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In this document, a Simscape (.e.g. multi-body) model of the ESRF Double Crystal Monochromator
(DCM) is presented and used to develop and optimize the control strategy.

It is structured as follow:

e Section 1: the kinematics of the DCM is presented, and Jacobian matrices which are used to solve
the inverse and forward kinematics are computed.

e Section 2: the system dynamics is identified in the absence of control.

e Section 3: it is studied whether if the strain gauges fixed to the piezoelectric actuators can be
used to actively damp the plant.

e Section 4: piezoelectric force sensors are added in series with the piezoelectric actuators and are
used to actively damp the plant using the Integral Force Feedback (IFF) control strategy.

e Section 5: the High Authority Control - Low Authority Control (HAC-LAC) strategy is tested on
the Simscape model.



1 System Kinematics

1.1 Bragg Angle

Matlab

bragg = linspace(5, 80, 1000);
d_off = 10.5e-3;

Matlab

dz = d_off./(2*cos(bragg*pi/180));
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Figure 1.1: Jack motion as a function of Bragg angle

Matlab

80

ans = le3*(dz(end) - dz(1))

Results

24.963

1.2 Kinematics (111 Crystal)

The reference frame is taken at the center of the 111 second crystal.



1.2.1 Interferometers - 111 Crystal

Three interferometers are pointed to the bottom surface of the 111 crystal.

The position of the measurement points are shown in Figure 1.2 as well as the origin where the motion
of the crystal is computed.
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Figure 1.2: Bottom view of the second crystal 111. Position of the measurement points.

The inverse kinematics consisting of deriving the interferometer measurements from the motion of the
crystal (see Figure 1.6):
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To| = Js111 |1y (1.1)
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Figure 1.3: Inverse Kinematics - Interferometers

From the Figure 1.2, the inverse kinematics can be solved as follow (for small motion):

1 007 —0.015
Joai=|1 0 0015 (1.2)
1 —0.07 —0.015

Matlab
J_s_111 = [1, 0.07, -0.015
1, o, 0.015
1, -0.07, -0.015];

Table 1.1: Sensor Jacobian J; 111

1.0 0.07 -0.015
1.0 0.0 0.015
1.0 -0.07 -0.015




The forward kinematics is solved by inverting the Jacobian matrix (see Figure 1.4).
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Figure 1.4: Forward Kinematics - Interferometers

Table 1.2: Inverse of the sensor Jacobian J 1

0.25 0.5 0.25
7.14 0.0 -7.14
-16.67 33.33 -16.67

1.2.2 Piezo - 111 Crystal

The location of the actuators with respect with the center of the 111 second crystal are shown in Figure
1.5.

Inverse Kinematics consist of deriving the axial (z) motion of the 3 actuators from the motion of the
crystal’s center.

dy, d,
du, | =Ja111 |7y (1.4)
dd T

Based on the geometry in Figure 1.5, we obtain:

1 014 —0.1525
Jo111= |1 014  0.0675 (1.5)
1 —0.14 —0.0425

Matlab

J_a_111 = [1, ©.14, -0.1525
1, ©0.14, 0.0675
1, -0.14, -0.04251;

Table 1.3: Actuator Jacobian Jg 111

1.0 0.14 -0.1525
1.0 0.14 0.0675
1.0 -0.14 -0.0425
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Figure 1.5: Location of actuators with respect to the center of the 111 second crystal (bottom view)
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Figure 1.6: Inverse Kinematics - Actuators



The forward Kinematics is solved by inverting the Jacobian matrix:

d, dy,
Ty| = J(;,lln duy, (1.6)
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Figure 1.7: Forward Kinematics - Actuators for 111 crystal

Table 1.4: Inverse of the actuator Jacobian J, o

0.0568  0.4432 0.5
1.7857  1.7857 -3.5714
-4.5455  4.5455 0.0

1.3 Save Kinematics

Matlab

save('mat/dcm_kinematics.mat', 'J_a_111', 'J_s_111")




2 Open Loop System ldentification

2.1 Identification

Let’s considered the system G(s) with:
e 3 inputs: force applied to the 3 fast jacks
e 3 outputs: measured displacement by the 3 interferometers pointing at the 111 second crystal

It is schematically shown in Figure 2.1.
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Figure 2.1: Dynamical system with inputs and outputs

The system is identified from the Simscape model.

Matlab

clear io; io_i = 1;

io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1;

io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1;

Matlab
G = linearize(mdl, io);

Matlab
size(G)

Results
size(G)

State-space model with 3 outputs, 3 inputs, and 24 states.




2.2 Plant in the frame of the fastjacks

Matlab

load('mat/dcm_kinematics.mat');

Using the forward and inverse kinematics, we can computed the dynamics from piezo forces to axial
motion of the 3 fastjacks (see Figure 2.2).
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Figure 2.2: Use of Jacobian matrices to obtain the system in the frame of the fastjacks

Matlab

%% Compute the system in the frame of the fastjacks
G_pz = J_a_111*inv(J_s_111)*G;

The DC gain of the new system shows that the system is well decoupled at low frequency.

Matlab

dcgain(G_pz)

Table 2.1: DC gain of the plant in the frame of the fast jacks Gi;

4.4407e-09  2.7656e-12  1.0132e-12
2.7656e-12  4.4407e-09 1.0132e-12
1.0109e-12  1.0109e-12  4.4424e-09

The bode plot of Gy;(s) is shown in Figure 2.3.

Computing the system in the frame of the fastjack gives good decoupling at low frequency (until
the first resonance of the system).

2.3 Plant in the frame of the crystal
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Figure 2.3: Bode plot of the diagonal and off-diagonal elements of the plant in the frame of the fast
jacks
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Figure 2.4: Use of Jacobian matrices to obtain the system in the frame of the crystal
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Matlab

G_mr = inv(J_s_111)*G*inv(J_a_111");

Matlab

dcgain(G_mr)

1.9978e-09  3.9657e-09  7.7944e-09
3.9656e-09  8.4979e-08 -1.5135e-17
7.7944e-09  -3.9252e-17 1.834e-07

This results in a coupled system. The main reason is that, as we map forces to the center of the 111
crystal and not at the center of mass/stiffness of the moving part, vertical forces will induce rotation
and torques will induce vertical motion.
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3 Active Damping Plant (Strain gauges)

In this section, we wish to see whether if strain gauges fixed to the piezoelectric actuator can be used
for active damping.

3.1 Identification

Matlab

clear io; io_i = 1;

io(io_i) = linio([mdl, '/u'l], 1, 'openinput'); io_i = io_i + 1;

io(io_i) = linio([mdl, '/sg'], 1, 'openoutput'); io_i = io_i + 1;

Matlab

G_sg = linearize(mdl, io);

Matlab

dcgain(G_sg)

-1.4113e-13  1.0339e-13 3.774e-14
1.0339e-13 -1.4113e-13 3.774e-14
3.7792e-14  3.7792e-14 -7.5585e-14
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4 Active Damping Plant (Force Sensors)

Force sensors are added above the piezoelectric actuators. They can consists of a simple piezoelectric
ceramic stack. See for instance [1].

4.1 Identification

Matlab

clear io; io_i = 1;

io(io_i) = linio([mdl, '/control_system'l, 1, 'openinput'); io_i = io_i + 1;

io(io_i) = linio([mdl, '/DCM'], 3, ‘'openoutput'); io_i = io_i + 1;

Matlab

G_fs = linearize(mdl, io);

Matlab

dcgain(G_fs)

-1.4113e-13  1.0339e-13 3.774e-14
1.0339e-13 -1.4113e-13 3.774e-14
3.7792e-14  3.7792e-14 -7.5585e-14

4.2 Controller - Root Locus

Matlab
Kiff_gl = eye(3)*1/(1 + s/2/pi/20);

Matlab

Kiff = g*Kiff_gl;

14
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Figure 4.1: Bode plot of IFF Plant
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Figure 4.2: Root Locus plot for the IFF Control strategy
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4.3 Damped Plant

Matlab

%% Input/Output definition
clear io; io_i = 1;

%% Inputs
% Control Input {3x1} [N]
io(io_i) = linio([mdl, '/control_system'l], 1, 'input'); io_i = io_i + 1;

%% Outputs
% Force Sensor {3x1} [m]
io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1;

Matlab
%% DCM Kinematics
load('mat/dcm_kinematics.mat');
Matlab
%% Identification of the Open Loop plant
controller.type = @; % Open Loop
G_ol = J_a_111*xinv(J_s_111)*linearize(mdl, io);
G_ol.InputName = {'u_ur', ‘'u_uh', ‘'u.d'};
G_ol.OutputName = {'d_ur', ‘'d_uh', 'd_d'};
Matlab

%% Identification of the damped plant with IFF
controller.type = 1; % IFF

G_dp = J_a_111*xinv(J_s_111)*linearize(mdl, io);
G_dp.InputName = {'u_ur', ‘'u_uh', ‘'u_d'};
G_dp.OutputName = {'d_ur', ‘'d_uh', 'd_d'};

The Integral Force Feedback control strategy is very effective in damping the suspension modes
of the DCM.

4.4 Save

Matlab

save('mat/Kiff.mat', 'Kiff');

16
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Figure 4.3: Bode plot of both the open-loop plant and the damped plant using IFF
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5 HAC-LAC (IFF) architecture
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