% Matlab Init :noexport:ignore: %% dcm_identification.m % Extraction of system dynamics using Simscape model %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data %% Simscape Model - Nano Hexapod addpath('./STEPS/') %% Initialize Parameters for Simscape model controller.type = 0; % Open Loop Control %% Options for Linearization options = linearizeOptions; options.SampleTime = 0; %% Open Simulink Model mdl = 'simscape_dcm'; open(mdl) %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(1, 3, 1000); % #+name: fig:schematic_system_inputs_outputs % #+caption: Dynamical system with inputs and outputs % #+RESULTS: % [[file:figs/schematic_system_inputs_outputs.png]] % The system is identified from the Simscape model. %% Input/Output definition clear io; io_i = 1; %% Inputs % Control Input {3x1} [N] io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1; %% Outputs % Interferometers {3x1} [m] io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1; %% Extraction of the dynamics G = linearize(mdl, io); %% Input and Output names G.InputName = {'u_ur', 'u_uh', 'u_d'}; G.OutputName = {'int_111_1', 'int_111_2', 'int_111_3'}; % Plant in the frame of the fastjacks load('dcm_kinematics.mat'); % #+name: fig:schematic_jacobian_frame_fastjack % #+caption: Use of Jacobian matrices to obtain the system in the frame of the fastjacks % #+RESULTS: % [[file:figs/schematic_jacobian_frame_fastjack.png]] %% Compute the system in the frame of the fastjacks G_pz = J_a_111*inv(J_s_111)*G; % #+name: tab:dc_gain_plan_fj % #+caption: DC gain of the plant in the frame of the fast jacks $\bm{G}_{\text{fj}}$ % #+attr_latex: :environment tabularx :width 0.5\linewidth :align ccc % #+attr_latex: :center t :booktabs t % #+RESULTS: % | 4.4407e-09 | 2.7656e-12 | 1.0132e-12 | % | 2.7656e-12 | 4.4407e-09 | 1.0132e-12 | % | 1.0109e-12 | 1.0109e-12 | 4.4424e-09 | % The bode plot of $\bm{G}_{\text{fj}}(s)$ is shown in Figure [[fig:bode_plot_plant_fj]]. %% Bode plot for the plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_pz(1,1), freqs, 'Hz'))), ... 'DisplayName', 'd'); plot(freqs, abs(squeeze(freqresp(G_pz(2,2), freqs, 'Hz'))), ... 'DisplayName', 'uh'); plot(freqs, abs(squeeze(freqresp(G_pz(3,3), freqs, 'Hz'))), ... 'DisplayName', 'ur'); for i = 1:2 for j = i+1:3 plot(freqs, abs(squeeze(freqresp(G_pz(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); ylim([1e-13, 1e-6]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz(1,1), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz(2,2), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz(3,3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:schematic_jacobian_frame_crystal % #+caption: Use of Jacobian matrices to obtain the system in the frame of the crystal % #+RESULTS: % [[file:figs/schematic_jacobian_frame_crystal.png]] G_mr = inv(J_s_111)*G*inv(J_a_111'); % #+RESULTS: % | 1.9978e-09 | 3.9657e-09 | 7.7944e-09 | % | 3.9656e-09 | 8.4979e-08 | -1.5135e-17 | % | 7.7944e-09 | -3.9252e-17 | 1.834e-07 | %% Bode plot for the plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_mr(1,1), freqs, 'Hz'))), ... 'DisplayName', 'd'); plot(freqs, abs(squeeze(freqresp(G_mr(2,2), freqs, 'Hz'))), ... 'DisplayName', 'uh'); plot(freqs, abs(squeeze(freqresp(G_mr(3,3), freqs, 'Hz'))), ... 'DisplayName', 'ur'); for i = 1:2 for j = i+1:3 plot(freqs, abs(squeeze(freqresp(G_mr(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_mr(1,1), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_mr(2,2), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_mr(3,3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% Bode plot for the plant fig = figure; tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); for i_out = 1:3 for i_in = 1:3 ax = nexttile; plot(freqs, abs(squeeze(freqresp(G_mr(i_out, i_in), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); end end linkaxes(findall(fig, 'type', 'axes'),'xy'); xlim([freqs(1), freqs(end)]);