fast Jack Velocities
	Bragg Angle Errors / Delays
	Errors in the Frame of the Crystals
	Errors in the Frame of the Fast Jacks
	Analysis of the obtained error
	Filtering of Data
	LUT creation
	Cubic Interpolation of the LUT

	Position Repeatability
	Repeatability over several minutes
	Repeatability over several days
	Which error is repeatable and which is not?
	Estimation of the errors in mode B
	Conclusion

	LUT Software Implementation
	Matlab implementation
	LUT Creation
	Compare Mode A and Mode B
	Analysis of the remaining errors

	Python implementation
	Load Data
	Convert Data in the frame of the fast jack
	Filter Data
	Get Only Interesting Data
	LUT creation


	Optimal Trajectory
	Filtering Disturbances and Noise
	First Estimation of the optimal trajectory
	Constant Fast Jack Velocity
	Constant Bragg Angular Velocity
	Mixed Trajectory

	Constant Fast Jack velocity
	Analysis of measured motion
	LUT Creation
	Comparison of errors in mode A and mode B
	Test LUT just after making it
	Make a LUT based on mode B

	Effect of the number of points in the trajectory in mode B
	LUT
	Trajectory with increment of 1m
	Trajectory with increment of 0.4m
	Spatial Errors - Comparison

	LUT for energy scans (XANES)
	Velocities


