% Matlab Init :noexport:ignore: %% dcm_active_damping_iff.m % Test of Integral Force Feedback Strategy %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data %% Simscape Model - Nano Hexapod addpath('./STEPS/') %% Initialize Parameters for Simscape model controller.type = 0; % Open Loop Control %% Options for Linearization options = linearizeOptions; options.SampleTime = 0; %% Open Simulink Model mdl = 'simscape_dcm'; open(mdl) %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(1, 3, 1000); % Identification %% Input/Output definition clear io; io_i = 1; %% Inputs % Control Input {3x1} [N] io(io_i) = linio([mdl, '/control_system'], 1, 'openinput'); io_i = io_i + 1; %% Outputs % Force Sensor {3x1} [m] io(io_i) = linio([mdl, '/DCM'], 3, 'openoutput'); io_i = io_i + 1; %% Extraction of the dynamics G_fs = linearize(mdl, io); G_fs.InputName = {'u_ur', 'u_uh', 'u_d'}; G_fs.OutputName = {'fs_ur', 'fs_uh', 'fs_d'}; % The Bode plot of the identified dynamics is shown in Figure [[fig:iff_plant_bode_plot]]. % At high frequency, the diagonal terms are constants while the off-diagonal terms have some roll-off. %% Bode plot for the plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_fs(1,1), freqs, 'Hz'))), ... 'DisplayName', 'd'); plot(freqs, abs(squeeze(freqresp(G_fs(2,2), freqs, 'Hz'))), ... 'DisplayName', 'uh'); plot(freqs, abs(squeeze(freqresp(G_fs(3,3), freqs, 'Hz'))), ... 'DisplayName', 'ur'); plot(freqs, abs(squeeze(freqresp(G_fs(1,2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', 'off-diag'); for i = 1:2 for j = i+1:3 plot(freqs, abs(squeeze(freqresp(G_fs(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); ylim([1e-13, 1e-7]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_fs(1,1), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_fs(2,2), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_fs(3,3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % Controller - Root Locus % We want to have integral action around the resonances of the system, but we do not want to integrate at low frequency. % Therefore, we can use a low pass filter. %% Integral Force Feedback Controller Kiff_g1 = eye(3)*1/(1 + s/2/pi/20); %% Root Locus for IFF gains = logspace(9, 12, 200); figure; hold on; plot(real(pole(G_fs)), imag(pole(G_fs)), 'x', 'color', colors(1,:), ... 'DisplayName', '$g = 0$'); plot(real(tzero(G_fs)), imag(tzero(G_fs)), 'o', 'color', colors(1,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_fs, g*Kiff_g1, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:), ... 'HandleVisibility', 'off'); end % Optimal gain g = 8e10; clpoles = pole(feedback(G_fs, g*Kiff_g1, +1)); plot(real(clpoles), imag(clpoles), 'x', 'color', colors(2,:), ... 'DisplayName', sprintf('$g=%.0e$', g)); hold off; axis square; xlim([-2700, 0]); ylim([0, 2700]); xlabel('Real Part'); ylabel('Imaginary Part'); legend('location', 'northwest'); % #+name: fig:iff_root_locus % #+caption: Root Locus plot for the IFF Control strategy % #+RESULTS: % [[file:figs/iff_root_locus.png]] %% Integral Force Feedback Controller with optimal gain Kiff = g*Kiff_g1; %% Save the IFF controller save('mat/Kiff.mat', 'Kiff'); % #+name: fig:schematic_jacobian_frame_fastjack_iff % #+caption: Use of Jacobian matrices to obtain the system in the frame of the fastjacks % #+RESULTS: % [[file:figs/schematic_jacobian_frame_fastjack_iff.png]] %% Input/Output definition clear io; io_i = 1; %% Inputs % Control Input {3x1} [N] io(io_i) = linio([mdl, '/control_system'], 1, 'input'); io_i = io_i + 1; %% Outputs % Force Sensor {3x1} [m] io(io_i) = linio([mdl, '/DCM'], 1, 'openoutput'); io_i = io_i + 1; %% Load DCM Kinematics load('dcm_kinematics.mat'); %% Identification of the Open Loop plant controller.type = 0; % Open Loop G_ol = J_a_111*inv(J_s_111)*linearize(mdl, io); G_ol.InputName = {'u_ur', 'u_uh', 'u_d'}; G_ol.OutputName = {'d_ur', 'd_uh', 'd_d'}; %% Identification of the damped plant with IFF controller.type = 1; % IFF G_dp = J_a_111*inv(J_s_111)*linearize(mdl, io); G_dp.InputName = {'u_ur', 'u_uh', 'u_d'}; G_dp.OutputName = {'d_ur', 'd_uh', 'd_d'}; % The dynamics from $\bm{u}$ to $\bm{d}_{\text{fj}}$ (open-loop dynamics) and from $\bm{u}^\prime$ to $\bm{d}_{\text{fs}}$ are compared in Figure [[fig:comp_damped_undamped_plant_iff_bode_plot]]. % It is clear that the Integral Force Feedback control strategy is very effective in damping the resonances of the plant. %% Comparison of the damped and undamped plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_ol(1,1), freqs, 'Hz'))), ... 'DisplayName', 'd - OL'); plot(freqs, abs(squeeze(freqresp(G_ol(2,2), freqs, 'Hz'))), ... 'DisplayName', 'uh - OL'); plot(freqs, abs(squeeze(freqresp(G_ol(3,3), freqs, 'Hz'))), ... 'DisplayName', 'ur - OL'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(G_dp(1,1), freqs, 'Hz'))), '--', ... 'DisplayName', 'd - IFF'); plot(freqs, abs(squeeze(freqresp(G_dp(2,2), freqs, 'Hz'))), '--', ... 'DisplayName', 'uh - IFF'); plot(freqs, abs(squeeze(freqresp(G_dp(3,3), freqs, 'Hz'))), '--', ... 'DisplayName', 'ur - IFF'); for i = 1:2 for j = i+1:3 plot(freqs, abs(squeeze(freqresp(G_dp(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); ylim([1e-12, 1e-6]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_ol(1,1), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ol(2,2), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ol(3,3), freqs, 'Hz')))); set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*angle(squeeze(freqresp(G_dp(1,1), freqs, 'Hz'))), '--'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dp(2,2), freqs, 'Hz'))), '--'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dp(3,3), freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]);